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THE OPERAD OF LATIN HYPERCUBES

MARKUS LINCKELMANN

Abstract. We show that the sets of d-dimensional Latin hypercubes over a non-empty set
X, with d running over the positive integers, determine an operad which is isomorphic to a

sub-operad of the endomorphism operad of X. We generalise this to categories with finite

products, and then further to internal versions for certain Cartesian closed monoidal categories
with pullbacks.

1. Introduction

There are several variants of the definition of Latin hypercubes in the literature - see the
discussions and references in [1, §4] and [8, Section 1]. In order to define the version we will
be considering here, we fix the following notation and conventions. Categories are assumed to
be essentially small. Let X be an object in a category C with finite products, and let d be a
positive integer. The product Xd of d copies of X in C is equipped with d canonical projections
πdi : Xd → X, characterised by the universal property that for any object Y and morphisms
ηi : Y → X, with 1 ≤ i ≤ d, there is a unique morphism η : Y → Xd satisfying ηi = πdi ◦ η for
1 ≤ i ≤ d. In that case we write η = (ηi)1≤i≤d. Applied to Xd+1 instead of Y and any subset

of d of the d + 1 canonical projections πd+1
j yields for every s such that 1 ≤ s ≤ d + 1 a unique

morphism τd+1
s : Xd+1 → Xd satisfying πd+1

i = πdi ◦τd+1
s for 1 ≤ i ≤ s−1, and πd+1

i = πdi−1◦τd+1
s

for s+ 1 ≤ i ≤ d+ 1. With the notation above, this is equivalent to

τd+1
s = (πd+1

1 , .., πd+1
s−1 , π

d+1
s+1 , .., π

d+1
d+1).

If X is a non-empty set, then Xd+1 is the Cartesian product of d+ 1 copies of X, and we have

τd+1
s (x1, x2, .., xd+1) = (x1, .., xs−1, xs+1, .., xd+1),

where xi ∈ X for 1 ≤ i ≤ d+ 1. That is, τd+1
s is the projection from Xd+1 to Xd which discards

the coordinate s in Xd+1.

Definition 1.1. Let C be a category with finite products, let X be an object in C, and let d be
a positive integer. A Latin hypercube of dimension d over X is a morphism λ : L → Xd+1 in C
such that τd+1

s ◦ λ : L→ Xd is an isomorphism in C, for 1 ≤ s ≤ d+ 1.

The morphism λ in this Definition is necessarily a monomorphism. Two Latin hypercubes
λ : L → Xd+1 and λ′ : L′ → Xd+1 are called isomorphic if there is an isomorphism α : L → L′

such that λ = λ′ ◦ α. In that case α is unique since λ′ is a monomorphism.
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2 MARKUS LINCKELMANN

A Latin hypercube of dimension d over a non-empty set X is uniquely isomorphic to a Latin
hypercube given by a subset L of Xd+1 with the property that for any choice of d of the d + 1
coordinates of an element in Xd+1 there is a unique element in the remaining coordinate such
that the resulting element belongs to L. In particular, we can identify a Latin hypercube of
dimension d over a non-empty set uniquely, up to unique isomorphism, as the graph of the map
f : Xd → X satisfying (x1, x2, .., xd, f(x1, x2, .., xd)) ∈ L for all (x1, x2, .., xd) ∈ Xd. In this way
Latin hypercubes of dimension d can be identified with a subset, denoted L(Xd, X), of the set
Map(Xd, X) of all maps from Xd to X. Any map in L(Xd, X) is clearly surjective. The following
result shows that the subsets L(Xd, X) of Map(Xd, X) with d ∈ N determine an operad. We
refer to [6] or [7, Part II, §1.2] for basic terminology on operads.

Theorem 1.2. Let X be a non-empty set. There is a sub-operad L of the endomorphism operad
E of X such that L(d) = L(Xd, X), for all d ∈ N.

This is not the most general version in which this result can be stated. Theorem 1.2 admits
a generalisation to categories with finite products, which we will describe in Theorem 3.4, and a
further generalisation, in Theorem 4.5, to certain Cartesian closed monoidal categories in which
L can be identified with a suboperad of an internal endomorphism operad. We have chosen to
state and prove this result first in the context of non-empty sets in order to not distract from
the elementary nature of the proof. Operads were first introduced for topological spaces, and
Theorem 1.2 holds verbatim for non-empty compactly generated topological spaces (this is a
special case of Theorem 4.5; see Remark 4.8).

Remark 1.3. As pointed out in [8], if d = 1, then a Latin hypercube over a non-empty set
X is a subset of X2 of the form {(x, σ(x))}x∈X for some permutation σ of X, and hence Latin
hypercubes of dimension 1 over X correspond to the elements of the symmetric group SX of
permutations of X, so they form themselves a group. This group structure is encoded as the
structural map − ◦1 − on L(1) of the operad L.

Remark 1.4. Let X be an object in a category C with finite products and let d be a positive
integer. The group AutC(X) o Sd+1 acts on Xd+1, hence on the class of Latin hypercubes of
dimension d over X, with the base group of d+ 1 copies of AutC(X) acting by composing λ with
a (d + 1)-tuple of automorphisms of Xd+1 and Sd+1 acting on Xd+1 by permuting the d + 1

canonical projections πd+1
i : Xd+1 → X. This action induces an action of AutC(X) oSd+1 on the

isomorphism classes of Latin hypercubes of dimension d over X, which for C the category of sets
is the standard notion of paratopism.

