

City, University of London Institutional Repository

Citation: Begum, M., Crossley, J., Strömbäck, F., Akrida, E., Alpizar-Chacon, I., Evans, A.,

Gross, J. B., Haglund, P., Lonati, V., Satyavolu, C. & et al (2025). A Pedagogical Framework
for Developing Abstraction Skills. 2024 Working Group Reports on Innovation and
Technology in Computer Science Education, pp. 258-299. doi: 10.1145/3689187.3709613

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35031/

Link to published version: https://doi.org/10.1145/3689187.3709613

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Pedagogical Framework for Developing Abstraction Skills
Marjahan Begum∗

University of Nottingham
Nottingham, United Kingdom
City St George’s, University of

London
London, United Kingdom

marjahan.begum@nottingham.ac.uk
marjahan.begum@city.ac.uk

Julia Crossley∗
City St George’s, University of

London
London, United Kingdom
julia.crossley.2@city.ac.uk

Filip Strömbäck∗
Linköping University
Linköping, Sweden

filip.stromback@liu.se

Eleni Akrida
Durham University

Durham, United Kingdom
eleni.akrida@durham.ac.uk

Isaac Alpizar-Chacon
Utrecht University

Utrecht, The Netherlands
i.alpizarchacon@uu.nl

Abigail Evans
University of York

York, United Kingdom
abi.evans@york.ac.uk

Joshua B. Gross
California State University Monterey

Bay
Seaside, CA, United States of America

jgross@csumb.edu

Pontus Haglund
Linköping University
Linköping, Sweden

pontus.haglund@liu.se

Violetta Lonati
Università degli Studi di Milano
Lab. CINI “Informatica e Scuola”

Milan, Italy
lonati@di.unimi.it

Chandrika Satyavolu
North Carolina State University

Raleigh, NC, United States of America
jsatyav@ncsu.edu

Sverrir Thorgeirsson
ETH Zürich

Zürich, Switzerland
sverrir.thorgeirsson@inf.ethz.ch

Abstract
Abstraction is a fundamental yet challenging skill to teach and
learn in Computer Science education. Traditional frameworks of
abstraction and concept formation often emphasize understanding
an abstraction over its application, the latter being critical for prac-
tical Computer Science. Additionally, a common issue in education
is when students may understand a concept in a classroom or a very
specific setting but struggle to apply it outside of that context. In
response, we present here a novel pedagogical framework designed
to enhance both the development and application of abstraction
skills in diverse educational contexts within the field of Computer
Science. Our framework synthesizes common themes from exist-
ing models while introducing a new dimension focused explicitly
on the actionable development of abstraction skills. Educators can
adapt the framework to various educational contexts to support
development of students’ abstraction skills. Our framework was
iteratively developed through a combination of theoretical analysis
and reflective practice across multiple teaching contexts.We demon-
strate the suitability of the framework by applying it to various case
studies, demonstrating its broad applicability and practical utility.

∗Leader

This work is licensed under a Creative Commons Attribution 4.0 International License.
ITiCSE-WGR 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1208-1/24/07
https://doi.org/10.1145/3689187.3709613

By offering a flexible yet comprehensive structure, our framework
enables educators to effectively organize and deliver educational
content, guiding students from abstract theoretical concepts to their
practical application in Computer Science.

CCS Concepts
• Social and Professional topics → Computing Education.

Keywords
abstraction, pedagogy, CS1 to CS3, educational frameworks, com-
putational thinking, algorithmic thinking, inferences, abstraction
skills, cognitive models, recursion, pointers, data structures, con-
currency, game theory
ACM Reference Format:
Marjahan Begum, Julia Crossley, Filip Strömbäck, Eleni Akrida, Isaac Alpizar-
Chacon, Abigail Evans, Joshua B. Gross, Pontus Haglund, Violetta Lonati,
Chandrika Satyavolu, and Sverrir Thorgeirsson. 2024. A Pedagogical Frame-
work for Developing Abstraction Skills. In 2024 Working Group Reports
on Innovation and Technology in Computer Science Education (ITiCSE-WGR
2024), July 8–10, 2024, Milan, Italy. ACM, New York, NY, USA, 42 pages.
https://doi.org/10.1145/3689187.3709613

1 Introduction
Abstraction is a key concept and skill in computer science. It serves
several purposes, such as enabling focus on essential information
while omitting unnecessary details, or generalizing disparate in-
formation to an expression that is more descriptive. In Computer
Science Education, students’ abstraction skills play a crucial role in

258

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

https://orcid.org/0009-0003-7876-1117
https://orcid.org/0009-0006-4431-6439
https://orcid.org/0000-0002-0556-6893
https://orcid.org/0000-0002-1126-1623
https://orcid.org/0000-0002-6931-9787
https://orcid.org/0000-0001-8647-3690
https://orcid.org/0000-0002-7522-1049
https://orcid.org/0000-0003-2271-8294
https://orcid.org/0000-0002-4722-244X
https://orcid.org/0009-0001-8995-5772
https://orcid.org/0000-0002-4455-7551
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3689187.3709613
https://doi.org/10.1145/3689187.3709613
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689187.3709613&domain=pdf&date_stamp=2025-01-23

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

shaping the way they understand and interact with computational
concepts. Understanding how abstraction is conceptualized on an
intricate scale can inform how it is taught and assessed.

Abstraction and its challenges for teaching and learning has
been an area of interest in a range of fields, leading to theories on
the development of broad cognitive abilities [13, 65] and models of
abstract concept formation in specific domains, such asmathematics
[75, 84]. These theories and models have informed frameworks and
guidelines for teaching abstraction in mathematics and computer
science [2, 6, 29, 64]. Here, we define a systematization to be an
organized system of processes and objects, intending to describe or
define rules (in our context, for the development or assessment of
abstraction skills). In these terms, a framework can be considered
to be a kind of systematization, and in particular a set of predefined
rules, guidelines, and/or components that is used to teach and/or
understand abstraction. A model can also be viewed as a kind of
systematization, that is a representation that helps in understanding
– a simplified version of reality that captures the essentials. Finally,
we also consider a taxonomy to be a kind of systematization, and
in particular an organisation of objects of the same type into sub-
types. In our paper, we build upon the existing systematizations
in the literature with a novel framework that is separate from
others in two key ways: first, it is widely applicable within the
CS domain, and second, its theory can be applied in actionable,
meaningful ways by practitioners who are not familiar with the
relevant theory. To demonstrate this, we motivate our framework
and offer a thorough description of learning contexts where the
framework can be applied.

Most of the above literature on abstraction focuses on concept
formation, that is, on building knowledge of or about abstract no-
tions. Relevant alongside knowledge, however, are skills and com-
petencies, which describe what students can do and not just what
they know. Our framework aims to provide specifically for educa-
tors with guidelines for supporting the development of abstraction
skills in their students.

To design our framework, we carried out inductive categoriza-
tion of the existing systematizations to synthesize their common
characteristics and organize them according to their goals and appli-
cation. Simultaneously, we critically reflected on our own teaching
practices related to abstraction and howmodels of abstraction could
be applied in our contexts. The final framework is the product of
an iterative process combining the two streams of work to ensure
that it is grounded in theory and relevant to practice.

The paper is organized as follows. Section 2 reviews the litera-
ture about learning and teaching abstraction in CS education and
other related disciplines. In Section 3 we illustrate the methods we
used to develop and evaluate our framework, starting from the anal-
ysis of the systematizations discussed in the literature. In Section 4
we present the results of our analysis, which form the theoretical
foundation for our framework. These results include: a description
of the abstraction skills that are relevant to CS as we define them,
a categorization of the systematizations (models, pedagogic frame-
works, tools, etc.) from the literature on abstraction and a synthesis
of the contributions within each category. Section 4 also presents
an initial version of our framework and its example application to
recursion. In Section 5 we apply our framework to a wider variety
of educational contexts. We further discuss the case studies and

limitations of our framework in Section 6 and we conclude with
a summary description of the framework and how educators can
use and benefit from it in Section 7. Finally, Section 8 draws overall
conclusions on this work.

2 Background
In this section we first provide a brief overview of two widely
used general systematizations, then systematizations of abstraction,
finally review literature of how abstraction is taught.

2.1 General Systematizations
We first consider existing systematizations that may offer insight
into how ourwork can prove actionable for CS education researchers.
Thus, we briefly present literature relating to Bloom’s taxonomy
and the SOLO (structure of observed learning outcomes) taxonomy,
two systematizations which are widely used by practitioners in CS
eduction [27].

Arguably the best-known systematization of teaching and learn-
ing is Bloom’s taxonomy [5, 9]. This taxonomy [9] classified educa-
tional objectives in the cognitive domain from the concrete to the
abstract, or from the simple to the complex. The revised Bloom’s
taxonomy [5] presents the domain in the form of a matrix, focusing
on describing students cognitive processes. Unfortunately, Bloom’s
taxonomy has proven sufficiently broad and informal to be problem-
atic when applied CS education; researchers frequently struggled to
identify where in the taxonomy certain work could be placed [55].
Further analysis demonstrated structural issues with the taxonomy
as a model for classifying work, since both the original taxonomy
and the updated taxonomy “fail in providing non-ambiguous def-
initions of cognitive processes and their categories” [91]. From
this, Bloom’s taxonomy can be considered insufficient to explore
the specific problem of teaching and learning abstraction in com-
puter science. A verb list specific to computing developed by the
ACM Committee on Computing Education in Community Colleges
focuses on the production of technical artifacts, rather than the
aspects of computer science more strongly related to abstraction [1].

Rather than serve as a taxonomy, the SOLO model is a model
for taxonomies, and educators and instructional designers use the
model to create a taxonomic progression of a learning outcome.
Unlike Bloom’s taxonomy, the SOLO taxonomy model focuses on
the internal understanding of the learner, and attempts to model
that understanding with specifically-designed learning tasks that
move the student to a deeper level of understanding[8]. As such,
this model is relevant to the framework we develop. SOLO has
been applied in CS education research, particularly in assessing
how novice programmers design their solutions [14, 34, 44]. How-
ever, while it does reflect on internal knowledge state, SOLO is not
specific to either abstraction or computer science. It is also a pre-
scriptive model through which educators are encouraged to build
a complete taxonomic progression. The framework we propose is
intended to serve as a guide for educators looking to improve ab-
straction learning in relevant contexts, rather than a formal model
for designing learning progressions.

259

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

2.2 Models and Frameworks of Abstraction
Models of abstraction and concept formation have been proposed in
research fields including cognitive science, mathematics education,
and computer science education. In this section, we give a brief
overview of how key models of abstraction skills have evolved and
how they have been incorporated into frameworks for teaching
specific and general abstraction skills. This section provides limited
details on the models themselves; more details and analysis can be
found in Section 4.3.

Three researchers and theorists have proposed models of ab-
straction that have been influential in later work on the subject:
pyschologists Jerome Bruner and Jean Piaget, and mathematics edu-
cation researcher Anna Sfard. For each of these models, abstraction
is a three-stage process.

Bruner’s [13] model of the development of internal (cognitive)
representations of concepts and processes begins with the enactive
stage, in which thought is grounded in physical actions and con-
crete processes. Next, in the iconic stage, visual representations can
be used to summarise actions and objects. Finally, in the symbolic
stage, the thinker is able to reason using language independently of
actions and images. Bruner’s model is not specific to abstract con-
cepts, but abstraction ability is embedded in the iconic and symbolic
stages through the use of representations that are increasingly in-
dependent from the original concrete actions and objects. Fyfe et al.
[28] incorporated Bruner’s model into their “concreteness fading”
framework, which advocates presenting concepts using teaching
materials corresponding to each of Bruner’s stages in order to guide
students from concrete to abstract understanding.

Piaget [65], a contemporary of Bruner, described three types of
abstraction: empirical, pseudo-empirical, and reflective. In empirical
abstraction, knowledge of an object’s properties are derived directly
from concrete objects. In reflective abstraction, the learner is able
to generalise beyond specific concrete objects. Pseudo-empirical
abstraction describes the beginnings of shift from empirical to
reflective abstraction. The APOS (Action, Process, Object, Schema)
model [26] of abstraction in advanced mathematical thinking builds
on Piaget’s concept of reflective abstraction.

Sfard [75] identifies three ordered stages of abstract concept
development: interiorization, condensation, and reification. In the
interiorization stage, the learner becomes familiar with the process
at the heart of the abstract content. In the condensation stage, the
learner is able to think of the process as a complete entity with
an output, although the process is still central to the learner’s
understanding. Reification occurs when the learner understands
the abstract concept as an independent object separate from the
underlying process. Interiorization and condensation take time to
develop but reification is instantaneous [75, p. 20]. Key to Sfard’s
model is the notion that an abstract concept can be both an object
and a process. Aharoni [2] simplified Sfard’s model and applied
it to the analysis of computer science undergraduates’ thinking
processes when working with data structures.

