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Summary 
The human voice is highly flexible, allowing for diverse expression during communication1, but 

presenting perceptual challenges through large acoustic variability2–11. The ability to recognise 

an individual person’s voice depends on the listener’s ability to overcome this within-speaker 

variability to extract a single identity percept (“telling together”2,12). Previous work has found 

that this process is greatly assisted by familiarity6,9,13, with evidence suggesting that more 

extensive and varied exposure to a voice is associated with the formation of a more robust 

mental representation of it4,8. Here, we used functional MRI with Representational Similarity 

Analysis14 to characterise how personal familiarity with a voice is reflected in neural 

representations. We measured and compared brain responses to voices of differing familiarity 

- a personally-familiar other, a voice familiarised through lab training, and a new (untrained) 

voice – while listeners identified those voices from naturally-varying, spontaneous speech 

clips. Personally-familiar voices elicited brain response patterns in voice-, face-, and person-

selective cortex showing higher within- and between-speaker dissimilarity, compared to lower-

familiarity lab-trained and untrained voices. This indicated that representations for the sounds 

of personally-familiar voices are better resolved from each other in the brain, and aligns with 

other research reporting intelligibility advantages for speech produced by familiar 

talkers15,16,16–18. Overall, our findings suggest that the extensive and varied exposure to 

personally-familiar voices results in the development of finer-grained representations of those 

voices, which cannot be achieved via short-term lab training. 

 

Results 
One proposal for how voice identity could be represented in the brain is via stimulus-invariant 

response patterns that are relatively consistent across different encounters with a given 

identity (“telling together”), but distinct from responses to other identities (telling apart). Studies 

of multivariate patterns of brain responses to voices have indeed found evidence that superior 

temporal cortex can discriminate between identities, across different vocal stimuli19,20 and 

across modalities (from voices to faces, and vice versa19,20). These studies focused on how 

telling different voices apart might be represented in the brain but did not explicitly interrogate 

the role of within-person variability in shaping representations of voices (or faces). More 

recently, Lally and colleagues5 harnessed feature films as sources of naturalistic within- and 

between-person facial and vocal variability, finding widespread evidence in voice-, face-, and 

person-selective cortical areas for greater within-person than between-person similarity in 

brain responses to people (i.e. faces and voices). However, familiarity was not manipulated in 

that study. 

 

We therefore designed a novel study to address two research questions: 1) Do brain 
representations of voice identities align with a theoretical framework of “telling together” and 
telling apart? and 2) How are brain responses to voice identities shaped by speaker familiarity? 
To do this, we analysed functional MRI data from 26 adult participants listening to naturally-
varying, spontaneous speech recordings from three voice identities: a personally-familiar 
voice (Familiar), a voice trained to familiarity via pre-scan training tasks (Lab), and a voice not 
heard before the scan (New). Using Representational Similarity Analysis14 of the brain’s 
response patterns to these voices, we then tested two predictions about the brain’s 
representation of voice identity. First, we predicted that there would greater similarity of brain 
response patterns to the same speaker, compared with response patterns to different 
speakers (i.e. greater similarity for “telling together” than telling apart5,22). Second, we 
predicted familiarity-dependent variation in the similarity of within-speaker brain response 
patterns. Specifically, we expected to see the greatest within-speaker similarity in response to 
the Familiar voice, in line with behavioural evidence of greater “telling together” accuracy for 
familiar voice perception6,9,13, as well as proposed “voice recognition units”22 and other models 
positing abstracted representations of voice identities23. 
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We expected to find representation of voice identities in the temporal lobes, with statistical 

peaks in the right hemisphere19,24–30. Within this, we expected familiarity effects in anterior 

STS31–34 and person-selective cortical areas that may be implicated in multimodal 

representations of familiar identities (e.g. precuneus35,36). As our hypotheses did not concern 

higher-order domain-general processes, we restricted our analyses to brain regions defined 

as voice-, face-, and person-selective in previous research on the neural representations of 

voice, face, and multimodal (voice and face) identities5,20. 

 
All participants completed three experimental sessions (see Figure 1). In a first familiarisation 

session, participants listened to examples of the Familiar and Lab voices and then completed 

a 3-way forced choice voice identity categorisation task with accuracy feedback, including the 

Familiar voice, the Lab voice, and a third, unfamiliarised voice (Mean Accuracy (final block): 

Familiar 99.6%, Lab 94.7%, unfamiliarised 95.2%). A refresher session, taking place 

immediately before the scanning session, included a shortened training on the identity 

categorisation task including the same 3 identities (Mean Accuracy: Familiar 98.4%, Lab 

96.0%, unfamiliarised 94.2%). Participants were then briefly familiarised with a novel, 

previously unheard voice identity (New). In a final fMRI scanning session, we measured neural 

responses in the context of an explicit voice identity recognition task37 to ensure engagement 

of voice-sensitive processes. Here, behavioural and fMRI data were collected while 

participants again performed a voice identity categorisation task – now without feedback and 

on previously unheard examples of the Familiar voice, the Lab voice, and the New voice (Mean 

Accuracy: Familiar 98.9%, Lab 87.6%, New 85.4%). A comparison of unbiased hit rates (Hu) 

across the three voice identity conditions showed a significant effect of familiarity (χ²(2) = 

40.19, p < .001), where the Familiar voice was recognised with significantly greater accuracy 

than both the Lab (Estimate = .366, t = 6.53, p < .001) and New (Estimate = .376, t = 6.70, p 

< .001) voices.  
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We used Representational Similarity Analysis14 with a searchlight approach38 to analyse the 
brain responses to the three voices within voice-, face-, and person-selective cortical regions 
of interest5,20. Specifically, for each participant and within each searchlight, we computed brain 
response patterns to each voice clip, based on the average brain response pattern to that clip 
across all runs. We then computed the dissimilarities [using 1 - r (Pearson correlation)] 
between the brain response patterns to each pair of clips, resulting in an observed neural 
dissimilarity matrix (ONDM) for that searchlight. With 8 unique voice clips per 3 voice identities 
in total, this resulted in a matrix with 276 unique values (i.e. ((24 x 24) - 24) / 2). Per-searchlight 
ONDMs were entered into partial correlations with hypothetical model representational 
dissimilarity matrices (RDMs) describing the predicted similarity of neural responses based on 
our hypotheses. In all cases, the partial correlations quantified the relationship between the 
brain and the hypothetical model, after controlling for the acoustic dissimilarities between the 
experimental stimuli (based on their Long-Term Average Spectra). In line with convention, 
below we present and discuss all results in terms of dissimilarity of brain responses, where 
higher/lower dissimilarity can be interpreted as lower/higher similarity. 
 
Do brain representations of voice identities align with a theoretical framework of “telling 
together” and telling apart? 
 