Remark 1.5. Let X be an object in a category C with finite products, and let d be a positive
integer. The canonical projections πdi : Xd → X are split surjective, with section the diagonal
morphism δ : X → Xd defined as the unique morphism such that πdi ◦ δ = IdX , for 1 ≤ i ≤ d.

Let λ : L→ Xd+1 be a Latin hypercube. The d+ 1 components λi = πd+1
i ◦ λ : L→ X of λ are

split epimorphisms. Indeed, if we choose s 6= i, with 1 ≤ i, s ≤ d+ 1, then πd+1
i factors through

τd+1
s ; more precisely, πd+1

i ◦ λ = πdj ◦ τd+1
s ◦ λ where j = i if i < s, and j = i− 1 if i > s. Since

τd+1
s ◦λ is an isomorphism and πdj a split epimorphism, it follows that their composition is a split

epimorphism, and hence so is πd+1
i ◦ λ.
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2. Proof of Theorem 1.2

The endomorphism operad E of a non-empty set X consists of the sets E(n) = Map(Xn, X)
for any positive integer n, together with strutural maps

− ◦i − : Map(Xn, X)×Map(Xm, X)→ Map(Xn+m−1, X)

given by

(f ◦i g)(x1, x2, ..., xn+m−1) = f(x1, .., xi−1, g(xi, .., xi+m−1), xi+m, .., xn+m−1)

for all positive integers n, m, i, such that 1 ≤ i ≤ n, all x1, x2, .., xn+m−1 ∈ X, and all maps
f ∈ Map(Xn, X) and g ∈ Map(Xm, X). The sets E(n) = Map(Xn, X) are equipped with the
action of Sn on the n coordinates of Xn, and the identity map IdX ∈ E(1) = Map(X,X) is
the unit element of this operad. For the associativity properties of the maps − ◦i − and their
compatibility with the symmetric group actions on the sets Map(Xn, X), see for instance [6,
Definition 1.2] or [7, Part II,§1.2]. The main step for the proof of Theorem 1.2 is the following
Lemma.

Lemma 2.1. Let X be a non-empty set, and let d, e, i be positive integers such that 1 ≤ i ≤ d.
Let f ∈ L(Xd, X) and g ∈ L(Xe, X). Then f ◦i g ∈ L(Xd+e−1, X).

Proof. In order to show that f ◦i g belongs to L(Xd+e−1, X) we need to show that for any c ∈ X
and an arbitrary choice of d+ e− 2 of the d+ e− 1 elements x1, x2, .., xd+e−1 ∈ X the remaining
of these elements is uniquely determined by the equation

(1) f(x1, .., xi−1, g(xi, .., xi+e−1), xi+e, .., xd+e−1) = c.

Let s be an integer such that 1 ≤ s ≤ d+ e− 1. Fix elements x1, x2, .., xs−1, xs+1, .., xd+e−1, c ∈
X.

Consider first that case where s ≤ i − 1 or s ≥ i + e. Then, setting y = g(xi, .., xi+e−1), the
Equation 1 becomes

(2) f(x1, .., xi−1, y, xi+e, .., xd+e−1) = c.

All entries but the entry xs in this equation are fixed. Since f ∈ L(Xd, X) it follows that there
is a unique choice for xs ∈ X such that Equation 2 holds, and hence a unique choice for xs ∈ X
such that Equation 1 holds.

Consider the remaining case where i ≤ s ≤ i + e − 1. Then in particular the elements
x1, .., xi−1, xi+e, .., xd+e−1 are fixed in X. Since f ∈ L(Xd, X) it follows that there is a unique
y ∈ X such that Equation 2 holds. Thus for Equation 1 to hold we must have

(3) g(xi, .., xi+e−1) = y.

In this equation all but xs have been chosen. Since g ∈ L(Xe, X) it follows that there is a unique
choice xs ∈ X such that Equation 3 holds. In all cases there is a unique choice of xs such that
Equation 1 holds. This shows that f ◦i g belongs to L(Xd+e−1, X) and completes the proof. �

Proof of Theorem 1.2. Let d ∈ N. A map f ∈ E(d) = Map(Xd, X) belongs to L(d) = L(Xd, X)
if and only if the set

L = {(x1, x2, .., xd, f(x1, x2, .., xd)) | x1, x2, .., xd ∈ X}
is a Latin hypercube in Xd+1. Equivalently, f belongs to L(d) if and only for every c ∈ X
and an arbitrary choice of d − 1 of the d entries x1, .., xd ∈ X the remaining entry is uniquely
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determined by the equation f(x1, x2, .., xd) = c. The action of Sd on Map(Xd, X) by permuting
the d coordinates of Xd clearly preserves the subset L(d), and IdX belongs to L(1). In order to
prove Theorem 1.2 it remains to show that the sets L(d) are closed under the operations − ◦i −.
This is done in Lemma 2.1 above, and this concludes the proof. �

Remark 2.2. We could have very slightly simplified the proof of Lemma 2.1 by observing that
thanks to the symmetric group actions on the coordinates of Latin hypercubes (cf. Remark 1.4)
it would have been sufficient in the proof of Lemma 2.1 to consider the map f ◦d g and a single s
in the distinction into the two cases for s. That is, it would have been sufficient in the last part
of the proof of Lemma 2.1 to consider the cases where either 1 = s ≤ d − 1 or s = d. We will
make use of this observation in the proof of the more general Theorem 3.4 below.