Hazzan [37] developed a framework to explain algebra students’
tendency to reduce the level of abstraction of concepts they are
learning in order to work at a more concrete level. The framework
builds on the ideas of Piaget, Sfard, and the APOS model and has
also been applied in computer science education [33, 38, 40, 41].

Ginat and Blau [33] used the framework to develop guidelines
for teaching abstraction in algorithm design; Hill et al. [41] used
Hazzan’s work to inform their own scales of abstraction ability; and
Hazzan’s framework informs Perrenet, Groote, and Kaasenbrood’s
[64] PGK hierachy, which describes algorithmic thinking at four
levels of abstraction (execution, program, object, and problem).

The PGK hierarchy has also proved influential in computer sci-
ence education research. For example, Izu [43] draws on PGK and
Hazzan’s work for their definition of abstraction; and Armoni [6]
has developed a framework for teaching abstraction based on the
PGK hierarchy.

The Block Model [71] of program comprehension consists of
three dimensions (text surface, program execution, and function/pur-
pose) of a program and four levels of zooming (atom, block, rela-
tional, and macro) that apply to each dimension. Although the
model does not share the same theoretical roots as the models and
frameworks above, nor is it explicitly a model of abstraction, it is
included here because it concerns how students build an “abstract
and general model” of a program [71, p. 150].

In the next section, we discuss how these models and frameworks
have been applied to teach abstraction and abstract concepts in
computer science classrooms.

2.3 How Abstraction is Taught
Literature on abstraction in the CS classroom can be roughly grouped
into three parts: assessing abstraction, teaching the role of abstrac-
tion, and teaching to trigger abstraction [56]. Given that the scope
of our work is developing abstraction skills, we review here only the
contributions from the latter group following the structure in [56]
and adding some recent works that have appeared since.

Teaching to trigger abstraction aims to develop abstraction skills
implicitly by having students engage in tasks that require them
to use abstraction [56]. Pattern-oriented instruction (POI) is one
example of such a pedagogical approach, which concerns the ab-
straction processes when solving algorithmic problems [57]. Muller
and Haberman [57] specifies three processes of note concerning
instructional design and students’ problem-solving behaviors: pat-
tern recognition, chunking, and identification of problem structures.
Their [57] POI approach supported students’ abstraction processes
and enhanced students’ problem-solving ability.

Further, when developing abstract concepts, dealing with multi-
ple representations of a phenomenon can be important [56]. While
multiple representations of complex scientific concepts are com-
monplace, they are not always effective [3]. Ainsworth [3] found
that, for multiple representations to be effective, teachers need to
help students relate multiple representations to concepts. Gautam
et al. [30] found that multiple representations require students to
move between different representations of a concept. They recom-
mend that the friction that occurs when students explore different
representations is useful since it requires students to revisit their
understanding of a concept.

Another approach to triggering abstraction is the exploration of
artifacts by students [56], essentially going through three stages to
understand a program: using the program, experimenting by modi-
fying features, and then creating new programs to achieve some
goal (use-modify-create) [56]. Lee et al. [50] found that abstraction

260

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

is not taught to students but rather developed when students work
with creating, meshing well with the approach of use-modify-create.

When teaching to trigger abstraction, it can be useful to evaluate
to which extent abstraction is represented in tasks that students
engage in. Cutts et al. [22] created the abstraction transition tax-
onomy which can be used to assess tasks that teachers have their
students engage in. The taxonomy measures the extent to which
abstraction is reflected in the task, and has three levels that are
related to language used; essentially, students are asked questions,
and these questions are expressed at three levels of abstraction that
relate to language: English, CS Speak, and Code. Cutts et al. [22]
focused on the transitions between the beginning and the end of
an assignment and did not cover any intermediate steps taken, i.e.,
a question that transitioned from level 3 to level 1 could be: given
this code, choose an English description that describes the goal.

The pedagogical approaches described above focus on trigger-
ing abstraction but do not but do not consider other factors, such
as stakeholders, responsibility and the impact of systems created.
Thus, it is worth noting that the dominant role of abstraction in CS
education has received criticism [54, 68, 72]. Malazita and Resetar
[54] argue that abstraction as a practice encourages students to
view the social and political context of the systems they create as
separate from their technical implementation, thereby discourag-
ing criticism of the impacts of technical systems. They propose an
alternative approach to teaching CS1, called ‘Critical CS1’, which
embeds discussion and criticism of the impacts of technical systems
alongside the introduction of foundational programming concepts.
Focusing on AI ethics education, Raji et al. [68] argue that current
approaches center around abstracting complex social issues into
more approachable technical problems, thereby excluding more
nuanced perspectives. Selbst et al. [72] refer to this as an “abstrac-
tion trap”, in which the standard practices of computer scientists
can lead to proposed solutions that are inherently ineffective. Raji
et al. [68] suggest a collaborative approach to education that en-
courages engagement with other disciplines’ ways of knowing and
doing to temper the CS tendency to abstract away details. While
we find these perspectives to be valuable for the sustainability of
CS eduction, we focus on the cognitive aspects of understanding
and applying abstraction rather than larger questions of the role of
abstraction in the CS curriculum as a whole.

2.4 Generative AI
Since the release of Codex1 and ChatGPT2, there has been sig-
nificant interest in exploring the use of Generative Artificial In-
telligence (GenAI) in computing education [66]. This interest has
also led to the development of tools that support abstraction skills
to varying degrees. Liu et al. [52] explored abstraction matching,
the process of aligning a user’s intent with a system’s capabili-
ties through an appropriate level of abstraction. They proposed
grounded abstraction matching, which converts system-generated
actions (e.g., code) into editable, naturalistic examples that help
users reliably replicate actions. Tested in spreadsheet data analysis,
the approach used a system that translates natural language queries

1https://openai.com/index/openai-codex
2https://openai.com/chatgpt/overview/

into Python code via Codex. A user study found that grounded ex-
amples improved users’ mental models and confidence over time.

Another abstraction skill explored with the help of GenAI is the
ability to transition between different levels of code representa-
tion. Denny et al. [23] introduced a novel programming exercise
called “Prompt Problems,” designed to teach students how to cre-
ate effective prompts for AI-based code-generation tools. In these
exercises, students are presented with a problem illustrating how
input values should be transformed into output and tasked with
crafting a prompt that guides a language model to generate the nec-
essary code. The authors developed a tool to deliver these prompt
problems, which was tested in two Python-based courses. Students
appreciated the opportunity to learn new programming constructs,
analyze the structure and syntax of generated code, and improve
their problem-solving skills. Another approach, explored by Smith
et al. [77], involves using GenAI for “Explain in Plain English” ques-
tions. These exercises provide students with a piece of code and ask
them to describe its functionality in natural language [58], help-
ing train and assess their ability to understand and articulate the
purpose of code. The study found that students were generally
successful in completing these prompts, effectively conveying the
code’s high-level purpose without focusing on implementation de-
tails. However, students also expressed critical views about GenAI
in general.

Finally, GenAI can assist students in understanding (abstract)
computer science concepts [24]. Recent studies indicate that GenAI
is increasingly becoming a preferred help-seeking tool for many
students [46]. However, integrating GenAI into computing educa-
tion presents significant challenges. Prather et al. [67] found that
struggling students may encounter difficulties when using GenAI,
and some students have expressed concerns about overreliance
on these tools in various learning situations [90, 96]. While there
are no specific studies on the effectiveness of GenAI in teaching
abstraction skills, research in related areas (e.g., programming error
messages) shows that human explanations continue to outperform
GenAI [70]. GenAI could be a supportive tool for teaching abstrac-
tion skills, particularly when integrated into a broader educational
framework or guided by a teacher, rather than being used as a
standalone approach.

3 Method
The work began with identifying relevant literature, drawing on the
prior work of group members. The working group includes estab-
lished academics with a broad perspective on the relevant academic
literature [56, 61] and researchers actively exploring abstraction
in Computer Science Education [18–20]. This initial body of work
spanned diverse disciplines, including cognitive science, mathemat-
ics education, and computer science education, focusing on both
theoretical and empirical studies on abstraction [18–20, 56, 61].
Members took responsibility for expanding this body of literature
through a snowballing approach [95], where abstracts of newly
identified papers were reviewed based on whether they explored
abstraction theoretically, empirically, or both. Relevant papers were
then incorporated into the background literature presented in Sec-
tion 2. It is important to note that while the present work is not a
systematic literature review, the members’ extensive prior work

261

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

https://openai.com/index/openai-codex
https://openai.com/chatgpt/overview/

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

in this area provided confidence that the identified literature of-
fered comprehensive insights into abstraction, both as theoretical
groundwork and empirical application.

We then organized the group work with two parallel groups
based on research interests, areas of expertise, and experience in
teaching abstraction skills. We refer to these groups as the “The-
ory Group” and the “Context Group”: members with strengths in
theoretical work formed the Theory Group, while those primarily
focused on teaching practices joined the Context Group.

The Theory Group began by analyzing existing theoretical and
empirical work on abstractions and proposing an initial version of
the framework (see Section 4). Simultaneously, the Context Group
collaborated with the Theory Group to identify relevant contexts
and explore ways to integrate the initial framework into practice.
This collaboration prompted further discussions within the The-
ory Group about aspects of the framework that could or could
not be adapted to learning situations. Through multiple iterations
of “back-and-forth” exchanges, the groups refined the framework
and contexts alongside one another, ultimately resulting in the fi-
nal framework described in Section 7, which was aligned by both
groups.

To summarize, the Theory Group followed an inductive process
to: identify key abstraction skills, define categories to group all
systematizations, establish inclusion and exclusion criteria for sys-
tematizations, and identify stages of development, culminating in
the initial framework (presented in Section 4). Throughout these
steps, the Context Group played an integral role. They began by
familiarizing themselves with the original systematizations and
describing their learning situations in alignment with the key sys-
tematizations. They actively participated in discussions at each
stage, providing feedback that the Theory Group used to refine the
framework. For example, the Context Group evaluated whether the
abstraction skills identified by the Theory Group were reflective
of those observed in their learning contexts. As the Theory Group
employed an inductive approach, allowing the Context Group to
adopt a more deductive stance, using the Theory Group’s findings
and evolving framework to inform their analysis and applications,
as broadly framed in [85]. Further details of the methodology are
provided in Section 3.1 for the Theory Group and Section 3.2 for
the Context Group.

3.1 Work of the Theory Group
As introduced earlier in this section, the goal of the Theory Group
was to synthesize prior research on abstraction into a coherent
structure that would serve as the foundation for developing the
framework. This framework would then guide educators and re-
searchers in analyzing and improving instruction on abstraction.

Given the overarching goal of creating a framework for develop-
ing abstraction skills, the Theory Group focused on the following
key areas, refined through extensive discussions and analysis of
the literature:

• identifying and agreeing on the computational abstraction
skills CS educators aim to foster in students;

• categorizing existing systematizations of abstraction;
• establishing criteria for including or excluding systematiza-
tions in the analysis;

• defining stages of abstraction skill development;
• setting criteria for an effective and purposeful pedagogical
framework.

Based on the literature, the Theory Group first proposed a set of
essential abstraction skills that CS educators aim to cultivate in
students (Section 4.2) as a means of identifying and focusing on
relevant systematizations. Concurrently, the group inductively iden-
tified categories –such as models of concept formation, taxonomies,
and pedagogical frameworks– for organizing these relevant sys-
tematizations found in the literature. Systematizations were then
categorized accordingly (Section 4.3). These decisionswere revisited
and refined iteratively over several meetings to ensure consistency
and alignment with the group’s goals.

The theoretical work led to the establishment of criteria for in-
cluding or excluding systematizations (Section 4.3.1). These criteria
were used to filter the identified systematizations, enabling the
group to discern common themes among the selected works. These
themes, combined with the identified abstraction skills, led to the
definition of stages for the development of abstraction skills and
eventually formed the foundation of the initial framework.

Further the categorizations of the data from Section 4.3 led to
the extrapolation of a common process within the categories of
systematizations; these can be found in Table 3.

3.2 Work of the Context Group
As introduced earlier, the Context Group played a crucial role in
the development of the initial framework and its application on
concrete learning situations. Their first step was to select examples
of learning activities where developing abstraction skills is funda-
mental. These examples, referred to as contexts, were analyzed by
using existing systematizations to help familiarize members with
both the contexts and the systematizations. Once the initial frame-
work was established, the contexts were re-evaluated and aligned
with the framework, as shown in Table 4. The goal was to apply
the initial framework to existing practices and provide practical,
worked examples of its application.

The application of the framework varied depending on the spe-
cific context. For instance, in Context 2, the introductory nature
of the material meant that fully transitioning between abstraction
levels was not feasible, and there was limited scope for creating
abstractions. Instead, the focus was primarily on understanding in
Stage 1 and Stage 2 of the framework.

