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SYNOPSIS

This investigation is concerned with the elastic response 

of bridge girders to high speed travelling loads. The loads 

are treated as masses in contrast to the common practice of 

treating them as forces.

A novel method of calculation is developed, based on 

Hamilton’s Principle of Least Action. The initiating idea of 

this thesis was to examine the possibilities of employing this 

principle in engineering dynamics.

The types of bridge considered are as follows:

a) Simply supported beam

b) End cantilevers with central simply supported main span.

The loads considered comprise both single vehicles and trains 

of vehicles.

Possible benefits of ’’humping" the carriageway or railway 

track, to reduce the dynamic bending moments, are investigated.

Effects of damping, and elastic suspension of vehicles,are

also evaluated.
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LIST OF SYMBOLS

L Span length

t Time

u Speed of travelling load

X Position co-ordinate - distance along a beam

y Downward elastic deflection of a beam

z ,w Downward elastic deflections of cantilevers

Y,Z,W Mid span value of y, free end values of z and w

Z Elastic deflection of vehicle springs (Chapter 7 only)

)
)

Zo )
) 

Wo >

Values of Y,Z,W, at the beginning of a stage in a multi-stage 
calculation

m Mass of a beam or girder, per unit length

M Mass of a travelling load

El Flexural rigidity of a beam or girder

V Elastic strain energy

P Gravitational potential energy, P| for m, P2 for M.

T Kinetic energy, T| for m, T2 for M.

n Stage number in a multi stage calculation

A Maximum possible static deflection

D Dynamic Factor, i.e. ratio of dynamic deflecticnto A

8 A parameter to indicate the speed of a travelling load 
(see para. 1.1)

Y Ratio of load mass to total beam mass (M/ml)

A,B,C Coefficients in a displacement/time function

a,b,c Amplitudes of small variations in displacement/time functions

q Indicates the time occupied by the above variations ( TI/q)
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6V

6P

6T

)
)
)
)
)

Changes in V,P, and T, due to the introduction of a small 
variation in a displacement/time function

wM
ZM

U)

Downward elastic deflection of a beam at the instantaneous 
position of a moving load M

’’Circular” frequency of a vibration = frequency X 211

CP Periodic time of a vibration cycle = 2JI/uj

Stiffness of a spring or an elastic structure

Eo Total energy of an elastic vibration

Total number of stages in a computation

)
)
)

k

N

C of stiffness of vehicle suspension to midspanRatio 
stiffness of beam

expresses the duration of a variation as a proportion of 
a ha 1f period of natural vibration
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INTRODUCTION

This work was embarked upon in order to study the feasibility 

of employing Hamilton’s Principle as a basis for computer solution 

of problems in structural dynamics.

It was desired to extend the familiarity of Hamilton’s 

Principle, there being no obvious reason why a Least Action principle 

should be so rarely employed compared to other concepts such as the 

Energy Conservation Principle and its derivatives.

The following guide lines were laid down at the outset:

(a) the feasibility study would be based on evaluating the response 

of bridge girders to travelling loads, and

(b) the travelling loads would be treated strictly as masses. It 

was felt that this would extend the interest of the results and 

at the same time, provide a more appropriate challenge for the 

new method.

As regards item (b) above, the following remarks are relevant.

If travelling loads are regarded as masses then the force that each 

one exerts on the bridge is affected by the vertical accelerations 

arising from the dynamic deflections. This means that the travelling 

load exerts a continually varying force as it traverses the span and at 

certain points this force may differ considerably from the constant 

gravity force on which such analysis is often based. Furthermore, the 

magnitude of this discrepancy will increase considerably with the speed 

of transit.

In point of fact it became apparent, at a fairly early stage 

in the investigations, that the improvement in logic due to treating
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loads as masses would only be significant in the case of very high 

speeds indeed (perhaps in excess of current practice or probability). 

Nevertheless, this feature was retained because an idea of "track 

humping" to reduce dynamic deflections had been evolved and this 

could not be evaluated unless the loads were treated as masses. Also 

it was desired to investigate the case where the load is a vehicle 

with elastic suspension.

In addition to the computational application of Hamilton’s 

Principle some further investigation was conducted with regard to 

its manifestation in natural vibration theory.



CHAPTER 1

PRELIMINARY CONSIDERATIONS
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CHAPTER 1

PRELIMINARY CONSIDERATIONS

1.1 ORIGINS OF VERTICAL ACCELERATIONS

If a bridge is vibrating, whilst the load is thereupon, 

it follows that the load will experience accelerated motion in a 

direction perpendicular to its direction of travel. Hence there 

will be a continuous variation of the downward force which the load 

exerts on the structure.

However, there are two other sources of vertical accelerations 

which may be equally significant in their contribution to this 

variation of imposed force:

(a) The path of the moving load will be curved in a vertical

plane due to the elastic curvature produced by the load.

This introduces a centripetal component of acceleration.

(b) Due to the change in gradient associated with the elastic 

dynamic deflections the load will experience a Coriolis 

component of acceleration.

If the dead load deflection has not been cambered out, the 

accelerations referred to in (a) above, may be increased considerably. 

On the other hand the structure may be over cambered or the 

carriageway may be ’'humped” relative to the deck. In such cases the 

centripetal acceleration may be reduced (even to a negative value) 

with a corresponding reduction in dynamic stresses due to fast moving 

loads. One of the principle benefits of developing a method which 

treats loads as masses, as distinct from forces assumed to be 
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unaffected by vertical acceleration components, is the capability 

to evaluate such considerations.

1.2 CRITICAL SPEED OF TRAVELLING LOADS

The magnitude of dynamic stresses will depend on the speed 

of the vehicle which causes them. It is to be expected that 

higher vehicle speeds will give rise to higher dynamic stresses.

However, at very high vehicle speeds there may be 

insufficient time for the elastic response to be initiated, which 

implies that at some point the dynamic stresses begin to decrease 

with further increase of vehicle speed.

The need arises for some means of describing the speed of a 

vehicle in terms of the elastic characteristics of a bridge. This 

can be done most conveniently by measuring time in terms of the 

natural period of vibration of the structure.

Let t  be the time taken for the load to cross the bridge

Let tp be the periodic time of free natural vibration

of the structure (in fundamental mode)

Then 6 - T/Jtp

B will be adopted throughout this treatise to indicate the 

speed of travel of a moving load. High values of 8 will represent 

relatively slow speeds whilst, at the other extreme, 6=0 w®uld imply 

an infinitely high speed. In the first case stresses will be little 

greater than those due to a stationary load whilst in the second 
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case the stresses must be zero because the load acts on the bridge 

for zero time.

In between these two extremes there must be a value of B 

which will cause the greatest stresses which can possibly be 

produced. The speed of travel of the load corresponding to this 

value of B will be referred to as a "critical speed".

A convenient way of defining B for any particular case will 

now be stated:

If the speed of the load is u and the span of the bridge 

is L:

t  = L/u (transit time).

Also Jtp = n/w where w has its usual significance in 

vibration theory.

So, finally:

B = wL/IIu (1.1)

Possible values of B for real bridges

Critical values of B are found to be 2.5 or less which, in 

conjunction with conventional bridges, implies vehicle speeds 

considerably beyond current expectations.

It is believed, on a basis of rudimentary design 

calculations, that B “ 3.0 is the lowest value that could be 

anticipated in practice. Even then it is necessary to invoke some 

extreme assumption such as a speed of 200 km/hr or construction 

material of exceptionally high strength/modulus ratio.
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1.3 POSSIBLE ACCELERATION DUE TO ELASTIC CURVATURE IN A REAL GIRDER

where

The radius of curvature of an elastic beam at a point

the bending moment is is given by standard theory as:

R BM
El

where c is the half depth of the beam and o is the maximum bending 

stress at the point in question.

The centripetal acceleration experienced by a load passing

over this point at speed u will be:

R E.c
(1.2)

this being an upward acceleration causing an increase in the 

force exerted on the beam by the load.

If it is assumed that the stress o is due to live load only,

and that the beam is steel, then a probable value for o/E is

480 N/mm2 *7*  2 x 105 N/mm2 x io‘\

200

Also,

km/hr then

u2
R

if the highest plausible

u ■ 56m/sec and equation

562 x 4 x 10~M - 1.24
C C

vehicle speed

(1.2) becomes:

is taken to be

(1.3)

To examine the worst case it will be assumed that a beam

one metre deep is the smallest that need be envisaged. Then

c ■ 0.5 and equation (1.3) gives:

jj2 " * ‘ “ 2.48 m/sec2 « O.25g.
0 >
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Accelerations much higher than O.25g are found in some 

critical cases (see graph 4.2 for example) but it must be remembered 

that centripetal acceleration is only one of the three components 

discussed in para. 1.1.

Another relevant point is that centripetal and Coriolis 

acceleration components are both proportional to the square of the 

vehicle speed (i.e. proportional to 1/B2) and that graph 4.2 refers 

to 0 = 1.60 compared to a probable maximum practical value 

B = 3.0, as already suggested in para 1.2.
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CHAPTER 2

HAMILTON'S PRINCIPLE

2.1 There have been, traditionally, two alternative approaches

to the solution of problems in engineering dynamics, which begin with 

one or other of the following procedures:

(a) writing equations of motion directly based on Newton’s Second

Law of Motion, or

(b) writing energy equations based on the conservation principle.

It will now be proposed that Hamilton’s Principle offers a 

third basic method of approach to such problems, although it appears 

to have been employed to a relatively negligible extent. It is 

one of the main aims of this treatise to investigate the viability of 

this proposition.

2.2 The types of energy involved are elastic strain energy (V),

kinetic energy (T), and gravitational potential energy (P). Hamilton’s 

Principle is expressed in terms of these quantities, but it is quite 

different to other energy concepts in that an integration, with 

respect to time, is involved. The basic statement of the Principle 

is that the following integral has a stationary value for any time 

limits t^ and tn!
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To apply this concept to problem solution it is necessary to 

introduce a small variation into the displacement/time function and 

then to employ the fact that, since the Hamiltonian integral has a 

stationary value, the variation will have a negligible effect 

thereupon.

A suitable form of variation is fix = a.sin qt where fix is 

a small modification to the displacement x, ’a’ is a small amplitude, 

and q defines the time occupied by the variation (n/q).

As a result of this variation the energy quantities will 

alter by amounts 6T, 5V, and 5P the first two involving terms in a 

as well as ’a’. Since the variation is small these az terms may 

be ignored and the aggregate of the other terms will have no effect 

on the value of the Hamiltonian integral. In terms of this 

procedure Hamilton’s Principle can be stated as follows:

n/y
/(«T - «V - 6P)dt = 0 (2.1)

o

The integral of energy with respect to time may be regarded 

as a physical quantity in its own right which is known as Action.

The stationary value of the Hamiltonian integral is commonly 

a minimum and the principle could therefore be more fully entitled 

Hamilton’s Principle of Least Action.

2.3 Although not relevant to the problems in view, it is

interesting to note an example of the wider significance of the

Least Action concept. For instance, consider the case of a body of 
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mass M in motion with constant velocity v, so that the only type 

of energy involved is kinetic energy T. The displacement time 

function with a small variation will be:

x = vt + a sin qt

velocity x = v + q a cos qt

T = |M(x)2=4M(v2+2q a v cos q t + q2a2cos2q t )

So the Action in the period occupied by the variation is:

n/q
A - J Tdt - MIIv2 + 0 + MBqa2

° 2q 4

» / n/q
The term involving a has vanished (because /cos qt dt = 0)

o
leaving the other term as the only effect of introducing the

variation. This remaining term will obviously always be positive 

and therefore it represents an increase in Action. Hence, the 

natural (Newtonian) motion at constant velocity can be regarded as 

a state of Least Action.

2.4 With regard to the characteristics of the variation a.sin qt

it is relevant to point out that the situation of the mass M, after 

the variation has occurred, will be exactly the same in both space 

and time as if it had never been introduced.

Since the proposed variation is cyclic it could be allowed 

to extend over any number of half cycles without violating the 

aforementioned condition. However, it has been found, from the 

problems attempted in this thesis, that a single half cycle of 
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a.sin qt is a suitable variation to employ in connection with 

Hamilton’s Principle.

2.5 PROOF OF HAMILTON’S PRINCIPLE FOR A SINGLE MASS PARTICLE

Consider a particle of mass M acted on by a force F and 

restrained by a spring of stiffness k. If x is the displacement of 

the particle at any time t, after the spring begins to extend, then 

the equation of motion is:

F - k.x = M d^x
dt2

Multiplying this equation through by a.sin qt and integrating

with respect to time, during the period of the variation, gives:

n/q

M.a J

o

2 
d x 
dt2

n/q

sin qt dt + k.a

o

x sin qt dt - F.a qt dt = 0

I2 13

(2.2)

Consider the first integral in equation (2.2)

Integrating by parts:

II M.a

n/q

.1 dx 
dt sin qt - q

i.e. Ii - M aq

n/q

/
dx
— cos dt

o

qt dt
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Now consider the kinetic energy change due to varying x to

x + a.sin qt. The total kinetic energy would become:

T + 6T = + qa cos qt)2

6T .. dxM aq — cos qt (neglecting a2)

Comparing this with Iin equation (2.2) it can be seen that:

n/q

ii
(

I ST.dt

o'

Now consider the change in strain energy V due to introducing 

the small variation:

V + 6V = |k(x + a sin qt)2

<5V = xka sin qt

Comparing this with 12 in equation (2.2) it can be seen that:

Now consider the change in work done by the force F due to 

the variation:

P + <5P “~F(x + a sin qt)

6P ■ -F a sin qt

Comparing this with 13 in equation (2.2) it can be seen that:



11

So, finally, equation (2.2) may be written:

= 0

which is a statement of Hamilton’s Principle as in equation (2.1).

Now consider the case of a particle having its motion 

specified with reference to Cartesian co-ordinates, as follows:

It is easily shown that equation (2.1) is applicable for any 

one of the following variations wherein a,b, and c are small:

xa “ x + a sin qt

y^ » y + b sin qt

zc ■ z + c sin qt

If all three variations are employed, then three independent

equations will be obtained.

2.6 PROOF OF HAMILTON’S PRINCIPLE FOR A SYSTEM

A system has been chosen, for this purpose, which has

some relevance to the problems which will be tackled in later chapters. 
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It is depicted in Figure 2.1 and consists of a mass M rolling, with 

constant speed u, along a rigid beam OA of mass m per unit length. 

This beam is supported, at one end only, by a spring controlled 

hinge, the restraining moment due to the spring being k per unit 

angle a. It will be assumed that a remains a small angle.

FIGURE 2.1

A

Let yo be the initial deflection at A due to the self weight

mgL of the beam, and let y be the dynamic deflection.

Let y^ be the dynamic deflection of the beam at the instantaneous 

position of M.

TU utThen yM - y —

Double differentiation of this will give the vertical

acceleration experienced by M, as follows:

• ’ ut u
yM * y - + y L

2yu •• ut
yM ■ _ +

L yT

The first term is a Coriolis acceleration as referred to
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in para. 1.2, whilst the second term is the acceleration of the 

beam itself at the point where M is instantaneously positioned.

FIGURE 2.2.

From

Mg - R

’’Free body” diagrams of the load and the beam are shown in

(2.3)

Considering moments about 0 in ’’free body” (b):

„ mgL2 k . .
Rut + — - - (y + yo)

mL,3 y
3 * L (2.4)

Now combine equations (2.3) and (2.4) to eliminate R

the equation of motion for the system:

y
/Sr’t2(“+

and hence obtain

mgL
2

+ (2.5)
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Now suppose the dynamic displacement y is modified by a

small variation to y + 6y = y + a.sin qt.

Following the procedure used in para. 2.5 each term of

the equation of motion (equation 2.5) will be multiplied by

a.sin qt and then integrated from zero to TI/q giving:

yt

(p
sin qt dt

n/q

y sin qt dt

(p

o

O
sin qt dt - mgLa 1

2 /
sin qt dt

o

&

= 0 (2.6)

It is now necessary to show that equation (2.6) is equivalent

to:

(<5T - 6V - <5P)dt » 0

where 6T, <5V, and 6P are the changes in kinetic energy, strain energy 

and potential energy due to introducting the variation a.sin qt into 

the dynamic displacement y of the system in Figure 2.1.

Consider the strain energy V of the system with the variation

included:

v + 6v ■ k (y+y0 ♦ a sin qt)2
2L2

* 6V - (y+yo)sin qt
L2
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Comparing 6V with term (p in equation (2.6) it can be seen

that term (p is equivalent to

n/qz

1 <5V dt

o '

Now consider the gravitational potential energy P of the system.

With the variation included:

P + 6P = -Mg(y + a sin qt) — _
L 2 (y + a sin qt)

mgLasm qt-----“5— sm qt

Comparing 6P with terms (pand (p in equation (2.6) it can

be seen that these two terms together are equivalent to

o

2
2^ - from the initial static equilibrium ofSince kyo

L

the system it follows that, in equation (2.6), the yo term within 

term will cancel with term 0 . Hence, in practical 

calculations, for systems of this type, it will be a justifiable 

simplification to ignore both strain energy and potential energy 

associated with the self weight of the beam. For the same reason 

the equation of motion (2.5) can also be condensed as below:

L
(2.7)
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Now consider term (p in equation (2.6) which is concerned

with the inertia of the beam itself. Let the kinetic energy of the

beam itself be denoted by t 2.

1 mL3 E mLy2
Then Tj = - —

2 3 L2 6

So including the effect of the variation:

+ 6TjT1
mL .. o
y (y + qa cos qt)*

mLaq •
—y~ y cos qt

H/q

Now take term from equation (2.6) and integrate by parts:

mLa
3 sin qt dt

n/q

p sin qt •
o

which is equivalent to

y cos qt

since

n/q_ —|

I y Sin qtl

o

is zero.
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Now consider terms and ^2^ , in equation (2.6), which are

concerned with the kinetic energy T2 of the moving load M.

+ a sin qt)

uqt— + qa cos qt

jMy 2
M

ut 
L= (y

yt sin qt + qyt cos qt + qyt

cos qt) dt = t sin qt

cos qt)dt =

,2 >yt sin qt + qyt cos qt /

n/q

yt sin

o

• . n 
yt sm qt dt I

qt cos q^ +

yt sin qt Xt

Hence, when STj is integrated from zero UfJl/q, the first three terms

are collectively zero, leaving only:

n/q H/q

q yt2cos qt dt (2.8)

o o
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Term 0 of equation (2.6) gives:

Term 0 of equation (2.6) gives:

yt sin qt dt =

zero

Now t2y dt

So the sum of terms and 0 is:

cos qt(t2y
2py

dt)dt - 2q

- 2

n/q

-q qt dt

ss as per equation (2.8)

All the six terms in equation (2.6) have now been

examined to establish the complete equivalence of equations (2.6)

and (2.1)
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CHAPTER 3

ILLUSTRATIVE WORKED EXAMPLE

3.1 The system discussed in Chapter 2 and shown in Figure 21

will now be employed as the basis for a fully worked example. The 

purpose is to illustrate the details of the proposed method of 

applying Hamilton’s Principle to problems of moving mass loads on 

elastic beams.

A simplified version of the same problem, wherein the 

moving load is considered to exert an unvarying force Mg, will also 

be solved by the Hamiltonian method, and then again by direct 

solution of the equation of motion (2.7). This equation reduces 

to a tractable form, when the above mentioned simplification is 

adopted, and will thus provide an ’’exact” solution to check against.

3.2 The proposed method is to divide the time spent by the load

in traversing the beam into a number of equal stages. During each 

stage it will be assumed that the angular acceleration of the beam OA 

is constant and hence that y is constant. The displacement/time 

function applicable during any one of these short stages will then 

be:

y At2 + yot + yo <■ a sin qt (3.1)

where A is a constant

yo> yo “ deflection and deflectional velocity, at

point A, in Figure 2.1, at the end of the 

previous stage.



20

Using equation (3.1) expressions can be written for 

6T}, 5T2, <5V, <5P,and then Hamilton’s Principle can be employed 

in the form of equation (2.1) to give the value of the constant A 

for the first stage of the calculation, in which yQ = yo = 0. Then 

the values of y and y at the end of the first stage can be 

evaluated, from equation (3.1), and these will be employed as 

y = y for the second stage, and so on.J o o

Clearly, the accuracy obtained will increase with the number 

of stages adopted and it will be of prime importance to discover 

how many stages are needed to obtain acceptable accuracy. For 

this reason the theory will now be developed in relation to a 

proposed computation with any desired number of stages N. By 

observing the alteration in results, due to an increase in N, it 

will be possible to estimate the number of stages necessary to 

give reliable results.

3.3 Expressions for 6V,6P, 6Tj, 6T2 will now be developed.

The time occupied by the whole problem, for a load

having a speed u and a beam having a length L, will be L/u. Hence 

each stage will occupy a time L/Nu. The small variation 

a.sin qt will be made to occupy the same period by putting 5 < NfJU/L

Strain Energy (V)

* yoL ♦ yo + a
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ka /At2 sin NHut + .Qt
L7 \ L

sin Nnut +

L
Vo

Nftut^ 
sm —-— J

L

ka /Oo189304 AL3
L2 W

+ yoL* +

nN?u2
2yoL J
IINu /

(3.2)

Gravitational Potential Energy (P)

In equation (3.1) t = 0 at the beginning of every stage,

so the distance the load has moved on to the beam, from end 0, wi 11

have to be expressed as follows:

x (n - i)i + ut (3.3)

for the nth stage of a calculation wherein the total number of

stages is N.

Now P « -Mg y^ where y^ is the downward deflection of the

beam at the instantaneous position of the load, so that yM “
X 

y L

(see Figure 2.1)

*

using equations (3.1) and (3.3).
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o

Nllut udt ♦-

2(n-l) 
nN2

sin Nnut n I

(3.4)

Kinetic Energy of the beam itself (Tj)

Also

y 2At + y0

q NUu/L

+ qa cos qt

for an N stage

from equation

calculation

(3.1)

T1 + NRu 
yo + — cos

6T1 “5=2 A,t NJIutcos — + yo

xi
Nllut 1

L /
NR ut )

cos ~ry
/

* f

o

-4mAaL,2
3RNu (3.5)

Kinetic Energy of the moving Load (T?)