Remark 2.3. The proof of Theorem 1.2, as written, involves choices of elements in the set X. In
Section 3 below we will rewrite this proof in such a way that it extends to categories with finite
products.

3. On Latin hypercubes in Cartesian monoidal categories

In this section we extend Theorem 1.2 to categories with finite products. Given an object
X in a category C with finite products, a positive integer n, and a morphism λ : L → Xn in
C, we denote as at the beginning by λi = πni ◦ λ the composition of λ with the i-th canonical
projection πni : Xn → X, where 1 ≤ i ≤ n. The morphism λ is uniquely determined by the λi,
and we will write abusively λ = (λi)1≤i≤n whenever convenient. If σ ∈ Sn, then σ induces an
automorphism σ̂ on Xn given by σ̂i = πnσ−1(i); that is, σ̂ permutes the coordinates of Xn. This

yields a group homomorphism Sn → AutC(X
n). We write σλ = σ̂ ◦ λ. We extend the earlier

notation LC(Xd, X) in the obvious way.

Definition 3.1. Let C be a category with finite products. Let d be a positive integer. We denote
by LC(Xd, X) the subset of HomC(X

d, X) consisting of all morphisms f : Xd → X such that the
morphism (IdXd , f) : Xd → Xd ×X = Xd+1 is a Latin hypercube.

We first identify canonical representatives in isomorphism classes of Latin hypercubes.

Proposition 3.2. Let C be a category with finite products, let X be an object in C, and let d, s
be positive integers such that 1 ≤ s ≤ d+ 1. Let λ : L→ Xd+1 be a Latin hypercube. Then there
is a unique Latin hypercube ι : Xd → Xd+1 such that τd+1

s ◦ ι = IdXd and such that ι ◦ α = λ for
some isomorphism α : L→ Xd. In that case we have α = τd+1

s ◦ λ : L→ Xd.

Proof. By the definition of Latin hypercubes, the morphism α = τd+1
s ◦ λ : L → Xd is an

isomorphism. Then setting ι = λ ◦ α−1 implies immediately that α determines an isomorphism
between the Latin hypercubes λ : L→ Xd+1 and ι : Xd → Xd+1. We need to show that α and ι
are unique subject to these properties. Let ι′ : Xd → Xd+1 a Latin hypercube and α′ : L→ Xd

an isomorphism such that τd+1
s ◦ ι′ = IdXd and such that ι′ ◦ α′ = λ. Composing this equality

with τd+1
s yields

α′ = IdXd ◦ α′ = τd+1
s ◦ ι′ ◦ α′ = τd+1

s ◦ λ = α

This implies ι′ = λ ◦α−1 = ι, whence the uniqueness of ι and α as stated. The result follows. �
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Applied with s = d + 1, Proposition 3.2 implies that - as earlier in the category of sets - the
morphisms in LC(Xd, X) parametrise the isomorphism classes of d-dimensional Latin hypercubes
over X.

Corollary 3.3. Let C be a category with finite products, let X be an object in C, and let d be a
positive integer. Any Latin hypercube of dimension d over X is uniquely isomorphic to a Latin
hypercube of the form ι : Xd → Xd+1 such that ι is a section of the morphism τd+1

d+1 discarding
the coordinate d + 1. Any such morphism ι is then uniquely determined by its last component
f = ιd+1 = πd+1

d+1 ◦ ι : Xd → X. In particular, the set LC(Xd, X) parametrises the isomorphism
classes of d-dimensional Latin hypercubes over X.

We show now that the sets LC(Xd, X) form an operad, together with the structural maps
−◦i− defined as follows. Let f ∈ LC(Xd, X) and g ∈ LC(Xe, X), where d, e are positive integers.
For 1 ≤ i ≤ d, the structural map

− ◦i − : HomC(X
d, X)×HomC(X

e, X)→ HomC(X
d+e−1, X)

sends (f, g) to the morphism

f ◦ (IdXi−1 × g × IdXd−i)

where we identify Xi−1 ×Xe ×Xd−i = Xd+e−1 for the domain of this morphism and where we
identify Xi−1 ×X ×Xd−i = Xd for the codomain of IdXi−1 × g × IdXd−i . One checks that if X
is a set, this coincides with the earlier definition of f ◦i g.

Theorem 3.4. Let X be an object in a category C with finite products. There is a sub-operad L
of the endomorphism set operad E of X such that L(d) = LC(Xd, X), for all d ∈ N. In particular,
for any positive integers d, e, i such that 1 ≤ i ≤ d, and any morphisms f ∈ LC(Xd, X) and g ∈
LC(Xe, X) we have f ◦i g ∈ LC(Xd+e−1, X).