Our first analysis tested a “telling together” and “telling apart” framework for representing voice 
identity, using a model predicting greater dissimilarity of brain responses for between-speaker 
than within-speaker comparisons. We found evidence for significantly greater between-
speaker than within-speaker dissimilarity across our searchlight mask, apart from primary 
auditory cortex and adjacent portions of STG bilaterally as well as face-selective right fusiform 
and occipital gyri (see Figure 2A and Supplemental Table 1). Pairwise follow-up analyses 
revealed familiarity-dependent profiles, now also implicating face-selective occipitotemporal 
cortex: specifically, greater between- versus within-speaker dissimilarity was observed only 
for between-speaker comparisons implicating the Familiar voice (Familiar-Lab and Familiar-
New) when contrasted with within-speaker comparisons implicating the less familiar Lab and 
New voices (i.e. Lab-Lab or New-New; see Figure 2B and Supplemental Table 1). However, 
there was no evidence for greater between- than within-speaker dissimilarity when analysing 
responses to the Lab and New voices only. These results suggest a more complex picture of 
“telling apart” and “telling together” than hypothesised: As the representative matrices in 
Figure 2 show, neural responses to the Familiar voice tended to generate the highest 
dissimilarities within our regions of interest, for both within- and between-speaker 
comparisons. 
 

 

There was some evidence for significant negative correlations with the hypothetical model, 

where within-speaker comparisons generated greater dissimilarity in brain responses than 

between-speaker comparisons. Again, these effects trended with familiarity: Multiple clusters 

in left and right superior temporal cortex showed significantly greater dissimilarity of within-

speaker brain responses across familiar voice stimuli than for between-speaker comparisons 

with the less familiar lab-trained voice, while clusters in right fusiform and inferior occipital 

gyrus similarly showed greater within-speaker dissimilarity for the lab-trained voice than for 

between speaker comparisons with the least familiar, new, voice (see Figure 2C and 

Supplemental Table 1). Taken together, these results suggest that while “telling together” and 

“telling apart” offer a useful framework for describing the behavioural correlates of naturalistic 

voice identity perception, where “telling together” selectively benefits from familiarity, this is 

not directly reflected in the responses of voice-, face-, and person-selective brain regions to 

voices of varying familiarity. 
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Are brain response patterns to individual voice identities shaped by speaker familiarity? 

To test for effects of familiarity on “telling together”, we compared within-speaker dissimilarities 
in brain response patterns with a model predicting increasing within-speaker dissimilarity with 
decreasing voice familiarity (i.e. Familiar < Lab < New). This revealed significant effects in all 
voice-, face-, and person-selective regions of interest, except primary auditory cortex and 
adjacent portions of STG, orbitofrontal cortex, and right inferior occipital cortex (see Figure 3A 
and Supplemental Table 2). Here, against our predictions, we found a negative correlation 
between brain responses and the model: the Familiar voice generated the greatest within-
speaker dissimilarity on average, with responses to the Lab and New voices showing 
significantly lower and statistically equivalent within-speaker dissimilarity (Figure 3B and 
Supplemental Table 2). That is, participants recognised the Familiar voice with greater 
accuracy while showing better resolved brain responses to examples of this voice, compared 
with lower recognition accuracy and within-speaker resolvability for the Lab and New voices. 
Interestingly, while we observe this effect of familiarity along the length of STS in both 
hemispheres, the raw dissimilarity values for within-speaker comparisons (which underlie the 
results in Figures 3A and 3B) show an anterior-going hierarchy of processing: within-speaker 
brain response patterns to individual stimuli increased in their mutual dissimilarity with 
increasing distance from primary auditory cortex, and this profile was most pronounced for the 
familiar voice (Figure 3C). 

 

Discussion 

The current study offers important theoretical insights on how the voices of other people are 

represented in the human brain. Across all analyses, responses to the familiar voice showed 

higher within- and between-speaker dissimilarity, suggesting that greater familiarity is reflected 

in better-resolved representations of a voice across different utterances. Brain responses 

became increasingly resolved from each other along the auditory processing hierarchy39–43, 

and to a greater extent for the personally-familiar identity than for less familiar speakers, 

complementing reports of striking familiarity advantages for speech intelligibility15,16,16–18 that 

are underpinned by more robust speech representations in superior temporal cortex44. 

Familiarity effects in person- and face-selective regions within our study potentially reflect 

engagement of extended knowledge when listening to a familiar voice – beyond speech 

comprehension, listeners may make finer-grained inferences about the speaker’s appearance, 

mood, and intentions for each specific utterance45–47.  

 

Some regions of interest showed no statistically significant effects: notably, bilateral primary 

auditory cortices and their immediate surrounds, which in general exhibited very low 

dissimilarity of brain response patterns across voice stimuli (Figure 3C). This aligns with 

existing models of voice processing22,35 proposing that voice structural and identity-related 

cues are extracted at later stages of the auditory processing hierarchy. Similarly, findings in 

face-selective regions of inferior occipito-temporal cortex implicated the anterior portions of 

the fusiform gyrus more than posterior occipital cortex, reflecting the recent finding that the 

fusiform face area (FFA) represents higher-order information about faces (e.g. gender, traits) 

while the occipital face area (OFA) represents image-based information48. We note, however, 

that while we assume our results reflect higher-order aspects of voice perception (having 

partialled out basic stimulus acoustics), our study was not designed to establish the 

informational content of voice representations. 

 

Other areas within our searchlight regions were somewhat inconsistently implicated in the 

results. Against the overall trends, scattered clusters in OFA/FFA and (mainly left) superior 

temporal cortex exhibited effects of greater within-speaker than between-speaker dissimilarity 

for some voice pairs (Figure 2C). These effects should be interpreted in the context of our 

overall finding that a “telling together and telling apart” account is likely an insufficient 
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framework for capturing how distinct voice identities are represented in the brain. More 

consistent was the overall greater resolution of brain responses to the familiar voice, where 

we found that person-selective orbitofrontal cortex may be relatively less sensitive to voice 

familiarity than the other person-selective regions (Figure 3).  

 

Although participants spent three experimental sessions listening to the lab-trained voice and 

recognised it with high accuracy, the lab-trained voices showed lower within-speaker and 

between-speaker dissimilarity in brain response patterns compared with personally-familiar 

voices, and were recognised with significantly lower accuracy during the in-scanner 

behavioural task. Indeed, the in-scanner drop in recognition accuracy for the lab-trained voice 

reflects the vulnerability of recognising a weakly familiar voice4 when presented with previously 

unheard examples, in the context of a new competitor voice, and in a noisy scanner 

environment. The profiles of brain response pattern dissimilarities for the lab-trained voice 

were also minimally distinct from the untrained new voice, and these two voice identities were 

categorised with equivalent accuracy in the scanner – although accurate categorisation of the 

new voice can reflect both emergent familiarity and correct rejection of that voice from the 

other categories (i.e. “It’s not my partner/friend or the voice I’ve learned, so it must be someone 

else”), which limits our interpretation. Nonetheless, these observations further suggest a 

fragility in the representation of the lab-trained voice in relation to the personally-familiar 

identity. This is important when considering how “familiarity” is operationalised for use in voice 

identity research: near-ceiling accuracy of voice recognition following brief training may be 

built upon ill-formed representations that generalise poorly to new listening situations. Indeed, 

voices learned from different amounts of exposure that can be identified with equivalent 

accuracy still show exposure-dependent levels of familiar-speaker intelligibility benefits49. 

