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Abstract  

Purpose- This paper aims to design a robust bi-objective two-stage model for a blood supply chain network in a 

disaster. The objectives are to minimize total costs and delivery time of blood and its components. The network 

includes donors, collection facilities, vehicles, blood centers, and demand points. Backup suppliers are utilized to 

prevent shortages. Uncertainty in supply, demand, costs, and capacities is considered. The model determines the 

locations of permanent facilities and blood centers, as well as the capacities and locations of temporary and mobile 

facilities for each scenario. 

Methodology- The bi-objective problem is transformed into a single-objective one, and robust optimization is 

employed to handle uncertainties. A two-phase method is deployed to solve the problem. First, a lower bound is 

obtained using Lagrangian relaxation, and in the second phase a heuristic based on Lagrangian relaxation is proposed 

for finding feasible solutions. 

Findings- Computational results demonstrate the effectiveness of the proposed heuristic algorithm. The sensitivity of 

objective functions to fundamental parameters is also examined. 

Originality- This study presents a novel blood supply chain network design in disaster that considers various products, 

echelons, and vehicle types. In order to deal with shortages, it combines backup providers and employs a novel 

heuristic based on Lagrangian relaxation to find near-optimal solutions. 

Keywords- Blood Supply Chain Design, Multi-Product Supply Chain, Robust Optimization, Lagrangian-Based 

Heuristic 

Paper type- Research paper 

1. Introduction  

Humanitarian logistics (HL) involves managing the flow of goods, services, and information to alleviate 

suffering during and after disasters. It ensures timely and efficient aid delivery while tackling challenges 

like unpredictable supply chains, resource shortages, and infrastructure disruptions. Unlike traditional 

logistics, it requires rapid response, flexibility, and collaboration between stakeholders to succeed 

(Wassenhove, 2006). Effective HL relies on the seamless integration of technology, coordination, and 

adaptability to overcome these challenges. 

 Humanitarian logistics uses mathematical models to optimize disaster relief operations, focusing on 

facility location, relief distribution, and mass evacuation. These models help determine optimal warehouse 

locations, efficiently allocate resources, and manage logistics under uncertain conditions. They are essential 

for real-world applications, improving resource management in large-scale emergencies, such as those 

handled by organizations like the Red Cross. These models ensure resources quickly reach affected 



populations, reducing suffering and preventing secondary disasters. Humanitarian logistics models 

typically aim to minimize costs, optimize resource distribution, and reduce delivery times, with assumptions 

of limited resources, uncertain demand, and transportation challenges. Equity and sustainability are also 

considered. Key studies classify models into facility location, relief distribution, and evacuation problems, 

each addressing specific logistical challenges (Hezam et al., 2021).  

Multi-Criteria Decision-Making (MCDM) techniques, particularly Analytic MCDM methods such as 

AHP, TOPSIS, and DEMATEL, help prioritize actions, optimize resource allocation, and evaluate potential 

supply chain configurations for greater operational efficiency. AHP helps evaluate factors like cost, delivery 

time, equity, and environmental impact, aiding decisions such as warehouse location and resource 

distribution during disaster response, ensuring efficiency and prompt delivery of aid (Paul et al., 2021). 

Moreover, humanitarian supply chains should be designed with sustainability at the forefront, addressing 

environmental, social, and economic resilience. This comprehensive approach integrates short-term 

recovery goals with long-term development objectives, ensuring that communities are better prepared for 

future disruptions. This not only facilitates rapid recovery during disruptions but also ensures the long-term 

stability and sustainability of supply chains in the face of continuous challenges (Ülkü et al., 2024). HL 

includes multiple stages that involve the integration of planning and policies in order to achieve a successful 

response (Ahmed et al., 2019). 

One of the vital components of the healthcare system is the blood supply chain, which plays a crucial 

role in the system's overall importance. Therefore, any improvement in blood supply chain performance 

can dramatically improve efficiency and cost savings. Despite progress, there is still no substitute for blood 

and blood-based treatments. These resources are limited and are transferred from one person to another as 

needed (Agac et al., 2023). This dependence on voluntary donations underscores the importance of 

maintaining a robust and well-coordinated blood supply chain to meet urgent demands during crises. 

   The Natural Disaster Database records 8,378 global disasters since the 21st century, affecting over 4 

billion people and resulting in 6 million injuries and nearly 1 million fatalities (EM-DAT, 2020). The 

Kermanshah earthquake in 2017 serves as a recent example, with a magnitude of 7.3, claiming 630 lives 

and injuring 7,000 (Mortazavi et al., 2017). This earthquake led to an increased demand for emergency 

blood supply, exacerbating challenges in the blood supply chain due to infrastructure damage and depleted 

stocks (Hosseini-Motlagh et al., 2020). The devastating earthquake in Bam in December 2003 illustrates 

this further, with only one-third of the population surviving from the original 99,000 (Bakhshi et al., 2023). 

The presence of blood deficiencies during and after a disaster can worsen conditions and increase mortality 

rates, necessitating immediate action from the health system (Pan American Health Organization, 2002). 

Addressing these gaps requires a proactive and resilient blood supply system that prioritizes preparedness 

and rapid response. In times of natural or human-caused calamity, blood is a crucial resource that must be 

available. Blood supply chain management strives to address this need. (Hosseini et al., 2023). Effective 

planning requires understanding disaster's effects on critical factors within the blood supply chain 

(Kuruppu, 2010). Decision-making becomes more complex during disasters due to uncertain supply and 

demand information (Zhou et al., 2021) 

Managing blood effectively is challenging due to factors like expiration, irregularity in donation, and 

uncertain demand (Beliën and Forcé, 2012). Blood shortages incur high costs and increased mortality rates, 

while excessive collection leads to inventory costs and product deterioration. Additionally, disaster 

situations introduce further complexity and uncertainty to the blood supply chain network. Developing 

advanced forecasting techniques and real-time data systems can significantly enhance the efficiency and 

reliability of blood supply chains. 

In addition to managing whole blood inventory, it is essential to conduct inventory management for 

blood components such as red blood cells (RBC), platelets, and plasma. Each component has distinct uses 

and requirements, effectively turning the blood supply chain into a multi-product chain. This diversification 

allows healthcare providers to tailor transfusions based on specific patient needs, improving outcomes 

during emergencies. 

   Designing a dynamic supply chain network plays a significant role in enabling a quick reaction in crisis 

scenarios (Sheu, 2010). Static models assume that input parameters like demand, costs, and facility 



capacities remain constant over the planning horizon. On the other hand, dynamic models consider 

fluctuations in demand and changes in input parameters (Jabbarzadeh et al., 2014). These models divide 

the planning horizon into multiple periods, allowing for periodic decisions on facility capacity and location 

(Melo et al., 2009). By integrating real-time data and predictive analytics, dynamic models can better 

anticipate changes and improve responsiveness during emergencies. 

      In disaster scenarios like earthquakes, blood centers face critical shortages. Unexpected events 

significantly impact human life, and numerous such incidents have occurred all over the world in recent 

years. These occurrences highlight the need for a well-designed and innovative blood supply chain (BSC) 

program capable of effectively responding to crises (Aliahmadi et al., 2023). Developing blood supply 

chain systems, particularly in the context of disaster events, has consistently been a critical challenge in the 

analysis of inflexible supply chains (Aghsami et al., 2023). During the process, there are additional costs, 

including labor, testing, and fractionation. However, the blood supply chain struggles with the challenge of 

operating in a cost-efficient manner (Hooshangi-Tabrizi et al., 2022). Due to the uncertainties, it is crucial 

to control the blood supply system during disasters because the demand for blood frequently rises 

considerably while the supply is still quite erratic. Blood transfusions may be suddenly more frequently 

required in emergency situations, to treat injuries and preserve lives. However, estimating the amount, 

location, and timing of blood that will be required can be challenging. This reinforces the need for advanced 

decision-support systems and collaborative frameworks to mitigate risks. 

This study proposes a robust, two-stage method to create a multi-product blood supply chain network. It 

covers pre-disaster (preparedness) and post-disaster (response) decisions at the supply, processing, and 

distribution levels. Collected blood is categorized into eight groups for efficient distribution, considering 

real-world conditions and various vehicles for transportation. Facilities send blood to centers for testing and 

processing into products. Inventory management is crucial, with immediate backup suppliers addressing 

any shortages. The objective is to minimize costs and delivery time while meeting demand. The problem is 

transformed into a single objective using the epsilon constraint method. A high-quality lower bound and a 

heuristic based on Lagrangian relaxation are developed. Numerical results demonstrate the heuristic's 

effectiveness, and sensitivity analysis is performed on key parameters. These insights can guide 

practitioners in enhancing the robustness and adaptability of blood supply chain systems during crises. 

    The rest of this paper is structured as follows. The literature on the blood supply network in both normal 

and emergency conditions is reviewed in Section 2. Section 3 presents the problem, introduces the 

notations, and provides the mathematical programming formulations. Section 4 focuses on the solution 

approaches, including robust optimization, the epsilon constraint method, Lagrangian relaxation, and the 

Lagrangian-based heuristic approaches. In Section 5, computational studies are conducted, analyzing the 

performance of the Lagrangian-based heuristic and performing sensitivity analysis on parameters. 

Implications for Research, Practice, and Society discussed in section 6. Section 7 concludes and suggests 

potential areas for future research. 

2. Literature review 

    The efficient management of the blood supply chain plays a critical role in ensuring the availability of 

safe and adequate blood and its components for medical treatments and emergency situations. This literature 

review examines key aspects of the blood supply chain, particularly in the context of disaster scenarios, and 

explores the application of robust optimization techniques in designing resilient blood supply chain 

networks. 

2.1. Blood supply chain in normal conditions 

       In recent years, there has been growing attention to the blood supply chain and its crucial role in the 

healthcare system, leading to numerous studies by researchers such as Asadpour et al. (2022) and Torrado 

and Barbosa-Póvoa (2022) in this field. In this section, we will review articles that focus on the blood supply 



chain, exploring various aspects and advancements in this area. Pierskalla (2006) conducted an extensive 

review of the blood supply chain management literature, focusing on various aspects such as donor 

allocation to blood centers, deciding on the right number and location of centers, optimizing inventory 

levels, and assigning blood centers to hospitals. Building upon this foundation, Beliën and Forcé (2012) 

further categorized the existing literature on inventory and blood supply chain based on solution methods, 

planning steps, and product types. Duan and Liao (2014) explored the blood supply chain considering blood 

groups and the permissible displacements between them in normal conditions at the supply and distribution 

levels. They introduced a novel Simulation Optimization (SO) framework to effectively manage the 

inventory in the blood supply chain. Additionally, Dillon et al.(2017) proposed a two-stage stochastic 

programming model, which was solved using off-the-shelf optimization software. This approach minimized 

costs, shortages, and wastage while addressing perishability and demand uncertainty. Case study results 

demonstrated that revising target levels and allowing blood substitutions improved efficiency and reduced 

costs without compromising service quality. Rekabi et al., (2024) proposed a multi-objective model for 

Green Blood Supply Chain networks, aiming to reduce costs, waiting times, and environmental impact 

while enhancing resilience. Linear regression was used to forecast blood demand, and the Lagrangian 

Relaxation (LR) method was employed to solve larger problem instances. 

2.2. Blood supply chain in disaster 

       Researchers have made significant contributions in developing models for designing blood supply 

chain networks that account for the occurrence of disasters. Natural hazards and other complex emergencies 

frequently have profound effects on society, the environment, and the economy. For instance, Hurricane 

Harvey impacted over 13 million people across multiple states and led to economic losses estimated at $180 

billion (Entezari et al., 2024). Recent studies, such as those by Farrokhizadeh et al.( 2022) and Seyfi-

Shishavan et al. (2021), have specifically focused on earthquakes as the disaster scenario. In order to create 

an integrated network of blood supply lines in the case of a catastrophe Ghatreh Samani et al. (2018) 

presented a multi-objective mixed-integer linear programming model. The model aimed to minimize total 

costs and transfer time while maximizing the total met demand. They employed a probabilistic two-stage 

planning approach to account for random and epistemic uncertainties.  