Applying the framework to real-world contexts also provided
valuable insights into how abstraction skills could be taught under
different constraints. For example, mapping abstraction skills to the
stages identified in the framework highlighted specific challenges
and opportunities.

These insights were used to iteratively refine the framework,
enhancing the clarity and detail of each stage and specifying dis-
tinctions among the skills of identifying, moving, and creating
as they apply to different stages. Group discussions enabled the
framework’s structure to evolve until consensus was reached. This
process also addressed cases where the framework was challenging
to apply or where additional details were needed. Moreover, the
insights contributed practical examples of activities educators could

262

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

use to help students develop specific abstraction skills at particular
stages.

Finally, additional insights from applying the framework to spe-
cific learning situations were captured. These were summarized as
practical tips for educators, offering guidance on structuring lessons
to teach multiple concepts or abstraction skills concurrently.

3.3 Interactions Between the Two Parallel
Groups

The candidate abstraction skills –identifying, moving, and creating–
were presented by the Theory Group and discussed in detail with
the Context Group. These discussions focused on how these ab-
straction skills could be encouraged within the learning situations
encountered by the Context Group. For example, what does the skill
of identifying entail when helping students understand machine-
level memory representations in C for a simple variable? At what
stage are students able to apply this understanding effectively?
How can students be guided to transition between abstraction lev-
els (Section 5)? Similarly, specific clarifications and refinements
were incorporated based on the diverse teaching contexts analyzed
in the Context Group. These discussions were partially informed
by members’ teaching experiences, as outlined in Section 5.

This collaborative approach drew upon the expertise of all mem-
bers in the working group, offering the additional benefit of ac-
commodating diverse perspectives. For instance, in introductory
programming (see Context 1 in Section 5.1), the skill of creating
abstractions may not be essential, whereas in concurrent program-
ming (see Context 3 in Section 5.3), it becomes critical.

The insights gained from these discussions shaped the initial
framework, presented in Section 4. This preliminary framework
was then applied and reflected upon by the Context Group in their
respective teaching scenarios. Their feedback and observations
contributed to further refining the framework. The final version of
the framework is presented in Section 7.

4 Results: Design of the Initial Framework
4.1 Our Views
In Section 2.2 we have described systematizations linked to ab-
straction that differ in aim and type; some describe abstraction
processes, some describe abstraction skills and some describe levels
of abstraction. The latter category may describe different ‘measures’
of abstraction level, such as Hazzan’s mental processes linked to
reducing abstraction level [37], or a ‘spectrum’ of abstraction levels
such as the PGK hierarchy [64].

As instructors, our aims are to encourage conceptual understand-
ing by guiding students to develop abstraction skills and apply this
understanding to computational problems. We therefore need to
consider systematization that describe how students form con-
ceptual understanding in order to guide students through mental
processes that link well to abstraction skills, while considering how
to best help students cement their understanding.

A good pedagogical framework for our purposes therefore needs
to:

• use the conceptual stages in systematizations that describe
how students develop understanding as thresholds;

• guide students through these stages by making them use
mental processes that require abstraction skills;

• be specific enough that it is actionable within a Computer
Science education context by helping instructors understand
the what, how, and why;

• be general enough that it is as widely applicable as possible
to a Computer Science context.

The next section develops a classification of the selected systemati-
zations, identifies common features from each, and then integrates
these features.

4.2 Definitions for Abstraction Skills
4.2.1 Measures of Abstraction Levels. Abstraction levels are de-
grees that describe how abstract something is. Different views or
measures exist to describe different abstraction levels along a spec-
trum of higher (more abstract) to lower (more concrete).

In the process-object duality, as discussed by Sfard [75], a new
concept at a lower level is perceived as a mechanical process (opera-
tional conception) that acts on other objects (structural conception),
such as an algorithm for performing a mathematical operation.
Once a higher abstraction level is reached, the new concept is per-
ceived as an object that can act on other objects, with the process
fading in importance to the student’s mental model. Seeing an en-
tity as a process implies “regarding it as a potential rather than
an actual entity, which comes into existence upon request in a se-
quence of actions”. Conversely, an entity as an object means “being
capable of referring to it as if it was a real thing and to recognize
the idea ‘at a glance’ and to manipulate it as a whole, without going
into details” [75].

Hazzan [37] examines three interpretations for levels of abstrac-
tion discussed in the literature, while referring to students’ tendency
to work on a lower level of abstraction (more concrete). The first
interpretation focuses on abstraction level as the quality of the sub-
jective relationships between the object of thought and the thinking
person. The more familiar and connected a person is to an object,
the more concrete and less abstract it feels to them. The second
interpretation is abstraction level as a reflection of the process-object
duality, as introduced before. The last interpretation is abstraction
level as a reflection of the degree of complexity of the thought concept,
and involves adding a simplification to new concept, such as by
focusing only on a specific case.

In a more applied form, the PGK-Hierarchy [63, 64], defines
four levels of abstraction for the concept of an algorithm. The
lowest level is execution (algorithm is a specific run), then program
(algorithm is a process), moving to the object level (algorithm is an
object), and finally the highest level is the problem level (algorithm
is a black box).

In the next subsection, we define generalizations for abstraction
skills, which incorporate abstraction levels. These skills relate to
the levels and measures described above.

4.2.2 Abstraction Skills. There is no universally accepted defini-
tion of abstraction skills. Some authors extensively describe and
categorize abstraction skills, while others do not address them at all.
For example, while Statter and Armoni [79] presents two categories
(related to PGK-Hierarchy [63, 64]), six operational skills, and four

263

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

supporting indicators, Böttcher et al. [11] talks about abstraction
as a skill, but does not break it down into parts.

Hill et al. [41] talks about abstraction skill as “cognitive abstrac-
tion”, but identifies three elements of abstraction: “conceptual ab-
straction, formal abstraction and descriptive abstraction”. Nicholson
et al. [62] consider abstraction in terms of five key skills: “consid-
ering the context in which the abstraction operates, defining and
choosing the right abstraction, working with multiple layers of
abstraction simultaneously, considering abstractions critically, and
knowing when to use abstraction”.

Kramer [48] states that abstraction is a key skill for comput-
ing without explicitly listing abstraction skills. He extracts certain
important attributes of a general definition of abstraction:

• The act of withdrawing or removing something, and; The act or
process of leaving out of consideration one or more properties
of a complex object so as to attend to others. (...)

• The process of generalization to identify the common core or
essence based on the definitions: The process of formulating
general concepts by abstracting common properties of instances,
and; A general concept formed by extracting common features
from specific examples.

Finally, Hazzan and Kramer [40] described several indicators of
good abstraction skills (as identified by a group of expert educators
in software development and computer science):

• Ability to invent new abstractions at different levels of ab-
straction.

• Ability to “do” abstraction—to throw away detail, while keep-
ing the essential structure. Also, ability to “do” refinement—to
add detail.

• Ability to CREATE (rather than just assess), from an external
knowledge source, different levels of abstraction.

• The ability tomaneuver between abstraction levels, as needed,
by adding/removing details. Also, to identify the entities that
comprise an abstraction level, and, constructively, detailing
or abstracting them in order to achieve the desired level of
abstraction.

• . . . the ability to devise abstractions at various levels.

Building on these indicators by Aharoni [2], Dubinski [26], Haz-
zan [37], Hazzan and Kramer [40], Perrenet and Kaasenbrood [64]
and others, we generalize abstraction skills into three core com-
petencies: identifying, moving, and creating. Each competence is
defined in turn with pertinent literature.

Identifying. It is the ability to recognize a specific object or sit-
uation and classify it as an instance of a known abstract concept.
This skill necessarily requires the ability to disregard non-essential
elements while preserving the fundamental structure. In a study
by Perrenet et al. [63], all participating instructors agreed with a
definition of abstraction as either disregarding detail or condensa-
tion. This connects to Sfard’s condensation stage [75], which can
be interpreted as making judgments on what information can be
reduced, emphasizing the capability of “[...] ‘squeezing’ lengthy
sequences of operations into more manageable units” [75, p.19] and
“[...] thinking about a given process as a whole, without feeling an

urge to go into details” [75, p.19]. An example of this skill would
be the recognition that an object/situation could be modeled using
an abstract concept (e.g., a particular set of data could be modeled
as a graph).

Moving. It is the capacity to navigate between different levels of
abstraction to achieve the desired outcome; this can be evidenced
through artifacts such as code or drawings. Moving involves ad-
justing detail as required and identifying and detailing the entities
within a given abstraction level. It can also be viewed as an oscil-
lation between lower and higher levels of abstraction. In Perrenet
et al. [63]’s experiment, teachers highlighted making abstraction-
level distinctions as a part of abstraction. A higher capability of
Sfard’s condensation stage [75] can be seen as the “[...] growing
easiness to alternate between different representations of the con-
cept” [75, p. 19]. The first two steps in Armoni [6]’s framework
also emphasize the moving skill: “differentiate the levels” [6, p. 273]
and “move freely and consciously between the levels” [6, p. 273].
Finally, Fyfe’s concreteness fading framework [28] is based on mul-
tiple representations of concepts moving from concrete materials
toward more abstract ones. An example of this skill involves mov-
ing between specification, pseudo-code, and implementation for a
specific problem.

Creating. It is the ability to generate new levels of abstraction and
consciously understand and manipulate these levels (awareness).
Armoni [6], while referring to Hazzan [39], mentions that it is not
enough for students “to perform abstraction and move between
levels of abstractions, they must also be aware of it” [6, p. 271]. In
Armoni [6]’s framework, the last step refers to the ability to “use
successive refinements of abstractions” [6, p.273]. Sfard’s reification
stage [75] is when “ a process solidifies into object, into a static
structure” [75, p. 20]. Similarly, in the APOS’s model [17], a higher
level of abstraction is constructed when “the individual becomes
aware of the process as a totality and realizes that transformations
can act on it” [17, p. 4]. For example, when designing the ER model
for a database or defining attributes of classes and their relation to
other classes in OO design.

Separately, we have identified two outcome skills that can be per-
ceived as the goal of the other three skills for teaching and learning
concepts, depending on the desired outcome—the understanding
or application of concepts.

Understanding. It is when an abstract idea or concept forms in
a student’s mind, it becomes an object that they can build upon,
following the process-object duality described by Sfard [75]. This is
what students experience in their minds after the a-ha moment in
Sfard’s model. For example, understanding iteration as a program-
ming construct occurs when a student can think of iteration as a
tool to be applied to solve a problem, without the need to think of
it operationally as a repetition of actions, tracing/executing it, or
referring necessarily to its syntax in a specific language. This is
a necessary step toward helping students understand theoretical
models of computation (i.e., programs can be built using sequence,
iteration and selection only).

Applying. It is when an abstract idea or concept is used for a
specific goal. Again considering the concept of iteration, it can
be applied in many ways, for example writing or understanding a

264

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

program that uses loops, using a loop to sum the number of items in
a series, implementing a loop in a specific programming language,
or understanding where a loop is useful for some programming
problem.

Figure 1 summarizes our model of abstraction and outcome skills.

Figure 1: Generalization of abstraction skills.

4.3 Categorization of Systematizations
We divide the systematization into three broad categories, keeping
in mind that there may be some overlap between them. These can
be found in Table 1.

Table 1: Our categories of systematization.

Models of
concept
formation
[2, 13, 26, 65,
75, 76]

These have the rather ambitious aim of trying
to model the process by which understanding is
formed; they are meant to describe a ‘natural’,
‘necessary’ progression in developing under-
standing.

Taxonomies
of abstraction
skills, pro-
cesses or levels
[38, 40, 41, 64]

These classifications aim to describe how to
measure attributes of abstraction; for example,
Hazzan describes three distinct variables by
which a level of abstraction can be measured
[37]; the PGK hierarchy defines levels of abstrac-
tion of the concept of an algorithm [64].

Pedagogical
frameworks
[29, 71]

These are used to convey or assess knowledge
or skills (rather than model how students form
understanding). For example, concreteness fad-
ing can help students make inductive inferences,
which could use a model of concept formation
(e.g., Piaget or Bruner) by gradually abstract-
ing from easily-contextualized concrete obser-
vations (i.e., observable in real life) to enable
the transfer from empirical to pseudo-empirical
abstraction.

Our reasons for dividing up the systematizations into these three
categories will become clearer as we go through the analysis. Our
process is to determine what the systemazations do and do not have
in common.

4.3.1 Inclusion-exclusion. Before we go further into our analysis it
is important that we discuss which systematization we have decided
to exclude and why.

We have decided to exclude those that describe ‘languages’, that
although they require abstraction skills to understand and use, are

not abstraction systematization in themselves; they are represen-
tations, such as Java or UML diagrams. Some of these ‘languages’
could however be used in conjunction with one of the frameworks,
such as Fyfe and Nathan [29].