Proof. The proof amounts to rewriting the proof of Theorem 1.2, including the statement and
proof of Lemma 2.1, in such a way that all steps remain valid for the Cartesian products in C. In
order to keep this readable, we mention in each step what this corresponds to in the case where
X is a non-empty set (and by considering coordinates, one easily translates this to statements in
C).

Let f ∈ LC(Xd, X) and g ∈ LC(Xe, X), where d, e are positive integers. That is, the morphisms

(IdXd , f) : Xd → Xd+1,

(IdXe , g) : Xe → Xe+1

are Latin hypercubes. As in the proof of Theorem 1.2, the unitality and symmetric group actions
are obvious, and we only need to show, analogously to Lemma 2.1, that (IdXd+e−1 , f ◦i g) is a
Latin hypercube. That is, we need to show that for 1 ≤ s ≤ d + e − 1 and 1 ≤ i ≤ d, the
composition τd+es ◦ (IdXd+e−1 , f ◦i g) is an automorphism of Xd+e−1. As pointed out in Remark
2.2, since we may permute coordinates, it suffices to do this for i = d and in the two cases where
either 1 = s ≤ d− 1 or s = d.

We consider first the case 1 = s ≤ d− 1, so d ≥ 2. We need to show that the morphism

τd+e1 ◦ (IdXd+e−1 , f ◦d g)
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is an automorphism of Xd+e−1. If X is a set, then this automorphism is given by the assignment

(x1, x2, .., xd+e−1) 7→ (x2, .., xd+e−1, f(x1, .., xd−1, g(xd, .., xd+e−1))).

First, the morphism τd1 ◦ (IdXd , f) is an automorphism of Xd because (IdXd , f) is a Latin hyper-
cube. We note that if X is a non-empty set, then the morphism τd1 ◦ (IdXd , f) is given by the
assignment

(x1, .., xd) 7→ (x2, .., xd, f(x1, .., xd)).

Compose this with the automorphism σ̂ induced by the cyclic permutation σ = (1, 2, .., d) on
coordinates. The resulting automorphism

σ̂ ◦ τd1 ◦ (IdXd , f)

is, for X a set, given by the assignment

(x1, .., xd) 7→ (f(x1, .., xd), x2, .., xd)

The Cartesian product of this automorphism with −×IdXe−1 yields an automorphism of Xd+e−1,
which for X a set corresponds to

(x1, .., xd+e−1) 7→ (f(x1, .., xd), x2, .., xd+e−1))

Again permuting cyclically the coordinates yields an automorphism of Xd+e−1 which we will
denote by α, which, if X is a set, corresponds to

(x1, .., xd+e−1) 7→ (x2, .., xd+e−1, f(x1, .., xd)).

Using the fact that τe1 ◦ (IdXe , g) is an automorphism of Xe, combined with cyclically permuting
coordinates, we obtain an automorphism γ of Xe which corresponds to the assignement

(xd, .., xd+e−1) 7→ (g(xd, .., xd+e−1), xd+1, .., xd+e−1).

Then β = IdXd−1 × η is the automorphism of Xd+e−1 which corresponds to

(x1, .., xd+e−1) 7→ (x1, .., xd−1, g(xd, .., xd+e−1), xd+1, .., xd+e−1).

Similarly, γ = IdXd−1 × η × IdX is an automorphism of Xd+e−1. Now α ◦ β is an automorphism
of Xd+e−1 corresponding to

(x1, .., xd+e−1) 7→ (x2, .., xd−1, g(xd, .., xd+e−1), xd+1, .., xd+e−1, f(x1, .., xd−1, g(xd, .., xd+e−1))).

Thus the automorphism γ−1◦α◦β of Xd+e−1 coincides with the morphism τd+e1 ◦(IdXd+e−1 , f◦dg).
This proves the result in the case 1 = s ≤ d− 1.

Consider next the case s = d. We need to show that the morphism τd+ed ◦ (IdXd+e−1 , f ◦d g) is

an automorphism of Xd+e−1. If X is a set, then this automorphism is given by the assignment

(x1, .., xd+e−1) 7→ (x1, .., xd−1, xd+1, .., xd+e−1, f(x1, .., xd−1, g(xd, .., xd+e−1))).

As before, by using the automorphism τe1 ◦ (IdXe , g), cyclically permuting the coordinates and
then applying IdXd−1×− we obtain anautomorphism δ of Xd+e−1, which for X a set corresponds
to

(x1, .., xd+e−1) 7→ (x1, .., xd−1, g(xd, .., xd+e−1), xd+1, .., xd+e−1).