Modifications of the current study design could include 2 or more voices per familiarity level, 

thus allowing for “telling apart versus telling together” models to be tested at a matched level 

of familiarity. Similarly, including multiple lab-trained voices learned from varying amounts and 

types of exposure would allow us to more clearly establish how the resolution of responses to 

within-speaker variability emerges with increasing familiarity. 

 

Overall, this study challenges the notion that familiar person recognition is underpinned by a 

neural framework in which between-person variability must exceed within-person variability50, 

while showing that being more familiar with a person’s voice allows the listener to encode and 

represent that speaker’s utterances with greater distinction. The latter finding speaks against 

a mechanism for voice identity recognition purely based on stimulus-invariant voice 

recognition units22 or reference patterns23, instead suggesting that familiarity may be 

underpinned by neural representations incorporating more, rather than less, detail about how 

a voice sounds across variable stimuli. Indeed, previous behavioural research has shown that, 

under certain circumstances, greater variability of exposure benefits voice identity learning8. 

Further, while there is evidence that listeners may learn voice identities by extracting summary 

statistics of voice patterns (e.g. acoustic averages), memory for variable exemplars is not 

discarded in the learning process51. 

 

It is possible that the brain’s mechanism for recognising voice identities combines familiar 

voice pattern matching with representations of learned within-speaker variability. Previous 

neuroimaging studies reporting sensitivity to voice identity and familiarity in the univariate 

magnitude of responses in (right) anterior temporal cortex28,31–33 analysed the brain’s averaged 

response to voice identities, thus potentially capturing the activation of more robust voice 

averages or reference patterns for more familiar voices45 – an exploratory univariate analysis 

of our data also shows greater responses to the familiar voice compared with the other 2 

identities in bilateral anterior temporal lobes (see Figure S1 and Table S3). However, if 
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representations incorporate the learned variability of a voice, it follows that more detailed 

representations of personally familiar voices (with which listeners typically have more varied 

experience) may simultaneously generate greater variability of brain response patterns, as 

different exemplars of a voice will match with different aspects of its stored variability. Our 

current RSA approach emphasised the (dis)similarity of responses to individual voice stimuli, 

and thus more likely captured this aspect of voice identity representations. Taking findings 

together, we suggest that familiar voice representations may encode within-speaker variability 

in addition to any abstracted familiar voice pattern, rather than instead of it. 
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shared. 

 Code used to generate the figures has been deposited via the Open Science 
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Figure Legends 

Figure 1. Outline of the study test sessions. A: Recording Session. A friend/partner of each 

participant attended a recording session to generate experimental stimuli. B: Familiarisation 

Session: The participant was familiarised with clips of the Familiar and Lab voice, then 

completed a voice identity categorisation task with feedback. C: Refresher Session: The 

participant performed one block of the categorisation task and was then familiarised with the 

New voice. D: Scanner Session: (i) The participant underwent 4 runs of continuous fMRI data 

acquisition while performing a categorisation task without feedback. (ii) In-scanner 

https://osf.io/qrzwg/
https://osf.io/qrzwg/
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performance, measured with unbiased hit rates (Hu). (iii) In-scanner confusions table showing 

the percentage of trials on which a given presented voice condition (Stimulus Category) was 

categorised as the Familiar, Lab, or New voice (Response Category). Bold indicates the 

percentage of hits per voice condition. 

 

Figure 2.  Comparing between-speaker (“telling apart”) and within-speaker (“telling 

together”) dissimilarity in the brain responses to voices. A: Group map of searchlight 

locations showing significantly greater neural dissimilarity for between- than within-speaker 

comparisons, across all voice conditions (z > 1.96, with TFCE cluster correction). B: Group 

maps of searchlight locations showing significantly greater neural dissimilarity for between- 

than within-speaker comparisons, for selected pairwise voice comparisons (z > 1.96; with 

TFCE cluster correction; see also Supplemental Table 1). C: Group maps of searchlight 

locations showing significantly greater neural dissimilarity for within- than between-speaker 

comparisons, for selected pairwise voice comparisons (z > 1.96; with TFCE cluster correction; 

see also Supplemental Table 1). Blue shading indicates the searchlight mask of face-, voice-, 

and person-selective brain regions of interest.  

Observed neural dissimilarity matrices (ONDMs) illustrate group mean dissimilarity values (1 

– Pearson’s correlation) per voice comparison (e.g. Familiar-Lab, New-New), where red 

indicates the minimum dissimilarity and yellow the greatest dissimilarity within a 100-voxel 

searchlight volume centred on the location indicated by the coordinates. Coordinates are 

shown in Montreal Neurological Institute (MNI) stereotactic space; grey squares and blue 

triangles on the matrices outline the comparisons included in each analysis. Peak centre voxels 

were identified from uncorrected group searchlight maps. STG = superior temporal gyrus; STS 

= superior temporal sulcus. See also Table S1. 

 

Figure 3. Comparing within-speaker (“telling together”) dissimilarity in the brain 

responses to voices of differing familiarity. A: Group map of searchlight locations showing 

a significant effect of voice condition (Familiar, Lab, New) (z > 1.96, TFCE cluster correction; 

see also Supplemental Table 2) on neural dissimilarity. B: Group maps of searchlight locations 

showing significantly greater neural within-speaker dissimilarity for the Familiar voice 

compared with the Lab and New voices, respectively (z > 1.96, TFCE cluster correction). Blue 

shading indicates the searchlight mask of face-, voice-, and person-selective brain regions of 

interest. The comparison of the Lab voice with the New voice is not shown as there were no 

suprathreshold clusters. C: Group searchlight maps of mean neural dissimilarity for within-

speaker comparisons, for each voice condition (0 = blue, 0.5 = green, 1 = red). 

Representational dissimilarity matrices (RDMs) illustrate group mean dissimilarity values (1 – 

Pearson’s correlation) per voice comparison, including only within-speaker comparisons, 

where red indicates the minimum dissimilarity and yellow the greatest dissimilarity within a 

100-voxel searchlight volume centred on the location indicated by the coordinates. 