The systematization we have decided to use are influential, in
that they have been used as a building block for other research,
including other systematization we are examining; and described
well enough in their design such that we can make reasonable
assumptions in analyzing and applying them in contexts outside
what is already in the literature.

4.3.2 Models of Concept Formation. The models of concept forma-
tion described in Section 2.2 are summarized in the Table 2.

Aharoni describes the Action - Process - Object framework as a
simplification of APOS and process-object duality [2, 26, 94]. They
therefore describe a common process.

Piaget’s and Bruner’s systematization have different purposes
and views on the development of abstract thinking. Piaget’s model
explains observations of how children develop full cognitive capa-
bilities, while Bruner’s specifically describes concept formation for
the purposes of instruction. Bruner also shows more awareness of
context that is local to the thinking person [83]. Despite these and
other differences, both models describe a common path that, like
APOS, Sfard and Aharoni, can be described in three to four stages.

SOLO [12], although not specific to a single discipline, also fol-
lows a path common to the other models in this category.

In each model there is a stage of observation: concrete objects are
observed and actions are performed using the objects. In Piaget’s
setting this could be observing a ball and rolling it around [65]; in
a mathematical context this could be moving a point along a path;
in a computational one this could be tracing through a block of
code. It requires ‘direct observation’ and description. In Bruner’s
model, this would begin with a physical action, such as moving and
counting physical coins (enactive stage).

The next stage requires some reasoning about the observations;
this could be seeing cause and effect, identifying equivalences, or
combining observations together for example. In Sfard’s model this
is where condensation and perhaps some reification happens; in
APOS it is understanding actions as processes and linking them to
the object [26]. In Bruner’s model, the student could recognize that
an image of a number of coins is equivalent to physical coins, and
they can be counted mentally (iconic stage).

The third stage involves hypothesizing about the observation:
this could be inferring how the concrete object would behave in
another setting, or how a different concrete object would behave
in the same setting, for example. It could also mean ‘constructing’
something new, using reflections from the other two stages. In
Sfard’s model this is where the concrete object becomes a concept
that the student is able to apply [75]. In Bruner’s model, the student
could recognize that the digit 4 is equivalent to an image of four
coins, and that the digit replaces the need to count (symbolic stage).

In other words, the stages are:

Stage 1: Observe stationary things and actions on them: by
this we mean observe concrete objects and how they may
change under certain conditions.

265

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

Table 2: Models of concept formation.

Piaget [65] Bruner [13] Sfard [75] APOS [17] Aharoni [2] SOLO [12]
Empirical
abstraction

Enactive stage Interiorization Action Action Pre-structural
and uni-
structural

Pseudo-
empirical
abstraction

Iconic stage Condensation
and reifica-
tion to object

Process and
Object

Process and
Object con-
ceived as
action

Multi-
structural
and Rela-
tional

Reflective
abstraction

Symbolic
stage

Concept Schema Object con-
ceived as
process

Relational
and Abstract
extension

Stage 2: Make inductive and deductive inferences about the ob-
servations: attempt to explain the observed process causing
the change; combine processes.

Stage 3: Think hypothetically using the observations: infer be-
haviour on other unobserved concrete objects or unobserved
processes; generalise behaviour to a more abstract level.

The example of a loop is helpful in illustrating this [15]. Stage 1
could bemanually tracing through a loop, evaluating test conditions
and values of variables as the loop iterates. The student would
have reached Stage 2 if they were inferring meaning from Stage
1, without tracing each line; at an advanced Stage 2, they would
be meta-tracing. In they Stage 3, they would be hypothesizing on
how the loop would impact the execution of a larger program,
for instance in creating nested loops or realising using another
structure is more efficient.

A further generalization of this common thread is the under-
standing of the process and the object.

4.3.3 Taxonomies of Abstraction Skills and Levels. These are tax-
onomies of aspects of abstraction that are of the same type; subtypes
are then defined within this.

Hazzan’s work on reducing levels of abstraction could conceiv-
ably have been categorized as a model of concept formation: the
basis for this taxonomy suggests that the reduction of abstraction
level is a subconscious process the student goes through as they
organize information [37, 43]. However, we consider that the con-
tributions that are most valuable to us in Hazzan’s taxonomy are
the defining features of abstraction levels. We take it as a given
that determinants of abstraction level should be defined by natural
cognitive tendencies.

The aspects of abstraction that are in these taxonomies are:
• Variables that measure abstraction level; by this we mean
things that change between levels of abstraction such as how
removed the representation is from the student’s context
[37].

• Hierarchies of levels of abstraction relevant to a particu-
lar purpose, such as algorithm conception [64] or problem-
solving strategies [43].

• “Scales” of abstraction, describing distinct types of abstrac-
tion skills [40, 41].

Many of these taxonomies build on each other. In particular, Hazzan
and Kramer’s work [37, 40] is a building block for the PGK hierarchy

[64]. The same can be said of Hill et al.’s triad of abstraction types:
conceptual, procedural and descriptive abstraction [41].

Izu’s work generalizes a framework designed by Ginat and Blau
[33] for a very specific problem. Although Ginat et al.’s framework
is useful, and certainly has common points with Hazzan’s work,
we believe that Izu’s taxonomy gives the best balance of describing
the ‘why’, ‘what’ and ‘how’. The same again can be said on Izu’s
work in developing a taxonomy of abstraction levels for algorithmic
problem solving [43].

In our interpretation of Izu’s hierarchical abstraction taxonomy
[43] of problem solving actions, starting with the lowest level of
abstraction, the student:

• Level 0: Uses trial and error to (for example) attempt to test
’all’ possible inputs. The caveat here is that their tests may
not be exhaustive.

• Level 1: Identifies inputs that could be grouped together (this
could also be linked to a less sophisticated stage of Sfard’s
Sfard [75] condensation stage).

• Level 2: Infers a relationship on the groups of inputs.
• Level 3: Further hypothesizes on relationships between groups
of inputs.

We could generalize the applicability of this taxonomy to reasoning
on a broader level, where ‘inputs’ are not parameter values but
computational functions that have a known algorithmic purpose.

We find that describing this in terms of inferential reasoning is
useful: this does not describe what the student does mechanically,
but the conclusions they come to as a result of what they do. This
encourages us to remain observant of what the student does with
the information available to them, which in turn can help us identify
what knowledge the student is secure with.

(1) Observation-induction
(2)(a) Induction
(b) Deduction

(3) Hypothetico-deduction [21, 65]
We have made a distinction between induction on a static observa-
tion and induction on a process. We think it is important to do this
so that the important features in the stages identified in Section 4.3.2
are clear here as well.

4.3.4 Frameworks for Pedagogical Practice. These frameworks are
easily applicable to pedagogy in that they are designed with a clear
stated pedagogical purpose in mind and they are descriptive of

266

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

the process an educator should take in achieving this. The PGK
hierarchy is not included in this category as, although it is designed
with the staggered understanding of an algorithm in mind, we
consider it as a taxonomy that defines levels of abstraction as objects
but does not describe how to enable the process of moving between
stages. Pedagogical frameworks could have any of the following
purposes:

• developing a clearly stated skill, such as the Block model
[71];

• transferring knowledge, by describing how to present infor-
mation to students; an example of this is Fyfe’s concreteness
fading framework that proposes a method for enabling stu-
dents to [29]:

(1) use inductive thinking to generalise an instantiation (or
several), such as generalising from concrete values to a
variable;

(2) use a change of representation to understand a more ab-
stract idea or representation. We could see this as moving
to a higher level abstraction, where the abstraction level is
determined by how close the representation is to the per-
son. In other words, it is consistent with one of Hazzan’s
measures of abstraction level [37].

• developing schemata that have ‘objects’ that are close to the
context of the student and that allow them to build correct
mental models; these are notional machines [78].

4.4 Discussion/Summary of the Systematization
The models of concept formation and taxonomies of abstraction
show similar features; these are given in Table 3. This gives us one
dimension for the framework we wish to design, which we will later
combine with elements of existing pedagogical frameworks given
in Section 4.3.4; in this way we will build a two dimensional frame-
work. This process is described in Section 4.4.1; in the meantime
we provide a summary of our insights in Table 3.

Table 3: Common features of our categorizations of models
of concept formation and taxonomies of abstraction.

Stages through the models and taxonomies
Stage 1: Observe concrete things and actions on them (observation and
induction)
Stage 2: Make inductive and deductive inferences about the observations
(induction and deduction)
Stage 3: Think hypothetically using the observations (hypothetico-
deduction)

4.4.1 Steps for Constructing our Pedagogical Framework. The ped-
agogical framework for teaching abstraction we wish to design
can make use of the common thread we have identified in Table
3 and our analysis of the frameworks for pedagogical practice in
Section 4.3.4.

A first step to doing this is to consider how models of concept
formation manifest in the existing frameworks: these pedagogical
frameworks are informed by cognitive and educational theory; it
would therefore be useful to identify how this theory has been used
in the construction of our framework.

This would allow us to think about how we can effectively com-
bine the dimensions of stages and the ones of skills in a manner that
builds on the approach described in Nakar et al. [59]. Our approach
differs in that the two dimensions are treated differently, unlike in
Nakar et al.’s work where abstraction levels and problem solving
phases are measured using the same scale. We consider that for the
purposes of being widely applicable to teaching and learning, the
approach and style of description need to be different.

4.5 Initial Version of the Framework
Building on the analysis described in this section, we have designed
a three-component pedagogical framework:

(1) meta-abstraction skills—understanding and applying as out-
come skills related to concepts; and identifying, moving, and
creating as intricate skills connected to abstractions levels
(see Section 4.2.2);

(2) approaches taken to allow for progression in understand-
ing, as indicated by insights from analysing the pedagogical
frameworks in the literature (see Sections 4.3.2, 4.3.3, 4.3.4);

(3) stages in developing understanding, as indicated by the com-
mon stages in the models of concept formation and tax-
onomies of abstraction (see Section 4.4).

To use our framework as a pedagogical tool, we propose combin-
ing the three components, as seen in Table 4. An example of this is
given in Section 4.6. Table 4 summarizes our initial framework as
follows:

Stages: the left-hand column represents the inferential stages
we described in Table 3;

Understanding and Applying: the second and third columns
from the left describe the meta-skills in abstraction discussed
in Section 4.2.2; each cell represents a combination of the
abstraction skill and the inferential stage;

Identifying, moving and creating: these intricate skills are
needed at all points U1 to A3; how this can manifest in
practice is explored in Section 4.6 and Section 5.

Table 4: Initial version of our pedagogical framework show-
ing the two outcome skills across the three stages of cognition
& the three abstraction skills.

Understanding (U) Applying (A) Skills
Stage 1 U1 A1 Identifying,

moving,
creating

Stage 2 U2 A2
Stage 3 U3 A3

4.6 Example: Applying the Framework to
Recursion (Context 0)

We have chosen a simple example of a concept—recursion—to illus-
trate our framework. Our starting point was a Jupyter Notebook
that is used to teach recursion3 to non-CS students at a large uni-
versity in the Netherlands. We then explored ways to enhance the
content based on the perspectives discussed in Section 4.1. Table
3Available at https://github.com/annalenalamprecht/CoTaPP/blob/main/Lecture%
20Notes/06%20Functions%20and%20Modules.ipynb

267

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

https://github.com/annalenalamprecht/CoTaPP/blob/main/Lecture%20Notes/06%20Functions%20and%20Modules.ipynb
https://github.com/annalenalamprecht/CoTaPP/blob/main/Lecture%20Notes/06%20Functions%20and%20Modules.ipynb

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

5 provides an initial structure outlining the goals, prompts, and
activities that the teacher can do for both the understanding and
applying outcomes of the concept. Finally, mapping those scaffold-
ing techniques to our preliminary framework—abstraction skills,
approaches, and stages, as detailed in Section 4.5—yields a new
strategy for teaching the concept, as shown in Table 6.

By applying the proposed framework, we can use the original
examples (Listings 1, 2, 3, 4, and 5) and exercises (Figures 2 and
3) alongside various techniques (prompts, activities, etc.) to guide
and support students in first understanding the concept, and then
applying it.

1 def pow(x,n):

2 if n == 0:

3 return 1

4 else:

5 return x * pow(x,n-1)

6
7 x_to_the_power_of_n = pow(x,n)

Listing 1: Recursive implementation to compute x**n in
Python.

1 pow(3,5)

2 pow(3,4)

3 pow(3,3)

4 pow(3,2)

5 pow(3,1)

6 pow(3,0)

7 return 1

8 return 3

9 return 9

10 return 27

11 return 81

12 return 24

Listing 2: Programming run of pow(3,5).