Similarly, applying −× IdXe−1 to the automorphism τdd ◦ (IdXd , f) yields an automorphism ε of
Xd+e−1, which for X a set corresponds to

(x1, .., xd+e−1) 7→ (x1, .., xd−1, f(x1, .., xd), xd+1, .., xd+e−1).
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Thus ε ◦ δ is the automorphism of Xd+e−1 which for X a set corresponds to

(x1, ..., xd+e−1) 7→ (x1, .., xd−1, xd+1, .., xd+e−1, (f ◦d g)(x1, .., xd+e−1)),

and this is indeed the automorphism τd+e−1d ◦ (IdXd+e−1 , f ◦d g). This proves the second case,
and the result follows. �

4. On Latin hypercubes in closed Cartesian monoidal categories

A monoidal category C with unit object 1 is closed if C has an internal Hom, denoted Hom.
That is, Hom : Cop×C → C is a bifunctor such that for any object X in C the functor X×− on C
is left adjoint to the functor Hom(X,−). This adjunction yields in particular natural bijections
HomC(1,Hom(X,Y )) ∼= HomC(X,Y ) and natural isomorphisms Hom(1, X) ∼= X; see Kelly [3]
and [5] for more background material. Following [4], endomorphism operads can be defined over
objects in certain closed symmetric monoidal categories. For the definition of Latin hypercubes
we need in addition that C is Cartesian monoidal; that is, the monoidal product is a product in
the category C. In that case the unit object 1 is a terminal object in C. In what follows we say
that a morphism α̂ between Hom objects in C lifts a map α if α is the image of α̂ under the
functor HomC(1,−) modulo canonical identifications.

In order to show that the morphism sets LC(Xd, X) lift to internal objects whenever C has
pullbacks, we will need, from [5, Exercise 5, page 213], the fact that automorphism groups of
objects lift to internal objects. We have a pullback diagram

AutC(X) //

δ

��

{Id1}

��
HomC(X,X)×HomC(X,X)

µ
// HomC(X,X)×HomC(X,X)

where δ sends σ ∈ AutC(X) to (σ, σ−1), where µ(α, β) = (β◦α, α◦β) for any α, β ∈ HomC(X,X),
and where the right vertical map sends Id1 to (IdX , IdX). The lower horizontal map µ commutes
with the involution on HomC(X,X) × HomC(X,X) given by exchanging coordinates. The map
µ and the right vertical map lift to maps on internal Hom objects, and hence, if C has pullbacks,
then the above diagram lifts to a pullback diagram in C of the form

4.1.
Aut(X) //

(γ,γ′)

��

1 = 1× 1

ι

��
Hom(X,X)×Hom(X,X)

ν
// Hom(X,X)×Hom(X,X)

Composing ι with the canonical involution on Hom(X,X) ×Hom(X,X) commutes with ν,
does not change ι, while it changes (γ, γ′) to (γ′, γ). The universal property of pullbacks implies
that there is a unique automorphism ε of the object Aut(X) of order 2 with the property that
(γ′, γ) = (γ, γ′) ◦ ε. This automorphism lifts the bijection given by taking inverses in the group
AutC(X). Since ι is trivially a monomorphism, it follows that (γ, γ′) is a monomorphism. If
HomC(1,−) is faithful, hence reflects monomorphism, then both γ and γ′ are monomorphisms,
since they lift inclusion maps. The following result shows that there are internal objects lifting
the morphism sets LC(Xd, X).
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Theorem 4.2. Let C be a Cartesian closed monoidal category with pullbacks. Let X be an object
in C, and let d be a positive integer. There is an object L(Xd, X) in C, determined uniquely
up to unique isomorphism, such that we have a canonical isomorphism HomC(1,L(Xd, X)) ∼=
LC(Xd, X), and such that there is a canonical morphism L(Xd, X) → Hom(Xd, X) in C which
lifts the inclusion LC(Xd, X) → HomC(X

d, X). If in addition the functor HomC(1,−) faithful,
then the canonical morphism L(Xd, X)→ Hom(Xd, X) is a monomorphism.

We will need the following characterisation of the morphism sets LC(Xd, X) in a category with
finite products.

Lemma 4.3. Let C be a category with finite products, let X be an object in C, and let d be a
positive integer. We have a pullback diagram of sets

LC(Xd, X)

��

// ∏d
i=1 AutC(X

d)

ι

��
HomC(X

d, X)
γ

// ∏d
i=1 HomC(X

d, Xd)

where γ = (γi : HomC(X
d, X)→ HomC(X

d, Xd))1≤i≤d is defined by

γi(λ) = τd+1
i ◦ (IdXd , λ)

for 1 ≤ i ≤ d and λ ∈ HomC(X
d, X), and where ι is the product of d copies of the inclusion

AutC(X
d)→ HomC(X

d, Xd).

Proof. Let λ ∈ HomC(X
d, X). By definition, we have λ ∈ LC(Xd, X) if and only if γi ∈ AutC(X

d)
for 1 ≤ i ≤ d. This is clearly equivalent to the assertion that the diagram in the statement is a
pullback diagram. �

Proof of Theorem 4.2. As described in the diagram 4.1, appplied with Xd instead of X, there is
a morphism Aut(Xd) → Hom(Xd, Xd) which lifts the inclusion AutC(X

d) → HomC(X
d, Xd).

Both maps γ and ι in the diagram from Lemma 4.3 lift to morphisms γ̂ and ι̂ between the relevant
internal Hom objects, and hence, by the assumptions on C, there is a pullback diagram in C of
the form

4.4.