Coordinates are shown in Montreal Neurological Institute (MNI) stereotactic space. Peak 

centre voxels were identified from uncorrected group searchlight maps. STG = superior 

temporal gyrus; STS = superior temporal sulcus; FFA = fusiform face area; OFA = occipital 

face area. See also Table S2. 
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STAR★METHODS 

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Participants 
Twenty-seven adult participants completed all the behavioural and fMRI sessions. All were 
native speakers of British English and aged between 18 and 50 years old at the time of the 
scan. Data from 1 participant were excluded following the scan due to issues with fMRI 
acquisition (inadequate slice positioning) and with in-scanner task performance (9% timeouts 
on response trials). The final sample for data analysis therefore included 26 participants (19 
female, 5 male, 1 non-binary, 1 agender; mean age 26.1 years; 4 left-handed). Ethical 
approval was obtained from the ethics chair of the Birkbeck-UCL Centre for Neuroimaging 
(BUCNI) within the UCL Division of Psychology and Language Sciences (Project ID: 
fMRI/2019/005). All participants provided informed consent before completing any of the 
recordings or tasks. Participants were paid £6 for the voice recording session and an additional 
£19 for taking part in the additional behavioural and scanning sessions. 
 
METHOD DETAILS 
Stimuli 
Familiar Voices 
In the behavioural and scanning sessions, all 26 participants listened to a familiar speaker 

who was personally known to them. The initial recruitment strategy was to recruit participants 

in familiar pairs, where each member of the pair would provide the personally-familiar voice 

recordings for the other. However, in order to match the personally-familiar voices with the lab-

learned and unfamiliar/new identities used in the experimental tasks, all personally-familiar 

voices were required to speak with a Southern British English accent, and it was not possible 

to find enough pairs where both members met this requirement; some recruited participants 

were also found to be ineligible for the scanning experiment due to MR contraindications.  

The final dataset included 8 mutual pairs (i.e. where each participant provided personally-

familiar voice recordings for the other, and both completed all experimental sessions). Three 

of these 16 participants provided personally-familiar voice recordings for a further 4 

participants (1 female heard by 2 additional participants; 1 male and 1 female each heard by 

1 additional participant). Finally, 3 participants provided voice recordings only, for a further 6 

participants (2 females each heard by 2 participants, 2 females each heard by 1 participant) 

and were not included in the experimental data. In total, there were 21 unique personally-

familiar voices in the study (16 female-sounding, 5 male-sounding). 

Eight personally-familiar voices were the romantic partner of participant, and the remainder 

were friends and colleagues. Participants on average reported knowing their familiar partner 

for 6.9 years (range 3 months – 23 years; median 5.5 years), and speaking with them for 8.6 

hours per week (range 30 mins – 30 hours; median 4.5 hours). 

 
Lab and New Voices 
All voices encountered by each participant in the behavioural and in-scanner tasks were 
matched in regional accent (Southern British English) and apparent sex (i.e. female-sounding 
or male-sounding). For each participant, 4 voice identities were needed: 1 personally-familiar 
voice (labelled with the speaker’s proper forename), 1 lab-trained voice (labelled “Alex”), and 
2 unfamiliar voices (1 labelled as “someone else” for the training and refresher sessions; 1 
labelled as “Charlie” for the scanning session). Three female-sounding and 3 male-sounding 
voices, selected from the LUCID corpus52, were assigned to the lab-trained and unfamiliar-
speaker roles, with counter-balancing across participants. In total, 27 unique voice identities 
were heard in the study (19 female-sounding, 8 male-sounding); there were 23 completely 
unique combinations of the 4 voice identity conditions (personally-familiar, lab-trained, 
unfamiliar, new), including 10 different combinations of the lab-trained and new voices. 
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Stimulus Recording and Preprocessing 
Voice recordings of participants and their personally-familiar partners producing naturally-

varying, spontaneous speech were obtained via the DIAPIX task52. To minimise familiarity with 

the speech content the participants would hear in the behavioural and fMRI sessions of our 

study, we paired all participants and their partners with an experimenter for the recording 

session, instructed them not to discuss the DIAPIX task with their partner after the recording 

session, and where possible assigned different picture sets to each participant within a pair. 

The task required a pair of players, who sat in separate sound-attenuated chambers, to 

engage in an interactive “spot the difference” game. Within each of 3 rounds, each player saw 

one of the images from a pair of pictures, and the players’ joint goal was to locate all 12 

differences between the pictures via spoken discussion. Each participant wore Beyerdynamic 

DT297PV headsets fitted with cardioid microphones to enable discussion and enabling each 

voice to be recorded into a single channel without interference from the other player. Speech 

was recorded and digitised at a sampling rate of 44100Hz. Both participants were required to 

click with their mouse at the location of each difference; these data were not analysed. Each 

round lasted as long as it took to find all 12 differences, or until a 10-minute timer ended. 

A semi-automated pipeline was then used to identify and preprocess 100 audio stimuli per 

voice (i.e. all the required personally-familiar, lab, unfamiliar, and new voice identities) for use 

in the behavioural training and fMRI sessions. First, within each individual voice recording (i.e. 

one speaker), a script written in R53 identified and extracted periods of non-silence lasting 2-3 

seconds and containing a maximum pause of 0.5 seconds. These were manually inspected 

to retain clips containing coherent spoken phrases and exclude unsuitable tokens. Clips of >3 

seconds were also retained and manually trimmed to under 3 seconds where needed to 

complete the target number of 100 stimuli. The 100 clips were then amplitude normalised 

(root-mean-square) for inclusion in the experimental tasks. For the Lab and New voices, as 

well as the other unfamiliar voices used in training, DIAPIX recordings were obtained from the 

LUCID corpus 52 and preprocessed following the same pipeline.  

A second R script was used to select the 9 longest clips from each set of 100, from which 8 

were chosen for inclusion in the fMRI session and the 9th was returned to the set. This was 

done to ensure that the in-scanner clips would provide robust neural responses. A third R 

script selected 4 clips per DIAPIX round for each voice to make a total of 12, which were 

combined into 2 sequences of 6 clips each (labelled A and B) for use as familiarisation stimuli. 

Finally, an R script converted all experimental stimuli – 2 familiarisation sequences (12 clips 

total) plus 88 individual clips – to MP3 format for inclusion in the experimental tasks. 

The fMRI session voice clips from one of the personally-familiar voice identities can be found 

on OSF: https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa 

 

Procedure 

Behavioural training and refresher sessions 

Before the scanning session, participants were invited to complete an online familiarisation 

training experiment on the Gorilla experiment builder platform54. They were encouraged to 

complete the study using their own computer and headphones, in a quiet environment with no 

distractions. Participants were introduced to the Familiar and Lab voices by listening to the 6-

clip familiarisation sequences per voice, in the order A-B-A (i.e. 18 clips, with 6 clips each 

repeated once). The Familiar voice was introduced first, with the forename of the participant’s 

personally-familiar partner, followed by the Lab voice, which was introduced as “Alex”. 