T2 ' !M*M 2

Now ■ y'L (t )’ • T using equation (3.3)



i.e. yM
0N^(2At+yo+qa cos qt)+ (At2+yQt+yo+a sin qt)

+ (2At2+yQt + qt a cos qt) using equation (3.1)

yoq cos

2 • *1+yQt+qta cos qt) I

0+qa cos qt)+^(At2+yQt+yo+a

3u2 A 2
qt + -2- At sin qt

sin qt)

2u2 .
^2" V sln

2 
yo sin qt

L

2

+

+

3u2 3
+ __ Aqt cos qt 

L2

2u 2 * 2
yoqt cos qt +

L

2u / n-1 A A
— / ----- lAt sm
L I N J

qt+ + u
L

n-1 \ 2—— 1 qt cos
N /

3u
qt + T| N

n-1 y
’yoqt

Integrating NIluand putting q ■ —— gives:

u2
+ “2 yoqt COS qt 

L

L/Nu

I 6Tndt - MAaL n-1 n-1 35.2184 82
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o

-H^L A (^>2 + 8 (n_D + K13583^ 

n 3u ( n n /

The terms involving yo have cancelled out because, in this

simple problem, the beam has no elastic curvature.

3.4 Having now developed expressions for 6V, 6P, 6T^ and 6T2

it is necessary to substitute them in equation (2.1) as follows:

The speed parameter B (see para. 1.2) can be introduced at 

this stage. For the system at present under consideration 

(Figure 2.1) the periodic time of natural vibration (for the
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unloaded beam) is:

Now time of transit 
half periodic time

2L
utP

wL
IIu

i. e.

If

B2

.2 2 mL u

4L23k

u2(2II)2mL3

0.3O396kL
B2

(3.8)

equation (3.7) is multiplied through
3 3 ,

by -u .N then

equation (3.8) is a suitable form for introducing 8. Also the live/

dead load ratio y = M/mL can be introduced and finally equation (3.7)

• /

6

can be stated as follows:

A

fyg(.63662n - .31831)N

-2.O944N202

-1.O472NB2 (*o uJ

2Ny(.63662n - .31831)
(3.9)

.424413N2 + y(1.27324n2 - .13734) + .62279B2

Evaluation of dynamic deflections

The computation will consist of repeated applications of

equation (3.9). In the first stage (n“l), yo and y0 are both zero, 

which means that the last three

(3.9) have zero initial values, 

be computed as a coefficient of
2 

used to compute values of yo —?

terms in the numerator of equation

Hence, the first value of A will 

yg. Then equation (3.1) can be

• u
and yo — at the end of stage 1
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when t = L/Nu. These values are then fed into the numerator 

of equation (3.9) for the second application, and so on.

The procedure will be sufficiently illustrated by the 

first stages of a five stage calculation (n=5) which are set out 

in detail as follows:

If B has the value 1.432 (shown later to have a special 

significance) then equation (3.9) becomes:

A = yg(3.18n -

10.6 + y(1.27n2 - 0.14) + 1.28
(3.9a)

Stage 1 n=l (also putting y = 1)

A = yg 1.59
13.01 = 0.122 yg

Now from (3.1) with t = L = L (to obtain yo and y for stage 2): 
Nu 5u °

y0
u2
L2

0.122yg
25 O.OO49yg (from equation (3.1))

*o L
2x0.122yg
------- ----------* = O.O49yg (from equation (3.1)

differentiated)

Stage 2 n“2

A - Y8
4.77 - 10.7(.049)-107(.0049)-2(4.77)(.049)

16.8

0.194 yg
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Then again from (3.1), and its derivative, with t = — :

yo - = Q:A9Al8 + .0„*, 04,9y£ + O.OO49yg = O.O225yg
° L2 25 5

• u 2x0.194yg
y ~ - ------- a + O.O49yg = O.1266yg et cetera

O 14 3

The intended value of y must be inserted in the fourth numerator 

term, and the second denominator term, of equation (3.9) or (3.9a). 

y = 1 was inserted at these points in the above example so that 

the obtained results are only valid for y = 1.

Evaluation of the dynamic factor D

It can be seen that, at the end of every stage, the dynamic 

deflection y (at point A in Figure 2.1) will be evaluated as a 

coefficient of ygL /u .

Now, from equation (3.8)

yc L2/u 2 .

.30396k .30396k

But MgL2/k - A (maximum possible static deflection)

' ygL2/u2 - g2A

.30396
- 3.2982A

So the dynamic factor D will be the computed coefficient 
2

multiplied by 3.29B .
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A program to evaluate dynamic factors for y = 1 but for

any desired values of N and B is shown below.

1 ZN=40.0
2 B=0.432
3 D011 1=1,10
4 XN=1.0
5 YY=0.0
6 Y=0.0
7 D010 J=l,40
8 XA=0.63662*XN-O. 31831 *
9 AN=ZN*XA- 1.04 72*ZN*B*B*YY-2 .0944*ZN*ZN*B*B*Y-2 .0*ZN*XA*YY

10 AD=0.424413*ZN*ZN+1 .27232*XN*XN-O.13741ZO.622792*B*B
11 A=AN/AD *
12 Y=A/ZN*ZN)+YY/ZN+Y
13 YY=2.0*A/ZN+YY
14 DY=3.29*Y*B*B
15 WRITE(6,1) DY
16 1 FORMAT (F15.7)
17 10 XN-XN+1.0
18 11 B=B+1.0
19 STOP
20 END

The terms marked with an asterisk are concerned with the 

kinetic energy of the moving load M (i.e. T2). If these terms are 

omitted the program gives a solution for the case where the load 

is regarded as a moving force M.g of constant magnitude. This 

modification was adopted to obtain special results for comparison 

with a direct solution of the equation of motion, which now follows.

3.5 SOLUTION OF THE EQUATION OF MOTION (y = 0)

In the case where the load is regarded as a moving force of 

constant magnitude M.g, the equation of motion (2.7) can be 

reduced to the form shown below^ (3.10)^ which is simple enough for 

direct solution. Such a solution will now be presented in order
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to obtain some "exact" results which can be compared with the

Hamiltonian stage by stage computations.

It 3k 3Mgut
y +

mL3
y =

t  3 mL

z
• • y = A sin cot + B cos mt + MgutL 

k

where U) = /IT/ nd.3

Since y = 0 when t = 0 * Bz * = 0

Also y = 0 when t = 0:

0 » wA + MguL 
k

; a =
-MguL 

ku

(3.10)

So the final relevant solution of equation (3.10) is:

y sin u>t)

Now introduce gj L
nu

uL _ L.2
1,e* u> “ JIB

y (wt - sin cot)
nBk

But MgL2/k is the maximum static deflection A

dynamic factor D X
A

t - sin Ut
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But u)t =

(3.11)

To discover the maximum value D can ever attain put t = L/u 

in equation (3.11) and then differentiate:

sin 1IB

jib

3D •

1*
= n2s cos jib  - n sin iib

- n2e2

This will be zero when tan TIB = HB

i.e. when TIB “ 4.5

i. e. B = 1.432

Substituting this value of B in equation (3.11) gives:

D =
ut sin 4.5 ut/L
L 4.5

Finally, substituting values of u.t/L « 0.2, 0.4 0.6, 0.8, 1.0

will give values of D for five instantaneous positions of the load 

when it is travelling at its critical speed. The actual values 

are reported in the next paragraph, the fifth value being the 

greatest dynamic factor attainable in this problem whilst the 

load is on the beam. In fact the deflection will increase a 

little further after the load has run off the end of the beam.
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3.6 ACCURACY OBTAINABLE WITH THE PROPOSED METHOD

Cases where the load is treated as a moving constant force 

M.g will be discussed first, because, in such cases, the ’’exact” 

solution of para. 3.5 can be used as a standard of accuracy.

Values of the dynamic factor D are shown below for five 

instantaneous positions of the load when it is travelling at the 

critical speed represented by B = 1.432.

computation

D = .026 .184 .505 .898 1.217 ’’Exact results from para 3.5

D - .036 .191 .496 .877 1.202 From a five stage computation 
using the program of
para 3.4

D = .026 .184 .505 .898 1.217 From a forty stage

The forty stage computation shows that the Hamiltonian 

method is capable of producing the ’’exact” results. However, it is 

interesting to note that a surprising degree of accuracy is obtained 

with only five stages of computation. It has been found, from 

general experience with the Hamiltonian method, that it is most 

effective at low values of B (i.e. when the load is moving fast). 

So the success of the above five stage calculation is largely 

attributable to the fact that a low value of B is involved.
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Nevertheless it is a convenient feature of the method that it operates 

best in the region of greatest interest.

With high values of B the calculation may fail to converge. 

However, this is not of much concern because a high value of B 

implies a ’’crawling” load and a dynamic factor differing little 

from unity.

Now the more interesting problem, where the load is treated 

as a mass, will be discussed. All the results shown below have

been obtained using the program in para 3.4 and apply to the case 

where the mass of the load is equal to the mass of the beam itself 

(y = 1). Only maximum values of the dynamic factor D are given, i.e. 

values applicable to the instant when the load arrives at the end A 

of the beam.

Table 3.1

B 5 stage 
computation

D

10 stage 
computation

D

20 stage 
computation

D

40 stage 
computation

D

.432 .120 .116 .116 .116

1.432 .786 .791 .792 .793

2.432 .970 .955 .951 .951

3.432 .890 .888 .890 .891

4.432 .980 1.005 1.012 1.014

5.432 .990 .990 .971 .967

6.432 .962 .963 .970

7.432 1.007 1.017 1.018

8.432 .975 .967

9.432 .985 1.000
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The first two columns in Table 3.1 are incomplete because of 

the failure of the program to converge when N is small and B is 

large, a tendency already referred to above.

The columns for 20 and 40 stage computations show only 

very small discrepancies and thereby suggest that 20 stages yield 

adequate reliability. Obviously the maximum dynamic factor 

should tend to unit value as B increases.

Finally, since the main aim of these calculations is to 

compare dynamic deflections based (a) on constant force moving loads 

and (b) mass loads exerting varying forces, it is relevant to report 

the comparable results for the problem in hand.

The results shown below are dynamic factors corresponding 

to five instantaneous positions of the load. They were obtained 

from two forty stage applications of the program shown in

D - .026 .184 .505 .898 1.217 FORCE LOADING <Y - 0)

D » .024 .148 .351 .576 .793 MASS LOADING (y “ 1)

Cause of decreasing accuracy with higher B values

A large value of B implies a low speed of the moving load.

The beam performs a significant number of cycles of vibration, during
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a slow transit, leading to many reversals of curvature in the dynamic

deflection graph. This can be observed in graph 3.1 which is

based on a 40 stage computation. It is not to be expected that a 

step by step calculation could trace this type of curve if only a 

small number of steps were employed.
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CHAPTER 4

BEHAVIOUR OF UNIFORM SIMPLY SUPPORTED BEAMS
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CHAPTER 4

BEHAVIOUR OF UNIFORM SIMPLY SUPPORTED BEAMS

4.1 This type of problem will be tackled by a procedure almost 

identical to that illustrated in Chapter 3. The calculations will 

be programmed for computer solution so that a wide range of results 

can be obtained as follows:

(a) Maximum dynamic factors due to a single load traversing the 

span at various speeds (B) and accounting for different 

values of the ratio load mass/beam mass (y).

(b) Detailed comparison of responses for various values of\ in 

selected cases.

(c) Effect of initial deflections whether sagging, due to dead 

load, or hogging due to track humping.

(d) Reconsideration of (a), (b) and (c) above, in terms of trains 

of successive loads, which may, or may not, be longer than 

the span.

The computation will be based on ten stages. (This small 

number of stages was originally adopted for a preliminary trial of 

the method. However, the results appeared to be adequate and have 

subseqently stood the test of comparison with limiting cases of the 

sixty stage computation reported in Chapter 7).

It will be assumed, as in Chapter 3, that during each of

these stages the deflectional acceleration is constant. Then, in each 
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stage, the following displacement/time function will be 

applicable:

? A nx
y = (At2 + YQt + Yq ) sin — (4.1)

at the end of the previous stage.

Note that equation (4.1) gives the deflection at any point of 

the span at any instant, with the implication that t is taken to be 

zero at the beginning of every stage. The constant A will have a 

different value in each stage.

In order to employ Hamilton’s Principle (equation 2.1) it 

will be necessary to introduce a small variation into equation (4.1) 

as follows:

y = (At2 + Y t + Y + o o

lOIIuay = (2At + Y + ---------
o L

lOIlut . IIxa sin ---- -— ) sin —
*•* L

lonut s . Hx cos —----- ) sin
L* L

(4.2)

(4.3)

It is intended that the variation should only exist for a half 

cycle so that the time it occupies is L/lOu which is the time taken 

for the load to travel the stage length L/10. Note that the variation 

does not affect the path of any particle but merely distorts its 

“timetable" by successive speeding up and slowing down. After the 

variation has occurred all particles will be at the same point in 

both time and space as if the variation had never occured.

2If the variation is of small amplitude (so that a is negligible) 

then the Hamilton integral (equation 2.1) will also be unaffected



by its occurrence. This is the condition that enables the value

of the constant A, in equation (4.1) to be determined.

4.2 Expressions for <5V, 6P, 6Tp 6T2, for substitution in equation

(2.1) will now be developed.

Strain Energy (V)

In general strain energy due to bending is given by:

and from equation (4.2):

I2
■ L2

(At2 . lonut . . rix
+ a sm —;----  )sin —o L L

only

n4
iEI (At2 +

\7

nAEI . 2
—3- (Atz 
4L

To

those

obtain 6V

. lORut 
sm ---------

L

. 10Rut sm ---------
L

(4.4)

from equation (4.4) it is necessary to extract

terms which involve ’a 2, terms involving a being

V

+ Y t o
+ Y

¥ V

i. e. V

V +

* Y t o

Y + o a

2

+ Yo + a )

neglected.

. nuEIa 2 • lonut _
. . 6V ■ ----- — (At sin --------- + Y t

2L3 1 0
. lonut „ ionut . sin--------  + Y sin --------  )

L 0 LL

<5Vdt - .0092207 + .15503 ♦ 3.1006 JL??*
u3 Lu 2 L2u

(4.5)
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In equation (4.4), y should originate from a position of zero 

elastic distortion, which may involve a deflection due to the self 

weight of the beam. However, it has been shown in Chapter 2 that 

6V, and 6P associated with structure weight, may be balanced one 

against the other and hence omitted from the calcualtions. This 

means that YQ in equation (4.5) will always be zero in the first 

stage of the calculations, so far as strain energy is concerned.

Potential Energy (P)

P = -MgyM

where y^ is the local value of dynamic deflection beneath the moving 

load.

To convert y to y^ it is necessary to substitute for x, in 

equation (4.2), an expression which defines the position of the 

load at time t. The required expression is:

(4.6)

this being applicable in the nth of the ten stages into which

the transit of the span will be subdivided for calculation purposes.

As before the implication is that t will be taken as zero at the

beginning of every stage.

*M
(At2 ♦ Yot lOJIutx

+ a sin —:—Jsin o L /
+

* «
. io i

6P ■ -Mg a sm ——L*



^6Pdt for each of the ten stages are given below:
Values of

Table 4.1

STAGE NUMBER
n

/pdt

(coefficient of MgaL/u = p )
*

1 -.00993567

2 -.0288344

3 -.0449107

4 -.0565908

5 -.0627314

6 -.0627314

7 -.0565908

8 -.0449107

9 -.0288344

10 -.00993567
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Kinetic Energy of the beam itself (T])

T1

In general, for a beam with uniformly distributed self mass:

|m J (y)2dx

o

i .e. Yo
lOJIu

a
lonut

cos —
7 . 2 nx , z .

I sin — dx (using equation 
J L 4.3)
o

i. e. T1 Yo
lORu 
T a

lOnutV

cos —ry
(4.8)

To obtain 6T^ from equation (4.8) it

only those terms which involve a,

is necessary to extract

2terms involving a being negligible.

mLa
2

[20Anu lonut
COS ——

+ lonu ;
L o

lonut | cos L y

- -0.063662 mL2Aa

u

+

+

L

Kinetic Energy of the moving load (T9)

T2 » $M(yM)2

where yM is the local value of dynamic deflection beneath the moving load.

To convert y to it is necessary to substitute for x, in 

equation (4.2), an expression which defines the position of the load 

at time t (which was also done under the heading "Potential Energy").
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So, combining equations (4.2) and (4.6):

Now extract only those terms involving * a’ to obtain an

expression for 6T2 For brevity let nut
~l ~

4onu .AtL + 2onu ;
—— Yocos

lOnut 
L

. 2 
sin

+
2n2u2

L2
.2 . lonut 2AAt sm --------- cos <|>

L n +
2J12u 2

L2 Yosin
lonut

L

+
2H2u2

L2 V
. lonut 2Asm --------- cos ?

L

+ 4nu
L

. lOOut 
At sin —;— n

2Hu
+ L Y sin 

o
lonut

L

2on2u
+ L2

2 2
— At cos

lonut . . 2on2u2
sin|ncos* n+ j

I.
Y cos o

lonut
--------- sin<i cos6

L n n

2 2♦ 2011 u *
L2 °

cos sin4>ncos<n^

L



42

+ 2"2u2 + 2n2>j2 YoT5

4IIu _ 2IIu+ -----  AIa + -----L 6 L V? +
2on2u2 ,,

L2 A18

2on2u2 .. T 2on2u2 • >
* ,2 Yo X9 +

L2
°Tio J

The ten integrals 1^ to I required for equation (4.10) all

have different values in each of the ten stages of the calculation.

The necessary 100 values were computed separately, as shown in

Appendix 4. In terms of these print out values equation (4.10) will 

be modified as follows, after introducing correction factors

1 , 1 , or 1 , as appropriate:
Toff ioon2 iooon3

+Yo (2I^ + 0.02 r + 0.20 1^ + 0.20 I’Q)

+YoI (0.628318 (V

Of more briefly:

<‘a ) * Yo
u
L(tYY) ♦ Yo (4.11)

Values for tA» t^,, and ty» for each of the ten stages are 

shown in Table 4.2.
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Table 4.2

STAGE CA rr
 

m
J CY

1 -.010854 -.060091 .017769

2 -.042872 -.153099 .130394

3 -.082483 -.181632 .314045

4 -.114556 -.134791 .497160

5 -.126841 -.030469 .610336

6 -.114646 +.091488 .610343

7 -.082627 +.184497 .497179

8 -.043017 +.213030 .314068

9 -.010944 +.166190 .130952

10 +.001342 +.061868 .017776
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’ and jlp
4.3 The expressions derived in para. 4.2 for

will now be substituted in equation (2.1):

i.e.

JsTjdt + JiT2dC

-.063662 + tu
ML ’ Mu

A V Aa + tYY^Yoa + CY — Yoa

(2.1)0

_ EI ,rr EIY a , EIYrta MgL
0092207 — Aa -.15503 ° -3.1006 ° - pn ----- a

u3 Lu2 L2u u
0

-pnMgLu2-.15503 EIYO ~ - 3.1006 EIYQ + tYYMu3YQ+tYMu3Yo 

.063662 mL2u2 - t/lLu2 + .0092207 El

At this stage the principal parameters y and ts will be introduced:

B2 - w 2L2 = nA 2. El . Lz • n2 El
n2u2 i? m n2u2 L2 mu2

A

I2 2i.e. mL u n n2 EI/B2 (4.12)

Also M ■ ymL

. MgLu2
A -

El • u , 1An, El v u2 tYY y u  ty v u2
h MgLu2 ° L MgLu2 ° L2 g °L g °p

El .063662 n2/B2 - tA yn2/B2 ♦ .0092207

A See para. 1.2 equation (1.1)
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In the first stage (when YQ = YQ = 0) all the terms inside 

the bracket, in equation (4.13) can be assigned numerical values.

2Hence the constant A can be computed as a coefficient of MgLu /El.

i.e. A’ = A -r MgLu^/EI 

where A’ indicates the value actually computed.

(In the following development all symbols with primes are to be 

interpreted in this way)

Now values of Y and Y , for the second stage, can be calculated as 

follows ( t = at the end of stage 1):

Y . At2 - Mgl? . y , Mgl?

0 100u2 100 El ° El

Y ■ 2At “
2AL A' MgL2u . M?L2u

(4.15)o lOu 5 El ° El

II
Y “ 2A - 2A’

MgLu2 .2 2„ . , mL u2A’yg
2

2A’ -9Yg (4.16) )
0 El El B2

Now substitute from equations (4.14) and (4.15) back into equation 

(4.13) to obtain the following expression for A which will be 

applicable to the second stage and all subsequent stages:
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Now substitute from equations (4.12) to modify the terms involving 

tyy ty :

A. . ~p° -•15503 Y°' - 3‘1006 Y° * W F V +_ (4.17)

(.063662 - tAy) n2/B2 + .0092207

Equation (4.17) is in a suitable form for automatic 

computing and is the basis of the programs shown in Appendix 4. 

Each computer run will be based on a specified pair of values for 

the principal parameters B and y. Values of pn are taken from 

Table 4.1 and values of t^,ty and tyy from Table 4.2.

Variables named in the computer list are as follows:

Y-G; B-B; n2/B2"BB; YQ' -Y; Yo ' -YY; Y*/>g  = YYY.

All variables carry additional symbols A, B, C etc. to indicate 

the stage of calculation^

e.g. YYE - value of Y ’° o in Stage 5.
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Consideration of initial dead load sag or track humping

In these cases the term tyY H2/B2 YQ’ in equation (4.17) 

will not be zero at the beginning of the first stage of calculation. 

Yo’ will be given an initial value to represent the "sag" or ’’hump" 

of the track.