     A probabilistic optimization model for a multi-period and sustainable multi-objective blood supply chain 

with uncertain data originating from unpredictable situations before and after disasters was given by 

Eskandari-Khanghahi et al. (2018). Their integer linear programming-based model aimed to minimize costs 

and environmental effects while maximizing social impacts to enhance network efficiency. They utilized 

the simulated annealing metaheuristic method to solve the problem efficiently on a large scale. Fahimnia et 

al. (2017) concentrated on developing a stochastic bi-objective blood supply chain model for emergency 

scenarios. While the second goal sought to shorten the time it took to supply blood, the first target focused 

on cutting expenses. They used a hybrid strategy that used the ε-constraint technique with Lagrangian 

relaxation to solve the problem successfully. Liu and Song (2019) proposed a multi-period mixed-integer 

model that considered different transport modes for managing the blood supply chain in disasters. They 

utilized a rolling horizon strategy to optimize the blood supply chain, and their model's performance was 

evaluated using a case study of the 2008 Wenchuan earthquake. Ghahremani-Nahr et al., (2022) developed 

a two-stage stochastic bi-objective model aimed at improving the efficiency and reliability of the blood 

supply chain (BSC) during disaster scenarios. To solve their model, they employed a hybrid solution 

strategy that integrated epsilon-constrained and Lagrangian relaxation methods.  Tirkolaee et al., (2023) 

sought to develop an optimized multi-tier blood supply chain network, addressing uncertainties in demand, 

capacity, and blood disposal rates. This network encompasses various stakeholders, including blood donors, 

collection centers, blood banks, regional hospitals, and end-use locations. The authors proposed a novel bi-

objective Mixed-Integer Linear Programming (MILP) model aimed at minimizing costs while 

simultaneously improving employment opportunities, with particular consideration given to challenges 

posed by pandemics. Abdolazimi et al., (2023) developed a multi-level blood supply chain model to address 

uncertainties in donation and demand, particularly during crises like COVID-19. The model focused on 



optimizing location selection and minimizing blood spoilage. They used elastic boundary objectives, 

modified weighted Chebyshev, and the TOPSIS algorithm to evaluate and select the best solution. The 

model was validated through a real COVID-19 case study, and sensitivity analyses showed that adding 

mobile blood facilities helped reduce delivery times.  Entezari et al., (2024) developed a bi-objective model 

to optimize the blood supply chain, aiming to minimize both costs and blood shortages during crises. Their 

model incorporates donor allocation, blood production, and time-dependent routing decisions. To address 

uncertainties in supply and demand, they applied scenario-based programming. Through numerical tests 

and a case study, they validated the model's efficiency, and their sensitivity analysis provided valuable 

managerial insights. 

     These studies demonstrate a growing interest in designing resilient blood supply chain networks that can 

effectively respond to and recover from disasters, providing valuable insights and optimization strategies 

for the management of blood resources during crisis situations. 

2.3. Robust optimization in blood supply chain networks 

        Robust optimization has been utilized as a common approach for addressing uncertainty while 

managing the blood supply chain during emergencies. We will review some of these applications in this 

subsection. In response to disruptions like outbreaks, which delay blood orders and deliveries, leading to 

significant losses for healthcare organizations, Gilani Larimi et al., (2022) proposed a robust multi-phase 

optimization approach for blood supply networks. They used real-world data to evaluate the model through 

two methods: a GIS-based approach for optimizing blood donation center locations and a mathematical 

model that addressed perishability, supply sources, and demand uncertainties. Their approach underscored 

the importance of resilient strategies in managing blood supply chains during disasters. 

Haghjoo et al. (2020) proposed a model for creating a blood supply chain network during a disaster while 

considering the uncertainty and risks associated with facility disruptions. The model employed a robust 

approach to handle demand variability and facility disruptions effectively. For large-scale problems, two 

metaheuristic algorithms, namely the self-adaptive imperialist competitive algorithm and invasive weed 

optimization, were introduced to solve the model. Jabbarzadeh et al. (2014) designed a robust network of 

blood supply chains for disaster scenarios, encompassing decisions related to the number and location of 

permanent and non-permanent blood facilities, as well as the allocation of blood facilities to donors. For a 

multi-period blood supply chain network under catastrophe conditions, Habibi-Kouchaksaraei et al. (2018) 

proposed a robust bi-objective optimization model with a focus on supply, processing, and distribution 

levels. The model sought to identify the number and location of facilities as well as the best allocation 

strategy under various scenarios to reduce expenses and blood shortages. The problem was solved using 

the goal programming approach. Gilani Larimi et al. (2019) developed a multi-objective linear mixed-

integer programming model for gathering, testing, producing, banking, and dispensing platelets based on 

age and product type. The model aimed to minimize costs as the primary objective and maximize the service 

level as the secondary objective. The authors solved the model under two conditions: certain demand and 

uncertain demand, using a stochastic robust optimization method to address the uncertainty. Hamdan and 

Diabat (2020) proposed a blood supply model for disaster scenarios with objectives of cost minimization 

and delivery time optimization. The model considered the possibility of facility and route disruptions. The 

effects of disasters on the blood supply system were addressed using robust optimization and two-stage 

stochastic optimization techniques, and an algorithm based on Lagrangian relaxation was performed to 

efficiently handle the problem for large-scale examples. Heidari-Fathian and Pasandideh (2018) designed 

a multi-objective green blood supply chain network considering both cost minimization and environmental 

impact reduction. Given the uncertain nature of blood demand, they applied robust optimization to handle 

uncertainty. Additionally, an innovative method based on the Lagrangian relaxation approach was 

employed to solve the problem. Ala et al., (2024) introduced a multi-objective design problem for blood 

supply chain networks, which aimed to minimize the costs of establishing both permanent and temporary 

facilities, transferring blood products, and reducing shortages. To address these challenges and enhance 



adaptability amid uncertainties in supply and demand, the paper proposed using lateral freight between 

hospitals. A novel robust possibilistic mixed-integer linear programming method was developed to handle 

distribution and location decisions effectively. Sheshkol et al., (2024) explored collaboration between blood 

centers and hospitals to manage blood platelet supply and demand during normal and emergency conditions. 

They developed a two-stage robust programming model with two objectives: minimizing network costs 

(including preparation, transportation, and storage) and optimizing blood type substitution based on 

compatibility. Their findings showed that the highest performance was achieved when both blood centers 

and hospitals collaborated as a unified network. 

     The review of the literature highlights that many studies on blood supply chains tend to focus on specific 

components rather than taking a comprehensive approach that includes supply, processing, and distribution. 

There is also a lack of attention to handling uncertainties in supply, demand, and operational costs 

effectively. Research has rarely explored the integration of mobile facilities, the management of multiple 

blood products like RBCs, PLTs, and plasma, or the use of diverse transportation options with different 

capacities. Furthermore, strategies to source blood from backup suppliers during shortages and to adapt to 

dynamic disaster conditions remain underdeveloped. These gaps point to the need for a more robust and 

dynamic model that incorporates all these elements, offering a better way to build resilient and efficient 

blood supply chains in times of crisis. Table 1 summarizes past research on blood supply chain optimization 

models and identifies research gaps. 

Table1 Key findings from previous research and identified gaps in Blood Supply Chain Optimization. 

Source: Created by Authors 
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 Solution Approach 

Jabbarzadeh et al., (2014) ✓ ✓ ✓ ✓    ✓ ✓ Robust optimization 

Fahimnia et al., (2017) ✓ ✓      ✓  ε-constraint and Lagrangian relaxation 

Dillon et al., (2017) ✓   ✓      Cplex 

Ghatreh Samani et al., (2018) ✓ ✓  ✓    ✓  Stochastic and possibilistic programming 

Eskandari-Khanghahi et al., (2018) ✓ ✓ ✓ ✓    ✓  Simulated annealing 

Habibi-Kouchaksaraei et al., (2018) ✓ ✓ ✓ ✓    ✓ ✓ Goal programming 

Gilani Larimi et al., (2019) ✓ ✓      ✓  Lp-metric method 

Liu and Song, (2019) ✓ ✓ ✓ ✓   ✓   Rolling horizon 

Hamdan and Diabat, (2020) ✓ ✓      ✓ ✓ Lagrangian relaxation 

Haghjoo et al., (2020) ✓ ✓ ✓ ✓  ✓  ✓ ✓ Imperialist competitive algorithm, Invasive weed optimization 

Seyfi-Shishavan et al., (2021) ✓ ✓  ✓      Fuzzy multi-period mathematical model 

Farrokhizadeh et al., (2022) ✓ ✓  ✓    ✓  ε-constraint and Lagrangian relaxation 

Ghahremani-Nahr et al., (2022) ✓ ✓ ✓ ✓    ✓  ε-constraint and Lagrangian relaxation 

Tirkolaee et al., (2023) ✓ ✓ ✓ ✓   ✓ ✓  Interactive possibilistic programming 

Abdolazimi et al., (2023) ✓ ✓  ✓  ✓  ✓ ✓ Modified weighted Chebyshev 

Ala et al., (2024) ✓ ✓  ✓  ✓  ✓ ✓ Lexicographic and Torabi-Hassini 

Rekabi et al., (2024) ✓   ✓      Lagrangian Relaxation 

Entezari et al., (2024) ✓ ✓ ✓ ✓    ✓ ✓ Modified augmented ε-constraint 2 

Sheshkol et al., (2024) ✓ ✓  ✓    ✓ ✓ Robust optimization 

Current Study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Robust optimization and Langrangian relaxation heuristic 

2.4 Research gap 

In this article, some important features in designing blood supply chain in disaster are mentioned as 

follows: 



• Considering three echelons including supply, processing, and distribution. 

• Utilizing a strong optimization technique to cope with the uncertainty of the parameters, such as supply 

and demand, operational expenses, inventory and holding costs, transportation costs, the capacity of 

collecting sites, and the capacity of blood centers. 

• Considering three types of collection facilities, including permanent, temporary and mobile facilities, 

and blood centers to process the whole blood and making decisions related to their location and 

allocation in each period. 

• Considering the blood supply chain as a multi-product, including whole blood and its components RBC, 

PLT, and Plasma and separation of collected blood samples into blood groups in the collecting facilities 

to prevent blood loss and shortage. 

• Considering the possibility of using different transportation vehicles with different capacities to carry 

out transfer operations. 

• The ability to supply products from backup suppliers in the event of a shortage. 

     To the best of our knowledge, this is the first time that all the above-mentioned items are addressed 

simultaneously in a new stochastic, multi-product, dynamic, robust bi-objective mathematical 

programming model. Finally, this model is solved by a two phases solution method based on Lagrangian 

relaxation. 

3. Model development  

3.1.  Problem description  

The blood supply chain network under study includes blood donors, permanent facilities (clinics and 

medical centers), temporary facilities (schools, mosques, and stadiums), mobile facilities (tents and trailers), 

blood centers, demand points (hospitals), and a backup supplier. Permanent facilities have greater 

construction costs and capacity compared to temporary and mobile facilities. Temporary facilities can be 

converted into donation centers during shortages, while mobile facilities enhance efficiency and flexibility 

by being easily relocated. 

Blood is collected from voluntary donors at permanent, temporary, and mobile facilities, allowing 

flexibility in selecting suitable centers for blood group separation. The collected units are transported to 

blood centers using different vehicles. At the centers, the units undergo testing, processing, and storage. In 

the laboratory facilities, the healthy units are separated into Red Blood Cells, Platelets, and Plasma. The 

supply chain addresses the demand for both whole blood and its components, ensuring the fulfillment of 

these crucial resources' needs. 

     Meeting the requirements within the blood supply chain network is essential to satisfy the crucial 

demand for blood and its components. Failure to do so can result in shortages, requiring the acquisition of 

additional supplies from backup suppliers at increased costs to address the resulting deficiencies. To 

adequately prepare for such circumstances, the network considers different scenarios based on the scale and 

severity of the disaster. These scenarios incorporate factors like demand, supply, facility capacity, and costs, 

ranging from milder situations to the most severe ones. 

      Resilience and humanitarian logistics are closely linked as both aim to mitigate disaster impacts and 

support recovery. HL enhances resilience by ensuring preparedness, adaptive supply chains, and timely 

responses, reducing vulnerabilities in disaster-prone areas. Effective coordination among stakeholders, 

sustainable recovery efforts, and robust early warning systems further strengthen resilience. Integrating 

resilience thinking into HL through data-driven decisions and inclusive strategies ensures communities are 

better equipped for future disasters (Carnero Quispe et al., 2024). Pre-disaster and post-disaster are two 

stages of the problem. In the pre-disaster stage, the focus is on constructing and locating permanent facilities 

and blood centers in preparation for potential disasters. However, decisions regarding temporary and mobile 

facilities, blood collection volume, processing, transfer, inventory levels, and other relevant factors are 

made in the post-disaster stage. These decisions are based on the actual occurrence of a crisis, considering 



the specific circumstances and requirements at that time. The network topology is demonstrated in Figure 

1. 