Participants were encouraged to listen carefully to each voice and try to memorise how it 

sounded. The participant then performed a voice identity training task including the Familiar 

voice, the familiarised Lab voice, and one of the two remaining sex-matched unfamiliar voice 

identities. The training took the form of a 3-alternative forced-choice task, where on each trial 

https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa
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the participant was presented with one voice clip and had to choose the identity of the speaker 

from the three onscreen options “[Familiar partner’s name]”, “Alex”, and “Someone else”. 

There was no time limit on responses. Feedback was provided on each trial: a correct 

response was followed with an onscreen green tick, while an incorrect response was first 

indicated by an onscreen red X and a new screen providing the correct answer (e.g. “Not quite! 

The correct answer was: Alex”). The task was divided into 4 blocks, each containing 20 unique 

trials per voice in a random order, for a total of 80 trials per voice. To prepare participants for 

the MRI experiment, the left-to-right assignment of the onscreen response options was 

different in each block. At the end of each block participants were shown their accuracy during 

that block, as a percentage. They had the opportunity to have a small break before manually 

proceeding with the next block. 

On the day of the scan, participants completed a refresher training experiment in a quiet room 

at the Birkbeck-UCL Neuroimaging Centre. The experiment was run on Gorilla, using a 

MacBook Air laptop and headphones. The procedure was similar to the previous training 

session, beginning with the same familiarisation of the Familiar and Lab voices and continuing 

with a forced-choice categorisation of the 3 voice identities with feedback, but this time using 

only one block of the familiarisation training task (i.e. 20 clips per voice). Following this 

refresher task, the participants completed a short Gorilla task in which they received the 

instructions for the MRI experiment, including a description of the in-scanner response button 

box and the assignment of buttons to responses, plus a warning that they would not receive 

task feedback in the scanner. Finally, the participant was informed that in the scanner they 

would hear their familiar partner’s voice, “Alex”, and a new voice labelled “Charlie”. The task 

ended with one familiarisation sequence (6 clips) in the voice of “Charlie”. Importantly, 

participants received no training to recognise the voice of “Charlie” before they entered the 

scanner, with listening-only familiarisation being provided to simply ensure that the participants 

would not be confused by the presence of this new voice in the scanner task. 

The median gap between the familiarisation training and the refresher training / MRI session 

was 1 day (range: 0 - 31 days). 

 
MRI session 

The MRI session task comprised 4 functional runs of continuous data acquisition. Within each 

run, participants performed a voice identity categorisation task programmed in MATLAB (The 

Mathworks, Natick, MA) using the Psychtoolbox extension55. Each experimental trial began 

with audio presentation of a voice stimulus (lasting 2000-3000ms; jittered onset with mean = 

375ms and std = 125ms), followed by a brief visual fixation cross (500ms) and a visual 

response prompt (“Whose voice did you hear?” with 3 options displayed left to right onscreen). 

Participants had 2000ms to provide a response via a button box (Nata Technologies, 

Coquitlam, Canada), where the buttons beneath their index, middle, and ring fingers 

corresponded to the left-to-right onscreen arrangement of the response labels. No feedback 

was given. After the response window, the participant saw a fixation cross for a jittered interval 

of 250-1000ms. Each run included 96 trials (maximum duration 6000ms), comprising 72 

experimental trials (3 voices x 8 stimuli x 3 repetitions each) and 24 null trials (fixation only; 

mean duration = 5000ms). Stimulus order was pseudorandomised within each run, and the 

left-to-right assignment of response options was randomised between runs.  

Audio stimuli were delivered at a comfortable volume using MR-compatible earbuds (S14; 

Sensimetrics, Malden, MA). Visual displays were projected (Seiko Epson Corporation, 

Shinjuku, Japan) to a screen in the scanner bore. The total duration of scanning session was 

approximately 1 hour per participant.   

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
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Statistical analysis of behavioural data 

All of the behavioural data from the familiarisation training, refresher training, and in-scanner 

tasks was analysed in RStudio (Version 2023.12.1.402). 

For the familiarisation and refresher training, responses were coded as correct or incorrect per 

trial. Mean accuracy was then calculated as a percentage per voice condition (Familiar, Lab, 

unfamiliar) per participant. Group performance was summarised using means and standard 

deviations per voice and task. Refresher session data were not recorded for 1 participant due 

to them completing the task in preview mode on Gorilla. 

For the in-scanner task, trial-wise data were coded in terms of accuracy (1 = correct, 0 = 

incorrect), whether a timeout occurred, and the selected response category (Familiar, Lab, or 

New). Overall accuracy per voice condition (Familiar, Lab, New) and per participant was 

calculated as a percentage, and group performance was summarised with means and 

standard deviations. To statistically compare performance across the three conditions, data 

per voice condition were summarised as unbiased hit rates (Hu scores) using the following 

formula (using the “Alex” voice as the example): 

 

(Hits(“Alex”)/Total “Alex” trials) x (Hits(“Alex”)/Total “Alex” responses) 

 

Hu scores were arcsine transformed and entered into a linear mixed model, which was 

estimated using the lme4 package56 in R with voice condition as a fixed effect and participant 

as a random intercept: 

 

Hu ~ Condition + (1|ppid) 

 

Significance of the fixed effect of Condition was estimated using ANOVA to compare the full 

model with a model lacking the fixed effect. Post-hoc pairwise comparisons with Bonferroni 

correction were performed using the emmeans package57. 

 

Imaging Methods 

MRI data were acquired on a 3T Siemens MAGNETOM Prisma scanner with a 32-channel 

head coil (Siemens Healthcare, Erlangen, Germany). EPI data were collected using x4 

multiband acceleration (Moeller et al., 2010; Xu et al 2013) with no in-plane acceleration (TR 

= 1000 ms, TE = 35.2 ms, flip angle = 60 deg., slice tilt = 35 deg., phase-encoding direction = 

A-P, bandwidth = 2620 Hz/Px, echo spacing = 0.56 ms, excite pulse duration = 4060 us; 48 

interleaved slices, slice thickness = 2.0mm, in-plane resolution = 2.0 mm). Two phase-encode 

reversed volumes were acquired per run for unwarping. Each participant also underwent a 

GRAPPA-accelerated, T1-weighted MPRAGE anatomical MRI scan (TR = 2.3 seconds, TE = 

2.98 ms, 208 sagittal slices, slice thickness = 1.0mm, resolution = 1.0 mm). 