L(Xd, X)

��

// ∏d
i=1 Aut(Xd)

ι̂
��

Hom(Xd, X)
γ̂

// ∏d
i=1 Hom(Xd, Xd)

The functor HomC(1,−) from C to the category of sets preserves pullbacks, hence sends this
pullback diagram to a diagram isomorphic to that in Lemma 4.3. It follows in particular that
HomC(1,L(Xd, X)) ∼= LC(Xd, X). The uniqueness statement follows from the fact that pullbacks
are unique up to unique isomorphism. If the functor HomC(1,−) is faithful, then this functor
reflects monomorphisms, whence the last statement. follows. �
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Theorem 4.5. Let C be a Cartesian closed monoidal category with pullbacks. Suppose that the
functor HomC(1,−) is faithful. Suppose in addition that for any two objects Y,Z in C and any
morphism ζ : Z → Hom(Y, Y ), if the map HomC(1, ζ) factors through the inclusion AutC(Y )→
HomC(Y, Y ), then the morphism ζ factors through the morphism Aut(Y ) → Hom(Y, Y ). Let
X be an object in C. For any positive integer d the morphism L(Xd, X) → Hom(Xd, X) is
a monomorphism, and, with d running over N, these monomorphisms form a suboperad of the
internal endomorphism operad of X in C.

Proof. Note that since we assume HomC(1,−) to be faithful (hence reflecting monomorphisms), it
follows that the morphism L(Xd, X)→ Hom(Xd, X) from Theorem 4.2 is a monomorphism, for
any positive integer d. Furthermore, as in the proofs of Theorems 1.2, 3.4, showing the unitality
and compatibility with symmetric group actions is straightforward. What remains to be proved
is that the maps − ◦i − of the endomorphism operad induce maps on the subobjects L(Xd, X)
of the internal Hom objects Hom(Xd, X). Let d, e, i be positive integers such that 1 ≤ i ≤ d.
The map

− ◦i − : HomC(X
d, X)×HomC(X

e, X)→ HomC(X
d+e−1, X)

sends (f, g) to f ◦ (IdXi−1 × g × IdXd−i). Since this involves composition and products only, this
map lifts to a map of internal Hom objects

Hom(Xd, X)×Hom(Xe, X)→ Hom(Xd+e−1, X).

At the level of morphism sets it follows from Theorem 3.4 that we have a commutative diagram

4.6.

HomC(X
d, X)×HomC(X

e, X)
−◦i− // HomC(X

d+e−1, X)

LC(Xd, X)× LC(Xe, X)

OO

// LC(Xd+e−1, X)

OO
,

where the vertical maps are inclusions. We need to show that this diagram lifts to the internal
Hom objects and relevant subobjects. We note that the vertical maps in the diagram 4.6 lift by
Theorem 4.2, and the top horizontal map lifts by the discussion preceding the diagram 4.6. What
we need to show is that the bottom horizontal map in diagram 4.6 lifts as well.

Since L(Xd+e−1, X) is defined via a pullback diagram 4.4 (with d + e − 1 instead of d), we
need to show that there is a commutative diagram of the form

4.7.

Hom(Xd, X)×Hom(Xe, X)
−◦i− // Hom(Xd+e−1, X) // ∏d+e−1

i=1 Hom(Xd+e−1, Xd+e−1)

L(Xd, X)× L(Xe, X)

OO

// ∏d+e−1
i=1 Aut(Xd+e−1)

OO
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Combining Lemma 4.3 (with d + e − 1 instead of d) and diagram 4.6 yields a commutative
diagram

HomC(X
d, X)×HomC(X

e, X)
−◦i− // HomC(X

d+e−1, X) // ∏d+e−1
i=1 HomC(X

d+e−1, Xd+e−1)

LC(Xd, X)× LC(Xe, X)

OO

// ∏d+e−1
i=1 AutC(X

d+e−1)

OO

The top horizontal and two vertical maps in this diagram lift to maps as in the diagram 4.7. The
hypothesis on lifting maps through morphisms of the form Aut(Y ) → Hom(Y, Y ) applied to
the d + e − 1 components on the right side of the diagram 4.7 shows the existence of the lower
horizontal map making the diagram 4.7 commutative. The uniqueness of such a map follows
from the fact that the right vertical map is a monomorphism, where we use that the functor
HomC(1,−) is faithful. �

Remark 4.8. We do not know whether the hypothesis on lifting morphisms Z → Hom(Y, Y )
through Aut(Y )→ Hom(Y, Y ) is indeed needed for Theorem 4.5 to hold. This hypothesis holds
in the category of compactly generated topological spaces. It is easy to see that this hypothesis
holds if Aut(Y )→ Hom(Y, Y ) is a regular monomorphism (these are monomorphisms which are
an equaliser of a pair of parallel morphisms), assuming as before that HomC(1,−) is faithful.

5. Latin hypercubes in terms of pullback diagrams and further remarks

Definition 1.1 describes Latin hypercubes of dimension d over a non-empty set X as subsets
of Xd+1 instead as the graph of a function Xd → X. We describe the composition maps − ◦i −
in terms of these subsets as pullbacks.

Proposition 5.1. Let X be a non-empty set, and let d, e, i be positive integers such that 1 ≤ i ≤
d. Let L ⊂ Xd+1 and M ⊆ Xe+1 be Latin hypercubes over X of dimension d and e, respectively.
Let f : Xd → X and g : Xe → X be the maps whose graphs are L and M , respectively. Denote
by L ◦iM ⊆ Xd+e the Latin hypercube over X of dimension d + e − 1 which is the graph of the
map f ◦i g : Xd+e−1 → X.