 
Fig. 1. Supply chain network 

Source: Created by Authors 

Other assumptions are as follows: 

• Considering multiple periods 

• Considering multiple blood donor groups to supply the required blood 

• The candidate locations of all facilities are known, but the number of located facilities and their 

locations will be determined after solving the model 

• Considering a coverage radius to allocate blood donors to collection facilities 

• Vehicles have limited capacity to transport products 

• Due to the presence of various blood diseases, including hepatitis, AIDS, and other infectious diseases, 

after tests in the main blood centers, a percentage of the total volume of collected blood units is 

considered unusable 

3.2.  Parameters and decision variables  

For the current model's formulation, the following sets, parameters, and decision variables will be utilized: 

Set of candidate locations for permanent facilities indexed by 𝑗 𝐽  

Set of candidate locations for mobile facilities indexed by 𝑝 𝑃 

Set of types of mobile facilities indexed by 𝑧 𝑍  

Set of candidate locations for temporary facilities indexed by 𝑒 𝐸  

Set of candidate locations for main blood centers indexed by 𝑙 𝐿  

Set of vehicle types indexed by 𝑣 𝑉  

Set of blood groups indexed by 𝑔 𝐺  

Set of blood components indexed by 𝑘 𝐾  

Set of blood donor groups indexed by 𝑎 𝐴  

Set of hospitals (i.e., demand points) indexed by ℎ 𝐻  

Set of time periods indexed by 𝑡 𝑇  

Set of scenarios indexed by 𝑠 𝑆  

Parameters: 

Cost of establishing permanent facility 𝑗 𝐶𝑃𝑗  

Cost of establishing main blood center 𝑙 𝐶𝐵𝑙  



Cost of establishing temporary facility 𝑒 under scenario 𝑠 𝐶𝑇𝑒
𝑠  

Cost of using a vehicle of type 𝑣 per unit distance 𝐶𝑉𝑣  

Number of vehicles of type 𝑣 𝑁𝑢𝑚𝑣  

Cost of establishing mobile facility of type 𝑧 in location 𝑝 in period 𝑡 under scenario 𝑠 𝐶𝑀𝑧𝑝𝑡
𝑠   

Cost of supplying one unit of blood components from backup supplier under scenario 𝑠 𝐶𝐵𝑆𝑠  

Cost of supplying one unit of whole blood from backup supplier under scenario 𝑠 𝐶𝐵𝑊𝑠  

Capacity of a vehicle of type 𝑣 𝐶𝑎𝑝𝑉𝑣  

Storage capacity of a mobile facility of type z under scenario 𝑠 𝐶𝑎𝑝𝑀𝑧
𝑠  

Storage capacity of permanent facility 𝑗 under scenario 𝑠 𝐶𝑎𝑝𝑃𝑗
𝑠  

Storage capacity of temporary facility 𝑒 under scenario 𝑠 𝐶𝑎𝑝𝑇𝑒
𝑠  

Storage capacity of main blood center 𝑙 under scenario 𝑠 𝐶𝑎𝑝𝐵𝑙
𝑠  

Displacement cost of a mobile facility of type 𝑧 from location 𝑖 to location 𝑝 in period 𝑡 under scenario 𝑠 𝐶𝑧𝑖𝑝𝑡
𝑠   

Distance between donor group 𝑎 and mobile facility 𝑝 𝐷𝑖𝑠𝑀𝑎𝑝  

Distance between donor group 𝑎 and temporary facility 𝑒 𝐷𝑖𝑠𝑇𝑎𝑒  

Distance between donor group 𝑎 and permanent facility 𝑗 𝐷𝑖𝑠𝑃𝑎𝑗  

Distance between mobile facility 𝑝 and blood center 𝑙 𝐷𝑀𝑝𝑙  

Distance between temporary facility 𝑒 and blood center 𝑙 𝐷𝑇𝑒𝑙  

Distance between permanent facility 𝑗 and blood center 𝑙 𝐷𝑃𝑗𝑙  

Distance between hospital ℎ and blood center 𝑙 𝐷𝐻𝑙ℎ  

Unit cost for collecting blood group 𝑔 at mobile facility of type 𝑧 located in 𝑝 in period 𝑡 under scenario 

𝑠 

𝑂𝐶𝑀𝑝𝑧𝑔𝑡
𝑠   

Unit cost for collecting blood group 𝑔 at temporary facility 𝑒 in period 𝑡 under scenario 𝑠 𝑂𝐶𝑇𝑒𝑔𝑡
𝑠   

Unit cost for collecting blood group 𝑔 at permanent facility 𝑗 in period 𝑡 under scenario 𝑠 𝑂𝐶𝑃𝑗𝑔𝑡
𝑠   

Unit cost for production of blood component 𝑘 of blood group 𝑔 in main blood center 𝑙 in period 𝑡 under 

scenario 𝑠 

𝑂𝐶𝐵𝑘𝑔𝑙𝑡
𝑠   

Unit cost of processing whole blood with blood group 𝑔 in main blood center 𝑙 in period 𝑡 under 

scenario 𝑠 

𝑂𝐶𝑊𝑔𝑙𝑡
𝑠   

Inventory holding cost of whole blood with blood group 𝑔 in main blood center 𝑙 in period 𝑡 under 

scenario 𝑠  

𝐼𝑊𝑔𝑙𝑡
𝑠   

Inventory holding cost of blood components 𝑘 with blood group 𝑔 in main blood center 𝑙 in period 𝑡 

under scenario 𝑠 

𝐼𝐶𝑔𝑘𝑙𝑡
𝑠   

Maximum blood supply of donor group 𝑎 in period 𝑡 under scenario 𝑠 𝑀𝑎𝑥𝑎𝑡
𝑠   

Demand of blood component 𝑘 of blood group 𝑔 in period 𝑡 under scenario 𝑠 𝐷𝑒𝑚𝐶𝑔𝑘𝑡
𝑠   

Demand of whole blood of blood group 𝑔 in period 𝑡 under scenario 𝑠 𝐷𝑒𝑚𝑔𝑡
𝑠   

Travel time between mobile facility 𝑝 and main blood center 𝑙 𝑇𝑉𝑀𝑝𝑙  

Travel time between temporary facility 𝑒 and main blood center 𝑙 𝑇𝑉𝑇𝑒𝑙  

Travel time between permanent facility 𝑗 and main blood center 𝑙 𝑇𝑉𝑃𝑗𝑙  

Travel time between mobile facility 𝑝 and main blood center 𝑙 𝑇𝑉𝐻ℎ𝑙  

Blood collection facilities' range of coverage 𝑐𝑑  

Probability of occurrence of scenario 𝑠  𝜋𝑠  

Referral rate of blood 𝛽𝑡  

Proportion of blood components 𝑘 in the whole blood 𝛼𝑘  

A very large number  𝑀  

Decision variables: 

A binary variable, equal to 1 if permanent facility is opened at location 𝑗; 0 otherwise  𝐸𝑃𝑗   

A binary variable, equal to 1 if main blood center is opened at location 𝑙; 0 otherwise 𝐸𝐵𝑙   



A binary variable, equal to 1 if mobile facility of type 𝑧 is placed in location 𝑝 in period 𝑡 

under scenario 𝑠; 0 otherwise 

𝐿𝑀𝑧𝑝𝑡
𝑠   

A binary variable, equal to 1 if temporary facility is established at location 𝑒 under scenario 

𝑠; 0 otherwise 

𝐿𝑇𝑒
𝑠   

A binary variable, equal to 1 if mobile facility of type 𝑧 moves from location 𝑖 to location 

𝑝 in period 𝑡 under scenario 𝑠; 0 otherwise 

𝑇𝑀𝑧𝑖𝑝𝑡
𝑠   

A binary variable, equal to 1 if donor group 𝑎 is assigned to mobile facility of type 𝑧 located 

in 𝑝 in period t under scenario 𝑠; 0 otherwise 

𝑊𝑎𝑝𝑧𝑡
𝑠   

A binary variable, equal to 1 if donor group 𝑎 is assigned to temporary facility 𝑒 in period 

𝑡 under scenario 𝑠; 0 otherwise 

𝑂𝑎𝑒𝑡
𝑠   

A binary variable, equal to 1 if donor group 𝑎 is assigned to permanent facility 𝑗 in period 

𝑡 under scenario 𝑠; 0 otherwise 

𝐷𝑎𝑗𝑡
𝑠   

Quantity of blood group 𝑔 collected at mobile facility of type 𝑧 located in 𝑝 from donor 

group 𝑎 in period 𝑡 to deliver to main blood center 𝑙 with vehicle type 𝑣 under scenario 𝑠 

𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠   

Amount of blood group 𝑔 obtained from donor group 𝑎 at a permanent facility 𝑗 in time 𝑡 

to be delivered to the main blood center 𝑙 with vehicle type 𝑣 in scenario 𝑠 

𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠   

Quantity of blood group 𝑔 taken from donor 𝑎 at temporary facility 𝑒 in time 𝑡 to transport 

to main blood center 𝑙 with vehicle type 𝑣 in scenarios 𝑠 

𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡
𝑠   

Produced quantity of component 𝑘 of blood group 𝑔 in main blood center 𝑙 in period 𝑡 

under scenario 𝑠 

𝑄𝐶𝑘𝑔𝑙𝑡
𝑠   

Quantity of collected blood of group 𝑔 decomposed to blood components in blood center 𝑙 

in period 𝑡 under scenario 𝑠 

𝑄𝑔𝑙𝑡
𝑠   

Quantity of collected blood of group 𝑔 kept as whole blood in blood center 𝑙 in period 𝑡 

under scenario 𝑠 

𝑄𝑊𝑔𝑙𝑡
𝑠   

Quantity of component 𝑘 of blood group 𝑔 delivered from main blood center 𝑙 to hospital 

ℎ transported with vehicle type 𝑣 in period 𝑡 under scenario 𝑠     

𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡
𝑠   

Quantity of whole blood group 𝑔 delivered from main blood center 𝑙 to hospital ℎ 

transported with vehicle type 𝑣 in period 𝑡 under scenario 𝑠     

𝑄𝑊𝐻𝑔𝑙𝑣ℎ𝑡
𝑠   

Inventory level of whole blood group 𝑔 at main blood center 𝑙 at the end of period 𝑡 under 

scenario 𝑠 

𝐼𝑛𝑣𝑔𝑙𝑡
𝑠   

 Inventory level of blood component 𝑘 of blood group 𝑔 at main blood center 𝑙 at the end 

of period 𝑡 under scenario 𝑠 

𝐼𝑛𝑙𝑘𝑔𝑙𝑡
𝑠   

Quantity of component 𝑘 of blood group 𝑔 supplied by backup supplier in period 𝑡 under 

scenario 𝑠 

𝐵𝑆𝐶𝑔𝑘𝑡
𝑠  

Quantity of whole blood group 𝑔 supplied by backup supplier in period 𝑡 under scenario 𝑠 𝐵𝑆𝑊𝑔𝑡
𝑠   

The issue is tackled using a two-stage stochastic programming model that includes several scenarios to 

reflect the problem's uncertain character. The model follows a two-stage planning approach, where the 

decision variables are divided into two categories. The first-stage decision variables are determined 

independently of the specific scenario and are quantified prior to the occurrence of the scenario. On the 

other hand, the second-stage decision variables are contingent upon the realization of the scenario and are 

measured after the scenario has occurred. This formulation allows for a more robust and flexible decision-

making process, as it considers both pre-scenario decisions and post-scenario adjustments in addressing the 

complexities of the blood supply chain management problem. The variables 𝐸𝑃𝑗  and 𝐸𝐵𝑙 are the first stage 

decision variables.   

3.3. Objective functions  



 The first objective function minimizes supply chain network costs. These costs include cost of 

establishing permanent facilities and blood centers (𝐸𝐶), cost of construction and establishment of 

temporary and mobile facilities (𝐿𝐶𝑠), transportation cost (𝑇𝐶𝑠), operational cost (𝑂𝐶𝑆), inventory cost 

(𝐼𝐶𝑆), and the cost of supplying the shortage from the backup supplier (𝐶𝐵𝑆). These terms are formulated 

in Eqs. (1) to (5). 