1 def factorial(n):

2 if n == 1:

3 return 1

4 else:

5 return n * factorial(n-1)

6
7 factorial_of_n = factorial(n)

Listing 3: Recursive implementation to compute the factorial
of a number, with a similar structure to the pow function.

5 Results: Contexts and Instructional Tools
This section introduces a number of learning contexts and demon-
strates how the preceding framework (Table 4) can be applied to
these contexts.

Figure 2: Problem statement to apply recursion.

Figure 3: Base and recursive case for the problem in Figure 3.

1 def sum(n):

2 if n == 1:

3 return 1

4 else:

5 return n + sum(n)

Listing 4: Incorrect recursive implementation for the
problem presented in Figure 2. A student is not reaching
the base case.

1 def sum(n):

2 # Base case

3 if n == 1:

4 return 1

5 # Recursive case

6 else:

7 return n + sum(n-1)

Listing 5: Correct recursive implementation for the problem
presented in Figure 2.

Each of these contexts is introduced with a description of con-
cepts taught, challenges, and a sample of the work assigned to stu-
dents. The intellectual challenges are then modeled in the context
of our framework, with additional references to relevant specific
concepts of abstraction learning from the literature described above.
The contexts cover the breadth of undergraduate computer science
coursework, from pointers and dynamic memory in an introductory
course to an elective course on algorithmic game theory taken by
undergraduates in their final year. These contexts were instrumen-
tal in building the model and all come from materials taught by
various authors of this paper.

We note that the contexts cover a wide range of topics from
the computer science curriculum and more than one educational
level. There are also stylistic differences between the contexts and
variance in their level of detail. We consider this a strength of the
paper, as the needs of the educators who will use our framework
are different; some may seek more comprehensive guidance on how
to use it, while others are only seeking broad directions.

This section provides multiple real-world examples of how the
framework can be applied to a context, and how applying the frame-
work can help improve course materials. The framework should

268

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

Table 5: Starting point to apply our framework to teaching the concept of recursion. Stages refer to the initial version of the
framework, as defined in Section 4.5.

Stage Goal Prompt What the teachers can do Example

U1

Observe that the function (1) has two parts,
a base case and a recursive case, and (2)
performs operations that are repeated,
because it calls itself

Observe the recursive
implementation of the
pow function

Discuss what is the
purpose of the conditional? Listing 1

U2

Induce/deduce the function is broken
down into smaller sub-problems by going
into each function until the base case is
reached

Trace through the code
a specific run of the
function

Show an example of manual
run of the function, showing
individual states; compare to
another implementation

Listing 2

U3

Hypothesize the implementation of the function
may ensure that all computations contribute to
the end result or may be more efficient for
some problems; being able to write a
recursion when presented with a problem
that can be expressed as a recurrence problem

Write a recursive
function from a
recurrence

Provide more scaffolding to
get to the solution, such as
showing the recursive case only;
showing another implementation
of the same problem;
showing a similar example

Listing 3

A1
Observe the characteristics of the problem and
identify that it can be solved using recursion

Observe the problem
definition

Ask the students to recall the
characteristics of recursive
functions

Figure 2

A2
Induce/deduce the base case(s) and the
recursive case(s).
Deduce that is better to start from N than from 1

Write the base case
and the recursive case

Check that the base case and
the recursive case are correct
before moving to the
implementation

Figure 3

A3

Hypothesize that the errors are preventing the
computations to contribute to the end results
and the base case to be reached. Or that the
working solution contribute to the end results
and the base case to be reached

Write the implementation
of the solution, test it
and adapt it. Do this as
many times as necessary
until reaching the correct
solution

Ask the students what part of
the code is working and which
one not. Encourage a
"refinement" loop till the
solution is reach.

Listings
4 & 5

Table 6: Our pedagogical framework, as defined in Section 4.5, applied to the understanding and application of recursion.

Stage Identifying Moving Creating Outcome

U1

Programming constructs: function,
if-statement, call to a function.
Prerequisite: Students are able to
go through the code line by line

Understand the
general concept
of recursion

U2
(activity 1)

Programming constructs:
call to a function (self-reference)

Move between the (0) recurrence,
(1) the code implementation, and
(2) the trace. Prerequisite: students
are able to trace an input

U2
(activity 2)

Identify similarities between
different implementations; similar
examples

Move between the recurrence
(e.g., x! = x * (x-1)!) and
the implementation

Giving a recurrence
(e.g., x! = x * (x-1)!),
create the implementation

U3
Move between then recurrence
(e.g., x! = x * (x-1)!) and
the implementation

Giving a prompt in natural
language, create the
implementation

A1
Identify that they could use a
recursive function Implementing a

correct solution
using recursion

A2

Move from the natural language
description, to a representation
that is closer to the code
implementation

A3
Error identification (loop)
Prompt: what part of the code
is working and which one is not?

Moving to the implementation
(not perfect) (loop) Error correction (loop)

269

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

not be seen as a table to complete, but rather a tool to categorize
existing instructional material. The examples conclude with the
opportunities for improvement that were identified through this
categorization.

Insights from the process of applying the framework to the
contexts can be found in Section 6 and the refined version of the
framework is presented in Section 7. In the contexts the abbrevia-
tions U1, U2, U3 and A1, A2, A3 are used to refer to the stages in
Table 4.

5.1 Context 1 - Concept of Memory and
Pointers in C for CS1

5.1.1 Context of the Course. It is a one-semester, 11-week CS1
module taught in C in a research intensive university in the UK.
Each week, students receive 1 hour of recorded lecture, 1 hour of
live coding on solving problems or demonstrating the development
environment, and 3 hours of laboratory session to support assessed
and non-assessed exercises. Themodule covers basic data structures
like linked lists, stacks, queues, and arrays, and algorithms such as
searching, sorting, recursion. There are approximately 340 students,
with some have completed Advance level (A-level) mathematics, and
computer science. A level qualifications are subject-based qualifica-
tions that can lead to university, further study, training, or work in
England, Wales and Northern Island.

Before the material covered in the context below, students will
have learned basic C programming principles, including primitive
variables, conditionals, loops, functions, and static arrays. This unit
introduces a large number of new concepts, some of which prove
challenging for students, including data representation, pointers,
the address-of and dereference operators, and C-style strings.

The learning focus for this unit has been reconsidered using
the our framework to help students understand and apply moving
between different levels of abstraction of data representation. The
students are exposed to aspects of both Stage 1 (Observe) and Stage 2
(Induction and Deduction) for both Understanding and Application,
with a focus on the Moving abstraction skill.

The current version of the unit moves through this material
rapidly, causing many students to struggle, especially with concepts
not addressed directly or sufficiently. As a result, we have used the
abstraction framework to identify opportunities to introduce what
we hope to be small but effective interventions for the programming
concepts in this unit.

5.1.2 Understanding Data Representation. CS1 students learning C
must understand machine-level representation of data before they
are able to properly manipulate vector data. First, students learn
that all data are represented in binary form, so that two different
pieces of data belonging to two different types can have identical
representation. We apply the stages and understanding from our
pedagogical framework.

Stage U1: Using base conversion between binary and decimal
and using the ASCII table, students see that both an int value
of 65 and that a char value of ‘A’ are stored as 01000001 in
binary, or 0x6B in hexadecimal.

1 int a = 65;

2 char b = 'A';

Figure 4: Pointer representation in sequential memory

Stage U2: Using deduction, students infer that printing 65 as
an int will print 65 in line 3, while printing the same bit-
pattern as a char in line 4 prints “A”.

1 a = 'A';

2 b = 65;

3 printf("%d\n", a);

4 printf("%c\n", b);

Stage A2: Students are expected to deduce that a hexadecimal
value in a char context will print as the corresponding ASCII
character representation and that printing a char value in
int context will print the corresponding integer ASCII index.

1 printf("%c\n", 0x6B);

2 printf("%d\n", 'k');

5.1.3 Moving Between Abstractions of Pointers. The unit also teaches
students about pointers, int arrays, and the address-of and deref-
erence operators. Students are not expected to achieve a complete
understanding of pointers and memory models in this unit. The
goal of the unit is to move students through the first two stages
(observation and induction, then induction and deduction) for both
understanding and applying. In both cases, we use moving as the
abstraction skill to leverage.

We have these specific outcomes for this part of the unit:
• to correctly assign referents to pointers using the address-of
operator

• to correctly access and/or alter the value of the referent of a
pointer using the dereference operator

Here students observe the relation between declaring pointers,
assigning values to pointers, de-referencing pointers, and assigning
value to pointer referents. Here they also observe the dynamic
aspects of the pointers.

The current unit material emphasizes a notional machine rep-
resentation of sequential memory addresses, and shows that one
address can contain a value that is the address of another byte, as
seen in Figure 4.

Unfortunately, Figure 4 is not sufficient for students to under-
stand the operation of pointers. We introduce an additional notional
machine to the instruction, bridging from the existing memory dia-
gram to block-and-arrowmemory diagrams showing the pointer-to-
addressee relationship. This is as a result of deficiencies identified as

270

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

Figure 5: Pointer representation without sequential memory

a result of reflecting on this context with our proposed framework.
We will begin by presenting the following code to students:

1 int x;

2 int *p, *q; // 1

3 p = &x; // 2

4 q = p; // 3

5 printf("%p\n", p); // all three lines print

6 printf("%p\n", q); // the same hex value

7 printf("%p\n", &x); // the address of x

The second notional machine shows the relationship between
one integer primitive and the pointers, but removes the concept
of sequential memory locations, simply showing that a sequence
of 8 bytes4 (a pointer) can contain the address of another byte.
This is seen in Figure 5. Our framework enabled us to identify
the scaffolding notional machine to understand the intricacies of
pointers.

This will be used as a bridge to block-and-arrow memory dia-
grams. In these diagrams, pointers don’t have values (e.g., a hexa-
demical value); they have arrows that point to other bytes. This is a
move from one level of abstraction (8 bytes containing the address
of another byte) to the meaning of that concept, which is that one
sequence of 8 bytes points to another sequence of bytes. The second
version of the diagram (seen in Figure 6) represents the same code,
but with this higher-level abstraction.

5.1.4 Using the Dereference Operator. The student will then be
given the following code and associated memory diagram showing
states 1–3, seen in Figure 7:

1 int x = 42;

2 int *p; // State 1

3 p = &x; // State 2

4 printf("%d\n", *p);

4The number of bytes used to represent a pointer in C can differ based on platform.
However in this example we will assume 8 bytes are used to store a pointer, which is
common on 64-bit systems.

Figure 6: Pointer representation with referencing arrows

Figure 7: Example memory model showing first three states

5 *p = 24; // State 3

6 printf("%d\n", *p);

7 printf("%d\n", x);

The student will then asked to modify the memory diagram to
show the result of the following line of code. The student should
produce the diagram shown as State 4 in Figure 8.

8 *p = 31; // State 4

At the end of the unit, students will be expected to understand all
of these concepts and how C represents both integer and character
data and how those two concepts are simply different interpreta-
tions of the same basic underlying data.

5.1.5 Pointers to Arrays of Integers. Now pointers are used to ref-
erence statically-allocated arrays. Students are assumed to already
have an understanding of declaring and using arrays.

271

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

Figure 8: Student-produced memory model showing the final
state

The students are introduced to the code below, along with the
model in Figure 9. That model traces the changing value of pa to
reference sequential elements of a. Both the index and dereference
operators are used to print both the addresses and contents of the
array using both variables. In each state, students will see that the
addresses and values are identical.

1 int a[5] = {1,2,3,4,5};

2 int *pa; // State 1

3 pa = a; // State 2 - index 0

4 printf("%d\n", a[0]);

5 printf("%p\n", pa);

6 printf("%p\n", &a);

7 printf("%d\n", a[1]); // State 3 - index 1

8 printf("%d\n", *(++pa));

9 printf("%p\n", ++pa); // State 4 - index 2

10 printf("%p\n", &(a[2]));

A1 Identify and Creating: The goal is to understand the re-
lationship between pointers, arrays, array indexes, and the
index and dereference operators ([] and *, respectively). The
above code is presented to students along with the corre-
sponding memory model. One of the first things to observe
is the access of elements through two mechanisms. One is
the indexing and another is through the pointer. At this
stage students are encouraged to understand a memory rep-
resentation of array a and pointer pa. They should be able
to complete this code to traverse the array.

A2 Identify and Creating: In this stage, the students will de-
duce the value of x using the listing below. They may take
the help of the memory diagram above. Given that students
are already familiar with iterating using loops and arrays,
students will be asked to create 1) a loop to traverse the array
through both pointer and index, and 2) a loop to traverse the
array showing the address location of using both pointers
and array index.