An element (x1, x2, .., xd+e) ∈ Xd+e belongs to L ◦i M if and only if there is an element
z ∈ X such that (x1, .., xi−1, z, xe+i, .., xd+e) ∈ L and such that (xi, .., xe+i−1, z) ∈ M . Then z is
uniquely determined by the elements x1, x2,..,xd+e. Equivalently, we have a pullback diagram of
the form

L ◦iM
β //

α

��

M

µe+1

��
L

λi

// X

where λi is the restriction to L of the canonical projection πd+1
i : Xd+1 → X onto the coordinate

i, where µe+1 is the restriction to M of the canonical projection πe+1
e+1 : Xe+1 → X onto the

coordinate e+ 1, and where

α(x1, x2, .., xd+e) = (x1, .., xi−1, z, xe+i, .., xd+e),

β(x1, x2, .., xd+e) = (xi, .., xi+e−1, z).
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Proof. Note that L ◦iM is indeed a Latin hypercube by Theorem 1.2. We have

(x1, x2, .., xd+e) ∈ L ◦iM
if and only if

xd+e = (f ◦i g)(x1, x2, .., xd+e−1) = f(x1, .., xi−1, g(xi, .., xi+e−1), xi+e, .., xd+e−1).

Since z = g(xi, .., xe+i−1) is the unique element in X such that (xi, .., xi+e−1, z) ∈ M and the
unique element such that (x1, .., xi−1, z, xi+e, .., xd+e) ∈ L, the first statement follows. The second
statement follows from the fact that z is uniquely determined by the coordinates xi, 1 ≤ i ≤
d+ e �

It is well-known that for a Latin hypercube of dimension d ≥ 2 over a non-empty set X, fixing
one of the coordinates in Xd+1 yields a Latin hypercube of dimension d− 1 (this was implicitly
used in the proof of Theorem 1.2). This can be extended to Cartesian monoidal categories with
pullbacks. We will need the following Lemma to show this.

Lemma 5.2. Let C be a Cartesian monoidal category. Let X be an object in C and let d, s be
positive integers such that s ≤ d and d ≥ 2. Let c : 1 → X be a morphism in C. Denote by
IdXd × c : Xd → Xd+1 the unique morphism satisfying τd+1

d+1 ◦ (IdXd × c) = IdXd and πd+1
d+1 ◦

(IdXd × c) = t× c, where t is the unique morphism Xd → 1, and where we identify Xd = Xd×1
and X = 1×X. The diagram

Xd
τd
s //

Id
Xd×c

��

Xd−1

Id
Xd−1×c

��
Xd+1

τd+1
s

// Xd

is a pullback diagram.

Proof. By permuting the coordinates it suffices to show this for s = d. Let Z be an object in C,
and let u : Z → Xd+1 and v : Z → Xd−1 be morphisms such that

τd+1
d ◦ u = (IdXd−1 ◦ c) ◦ v.

We need to show that there is a unique morphism w : Z → Xd satisfying u = (IdXd × c) ◦w and
v = τdd ◦ w. By checking on coordinates one sees that w = (v, ud) : Z → Xd−1 ×X = Xd is the

unique morphism with this property, where as before ud = πd+1
d ◦ u. �

Proposition 5.3. Let C be a Cartesian monoidal category with pullbacks. Let d be an integer
such that d ≥ 2. Let λ : L→ Xd+1 be a morphism in C. Suppose that the morphism λ : L→ Xd+1

is a Latin hypercube. Then the morphism τd+1
d+1 ◦ λ : L → Xd is an isomorphism, and for every

morphism c : 1→ X and every pullback diagram of the form

Lc
λc //

��

Xd

(Id
Xd )×c

��
L

λ
// Xd+1

the morphism λc : Lc → Xd is a Latin hypercube.
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Proof. The morphism τd+1
d+1 ◦ λ is an isomorphism as part of the definition of a Latin hypercube.

Let c : 1→ X be a morphism, and let s be an integer such that 1 ≤ s ≤ d. Consider a pullback
diagram as in the statement. We need to show that τds ◦ λc : Lc → Xd−1 is an isomorphism.
Since s ≤ d and d ≥ 2 we can complete the diagram in the statement to a commutative diagram

Lc
λc //

��

Xd
τd
s //

Id
Xd×c

��

Xd−1

Id
Xd−1×c

��
L

λ
// Xd+1

τd+1
s

// Xd

The right square is a pullback diagram by Lemma 5.2. Since the left square is a pullback diagram,
the pasting law for pullbacks implies that the outer rectangle is a pullback diagram as well. Since
the lower horizontal morphism in the outer rectangle is an isomorphism, so is the upper horizontal
morphism (we use here that pullbacks preserve isomorphisms). �

We conclude this note with some further remarks.