 

Imaging pre-processing 

The fMRI data were preprocessed using SPM12 (Version 7771) and AFNI (Version 

AFNI_23.3.07). After the first 5 functional volumes were discarded to account magnetic 

saturation effects, the functional and anatomical images for each participant were manually 

aligned with the origin. The EPI data were then unwarped in AFNI using the phase-encode 

reversed images. In SPM12, the images were then realigned, co-registered with the 

anatomical image, and normalised to the MNI template using parameters generated via the 

segmentation of the anatomical image. 

For each participant, a univariate general linear model was constructed and estimated in 

SPM12 for use in Representational Similarity Analysis. All experimental and null trial onsets, 

as well as trial responses, were modelled as instantaneous events and convolved with the 

canonical haemodynamic response function. The 24 unique experimental items were 
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modelled within individual regressors per run (i.e. 24 voice stimuli containing 3 events each). 

All 24 null events were modelled within a single regressor per run. Two further regressors 

modelled the timepoint of correct and incorrect task responses, respectively. For each timeout 

trial where no response was given, the onset was defined by adding the mean response time 

across all experimental trials to the timepoint at which the response screen appeared. 

Movement parameters calculated during realignment were also modelled per run, in six 

regressors of no interest. Contrast estimate maps were then calculated for each experimental 

item versus baseline (averaged across all runs). Finally, a T map containing the 24 contrast 

volumes (24 x item > baseline) was saved per participant for use in the multivariate analyses. 

 

Imaging design 

Representational Similarity Analysis (RSA) 

Representational Similarity Analysis (RSA) was performed using a searchlight approach within 

the CoSMo MVPA toolbox 58 in MATLAB. Specifically, we extracted neural response patterns 

to between- and within-voice identity comparisons, and compared these with hypothetical 

models of “telling together and “telling apart” while accounting for acoustic properties of the 

stimuli. 

Searchlight volumes comprised 100 voxels were constructed around each voxel in a pre-

defined mask that comprised functional regions of interest previously identified as voice-, face-

, and person-selective in a separate study20 (see also Searchlight Mask below). For each 

searchlight volume, an observed neural dissimilarity matrix (ONDM) was then generated for 

each participant: Taking the participant’s item-wise T contrast maps (24 x Item > Baseline, 

averaged across runs) as input, neural response patterns for each item were defined as the T 

values across all 100 voxels within the searchlight. Neural dissimilarity values for all possible 

pairwise comparisons of the 24 items (i.e. ((24 x 24) - 24) / 2 = 276 unique comparisons) were 

then calculated as 1 minus the Pearson’s correlation (1 – r) between the response patterns 

for each pair. Due to concerns about the effects of mean-centring on the relationships between 

conditions for multivariate correlation analyses59,60, we did not employ mean-centring before 

calculating dissimilarity values. 

RSA proceeded as follows: For each participant and each tested hypothetical model, a partial 

Spearman correlation was performed per searchlight volume between the ONDM and the 

hypothetical model representational dissimilarity matrix (RDM; see Hypothetical model 

Representational Dissimilarity Matrices (RDMs)), while controlling for an acoustic model RDM 

(see Acoustic model Representational Dissimilarity Matrices (RDMs)). The output correlation 

coefficients were Fisher-to-z transformed to enable later comparisons across participants. The 

partial correlation procedure thus resulted in a brain map of Fisher-transformed correlation 

values at each voxel in the searchlight mask, where the magnitude of correlation values 

expressed how well the hypothetical model RDM characterised the observed neural 

dissimilarity in response to the different stimuli and voice identities. 

To test the statistical significance of neural representations, all participant correlation maps 

per hypothetical model were analysed at group level via voxel-wise one-sample t-tests to 

compare correlation values with 0. This produced a group-level brain activation map of 

corresponding z-scores per tested model. Statistics were adjusted for multiple comparisons 

using threshold-free cluster enhancement (TFCE61) with 10,000 iterations. To test for both 

positive and negative brain-model relationships, the TFCE-corrected maps were finally voxel-

wise thresholded at both z = +1.96 and z = -1.96, respectively. This threshold corresponds to 

p < .05 after correction for multiple comparisons. Due to the possibility of multiple maximum 

values within TFCE-corrected maps, the uncorrected group maps were used to identify peak 

voxels for visualisation of ONDMs at those locations. Brain data were visualised and 

anatomically labelled using Mango (Research Imaging Institute, UTHSCSA). All group 
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searchlight maps are available as open data: 

https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa. 

 

Hypothetical model Representational Dissimilarity Matrices (RDMs) 

To address our research questions about the expected similarity of neural responses based 

on voice identity, we constructed several representational dissimilarity matrices (RDMs) that 

defined our study’s predictions. Each RDM had the same overall structure as the ONDM, with 

276 unique cells defining predicted dissimilarity for a given pair of items in the experiment.  

To test whether brain representations of voice identities align with a theoretical framework of 

“telling together and telling apart”, we constructed hypothetical model RDMs in which within-

identity comparisons were coded as similar (0), and between-identity comparisons were coded 

as dissimilar (1). Seven such RDMs were constructed in order to inspect representations 

across all voices as well as specific voice pairings:  

1) Between-Speaker > Within-Speaker (All Voices): Familiar-Lab =1, Familiar-New = 1, 

Lab-New =1; Familiar-Familiar = 0, Lab-Lab = 0, New-New = 0) 

2) Between Speaker > Within-Speaker (Voice Pair): Familiar-Lab = 1, Familiar-Familiar = 

0 

3) Between Speaker > Within-Speaker (Voice Pair): Familiar-Lab = 1, Lab-Lab = 0 

4) Between Speaker > Within-Speaker (Voice Pair): Familiar-New = 1, Familiar-Familiar 

= 0 

5) Between Speaker > Within-Speaker (Voice Pair): Familiar-New = 1, New-New = 0 

6) Between Speaker > Within-Speaker (Voice Pair): Lab-New = 1, Lab-Lab = 0 

7) Between Speaker > Within-Speaker (Voice Pair): Lab-New = 1, New-New = 0 

 

To test whether brain representations of voice identities are shaped by speaker familiarity, we 

constructed hypothetical model RDMs in which within-identity comparisons were coded as 

more similar (lower values) depending on increasing familiarity. Four such RDMs were 

constructed, in order to inspect representations across all voices as well as specific voice 

pairings : 

1) Within-speaker dissimilarity (All Voices): Familiar-Familiar = 1, Lab-Lab = 2, New-New 

= 3 

2) Within-speaker dissimilarity (Voice Pair): Familiar-Familiar = 0, Lab-Lab = 1 

3) Within-speaker dissimilarity (Voice Pair): Familiar-Familiar = 0, New-New = 1 

4) Within-speaker dissimilarity (Voice Pair): Lab-Lab = 0, New-New = 1 

 

For all hypothetical model RDMs, the diagonal and all non-relevant item comparisons were 

excluded from the analysis (i.e. coded with NaN). The final hypothetical model RDMs are 

available as open data: 

https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa 

 