1 int a[5]={1 ,2 ,3 ,4 ,5};

2 int *pa, x;

3 pa=a;

4 x=*(pa+2);

5 x=*pa+2;

6 x = *pa++;

7 x = (*pa)++;

8 x = *--pa;

9 pa+=3;

Figure 9: Model of an array and a pointer used to reference
multiple indexes

10 x=*pa;

11 x=*(pa -4);

5.1.6 Conclusion. In summary, this context introduces the con-
cepts of memory and pointers in C, guided by the proposed frame-
work. The progression is as follows:

(1) Understanding the data representation by observing that
different data type may have the same underlying bit-pattern
(Section 5.1.2).

(2) Moving between bit-representation and conceptual repre-
sentations of pointers (Section 5.1.3). This is achieved by
guiding the students from a linear representation (Fig. 4) of
memory, towards a more schematic representation (Fig. 5),
that eventually removes the addresses altogether (Fig. 6).

(3) Using the dereference operator to access memory through
pointers (Section 5.1.4). This builds upon the schematic rep-
resentation from the previous step, and illustrates how mod-
ifications of the underlying data affect the representation
(Figs. 7 and 8).

(4) Discussing pointers to arrays of integers (Section 5.1.5),
where students are shown the fact that pointers can be mod-
ified, much like other integer variables, in order to access
data located sequentially in memory (Fig. 9).

5.2 Context 2 - Algorithmic Game Theory
5.2.1 Context of the Field. Algorithmic game theory is an interdis-
ciplinary field that combines elements of economics, mathematics,
and computer science to study strategic interactions among ratio-
nal and intelligent decision-makers. It extends traditional game
theory by focusing on the computational aspects of game-theoretic
problems, addressing questions about how strategies can be com-
puted efficiently and how strategic behavior can be algorithmically
analyzed. The field explores the design and analysis of algorithms
within strategic environments, aiming to understand, among others,
the complexity of finding equilibria and the efficiency of various
outcomes in the presence of strategic behavior.

While not universally included in every undergraduate Com-
puter Science curriculum, Algorithmic Game Theory is more com-
mon in advanced courses, especially in programs emphasizing the-
oretical computer science. Typically offered as an elective or as part

272

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

of a broader course on algorithms, optimization, or computational
economics, Algorithmic Game Theory remains somewhat niche but
but has clear relevance in areas like online platforms and auction
design.

Dixit [25] claims that too many teachers and textbooks treat the
subject in a very abstract and formal way, thus losing its advantage
of applicability to numerous real-life decision-making scenarios,
and instead suggests methods for teaching game theory using in-
teractive games to be played in the classroom. Holt and Capra [42]
also use classroom games to illustrate real-life applications of the
prisoner’s dilemma and stimulate discussion of a wide range of
topics in economics and game theory. In this case study, we will
discuss how one can use real-life examples in the classroom as a
stepping stone to abstracting complex game theoretic notions and
concepts, via the lens of three different systematizations, all while
applying our framework.

5.2.2 Context of theModule. This case study explores a Year 3 mod-
ule taught predominantly to Computer Science students (though
it is open to students who may satisfy the prerequisites, e.g. Nat-
ural Science students) in a research-intensive University in the
North East of the United Kingdom. It is delivered across 10 teaching
weeks, with 2 hours of lectures per week and no practical classes,
though formative exercises are handed out each week and students
are expected to work on those. The module’s title is Algorithmic
Game Theory; the topics it considers are strategic games and Nash
equilibria, with an emphasis on bimatrix games as a means of intro-
duction, extensive games with perfect information, mathematical
and algorithmic foundations of market equilibria, routing games
on networks, congestion games, and combinatorial auctions. The
module, by its very nature, requires students to think critically
about strategic interactions and model complex scenarios using
mathematical tools. This necessitates a pedagogical strategy that
emphasizes the development of abstraction skills, allowing stu-
dents to distill real-world problems into manageable and analyzable
models.

5.2.3 Application of our FrameworkWithin this Context. Each teach-
ing session is designed not only to impart knowledge but also to
engage students in the process of abstraction, which is paramount
in studying more and more complex game theoretic scenarios as
we move on to more advanced topics. For instance, when intro-
ducing bimatrix games and Nash equilibria, students are guided
through the transition from real-life scenarios to mathematical
representations. This involves outlining a game theoretic problem
as a problem one would face in real-life, identifying the players,
strategies, and payoffs, and then formalizing these elements into
a structured game model. By consistently linking theoretical con-
tent with practical examples, students learn to see the relevance
and applicability of abstract models in the context of the module.
Linking this to our proposed framework, and the three inferential
stages, through exposure and engagement in practical examples,
students first observe concrete things (Stage 1); through analysis
— still on the concrete example rather than on a generic / abstract
concept — students make inferences about the specific observations
made (Stage 2); finally, students use the observations made for the
concrete example to first think hypothetically and then argue more
generally about the abstract concept (Stage 3).

In the following, we will look at specific abstract concepts taught
within the Algorithmic Game Theory module and how we apply
our framework to introduce those concepts to students and help
them to achieve a good understanding of them while, in the process,
developing their abstraction skills. The concepts that we will look
at are:

(1) Second-price sealed bid auctions; there is a single item for
sale and a number of bidders. Each bidder submits a sealed
bid to the seller. The highest bidder obtains the item and
pays the second-highest bid for it. A bidder’s valuation is
the maximum amount they are willing to pay for the item.
The payoff of a player if she does not obtain the item is 0;
her payoff if she obtains the item is the difference between
her valuation and the price she pays for it (second-highest
bid). It can be shown that truthful bidding, i.e., submitting
one’s true valuation for the item, is a dominant strategy in
Second-price sealed bid auctions, that is a strategy that is
better than any other strategy for the player, no matter how
that player’s opponents play.

(2) (Pure) Nash equilibrium; in the early introduction to the mod-
ule, students learn about the simple concept of a (pure) Nash
equilibrium. In a strategic game, each player has a set of ac-
tions fromwhich they pick one to ‘play’; she also has a payoff
function which maps every action profile (namely, combina-
tion of actions, one per player) to a real number that, in a
way, represents the ‘happiness’ of the player in that given
action profile. A standard assumption is that players make
their decisions on which action to choose simultaneously
and once and for all, i.e. they may not change their minds. A
(pure) Nash Equilibrium is a steady-state in the game, namely
it is an action profile where, given other player’s strategies /
actions, no player wishes to unilaterally change their own
strategy / action.

(3) Extensive games with perfect information; these games model
strategic interaction situations with a sequential nature, in
which each player is free to change her mind as events unfold
and does not need to stick to a plan of action from the start
of the game; each player is also informed fully about other
players’ actions prior to when they need to take an action.
Games like chess or tic-tac-toe are classic real-life examples
of such games.

We note that the above paradigms (an auction; a Nash equilib-
rium; an extensive game) are all abstract concepts but there exist
concrete real-life examples that a teacher can point to, which stu-
dents can relate to (eBay; everyday interactions where there might
be differing interests; chess, respectively). Therefore, it is unprob-
lematic to find very specific examples that students can relate to
in order to motivate an initial analysis of properties of these con-
cepts, thus leading to a higher level understanding of the concepts
themselves as well as their properties; recall that the first stage for
understanding a concept in our proposed framework (i.e., stage U1
for the identifying skill) involves making observations, and present-
ing students with relatable examples can support this process.

In the following subsections, we present an in-depth analysis
of the application of our framework in the first paradigm above,
namely to the teaching of second-price sealed bid auctions. We also

273

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

highlight ideas and elements from the application of pre-existing
systematizations to the above paradigms that gave us initial insights
into the important aspects of the development of abstraction in
the context of this module. These insights helped form aspects
of our framework in turn; indeed, recall that the development of
our framework was an iterative process of theoretical analysis and
reflective practice across multiple teaching contexts, including this
one.

5.2.4 Auctions Paradigm. To illustrate the application of our pro-
posed framework in detail, we will first look at how a model of
concept formation, specifically the APOS model (Actions, Processes,
Objects, and Schemas)5 [17], is used to help students form an un-
derstanding of the concept of Combinatorial Auctions. We will then
show how our framework builds upon, e.g. the steps of the APOS
model, to enhance the development of several of the identified key
abstraction skills.

Let us consider the following setting: students have been in-
troduced to the concept of an auction in general and have been
presented with the basic definition of a second-price sealed-bid
auction as a process where bidders submit simultaneous sealed bids
to the seller of an item and the highest bidder wins the item and
pays the value of the second-highest bid. Suppose further that the
students know / have been taught that a second-price sealed-bid
auction can be formulated as a strategic game where the players’
payoffs are clearly defined for a given bidding profile, i.e., combi-
nation of bids, one per player / bidder; a player’s payoff is 0 if she
does not obtain the item in the given bidding profile, and is equal
to her (valuation - price paid) if she obtains the item. The APOS
model can be applied as follows:

• Students participate in a mock second-price sealed-bid auc-
tion where they bid for a box of chocolates. (Actions)

• We then collectively discuss the process of determining the
winning bids and payments. We ask questions and prompt
students to explain their process of deciding what bid to
place, as well as how changing their bid may change the
outcome of the auction for them. (Processes)

• Students are then encouraged to view the auctionmechanism
itself as an object that can be analyzed and optimized. Here,
students must make inferences about the observation of
possible outcomes and attempt to generalize what these
mean for an arbitrary player’s dominant strategy in this
type of auction. (Objects)

• Finally, the students are able to build a schema around differ-
ent types of auctions (1st price, 2nd price, all-pay, etc.) and
their properties, e.g., dominant strategies or Nash equilibria.
(Schemas)

We now further enhance the above process through the applica-
tion of our framework to highlight the development of individual
abstraction skills. This insight allows the teacher to adapt the teach-
ing, to ensure a suitable progression in each skill and as a whole. We
present the enhanced process of teaching students about second-
price sealed-bid auctions in detailed steps below. Something that
should come out of this process is that students understand that
bidding truthfully (i.e., bidding their true valuation for the item) is
5The APOS model focuses on the mental construction of mathematical concepts
through the four stages of Actions, Processes, Objects, and Schemas.

the best action regardless of other players’ bids in a second-price
sealed-bid auction. Within each step, students are given prompts
or are expected to reach certain subgoals of understanding or ab-
straction; where these are explicitly discussed, we discuss them
also in the context of the three inferential stages proposed in our
framework:

Step 1. Prior to engaging the students in the mock auction for
the box of chocolates, we bring in the classroom two people
who have been briefed about the ‘experiment’ (of developing
students’ abstraction skills using the APOS model as above),
e.g. two PDRAs, let us call them Bob and Alice. The PDRAs
participate in an auction for an apple to illustrate to the
students the bidding process: Bob announces to students that
his valuation for the apple is £1, while Alice announces that
her valuation is £2. They both submit their bids to the teacher
who proceeds to open them and announces to the students
that Bob submitted a bid of £10, while Alice submitted a bid
of £2. Bob is declared the winner of the auction and needs to
pay the teacher £2, i.e., the second highest bid. The teacher
asks students: “What is Bob’s payoff for obtaining the apple?”
(This is a Stage 1 prompt based on the observation of the 2-
player auction, where players’ valuations are known.) Bob’s
payoff is negative, namely -1. (This is a Stage 1 subgoal for
the students to identify what the payoffs are based on their
observation of the concrete 2-player auction between Bob
and Alice. At the same time, here students should be able
to apply their prior understanding of payoffs, as they have
developed it in the context of strategic games, to this new
concept of auctions, so this also serves as a Stage 3 subgoal
of applying some prerequisite knowledge.). If students are
not able to reach this subgoal, there are further prompts that
can be asked; e.g. “Let us recall: how are payoffs calculated
in an auction?” (Stage 1 prompt for the skill of identifying),
“What are the specific values that need to be input in the
calculation in this concrete example?” (Stage 2 prompt for
identifying) etc. In this step, not only students observe the
bidding process but are developing the skill of identifying
that this specific situation can be modeled with the notion of
an ‘auction’ as they have preliminary understood it via the
initial discussions on auctions that occurred already before
this process.

Step 2. The teacher now poses the question “What would have
happened if, instead of £1 and £2, Bob and Alice’s valuations
were £11 and £0.5, respectively, while bids remain the same?”
(This is a Stage 2 prompt where students are encouraged to
make deductive inferences about their observation of the
process so far.) The answer is that Bob would have still won
with the bid of £10 but his payoff would now be positive,
namely 0.5. Students should now reach the Stage 2 subgoal
of being able to deduce the complexities of an auction in that
they understand that a player’s payoff is dependent on their
valuation and their bid, as well as the other players’ bids. E.g.,
Bob should never bid more or less than £1: if he bids more
he risks Alice bidding higher than £1 but lower than Bob,
thus he risks ending up with negative payoff; if he bids less
than £1 then he misses a potential opportunity of obtaining

274

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

the apple and a positive payoff if Alice bids less than £1. In
this step, the teacher is merely asking questions for students
to reflect on what strategy / bid might be appropriate but
without prompting any further analysis. This step can aid
in the understanding of an auction more broadly as an
object, though at a very preliminary stage and possibly only
combined with the subsequent steps below. As such, there
is no expectation that students reach the Stage 3 subgoal of
understanding that truthful bidding is dominant regardless of
other players’ bids just yet. Some students may already reach
that subgoal in this step of the process, though it is expected
that most will require going through the subsequent steps.