(1)  𝐸𝐶 + 𝐿𝐶𝑆 = (∑ 𝐶𝑃𝑗

𝑗

𝐸𝑃𝑗 + ∑ 𝐶𝐵𝑙

𝑙

𝐸𝐵𝑙) + ∑ 𝜋𝑠(∑ ∑ ∑ 𝐶𝑀𝑧𝑝𝑡
𝑠

𝑡𝑝𝑧𝑠

𝐿𝑀𝑧𝑝𝑡
𝑠 + ∑ 𝐶𝑇𝑒

𝑠𝐿𝑇𝑒
𝑠

𝑒

  )             

(2) 𝑇𝐶𝑆 = ∑ 𝜋𝑠(

𝑠

∑ ∑ ∑ ∑ 𝐶𝑧𝑖𝑝𝑡
𝑠 𝑇𝑀𝑧𝑖𝑝𝑡

𝑠

𝑡𝑝𝑖𝑧

+ ∑ ∑ 𝐶𝑉𝑣(∑ ∑ ∑ ∑ 𝐷𝑀𝑝𝑙

𝑙𝑎𝑧𝑝

× ⌈
∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡

𝑠
𝑔

𝐶𝑎𝑝𝑉𝑣
⌉

𝑡𝑣

+ ∑ ∑ ∑ 𝐷𝑇𝑒𝑙

𝑎𝑙𝑒

× ⌈
∑ 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡

𝑠
𝑔

𝐶𝑎𝑝𝑉𝑣
⌉ + ∑ ∑ ∑ 𝐷𝑃𝑗𝑙 × ⌈

∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠

𝑔

𝐶𝑎𝑝𝑉𝑣
⌉

𝑎𝑙𝑗

+ ∑ ∑ ∑ 𝐷𝐻𝑙ℎ × ⌈
∑ ∑ 𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡

𝑠 + ∑ 𝑄𝑊𝐻𝑔𝑣𝑙ℎ𝑡
𝑠

𝑔𝑘𝑔

𝐶𝑎𝑝𝑉𝑣
⌉

𝑎ℎ𝑙

) 

(3) 𝑂𝐶𝑆 = ∑ 𝜋𝑠(

𝑠

∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠

𝑣

𝑂𝐶𝑀𝑝𝑧𝑔𝑡
𝑠

𝑡𝑙𝑔𝑎𝑧𝑝

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑄𝑇𝑒𝑔𝑣𝑎𝑙𝑡
𝑠 𝑂𝐶𝑇𝑒𝑔𝑡

𝑠 + ∑ ∑ ∑ ∑ ∑ ∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠 𝑂𝐶𝑃𝑗𝑔𝑡

𝑠

𝑣𝑙𝑎𝑡𝑔𝑗𝑣𝑙𝑎𝑡𝑔𝑒

+ ∑ ∑ ∑ ∑ 𝑄𝐶𝑘𝑔𝑙𝑡
𝑠

𝑡𝑙𝑔𝑘

𝑂𝐶𝐵𝑘𝑔𝑙𝑡
𝑠 + ∑ ∑ ∑ 𝑂𝐶𝑊𝑔𝑙𝑡

𝑠

𝑡𝑙𝑔

(𝑄𝑔𝑙𝑡
𝑠 + 𝑄𝑊𝑔𝑙𝑡

𝑠 ))         

(4) 𝐼𝐶𝑆 = ∑ 𝜋𝑠(

𝑠

∑ ∑ ∑ 𝐼𝑊𝑙𝑔𝑡
𝑠 𝐼𝑛𝑣𝑙𝑔𝑡

𝑠 + ∑ ∑ ∑ ∑ 𝐼𝐶𝑘𝑔𝑙𝑡
𝑠

𝑡𝑙𝑔𝑘𝑡𝑔𝑙

𝐼𝑛𝑙𝑘𝑔𝑙𝑡
𝑠 ) 

(5) 𝐶𝐵𝑆 = ∑ 𝜋𝑠(

𝑠

∑ ∑ ∑ 𝐶𝐵𝑆𝑠𝐵𝑆𝐶𝑔𝑘𝑡
𝑠 + ∑ ∑ 𝐶𝐵𝑊𝑠𝐵𝑆𝑊𝑔𝑡

𝑠

𝑡𝑔𝑡𝑘𝑔

) 

Eq. (1) expresses the cost of locating and constructing facilities. Actions related to the opening of 

permanent facilities and main blood centers are made before the happening of the disaster. In contrast, 

decisions to locate temporary and mobile facilities depend on the disaster scenario. Eq. (2) calculates the 

cost of moving mobile facilities, the cost of transferring collected blood units from mobile, temporary, and 

permanent facilities to blood centers and the cost of transferring whole blood units and blood components 

from blood centers to demand points (i.e., hospitals). Operating costs for collection facilities and blood 

centers are formulated in Eq. (3). Further, Eq. (4) shows the cost of inventory of whole blood units and its 

components in blood centers. The final part of the objective function (i.e., Eq. (5)) is the cost of providing 

whole blood units and its components from backup suppliers in case of a shortage. The first objective 

function of the problem (cost function) will be written as Eq. (6) by adding the above five terms. 

The second objective function of the problem is based on the nature of the perishability of blood. Since 

blood is a perishable product, the transfer time from the supplier (i.e., donors) to the demand points (i.e., 

hospitals) should be minimized. The second objective is to reduce the average time it takes to deliver blood 

from collecting facilities to blood centers (𝑇𝐶𝐵𝑠) and from blood centers to hospitals (𝑇𝐵𝐻𝑠). In this regard, 

the volume of blood transferred is considered as weight. 

((6 
𝑚𝑖𝑛 𝐹1 = 𝐸𝐶 + 𝐿𝐶𝑆 + 𝑇𝐶𝑆 + 𝑂𝐶𝑆 + 𝐼𝐶𝑆 + 𝐶𝑏𝑆  



(7) 

𝑇𝐶𝐵𝑆 = ∑ 𝜋𝑠

𝑠

(∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠

𝑣

𝑇𝑉𝑀𝑝𝑙 +

𝑡𝑙𝑝𝑧𝑔𝑎

∑ ∑ ∑ ∑ ∑ ∑ 𝑄𝑇𝑒𝑔𝑣𝑎𝑙𝑡
𝑠 𝑇𝑉𝑇𝑒𝑙

𝑣𝑙𝑎𝑡𝑔𝑒

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠 𝑇𝑉𝑃𝑗𝑙

𝑣𝑙𝑎𝑡𝑔𝑗

) 

(8) 

𝑇𝐵𝐻𝑆 = ∑ 𝜋𝑠

𝑠

(∑ ∑ ∑ ∑ ∑ ∑ 𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡
𝑠

𝑣𝑡ℎ𝑙𝑔𝑘

𝑇𝑉𝐻𝑙ℎ + ∑ ∑ ∑ ∑ ∑ 𝑄𝑊𝐻𝑔𝑣𝑙ℎ𝑡
𝑠

𝑣𝑡ℎ𝑙𝑔

) 

Eq. (7) determines the weighted travel time to deliver whole blood to blood centers from temporary, 

mobile, and permanent facilities. Eq. (8) displays the weighted time that blood and blood components take 

to transit from blood banks to hospitals. By adding expressions (7) and (8), the second objective function 

of the problem is constructed as Eq. (9). 

(9) 𝑀𝑖𝑛 𝐹2 =  𝑇𝐶𝐵𝑆 + 𝑇𝐵𝐻𝑆 

3.4. Model constraints  

The following constraints apply to the objective functions defined in subsection 3. 3. 

 

(10) ∑ 𝑇𝑀𝑧𝑖𝑝𝑡
𝑠

𝑖∈𝑃

= 𝐿𝑀𝑧𝑝𝑡
𝑠         ∀𝑧 ∈ 𝑍 , ∀𝑝 ∈ 𝑃 , ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

(11) ∑ 𝐿𝑀𝑧𝑝𝑡
𝑠 ≤ 1                   ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆    

𝑧

 

(12) ∑ 𝑇𝑀𝑧𝑝𝑖𝑡
𝑠 ≤

𝑖∈𝑃

∑ 𝑇𝑀𝑧𝑖𝑝,𝑡−1
𝑠     ∀𝑧 ∈ 𝑍, ∀𝑝 ∈ 𝑃 , ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆      

𝑖∈𝑃

  

(13) 𝑊𝑎𝑝𝑧𝑡
𝑠 ≤ 𝐿𝑀𝑧𝑝𝑡

𝑠             ∀𝑎 ∈ 𝐴 , ∀𝑧 ∈ 𝑍, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

(14) 𝐷𝑎𝑗𝑡
𝑠 ≤ 𝐸𝑃𝑗                  ∀𝑎 ∈ 𝐴 , ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

(15) 𝑂𝑎𝑒𝑡
𝑠 ≤ 𝐸𝑇𝑒

𝑠                 ∀𝑎 ∈ 𝐴 , ∀𝑒 ∈ 𝐸, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

(16) 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠 ≤ 𝑀 ∙ 𝑊𝑎𝑝𝑧𝑡

𝑠       ∀𝑎 ∈ 𝐴, ∀𝑔 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀𝑧 ∈ 𝑍, ∀𝑝 ∈ 𝑃, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆   

(17) 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡
𝑠 ≤ 𝑀 ∙ 𝑂𝑎𝑒𝑡

𝑠                 ∀𝑎 ∈ 𝐴, ∀𝑔 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀𝑒 ∈ 𝐸 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

(18) 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠 ≤ 𝑀 ∙ 𝐷𝑎𝑗𝑡

𝑠                 ∀𝑎 ∈ 𝐴 , ∀𝑔 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀𝑗 ∈ 𝐽 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆 

(19) 𝐷𝑖𝑠𝑀𝑎𝑝 ∙ 𝑊𝑎𝑝𝑧𝑡
𝑠 ≤ 𝑐𝑑              ∀𝑎 ∈ 𝐴 , ∀𝑧 ∈ 𝑍 , ∀𝑝 ∈ 𝑃 , ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆     

(20) 𝐷𝑖𝑠𝑇𝑎𝑒 ∙ 𝑂𝑎𝑒𝑡
𝑠 ≤ 𝑐𝑑                   ∀a ∈ A , ∀e ∈ E, ∀t ∈ T, ∀s ∈ S       

(21) 𝐷𝑖𝑠𝑃𝑎𝑗 ∙ 𝐷𝑎𝑗𝑡
𝑠 ≤ 𝑐𝑑                  ∀𝑎 ∈ 𝐴, ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆  



(22) ∑ ∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠 ≤ 𝑀 ∙ 𝐸𝐵𝑙

𝑔𝑎

       ∀𝑣 ∈ 𝑉, ∀𝑧 ∈ 𝑍, ∀𝑝 ∈ 𝑃, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

(23) ∑ ∑ 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡
𝑠 ≤ 𝑀 ∙

𝑔𝑎

𝐸𝐵𝑙        ∀𝑣 ∈ 𝑉, ∀𝑒 ∈ 𝐸, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆 

(24) ∑ ∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠

𝑔𝑎

≤ 𝑀 ∙ 𝐸𝐵𝑙        ∀𝑣 ∈ 𝑉, ∀𝑗 ∈ 𝐽 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆     

(25) ∑ ∑ ∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠 ≤ 𝐶𝑎𝑝𝑀𝑧

𝑠

𝑣𝑔𝑎

∙ 𝐿𝑀𝑧𝑝𝑡
𝑠         ∀𝑧 ∈ 𝑍 , ∀𝑝 ∈ 𝑃 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆 

(26) ∑ ∑ ∑ 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡
𝑠 ≤ 𝐶𝑎𝑝𝑇𝑒

𝑠

𝑣𝑔𝑎

∙ 𝐿𝑇𝑒
𝑠           ∀𝑒 ∈ 𝐸 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆     

(27) ∑ ∑ ∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠 ≤ 𝐶𝑎𝑝𝑃𝑗

𝑠

𝑣𝑔𝑎

∙ 𝐸𝑃𝑗             ∀𝑗 ∈ 𝐽 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆     

(28) ∑ 𝐼𝑛𝑣𝑔𝑙𝑡
𝑠

𝑔

+ ∑ ∑ 𝐼𝑛𝑙𝑘𝑔𝑙𝑡
𝑠 ≤ 𝐶𝑎𝑝𝐵𝑙

𝑔𝑘

∙ 𝐸𝐵𝑙           ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆        

(29) ∑ ∑ ∑ ∑ ∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠  +

𝑣𝑙𝑔𝑧𝑝

∑ ∑ ∑ ∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠

𝑣𝑙𝑔𝑗

+ ∑ ∑ ∑ ∑ 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡
𝑠 ≤ 𝑚𝑎𝑥𝑎𝑡

𝑠                                                         ∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇, ∀𝑠

𝑣𝑙𝑔𝑒

∈ 𝑆  

(30) 𝑄𝑔𝑙𝑡
𝑠 + 𝑄𝑊𝑔𝑙𝑡

𝑠 = (1

− 𝛽𝑡) (∑ ∑ ∑ ∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠

𝑣𝑧𝑝𝑎

+ ∑ ∑ ∑ 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡
𝑠 + ∑ ∑ ∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡

𝑠

𝑣𝑗𝑎𝑣𝑒𝑎

)           ∀𝑒 ∈ 𝐸 , ∀𝑙 ∈ 𝐿, ∀𝑔

∈ 𝐺, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆      

(31) 𝑄𝐶𝑘𝑔𝑙𝑡
𝑠 = 𝛼𝑘 ∙ 𝑄𝑔𝑙𝑡 

𝑠                         ∀𝑘 ∈ 𝐾, ∀𝑔 ∈ 𝐺 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