Acoustic model Representational Dissimilarity Matrices (RDMs) 

As our focus was on the perceptual representation of voices rather than basic auditory 

processing, we constructed an additional acoustic RDM per participant to account for the basic 

acoustic similarities of the voice stimuli. Acoustic dissimilarity was calculated by computing the 

Long-Term Average Spectra (LTAS) of voice samples using Librosa (McAfee). For each voice 

stimulus (8 items x 3 identities per participant), we first performed a Short-Term Fourier 

transform (STFT). Second, we averaged the power spectra obtained for all windows of the 

STFT across the time axis. Third, for all pairs of voice samples presented in a task to a 

participant, we calculated the cosine similarity between averaged power spectra. Finally, we 

deduced dissimilarity scores from the cosine similarities and compiled them in a matrix with 

dimensions matching the hypothetical model RDMs. The final acoustic model RDMs per 

https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa.
https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa
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participant are available as open data: 

https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa 

 

RSA Searchlight mask  
We conducted searchlight analyses within a pre-defined binarised mask, informed by previous 

work in the person identity perception literature. The mask was based on group-level 

probabilistic maps of face-selective, voice-selective, and multi-modal person-selective 

regions, based on functional localiser experiments run by Tsantani and colleagues20 with a 

separate sample of participants. Voice-selective regions were identified by contrasting 

listeners’ neural responses to human (verbal and non-verbal) vocalisations compared to man-

made or environmental sounds in two separate localiser tasks20,24. These regions included 

bilateral superior temporal sulci (STS) and superior temporal gyri (STG), and the bilateral 

temporal voice areas (TVAs24). Face-selective regions were identified by comparing neural 

responses to silent non-speaking videos of famous and non-famous faces to silent videos of 

moving natural or man-made objects. These regions comprised tissue within the right occipital 

gyrus (“occipital face area”/OFA) and the right fusiform gyrus (“fusiform face area”/FFA), as 

well as the right posterior STS. Multi-modal person-selective regions were established by 

comparing neural responses to audio-visual speaking clips of famous and non-famous people 

to audio-visual clips of moving human-made objects or natural scenes. These regions 

comprised the precuneus/posterior cingulate, frontal pole/superior frontal gyrus, and 

orbitofrontal cortex/ventromedial prefrontal cortex, and bilateral temporal poles/anterior 

inferior temporal cortex. 

Using the imcalc tools in SPM, a probabilistic mask of each of the regions of interest from 

Tsantani and colleagues20 was thresholded to include voxels present in the individual 

normalised masks of at least 10 participants (33.3%) in their sample. The final mask image 

was formed by summing the thresholded ROI images into a single image, binarising this 

combined image, and finally reslicing to voxel dimensions of 2 x 2 x 2mm to match the 

resolution of the current study’s EPI images. The final mask image is available as open data: 

https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa 

For some participants with larger heads, the EPI data acquisition field of view failed to capture 

all voxels in the searchlight mask. This affected parts of the precuneus region of interest and, 

more rarely, the most posterior parts of the STG/STS regions, in a subset of participants. The 

CosMoMVPA toolbox accounts for missing voxels by adjusting the degrees of freedom in 

statistical tests, such that group results could be reported for the full searchlight mask. A 

heatmap of coverage across the 26 participants is included as open data: 

https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa 

 
Exploratory univariate analysis 

An exploratory univariate analysis was conducted in SPM12 in order to compare the 

magnitude of the BOLD response to the three voice identities in the experiment. For this, the 

preprocessed fMRI data were smoothed using a Gaussian kernel of 6mm full width at half 

maximum (FWHM). For each participant, a univariate general linear model was then 

constructed and estimated in SPM12. All experimental and null trial onsets, as well as trial 

responses, were modelled as instantaneous events and convolved with the canonical 

haemodynamic response function. The 8 experimental items per voice were modelled as a 

single regressor per voice and per run. The null events, responses, and movement parameters 

were modelled as for the RSA analysis (see Imaging pre-processing). To account for 

participants missing some voxels in the searchlight mask, implicit masking was removed by 

setting the threshold to -Inf for model estimation. Contrast estimate maps were calculated per 

participant for each voice condition versus baseline (averaged across all runs), as well as for 

Familiar > Lab [1 -1], Familiar > New [1 -1], and Lab > New [1 -1]. 

https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa
https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa
https://osf.io/qrzwg/?view_only=b9d8d6b9fbed4e7a9dc303d1926701fa
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Four group models were estimated in SPM12:  

1) One-way within subjects ANOVA: This included the per-participant contrast images 

Familiar > Baseline, Lab > Baseline, and New > Baseline. A Main Effect of Voice 

Condition was estimated using the contrast [1 -1  0; 0  1 -1].  

2) One-sample t-test Familiar vs Lab: This included the per-participant contrast image 

Familiar > Lab. The effect Familiar > Lab was estimated using the contrast [1], and Lab 

> Familiar estimated using the contrast [-1]. 

3) One-sample t-test Familiar vs New: This included the per-participant contrast image 

Familiar > New. The effect Familiar > New was estimated using the contrast [1], and 

New > Familiar estimated using the contrast [-1]. 

4) One-sample t-test Lab vs New: This included the per-participant contrast image Lab > 

New. The effect Lab > New was estimated using the contrast [1], and New > Lab 

estimated using the contrast [-1]. 

 

All group models included an explicit mask comprising the same searchlight mask as applied 

for RSA. All group results are displayed and reported at a voxel height threshold of p < .05 

with familywise error correction for multiple comparisons. Brain data were visualised and 

anatomically labelled using Mango (Research Imaging Institute, UTHSCSA). 
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A Recording Session
• Familiarisation 

Familiar & Lab voices (12 clips each)
• Categorisation with feedback: 

Familiar, Lab, & Unfamiliarised (80 clips each)
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C Refresher SessionB Familiarisation Session
• Categorisation with feedback: 

Familiar, Lab, & Unfamiliarised (20 clips each)
• Familiarisation with New voice (6 clips)

New

D Scanning Session

Participant
Familiar Lab New

• Categorisation without feedback: 
Familiar, Lab, & New (8 novel clips x 3 reps x 4 runs)

• Continuous EPI aquisition

• DIAPIX spot-the-difference game 
3 x 10-min rounds played with experimenter

• Speech recorded and 100 clips extracted

Familiar Lab Unfamiliarised

VoicesParticipant

…

(i)

(ii) (iii)

Familiar Lab New

Familiar

Lab

New

ST
IM

U
LU

S
C

AT
EG

O
RY

RESPONSE CATEGORY

99% 0% 1%

0%

0%

88%

85%

12%

15%

p < .001

p < .001

Figure 1



A Between-speaker dissimilarity > Within-speaker dissimilarity (All Voices)

Familiar-Lab > Lab-Lab 
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Table S1. Comparing between-speaker (“telling apart”) and within-speaker (“telling together”) dissimilarity in the 
brain responses to voices, Related to Figure 2. 
 