The problems of this type which have been computed are 

reported on Figure 4.5. Reference to this graph and also 

to the programme list should suffice to clarify the details 

involved. This initial value of Y ’ is named UM in the list.

e.g. to introduce a sinusoidal hump with a maximum rise equal to
MglP 

the static live load deflection ad midspan ( wou^ be

necessary to employ UM = 1/48 = .02083. A zero value of 

UM implies that dead load deflection has been cambered out and 

that the beam is perfectly straight and level prior to the

transit of the live load.
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4.4 TRAVELLING DISTRIBUTED LOADS

This problem has been considered in terms of a train of 

loads each of mass M and separated from each other by a distance L/10. 

To deal with such a load system it is only necessary to ’’accumulate” 

the values of pn, t^, ty and tyy given in Tables 4.1 and 4.2.

For example, in the tenth stage of calculation these quantities 

would be assigned values equal to the sum of values in the 

tabulated columns. To deal with the possibility of trains longer 

than the span L, these values would then be held at their tenth 

stage values for as many more stages as the train length implies.

This type of problem is of greater practical significance, 

than that of the single load, because it is much more likely that 

the total live load will be equal to, or greater than, the mass of 

the beam itself. Results have been reported for y = 0.1 and 

y = 0.2. The former value implies that the greatest live load 

on the span, at any given time, will be ten loads each having a 

mass one tenth of that of the beam itself.

At very high transit speeds *u ’ (i.e. low values of B) a 

steady state solution is possible with trains of infinite length. 

In such a case the beam attains a quasi static deflection, the 

elastic resistance of the beam being steadily balanced by the 

product of load masses with gravitational plus centripetal 

acceleration. At even higher speeds a state of instability or 

divergence can occur. No practical importance is attached to these 

matters because the transit speed ’u*  would be far beyond any 

probable value.

However, this ’’steady state” situation yields quite readily to 

wathematical analysis and thus has been considered of sufficient 

interest to present in Appendix 3.
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4.5 DETERMINATION OF MAXIMUM DYNAMIC DEFLECTION WHEN IT OCCURS

AFTER THE LOAD HAS LEFT THE SPAN

In some cases the deflection of the beam will still be 

increasing when the load reaches the far end of the beam, so that 

the maximum deflection must occur after the load has run off the 

beam. These cases are easily spotted because the value of Y, at 

the end of the tenth stage of computation, will be positive (YYJ in 

the programme list).

Once the beam is free of load its residual motion must be a

free vibration at natural frequency which can be described, in

El

terms of the symbols in the programme list as:

Y s YYJ .
----- sm wt + YJ cos wt

w

However, YYJ is a coefficient of - (equation 4.15)

whilst Y and YJ are coefficients of MgL^ (equation 4.14)

So, for dimensional consistency the above equation must be modified to:

Y ■ YYJ • sin wt + YJ cos wt wL ——- sin wt 
sn + YJ cos wt

The maximum amplitude of this vibration is:

2 2
YYJ

DB
(4.18)
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4.6 ACCELERATIONS EXPERIENCED BY THE LOAD DURING TRANSIT

(See also, Appendix 2, para. A2.1)

At any instant the deflection of the beam just beneath the

. nut , , , . _sin —— and the acceleration, ofYmoving load is given by y^

the load, can be found from this by differentiating twice, as follows:

sin nut
T”

nu
YT

nutcos ——

ii

*M

II

Y sin
nut nu2Y — cos

L

nut 2 2n u „ . nut—— Y sm -----
L2 L

2 2
Now introduce ■

El

(4.19)

In terms of the computer programme symbols, euqation (4.19) may be

Y

L

+

+
L

rewritten as follows:

” But
YM " Yg(YYY) sin — +

2 2 n rimL u2yg(YY) El cos
nut ,v. n2mL2
— - Y8(V)

2 u
El

nut
sm —

°2 f
—2 from equation 
B

(4.12), giving:

yM ■ Yg(YYY) sin — 
n L

+
n3 , .

2yg — (YY) cos 
e2

iTut nu „ . nut
--------  Yg “ Y sin -----

L B2 L
(4.20)

ACCN. OF BEAM CORIOLIS ACCN CENTRIPETAL ACCN

The following set of values was calculated from equation (4.20) 

using values of Y, YY and YYY from a print out obtained for B • 1.60 

and y ■ 1. Values for y • 1, from Table A2.1 are also shown to

illustrate the discrepancy between ’’mass” and “force” loading.
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Table 4.3

ut/L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Eqn. n + + + + + - - - - -
4-20 yM 0 • 23g . 56g . 56g • 38g • 06g • 45g 1.30g 2.55g 3.34g • 42g

Table n + + + + - - - - + +
A2.1 yM 0 •4g l.lg 1.4g 0.7g 0.9g 2.5g 3.0g 1.8g 0.8g 3.3g



SIMPLE 3EAM BRIDGE. G RA P H ^-1
MIDSPAN ACCELERATION OF THE BEAM DUE TO A SINGLE LOAD

CROSSING AT CRITICAL SPEED ( [3 = 1.60)

Comparison of the proposed method with the classical method.

The curve is obtained from double differentiation of 
equation A2.5 (with x = 1/2^

•Straight line segments are the midspan accelerations in the 

ten stages of the proposed method ( YYY in equation 4.20 )



SIMPLE BEAM BRIDGE WW 4.2.
SINGLE LOAD CROSSING THE SPAN AT CRITICAL SPEED ( = 1.60 )

COMPARISON OF ACCELERATIONS ( ) EXPERIENCED BY THE LOAD

TREATED ALTERNATIVELY AS FORCE OR MASS

(see also table
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DEFLECTION OF THE BEAM BENEATH THE LOAD (Actual path of the load)

/•2
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MAXIMUM ■ECTS OF A SINGIEJLOAD CROSSING AT VARIOUS SPEEDS 
Speed - u, Z2 = JjJfS :
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SIMPLE BEAM BRIDGE 6-RAPH 4-6
maximum  effect s due  to  a train  of  load s crossing  at VARIOUS SPEEDS
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4.7 COMMENTS ON GRAPHS

Graph 4.1

This graph gives information about the accuracy obtainable with 

the ten stage computation. An assessment may be made by comparing the 

computed midspan accelerations of the beam with those from the classical 

method based on the response of the first mode only. Since the latter 

method treats the load as an unvarying force, the computed results have 

been deliberately limited in the same way (by assigning zero values 

to ty, tyy and t^ in equation 4.17).

Graph 4.2

The accuracy revealed by Graph 4.1 was thought sufficiently 

encouraging to proceed to examination of the difference in dynamic 

response due to treating the load as a mass, this being a main object 

of interest.

Graph 4.2 reveals tftis difference, in the case of a transit 

at critical speed, in terms of the accelerations experienced by the 

load itself as it crosses the span. It may be seen that the classical 

method predicts unrealistically high downward accelerations near the 

beginning of the transit.

The classical curve would be the same for any value of the 

live/dead load ratio y, but the computed curve would be different for 

any othervalue of y, because of the more rigorous allowance for 

kinetic effects.
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Graphs 4.3 and 4.4

Here the contrast between "force” and "mass” loading, for a 

critical speed of transit, is shown in terms of the instantaneous 

deflection of the beam at the position of the moving load (Graph 4.3) 

and at midspan (Graph 4.4).

In both graphs the curves for ’’force" loading are obtainable 

either from the classical method or from the computer programme. 

Discrepancies between these two alternatives are due to the fact that 

the programme is based on only ten stages, but it can now be seen that 

these discrepancies are much less than those between "force" and "mass" 

loading.

Since the dynamic deflections are expressed as a factor on 

static deflection, the classical results are independent of y.

V Comparable computed points are labelled y = 0 (in Graph 4.4) because 

the programme is so arranged that this statement eliminates kinetic 

effects of the load and, in effect, reduces it to an unvarying force.

Graphs 4.5 and 4.7

These graphs show the effect of initial deflection of the 

beam due to either under cambering or over cambering. It must be 

emphasised that the statement X » 0 means that the cambering is 

Perfect, i.e. that the apparent dead load deflection is zero and that 

the beam is therefore perfectly free from vertical curvature before 

the load runs on to it. The results shown on these graphs can only

be obtained if the load is treated strictly as a mass.



Graphs 4.6 and 4.8

These graphs constitute a concise presentation of the results 

aimed for in this chapter. They may be allowed to speak for themselves 

with the following reservations:

(a) Their accuracy is dubious when B > 5 because they are based 

°n a computation in only ten stages (see comments at the end of Chapter 3).

(b) In their evidently successful and convincing region

(1 < B < 5) there will be some inherent error due to the simple 

sinusoidal shape function assumed in equation (4.1). This error will be 

similar to that arising from a classical analysis based on the 

response of the first mode only. Certainly the error will be small 

compared to the discrepancies arising from treating the load as 

a constant force (i.e. regarding the y = 0 curves as the only 

Possibilities).

(c) Some of the higher dynamic factors will be unattainable, 

in practice because the implied accelerations, which the load would 

experience, at some time would exceed a downward acceleration of g. 

This is expecially true in graph 4.8 where it concerns trains of loads 

longer than the beam itself. For instance when B « 2.0, y = 0.2, 

a maximum dynamic factor 3.52 was computed for a train twice as long as 

the span. However, using equation (4.20) it can be shown that the 

eleventh load would need to have a downward acceleration of 1.5 g as 

it ran on to the beam which is, of course, not possible. Also, even 

higher upward accelerations are implied in some cases, this situation 

being well illustrated by graph 4.2.
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Upward accelerations greater than ”g” are not impossible, but 

nevertheless it can be seen that Grpahs 4.6 and 4.8 contain areas 

beyond the limits of practical probability. However, this is partly 

due to the high values of y examined, and also it may be recalled 

that high dynamic factors can be alleviated by ’’humping” as shown, 

for example, in Graph 4.5. A modest amount of "humping” would seem to 

be a reasonable method of reducing effects of high speed traffic 

especially as it only needs to be applied to the track or carriageway 

and not to the basic structure.

Graph 4.10

This is presented as a "curiousity" being outside practical 

limits in that the load weighs five times as much as the beam itself. 

The downward (positive) acceleration of the load is very high as it 

nears the end of its transit and implies that the load would jump off 

the beam in this region. This effect must be due to Coriolis and 

centripetal components of acceleration arising from the sudden upward 

Reflection of the beam in the final stages.
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4«8 DYNAMIC BENDING MOMENTS

So far the dynamic response of beams has been evaluated only

in terms of deflections. The response in terms of bending moment is of

greater practical importance and will now be considered.

With the simple shape function, used up to now, the maximum 

deflection and bending moment are bound to occur simultaneously at 

niidspan. Consider the basic displacement/time function (equation 4.1) 

which may be restated as follows:

y(x,t) = Y(t)
IIx , ...sm — , where Y is

1—»
midspan deflection.

Now 32yBM = - El —L Y(t) sin nx
3x2 L2 L

TT2EI
BMMAX “ Y(t)MAX

L

The static midspan bending moment can be expressed as

12 EIA/L2 where A is the midspan static deflection MgL3/48EI.

So the dynamic factor for bending moment is

— Ymax “ — D - 0.822 D
12 T- 12

where D is the dynamic factor for deflection as reported on Graphs 

4.6 and 4.8.

However, it is well known that, in the classical method, 

dynamic bending moments can be markedly affected by the contribution 

of higher modes. To take this into account, in the Hamiltonian step 

hy step method, it will be necessary to extend the displacement/time 

function beyond the simple form of equation 4.1.



57

It is now intended to introduce some further computations

based on the following displacement/time function in lieu of equation

(4.21)

where W = Bt2 + WQt + WQ 

and Z = Ct2 + Z* ot + ZQ

The additional shape function (sin 3Ilx
L J has been chosen so that

the significant additional bending moment will also occur at midspan.

We now have:

- ei  - n2r <w
8x2 L2

. nx 
sm — 

L

3Hx s
+ 9Z sin "Y“ )

Max. bending moment h 2ei
(W(t) -9Z(t)) av

(at midspan) L2 MAX

Now if W’ and Z’ are the representative numbers in the computer

Printout, then:

Max. bending moment ■ (W.^9Z.) (HS2)
L2 MAX El

- n2MgL(W

Max. static bending moment = MgL/4

Dynamic factor for bending moment

= 4n2(W’— 9Z’)
MAX
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Computation Scheme

With two terms in the displacement/time function, as now proposed, 

it becomes necessary to introduce two small variations (one in each 

of the time functions W and Z). It follows that two simultaneous 

equations must be solved at the end of every computation stage in order 

to obtain current values of W’ and Z’.

The preliminary procedure for handling the kinetic effect of the 

load becomes too complex to be dealt with by the direct method used 

heretofore and the approach used in Chapters 5 and 7 will be used instead. 

This matter is fully explained in those chapters. At the same time the 

number of calculation stages has been increased from ten to sixty.

A selection of the results obtained is given on Graphs 4.11 & 4.12.

Comments on Graphs 4.11 and 4.12

These graphs present information comparable to Graph 4.6 and 

therefore reveal the improvement obtained by employing the more rigorous 

displacement/time function (equation 4.21).

Graph 4.11 compares deflection and bending moment factors 

obtained by both the programs and it can be seen that, so far as deflections 

are concerned, the difference is not significant. The difference as 

regards bending moments, however, is considerable and it must be concluded 

that the more rigorous program is essential when the load is treated as 

a marr and very high speeds of transit are to be considered.

Graph 4.12 shows bending moment factors only, and caters for

two other values of the live/dead load ratio y. It can be seen that 

the need to employ the more rigorous program is more urgent in the case 

of higher y values. In other words the dynamic bending moment contributed 

by higher modes is more important when the load is treated as a mass.



CHAPTER 5

BEHAVIOUR OF A CANTILEVER BRIDGE
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CHAPTER 5

BEHAVIOUR OF A CANTILEVER BRIDGE UNDER THE ACTION OF MOVING MASS LOADS

Figure 5.1

5.1 The bridge to be studied has the general layout shown in

Figure 5.1. It will be assumed to have the same cross sectional 

properties throughout its length and to have a uniform mass m per 

unit length. Alternative data can be introduced without difficulty 

when specified.

The method of computation will be generally similar to that 

employed in Chapter 4, but there will be considerable differences 

of detail.

The most significant difference is that it will be necessary 

to adopt independent displacement/time functions for the three parts 

of the bridge (two cantilevers and one suspended span). This means 

that in applying Hamilton’s Principle it will be necessary to 

introduce three variations instead of one, and to determine the 

separate effect of each variation on the energy quantities T,V and P. 

Then three equations (of the form of equation 2.1) will be produced 

which must be solved simultaneously at the end of each stage of the 

calculation.
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In view of the greater complexity of the problem it has been 

decided to conduct it in one hundred stages (20 stages while the 

load, or the leading load, traverses each cantilever, and 60 stages 

while it traverses the main span).

The proposed displacement/time functions, including the 

small variations, are shown in detail in Figure 5.2.

Expressions for 6V, 6Tp 6T2, <5P, for substitution in 

equation (2.1) will now be developed. Suffixes, a, b, or c, will 

be appended to indicate which of the three variations is involved.

5.2 STRAIN ENERGY V

V

+

+

i. e. V

+

Zo sin qt)2 2cos nx2ldx

iEI(At2 Yo sin
2

qt)
n**

* Main span strain energy is related to the elastic deflection. So 
the brackets containing B and C, in the general expression for y 
(Figure 5.2) are omitted, because they represent a ’’rigid body”
movement carried over from the motion of the cantilevers.

|EI(Bt2 Wo sin qt)2

(Ct2 Zo +
2

c sin qt)

n432P (Bt2 + V WQ + b sin qt)2

n1* ,, 2
+ —,• (At“ +

2L3 Yot + Yo
J sm qt)

+

+

+

Y t 
o

V

+

+

+

+ z

+ c

+

+

t o

+

a

b

+

+ a
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1 2/3 L

EIII4a

5.87OC

OOOO42688A .516771.0043064+

872051000072036C 0072671+

000072036B 0072671 872051+

sin^t + Zot sm qt + Z

Ein b I 5.87OB 
32£3

Ein c

32£3

EIn4b

32 e3

5Vadt

5V_dt

(Ct

(Bt2

Ein4a

2L3

Ein4c

32£3

sin qt +

5.87OA

1/3L and q = 60IIu/L

total bridge length



5.3 KINETIC ENERGY OF THE BEAM ITSELF (T^

FOR THE MAIN SPAN:

y

P

+ (2Ct + Z + qc cos qt)(l “ £ ) + (2Bt + Wo + qb cos qt)£ 
° , L _ _ ________ s L

f

V c

V
R

V 
Q

'2 2 . 2 nx . n2(y) = P sin — + Q (1 - )2 + R2 ( £ )2X

L

+ 2PQ (1 - ~ ) sin
2PR X sin Ibc + 2QR x (1 _ X }+

(y)2dx = |(2At + Yo + qa 2 I * 2cosc^t) + j(2Ct + Zo + qc cos qt)

L • 2 2L • •
+ y(2Bt+Wo+qb cos qt) -b-jp(2At+Yo+qa cos qt) (2Ct+Zo+qc cos qt)

~(2At+Yo+qa cos qt) (2Bt+Wo+qb cos qt)+j(2Ct+Zo+ qc cos qt)(2Bt+Wo

+ qb cos qt)

(y)2dx

o

6Tla - roa (ALqt cos qt + Yo y q cos 2Lqt + — Cqt cos qt

6Tlc “ mC

<5Tib = mb

+ Zo I q cos qt
,2L n(— Cqt cos qt +

+ Yo
L
- q cos qt

Bqt cos qt

q cos qt +

+ y B qt cos qt

+ Yo

• L
+ wo n q cos qt)

2L .— A qt cos qt

cos qt)

* L
qt cos qt + Wo J q cos qt + cos qt

L L „ L *-q cos qt + j C qt cos qt + - ZQ q cos qt)

(^B

♦
n

z4
+ T W q6 o 4

3iAqt
n H

L ’
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FOR THE LEFT CANTILEVER:

* Tlx
z = (2Ct + ZQ + qc cos qt)(l - cos yj- )

• 2 * n x 2
(z) = (2Ct + ZQ + qc cos qt) (1 - cos ■?£ )

• 2 ’ 2
(z) dx = im(2Ct + ZQ + qc cos qt) 0.22682,

f 6T-i = mc(2C qt cos qt) + ZQ q cos qt) 0.22682,

FOR THE RIGHT CANTILEVER:

<5Tib = mb (2Bqt cos qt + WQ q cos qt) 0.22682,

o

EXPRESSIONS FOR 6TX FOR THE WHOLE SYSTEM:

6T|c = mc(C( -y + O.45362,)qt cos qt + ZQ( y + O.22682,)q cos qt

2L ’ L+ y A qt cos qt + Yo - q cos qt

+ -y B qt cos qt + -y WQ q cos qt)

<5Tib = mb(B( -y + O.45362,)qt cos qt + Wo( 3 + O.22682,)q cos qt

2L • L+ — 
n

A qt cos qt + Yo - q cos qt

L L ’
+ 3 C qt cos qt + - Zo q cos qt)

L 2L „
6T, = maL3 (ALqt cos1 qt + Y0 2 q cos qt + — C qt cos qt

+ Z — q cos q t + ZL B qt cos • L 
qt + Wo - q cos qt)

on4 I n n
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Now integrate expressions from B/q to 0 noting that

n/q

and

n/q

dt
-ma

q
(2 AL + 4CL

n
+ 4BL .

n

{Tlc dt
-me

q
(

4AL
H

+ 2C( 2L + O.4536&) + )

6Tlb dt -mb
q

(
4AL 

n
+ 2CL

3 + 2B( -~ + O.4536&))

NOW PUT I L
3

and q
6onu

L
for a 100 stage calculation

dt
2

-maL
u

(.010610A + .00675470 + .OO67547B)

dt
-mcL2

u
(.OO67547A + .OO86778C + .OO35368B)

dt
-mbL^

u
(.OO67547A + .OO35368C + .OO86778B)
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5.4 a KINETIC en erg y (t 2) of  a  mov in g lo ad  on  th e le ft  hand  can ti le ve r

It is intended to regard t as zero at the beginning of each 

of the 100 stages of computation. Hence, during the 20 stages 

whilst the load is on the left hand cantilever, its position 

will be given by:

Note that, in the above expression, the length ratio of 

cantilevers and main span has been specified by putting L = 3£.

The instantaneous deflection of the cantilever, at the 

position of the moving load, can now be expressed as follows:

zM = (Ct2 + ZQt + ZQ + c sin qt) (1 - cos M )

i.e. zM = (Ct2 + Zot + ZQ + c sin qt)(l - cos(II( ))

(ct2 + z°c + z°+c sin qt)sin(n( > + ’

+ (2Ct + ZQ + qc cos qt)(l - cos(n( ))

, . , n-1 , 3nut*s  . 3Hxm _
Let, Sln(ll( ♦ -jj -) = sm 000

and, 1 - cos(n( ) = 1 - cos = QQQ

Since the computation is to be performed in 100 stages (and a 

larger number could be employed, if necessary) it is proposed to
L/60u 

proceed as follows. The integration required to obtain [ T2dt

o



will be approximated by splitting each stage into two subdivisions 

and then introducing average values 000 and QQQ in each half stage. 