Step 3. The students are now asked to participate in the mock
auction for the box of chocolates as described above in the
application of the APOS model. Now, students can apply
their understanding (as abstract as it has been formed so far)
about second-price sealed-bid auctions to a more complex
example, where in particular they are not aware of others’
valuations. In this step, a student that has already managed
to understand that they are better off bidding their true
valuation for the item no matter what others bid has also
been able tomove between levels of abstraction. Specifically,
the student has moved from the very concrete example of
two players with known valuations to the more abstract
level of understanding that truthful bidding is dominant
regardless of number of players, valuations, and others’ bids.
For those that have not yet managed to understand that, Step
4 offers more prompts.

Step 4. The teacher follows up with more prompting questions
after all students’ bids have been opened. Let us consider
an example where there are four students, A, B, C, and D,
with bids £10,000, £500, £10, £1, respectively. The winner is A
who has to pay £500 for the box of chocolates and certificate.
The teacher asks A what her valuation is for the item(s)
and A replies that it is only £5. The teacher asks “Why did
you choose to bid £10,000?” and A replies “I thought that
nobody else would bid this much and I wanted to win.” The
teacher then reminds A that obtaining the object alone is
not the objective of the auction — they must consider their
payoff in doing so; A’s payoff is now -495. The teacher then
prompts A to think what she would bid if she could bid
again. (This is a Stage 3 prompt for identifying as well
as the outcome skill of understanding where students are
required to think hypothetically using their observations.) At
this point, A (resp. the other students) may have already been
able to identify truthful bidding as the best strategy (Stage
3 subgoal). If not, the teacher walks A through different
scenarios of possible bids she may place, as well as possible
bids that the other players may place.

5.2.5 Nash Equilibrium Paradigm. In this section, similarly to the
previous one, we present how Concreteness Fading (CF) [28] relates
to our proposed framework by applying them both to the concept
of a Nash equilibrium. CF involves starting with concrete examples
and gradually moving towards more abstract representations. It
is worth remembering that the emphasis of a framework of peda-
gogic practice is placed on what the teacher does, while models of

abstraction focus on what the students do. With that in mind, let us
explore the relation between CF and our proposed framework in
the teaching of the concept of a Nash equilibrium.

Step 1. We begin a discussion with students through looking at
the simple, real-world game of Rock-Paper-Scissors. Students
play in pairs and record outcomes.
This activity corresponds to the first step in CF, Concrete.
In our framework, this corresponds to inferential Stage 1,
where students make observations about the concept.

Step 2. We proceed by instructing students to work in larger
groups: in their groups, students transition into representing
the Rock-Paper-Scissors game with a payoff matrix, explain-
ing and understanding how each outcome corresponds to
different payoffs.
This corresponds to the second step in CF, Less Concrete.
This step encourages students to continue to Stage 2 in our
proposed framework, since it encourages discussions that
lead to both deductive and inductive inferences about the
concept.

Step 3. We finally introduce the concept of Nash equilibrium
and discuss how it can be found in the payoff matrix.
This final step corresponds to the third and final step in CF,
Abstract. This is where instructors help students generalize
their observations from the previous two steps into the Nash
equilibrium, thereby being able to reason hypothetically
about other, similar situations.

5.2.6 Extensive Games Paradigm. For the final concept, similar to
the previous two, we present how Sfards’s Model [75] on Interioriza-
tion, Condensation, and Reification can be applied to the teaching
of extensive games with perfect information, and how it relates to
our proposed framework.

Step 1. Students are instructed to practice playing an easy ex-
tensive game with perfect information like Tic-Tac-Toe in
pairs. In that process, students are encouraged to think ahead
about the possible outcomes of the game and how different
actions they take each time it is their turn to play (and every
subsequent time) may influence their payoff.
This step corresponds to Interiorization in Sfard’s framework
and inferential Stage 1 in our framework, as it encourages
students to observe the phenomenon and to make induc-
tive inferences about it. Additionally, the latter part of this
step (thinking about outcomes) encourages students to move
towards Stage 2 of our framework.

Step 2. We then guide students to summarize their strategies
into decision trees / game trees where they need to consider
and show the possible moves and outcomes.
This step corresponds to Condensation in Sfard’s framework
and inferential Stage 2 in our framework, as it encourages
students to continue the inferences they made in Step 1 to
include both inductive and deductive reasoning.

Step 3. Finally, students see the entire game tree as an abstract
object, allowing them to reason about strategies and out-
comes at a higher level.

275

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

This corresponds to Reification in Sfard’s framework, and
inferential Stage 3 in our framework, as it allows students to
generalize their observations from the previous steps into
its own concept (the game tree, in this case), and later apply
it in other situations. For example, a direct consequence of
reaching this stage is understanding the backward induction
process which when performed on a game tree can identify
what is known as Subgame Perfect Equilibria.

5.2.7 Discussion. By applying our framework as well as the above
models in these paradigms, students can progressively develop a
deeper and more structured understanding of the algorithmic game
theory topics we look at, transitioning from concrete experiences to
sophisticated theoretical insights. It is also clear that our framework
has links to existing systematizations; indeed, the outline of the
application of the above systematizations within the context of
the Algorithmic Game Theory module was a part of the iterative
process used for the design of the framework. Identifying shared
elements and areas of divergence informed the adaptation and
integration of key ideas from these systematizations towards the
formation of the final version of our framework. For example, as
we saw in Sections 5.2.5 and 5.2.6, both Concreteness Fading and
Sfard’s framework have a similar progression when focusing on
what students need to do. There are, however, minor differences
in the extent of the first step. In CF, the first step only involves
making observations, while it also involves making basic inductive
inferences in Sfard’s framework.

5.3 Context 3 - Concurrent Programming
Concurrent programming is an important concept since it allows
utilizing the full computing power of modern multi-core CPUs, and
it is therefore often included in university-level CS programmes [45].
It is a topic that is often perceived as difficult by students, likely
because students are no longer able to utilize trial-and-error to
explore the environment and have to shift towards a more formal
approach instead [47, 81]. This is in large part because the con-
cepts used in concurrent programming differ from concepts that
students are already familiar with in that the new concepts leave
much behavior undefined. As such, observing a running program’s
behavior does not necessarily allow concluding that the observed
behavior is well-defined.

Concurrent programming requires students to take a step back
and re-consider their approach to programming (as argued by Ko-
likant [47]), it is a topic that is typically taught later in a CS educa-
tion. Therefore, it demonstrates the application of the framework
to more advanced topics in addition to the foundational topics dis-
cussed in many of the other case studies in this section. As such, it
covers all of the abstraction skills outlined in Section 4.2.2.

5.3.1 Context of the Course. The course examined in this section
is given towards the end of the second year of a three year long
Bachelor’s programme in Computer Science at a large university in
Sweden. The course runs for a period of 10 weeks. Its main focus is
a set of computer lab assignments where students implement func-
tionality in the educational operating system Pintos.6 The course
also includes 4 lectures that introduce concurrency (the theory on

6https://www.scs.stanford.edu/10wi-cs140/pintos/pintos.html

Sequential programming
Using abstract data types

Creating abstractions
Prerequisites:

Memory model

Synchronization

Creating concurrent abstractions

Figure 10: Overview of the expected prerequisites (in the
dashed box), the concepts covered (solid boxes), and the de-
pendencies between them (arrows).

operating systems has been covered in a previous course), two lec-
tures that introduce concepts related to Pintos, and ends with a final
exam where students are asked to synchronize simple programs7.

The remainder of this context is split into two parts. The first
presents the contents of the course in general and its relation to the
framework. The second part briefly covers practical considerations.

5.3.2 Concepts in the Course. The course assumes that students
are already familiar with sequential programming. As such, the
course starts from there and covers the differences between sequen-
tial and concurrent programming. At a high level, the differences
between sequential programming and concurrent programming in
the shared memory model can be summarized into three high-level
concepts that students need to learn:

(1) The memory model that describes the behavior of program
execution,

(2) Synchronization using synchronization primitives, and
(3) Creating abstractions that are suitable to concurrent systems.

As shown in Figure 10, these concepts cover concurrent program-
ming by extending the computational model used for sequential
programs. Therefore, students are assumed to be already familiar
with sequential programming. In particular, they are expected to
be able to trace and write programs that involve basic control struc-
tures, functions, custom data types, pointers/references, and the
ability to create data- and procedural abstractions. Step (1) above
covers the memory model in concurrent programming by illus-
trating the problems that are unique to concurrent programming,
namely that data shared between multiple threads need to be pro-
tected. It is thereby mainly focused on the identifying abstraction
skill, as students need to identify shared data and problematic code
that uses this data. Step (2) builds upon the insight from step 1
and covers how shared data can be protected, which involves the
move skill, as students need to move between abstraction levels to
eventually come up with general rules to synchronize programs.
Finally, step (3) combines both of them and explores how the mem-
ory model and the need for synchronization impacts the design and

7This course is described in further detail in [82].

276

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

https://www.scs.stanford.edu/10wi-cs140/pintos/pintos.html

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

implementation of abstractions for use in a concurrent system. As
such, it covers the creation of abstractions in concurrent systems.

5.3.3 Course Content: The Memory Model. The fundamental idea
behind concurrent programming (in the shared memory model) is
to let each program (process) contain multiple threads. Each thread
executes instructions sequentially, exactly like in sequential pro-
grams. All threads execute concurrently and are thus allowed to
execute on different CPU cores, which in turn lets the program
utilize the multiple CPU cores that are available in most modern
systems. Since different systems have different number of CPU
cores and different number of threads running only weak guaran-
tees for thread execution order are provided. It is typically only
possible to assume that all threads will eventually get the chance
to execute, not that they execute at the same time (i.e., in parallel),
or even at the same speed relative to each other.

Different threads communicate through the shared memory. As
such, the semantics of memory accesses is central to concurrent
programming in the shared memory model. In sequential programs,
memory accesses appear to occur in the order they appear in the
source code. In practice, however, both compilers and hardware
reorder memory accesses to improve performance. The modifi-
cations are done in such a way that they are not observable in
sequential programs. They are, however, visible in concurrent pro-
grams. Together with the weak guarantees for thread execution,
this means that students need a good grasp of the semantics of the
programming language in order to properly reason about the be-
havior of programs. This is something that students often struggle
with [80, 81].

1 int shared = 0;

2
3 void fn(void) {

4 for (int i = 0; i < 100000; i++)

5 shared += 2;

6 }

7
8 int main(void) {

9 thread_new (&fn);

10 printf("shared␣=␣%d\n", shared);

11 return 0;

12 }

Listing 6: Example of a program that illustrates the
weak guarantees of thread execution. Depending on the
implementation of thread_new, a small delay may need to be
inserted before line 10.

The first stage for understanding a concept in our proposed
framework (i.e., stage U1 for the identifying skill) involves mak-
ing observations. Since students are expected to be familiar with
sequential programming in a C-like language, a suitable starting
point is the program in Listing 6.8 The main function starts a new
thread that executes fn by calling thread_new,9 and then prints
8Of course, this program does not need concurrent execution in its current form. It is,
however, trivially extensible to two threads that are performing similar computations
concurrently in order to utilize multiple CPU cores.
9The implementation is available in Appendix A.

the value of shared. The started thread adds 2 to shared 100,000
times. When the program is run (either by the teacher or by the
students themselves), it prints a number between 0 and 200,000,
and usually a different number each time. This is likely contrary to
students’ initial predictions, and illustrates the non-deterministic
nature of concurrent programs.

The teacher uses the illustration of non-determinism as a start-
ing point for a discussion about possible solutions to the problem,
ideally in a situation where students are able to modify the code and
test it during the discussion. This encourages cycles of inductive
and deductive reasoning about the semantics of memory accesses,
which corresponds to stage U2 of our proposed framework for the
identifying skill. Eventually, the students are likely to arrive at a
solution similar to the one in Listing 7, which adds the variable
done to let the main thread wait for fn to complete.

1 int shared = 0;

2 bool done = false;

3
4 void fn(void) {

5 for (int i = 0; i < 100000; i++)

6 shared += 2;

7 done = true;

8 }

9
10 int main(void) {

11 thread_new (&fn);

12 while (!done)

13 ;

14 printf("shared␣=␣%d\n", shared);

15 return 0;

16 }

Listing 7: Example of a program that illustrates the issues
with shared data.