Remark 5.4. The notion of transversals can be adapted to the situation of Definition 1.1 as
follows. Given an object X in a category with finite products and a positive integer d, a transversal
in Xd+1 is a morphism σ : X → Xd+1 such that σi = πd+1

i ◦ σ is an automorphism of X, for
1 ≤ i ≤ d+ 1. The morphism σ is obviously a monomorphism. We say that such a transversal is
contained in a Latin hypercube λ : L→ Xd+1 if there is a morphism ι : X → L such that λ◦ι = σ.
In that case, ι is necessarily a monomorphism as well. If X is a non-empty set, then a transversal σ
can be identified with the subset σ(X) of Xd+1. If X is finite and has an abelian group structure,
and if T ⊆ Xd+1 is a transversal, then we have a version of the ∆-Lemma [9, Lemma 2.1] as

follows. Denote by α : Xd+1 → X the alternating sum map α(x1, x2, .., xd+1) =
∑d+1
i=1 (−1)i−1xi

and by t the sum of all involutions in X. Since the sum of all elements in X is equal to the sum
t of all involutions in X, an elementary calculation shows that∑

x∈T
α(x) =

{
0 if d is odd

t if d is even.

If X = Z/nZ for some positive integer n, then t = 0 if n is odd, and t = n
2 + nZ if n is even.

Remark 5.5. Adapting another well-known notion for Latin squares going back to Bose [2], the
graph of a Latin hypercube L ⊆ Xd+1 of dimension d ≥ 1 over a non-empty set X is the simple
graph Γ(L) with vertex set L, with an edge between two elements in L if the two elements have
d− 1 coordinates at which they coincide. Being a Latin hypercube implies that if one fixes d− 1
coordinates of an element in L, then the remaining two coordinates determine each other. In
particular, if two elements of L coincide at d coordinates, then these two elements are equal. If
|X| = n is finite, then Γ(L) has nd vertices and valency

(
d+1
2

)
(n − 1); indeed, the neighbours of

(x1, x2, .., xd+1) ∈ L are obtained by first choosing a two-element subset {i1, i2} of {1, 2, .., d+ 1}
and then replacing xi1 by any of the n−1 values different from xi1 and replacing xi2 by the unique
element such that the resulting d+1-tuple belongs to L. Adjacent vertices have n−2+2(d−1) =
n + 2d − 4 common neighbours; indeed, two distinct elements of the form (x1, x2, x3, .., xd+1),
(x′1, x

′
2, x3, .., xd+1) in L have the n− 2 common neighbours of the form (y1, y2, x3, .., xd+1) with

y1 6= x1, x
′
1 (so necessarily y2 6= x2, x

′
2), and in addition the 2(d − 1) common neighbours of the
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form (x1, x
′
2, x3, .., yj , .., xd+1), (x′1, x2, x3, .., zj , .., xd+1) in L where 3 ≤ j ≤ d + 1 and yj , zj are

the uniquely determined elements by the remaining coordinates. If d ≥ 3, then the length of the
shortest path between non-adjacent vertices depends on the number of common coordinates.

Remark 5.6. Latin hypercubes of a fixed dimension d over objects in a category C with finite
products form themselves a category. Let X, Y be objects in C. Let λ : Xd → Xd+1 and
µ : Y d → Y d+1 be Latin hypercubes. A morphism from µ to λ is a morphism ι : Y → X
such that λ ◦ ι×d = ι×(d+1) ◦ µ. Here ι×d : Y d → Xd is the morphism obtained by taking d
times the product of ι; similarly for d + 1. Note though that the notion of isomorphism in this
category is different from the notion of isomorphism considered in the Introduction, where we
regard Latin hypercubes of dimension d over X as objects in the under-category of Xd+1. For a
Latin hypercube λ : Xd → Xd+1 of the form λ = (IdXd , f) for some morphism f : Xd → X, one
checks easily that an automorphism of this Latin hypercube in the category defined here is an
automorphism ι ∈ AutC(X) satisfying ι ◦ f = f ◦ ι×d.

Acknowledgement. The present paper has been partially supported by EPSRC grant EP/X035328/1.

Competing interests: none.

References

[1] R. A. Bailey, P. J. Cameron, C. E. Praeger, and C. Schneider, The geometry of diagonal groups. Trans.

Amer. Math. Soc. 375 (2022), 5259–5311.

[2] R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math
13 (1963), 389–419.

[3] G. M. Kelly, Basic concepts of enriched category theory. Cambridge University Press, London Mathe-

matical Society Lecture Notes Series 64 (1982).
[4] G. M. Kelly, On the operads of J. P. May. Repr. Theory Appl. Categ. No. 13 (2005), 1–13.

[5] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic. Springer-Verlag New York (1992).

[6] P. May, The geometry of iterated loop spaces. Lectures Notes in Mathematics bf 271, Springer-Verlag
Berlin (1972).

[7] M. Markl, S. Shnider, and J. Stasheff, Operads in Algebra, Topology, Physics. Math. Surveys and Mono-
graphs 96, Amer. Math. Soc. (2002).

[8] B. D. McKay and I. M. Wanless, A census of small Latin hypercubes. SIAM J. Discrete Math. 22 (2008),

719–736.
[9] I. M. Wanless, Transversals in Latin Squares: a survey. Surveys in combinatorics 2011, 403–437, London

Math. Soc. Lecture Note Ser., 392, Cambridge University Proess, Cambridge (2011).

Markus Linckelmann, School of Science & Technology, Department of Mathematics, City, Univer-

sity of London, Northampton Square, London EC1V 0HB, United Kingdom
Email address: markus.linckelmann.1@city.ac.uk