These average values can be expressed as follows:

0001 sinTI ; 0002 = sinll

QQQ1

Now T2

6T2c

Il/q to II/2q

0002z)
M.c

+ 3nu

2L
(0001.QQQ1;

_ _7
2 2

u (Ct2 + Zot + Zo)sin qt 

4L2

0002.QQQ2)(Ct2 Zot + Zo)q cos qt

1

+

!M V

J

+

++ (6001.QQC
2L ".J

n/2q to 0

0662.QQQ2)(2Ct 
_______ I________ * 
'n/q to n/2q'

Zo)sin qt

VALUES OF INTEGRALS FOR A 100 STAGE COMPUTATION

.003028 L/u

.00001315 L2/u 2

n/2q to 0

.0053052 L/u 

.00002814 L2/u 2

.000001704 L / u

n/q to II/2q

.0053052 L/u

.00006027 L2/u2

.000007060 L3/u3

- 1

- .013638 L/u

- .0001900 L2/u 2

Q
60Hu

L
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fL/60u
1

M.c

^+.00003777(0001)2+.00001565(0002)2

+.006359(QQQ1)2 - .O2864(QQQ2)2

+.0003272(0001)(QQQ1) - .0003272(0002)(QQQ2)^

+ +.0006256(0001)2 + .001340(0002)2

+1.27(QQQ1)2 - 1.27(QQQ2)2

+.03998(0001)(QQQ1) - .04248(0002) (QQQ2)^)

/. 11781(00O1)2 + .11781(0002)2

* \ 
+ 6(0001)(QQQ1) - 6(0002)(QQQ2) )

An"improvement factor" has been applied to terms

which are of the form:

where

n/2q

o

q cos qt dt

n/q

n/2q

cos qt dt

and are values at the quarter and three quarter

+

points of a stage of the computation.



69

The situation may be represented graphically as shown 

below, assuming that and are ordinates of a straight line 

function (a good approximation if the stage length is very short).

The approximate method actually employed is:

Multiplying the approximate result by 4/TI gives the exact integral.



Paragraphs 5-4-b and 

moving loads on the 

been transferred to

5.4CjWhich deal with kinetic energy of 

main span and the exit cantilever,have 

Appendix 5*  (page A.42 et seq)
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5.5 POTENTIAL ENERGY OF A MOVING LOAD

Load on the Left Hand Cantilever

SP2a = «P2£ = 0

6P2c
IIx

= - Mg csin qt(l - cos —) = - Mg c sin qt(QQQ)
2£

(See paras. 5.4a) b) and c) for significance of QQQ1 and similar

symbols used below)

See para. 5.4a) for numerical values of integrals appropriate to 

a 100 stage calculation.

Load on the Main Span

- Mga sin qt

o
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6P2b = “Mgb sin qt (^M)

H/q r

6P2bdt

o

n/q
c
sin qt dt + SS2 sin qt

n/2q

Load on the Right Hand Cantilever

6p2b = -Mgb sin qt ( 1 - cos “M )

Note that here varies from £ to 0, instead of from 0 to £.

n/2q

sin qt dt + QQ02

6P2c = 0



5.6 Having now obtained expressions for
JsTdt, JfiVdt, JtiPdt,

in paras. 5.2 to 5.5, it now remains to substitute these expressions

in the basic Hamiltonian equation(2.1) 

n/q

viz: 0

Since the cantilever bridge problem employs three variations, 

equation (2.1) will yield three equations at the end of every stage 

of the computation. These three equations must then be solved 

simultaneously to obtain the necessary information to begin the next 

stage. They are shown below in the form in which they appear in the 

computer program. Symbols such as AA, YYA, YA, etc. represent the 

appropriate expressions in brackets from page 68 Or Appendix 5* *

A(-.010610 - .000042688 02/n2 + AA.y)

+C(-.0067547 + CA.y) + B(-.0067547 + BA.y)

• 2 2 2
+ y.g.PA + .0043064 Yn +-516771 — y —

L ° n2 t .2 ° n2

PA, PC, and PB signify expressions contained in 

similar brackets from para 5.5.

For the significance of Y, Z and W, see Figure 5.2. Suffix o 

indicates that the value is that appropriate to the beginning of a 

stage of computation.

For variation "a" :
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For variation "c" :

A(- .0067547 + AC.y)

+ C(-.0086778 - .000072036 B* 2/n2 + CC.y)

A(- .0067547 + AB.y)

+ C(- .0035368 + CB.y) 
g2

+ B(- .0086778 - .000072036 - + BB.y
n2

u * B2 u2 B2
y.g.PB + .0072671 — W_ — + .872051—„ W _

L ° U2 l 2 ° n2

+ Y £ Yo (-YYB) + Y y ZO(-ZZB) + Y £ Wo (-WWB)

2 2 2
+ Y Y (-YB) + Y Zo (-ZB) + Y «o (~WB)

LZ ° L LZ

+ B(- .0035368 + BC.y)

u * |32 u2 g2
+ y.g.PC + .0072671 “ Zn - + .872051 Z. £

l n2 l 2 0 n2

+ Y £ Yo (-YYC) + Y £ Zo (-ZZC) + Y Wo (-WWC)

2 2+ Y Yo (-YC) + Y u2 Z (-ZC) + Y WO(-WC)

L L2 L

For variation "b11 :
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5.7 INTERPRETATION OF PARAMETER g IN RELATION TO THE CANTILEVER BRIDGE

In setting up the three equations derived from equation (2.1) 

and programming the calculations, the parameter 6 has been taken 

to be identical with its definition in previous chapters.

u)L
i.e. g 65 where u)/2TI is the fundamental frequency

of a simply supported beam of span L.

< 2 - nU El
------, — 

L1* m

Now the fundamental frequency of the cantilever bridge is

0.644 El = io2 and its total span is 5L/3.

L- n>

So the equivalent value of g for the cantilever bridge will be

Bs = 1^0.644^ = 1.337g.

If this equivalent value is employed then gs will be the ratio:

Time of transit/half fundamental period

which was the original concept of the parameter (see para. 1.2)
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5.8 DAMPING

^ARi atio N * <^$Av*̂54^Ife  + cs /aa^+^I~

Figure 5.3

Resisting forces per unit length of span, to represent damping, 

will be introduced as indicated in Figure 5.3, which shows a typical 

damping force in each section of the cantilever bridge. The 

variations which will affect each force are also shown. Note that 

each of the damping forces is equal to the local velocity, at the 

beginning of a computation stage, multiplied by a constant 2mw^, 

where expresses the damping as a proportion of the critical value. 

No alteration in damping force occurs during a given stage, so that 

the damping forces may be treated as external applied forces.

Note that w signifies the circular frequency of a 

simply supported beam of span L.
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Inclusion of the damping forces in the Hamiltonian Equation (2.1)

n/q

In each case we require YI (damping force)x(variation)dt 

o''

^a" variation

= 2mw PYO a sin qt

i

= mLwpYo a sin qt

2mLu)pYoa . 010610apmL2u)Yo

q

6onu
Putting q = —-— , corresponding to division of the bridge, in lu
Figure 5.3, into 100 stages when £ = ^ .

”c" variation

5pdc 2mwpZQc sin qt nx .2 
cos — ) dx

i.e. 6pdac
mLrnpc sin qt(.151174 ZQ + .63662 Yq ), if £

(1 "

x . nx 
(1 - - ) sin — dx

L
3

n/q

t
< <

with q

cmmL2^1 /

u
.001604 Zo + .002150 Yq )

6onu
L
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”b” variation

n/q (■

J^Pdb
o x

dt
2 

bpmLw
u

(.00160j-Wo + .002150 Yq )

Note that
nx 

sin —
JLj

dx dx

Program form of the damping terms

The damping terms will appear in the right sides of the

three equations (para. 5.6) which are to be solved at the end of each

stage, to evaluate A, B, and C. Now the

are all equivalent

, 4}-' , f? , would

to ——2j6Edt. Hence

enter therein as:

terms in these equations

the above damping expressions

(a,b,c)pw(nyYo, nzZQ, n^)

To produce a form compatible with para. 5.6, this can be

re-written as:

(a,b,c) pioL
u nz^o l » nwWo £ )

ditto )(a,b,c)pIIB (

L

Furthermore the equations in para. 5.6 have all been

multiplied through by JI2/02, before programming, to make PA a

coefficient of yg Tl2/B2
MgLu2 , . .

= —— , thus putting the computing scheme

on the same basis as that explained in chapter 4, para. 4.3.
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So the items which need to appear in the actual computation

are
pn3
B <-ny’ nz nw), which may be expressed in full as follows:

"a" variation

0.329 p/B YQ' from

"b" variation

p/B(O.04973 ZQ + 0.06667 YQ) from #

"c" variation

p/B(O.04973 Wo + 0.06667 Yo) from
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5.9 EFFECT OF CAMBERING OR HUMPING

Cambering

In all cases, unless otherwise stated, results have been 

computed with the assumption that there is no initial deflection of 

the bridge. That is to say the deflection due to self weight 

has been cambered out, and the track, or carriageway, is perfectly 

straight and level when the load runs on to it.

Humping

Either excess camber, or track humping, will reduce the force 

exerted on the bridge by the mass load as it travels across the span. 

A modification of 2dt is needed, to account for this, which amounts 

to the introduction of initial values for Yo, ZQ, WQ, in the last 

three terms on the right sides of the equations in para. 5.6 (whereas, 

in the case of perfect camber referred to above, these would be zero 

at the beginning of the first stage of computation).

It is proposed to introduce an initial value of YQ alone 

which implies the existence of a sinusoidal hump extending only across 

the central suspended span. To fulfil the implied assumptions, 

however, it would be essential to provide entrance and exi£ profiles 

as shown in Figure 5.4. It appears in this diagram that ZQ, W , also 

have initial values, but these are ineffective in the computation, 

because they merely define the height of linear ramps. They are 

not principal ordinates of a shape function.

For example, an initial value Y’ = -.027 would mean that 
o

the height Yo of the hump is equal to the maximum midspan static

MgL^ L
deflection due to a single load M.g.(i.e. 0.027 Ey , when £ = y ).
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Recall that a primed symbol, such as Y*  above, indicates 
o

the numerical quantity in the computer program which represents its

counterpart in the general theory.

Natural Frequencies of the Cantilever Bridge

The first three natural frequencies were calculated to be as

follows:

0) 2

1

n4
0.644 -

L4

El

m

3
n4 ei

L4 m

n4 EI

L4 m
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CANTILEVER 3RIDGE

GfWH 5.4-

MAXIMUM DEFLECTIONS Z DURING TRANSIT OF

A SINGLE LOAD AT VARIOUS SPEEDS (u)

Points o refer to a humped deck such that Yq  
in figure 5.4 is equal to the midspan static 

deflection under the same load. The full line 
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Comments on Chapter Five

The computations reported in this chapter were all originally 

performed by a thirty stage program. However, no direct checks on the 

validity of the results (such as those derived from alternative analyses 

m Chapter 4) were available. Therefore the computations for a single 

travelling load were all repeated using a hundred stage program. 

Examination of the two sets of results revealed little difference and it 

was then decided that the computations for trains of loads need not be 

repeated. So in the outcome the graphs in this chapter represent 100 

stage calculations for single lorads and 30 stage calculations for load 

trains.

The principle approximation inherent in the calculations stems 

from the shape functions adopted (see Figure 5.2) to describe the dynamic/ 

elastic deformations. These are not true natural mode shapes neither can 

they be combined to produce exact mode shapes. Nevertheless, they are 

reasonable approximations which satisfy appropriate boundary conditions. 

Also they introduce three independent coordinates (Y,Z and W) and may 

therefore be expected to yield an accuracy approaching that of a modal 

analysis based on the response of the first three modes. The cyclic part 

°f calculated responses will, however, be distorted, in relation to time, 

because the beam is being forced to adopt shapes which are not strictly 

compatible with simple harmonic motion. This is an error which does not 

arise in modal analysis, but it must be remembered that when the moving 

load is treated as a mass the natural mode shapes will be different for 

every stage of the computation and hence the cyclic response will not 

then be simple harmonic. So, in such cases, there would be no special logic 

ln employing mode shapes which are only true for the unloaded beam. 

It is believed that the calculations in this chapter are adequate to 

Several the extent of the difference in response due to treating the moving 

load as a mass rather than as a force.
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Graphs 5.10, 5.11, 5.12, 5.13

These graphs are commented upon first because they enable the 

Performance of the method to be observed in connection with the basic problem 

of tracing deflections during the transit of a load.

Graphs 5.10 and 5.12 are for y = 0 and therefore represent the

simple case in which the load is regarded as an unvarying force M.g. In this 

case the natural frequencies will also remain unaltered during the transit and 

it is to be expected that the response of three natural modes will be involved. 

Note that these four graphs have been drawn for a fairly slow transit (8=4) 

otherwise there is insufficient time for an interesting number of vibratory 

cycles to occur.

Graph 5.12 contains a notable proportion of mode 2 and the distortion, 

anticipated above, is observable. It was anticipated that this mode would 

suffer the most because it can only be formed, in the program, as shown 

in the first diagram below, whereas it should be more like the second diagram. 

The frequencies quoted are obtained from Rayleigh’s method.

The mode 2 wavelength should be approximately 2.5 cm on Graph 5.12.

calculated from the frequency and the value of 8.

Graph 5.10 shows the midspan deflection relative to a straight line 

joining the cantilever ends. (Y on Figure 5.2). This exaggerates the response 

of the third mode and hence a mode 3 cycle is clearly visible on the graph 

having a wavelength agreeing within 9Z with a calculation based on the 

third frequency (page 81) and the value of 8.



84

The reason for computing the midspan deflection in this relative manner was 

to give an indication of the variation in midspan bending moment which is of 

m°te practical importance than deflection. If Graph 5.10 is replotted in the 

form of absolute deflection (Y+|(Z+W)) then these mode 3 cycles become

tendency in the case of bending moment) also disappears almost

scarcely visible and the negative response near the origin (which is a correct 

completely. t

Graphs 5.11 and 5.13 refer to the more challenging case where the

load is treated as a mass. These curves represent effects too complex for

any purely observational analysis to be attempted.

graph 5.9

The curve for y=0, on this graph, evidently involves mode 2 to a

considerable degree, its correct wave length being 13 cm on the horizontal

scale of the graph. This numerical result was derived independently from the 

appropriate natural frequency and the value of 8 applicable to Graph 5.9.

Graphs 5.1, 5.2, 5.3, 5.14, 5.15, 5.16

These graphs summarise the principal results obtained in Chapter 5. 

They show, in the form of dynamic factors, the maximum deflections of canti-

levers and main span for transits of loads at a range of speeds including 

the critical speeds. Graphs 5.1 to 5.3 refer to single loads whilst Graphs 

^•14 to 5.16 refer to trains of loads.

Graphs 5.1 and 5.14 are concerned with the ’’entry" cantilever and 

show consistently smaller dynamic factors then the "exit" cantilever. For 

this reason they are of very limited interest because loads moving in the 

°Pposite direction must also be taken into account, which means that both 

Cantilevers must be designed to cater for the "exit" case.

The discontinuities in Graph 5.2, for the midspan deflection, when 

® has vaules between 1 and 2, are due to the fact that the response curves 

f°r this region have two stationary points, sometimes the first and 

3°metimes the second being dominant. However, these discontinuities occur 
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at transit speeds far too high to be of practical importance. It is 

interesting that the increase in dynamic factors due to treating the load 

as a mass is much less here than in the case of s simply supported beam 

(Graph 4.6).

In Graph 5.3, for the exit cantilever, the result of treating the 

load as a mass is again much more marked. The other features of note on this 

graph are the very high values of dynamic factor at critical speed. The 

sPpeds implied are too high to be of practical significance but it has been 

Possible to obtain corroboration of these high dynamic factors by experimental 

Measurement (see Chapter 6).

On Graph 5.6 it can be seen that the high dynamic factor can be 

obviated by humping the track. In fact the contrast between the two curves 

(with and without "humping") on this graph (and also on Graphs 5-5, 5.15 and 

5*16)  tends to confirm the preliminary conclusion, in para. 1.2, that 8=3 

ls the lowest value that could have practical significance. It can be seen on 

aH these graphs, that when 8<3, the divergence between the two curves becomes 

Mastic. However, it must be recalled that the graphs refer to a very high 

value of vehicle/bridge mass ratio (y) and that accelerations experienced 

by the load are reduced in proportion to this parameter. It should also be 

n°ted that, in all cases where humping has been introduced, the maximum hump 

(see Figure 5.4) has been made equal to the midspan deflection due to the 

live load applied statically.

In the case of trains of loads it is more likely that high dynamic 

Actors will be attained in practice because the vehicle/bridge mass 

tatio is much more likely to be equal to the value considered. The dynamic 

Actors on Graphs 5.15 and 5.16 would be applicable to very heavy loads 

these two graphs may be the most significant results of Chapter 5 

i^om the design point of view.
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In many of the computations, for load trains, the deflections are 

still increasing when the leading load reaches the far end of the bridge,, 

The ultimate dynamic factor will thus be somewhat greater than the largest 

value in the computer printout., The extent to which it will exceed the 

value printed in the last stage of the computation depends on the length of 

the train in relation to the bridge. There are thus many possibilities and 

the values reported on Graphs 5.15 and 5.16 are simply the final printout 

values. This is considered to be acceptable since the speeds of transit are 

too high to be practical, anyway. At more reasonable speeds (B>2.5) this 

difficulty does not arise.

Finally it must be pointed out that no final conclusions about 

tantilever bridges can be drawn until other values of the ratio main span/ 

tantilever span have been investigated, together with appropriate 

Variations in El and distribution of dead loadings The programs used in 

Chapter 5 could readily be modified to cater for these variables.

Dynamic Bending Moments

Although three shape functions have been employed, in the cantilever 

bridge problem, there is only one function for each of the three basic 

structural elements (two cantilevers plus one central span). As a result 

the dynamic factors for deflection and bending moment are related by 

Simple ratios summarised below.

—

L_ _•n
- > a

w * ,77
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6.1 Experimental confirmation of computed results has been

sought with the aid of a model cantilever bridge of which the 

principal features are shown in Figure 6.1.

The model is entirely fabricated from aluminium sheet and 

is mounted on a datum slightly off horizontal, so that a vehicle 

on the bridge will maintain a steady speed, once started. The 

frictional resistance is overcome by the downward gradient.

The test vehicle consists of a steel block provided with 

flanged wheels so that it can run on standard model railway track. 

This track is mounted on perspex blocks which rest, at intervals, 

on the transverse connecting strips B, as shown in Figure 6.1. 

No connection exists between the track system and the bridge itself 

so that the track will not add to the stiffness of the structure.

Strain gauges are affixed to the bridge at the cantilever 

roots a and b and also at midspan c. Their positions are indicated 

more precisely by p, q, r, s, in the sectional part of Figure 6.1.

The vehicle is projected across the span by means of an 

approach ramp (see photograph) the speed of transit depending on 

the distance up the ramp at which the vehicle is released. As the 

vehicle passes points a and b, in Figure 6.1, it triggers a magnetic 

pick up (without physical contact) which results in "blips” on the 

output trace of a U.V. recorder. By this means the speed of the 

vehicle (u) can be readily deduced.

The U.V. recorder traces the output from the strain gauges 

simultaneously.
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6.2 Frequency control system

An obvious difficulty to be anticipated is that of achieving 

sufficiently high vehicle speeds to cover the intended range of 

investigation.

Apart from actually running the vehicle faster the only 

other way of attaining relatively high speed transits is to 

reduce the natural frequency of the model bridge, by adding dead 

load masses to it. Unfortunately this expedient can only be 

employed to a very limited extent because of the unrealistically 

large dead load sag which it causes.

So an arrangement was devised whereby the frequency of the 

model could be reduced to a considerable extent without actually 

attaching fixed loads to it. The underside of the deck was 

coupled by a series of push rods to a corresponding series of 

rocker beams. Any amount of mass could then be applied to these 

"see saws" whilst keeping them in balance so that the bridge would 

experience no static load on their account but only an inertial 

effect. In fact it was found to be possible, by slightly over 

balancing the rockers, to cancel out the deflection of the bridge 

due to its own weight. The details of this apparatus are 

shown in Figure 6.2, there being nine such units employed, 

uniformly spaced along the span.
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Figure 6.2

It is easily shown that the arrangement s’.nwa in Figure 6.2 

is equivalent to placing a dead load muss Mq on th- bxi^cu itself, 

where:

Md ' lb + Ma <R12 * R22) (6-D

R2

With the values of Ri, R2, and MA actually employed, equation 

(6.1) gives Md = 15.7 kg. So the total effect!.e dead lead mass 

of the model bridge is then 9 x 15.7 ® 141 kg. The model vehicle 

has a mass of only 1.3 kg so that the effective live co dead load 

ratio r is less than 1/100. This meaus that the experimental 

results will be comparable to theoretical results for y = 0, in 

Chapter 5, and there is no possibility of introducing a model vehicle 

heavy enough to give comparability with the theoretical results 

for y =■ 0.5. On the other hand, the gri it . ige of the rocker 
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beam system is that the natural frequency of the bridge is 

thereby reduced to only 0.73 hertz. This means that results can 

be obtained for values of B down to 1.0 by employing a vehicle 

speed of only 3.7 m/sec. Otherwise the theoretical maximum dynamic 

factors could not be attained with the model, on account of the 

excessive vehicle speeds implied. In particular it was considered 

essential to obtain experimental corroboration for the very high 

dynamic factors predicted by graph 5.3 in Chapter 5.

6.3 Operation of the apparatus

Dynamic factors were evaluated by comparing the maximum 

deviation of the dynamic trace, on the recording paper, with the 

deviation produced by placing the vehicle statically at an appropriate 

position on the bridge. That is, at midspan for assessing main 

span dynamic factors, or at one end of the main span for assessing 

dynamic factors for the cantilevers.

Initially results were taken for a range of vehicle speeds 

equivalent to a variation in (3 from 1.0 to 3.0.

Subsequently the observations were concentrated in the region 

of maximum dynamic factors, in order to assess the accuracy of 

the most significant readings in terms of repeatability. The 

scatter of the readings, in this region, was found to be -3% at worst. 

These carefully checked results are the only ones actually reported 

below. Each dynamic factor is the average of four actual 

observations.
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Additionally a transducer was used, in a separate set of 

experiments, to produce a U.V. trace related to deflection beneath 

the exit end of the main span. By this means an independent check 

was obtained of the predicted large dynamic factors for the exit 

cantilever. This device, however, was somewhat less reliable and 

produced readings with a scatter of -6%.