(32) 
⌈
∑ ∑ ∑ ∑ ∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡

𝑠
𝑙𝑝𝑧𝑔𝑎

𝐶𝑎𝑝𝑉𝑣
⌉ + ⌈

∑ ∑ ∑ ∑ 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡
𝑠

𝑙𝑒𝑔𝑎

𝐶𝑎𝑝𝑉𝑣
⌉ + ⌈

∑ ∑ ∑ ∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠

𝑙𝑗𝑔𝑎

𝐶𝑎𝑝𝑉𝑣
⌉

+ ⌈
∑ ∑ ∑ 𝑄𝑤𝑔𝑙ℎ𝑡

𝑠 + ∑ ∑ ∑ ∑ 𝑄𝑇𝑘𝑔𝑙ℎ𝑡
𝑠

ℎ𝑙𝑔𝑘ℎ𝑙𝑔

𝐶𝑎𝑝𝑉𝑣
⌉ ≤ 𝑛𝑢𝑚𝑣   ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆 

(33) 𝐼𝑛𝑣𝑔𝑙𝑡
𝑠 = 𝐼𝑛𝑣𝑔𝑙.𝑡−1

𝑠 + 𝑄𝑊𝑔𝑙𝑡
𝑠 − ∑ ∑ 𝑄𝑊𝐻𝑔𝑣𝑙ℎ𝑡

𝑠

ℎ𝑣

     ∀𝑔 ∈ 𝐺 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆      

(34) 𝐼𝑛𝑙𝑘𝑔𝑙𝑡
𝑠 = 𝐼𝑛𝑙𝑘𝑔𝑙.𝑡−1

𝑠 + 𝑄𝐶𝑘𝑔𝑙𝑡
𝑠 − ∑ ∑ 𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡

𝑠

ℎ𝑣

  ∀𝑘 ∈ 𝐾, ∀𝑔 ∈ 𝐺 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 



(35) 𝐷𝑒𝑚𝑔𝑡
𝑠 − ∑ ∑ ∑ 𝑄𝑊𝐻𝑔𝑣𝑙ℎ𝑡

𝑠 = 𝐵𝑆𝑊𝑔𝑡
𝑠

ℎ𝑙𝑣

       ∀𝑔 ∈ 𝐺 , 𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆         

(36) 𝐷𝑒𝑚𝐶𝑔𝑘𝑡
𝑠 − ∑ ∑ ∑ 𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡

𝑠

ℎ𝑙𝑣

= 𝐵𝑆𝐶𝑔𝑘𝑡
𝑠     ∀𝑘 ∈ 𝐾, ∀𝑔 ∈ 𝐺 , 𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆 

(37) 𝐸𝑃𝑗, 𝐸𝐵𝑙 , 𝐿𝑀𝑧𝑝𝑡
𝑠 , 𝐿𝑇𝑒

𝑠, 𝑇𝑀𝑧𝑖𝑝𝑡
𝑠 , 𝑊𝑎𝑝𝑧𝑡

𝑠 , 𝑂𝑎𝑒𝑡
𝑠 , 𝐷𝑎𝑗𝑡

𝑠 ∈ {0.1}      ∀𝑎 ∈ 𝐴, ∀𝑔 ∈ 𝐺, ∀𝑧 ∈ 𝑍 , ∀𝑝 ∈ 𝑃, ∀𝑙

∈ 𝐿, ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆 

(38) 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠 , 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡

𝑠 , 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠 , 𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡

𝑠 , 𝑄𝑊𝐻𝑔𝑣𝑙ℎ𝑡
𝑠 , 𝑄𝐶𝑘𝑔𝑙𝑡

𝑠 , 𝐼𝑛𝑣𝑔𝑙𝑡
𝑠 , 𝐼𝑛𝑙𝑘𝑔𝑙𝑡

𝑠 , 𝑄𝑔𝑙𝑡
𝑠 , 𝑄𝑊𝑔𝑙𝑡

𝑠 , 𝐵𝑆𝑊𝑔𝑡
𝑠 , 𝐵𝑆𝐶𝑔𝑘𝑡

𝑠

≥ 0        ∀𝑎 ∈ 𝐴 , ∀𝑔 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀𝑧 ∈ 𝑍, ∀𝑝 ∈ 𝑃 , ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆, ∀ℎ
∈ 𝐻, ∀𝑘 ∈ 𝐾    

Constraint (10) states that the mobile facility of type 𝑧 can be moved to location 𝑝 at the end of period 𝑡 

under scenario 𝑠. Constraint (11) states that only a mobile facility is allowed at each candidate point. 

Constraint (12) ensures that it is impossible to move mobile facilities from a place where they are not 

located. Constraint (13) states that blood donor groups can be assigned to an open and located mobile 

facility. Constraint (14) states that blood donor groups can be assigned to an open permanent facility. 

Constraint (15) states that Blood donor groups can be assigned to an open temporary facility. Constraints 

(16) - (18) indicate that mobile, temporary, and permanent facilities cannot receive blood from unassigned 

donor groups. Constraints (19) - (21) state that donor groups may be assigned to mobile, temporary, and 

permanent facilities within their coverage radius. Constraints (22) to (24) state that the total volume of 

collected blood in mobile, temporary, and permanent facilities must be transferred to the blood centers. 

Constraints (25) - (28) indicate limited capacity constraints for mobile, temporary, and permanent collection 

facilities and blood centers under each scenario. Maximum blood supply is specified by constraint (29) for 

each donor group in each period and scenario. Constraint (30) states that healthy blood units are considered 

after testing at the blood centers. Constraint (31) states blood components are present in specific proportions 

in whole blood units. Constraint (32) states limited and specific number of vehicles for transferring whole 

blood and blood components between facilities. Constraints (33) and (34) indicate balance equations for 

the inventory of whole blood and blood components at blood centers. Constraints (35) and (36) state 

deficiency of whole blood and blood components in the supply chain network provided by the backup 

supplier. Constraints (37) and (38) state an allowable range of decision variables. 

4. Solution methods 

4.1. Model linearization 

The round-up function causes the transportation costs 𝑇𝐶𝑠 in the first objective function to be nonlinear. 

By defining integer variables 𝑌1𝑎𝑧𝑝𝑙𝑡𝑣
𝑠 , 𝑌2𝑎𝑧𝑝𝑙𝑡𝑣

𝑠 , 𝑌3𝑎𝑧𝑝𝑙𝑡𝑣
𝑠 &  𝑌4𝑎𝑧𝑝𝑙𝑡𝑣

𝑠  the non-linear expression in the first 

objective function can be changed to a linear expression (44), by adding equations (39) and (43) to the 

model. 

 

(39) ∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠

𝑔

𝐶𝑎𝑝𝑉𝑣
≤ 𝑌1𝑎𝑧𝑝𝑙𝑡𝑣

𝑠  

(40) ∑ 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡
𝑠

𝑔

𝐶𝑎𝑝𝑉𝑣
≤ 𝑌2𝑎𝑒𝑙𝑡𝑣

𝑠  

(41) ∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠

𝑔

𝐶𝑎𝑝𝑉𝑣
≤ 𝑌3𝑎𝑗𝑙𝑡𝑣

𝑠  

(42) ∑ ∑ 𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡
𝑠 + ∑ 𝑄𝑊𝐻𝑔𝑣𝑙ℎ𝑡

𝑠
𝑔𝑘𝑔

𝐶𝑎𝑝𝑉𝑣
≤ 𝑌4𝑙ℎ𝑡𝑣

𝑠  



(43) 𝑌1𝑎𝑧𝑝𝑙𝑡𝑣
𝑠 , 𝑌2𝑎𝑒𝑙𝑡𝑣

𝑠 , 𝑌3𝑎𝑗𝑙𝑡𝑣
𝑠 , 𝑌4𝑙ℎ𝑡𝑣

𝑠 ≥ 0 & 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 

(44) 

∑ 𝜋𝑠(

𝑠

∑ ∑ 𝐶𝑉𝑣 (∑ ∑ ∑ ∑ 𝐷𝑀𝑝𝑙

𝑙𝑎𝑧𝑝

× 𝑌1𝑎𝑧𝑝𝑙𝑡𝑣
𝑠 + ∑ ∑ ∑ 𝐷𝑇𝑒𝑙

𝑎𝑙𝑒

× 𝑌2𝑎𝑒𝑙𝑡𝑣
𝑠

𝑡𝑣

+ ∑ ∑ ∑ 𝐷𝑃𝑗𝑙 × 𝑌3𝑎𝑗𝑙𝑡𝑣
𝑠

𝑎𝑙𝑗

+ ∑ ∑ ∑ 𝐷𝐻𝑙ℎ × 𝑌4𝑙ℎ𝑡𝑣
𝑠

𝑎ℎ𝑙

)) 

Besides, constraint (32) is nonlinear due to the existence of the decision variables in the denominator of 

the fractions. By defining integer variables 𝑋1𝑣𝑡
𝑠 , 𝑋2𝑣𝑡

𝑠 , 𝑋3𝑣𝑡
𝑠  & 𝑋4𝑣𝑡

𝑠  this constraint can be replaced by set 

of constraints (45) to (50). 

(45) ∑ ∑ ∑ ∑ ∑ 𝑄𝑀𝑎𝑔𝑣𝑧𝑝𝑙𝑡
𝑠

𝑙𝑝𝑧𝑔𝑎

𝐶𝑎𝑝𝑉𝑣
≤ 𝑋1𝑣𝑡

𝑠  

(46) ∑ ∑ ∑ ∑ 𝑄𝑇𝑎𝑔𝑣𝑒𝑙𝑡
𝑠

𝑙𝑒𝑔𝑎

𝐶𝑎𝑝𝑉𝑣
≤ 𝑋2𝑣𝑡

𝑠  

(47) ∑ ∑ ∑ ∑ 𝑄𝑃𝑎𝑔𝑣𝑗𝑙𝑡
𝑠

𝑙𝑗𝑔𝑎

𝐶𝑎𝑝𝑉𝑣
≤  𝑋3𝑣𝑡

𝑠  

(48) ∑ ∑ ∑ 𝑄𝑊𝐻𝑔𝑙ℎ𝑡
𝑠 + ∑ ∑ ∑ ∑ 𝑄𝐶𝐻𝑘𝑔𝑙ℎ𝑡

𝑠
ℎ𝑙𝑔𝑘ℎ𝑙𝑔

𝐶𝑎𝑝𝑉𝑣
≤ 𝑋4𝑣𝑡

𝑠   

(49) 𝑋1𝑣𝑡
𝑠 + 𝑋2𝑣𝑡

𝑠 + 𝑋3𝑣𝑡
𝑠 + 𝑋4𝑣𝑡

𝑠 ≤ 𝑛𝑢𝑚𝑣                                                                                           

(50) 𝑋1𝑣𝑡
𝑠 , 𝑋2𝑣𝑡

𝑠   ,  𝑋3𝑣𝑡
𝑠 , 𝑋4𝑣𝑡

𝑠 ≥ 0 & 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 

4.2.  Robust optimization 

In real-world problems, uncertainty is common in parameters. Incomplete, erroneous, or missing data 

in various applications contribute to this uncertainty. The robust optimization strategy is employed to solve 

this problem, with the goal of producing solutions that are less sensitive to input data uncertainty and 

continue to be close to the optimal solution (Jabbarzadeh et al., 2014). The robust optimization approach, 

as proposed by Mulvey et al. (1995), introduces two types of stability, which are described as follows: 

• Robustness of the solution, or how close it comes to the optimal solution in all scenarios. 

• Model robustness, a solution that is ‘almost’ feasible in all scenarios. 

      According to the contents of the robust optimization method, due to the existence of uncertain 

parameters such as the demand of the affected area, in this section we will use Mulvey's robust method. 

The blood supply chain network model's objective functions will be changed as equations (51) and (52). 

The first two terms of the objective function ( 𝑍1) show solution robustness, and the last two terms show 

model robustness. 

 

(51) 
𝑚𝑖𝑛 𝑍1 = ∑ 𝜋𝑠

𝑠∈𝑆

𝐹1
𝑠 + 𝜆 ∑ 𝜋𝑠

𝑠∈𝑆

(𝐹1
𝑠 − ∑ 𝜋𝑠′

𝑠′∈𝑆

𝐹1
𝑠′

+ 2𝜃1
𝑠) + ∑ ∑ ∑ 𝜋𝑠𝐵𝑆𝑊𝑔𝑡

𝑠

𝑔𝑡𝑠

 

+ ∑ ∑ ∑ ∑ 𝜋𝑠𝐵𝑆𝐶𝑔𝑘𝑡
𝑠

𝑘𝑔𝑡𝑠

 

(52) 
𝑚𝑖𝑛 𝑍2 = ∑ 𝜋𝑠

𝑠∈𝑆

𝐹2
𝑠 + 𝜆 ∑ 𝜋𝑠

𝑠∈𝑆

(𝐹2
𝑠 − ∑ 𝜋𝑠′

𝑠′∈𝑆

𝐹2
𝑠′

+ 2𝜃2
𝑠) 



      Constraints (53) to (55) are added to the problem model. 