Comparison Peak Anatomical Label 
Cluster 

size 
(mm3) 

Peak Statistic  
(TFCE-

corrected 
z) 

x y z 

Between-Speaker 
> 

Within-Speaker  
(All Voices) 

(Familiar-Lab &  
Familiar-New &  

Lab-New)  
> 

(Familiar-Familiar & 
Lab-Lab & 
New-New) 

Left superior temporal gyrus 33096  -64  -48  22  3.72  

Right superior temporal gyrus 21656  56  -56  10  3.43  

Medial frontal gyrus 6696  2  44  38  2.97  

Cingulate gyrus 2280  0  -58  32  2.60  

Cingulate gyrus 592  -10  -52  32  2.25 

Anterior cingulate 512 0 44 -14 2.29 

Right inferior frontal gyrus 496 50 16 -10 2.15 

Left superior temporal gyrus 184 -48 18 -30 2.41 

Between-Speaker  
> 

Within-Speaker  
(Voice Pairs) 

Familiar-Lab  
>  

Lab-Lab 

Left inferior parietal lobe 44992 -48  -40  30  3.72 

Right superior temporal gyrus 33776 48  -46  20  3.72 

Medial frontal gyrus 8808 -6  44  38  3.43  

Cingulate gyrus 4520 0  -54  30  3.19  

Right fusiform gyrus 1952 44  -48  -10  2.30  

Right inferior temporal gyrus 1920 52  -72  0  2.24  

Anterior cingulate 1848  -2  44  -12  2.34 

Familiar-New  
> 

New-New 

Left inferior parietal lobe 51888 -48 -40 30 3.72 

Right inferior parietal lobe 40072 54 -46 24 3.72 

Superior frontal gyrus 8856  -4 48 48 3.35 

Right fusiform gyrus 6808 42 -52 -12 2.60 

Posterior cingulate 4800 2 -54 26 2.93 

Anterior cingulate 1808 -2 44 -12 2.39 

Between-Speaker 
< Within-Speaker 

(Voice Pairs) 

Familiar-Lab  
<  

Familiar-Familiar 

Left superior temporal gyrus 2512  -52  6  -12    -2.64 

Left superior temporal gyrus 1088  -42  -46   4    -2.40  

Left superior temporal gyrus 1056 -60    -26  0  -2.66 

Left superior temporal gyrus 208 50  -54  6  -2.07 

Lab-New 
< 

Lab-Lab 

 Right middle occipital gyrus 624 36  -86  -6  -2.33  

 Right culmen 528 40  -52  -20  -2.46  

 
Table includes all significant clusters exceeding 20 voxels (160mm3).  
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Table S2. Comparing within-speaker (“telling together”) dissimilarity in the brain responses to voices of differing familiarity, 
Related to Figure 3. 
 

Comparison Peak Anatomical Label 
Cluster 

size 
(mm3) 

Peak Statistic  
(TFCE-

corrected z) 
x y z 

Within-Speaker  
(All Voices) 

Familiar-Familiar  
vs. 

Lab-Lab 
vs. 

New-New 

Left inferior parietal lobe 43048   -48  -40  30  -3.72 

Right insula 27208   50  -40  20  -3.54 

Superior frontal gyrus  8752  -10  48  48  -3.43 

Right fusiform gyrus 5704  42  -52  -12  -3.04 

Cingulate gyrus 1696  -2  -56  30  -2.26 

Precuneus 864  -8   -50  36  -2.31 

Within-Speaker  
(Voice Pairs) 

Familiar-Familiar  
>  

Lab-Lab 

Left superior temporal gyrus 42152 -50   -52    22  -3.72 

Right superior temporal gyrus 26680 56  -28  -2  -3.54 

Superior frontal gyrus 8320 -4  46  40  -3.43 

Right fusiform gyrus 2624 44  -48   -10   -2.73 

Posterior cingulate 1000 -2  -56  26  -2.69 

Familiar-Familiar 
> 

New-New 

Left superior temporal gyrus  43520  -48   -40     30  -3.72 

Right inferior parietal lobe 29272  52    -24    -2  -3.72 

Superior frontal gyrus 8776  -10    48    48  -3.43 

Right fusiform gyrus 6128  42  -54    -12  -3.04 

Cingulate gyrus 2072    -2    -56  30    -2.31 

Precuneus 928 -16  -46  36  -2.41 

 
Table includes significant clusters exceeding 20 voxels (160mm3). 
 
 
  



Table S3. Results of an exploratory univariate analysis comparing the magnitude of the average response to the three voice identities, Related to 
Figure S1 and STAR Methods. 
 

Model Contrast Peak Anatomical Label 
Cluster 

size 
(mm3) 

Peak 
Statistic  

(F/T) x y z 

Within-subjects 
one-way ANOVA 

Main Effect of Voice 
Condition 

Medial frontal gyrus 2344 6  50  16  37.94  

Middle temporal gyrus 2264 -62  -24  -14   34.79  

Posterior cingulate 1136 -2  -50  24   32.06  

Left middle temporal gyrus 712 60  -8  -18   23.94 

Anterior cingulate 488 -6  40  -12  25.76  

Left superior temporal gyrus 480 -50  -56  26   27.59 

Superior frontal gyrus 344 -10  44  48  21.59  

Medial frontal gyrus 248 0 60 -6 29.21 

One-sample T-
test 

 

Familiar > Lab 

Left middle temporal gyrus  784 -60  -24  -12   7.14 

Medial frontal gyrus  472 -10  52  20   7.19 

Cingulate gyrus  456 0  -46  32    6.35 

Medial frontal gyrus  392 8  50  16    7.94 

Left superior temporal gyrus  176 -48  -56  26    5.95 

Familiar > New 

 Medial frontal gyrus 2928 6  50  16   10.17 

 Posterior cingulate 1904 -4  -54  18   8.90  

 Left middle temporal gyrus 1904 -62  -24  -14   8.95 

 Right middle temporal gyrus 688 56  -14  -20   7.42 

 Anterior cingulate 512 -6  40  -12   7.71 

 Left middle temporal gyrus 296 -38  -58  24   6.83 

 
Table includes significant clusters exceeding 20 voxels (160mm3). 
 
 
 
 
 



 

 
Figure S1. Results of an exploratory univariate analysis comparing the magnitude of the 

average response to the three voice identities, Related to Table S3 and STAR Methods. 

Significant activations exceed a voxel height threshold of p < .05 (FWE-corrected). Blue shading 

indicates the searchlight mask of face-, voice-, and person-selective brain regions of interest. 

Coordinates are shown in Montreal Neurological Institute (MNI) stereotactic space. 

 