6.4 EXPERIMENTAL RESULTS

Maximum dynamic factors for the entry cantilever

8 2.65
—!

2.34 2.11 1.62

Dmax 1.08 1.19 1.27 1.16

Maximum dynamic factors for the main span

8 2.11 1.62
! 1.20

D max 1.43 1.26 1.27

Maximum dynamic factors for the exit cantilever

* Independent results based on the deflection transducer.

-------- ---------

8 1.04 0.99 0.94 0.91 0.86 0.77

^max 3.37 3.44 3.46 3.46 3.43 3.44

* D umax 2.76 2.82 2.86 2.84 2.88 2.83

The above results are also shown on graphs 6 1, 6.2 and 6.3.
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EXPERIMENTAL RESULTS

MAXIMUM DYNAMIC FACTORS FOR THE ENTRY CANTILEVER 

Points 0 are from page 89 (obtained experimentally) 

The full line graph is a repeat of the = 0 from 

graph 5*1.
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EXPERIMENTAL RESULTS

MAXIMUM DYNAMIC FACTORS FOR THE MAIN SPAN

Points 0 are from page 89 (obtained experimentally)

The full line graph is a repeat of the Y = 0 from 

graph 5.2.
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EFFECT OF A VEHICLE WITH ELASTIC SUSPENSION
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CHAPTER 7

EFFECT OF A VEHICLE WITH ELASTIC SUSPENSION TRAVERSING A SIMPLY 

SUPPOR1LD BEAM

7.1 If the moving load is mounted on springs its centre of mass

will experience additional vertical accelerations, relative to 

the beam, due to the flexing of these springs.

To discover the extent to which maximum dynamic factors 

may be modified it is proposed to apply the Hamiltorian method to the 

idealised system shown in Figure 7.1, The results obtained will 

be compared with those obtained in Chapter 4 (see graph 4.6).

FIGURE 7.1

Hamilton's Principle will be applied with respect to the foliowin 

displacement/time functions which include appropriate variations. 

Deflection of the vehicle springs:

Z - Ct2 + ZQt + Zo + c sin qt

Deflection of the midspan point of the beam:

- At2 <• Yot * Yo + a sin qtY
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Deflection of the beam at any point:

y Y sin nx
L ’ YM =

V • ^Ut
Y sin -----

lu

Total deflection of the vehicle (as a function of time):

ZM = Z + YM Z + Y sin Ilut
L

The calculation will be performed in 60 stages.

7.2 STRAIN ENERGY (V)

Strain energy of the vehicle springs (V?)

Let be the initial deflection in these springs due to the static

weight of the vehicle.

Then V2

Now substitute for Z from previous para., and also put kZj = Mg:

9 * 2 Z 2 *
V2 = |k(Ctz+ZQt+Zo+ c sin qt) + JkZ^ + Mg(Ct +Zot+Zo + c sin qt)

2
6V2c = ck(Ct + Zot + Zo)sin qt + Mg c sin qt

2
t sinqtdt + Zo

n/q <

+ ZQ sinqtdty 

o /

(The term involving Mg has been dropped because it 

JfiPdt).
with a part of

will cancel
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Strain energy of the beam itself (V-|)

The elastic deflection of the beam is:

*? • • • Tlxy = (Atz + YQt + Yq + a sin qt) sin —

L 
n4 ? • 2

= iEI —(Atz + YQt + Yq + a sin qt)
L *

( . 2 Hx 
J sin — 

J L 
o

dx

i.e. V1
(At2 + Yot + YQ + a sin qt)2

4L

/

t * <5Via
U

n Ela
2L3

(At2 + YQt + YQ) sin qt

nAEIa

2L3
t2sinqtdt + Y

n/q

I tsinqtdt 
/
o

+
sinqtdt^

Numerical values for a 60 stage calculation (q

Let £

60Hu
L }

stiffness of vehicle springs 
stiffness of beam at midspan

Then

L/60u

J dv2cdt - £ C
FT
— (.000042685)
u3

+ z£ , c 
o

— (.004306)
u 2L

+ £ — (.516775)
uL2



9 6

L/ 6 0 u

=  A a (. 0 0 0 0 4 2 6 8 5) 
u

* F T
+ Y Q a —  (. 0 0 4 3 0 6)

u L

+ Y  a  
o

(. 5 1 6 7 7 5)

7 •3 ki n e ti c  e n er g y  of  t h e  B E A M  I T S E L F (T 1)

y = ( At2 + Y ~t  +  Y q  + a si n qt) si n
n x

o L

+✓ \ • n x  
q a c os qt) si n ~

i . e.

T 1

T 1

• 2 . 2 R x  , 
si n —  d x  

L

( 2 At +  Y Q  + q a c os qt) 2

# /
6 T,  

l a
= ( 2 A qt c os qt + Y o q c os qt)

o

n/ q

qt c os qt dt,
^i n c e

n/ q

j c os qt dt =

o

F or  a 6 0 st a g e c al c ul ati o n, q =
6 o n u

L

L/ 6 0 u

o

6 T l adt
- - 0. 0 1 0 6 1 0 A m a  1 ?/ “
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7.4 POTENTIAL ENERGY OF THE VEHICLE (P)

P = -Mg ZM

2 * x nut= -Mg 2 (At + YQt + Yq + a sin qt) sin ——

+ Ct2 + Zot + Zo + c sin qt j

e . . nut6Pa = -Mg a sm qt sm ——
JLj

nut
Let QQ1 and QQ2 be the values of sin -y at the quarter and

three quarter points of a stage calculation, respectively. Then for an 

approximate integration process (as used in Chapter 5):

sin qt dt + QQ2

So

5pe -Mgc sin qt

6pcdt
will cancel with the Mg term in

J«V2 cdt, as noted

previously.

For a 60 stage calculation, q = 60 n u/L:

L/60u

6P„dt = -Mg - a(.0053052(QQ1) 
u

+ .0053052(QQ2))

o
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7•5 KINETIC ENERGY of  th e ve hi cle  (t 2)

• 2
T2 = ^MZ^ , and from parao 7.1:

Z^ = (Ct2 + Zot + Zo + c sin qt)+(At2 + Yot + Yo + a sin qt)sin

Z^ = 2Ct + Zo + qc cos qt

+ (2At + YQ + qa cos qt) sin

+ — (At2 + Y t + Y + a sin qt)cos
L o

The above expression will now be modified

consistently to the beginning of the nth stage of

so that t=0 refers

calculation viz:

nut
Then sin —-— —> 

t 1-1
sin (II (I2Z1)

60
nut

L

nut
and cos “— 

Lu
cos (n

n-1
( 60 >

varies from\ 

n/60 during I

nut
L stage

+

+

)

)

As in Chapter 5, it is intended to approximate by employing only

the values of these quantities appropriate to the 1/4 and 3/4 points

r . i- ^ut , . n . 3n • -iof each stage, when —y— has the values and ’ respectively.

So the expressions actually employed will be as follows:

n
240

sin nut
L

■ sin(n (—)1 60

sin
nut

L
■ sin(n (—)K 60 2

cos nut
L

■ cos(n o

cos
nut

L
= cos(n <s>

. (4n-3)n
= sm “24O-

= sin

) = cos

= cos

(4n-l)n
240

(4n-3)n
240

= QQ1

- QQ2

= 601

= 002(4n-l)n
240
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• 2
Now consider T2 = iMZ^ * The terms involving ’a’ will be as follows,

6onu
noting that q = —----

*T2a

M.a
(2At + Yo)q

n/q to n/2q
V 2

QQ2 )

Again

iT2c

M. c

+

+
X x

+ YQt + Yo) sin qt (0012; 0022)

(2At + 
L

/ /
•
Yo> sin qt (QQ1 .001; QQ2.OO2)

\ '
V + Yq ) q cos qt (QQ1.061; QQ2.S02+

n/2q to 0; n/q to n/2q

o
(2ct + zo)q cos qt (QQ1 ;

J
QQ2)

Till 0

/
ir

—"(2Ct + Z )
L 0 1 sin qt(001 ; 002)

considering T2
• 2

= JMZ , the 
M

terms involving *c’ are as follows:

= (2At + YQ)q cos qt (QQ1

Il/q to n/2q

* QQ2 F )

+ IIu (At2 + Yot + Yo) q cos qt (061; 002)

L

+ (2Ct + Zo)q cos qt.



Now to obtain the required

loo

integral the procedure of Chapter 5 is

again adopted as follows:

n/q
p$T2dt 

o

where

for a

q = 60IIu/L

60 stage

calculation

+

961 and QQ1 will be introduced into the first integration and

662 and QQ2 into the second. These quantities have been defined to

be values of sin
nut

L
— and — points
4 4

of each of the

60 stages of the calculation.

increased

integrals

cos qt and t cos qt, respectively (see para. 5.4a)

in accuracy

involving

_ 1
M. a

L/60u

/
o

«T2adt (note L/60u = n/q)

.OO6359(QQ1)2 - .O2864(QQ2)2

2 2
+ .000001682(901) + .000006968(062)
+ .000218(661).(QQ1) - .0002181(602).(QQ2^ 

+ Yq  A.273(QQ1)2 - 1.273(QQ2)2

+ .00027773(661)2 + .0005948(062)2

+ .026655(001).(QQ1) - .028320(002).(QQ2)^

+ Y ■ 
o L

~ ^.052360(961)2 + .052360 (002)2

+ 4(061)(QQ1) - 4(062)(QQ2)



lol

+ Zo

.OO6359(QQ1) - .028640 (QQ2) 

+ .0001768(001) + .0003787 (002) )
1.273(QQ1) - 1.273(QQ2)

+ .016667(001) + .016667(002)

= n/q)

+ Vo

(.OO63588(QQ1) - .028640 (QQ2)

+ .0000413 (001) - .0005969(002)1

( 1.273(QQ1) - 1.273(QQ2)

+ .009988(061) - .044987(002)1

u
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7.6 Having now obtained expressions 

in paras. 7.2 to 7.5, it now remains to substitute these expressions

in the basic Hamiltonian equation 2.1.

(2.1)

where H/q is the time duration of the small variations a sin qt and

c sin qt and also — “ 777- which is the length of each stage of the 1 q 60u

60 stage computation.

Since there are two variations introduced into the present 

problem, equation (2.1) will yield two equations at the end of each 

of the 60 stages. The form of these two equations, which must be 

solved simultaneously to give the stage values of A and C, is shown 

below. Symbols such as AA, CA, YA, YYA, etc. represent the 

appropriate expressions in brackets from para. 7.5. For the

significance of Y and Z, see Figure 7.1. A suffix ’o’ indicates 

that the value is that at the beginning of a stage of calculation.
u3

All the terms have been multiplied by — , and the transit speed El

parameter 0 has been introduced according to its definition in 

equation (4.12), together with the load mass parameter y = M/mL.



103

FOR THE ’a’ VARIATION:

/ n2A/-.01061 __ +
V R2

n2
y (aa ) —

B2
. 0000426 9^ + C(CA) n2

y —
B2

/Mgi.u2
(AP)

El

n2 __ Y
B2

^’o “ (YYA)
+ Yo

—y (YA) + Zo “ (ZZA)) 

L2 L /

+ Yo - (.004306) 
L

+ Yo (-51677)
L

FOR THE ’c’ VARIATION:

A(AC) y
n2
B2

+
C^(cc) n2

B2
.00004269

n2
b 2

y - (YYC) 
L

+ Y o L2

(YC)^

+
• H
Zo £(.004306)

L

u2
+ Zo 5 (.51677)

L2

£ - Stiffness of vehicle springs

Stiffness of beam at midspan
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Comments on Chapter 7

In previous chapters treating the load as a mass has been 

regarded as a refinement but it becomes essential in the case of 

a load carried on springs.

The programme produced in this chapter can yield results 

for any vehicle/beam mass ratio (y) and some typical results are 

presented on graph 7.1. All the curves on this sheet are for the 

same value of y, (0.5), and the main object is to reveal the effect 

of different degrees of stiffness in the vehicle springs. This 

variation is expressed by the parameter C^where 5 = 0 represents 

infinitely soft springs, whilst 5 = 1 represents a spring system 

such that the deflection in the vehicle springs would be equal to 

the deflection of the bridge itself if the vehicle were standing 

at midspan„

Limiting cases may be successfully checked against results 

for an unsprung mass load in Chapter 4. For instance, when 5 = 100 

(very hard springs), the results agree with those on graph 4.6 with 

7 = 0.5. When 5 = 0, (infinitely "soft” springs), the results are 

closely comparable with the y = 0 curve on graph 4.6. This seems 

a logical outcome because relative movements between vehicle and 

axle, with ’’zero” springs, would be small compared to the initial 

static deflection in these springs. Hence the force on the axles 

would scarcely alter at all. Another way of expressing this 

situation is to say that the classical analysis (as in Appendix 2) 
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which treats the load as an unvarying force, is correct for a 

vehicle with very soft springing.

The other curves on graph 7.1 suggest that there is an 

optimum value of £ (round about 0.4) which leads to the greatest 

possible reduction in maximum dynamic factor, as compared to an 

unsprung load. It may also be noticed that the maximum dynamic 

factor then occurs at a higher value of 8 in such cases. That is 

to say the critical speed of the vehicle is lower and therefore more 

likely to be attained in practice.

However, any conclusions drawn from graph 7.1 are limited in 

value by the fact that the bridge designer has no control over 

the design of vehicle suspension systems and must design the bridge 

for the worst possiblity.

It appears, from the operations in this chapter, that the 

Hamiltonian method could well be adapted to record the behaviour 

of vehicle suspension systems whilst the vehicle is traversing 

’’tough ground” as distinct from an elastically deformed beam. 

The vehicle would be treated as a rigid body supported by an 

appropriate number of spring connected axles. Damping forces 

Would need to be introduced, of magnitude considerably greater than 

those usually envisaged in structural analysis.
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DISCUSSION AND CONCLUSIONS
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DISCUSSION and  con clu sio ns

At this stage it is natural to attempt an assessment of the Hamiltonian 

Method developed in this thesis and the main point to consider will be 

the accuracy of the calculations. The degree of accuracy obtainable 

depends on the following factors:

(a) the number of stages employed in each computation

(b) the number of shape functions introduced into the displacement/

time functions, and

(c) whether or not these shape functions are true mode shapes.

The most accurate calculations will bethose illustrated in Graphs

^•11 and 4.12 which are based on sixty stages and two shape functions(which 

are both true mode shapes for the problem in question). This degree of 

accuracy was, at that point, considered necessary in order to evaluate 

dynamic bending moments as distinct from deflections which were obtained 

to a reasonable degree of accuracy from a much less rigorous program in 

the earlier part of Chapter 4.

In Chapter 5, for the cantilever bridge, a considerable number of 

stages were employed and three shape functions which, however, were not true 

^ode shapes. The actual inaccuracy introduced on this account remains 

Uncertain and could only be reduced by introducing more shape functions. 

It is thought that a fourth function (allowing the main span to bend in 

double curvature) would be a sufficient advance, so far as dynamic deflections 

are concerned, but that a fifth function (allowing triple curvature) would 

be desirable if midspan bending moments are sought. Inevitably these 

additions would increase the complexity of the program but the 

e*tent  to which they would do so depends very much on whether the loads 

are to be regarded as forces or masses.
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The treatment of loads as masses has been a principal feature 

°f this thesis and it has been made evident that the complexity of the 

Hamiltonian method is greatly increased thereby (see Appendix 5). The 

results obtained have shown without doubt that increased dynamic factors 

are obtainable with mass loading but that this increase falls off 

considerably as the speed of transit is reduced. Also it has been shown 

(Chapter 7) that the increase will be alleviated when the mass load is carried 

°n springs.

All in all it is believed to have been adequate to study the "mass" 

effect in calculations of limited accuracy and complexity in the belief 

that the proportional effect would be very similar in a more rigorous 

calculation. It has been common practice to ignore the "mass" effect 

altogether and it can be seen from results, obtained herein, that this 

raay be justified on the understanding that critical speeds are never 

aPproached and that live/dead load ratios are not exceptional. If the 

toass effect is dismissed then the Hamiltonian method can be employed 

^uch more easily even when more shape functions are introduced. In fact, 

when these shape functions are true mode shapes (and y=0) it will not 

necessary to solve simultaneous equations at the end of every stage of 

the calculation. On the other hand it must be remembered that the lower the 

sPeed of transit the more important rt becomes to use a generous number 

°f stages in each computation. This, however, in no way increases the 

complexity of application of the Hamiltonian method.
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It will now be appropriate to make a more specifical appraisal 

of the Hamiltonian method of calculation which has been developed and 

applied in this thesis. This will be done by comparing specific numerical 

results with those obtained by other workers using other methods. The 

principal source of such comparative results arises in the case of simply 

supported uniform beams which have received much attention.

Before proceeding to such comparisons it will be recalled that 

the Hamiltonian method has already been successfully checked against 

classical calculations for the case of "force” loading. To cater for "mass” 

loading requires a considerable increase in complexity, whatever method is 

used, and it is particularly in this area that comparisons will now be made.

References 8 and 9 present a rigorous algorithm for evaluating 

dynamic deflections of a simply supported beam subject to a moving mass 

load. Some of the numerical results quoted are for a live/dead load mass 

ratio equivalent to the author’s y = 0.5, so that a direct comparison with 

results in Chapter 4 of this thesis, is possible. This comparison is 

shown by Graph 8.1. Unfortunately reference 8 does not quote results in 

the region B = 1.4 to 1.6 which the author found to be the location of 

maximum dynamic factors. A maximum discrepancy of 3Z is observable when 

8 = 2.0 and it is estimated (by rough plotting of ref. 8 points) that the 

discrepancy in maximum response would be little more than this.

At values of B 1.0 the points plotted in Graph 8.1 represent 

the deflection just as the load completes the transit. Actually, at 

these low values of B the maximum response occurs after the load 

has run off the span. This has been allowed for on the author’s 

Graph 4.6 but is not discussed in Reference 8.
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Another graph, in Reference 8, reports the deflection of the beam 

beneath the moving load for B = 2.0. This graph has been compared with 

results from the author’s program developed in Chapter 4. The 

agreement is good, especially in the region of maximum ordinates where 

the discrepancy is only 2 or 3 percent. A graph of the same type, but 

for a critical value of B = 1.6 is Graph 4.3 in this thesis.

Another point of general agreement, between Reference 8 and this thesis, 

ts in the position of the load when maximum response occurs.

Reference 10 presents values of dynamic factor for y = 1.0 as 

well as y = 0.5, and includes values for B = 1.33 which is very close 

to the critical speed of transit. Points obtained from Reference 10 

are also plotted on Graph 8.1 and can be seen to agree closely with the 

author’s points. It seems worth remarking that the points in Reference 

10 came from a calculation in 400 stages whereas the author’s points 

are dependent on a ten stage calculation.

Another point of agreement is that both Reference 10 and Graph 4.6 

°f this thesis, show that the increase of dynamic factor with y is 

approximately linear.

Reference 11 also presents results comparable to those discussed 

above but show some disagreement (about 8Z). However, it is noteworthy 

that the authors of this paper emphasise the importance of allowing for all 

the components of acceleration experienced by the load, as outlined on 

Page 1 of this thesis.

The dynamic response of cantilever bridges is discussed in 

Ref erence 12, the results being calculated by standard modal analysis based 

on mode shapes obtained in Reference 13. Two cases are considered:

(a) a single vehicle treated as a constant force moving at a 

constant speed (three bridges considered)

(b) a simple single vehilce treated as a spring supported mass -

(one bridge considered).
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The results quoted refer to particular existing bridges and the 

speeds of transit are much lower than critical. Also the configuration 

of these bridges is basically different to the one envisaged in Chapter 5 

of this thesis, and travelling distributed loads are not considered, 

so that no really significant comparisons are possible. However, in the 

final conclusions of Reference 12 there are two statements that point 

in the same direction as the results of Chapter 5 and may be summarised 

as follows:

(a) the response of such bridges increases with the speed of transit 

and the "exit" cantilever invariably shows more response than 

the "entry" cantilever.

(b) the presence of "humps" has a marked effect on the responses.

The cantilever bridge in Chapter 5 was devised by the author merely 

to serve as a basis for developing his Hamiltonian method in a situation 

ttore challenging than a simply supported beam. Having done this it was 

felt that the method could be applied equally well to any other type of 

cantilever bridge but that much more computing would be needed before any 

general conclusions could be drawn about the dynamic behaviour of this 

type of structure. The essential need is to discover the ratio of 

cantilever spans to main span that leads to the most favourable dynamic 

factors, also taking into account appropriate variations in flexural 

rigidity El. The number of variables is rather daunting especially as 

the "answer" is likely to be different for every value of the live/dead 

load ratio.

Before applying the Hamiltonian method to such an extensive field 

of investigation it is thought that it could be beneficial to investigate 

the Hamiltonian method itself a little further, as suggested below.
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It is thought that one of the most encouraging features of the 

Hamiltonian method has been the ability to produce some interesting 

and fairly accurate results from a program involving only ten stages 

of calculation. It would seem worth while to investigate further to 

discover how far this feature can be relied on when problems are 

being tackled which involve more structural elaboration than a simply 

supported uniform beam. For instance, although 100 stages of calcuation 

were used in Chapter 5 for the single load on the cantilever bridge, it 

was found that the results were very little different to those obtained 

with 30 stages, especially as regards maximum responses.

At the same time, however, it will be desirable to investigate, 

quite extensively, the loss of accuracy arising from the use of shape 

functions which are not true mode shapes. It is suggested that this should 

be done by computing detailed dynamic responses in free vibration and 

comparing the results with corresponding ones obtained from modal analysis. 