(53) 𝐹1
𝑠 − ∑ 𝜋𝑠′𝐹1

𝑠′
+ 𝜃1

𝑠 ≥ 0            

𝑠′∈𝑆

  

(54) 𝐹2
𝑠 − ∑ 𝜋𝑠′𝐹2

𝑠′
+ 𝜃2

𝑠 ≥ 0              

𝑠′∈𝑆

  

(55) 𝜃1
𝑠, 𝜃2

𝑠 ≥ 0                  

4.3. Conversion to a single-objective model 

    The ε-constraint method is a powerful optimization technique used to transform a multi-objective 

model, as discussed in Section 3, into a single-objective model. This method was first introduced by 

Haimes (1971) and has since become a well-regarded approach for addressing multi-objective 

optimization problems. In the ε-constraint method, multiple objective functions are handled by 

converting all but one into constraints. Specifically, one objective function is selected as the primary 

objective, while the remaining objectives are incorporated into the constraint set of the model. By doing 

so, the method aims to find a solution that satisfies the additional objectives within specified bounds, 

denoted by ε-values. A notable limitation of the ε-constraint method is its inability to guarantee the 

efficiency of the solutions obtained. This can sometimes lead to what are known as weakly efficient 

solutions, where the solutions may not be optimal in the context of all objectives (Chankong and Y. Y. 

Haimes, 1983). Despite this drawback, the method remains widely used due to its simplicity and 

effectiveness in many practical scenarios. 

     In the context of this paper, the primary objective function is the total cost of the network, which 

remains our main objective based on the problem's main goal, while the second objective function, 

delivery time, is treated as a constraint within the problem formulation. By doing this, we ensure that 

the solution meets the delivery time requirements while optimizing the main objective. Thus, the bi-

objective model is converted into a single-objective model, and the results are represented through a 

Pareto front, illustrating the trade-offs between the cost and delivery time. 

(56) 
            𝑚𝑖𝑛 𝑍1 = (∑ 𝜋𝑠

𝑠∈𝑆

𝐹1
𝑠 + 𝜆 ∑ 𝑝𝑠

𝑠∈𝑆

(𝐹1
𝑠 − ∑ 𝜋𝑠′

𝑠′∈𝑆

𝐹1
𝑠′

+ 2𝜃1
𝑠) + ∑ ∑ ∑ 𝜋𝑠𝐵𝑆𝑊𝑔𝑡

𝑠

𝑔𝑡𝑠

+ ∑ ∑ ∑ ∑ 𝜋𝑠𝐵𝑆𝐶𝑔𝑘𝑡
𝑠

𝑘𝑔𝑡𝑠

) − 𝑒𝑝𝑠(𝑠2)   

(57) 
            𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    ∑ 𝜋𝑠

𝑠∈𝑆

𝐹2
𝑠 + 𝜆 ∑ 𝜋𝑠

𝑠∈𝑆

(𝐹2
𝑠 − ∑ 𝜋𝑠′

𝑠′∈𝑆

𝐹2
𝑠′

+ 2𝜃2
𝑠) + 𝑠2 = 𝜀 

And constraints: (10) - (31), (33) - (38), (39) - (43), (45) - (50) and (53) - (55) 

where 𝑒𝑝𝑠 is a sufficiently small number (generally between 10−3 and 10−6). 

4.4. Solving the single-objective model 

       The final proposed mathematical model is a mixed-integer programming model for designing the blood 

supply chain network in disaster. Since the supply chain network design problem is NP-hard (Gourdin et 

al., 2000), the bi-objective problem discussed in this paper is also NP-hard. Therefore, it is impossible to 

find the optimal solution in huge dimensions in an acceptable amount of time. In the following, we will 

present a two phases heuristic solution method based on the Lagrangian-relaxation approach to solve the 

problem. 

https://thesaurus.yourdictionary.com/sufficiently


4.4.1. Phase 1: A Lagrangian relaxation approach 

One of the most common and efficient techniques for solving models with complex constraints is the 

Lagrangian relaxation (𝐿𝑅) method. Farrokhizadeh et al. (2022) and Cui et al., (2016) are among researches 

who have used the Lagrangian relaxation method in supply chain management.  

Relaxing complex constraints method seeks to alleviate the complexity of constraints by incorporating 

them as penalties within the objective function, thereby eliminating them from the set of constraints 

(Wolsey, 1998). Lagrangian relaxation method simplifies the problem and make it easier to solve than the 

original. However, a relaxed solution may be infeasible. Nonetheless, it establishes a lower bound for 

minimization and an upper bound for maximization, offering insights into the feasible solution space. 

Choosing which constraints to relax is crucial and affects performance. Utilizing the dual of the 

corresponding constraints in the linear programming relaxation is a popular method for determining the 

initial weight of dualized constraints in Lagrangian relaxation. This method is based on the observation that 

the dual variables in the LP relaxation give an estimate of how sensitive the objective function is to changes 

in the related constraints. Therefore, it is possible to ensure that the Lagrangian relaxation yields a good 

lower bound on the ideal solution by employing the dual variables as initial weights. Dual variables are 

chosen as starting weights under the assumption that the LP relaxation is tight, which is not necessarily the 

case(Fisher, 1981). 

        In one specific instance selected to be tested to choose complex constraints, the run time without 

relaxing any constraints is 9720 seconds. The runtimes and the optimality gaps of various relaxations for 

this instance are shown in Table 2.  To identify which constraints should be relaxed for applying the 

Lagrangian Relaxation method, a three-step process was followed. First, each constraint was individually 

relaxed, and the results indicated that only constraints 28, 33, and 34 reduced the runtime by over 50%. 

These constraints were then selected for further examination as complex constraints. 

       In the second step, the selected constraints were evaluated with their Lagrangian multiplier dual 

variables, initially setting these variables to zero. As shown in Table 2, relaxing constraints 33 and 34 

simultaneously led to a nearly 98% reduction in runtime, although it resulted in a 59% gap from the optimal 

solution. 

       Finally, in the third step, the initial values of the Lagrangian multiplier dual variables were set to the 

dual values of the relaxed constraints. Table 2 demonstrates that this approach not only reduced the runtime 

by approximately 90% but also brought the gap close to zero. This confirms that constraints 33 and 34 are 

the most suitable choices for relaxation. 

Table 2 

Results of the complex constraint selection approach 

Source: Created by Authors 

Lagrangian multiplier dual variable 

Constraint number 
Setting initial value to 0 

 

Setting initial value to dual of relaxed constraints 

Gap% Run time (S) Gap% Run time (S) 

28 37 2390 0.06 3900 

33 39 1789  0.00 2670 

34 41 1187  0.00 2280 

28&33 47 657  0.00 1500 

28&34 49 732  0.06 3560 

33&34 59 201  0.00 960 



Since the constraints (33) and (34) are equality equations, the Lagrangian coefficients 𝑢𝑔𝑙𝑡
𝑠  and 𝜗𝑘𝑔𝑙𝑡

𝑠  

are free in the sign. Additionally, if the relaxed model's solution is feasible, it means that the obtained 

solution is an optimal solution for the original problem (Wolsey, 1998). Otherwise, the obtained solution 

provides a lower bound for the main problem.  

The Lagrangian relaxation algorithm first sets the values of the Lagrangian coefficients to a positive 

value. These coefficients are updated on each iteration of the algorithm. In this study, the Sub-gradient 

method (Fisher, 1981) is used to update the Lagrangian coefficients. In this method, Lagrangian coefficients 

are updated according to the Eqs. (60) and (61). 

With the relaxation of these two constraints, the dual Lagrange problem would be as follows. 

Subject to Constraints  (10) - (31), (33) - (38), (39) - (43), (45) - (50), (53) - (55) and (57) 

The Lagrangian coefficients 𝑢𝑔𝑙𝑡
𝑠  and 𝜗𝑘𝑔𝑙𝑡

𝑠  for different iterations 𝑛 will be updated as follows: 

(59) 
𝑢𝑔𝑙𝑡

𝑛+1.𝑠 = 𝑢𝑔𝑙𝑡
𝑛.𝑠 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒1𝑛(𝐼𝑛𝑣𝑔𝑙𝑡−1

𝑠 − 𝑖𝑛𝑔𝑙𝑡
𝑠 + 𝑄𝑊𝑔𝑙𝑡

𝑠 − ∑ ∑ 𝑄𝑊𝐻𝑔𝑣𝑙ℎ𝑡
𝑠

ℎ𝑣 )    

The superscript 𝑛 represents the number of iterations. 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒1𝑛 and 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒2𝑛 are also calculated 

through equations (61) and (62). 

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒1𝑛

=
𝜃𝑛(𝑍∗ − 𝑍𝐷(𝑢𝑛))

∑ ∑ ∑ ∑ (𝐼𝑛𝑣𝑔𝑙𝑡−1
𝑠 − 𝐼𝑛𝑣𝑔𝑙𝑡

𝑠 + 𝑄𝑊𝑔𝑙𝑡
𝑠 − ∑ ∑ 𝑄𝑊𝐻𝑔𝑣𝑙ℎ𝑡

𝑠
ℎ𝑣𝑠𝑡𝑙𝑔 )2

                                                                    (61) 

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒2𝑛

=
𝜃𝑛(𝑍∗ − 𝑍𝐷(𝑢𝑛))

∑ ∑ ∑ ∑ ∑ (𝐼𝑛𝑙𝑘𝑔𝑙𝑡−1
𝑠 − 𝐼𝑛𝑙𝑘𝑔𝑙𝑡

𝑠 + 𝑄𝐶𝑘𝑔𝑙𝑡
𝑠 − ∑ ∑ 𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡

𝑠
ℎ𝑣𝑠𝑡𝑙𝑔𝑘 )2

                                                           (62) 

In these equations, 𝑍∗ is the best upper bound obtained, and 𝑍𝐷(𝑢𝑛) is the lower bound obtained in the 

𝑛𝑡ℎ iteration. If no improvement is made in the value of 𝑍𝐷(𝑢𝑛) after some iterations, the value of θ will 

be halved.  

The best lower bound value will be updated if the lower bound acquired in each iteration is higher than 

the best lower bound obtained in the prior iterations. When the algorithm encounters one of the following 

stopping situations, the lower bound generation process will cease: 

• The number of iterations reaches a specific number (𝐼𝑡𝑒𝑟) 

• The difference of the lower bound and the known upper bound (if available) reaches a specific gap (𝛿) 

• 𝜃𝑗 reaches a specific limit  

4.4.2.    Phase 2: A heuristic approach based on Lagrangian relaxation 

(58) 

𝑚𝑖𝑛   𝑍𝐷(𝑢𝑔𝑙𝑡
𝑠 . 𝜗𝑘𝑔𝑙𝑡

𝑠 ) = 𝑍1

+ (∑ ∑ ∑ ∑ 𝑢𝑔𝑙𝑡
𝑠 (𝐼𝑛𝑣𝑔𝑙𝑡−1

𝑠 − 𝐼𝑛𝑣𝑔𝑙𝑡
𝑠 + 𝑄𝑊𝑔𝑙𝑡

𝑠 − ∑ ∑ 𝑄𝑊𝐻𝑔𝑣𝑙ℎ𝑡
𝑠

ℎ𝑣𝑠𝑡𝑙𝑔

))

+ (∑ ∑ ∑ ∑ ∑ 𝜗𝑘𝑔𝑙𝑡
𝑠 (𝐼𝑛𝑙𝑘𝑔𝑙𝑡−1

𝑠 − 𝐼𝑛𝑙𝑘𝑔𝑙𝑡
𝑠 + 𝑄𝐶𝑘𝑔𝑙𝑡

𝑠

𝑠𝑡𝑙𝑔𝑘

− ∑ ∑ 𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡
𝑠

ℎ𝑣

)) 

(60) 𝜗𝑘𝑔𝑙𝑡
𝑛+1.𝑠 = 𝜗𝑘𝑔𝑙𝑡

𝑛.𝑠 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒2𝑛(𝐼𝑛𝑙𝑘𝑔𝑙𝑡−1
𝑠 − 𝐼𝑛𝑙𝑘𝑔𝑙𝑡

𝑠 + 𝑄𝐶𝑘𝑔𝑙𝑡
𝑠 − ∑ ∑ 𝑄𝐶𝐻𝑘𝑔𝑣𝑙ℎ𝑡

𝑠
ℎ𝑣 )  



The heuristic method based on Lagrangian relaxation is utilized when the obtained solution is infeasible. 