(The free vibration could be initiated by a computer input of initial 

deflections or velocities or both). The object of special interest, 

here, would be to observe the extent of the wave distortion which will 

occur on def lection/time graphs for particular points on the structure 

(referred to already in the "comments" section of Chapter 5). Also to 

note to what extent this type of error builds up with time.
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Finally to turn attention again to the other object of this thesis 

which is to elucidate Hamilton’s Principle itself. It is possible to 

conclude, from the work done, that Hamilton’s Principle is merely 

another way of organising the arithmetic in order to produce results 

identical to those obtainable by a more orthodox approach. However, it 

must be pointed out that the same remark could be made about the use of 

energy equations and techniques in many areas of applied mechanics where 

they form an alternative approach to the use of force equations. 

Nevertheless, "Energy" is regarded as being a significant concept in 

its own right. The author felt, and still feels, that "Action" has also 

its own individual significance. The special significance of "Energy" 

arises from the fact that it is associated with a conservation principle, 

and if "Action" has a special significance it must presumably be because 

1t is associated with a minimum principle. The reader is referred to 

Appendix I where the author has looked more closely at the manner in 

which "Action" manifests itself in connection with vibratory behaviouro
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*1.1 The displacement/time function for
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Now ^kA2 = J^Mu)2A2 = Eo = energy of the vibration

0
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vn
w
/

Eosin2vII
(T-V)dt = —-----------

. 2u)
0 7

na2 / 1
+ 0 + Eo ------- / - -

2uiA2 \ v 9 Al. 1

the

Considering the natural behaviour of the spring/mass system,

variation terms in equation Al.l therefore being ignored, it can be

seen that the value of the Hamiltonian integral, for any fraction v

of a half cycle is:

H (T-V)dt
Eosin2vH

2 io
A1.2

where EQ is the energy of the vibration.

is the

Eo 
The maximum value of H is thus —

2u) 
periodic timeo It requires one eigth of

value,

°.

the successive values of H during a half

0.

Eotp

4n
a cycle to develop this

Eo cycle being 0,

where tp

However, the employment of Hamilton’s Principle for problem 

solving depends only on the fact that all such values of H are 

stationary values. The truth of this is exhibited by the fact that 

the terms introduced into equation Al.l, on account of the 

variation <Sx = asin have cancelled out, except for the terms 

involving "a2”. This means that if "a” is small th<n H is unaffected 

by the resulting departure from the natural ’’timetable” of the motion. 

Hence H may be said to be stationary during the natural motion, no 

matter what part of the cycle is examined.

Inspection of the a terms reveals the effect of larger 



variations, and it can be seen that the effect of these terms 

depends on the value of ( “ - v), which, in turn, depends on the 

duration of the variation (vJI/u) •

If v = 1 the variation becomes merely an increase in 

amplitude of the basic motion, so it is then not a genuine variation.

2
Provided v<l, however, the a terms will constitute an increase in 

the Hamiltonian integral which is thereby shown to be a minimum 

in the natural motion. Concerning the possibility of v>l no 

definite conclusions can be drawn except, perhaps, that variations, 

to be meaningful, must be small in time as well as space.

Finally, it must be re-emphasised that the way in which

Hamilton’s Principle has been employed in this thesis depends only 

on the cancellation of the '’a” terms. In other words it has only 

been employed in the form of equation (2.1).

HAMILTON’S PRINCIPLE DISCUSSED WITH REFERENCE TO NATURAL VIBRATIONS 
OF AN ELEMENTARY BRIDGE STRUCTURE

Al.2 It is now proposed to re-examine the operation of Hamilton’s

Principle, this time in connection with a system having more than 

one degree of freedom.

Figure A.2 shows an idealised cantilever bridge structure 

having its self mass ’’lumped” into three discrete positions, i.e.

LZAl

at midspan and both hinge positions.

FIGURE A.2.



Hence the equations of motion in natural vibration are:

1
0

y2 0
2 3 

u Mw L
uhere 11 ■ 6EI

y3

The eigenvalues and eigenvectors derivable from these

equations of motion are as follows :

MODE a

MODE c
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toIt is intended to discuss only modes a and c. In order 

evaluate relevant energy quantities the following shape functions 

will be employed:

FIGURE A.3

= C(1 - cos
nz
2L

for the end cantilevers

C + A sin
nx
2L for the central span

y

y

Energy of the vibration (Eo) 

Al.3

In terms of kinetic energy at zero elastic deflection:

Eo = 2 x JMuj * 2C2 + |Mm2(A + C)2

2 2 2
l.e. Eo = jMu) (3C + 2AC + A )



Equations Al.3 and Al.4 are equally applicable to mode shapes a and c. 

These mode shapes can be alternatively expressed in terms of A and C 

(Figure A3) as follows:

Mode a : — = 2.4142
A

C
Mode c : “ _ “0.4142

A

EXPRESSIONS FOR INSTANTANEOUS VALUES OF ENERGY

Since the purpose of these expressions is to facilitate study

of the Hamiltonian integral, small variations will be incorporated.

Strain energy V : cantilever parts

i .e

C(1 - cos nz >. .../•» nz— ) sin mt + c(l - cos — ) U)t sm — 
v

U)

Ein4

32L3

n2

4L2

2CcvsinvIl(vn -
u)(l-v2)

sin mt sin

dz

y

' V

V

«

for both cantilevers.



Strain energy V , main span
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/
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Al.6

Kinetic energy T : cantilevers

_,i Hz x a. zi Hz x w cosy = C(1 - cos — ) w cos wt + c(l - cos —- ) —
L 2L V

T = 2 x |My2(z«L) = 2 x iM(uJCcoswt + —cos ~~ )2

+

C

i.e 2 2 2 w2
T = Mtf C cos wt + 2MCc — coswt V

wt cos — +V
cos

V2

wt

V

vn

(vn+Jsin2vn)
2cc y2sinvI1

vw (l-v2)
Al.7

for both cantilevers
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Kinetic energy T: main span

* a • nxy = wcos u)t(C + A sin —Zlu
COS — (c + 

V

nx .
Sin 2L >

y(x = L) = tocos u)t(C+A) cos
U)t . .
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V
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* /
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V
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+ oj

v

HAMILTONIAN INTEGRAL WITH VARIATION 'c' ONLY

From equations Al.5, Al.6, Al.7 and Al.8, but omitting terms

with ’a’:

vn
U)

o
. 2 /, o „ 2^ / \>n+isin2vn \
|Mw / (3C2+2AC+AZ) (----- --- ---------2 + (6Cc+2Ac)

v2sinvn
vn(i-v2)

Eink
32L3

- ^sin2vn

2w

+ 2Ccvsinvn 

w(l-v2)



Now introduce Eo, the total energy of the vibration, by 

substituting from equations Al.3 and Al.4:

v(3C2+2AC+A2)

C2 <- A2
Al.9

COMMENTS ON EQUATION Al.9

Reference to equation Al.2 shows that the basic Hamiltonian 

(first term on right side of Al.9) is the same as for a ’’single degree 

of freedom” system.

The bracket^ , in equation Al.9, becomes zero when

C/A = 2.4142 or -0.4142, which values have already been calculated 

as being characteristic of the two natural modes of vibration.

Hence, in the natural motion the Hamiltonian integral is unaffected 

by the small variations of amplitude ’c’.

With the natural values of C/A the last term in equation

Al.9 becomes, for modes 'a' and ’c*  respectively:

•— Mwc2( - - 3.414v ) or £ Mwc2( - - O.586v)
4 v 4 v
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HAMILTONIAN INTEGRAL WITH VARIATION ’a*  ONLY

From equations Al.5, Al.6, Al.7 and Al.8, but omitting terms

with ’c* :

JMU)2 ( (3C2+2AC+A2) (vn^sin-2^-I1-) + 2(C+A)av2sinyll + >

\ 2u) vu j(1-v 2) 2w /

— f(c2+A2) (

32L3 \ 2ai
2AavsinvII

m(l-v2)

Now introduce EQ, the total energy of the vibration by

substituting from equations Al.3 and Al.4:

v(3C2 + 2AC A2) \ a2n

tUi k whilst
the last term in equation Al.10

C2 + A2
Al. 10

2 b)

natural values of C/^t

becomes, for modes ’a’ and ’c’

With the

respectively:

2
+ jM<o

■5. Mma2 (----- 3.414v) or -7 Mwa^ ( — - O.586v)
4 v 4 v
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NATURE OF THE STATIONARY HAMILTONIAN INTEGRAL - THE CONCEPT OF LEAST ACTION

The final expressions quoted on pages AS and A9 represent the 

effect of the a^ and terms arising from the proposed variations. These 

expressions will indicate that the Hamiltonian integral is a minimum if 

they represent an increase therein. It is clear that this will not be so 

unless the duration of the variation is arbitrarily restricted. The most 

severe restriction is implied by the first of the two expressions at 

the bottom of page A5 which represents an increase only if y < 0.54, i.e. 

the action will only be a minimum for variations restricted in duration 

to approximately one quarter of a cycle.

However, it must be noted that the actual restriction needed to reveal 

a state of least action depends also on the nature of the variation itself 

and on the mode of vibration which is under consideration. For instance 

it would be possible to employ a variation wherein both ’a’ and ’c’ are 

simultaneously involved and, since the ratio a/c is also arbitrary, there 

is an infinite number of possibilities.

This matter has been studied in reference 3 wherein the concept of 

spatial and temporal variations has been introduced. A spatial variation 

is one that causes an alteration to the mode shape as well as the ’’timetable”, 

whilst a temporal variation causes only a variation in "timetable" and 

preserves the mode shape.

The ’a’ and ’c’ variations discussed above thus have a spatial element 

unless they are employed simultaneously with the ratio a/c the same as the 

ratio a/c in the natural vibratory modes. In the latter event the variation 

becomes purely temporal and it is easily shown that its duration may then 

extend to half a cycle of the natural vibration without violating the 

least action concept.

This is the same conclusion that was reached with respect to a 

simple "one degree of freedom" vibration in para. Al.l and it can be more 
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generally illustrated by considering natural vibrations of a uniform 

simply supported beam with distributed mass m per unit length. The

vibration of such a beam, in its nth mode, is given by the first term

in the expression below, the second term being a purely temporal

variation on the basic motion

y = A sin
nllx . 2 _ . • nllx . n2cot

2 action integral due to the a

-----  sin n wt + a sin —— sin -------
L L v

where co2
n14

i?
El

The change in y
2 nz(0 

due to the variation will be 6y = ~~ a

and the consequential change

nllx n2tot
sin —— cos -------L v

in kinetic energy (due to the a^ terms

m

alone) will therefore be:

6Ta2
L 2

^m f (6y) dx 
0

2 4 2a mLn to 2 ,
-  — COS ( 
4 vz

2n tot y
v

The change in
8x2

due to the variation will be

32y4(d> _ n2j]2 a sin HU2S. sin 
L2 L

n 2wt
v

and the consequential change in strain energy (due to the a^ terms alone)

will therefore be:

6Va2
L

|EI f
0

S2y 2 
(6( )) dx =

3x2

a2

4
n1*!! 14 . 2 z— El sin2( —)

So the net alteration in the

terms arising from the variation will be:

llv
2nzu>

/(STa2 -
0

6Vo2)dt
cl 8n2

nva2

This represents an increase in action if:

1 > nuEi
v2 m(02I>

i.e. if 1
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On the other hand it can be shown that a variation with a

spatial component may not reveal a state of least action when v < 1.

A general way of introducing a spatial component is to replace

the purely temporal variation just employed with awsin
(n+N)IIx

L sin
n* 2u)t

If the 6V and 6T terms (that is to say the terms involving

2 2’a’ and ’c’, but not a or c ) are extracted from equations

Al.5, Al.6, Al.7 and Al.8, then the following two equations may

be written, with equation 2.1 also in mind:

/6Vdt = /6Tdt

■n E* (2A) = JMw 2(2C + 2A) for the *a* variation
32L3

n (2C) = iMw2(6C + 2A) for the ’c' variation

v

It is easily shown that if N is a positive integer a state of least

action will not be revealed without a more severe restriction on the 
n 7

duration of the variation (v < ( )•n+N

The above considerations are relevant with regard to the 

significance of Hamilton’s Principle, but are not of any consequence 

in connection with the method of calculation employed in this thesis. 

These calculations are based on equation 2.1 which is true whether 

the action is minimum or not.

Al.3 RELATION BETWEEN HAMILTON’S PRINCIPLE, RAYLEIGH-RITZ METHOD 

METHOD, AND THE SIMPLE RAYLEIGH METHOD



A.

These are precisely the equations which would be obtained 

from a standard Rayleigh-Ritz procedure, in which the next step 

would be to arrange them as two homogeneous equations for 

A and C, as follows:

(2p-2) ; 2p A 0

2p ; (6p-2) C 0
Al.11

where p = Mu )2L3

6EI
(Note:

The condition for the determinant to be null is:

2
8p - 16 p + 4 = 0

From which p = 0.2929 or 1.7071, these being the values already 

calculated, by the stiffness method, in para. Al.2.

Now consider the simple Rayleigh method for evaluating 

frequencies which merely consists of equating the two expressions 

for Eo, from equations Al.3 and Al.4, as follows:

iMw2(3C2 + 2AC + A2) = (C2 + A2)
321?

C2 + A2 \ 

3C3 + 2AC + Ay

i.e. p = C2 + A2________ Al. 12

3C2 + 2AC + A2

(C/A)2 + 1
i.e. y = -----------------------------------

3(C/A)2 + 2 C/A + 1
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This will have a stationary value if:

2 <x >(3<x )2 + 2(x ) + 1) ■ (<x)2+1X6( A} + 2)
i.e. if 2( £ )2 - 4( £ ) - 2 = 0

from which C/A = 2.414 or -0.414.

Substituting these values back into equation Al.12 then gives 

p = .2229 or 1.7071.

Hence, in this particular problem, the Rayleigh quotient 

gives both the lowest and the highest natural frequencies provided 

the values accepted are the minimum and maximum values of the 

quotient.

To investigate this conclusion, concerning the Rayleigh 

quotient, in relation to the Rayleigh-Ritz method it is instructive 

to rearrange equations Al.11 as a pair of simultaneous equations in 

the two unknowns C/A and p as follows:

2pA - 2A + 2pC = 0

2PA + 6pC - 2C = 0

i.e. 2p - 2 + 2p C/A =0 (1)

2p + 6p C/A - 2 C/A = 0 (2)

from (1) : p = *
1 + C/A

Substituting this in (2) gives:

2 + 6 C/A 

1 + C/A

Al.11 bis

- 2 C/A = 0
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which was previously found to be the condition for the Rayleigh 

quotient to have maximum and minimum values.

It has been shown, above, that the Rayleigh Ritz method, 

for calculating natural frequencies and mode shapes, is consistent 

with Hamilton’s Principle.

It appears that recourse to Hamilton’s Principle is in fact 

necessary to justify the acceptance of stationary values from 

Rayleigh quotients.
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I
APPENDIX 2

•»
I CLASSICAL ANALYSIS OF SIMPLY SUPPORTED UNIFORM BEAMS SUBJECT TO

MOVING LOADS OF CONSTANT MAGNITUDE

j

A2.1 Let the natural frequencies of the beam be 1 •
2n

and its natural mode shapes by Y^f^(x), Y2f2(x),..........

U)2,... n
2n 2n
••Vn(x) n n

where Y , Y2 Y , are the maximum 
n

deflections of each mode

shape. For a simply supported beam the above statements may be

shown diagrammatrically as below:

MODE 1

Now consider an elemental length of any uniform beam with mass *m ’

per unit length. The instantaneous configuration of the beam,

due to the action of an external dynamic load P, will be

regarded as a superposition of all the natural mode shapes. The

forces experienced by the element, on account of elasticity, can

then be expressed in terms of free vibration parameters, as shown in

the diagram below.

of
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The equation of motion of the element is:

-(mdx)a)i Y f (x) - (mdx)w2 Y_f (x) .................. - (mdx)w Y f (x)11 2 2 nnn
n ti ”

= (mdx)Y f (x) + (mdx)Y f„(x) ............. .. + (mdx)Y f (x)
11 2 2 n n

Multiplying this equation through by f^(x) and integrating to 

cater for the whole beam and also introducing the external load P:

L L
2 2 2

Pfn (x ) - mW]Y (f (x)) dx - m w2 Y f (x)f0(x)dx...............Ip 11 2 1 z
o o

L
- mm 2Y (f (x)f (x)dx

n n 1 n
I L °H Au II

= mY^ (f^(x))2dx + mY2 f|(x)f2<x)dx + .........................

o o

ii L

+ mY f,(x)f (x)dxn 1 n
o

On account of the orthogonality relationship between natural mode
L 2

shapes, all the above integrals are zero except (f^(x)) dx, and the 
o

equation therefore reduces to:

A2.1

If the elemental equation of motion is multiplied through by f^Cx),

instead of f^x) the result would be:

A2.2

o



A.18

Summation of the solutions of n equations A2.2 will give the

dynamic deflection of the beam due to the load P:

y = Y1f1(x) + Y2f2(x) + .................... + Ynfn(x) A2.3

Now if the applied load P is moving across the beam at a constant 

speed u, a close approximation to the dynamic deflection can be 

obtained from the first term of equation A2.3, which, in turn, 

can be derived from a solution of equation A2.1 alone.

L

IIx 
For a simply supported beam f^(x) = sin — and

2
(f^(x)) dx = ^L, so equation A2.1 becomes:

o

2P 
mL

. Hx
Sln T9

The position of the load P will be defined by x^ = ut, so

the final form of the equation to obtain an approximate solution to

the envisaged problem is:

ff
Y + w 2Y 2P .

= — sm
mL

nut
L A2.4

El
where coz

L*» m

Solution of equation A2.4:

2P gin nut 
Y = Asinwt + Bcoswt + mL_______ L_

u)2 - n2u2 

L2

when t = 0, Y= 0, B = 0 

when t = 0, Y = 0 :



mA +
2PIIu

mL2

2 n2u2

M 2PNow----- -
mLQ|

where is

2PIIu 
mwL?

n2u2
L2

Hu . .—- sin u)t)u)L_________
to2 - n2u2/L2

2p z . nut 
— ( sin —7- mL L

2P__________

mL( n4 EI )
L4

2PL3 „ PL3
--------------------
n*+EI  48EI

the greatest possible static deflection due to P.

. . nut nu .
= A (sin-------------7 sm wt)

_________ L_____U)L_________

i - n2u2/w2L2

(midspan deflection)

z . nut nu(sin -----  “ —
L wL

0

A

Y

A

Y

' y =
/ >

A

I

/

m

A

1 - n2u2/w2L2

Finally, introducing from equation 1.1 the above expression
nu

for y becomes:

nut 1 . BHut ] . ttx-------------sm ---------  / sm — j

LB L / L

Vertical accelerations can now be found by differentiating 

equation A2.5 twice, with respect to time, t, but this will give 

merely the acceleration of the beam itself, at the point where the 

load acts upon it. In order to obtain the vertical acceleration 

experienced by the load it is necessary to replace x by u.t in 

equation A2.5 and then differentiate twice as follows:
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1 .
" g sin

A2.5a

YM "
gnut nut—-----  cos ——

L L
cos gnut

L
sin

A2.5b

. n2u2A
yM L2(1-1/g2)

2nut
L

2cos nut
L

cos gnut
L

„ n2u2 u)2 from eqn. 1.1. Also uj 2 =—u — and A = PL^/48EI 
Now -j-2- = p m

n2u2 . 1 n- El PL3 g
L2 & =? ’ I? ‘ m 48EI g

= 2.029 yg/g2 where y = —— P = MS = M
mgL mgL mgL mL

where y is the ratio of load mass to structure mass.

With the above substitutions the vertical acceleration experienced 

by the load can finally be written:

2.029yg A

(B2-l)
cos 2nut

L
nutcos —— cos 

lu
2

A2.5c

Now it is well known that equation A2O5 gives a maximum result 

when g = lu62. This gives a maximum deflection of 1.743A at mid-span 

which occurs when the load is 76% of the way across the span.

To obtain the vertical accelerations experienced by the load, in 

this critical case, it is only necessary to substitute g = 1.62
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in equation A2.5c which then becomes:

ii

1.246 yg(2cos
2Hut

L
2cos nut

L cos 1.62JIut
L

1.62Hut 
L

giving the following values.,

TABLE A2.1

ut/L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
n + + + + Z ——— ~ ~ ——- ——-
yM 0 0.4yg l.lyg 1.4yg 0.7yg 0o9yg 2.5yg 3.0yg 1.8yg 0.8yg 3o3yg

The further values, below, represent the acceleration of the 

beam itself at the point where the load acts. These values show 

the contrast between the accelerations experienced by the load, 

and the beam, at the same point and the same time.

(The values were calculated from double differentiation of equation 

A2.5).

TABLE A2.2

ut/L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 - - - -  - - 

ii

y 0 ,18y6 .57yg .80yg .58yg .llyg .95yg 1.47yg 1.37yg.73yg 0

If 6 = 1.60 is substituted into equation A2.5a the following 

values are obtained which represent the deflection of the beam at 

the moving load point. this information is also shown on graph 

4.3, which thus depicts the actual path of the load in the critical

case.
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TABLE A2.3

ut/L 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

*M .004A .06A .25A .61A 1.04A 1.36A 1.38A 1.03A .46A .20A .07A

It may be noted that the vertical accelerations experienced 

by the moving load are proportional to the live/dead load ratio y, 

and Table A2.1 shows that very high values can be obtained in extreme 

circumstances. Downward accelerations are positive and there is no 

force available to produce them, apart from the weight of the vehicle 

itself. So it can be deduced from Table 1 (if y = 1, for instance) 

that the vehicle would momentarily rise off the bridge when about 25% 

of the way across.

In appraising this conclusion it is necessary to remember that 

B = 1.62 represents a very high vehicle speed, and that all acceleration 

components increase in proportion to the square of the vehicle speed.

The negative acceleration, e.g. when the load is 70% of the 

way across, implies that the force exerted on the beam would then 

be much greater than the weight of the vehicle.
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A2.2 RESPONSE TO UNIFORMLY DISTRIBUTED LOAD

Employing equation A2.3 but replacing P by w.dx:

Y + u)2y 2wdx . II(x-X)------- sin —-  - 
mL---------------- L

The solution of this equation would give the dynamic deflection 

at mid-span due to the element dx of the moving load acting at (x-X) 

from the beginning of the span.