It aims to find a feasible solution iteratively by adjusting a subset of variables treated as parameters. Once 

the relaxed model is solved, all integer and binary variables are determined. In case of infeasibility, the 

algorithm selectively fixes a subset of variables as known parameters to identify a feasible solution. Two 

indicators, namely CPU time and gap from the optimal value, are used to determine the most promising 

subset of fixed variables. These indicators help strike a balance between computational efficiency and 

solution quality. Table 3 presents the results of this analysis on a numerical example with the optimal 

objective function 1.791E+15. First, all variables are fixed to determine both solution time and distance 

from the optimal solution. Since by fixing all the variables, the obtained solution is far from the optimal 

value, a subset of variables is fixed to find an acceptable combination. The feasible solution obtained by 

simultaneously fixing the variables 𝐿𝑀𝑧𝑝𝑡
𝑠  and 𝐿𝑇𝑒

𝑠 , which has no gap from the optimal solution and 

acceptable run time. Hence, these variables are selected to be fixed, and the obtained mixed integer 

programming problem will be solved. 

Table 3 

Results of the variable selection approach to be fixed. 

Source: Created by Authors 

CPU time 

(seconds) 

%Gap from the 

optimal value 

Value of objective function 

from fixing variables 
Fixed variables 

0.234 31.81 2.36E15 By fixing all variables 

0.310 31.81 2.36E15 
𝐿𝑀𝑧𝑝𝑡

𝑠 , 𝐿𝑇𝑒
𝑠, 𝐸𝐵𝑙 , 𝑇𝑀𝑧𝑖𝑝𝑡

𝑠 , 

𝑊𝑎𝑝𝑧𝑡
𝑠 ,𝑜𝑎𝑒𝑡

𝑠 ,𝑑𝑎𝑗𝑡
𝑠 ,𝑦1𝑎𝑧𝑝𝑣𝑙𝑡

𝑠 , 𝑦2𝑎𝑒𝑣𝑙𝑡
𝑠 , 𝑦3𝑎𝑗𝑣𝑙𝑡

𝑠 , 𝑦4ℎ𝑣𝑙𝑡
𝑠  

0.789 5.97 1.89E15 𝐿𝑀𝑧𝑝𝑡
𝑠 , 𝐿𝑇𝑒

𝑠, 𝐸𝐵𝑙 , 𝑇𝑀𝑧𝑖𝑝𝑡
𝑠 , 𝑊𝑎𝑝𝑧𝑡

𝑠 , 𝑜𝑎𝑒𝑡
𝑠 , 𝑑𝑎𝑗𝑡

𝑠  

1.934 1.79 1.82E15 𝐿𝑀𝑧𝑝𝑡
𝑠 , 𝐿𝑇𝑒

𝑠, 𝐸𝐵𝑙 , 𝑇𝑀𝑧𝑖𝑝𝑡
𝑠  

2.356 0.39 1.79E15 𝐿𝑀𝑧𝑝𝑡
𝑠 , 𝐿𝑇𝑒

𝑠, 𝑇𝑀𝑧𝑖𝑝𝑡
𝑠  

2.489 0.00 1.79E15 𝐿𝑀𝑧𝑝𝑡
𝑠 , 𝐿𝑇𝑒

𝑠 

5. Computational studies 

In this part, first, a computational study is performed to assess the efficiency of the Lagrangian based 

heuristic algorithm. The models and algorithms were coded in GAMS 24.1.2 and solved by the Cplex solver 

on a computer with Intel Core i7, 4GHz, and 45GB of RAM. By changing the number of donor groups, 

collection facilities, blood centers, vehicles, demand points, periods, and scenarios, different datasets were 

randomly generated. The dimensions of these datasets are shown in Table 4. Regarding the Lagrangian 

relaxation approach parameters, by testing various values, the greatest number of iterations (𝐼𝑡𝑒𝑟) is 

considered 5 and the initial value of 𝜃 is 2. If the best lower bound obtained after one iteration does not 

improve, the value of this parameter is halved. This process continues until the value of 𝜃 reaches 0.5. The 

initial values of the Lagrangian coefficients  𝑢𝑔𝑙𝑡
𝑠  and 𝜗𝑘𝑔𝑙𝑡

𝑠  are set to 10−3 and 𝛿 is equal to 0. 

Table 4  

Generated datasets. 

Source: Created by Authors 



|𝑺| |𝑻| |𝑯| |𝑮| |𝑲| |𝑽| |𝑳| |𝒁| |𝑷| |𝑬| |𝑱| |𝑨| Datasets 

1 1 1 8 3 1 1 5 5 6 6 1 1 

1 1 3 8 3 3 3 7 7 7 7 3 2 
1 1 3 8 3 4 3 8 8 8 8 3 3 

1 1 3 8 3 4 3 9 9 8 8 3 4 
2 1 3 8 3 4 3 7 7 9 9 3 5 
2 2 4 8 3 4 3 9 9 9 9 4 6 
2 2 4 8 3 4 3 10 10 9 9 4 7 

2 2 5 8 3 4 4 11 11 10 10 6 8 
3 3 6 8 3 4 5 10 10 10 10 7 9 
3 4 5 8 3 4 4 10 10 10 10 8 10 
3 4 6 8 3 4 5 10 10 10 10 7 11 

3 4 10 8 3 4 5 10 10 10 10 10 12 
3 4 8 8 3 5 8 12 12 12 10 10 13 
3 4 10 8 3 5 8 15 15 15 15 10 14 

3 4 10 8 3 5 10 15 15 15 15 15 15 

The solution values to obtain Pareto front for 15 datasets are given in Table 4. The objective function 

value that was determined by utilizing the CPLEX solver is displayed in the second column of the following 

table. 𝐿𝑅 represents the lower bounds obtained by the Lagrangian relaxation method, and 𝐿𝑅𝐻 shows the 

values of the objective function of the heuristic method. Further, %𝐺𝐴𝑃𝐶𝑃𝐿𝐸𝑋 calculates the gap between 

𝐶𝑃𝐿𝐸𝑋 and 𝐿𝑅 through  
𝐶𝑃𝐿𝐸𝑋−𝐿𝑅

𝐶𝑃𝐿𝐸𝑋
× 100. Similarly, %𝐺𝐴𝑃𝐿𝑅𝐻 computes the gap between 𝐿𝑅 and 𝐿𝑅𝐻 

through 
𝐿𝑅𝐻−𝐿𝑅

𝐿𝑅𝐻
× 100. 

The run times for 𝐶𝑃𝐿𝐸𝑋 solver, the Lagrangian relaxation algorithm, and the Lagrangian heuristic are 

represented by 𝐶𝑃𝑈𝑇𝐶𝑃𝐿𝐸𝑋, 𝐶𝑃𝑈𝑇𝐿𝑅, and 𝐶𝑃𝑈𝑇𝐿𝑅𝐻  respectively. These times are the total time taken to 

obtain 10 Pareto points. It should be noted that none of the lower bound solutions (𝐿𝑅) were feasible. These 

solutions will be considered as input for the Lagrangian heuristic approach (𝐿𝑅𝐻). 

Table 5  

The numerical results for all datasets. 

Source: Created by Authors 

𝑪𝑷𝑼𝑻𝑳𝑹𝑯 𝑪𝑷𝑼 𝑻𝑳𝑹 𝑪𝑷𝑼 𝑻𝑪𝒑𝒍𝒆𝒙 %𝑮𝑨𝑷𝑳𝑹𝑯 %𝑮𝑨𝑷𝑪𝒑𝒍𝒆𝒙 𝑳𝑹𝑯 𝑳𝑹 𝑪𝒑𝒍𝒆𝒙 Datasets 

00:00:06 00:00:11 00:01:04 <0.0001 <0.0001 4.98E15 4.98E15 4.98E15 1 

00:00:06 00:00:16 00:02:32 <0.001 <0.0001 1.78E15 1.78E15 1.78E15 2 

00:00:08 00:00:15 00:02:45 <0.0001 <0.0001 2.84E15 2.84E15 2.84E15 3 

00:00:10 00:00:12 00:03:17 <0.002 <0.0001 2.68E15 2.67E15 2.67E15 4 

00:03:20 00:05:19 00:59:49 <0.0001 <0.0001 1.79E15 1.79E15 1.79E15 5 

00:04:58 00:07:10 01:20:13 <0.0001 <0.0001 2.92E15 2.92E15 2.92E15 6 

00:05:23 00:11:34 03:43:18 <0.0001 <0.0001 2.94E15 2.94E15 2.94E15 7 

00:06:31 00:19:02 06:10:51 <0.0001 <0.0001 5.92E15 5.92E15 5.92E15 8 

00:17:20 02:47:32 38:19:33 <0.0001 <0.0001 8.18E15 8.18E15 8.18E15 9 

01:50:09 03:30:16 84:00:49 <0.0001 <0.0001 8.04E15 8.04E15 8.04E15 10 

02:34:45 03:57:19 183:03:39 <0.0001 <0.0001 1.04E16 1.04E16 1.04E16 11 

03:10:40 04:30:09 238:26:20 0.114 <0.0001 1.06E16 1.06E16 1.06E16 12 

05:28:23 07:10:02 - 0.67 - 7.66E15 7.61E15 - 13 

06:10:18 08:19:26 - 0.71 - 7.67E15 7.62E15 - 14 

06:10:25 09:40:16 - 2.48 - 1.32E16 1.28E16 - 15 

01:44:11 02:42:36 46:21:11 0.28 <0.0001    Average 



As shown in Table 5, the Lagrangian heuristic approach is superior to the 𝐶𝑃𝐿𝐸𝑋 solver in terms of 

time. In datasets 1 to 7 (i.e., small and medium sizes), the average gap between the objective function value 

obtained by the Lagrangian heuristic approach and the solution obtained by solving the problem by the 

𝐶𝑃𝐿𝐸𝑋 solver is less than 0.0001%. Moreover, in these datasets, the average gap between values of 

objective function that were solved by the heuristic approach and the lower bounds is also less than 

0.0001%. By growing the problem size, in dataset twelve, 𝐶𝑃𝐿𝐸𝑋 created the Pareto front after elapsing 

238 hours. This 𝐶𝑃𝑈 time is not reasonable. In comparison, the Lagrangian heuristic solves the problem 

more efficiently and reaches %𝐺𝐴𝑃𝐿𝑅𝐻 = 0.114 within approximately 7 hours (the time to obtain the lower 

bounds is included). In addition, in large sizes (i.e., datasets 13 to 15), the 𝐶𝑃𝐿𝐸𝑋 solver cannot solve 

problems at a reasonable time. In comparison, the heuristic algorithm can provide the Pareto front with 

near-optimal solutions in acceptable times. 

5.1. Sensitivity analysis 

From the problems generated in the previous section, three datasets with different sizes are selected for 

sensitivity analysis, as shown in Table 6. 

Table 6 

Features of the three datasets utilized in each experiment. 

Source: Created by Authors 

|𝑺| |𝑻| |𝑯| |𝑮| |𝑲| |𝑽| |𝑳| |𝒁| |𝑷| |𝑬| |𝑱| |𝑨| Dataset  

2 2 5 8 3 4 4 11 11 10 10 6 1 
3 3 6 8 3 4 5 10 10 10 10 7 2 
3 4 5 8 3 4 4 10 10 10 10 8 3 

Initially, the Pareto front for three problems which were solved by the heuristic method can be seen in 

Figure 2. 

 
Fig.2. Pareto front of three datasets 

Source: Created by Authors 

5.1.1. Sensitivity analysis on the referral rate (𝛽𝑡) by fixing ɛ 

This section examines the effect of changes in referral rates and allowable blood delivery times (ɛ) on 

supply chain network costs. The results of this analysis are presented in Table 7 and Fig. 3. 