Integrating the right hand side, to cater for all the load

actually on the bridge:

i. e.
it
Y + w 2Y 2w 

nm
( 1 -

i.e.
19
Y + w 2Y 2w

Ilm
( 1 - A2.6
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Solution of equation A2.6:

Y = A sin wt + B cos wt )
Boundary conditions:

When t=0, Y=0, A=0

When t=0, Y=0

So the final solution of A2.6 is:

n2u2/u)2L2cosu)t
w2-n2u2/L2

Now introduce 6 = — and replace ut by x: nu 7

Y
2w 

nmu)2

1 xn
1 + B2 CO5B ~( 1

nuNow introduce w2
EI— and note that then m

2w
Umto2

£wL4 
n^EI

0.5A where A is the maximum possible static

deflection due to a uniformly distributed load 

w/unit length.



(x defined by Figure *4

Equation A2.7 is valid for 0^ x L.

EFFECT OF A LOAD LONGER THAN THE SPAN

Now consider what happens after the nose of the train has 

reached the far end of the span, supposing that the train is long 

enough for the span to remain, for an appreciable time, loaded from 

end to end.

Under this fully loaded condition the equation of motion A2.6 

becomes (x = ut = L, constant):

11

Y + U)2Y 4w
Ilm

Y = A sin wt + B cos mt + A A2.8

4w A, as already noted.nCe IImw2

The initial boundary conditions for solving equation A2.8 

must be the values of Y and Y implied by equation A2.7 with x = L, 

which is the limit of validity of equation A2.7 and represents the 

instant when the nose of the train reaches the far end of the 

beam. So putting t = 0 in A2.8 and x = ut = L in A2.7:



B + A

B

0.5A

1-1/B2
(2 - — (1 - cos Bn)) 

B2

1 + cos _ Q» 5A (1+cosBII)

1-1/B2 2B2

A
(

Now differentiate A2.7, remembering that x = ut:

Y

0.5IIu 
L

1-1/B2

Now put x=L and equate to Y W from equation A2.8:

-o.5nu
__L_____  (
1-1/B2

sin Bn ) oj A
B

A
-0.5 A sin BIT

B2 - 1
, since

nu
toL B

So the final solution of equation A2.8 is:

Y
0.5A (1 + cosBn)coswt - sinBUsinuj^ + A

Now put mt =
Bnut _ Bnx

L " L
(x now signifies the distance

the nose of the train has moved

beyond the far end of the span)

__ -— (cos + cos Bn (1 + y)y + A 
2(B2-1) \ L L/

A2.9

This equation will not necessarily give greater values of Y 

than the maximum value obtainable from equation A2.7. However, 

the higher the spped u, of the moving UD load, the more likely 

it is that a greater value of Y will emerge from equation A2.9
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instead of A2.7. For a very high speed (u) B will be very small,

so that equation A2.9 will reduce to the following approximation:

Y -JA (2 cos + A - A(1 - cos )

In arriving at this approximation it has been assumed that B 

is negligible whilst Bx is not. This implies large values of x, 

i.e. very long trains, in which case Y can rise to a maximum value 

of 2A when x = L/B.

For a numerical example consider B = 0.5.

Then

Y =

This

i*e* YMAX

Note that this occurs when £ = U which means that the train must 

be 2| x the span of the beam for this maximum to be attained.

equation

a (cos if * cos( | + )) *A

n x
will be maximum when y

3n
4

| A(O.7O71 + 0.7071) + A = 1.943 A
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APPENDIX 3

STEADY STATE TRANSIT OF CONTINUOUS TRAVELLING UNIFORMLY DISTRIBUTED 
LOAD

When a travelling distributed load moves on to a beam it 

causes vibrations in the course of which a maximum dynamic deflection 

will occur, as has already been reported in Chapter 4 (see graph 4.8).

If, however, the load is "infinitely long" and therefore 

continues running across the beam after the occurence of the 

maximum deflection, then the vibrations will die out. A "steady 

state" will then exist in which the deflection, although greater 

than static, will remain constant.

The excess of this deflection, above the static value, 

will be due to the centripetal acceleration experienced by the 

load, this acceleration itself being due to the curvature associated 

with the deflection. This is a "feedback" situation which suggests 

a possibility of instability, and strongly diverging deflections 

have been observed in computer print outs for low B values.

It will now be shown, by independent analysis, that for 

any given value of live/dead load ratio (y ) there will be a 

critical transit speed (u) at which this type of instability must 

be expected to occur.

It will be assumed that the loading actually on the span 

consists of ten equally spaced point loads each having a mass ymL, 

where "m" is the mass per unit length of the beam itself. Then 

the equivalent UD loading is lOymg L/L = 10 ymg.

(This gives consistency with the programme).
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The radius of curvature of the beam due to elastic

bending will be R = ( and the differential equation for

the steady state deflection can then be written as follows:

2
( centripetal acceleration = u

R

2 u
dy2 )

dx2

(y positive upwards)

(y is positive downwards in all other sections of this report).

-EI^ 
dx4

2
= 10 Ymg + 10 Ymu

fl

dx2

d4y
i. e. —

10 ymu2 A . 10 ymg
dx4 El dx2 El

A3.1

Let a
2 ymu10

El
, then after integrating twice:

dx2
+ 2 azy

- 5 Ymgx2
El

+ A’x + B’

y = Asinax + Bcosax +
10 ymg
Ela4

2
5 ymgx
Ela2

Boundary conditions

0

0
Z

_a2fi _ = o
Ela2

. . B
-10 Ymg
Ela4

x =

dx2

L
-a2AsinaL ♦ 4^

a2EI
cos/L - 10^m8 = o

a2EI

/

* <
A -lOTffiig -

Ela4

0



B’
2 1 az

B’ = 0

AsinXL - 10y?S cosML ♦
5ymgL2 + A'L _ 0

Ela4 Ela4 Ela2 a2

A’
lOymgsinaL
a2EIL

^cosecaL - cotaL^ lOymg
+ ---------  cosaL

a2EIL

- lOymg + 5ymgL 
a2EIL El

So the complete solution of equation A3.1 is:

lOymg

Ela4
cosecaLjsinax - cosax +

, a2Lx a2x2 \1 +~2-----------)

The solution may be checked by noting that 4^ = 0 when
dx

x = L/2.

Now put x = L/2 to obtain the maximum midspan value of y,

at the same time putting all functions in terms of the half angle:

yMAX “
Elg

4 
lOymu

+ 1 + 1QYmu2L2

8EI
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<Ei)2RmL\

nn 2 2T 4 4T lOy m L u El
sec^aL

10Ymu2]2

8EI

Now substitute El
and

(El)2 Bu
n2

giving:

(- +

yMAX
lonS2

YingL^ Z , T lOyll2
— fl - sec^aL + —-—

El ' 8B2

Now the static midspan deflection due to ten equally spaced loads 

ymL is 0.1307 ymgL^/EI = A

g2
— (1 - sec^aL) + ------
nu yn2,

A3.2

It can be seen from equation A3.2 that yMAX will become

infinite when sec|aL =
nsec —

i.e. when B = 10y A3.3

Equation A3.3 gives the transit speed at which instability occurs, 

in terms of the live/dead load ratio y (B ).
Hu
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Magnitude of the centripetal acceleration

2
To obtain —-y differentiate (twice) the solution of equation 

dx
A3.1 giving:

-lOymg
2EI«Z

^1 - cosax +(cotaL - cosecaL)sinax^

This will be maximum when x = L/2 and so the maximum centripetal

acceleration is:

Now substitute mL^u^ = H2 and aL

El B2

Then u2 MAX = 
dx2

g(sec^aL - 1) A3.4

For example, if y = 0.1, B = 1.5 then equation A3.4 gives a maximum 

centripetal acceleration of g. However, the acceleration will 

increase very rapidly as B approaches its critical value (which is

B = 1 for y = 0.1).
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M.o 
| Um=-0.0416

8a2.O
'J°13 1=1,5
8f?B= 3.1 4 1 59/D
02 = 9BB*33B

. Aa ^ = 0.0099 3 5 6 7
*°.O1?769*UM  *33  *G
AA|) =(0.0'3662 + 0.010854*G)*BB  + 0.00 922C7
Aa =aan /aad
Ya =AA/100.0
Yy A = AA/5.0

1ARrj = 0.02833 4 4-3.1 006*YA-0.15503*YYA+0.130934.YA*BR*G  
'°«1 53099 *YYA * 33 *G
*°«130934*UM*9B*G
'1.974 *R *YYA/B
ARo =(0.663662+0.042872*G)*RB+0.0092207
Ab =ABN/ABD
Yr =AB/100.0+YYA/10.0+YA 
■Yb =AB/5.0+YYA
a CN«O.0449107-3.1006* YB-0.1 550^*YYR*0 .31 4045 *Y9*BB*G  

1'°«1 81 632 * Y YR *33  *G
4 04 5 *UM*BB*G

' ‘ . 9 7 4 * R * Y Y D / B
A c & = (U .. 0 6 3662 + 0.082483*  G)*3B  + 0.0092207
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Yc M(_ '10R.0 + YY3/ 1 O.O + YB
Yy C=Ac /5 ,0+YYB

0565908-3.1006*YC-0. 15503*YYC+O. 49716*YC*BB*G  
^. 1 34 7 91 *YYC*BB*G
. *•  p t 4 9 7 1 6 * U M * 3 B * G
/ »?7a YYC/B
”“,J "(0.063662 + 0.1 14556* G)*9B  +0.009 2207
Ad =ADN/ADD
Y°=AD/100.0+Y1C/1O.O+YC
YY&=AD/5.0+YYC

0627314-3.1006*YD-0.15503*YYD  + 0.610336* YD*BB*G  
/°.03')469 * YYD *BB  *6  
j*°. 610336* UM*BB*G
wl.974*R*YYD/3
AeD=(0.053662+0.126814*G) *33+0.0092207  
A-=AE!M/AED
Yb =AE/1P0.0+YYD/10.0+v D
Yy E=a E/5.0+YYD

.Af N=0.06 2731 4-3. 1 006*YE-0.1  5503* YYE + 0.610343*YE *38*6  
/°.O914S8*YYE*BB*G
1*0.610343*UM*BB*G
*1.974<r *YYE/B
Af B=(0.063662 + 0.11434*G)*BB  + 0.0092 207
Af=AFN/AFD
Y F = A. F / 1 00.0 + Y Y E / 1 0.0 + Y E
Yyf =AF/5.O+YYE

1Ag N = 0.05659 1 -3 . 1006*YF-0.155C3*YYF+0.497179*Y c*8r*G  
*0.184497* YYF*B3*G
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*°«213O1*YYG*BB*G
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* - «314O64*UM*BB*G
~ 1 . ? 7Z. * r  * y YG/9
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en d

* Y Y H *

/ z



xm /^ z^A /
.. / > z?_ —- x» >7

C,li • > i i ».,» i
IA

*• — a ■ r n > « ( ci•1 - 0 , -» • 4 I ' 
ax -.-an  
D‘)l 0 J»1 ,1 0 
xx^o.06283Z 
X^V.O 
Y-V.O 
AF = n 5 
AX«AX + A|| 
[)0l< 1=1,51
P-X*x  
QaC()S <X) 
SA"St’N<X*O,  : 
SBsC0f»<X*V.  i 
R*SA*S&  
Y-Y*p*MwR*Ap  
X^XtxX 
Af-1,U 
Y-Y«o.b*p*Q*R  
ZSV .06Z33Z* ’, 
WRITE <2,1) 
FORMAT (f ',5 
STUp 
E'.’O

*aX)
* AX i

z
7)

___ I
J-l it

** I . . 1 7 7>5'r - . 06.2^7-
i . 0 B •»7) ? t5 "* -. 16 3 >9 .
i .31 6' 4- 19.>2:"<

•* .62J701 . -.. 16 7 .) .S ’
r- '» 
. 7 , VZ 3uZ’> - , 06 p>4”

*• bZ iO rb , *06 ? j V ;
o z • o .> 5 " . 16 3*1'

•*  ( I nh‘. o jV .; . J 9 <; 1 *?  6 ,
* 1 7..Qt,1- ..*16  W’b ,

, 0 Z ’ • 6 b V .. 0 6 2’»?<’

I I 
i I*'

r
/

A

I

75

r

oo; q
40Z6ZZ., 
oA,:oodr» 
V9.,'61Z .
V * 7, 4 4 5
464S9>5 
46 5 7zt>” 
^..,w 
b7J?.59? 
7H 010o

I

1

r

i

I

7,UZ • 1oVC 
2.4 0’ 6c/b .
1 . <►//<>*-
•,56 AS«:.
’ . 0 6,. 1 »■ ci 
•,JV 3'3Z'
>. 73 857 

’ , 0 6.' 9 5 7
:, fl57_ 
/ . ;-'Z >4.|9 ,

}

Z_ /
-^7 ’.__ / 1/

-U
.. . - , 1H,;S01

' . ,5 0. 'ft4l -- 673269? - 11. s • • z;
. 5 00 pu6o *2>ZZ1 73? " , ’ oo n*  5”
. •, y v 3/i -3.05.,90b-: . 11.,4‘zO

XV ?/7r 5 ” ? * 0 Z J 7? 4 f *,d« 4‘ o* ’
» , 3<h>o«»3n. i?73r .lb/.r> l

” . ’ 3u<»n jv . 1 ,*07J2oZ  . * 11uS”Z~
.oo 22 5 .2.^Z17O3- • 00 (V-42

- .,99 3/1 3 U5.,910,. - 1 1 <>ZV5 ,
* ., b'J 2 .9 , 2yiV700l . - JttuZYB
* n < > A * 6» ./Z1 A70Z.. » . •. — „ - • • • -

•*• • K

i

it

I



3=1 .9
3X=9.75
0019 1=1/10
9BP=3.14159/BX 
38=33°*3 3P
4 = 0.9
44 = 9.9
Z=0.0
ZZ=9.9
P = 1.9,
0011 J =1z 60

a  .36*

USED CHATTER '

5>« f p 5*6, 57y 5*  S’

2
11
10

PP1=C0S(3.14159*(4.0*°-3. 0)7240.0)
PP2=C0S(3.14159*(4. 0*P-1 .0)/24O.0) 
QQ1=SIN(3.14159*(4.0*P-3. 0)7240.0)
9 Q 2 = S I N ( 3 .14159*(4.0*°-1.0)/24 0.0)
RR1=C0S(3.14159*(12.0*°-9.0)/240.0)  
RR2=C0S(3.14159*(12.0*P~3.0)/240.  0)
SS1=SIN(3.14159*(12.0*P-9. 0)7240.0)
SS2=SINC3.14159*( 12.0*P-3. 0)7240.0)
3P=-.0953052* QQ1-.0053052*QQ2
CP = - . 09 5 3052* SS 1 -. 005 3052* SS2
300=.909001682* PP1*PP1+. 00000696S*PP2*PP2*. 006359*QQ1*QQ1  

1~.92864*9Q2*QQ2+.0002181*PP1*QQ1-.0002181*P°2*Q32
WWDs.0032777*PP 1*PP1f. 0005948*PP2*PP2*1 .2732* QQ1*QQ1  

1-1.2732*QQ2*QQ2+.02665*PP1*QQ1-.02832*PP2*QQ2
'43=, 9 5 2 3 6*  PP1 * PP1 +. 052 36 * PP2* PP 2 +4.0 *PP 1 * QQ 1-4.0 *PP2 *Q Q2
C0B=.99090501 *PP1*RR1  +.0000209*PP2*RR2  + .9001 239*QQ1*RR1  

1-.0917?1*QQ2*RR2+.0001763*PP1*SS1+.0003787*°P2*SS2  
1+.OO6359*QQ1*SS1-.92864*QQ2*SS2
Z2B=.0903332*PPl*RR1+.001784*po2*RR2+.02996*QQ1*RR1  

1-.134?6*QQ2*RR2+.91667*PP1*SS1+.O1667*PP2*SS2  
1<-1 .2732*QQ1*SS1-1  .2732*QQ2*SS2

ZB=.1571*PP1*RR1+. 1571*PP2*RR2  + 12.O*QQ1*RR1-12.O*QQ2*RR2
30C=.90090504*PP1*RR1+. 0000209*PP2*RR2+. 00004131*PP1*SS1  

1-.090597*PP2*SS2+.0095304*QQ1*RR1+.001136*Q32*RR2  
1+*.OO63  6*QQ1*SS1-.O2864*QQ2*SS2
JWC=.3993332*PP1*RR1+.001784*PP2*RR2+.00999*PP1*SS1  

1-.04499*=»P2*SS2  + .05*Q31*RR1>.05*QQ2*RR2  
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FORMAT(F15.7)
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AAA=-0.01061*BB- 0.00004269
CCA--O.0067547*59
86A=-G.0067547*60
RHSA = C. 5 1 677 1 *Y + 0.00 4 3 064 *YY

•+.(G.329*R*YY)/BX
AAC= 0,0067547*BB
CCC=(-O.OO86778+CC*G)*0B-O.OOOO'2O36
C. CO 3 5 3 7*  BB

HHSC = CP-G*BB*(ZZC*ZZ  + ZC*Z  ) + 0.872051 *2  + 0.007 26 71 *ZZ
1+((0.04973* ZZ+O.06667*YY)*R)/0X
AAB=-0.0067547*Bb
rCB=-0.0035368*08
!’*B0  = -0.00867 78*80-0.0000  720 36
RHSB=0.872051*W+0. 0072671* WW

1+((0.04973*WW+0.06667*YY)*R)/8X
V1=CCC*939-CCfl*BBC
V2=rCA*9BB-CC0*BBA
V3 = CCA *B8C-CCC* 00A
AN = Rh.sA*Vl-RHSC*V2*RKSB*V3
AD=AAA*V1-AAC*V2+AAB*V3
A = A N / A D
V4=AAC*008- A AB*0BC
V5=AAA*9B0-AA0*B0A
V6=AAA*D0C-AAC*00A
CN=k HSA*V4-RHSC*V5+RH3B*V6
C0=CCA*V4-CCC*V5+CCB*V6
C=CN/CD
V7=AAC*CCB-CCC*AA9
V8 = AAA *CCB-CCA*AAB
V9 = .' AA*CC  C-C CA*AAC
BN = RHSA*V7-RHSC*V8!-RHSB*V9
8O=90A*V7-DBC*V8+000*V9
0=0N/BD
Y=A/3600.0+YY/60.0+Y
YY=A/30.0+YY
Z=C/3600•0+ZZ/60.0+2
ZZ=C/30.0+ZZ
W=0/3600•0+WW/60.0<W
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WW=B/30.0+WW
DY=48.0*Y
02-81.0*Z
0 W = 81. 0 * W
WRITE (6/2) OY/DZ/DW
FORMAT(3(3X,F15.7) )
P = P + 1.0
Q=1.0
bO13 L=1,60
001=C0S(3.14159*(4.0*Q-3.0)/240.0)
002 = C0S(3.14159*(4.0*Q-1.0)/2  10.0)
001=SIN(3.14159*(4.0*Q-3.0)/240.0)
q 02=SIN(3.14159+(4.0*Q-1.0)/240.0)

1=1.0-(4.0*0-3.0/240.0
RR2 = 1.0-(4.0*Q-1. 0/240.0
$S1=(4.0*0-3.0/2  4 0.0
SS2=(4.0*0-1  .0/240.0
CP=-0.0053052*RR1-0.0053052*RR2
AC=-0.0000005353*001  -0.00000221 8*00  2 + 0.00004131 * 001 *RR1

1“0.0005969*002  *RR 2-0.00005628*901-0.0001205*002+0.00635  9*QQ1*RR1
1 -0.02864 *QQ2*RR2

CC = O. 0000008764-0.00006944 * HR 1+0.00006944*RR 2
l+0.006359*RR1*RRl-0.02864*RR2*RR2
t BC=-O.0000008764+0.00001315*RR 1-0.00019* RR2-0.00005628*$ S1
1-0.0001205* SS2+0.006359* RR1*SS1-O.O2864*9R2*SS2

YYC=-0.0000884*001-0.0001893*002+0.009938*001 *RR1-0. 04499*002*RR 2
1’-O.GO53O52*QQl-O.OO5  3O52»QQ2 + 1 .27*301  *RR1-1.27*QQ2*RR2
2ZC=000008841-0.008485*RR1+O.OO9O15*RR2+1.27*RR1 ’RR1-1.27*RR2*RR 2 

^WVJC = -0.0000884 1+0.0031 79*  R P 1 -0.0 1 4 32*  R R2-0.00 5 305 * S S 1 -0.005 3 0 5 * S S 2 
:+1.27*RR1* s S1-1.27*RR2*SS2

VC=-U.01667*001-0.01667*002+4.0*001 *RRl-4. 0*002* RR2
ZC1061-1 . 27+RR1+1.27+RR2
* C--G.010 61 H . 2 7 * R R 1 -1. 2 7 * R R 2
Ap=-0.0053052*001 -O.OO53O52*QQ2
AA = 0.0000016 82*001*001+0.000006968*002*002+0.006359*001 *QQ  1
“0• 02864 *Q Q 2*wQ  2 + 0.0002 1 81 * 001 * QQ1 -0.0002 1 81 * 002*  QQ2
/A = -0.0000 00 5 35 3*001  -0.000002 218*002-0.00001315*001+0.00019* QQ2

.0001763*001 *RR 1+0.0003787*002* RR2+0.006359*001 *RR 1
1*0. 02864* QO2*RR2
9A = C.000000 5 35 3*001  +0.00000221 8 * 002+ 0.OOOG1315 *001- u.0001 9*  0Q2

140.0001768*001  *SS1  +0.0003 78 7*002*  SS2 + 0.006359*09  I *SS1
1-0.02364 *QQ  2 * S S2

YYA-0.0002777*001*001+0.0005948*002*002+1.27*001*001-1.27*002*002
1+0.02665*001*001-0.02832*002*002

0000384*001-0.0001893*002-0.003179*001 f O.01432*002  
*̂0.01667*002  * 2 P 2 + 0.0166 7*001♦  R R 1 + 1 . 2 7 * 001 * R R1-1.27*QQ2*RR2

W’WA = O. 0000884 *001  +0.0001893*002  + 0.0031 79*001-0.01  432*002
1+C.01667*001 *$S1«0. 01667*00 2*SS2*1. 27*001 *SS1-1  .27*0 Q2*SS2

YA=0.05236*001*001+0.05236*002*002+4.0*001*001-4.0*002*002
ZA=-0.01667*001-0.01667*002-1.27*001+1.27*002
WA-O.Qi6e69*oo 1+0.0!6666*  002+1.2699*001-1.2699*002
ap=“0.0053052 *SS1 -0.0053052 * $S2

«AB=0.0000005353*001+0.000002218*002+0.0000413 1*001 *SS1
1“0.0005969*002*  SS2
1*0.000562  3*001  +0.0001205 *00  2 + 0.0063 59*QQ1*SS 1-0.03864*0 Q 2*SS 2

C9 = -0.0000008764-G..00091 31 5 *SS1+0.00019* SS2 + 0.00005628 *RR1
1 *0.000  1 205 ‘1 R 2 + 0.006359 *RR1*SS1-0.0  2,864*RR2*SS2
9B1=0.0000008764 + 0.00006946* SS1-0.00006946*SS 2 + 0.006359*  SS1*SS1

1“0.C2364*SS2*SS2
5 Y*0  = 0.00008841*001+0.0001393*002  + 0.009988*001  *SS1 -0.04499*002*5 S2
1*0.005305*QQ1+0.005305*QQ2+1.27*QQ1»SS1-1.27»QQ2*SS2

ZZ8 = -0.000G384 1 • 0.003179*551+0.01  432'SS24O.OO53C5*RR1
1+O.OO53O5*RR2+1.27*RR1*SS1-1.27*RR2*SS2
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UWB»C.00008841+0.008485*SS 1-0.009015*SS2+ 1.27*SS1*S$ 1-1.27*$S2*$S4
YB=0.01667*001+0.01667*002+4. 0*0C1*SS1-4.0* 002*SS2
ZB = -0.01 061-1 .27 *SS1 + 1•27 *SS2
^2=0.01061+1.27*551-1  . 27* SS2
A A A = (-0.01061+7A*G)  *88-0.000042638
CCA=<-0.0067547+CA*G)*8B
BBA=(-0.0067547+ BA*  G)*88
RHSA=AP-G*8B*(YYA*YY+ZZA«ZZ+WWA*WW+YA*Y*ZA*Z+UA*W)  

1+0.516771*Y+0.0043064*YY
1+<0.329*R*YY)/BX-YA*UM*G*BB
AAC=(-0.0067547+AC*G)*BB
CCC=(-0.0086778+CC*6)*BB- 0.000072036
&BC=(-0.0035368+BC*G)* BB
RHSC=CP-G*BB*(YYC*YY+ZZC*ZZ+WWC*WW+YC*Y+ZC*Z+WC*W'

1+0.872051*Z+0. 0072671*ZZ
1+((0.04973* ZZ+0.06667*YY)*R)/RX-YC*UM*R*BB
AAB=(-0.0067547+AB*G)*BB
CCB=(-0.0035368+C8*G)*BB
B9B=(-C.0086773+BR1‘6)*88-0.000072036
RHSB=BP-G-0B*(YY0*YY+ZZB*ZZ+WWB*WW+YB*Y+ZB*Z+WB*W)

1+0.872051 *U+0. 0072671 *WW
1 + ((0.04973*WW  + 0.06667*YY)*R)/BX-YB*b. ’1*G*BB

V1=CCC*I3BB"C  CB*BBC
V2=CCA*PBB-CCB*8BA
V3=CCA*BB' -ccc *bba
AN=RHSA*V1-RHSC*V2+RHS8*V3
AD=AAA*V1-AAC*V2+AA8*V3
A = A N / A 0
V 4 = A A C * B 8 6 - A A 3 * B 0 C
V5 = AAA-JPo-A *D  >BBA
V6 = AAAuB8f-0". ri‘3BA
CN = RH£A*V4-i\d$C*V5  + pHSB*V6
CD=CCA*VA-CCC*V5+CCb*V6
C = C N / C 0
^7=AAC*CC8-CCC*AAB
V8=AAA*CC9-CCA«AAB
V9 = AAA <CrC-CCA*AAC
BN=:RHSA*V7-RnS r*V8  + RHS0*V9
BD-OBA’V7-BBC*V8+BBB*V9
B-BN/BD
Y = A/3600.0+YY/60,0+Y
yY=A/30.0+YY
*=C/3600.0+ZZ/60.0+Z
*Z=C/30.0+ZZ
W=B/3600.0+WW/60.0+W
‘4W-B/30.0 + WW
&Y = 48.0*  Y
°Z=81.0*Z
&W=81,0*W
w R I T E ( 6 / 2 ) DY/DZ/DVJ
Q = 1 .0
’J-ao.o
0014 .‘1 = 1,20
00Q1 = S IN ( 3 .. 14159*(4.0*U-1.0)/160.0)
00Q2=S1N(3.14159*(4 .0*U-3.0)/1 60.0)
QQO1=1.O-C0S(3.14159*(4.0*U-1.0)/160.0)
QQO2=I.O-COS(3.14159*(4.O*U-3.O)/16C.O)
3p = -gMnQ53Q$2*QQCl -0.0053052 *QQ02
^8 1 = 0 00000’777*0001 *00Q  1 +0.0000 I 565 * 00Q 2 *OOQ 2 »-0.006359*QQ0 1 *QQ 0 1

1 '•0.0 2 8 64 * QQOZ *QQO2-  0.000 32 7 2 *0001  *QQO1+0.0003272*00Q2*QQ02
WWB = 0.0006 2 5 6*  OOQ1 * OOQI+ 0.001 3 4 * uOQ 2 * 0OQ2 + 1.2 7 * QQ 01 *QQ01

1w1 27*QQ02*QQ02-0.03998*OOQ1*QOO  ^0.C4243*0OO2*QQO2
W’) r q |^?«14O0Q1<OOO1+O.11731*0002*0002-6.0*00 Q1*GG01+6.0*0CQ2* u Q02
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AA A = -0.01061*BB- 0.000042688
CcAs-o.0067547*00  
b 8A=«0.0067547*B8  
pHSa =0.516771*Y+0.0043064*YY

1 + <0.329* R*YY/8X
Aa C=-0.0067547*BB
Cc C=-0.0036778*BB-O. 0000 72036
89C=~0.0035368*30

SC = 0.872051 *2  *0.00  72671 *ZZ
1 + < <0.04973*2  Z+0.06667* YY)*R)/8X

Aa 8=-0.0067547*88
CCB=-Q.0035368*88  
86r =(-o . 0036778*801  *G)  * 0 B - 0.00007 2 0 36 
^^SBsj3p-G*3B*  (WWB*WW+WB*W)+0.37  2051 * W

1 + <<0.04 9 73*W;v*0.06667*YY)*R)/OX
VlaCCC*BBB-CCB*9BC
V2=vCA*3BB-CCB*BBA
V3aCCA*B8C-CCC*BBA
At'«'aR;iSA*  V1-RHSC*  V2*RHS3*  V3
An = AAA*Vl-AAC*V2+AAB*x/3
A ' A N / A 0
v 4^a AC *BBB-A  AB*OBC
VS=AAA*bB6-AAB*BOA
V6^AAA*D3C-AAC*B8A
C'J = RHSA*V4-RHSC*V5*RHSB*V6
C0=CCA*V4-CCC*V5+CCB*b6
c-cn/co 
77aAAC*CCB-CCC*AAO

= A A A * C C 8 - C C A * A A 8
V9=AAA*CCC-CC a *AAC 
0^=RHSA*V7-RHSC*V3+RHS3*V9

*V7-B8C*V8>3BB*V9
B'BN/BD
Y~A/3600.0+YY/60.0♦Y
Yy =A/30.0>YY
Z'C/3600.0 * 2Z/6C.0>Z
Z*=C/30.0+ZZ
'••aB/3600.0>WW/60.0+W
WW = B/3O.O*'JW
°Ya48.0* Y
°*=81.0*Z
&W=81.o*W
W^T£(6,2) DY/DZ/OW
UaG-1.0
SXa8X+0.25
s rep
6ND

*0.00726 2 1
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i

—7
/ .

c v *o  •*  U

y c — B X = 1.0
‘ t — S Y I = 0.4

2 DO11 1=1,5
BBP=3.14159/0X
BB=BBP*BBP
Y=0.0
YY = 0.0
Z=0.0
zz=o.o
P = 1.0
D012 K=1,60
001 =C OS(3.141 59*(4,0*P-3. 0/2 4 0.0)
002=COS(3.14159*(4. 0*P-1 .0)/240.0)
OQ1 = SIN(3.14159*(4.0*P-3. 0/240.0)
QQ2=SIN(3.14159*(4.0*P-1.0)/240.0)
AP=-0.CO 53052*001-0.0053 052*QQ2
AA=0.0000016818*001*001+0.000006968*002*002+0.006359*001*001

1-0.02864*002*002+0.0002181*001 *QQ1 -0.0002181*002 *QQ2
YYA=1.273* GQ1*QQ 1-1.273* QQ2*002+0.00027773*001*001

1 +0.0005948*002*002+0.026655*001  *00  1-0.02832*00  2*002
YA=O.05236*001*001+0.05236*002*002+4.0*001*001-4.0*0 v2*002
CA=O.006359*001-0.02864*002+0.0001768*001+0.0003787*002
ZZA=1.273*001-1.273*002+0.016667*001+0.316567*002
AC=O.0063588*001-0.02864*002+0.0000413*001-0.000597*002
YYC = 1.273*00  1-1 .273*002  + 0.009988*001-0.044987*  002
YC=4.0*001-4.0*002
CC=-0.022281
AAA= (-0.01061+AA*G) *80-0.000042683
CCA = CA*G*BF.
RHSA=AP-G*BB*(YYA*YY+ZZA*ZZ+YA*Y)+0.516775*Y+0.u24306*YY  
AAC=AC*G*BB
CCC=CC*G*BB- 0.000042638* SYZ
R H S C =-G * B9 * ( Y Y C * Y Y + Y C * Y ) + 0.5 1 6 7 75 * Z * S Y Z+0.004 306 * Z Z » S Y Z
ACD=CCC*AAA-AAC*CCA
AN=RHSA*CCC-RHSC*CCA
CN=RUSC*AAA-RHSA*AAC
A=AN/ACD
C=CN/ACD
Y=A/36n0•0+YY/60•0+Y
YY=A/30.0+YY
Z=C/3600•0+ZZ/60.0+Z !
ZZ=C/30.0+ZZ
DY=48.0*Y
DZ-Z/Y
SD=48.0*(Y+Z)
WRITE(6,2)DY,DZ#S0

2 FORMAT (3(3X,F15.7) )
] 2 P = p + 1 . 0
11 BX=BX+0.5

STOP
END
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5.4b KINETIC ENERGY (T?) OF A MOVING LOAD ON THE MAIN SPAN

During the sixty stages whilst the load is on the main

span its position will be given by:

XM L + ut

(x^ is here measured from the beginning of the main span.)

The instantaneous deflection of the main span, at the

position of the moving load can now be expressed as follows:

+ qa cos qt)sin

+ qc cos qt)

(2Bt+ + WQ + qb cos qt)

(At2 + YOL + Yo + a sin qt) sin(

(Ct2 + + zo + c sin qt) (5

(Bt2 + Wo11 + Wo + b sin
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n-1 + ut = = SS60 L L

The average values of the above functions, in each half stage

(following a similar approximation procedure to that explained in

para. 5.4a) can be expressed as follows:

001 cos » 002 cos n

QQ1 s in J QQ2 sin

RR1 1 4n - 3
240

RR2 1 4n - 1
240

SSI 4n - 3
240 SS2 4n - 1

240

Now T2 M2

6T2 will now involve all three variations. The expressions for 

^^2a» $T2b» ^T2c ’ ^°^owe^ by their integrals, are shown on the 

following six pages.
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+ Yo) sin qt

+ YQ)q cos qt

+ Zo)sin qt

+ Zo)q cos qt

sin qt

q cos qt

+ WQ) sin qt

+ Wo)q cos qt

sin qt

q cos qt
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L/60u

c I
r + .000001682(001)2 + .000006968(002)2 + .006359(QQ1)2

- .O2864(QQ2)2 + .0002181(001)(QQl) - .0002181(002)(QQ2)

+ .0002777(O01)2 +

+ .02665(001)(QQl) -

.05236(001)2 +

- .0000005353(001") -
0^

u + .OOO19OO(QQ2) +

+ .006359(QQ1)(RR1)

* 2 * 2\1.27(QQ1) - 1.27(QQ2)zj

*4(001)(QQl) - *4(002)  (QQ2)^

.0001768(001)(RR1) + .0003787(002)(RR2)^

.OOO5948(O02)2 +

.02832(002)(QQ2)

.O5236(0O2)2 +

.000002218(002)- .00001315(QQ1)

.02864(QQ2)(RR2)

- .00008840(001) .0001893(002) - .OO3179(QQ1)

Zn " 
° L

u

Wo

Wo

*

+ .O1432(QQ2)

*1.27(QQ1)(RR1)+

+

+

+

+ .01667(601)(RR1) +.01667(002)(RR2) I

*1.27(QQ2)(RR2) /

.01667(001)

.0000005353(001)

.OOO19OO(QQ2)

+

+

.OO6359(QQ1)(SSI) -

.00008840(001)

.O1432(QQ2)

+*1 .27(QQ1)(SSI)

+ .01667(001)

Improvement factor 4/n

A factor 1.05 has been 
Jqt cos qt dt.

+

+

.01667(002) - *1.27(QQ1)  + *1.27(QQ2)^

+ .0003787(002) (SS2y

.000002218(002) +

.0001769(001)(SSI)

.02864(QQ2)(SS2)

.0001893(002)

.01667(001)(SSI)

-*1.27(QQ2)(SS2)

+ .01667(002)

introduced as in

applied to terms

+

+

.00001315(QQ1)

.01667(002) (SS2^

.OO3179(QQ1)

+*1.27(QQ1)  - *1.27(QQ2)^

para 5.4a.

involving

) These remarks
I apply to other 

similar pages 
also.
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gT2c
M. c

n/2q to 0 H/q to n/2q

2
“(001 ; 002) ^7“ (At2 + Yot + Yo)sin qt

+(001.RR1 : 002.RR2) (At2 + YQt + Yo)q cos qt

-(QQ1 ; QQ2 ) y- (2At + Yo)sin qt

+(QQ1.RR1 QQ2.RR2) (2At + Yo)q cos qt

+( 1 ; i )
u£
L2

(Ct2 + Zot + ZQ)sin qt

-(RR1 ; RR2 )
u
L

(Ct2 + Zor + Zo)(5 cos

-(RR1 ; RR2 )
u
L

(2Ct + ZQ)sin qt

+(RR12 ; RR22 ) (2Ct + ZQ)q cos qt

-( i ; 1 )
u 
? (Bt2 + Wot + WQ)sin qt

+(RR1 ; RR2 ) u
L

(Bt2 + W^t + Wo)q cos qt

-(SSI ; SS2 ) u
L (2Bt + WQ)sin qt

+(RR1.SS1 ; RR2;SS2) (2Bt + WQ)q cos qt

n/2q to 0 n/q to H/2q
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Y 
o

ci
u

Z 
o

Zn " ° L

B — 
u

Wo

1
M. c

L/60u

.0000005353(601) .000002218(692)
+ .00004131(eel)(RRlA

- .0005969(602)(RR2)

+ .006359(QQ1)(RR1)

.00008840(661)

- .04499(902)(RR2) 
ek*

+ 1.27(QQ1)(RRl)

- .0|667(661)

+.0000008764

+.OO6359(RR1)2

+ .00008841
*

1.27(RR1)2

+

+

.010610

.00005628(QQ1) - .0001205(QQ2

.O2864(QQ2)(RR2)

.0001893(092)

.0053052(QQ1)

1.27(QQ2)(RR2)

- .01667(602) +

- .00006944(RR1)

- .O2864(RR2)2

- ,OO8485(RR1)

2- 1.27(RR2)Z

*
1.27(RRl) +

.0000008764 + .OOOO1315(RR1)

.00005628(SSI) -.0001205(SS2)

.006359(RR1)(SSI)

.00008841 +

.OO53O5(SS2)

+ .009988(061)(RRl)\

- .0053052(QQ2) /

4(001) (RRl) - 4(602)(RR2^

+ .00006944(RR2)^

+ .OO9O15(RR2)^

1.27(RR2)

.0001900 (RR2A

.O2864(RR2)(SS2)

.OO3179(RR1) - .O1432(RR2) 005305(SSI) ]
A 7*̂  /

+ 1.27(RRl)(SSI) - 1.27(RR2)(SS2) /

*

.01061 + 1.27(RR1)
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JI/2q to 0 Il/q to Il/2q

«T2b

M.b
= +(001 002

+(001.SSI 002.SS2

+ (QQ1 J QQ2

+(QQ1.SS1 QQ2.SS2

-( 1 1

-(SSI SS2

+ (RR1 RR2

+(RR1.SS1 RR2.SS2

+ ( 1 1

+ (SS1 SS2

+ (SS1 SS2

+(ssi2 SS22

)
nu2

L2
(At2 + YQt + Yo)sin qt

)
Hu
L

(At2 + YQt + YQ)q cos qt

)
u
L

(2At + Yo)sin qt

) (2At + Yo)q cos qt

)
U2

L2
(Ct2 + Zot + ZQ)sin qt

)
u
L

(Ct2 + ZQt + ZQ)q cos qt

)
u
L

(2Ct + Zo)sin qt

)

2

(2Ct + ZQ)q cos qt

)
u 
?

(Bt2 + WQt + WQ)sin qt

)
u 
L

(Bt2 + WQt + WQ)q cos qt

)
u
L

(2Bt + WQ)sin qt

) (2Bt + WQ)q cos qt

n/2q to 0 Il/q to n/2q
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L/ 60u
1

M.b

o

.0000005353(001) +

.0005969(002)(SS2) +

.OO6359(QQ1)(SSI) -

.000002218(002) +.00004131(001)(SSI)

.0005628(QQ1) + 0001205(QQ2)

.O2864(QQ2)(SS2) /

.00008841(001)

.04499(002)(SS2)

1.27(QQ1)(SSI)

.01667(001) +

.0000008764

.OOOO5628(RR1)

+

+

.0001893(002) + .009988(001) (SS1)\

.005305(QQ1) + .005305(QQ2)
■*-

1.27(QQ2)(SS2)

*
.01667(602) + 4(601)(SSI)

* A
4(602)(SS2) )

.00001315(SSI) + OOO19OO(SS2)

+ .0001205(RR2)

.OO6359(RR1)(SSI) .O2864(RR2)(SS2)

.00008841 .OO3179(SS1) +

.OO53O5(RR1) + .005305(RR2)

1.27(RR2)(SS2)

1.27(SS1) - .010610 + 1.27(SS2)

.0000008764

.006359(SSI)2

.00008841
*

1.27(SS1)2

.010610 +

+

+ .OOOO6944(SS1)

.O2864(SS2)2

.008485(SSl)
* ?
1.27 (SS2)

1.27 (SSI)

.00006944(SS2)^

.009015(SS2A

*
1.27(SS2) I
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5.4 c KINETIC ENERGY (T?) OF A MOVING LOAD ON THE RIGHT HAND CANTILEVER

The load position coordinate x^ is here measured from the

right hand end of the cantilever whilst the load still moves from

left to right as in paras. 5.4a and 5.4b.

= nL - Ut
60

where n has the successive values 20, 19, 18 ........................................ 2, 1,

for the twenty stages during which the load traverses this

cantilever.

The instantaneous deflection of the right hand cantilever 

at the position of the moving load, can now be expressed as follows:

WM = (Bt2 + Wot + Wo + b sin qt)( 1 - cos )

/ 2 ’ , \ z, , nil 3TIut . .i.e. wM = (Bt + WQt + WQ + b sin qt)(l - cos( —------ ))

'• “m  " ‘ (Bt2 + V + wo + b sin >

• i x /, /BII 3llut+ (2Bt + Wo + qb cos qt)(l - cos ( ----- ))

. , nil 3nut . 3IIx m
Let, sin( ) = sin — = eOQ

, nil 3Rut s , 3TIx m ___
and 1 - cos ( “ 2l ) = 1 “ cos 2l ~

Now T2 ~ iMw^2
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n/2q to 0 n/q to II/2q

5T2b = (G0Q12

M.b

; OGQ22 s 9nzuz
4L2

(Bt2 + WQt + WQ)sin qt

+ (QQ012 ; QQO22 )(2Bt + WQ)q cos qt

- (eeQl.QQei; GGQ2.QQG2)(Bt2 + Wot + Wo)q cos qt)

- WQi-QQ01; eeQ2.QQO2) (2Bt + Wo)sin qt

II/2q to 0 Il/q to II/2q

L/60u 
' — c

> ■■ M.b I ST2bdt =

o

.000003777(GGQ1)2 + .00001565(GGQ2)2

+.006359(QQGl)2 - .02864(QQ02)2

-.0003272(GGQ1)(QQG1) + .0003272(GGQ2) (QQ02)

.0006256(GGQ1)2 + .OO134O(GGQ2)2

+ 1.27(QQG1)2 - 1.27(QQG2)2

- 0*039  9 8(0GQ1) (QQG1) +.04248(GGQ2)(QQG2)

[ . 11781 (0GQ1)2 + . 1178KGGQ2)2

+wo r *
L \ - £(GGQ1)(QQG1) + 6(GGQ2)(QQG2)
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