Table 7  

Results from the simultaneous effect of referral rate (𝛽𝑡) and delivery time (ɛ) on supply chain costs 

Source: Created by Authors 
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𝑮𝑨𝑷% 𝑳𝑹𝑯 𝑳𝑹 ɛ 𝜷𝒕 dataset 

0.00 5.574E15 5.57E15 41286800 (0.1,0.1) 1 
0.00 2.95E15 2.95E15 82573600 (0.2,0.2)  
0.00 1.36E15 1.36E15 123860400 (0.3,0.3)  
0.00 9.01E14 9.01E14 165147200 (0.4,0.4)  
0.00 6.93E14 6.93E14 206434000 (0.5,0.5)  
0.00 6.61E14 6.61E14 247720800 (0.6,0.6)  
0.00 5.75E14 5.75E14 330294400 (0.7,0.7)  
0.00 9.01E14 9.01E14 371581200 (0.8,0.8)  
0.00 2.83E15 2.83E15 412868000 (0.9,0.9)  
0.00 5.49E15 5.49E15 71899680 (0.1,0.1, 0.1) 2 
0.00 2.99E15 2.99E15 143799360 (0.2,0.2,0.2)  
0.00 1.61E15 1.61E15 215699040 (0.3,0.3,0.3)  
0.00 7.69E14 7.69E14 287598720 (0.4,0.4,0.4)  
0.00 2.71E14 2.71E14 359498400 (0.5,0.5,0.5)  
0.00 1.31E14 1.31E14 431398080 (0.6,0.6,0.6)  
0.00 4.33E14 4.33E14 503297760 (0.7,0.7,0.7)  
0.00 7.88E14 7.88E14 647097120 (0.8,0.8,0.8)  
0.00 2.94E15 2.94E15 718996800 (0.9,0.9,0.9)  
0.00 7.13E15 7.13E15 78297910 (0.1,0.1, 0.1,0.1) 3 
0.00 4.97E15 4.97E15 156595820 (0.2,0.2,0.2,0.2)  
0.00 3.45E15 3.45E15 234893730 (0.3,0.3,0.3,0.3)  
0.00 1.94E15 1.94E15 313191640 (0.4,0.4,0.4,0.4)  
0.00 1.88E15 1.88E15 391489550 (0.5,0.5,0.5,0.5)  
0.00 1.79E15 1.79E15 469787460 (0.6,0.6,0.6,0.6)  
0.00 2.03E15 2.03E15 548085370 (0.7,0.7,0.7,0.7)  
0.00 3.02E15 3.02E15 626383280 (0.8,0.8,0.8,0.8)  
0.00 4.85E15 4.85E15 782979100 (0.9,0.9,0.9,0.9)  

  The numerical results indicate that increasing the delivery time (ɛ) leads to a decrease in supply chain 

network costs for all three datasets. This means that as the delivery time of blood decreases, network costs 

increase to meet the demand more quickly and efficiently. The study also examines different referral rates 

(𝛽𝑡) during different periods. It is observed that network costs are influenced by the referral rate or the 

proportion of unhealthy collected blood. Figure 4 demonstrates that initially, network costs decrease with 

the simultaneous increase of 𝛽𝑡  and ɛ. However, eventually, the effect of 𝛽𝑡becomes dominant, preventing 

further reductions in network costs. This results in a shift from a decreasing trend to an increasing trend. 

An increase in 𝛽𝑡 signifies challenges in the supply of healthy blood within the network. Consequently, 

additional facilities need to be established to ensure the supply of healthy blood and eliminate shortages. In 

some cases, a portion of the demand may have to be met at a higher cost from the backup supplier. 
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Fig.3. Simultaneous effect of delivery time (ɛ) and referral rate (𝛽𝑡) on supply chain cost for datasets1 to 3 

Source: Created by Authors 

5.1.2. Sensitivity analysis on the referral rate (𝛽𝑡) by fixing cost 

Considering the budget constraint and assuming a fixed value of the total costs of the supply chain (i.e., 

the first objective function), Table 8 shows the effect of increasing the referral rate on blood delivery 

performance or delivery time (i.e., the second objective function). It is observed that with increasing the 

referral rate and decreasing the volume of healthy blood, the delivery time also increases. By increasing the 

referral rate from 0.1 to 0.9, the delivery times of the first and the second datasets have increased by 421% 

and in the third dataset by 415%. The reason is that due to budget constraints, fewer facilities can be 

allocated to donors, and the facilities will be in inappropriate locations. Also, for the transfer of whole blood 

and blood components, it is necessary to use vehicles with lower cost and consequently less capacity. All 

these constraints will degrade the delivery time performance. 

Table 8 

The effect of a variable referral rate (𝛽𝑡) on delivery time (ɛ) for a fixed supply chain cost. 

Source: Created by Authors 

dataset 3  dataset 2  dataset 1 

Time 

difference 

Delivery 

time 

Referral rate  Time 

difference 

Delivery 

time 

Referral rate  Time 

difference 

Delivery 

time 

Referral 

rate 

- 78297910 (0.1,0.1, 0.1,0.1)  - 71899680 (0.1,0.1, 0.1)  - 41286800 (0.1,0.1) 

6.2 83200633 (0.2,0.2,0.2,0.2)  7.7 77481366 (0.2,0.2,0.2)  6.5 44003036 (0.2,0.2) 

14 89745680 (0.3,0.3,0.3,0.3)  15 82711661 (0.3,0.3,0.3)  15 47495341 (0.3,0.3) 

25 98472409 (0.4,0.4,0.4,0.4)  26 90820648 (0.4,0.4,0.4)  26 52151747 (0.4,0.4) 

41 110689829 (0.5,0.5,0.5,0.5)  42 102173229 (0.5,0.5,0.5)  42 58670715 (0.5,0.5) 

64 129015960 (0.6,0.6,0.6,0.6)  65 119202101 (0.6,0.6,0.6)  65 68449168 (0.6,0.6) 

103 159559511 (0.7,0.7,0.7,0.7)  105 147583553 (0.7,0.7,0.7)  105 84746589 (0.7,0.7) 

181 220646614 (0.8,0.8,0.8,0.8)  184 204346459 (0.8,0.8,0.8)  184 117341432 (0.8,0.8) 

415 403907922 (0.9,0.9,0.9,0.9)  421 374635176 (0.9,0.9,0.9)  421 215125960 (0.9,0.9) 

5.1.3.  Sensitivity analysis on the number of vehicles  

      Timely transportation is crucial for perishable blood and components between collection facilities, 

blood centers, and hospitals. Various vehicle types enhance transportation efficiency. Table 9 shows the 

impact of vehicle numbers on meeting demand in the supply chain network for the three datasets 

Table 9 

Total vehicles impact supply chain cost and supplied demand. 

Source: Created by Authors 
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1  - 6% 0%  - 4% 3%  - 6% 0 

5  77.17% 30% 0%  4.5% 28% 8%  8.3% 31% 0 

10  90.2% 61% 0%  9.3% 58% 18%  16.4% 53% 10% 

15  99.9% 89% 4%  14% 74% 31%  39% 75% 15% 

20  99.93% 100% 30%  18.9% 94% 41%  43.5% 96% 19% 

25  99.96% 100% 62%  21.75% 100% 59%  44.2% 100% 50% 

30  99.96% 100% 74%  23.2% 100% 76%  47.4% 100% 72% 

35  99.96% 100% 92%  24.1% 100% 89%  49.9% 100% 81% 

40  99.96% 100% 94%  26.6% 100% 95%  51.3% 100% 86% 

45  99.96% 100% 96.4%  30.3% 100% 100%  51.8% 100% 92% 

50  99.96% 100% 96.8%  30.3% 100% 100%  51.8% 100% 97% 

55  99.96% 100% 100%  30.3% 100% 100%  51.8% 100% 100% 

60  99.96% 100% 100%  30.3% 100% 100%  51.8% 100% 100% 

    Insufficient vehicles for transportation can disrupt the transfer of whole blood and its components, 

necessitating sourcing from backup suppliers at higher costs. Increasing the total number of vehicles 

improves the proportion of demand met within the network and reduces overall supply chain costs. This 

trend continues until a certain level is reached, where all demands are fulfilled within the network. For 

example, in the first data set, increasing the number of vehicles from 1 to 5 results in a 77% cost reduction, 

and this trend persists up to 25 vehicles per type. Beyond this point, the demand, supply, and costs become 

independent of the number of vehicles, and further increases have no impact. Figures 4 and 5 illustrate these 

findings. The best fleet size can be established by considering the fixed costs related to each type of vehicle. 

 

Fig. 4. The effect of the number of vehicles (𝑁𝑢𝑚𝑣) on the supply chain costs 

Source: Created by Authors 
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Fig. 5. The impact of the number of vehicles (𝑁𝑢𝑚𝑣) on the percentage of blood supplied in the network 

Source: Created by Authors 

5.1.4. Conclusion of Sensitivity analysis   

   The integrated analysis of delivery times, referral rates, and vehicle numbers reveals a complex interplay 

crucial for optimizing blood supply chains. Increasing delivery times initially reduces network costs, 

suggesting that extending the time frame for blood delivery can lower operational expenses. However, this 

benefit diminishes when the demand for faster delivery escalates, leading to higher costs. Concurrently, 

higher referral rates, indicative of a greater proportion of unhealthy blood, negatively impact network 

efficiency. This increase in referral rates not only elevates costs but also extends delivery times due to the 

need for additional facilities and less optimal resource allocation. 

     The analysis of vehicle numbers further illustrates the interconnectedness of these factors. Increasing 

the number of vehicles enhances the network’s capacity to meet demand and reduces costs, up to an optimal 

point. Beyond this threshold, additional vehicles no longer affect performance or cost significantly. This 

optimal fleet size must be balanced against the fixed costs of each vehicle type. Overall, these findings 

underscore the need for a holistic approach in managing blood supply chains. Effective optimization 

requires careful consideration of delivery times, referral rates, and transportation resources to maintain cost 

efficiency while ensuring timely and adequate supply. 

6. Implications for Research, Practice, and Society 

       This study represents a substantial advancement in disaster-oriented blood supply chain 

management, contributing to the research domain by addressing critical gaps in the literature. 

Specifically, it introduces a robust, bi-objective, and dynamic optimization model capable of 

handling multi-product supply chains and incorporating various facility types—permanent, 

temporary, and mobile—while accounting for uncertainties in supply, demand, costs, and 

capacities. From a research perspective, the use of robust optimization techniques and the 

development of heuristic methods, such as the Lagrangian relaxation approach, enhance 

computational efficiency and allow the model to address complex, large-scale scenarios 

effectively. These methodological advancements provide a foundation for future studies to explore 

additional dimensions, including vehicle routing optimization, infrastructure disruptions, and 

empirical validations through case studies in diverse disaster contexts. 
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       The model also has considerable practical implications. By minimizing both costs and delivery 

times, it provides a decision-support framework for optimizing resource allocation during disaster 

response, ensuring that organizations can meet urgent demands efficiently. Its incorporation of 

dynamic facility planning, reliance on backup suppliers, and robust strategies enhances the 

adaptability and resilience of the supply chain in the face of unpredictable challenges. Practitioners 

can utilize the insights from this study to improve operational efficiency, develop contingency 

plans, and train professionals in advanced humanitarian logistics. Moreover, the findings equip 

organizations with evidence-based tools to enhance their preparedness for disaster scenarios, 

ensuring timely and equitable delivery of critical resources. 

        The societal impact of this research is equally profound, as it emphasizes the equitable 

distribution of vital resources, particularly to underserved and high-risk regions. By improving the 

resilience and reliability of blood supply chains, the model contributes to reducing mortality and 

suffering during crises. It also highlights the necessity of fostering collaboration among key 

stakeholders, including government agencies, healthcare providers, and humanitarian 

organizations, to build robust and responsive disaster management systems. This work strengthens 

societal trust in emergency response mechanisms, reinforcing public confidence in the ability of 

systems to mitigate the impact of disasters on quality of life. 

       The findings are also particularly relevant for policymaking, given the role of government as 

a key stakeholder in humanitarian logistics. The study provides policymakers with a structured 

framework to guide investments in critical infrastructure, such as mobile collection units and blood 

centers, and to develop contingency plans involving backup suppliers. By offering robust methods 

to handle uncertainties and optimize resource allocation, the model aids in prioritizing funding and 

designing policies that align with broader public health goals. This integration of scientific 

evidence into decision-making ensures sustainable, resilient, and equitable disaster response 

systems capable of addressing the demands of complex emergencies. 

7. Conclusion  

    This study offers a significant contribution to disaster-oriented blood supply chain management by 

introducing a robust, bi-objective, and dynamic model. The model integrates multi-product handling, 

diverse facility types, and robust optimization to address uncertainties in supply, demand, costs, and 

capacities. The ε-constraint method is used to effectively balance trade-offs between minimizing costs and 

reducing delivery times. Additionally, in the solution phase, Lagrangian relaxation techniques are employed 

to enhance computational efficiency when solving complex problems. This combination helps to optimize 

the decision-making process while managing bi-objectives within the model. These advancements provide 

a valuable framework for managers, facilitating optimal resource allocation, enhancing pre- and post-

disaster planning, and ensuring timely blood delivery through robust systems that incorporate backup 

suppliers. The model and solution method presented in the paper offer valuable insights for policymakers 

and officials managing blood supply chain networks during crisis situations. 

    The paper proposes potential directions for future research. including the consideration of vehicle routing 

and accounting for infrastructure disruptions during disasters. Given the computational challenges posed 

by the large-scale mathematical programming models and the need for substantial processing memory, the 

authors recommend exploring heuristic methods to address problems in higher dimensions. Addressing 

these limitations will enhance the model's robustness and practical applicability, further bridging the gap 

between theoretical frameworks and real-world disaster management needs. 

     Moreover, to validate the proposed model, conducting a case study involving real-world disaster 

scenarios could significantly enhance its credibility and practicality. Specifically, improving earthquake 

impact assessments should involve accounting for fault characteristics and historical data to estimate 

seismic probabilities accurately. Research should also differentiate between day and night scenarios, as 



earthquakes at night—when people are less alert—can result in more severe injuries and higher blood 

demand compared to daytime events. 
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