The code in Listing 7 usually appears to work well, even though it
is undefined according to the C memory model [10]. In this particu-
lar case, the programwould be correct under stronger memorymod-
els, such as sequential consistency [49] or total store ordering [74].
The program is, however, likely to work since compilers are un-
likely to utilize the flexibility allowed by the C memory model
unless optimizations enabled. As such, the problem can be illus-
trated by instructing students to enable compiler optimizations.
This makes the compiler use assumptions from the memory model
and transform the while loop into code equivalent to the code in
Listing 8. The effects of the transformation is not easy to observe
in practice, since the loop on lines 5–6 will be turned into a single
assignment. The discussion around it is therefore best led by a
teacher. The effects can be observed by inserting a call to sleep(1)
before line 7, which causes the program to hang indefinitely. To
understand why it is, however, necessary to examine the generated
code.

This teacher-led discussion is a clear example of stage U2 in
the the framework for identifying properties of the memory model.
Students made a deductive inference about how to solve a partic-
ular problem. With the help of a prompt from the teacher (enable

277

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

if (!done) {

while (true)

;

}

Listing 8: Transformation of the loop in Listing 7 by the
compiler.

optimizations), they received new information that invalidated the
previous deduction. As such, they need to revise their understand-
ing of the memory model through inductive reasoning. The goal
is to move towards the insight that all shared data needs to be
protected. Since the tools needed to protect shared data have not
yet been introduced, it is not possible to fix the problem in Listing 7.
Instead, the teacher continues the discussion using non-optimized
programs to illustrate another aspect of the memory model to help
students to move to stage U3 of our framework, which will be
required to continue with the next topic.

1 int shared = 0;

2 bool done = false;

3
4 void fn(void) {

5 for (int i = 0; i < 100000; i++)

6 shared += 2;

7 done = true;

8 }

9
10 int main(void) {

11 thread_new (&fn);

12 for (int i = 0; i < 100000; i++)

13 shared += 5;

14 while (!done)

15 ;

16 printf("shared␣=␣%d\n", shared);

17 return 0;

18 }

Listing 9: Example of a program where two threads access
the variable shared concurrently.

In the next step, the teacher adds a new loop that increments
shared 100,000 times to the main function, as shown in Listing 9.
This loop therefore executes concurrently with the loop inside
fn. The teacher then asks students to reason about the output of
the program. At this stage, students are likely to predict that the
program prints 700,000 every time. However, running the program
reveals that this is not the case. The reason for this, which the
teacher likely has to point out to students, is that each increment
operation consists of two separate memory accesses. Thus, even
if we assume that memory accesses happen in program order, we
can realize that this might result in certain additions being lost. For
example, if both threads load the current value of shared (e.g., 100),
add 2 or 5 to their local copy, and store the result back into shared
at the same time, one of the values will be overwritten. Since this
issue requires that threads perform the above operations in parallel,

this only happens for some of the additions. This is why the result
differ between different program executions.

As we can see, this illustrates another way in which accessing
shared data concurrently may cause unexpected behavior. However,
they can be unified and verified using the hypothesis that concurrent
access to shared data is undefined, meaning that all access to shared
data needs to be protected. This represents stage U3 of the framework
for identifying the abstraction of the memory model. It is the level
students need to be able to properly reason about synchronization.
As we shall see, they will practice applying the memory model in
parallel with understanding the next topic in the course.

5.3.4 Course Content: Synchronization. After reaching a sufficient
understanding of the memory model, the students can continue
to learn synchronization. Ideally, students have reached stage U3
at this point. However, as we saw above, synchronization is often
needed to affect the execution environment, students may only
have reached partway through stage U2 when synchronization is
introduced, and have to pursue both topics in parallel.

In the shared memory model, synchronization involves using
synchronization primitives10 to wait for other tasks to complete,
or to avoid concurrent access to shared data (i.e., ensuring mutual
exclusion). There are many synchronization primitives available,
but we start with the semaphore to allow waiting for another task
to finish, as was required in Listing 7.

1 struct semaphore;

2 void sema_init(struct semaphore *s, int value);

3 void sema_up(struct semaphore *s);

4 void sema_down(struct semaphore *s);

Listing 10: The public interface of a semaphore.

The first stage of learning semaphores (i.e., stage U1 for identi-
fying the abstraction) is to learn the semantics. This also doubles
as stage A1 for the memory model, since we apply the abstraction
of the memory model to reason about other abstractions. First, the
teacher covers the formal semantics: a semaphore is a data structure
that has two operations after initialization as shown in Listing 10.11
The actual contents of the data structure is hidden, but it can be
considered to have a counter that must remain non-negative. The
counter may be initialized to any positive value when the data struc-
ture is created, but may only be manipulated through the operations
up and down afterwards. The up operation increases the value by
one, and down decreases it by one. To ensure that the counter re-
mains non-negative, the down operation waits if the counter would
be negative after it has been decremented, which makes the calling
thread wait until another thread calls up. Because of this usage, the
two operations are sometimes called signal and wait respectively.
To help students visualize how semaphores behave in the context of
a program, a visualization tool like Progvis [82] might also be used.
Understanding and using semaphores without seeing the imple-
mentation in this way is a good example of hypothetico-deductive
thinking.
10Or atomic operations, but we exclude them as they are not always covered in detail
in introductory courses on concurrency.
11The implementation is available in Appendix A for reference.

278

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

1 int shared = 0;

2 struct semaphore done;

3
4 void fn(void) {

5 for (int i = 0; i < 100000; i++)

6 shared += 2;

7 sema_up (&done);

8 }

9
10 int main(void) {

11 sema_init (&done , 0);

12 thread_new (&fn);

13 sema_down (&done);

14 printf("shared␣=␣%d\n", shared);

15 return 0;

16 }

Listing 11: The program from Listing 7 synchronized with a
semaphore.

Figure 11: Progvis [82] used to visualize the code in Listing 11,
which is a synchronized version of the code in Listing 7.

After introducing the semantics, the teacher asks students to
use a semaphore to solve the issue in Listing 7 by modifying the
code and testing it. This activity encourages students to make in-
ductive and deductive inferences based on the formal semantics
and their observations, and helps them to advance to stage U2 in
the framework. Again, this doubles as stage A2 for the memory
model. Students are likely to eventually arrive at a solution similar
to the one in Listing 11, which works correctly.

Since concurrent programs are non-deterministic, testing pro-
grams for correctnes is difficult. Therefore, a visualization tool
like Progvis is beneficial for this exercise as it allows students to
single-step individual threads and observe the program state at
each step. Figure 11 shows how Progvis illustrates a state where
Thread 1 waits for the counter in the semaphore done to become
positive. By observing that only Thread 2 is able to run and that it
will eventually call up, it is possible to deduce that Thread 1 waits
for Thread 2 to finish. Progvis [82] also detects and reports cases
that are undefined according to the memory model, which allows
students to validate and refine their understanding of the memory

model. It is, however, worth noting that Progvis does not simulate
how undefined operations might behave, which is why it has not
been suggested until now. In Progvis it is also a good idea to reduce
the number of iterations in the loops.

1 int shared = 0;

2 struct semaphore done;

3
4 void fn(void) {

5 for (int i = 0; i < 100000; i++)

6 shared += 2;

7 sema_up (&done);

8 }

9
10 int main(void) {

11 sema_init (&done , 0);

12 thread_new (&fn);

13 for (int i = 0; i < 100000; i++)

14 shared += 5;

15 sema_down (&done);

16 printf("shared␣=␣%d\n", shared);

17 return 0;

18 }

Listing 12: The program from Listing 9 synchronized with a
semaphore.

The previous example only illustrates waiting for another thread
to complete its task. Listing 9 also illustrated cases where shared
data needs to be protected. To illustrate the problem, the solution
from Listing 11 can be applied to Listing 9, which results in List-
ing 12. In spite of the semaphore, the variable shared is modified
concurrently and needs to be protected to ensure that the two mem-
ory accesses involved in each increment operation are executed as
a unit.

How this can be achieved is likely not immediately clear to stu-
dents, and thus encourages further exploration of stage U2 of the
framework through deductive inferences based on their understand-
ing of the semaphore. Hopefully, students will eventually realize
that the goal can be re-stated as waiting for other threads to not use
the variable. With this insight, it is possible to apply the previous
solution here as well, which results in the solution shown in List-
ing 13, which correctly solves the problem. It is worth noting that
the semaphore is used slightly different since the semaphore mutex
is used to ensure mutual exclusion.

After students have found a solution, the teacher then helps
them generalize the two solutions to help them move to stage U3
of the framework for identifying the abstraction of the semaphore.
One way to achieve this is to imagine the counter in the semaphore
as tracking the availability of some resource in the program. In
this case, done tracks whether fn is finished or not, while mutex
tracks howmany threads may enter the critical section that modifies
the variable shared. This insight introduces a higher-level concern
that is useful as a strategy to guide students towards correct usage
of semaphores. Applying it correctly does, however, require the
ability to move between different levels of abstraction, and helps
students move to stage U1 in the framework for that skill. In this

279

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

1 int shared = 0;

2 struct semaphore done;

3 struct semaphore mutex;

4
5 void fn(void) {

6 for (int i = 0; i < 100000; i++) {

7 sema_down (&mutex);

8 shared += 2;

9 sema_up (&mutex);

10 }

11 sema_up (&done);

12 }

13
14 int main(void) {

15 sema_init (&done , 0);

16 sema_init (&mutex , 1);

17 thread_new (&fn);

18 for (int i = 0; i < 100000; i++) {

19 sema_down (&mutex);

20 shared += 5;

21 sema_up (&mutex);

22 }

23 sema_down (&done);

24 printf("shared␣=␣%d\n", shared);

25 return 0;

26 }

Listing 13: The program from Listing 12 properly
synchronized.

case between the level of the semantics of the semaphore and the
higher level synchronization goals of the program.

1 struct lock;

2 void lock_init(struct lock *l);

3 void lock_acquire(struct lock *l);

4 void lock_release(struct lock *l);

Listing 14: The public interface of a lock.

To help illustrate the difference between the different synchro-
nization goals in the program, it is relevant to introduce the syn-
chronization primitive lock (or mutex). A lock can be viewed as a
special case of a semaphore that is designed for the explicit purpose
of achieving mutual exclusion (like mutex in Listing 12). While this
restricts its capabilities (e.g., it is not possible to replace done with
a lock) it allows improved readability and error-checking. The in-
terface provided by a lock is shown in Listing 14. The lock_acquire
function corresponds to sema_down, and lock_release corresponds
to sema_up. Discussing these differences further helps students’
ability to move between different abstraction levels, helping them
advance towards stage U2 in the framework.

Finally, to help students reach stage U3 of the framework, it
is beneficial to have a discussion of code similar to the one in
Listing 15. The code contains two functions, a and b, that both
increment the global variable shared by 2 in three separate steps

1 void a(void) {

2 lock_acquire (&lock);

3 int tmp = shared;

4 lock_release (&lock);

5 tmp += 2;

6 lock_acquire (&lock);

7 shared = tmp;

8 lock_release (&lock);

9 }

10
11 void b(void) {

12 lock_acquire (&lock);

13 int tmp = shared;

14 tmp += 2;

15 shared = tmp;

16 lock_release (&lock);

17 }

Listing 15: Illustration of the importance of critical sections.

(corresponding roughly to the low-level implementation of +=). The
two functions have both been synchronized using a lock: a only
holds the lock when shared is accessed, while b holds it throughout
the entire increment operation. The teacher asks students to find
problems if two (or more) threads execute a and/or b concurrently.
The goal is for students to realize the importance of higher-level
synchronization goals. In this case, both versions are well-defined
according to the memory model (i.e., no data races). However, if
a is used, an issue similar to what happened in Listing 13 might
occur. As such, this further helps students develop their ability to
move between different abstraction levels. In this case, students
must move between the program level (considering goals) and the
level of individual operations that achieve these goals to determine
which operations must execute as a unit, helping them to arrive at
stage U3 in the framework for this skill.

5.3.5 Course Content: Creating Abstractions. The final concept is
creating abstractions, where students apply their knowledge of the
memory model and synchronization together with their knowledge
of abstractions in sequential programs. This allows them to gener-
alize their ability to create abstractions to include the additional
concerns that are relevant in concurrent programming. This part
of the course is therefore exclusively related to the creating skill of
the proposed framework.

These aspects can be illustrated by starting from an implemen-
tation of a simple stack, such as the one in Listing 16. Initially, the
stack is not synchronized, since it does not protect its shared data
using synchronization primitives.

To prompt students to explore these new properties, thereby
working with stage U1 in the framework, the teacher shows the
stack implementation from Listing 16 alongside a main program
(e.g., the one in Listing 17), and asks students to synchronize it.
Assuming that students have advanced far enough in the previous
topics, they should be able to deduce that the variable count is
shared and needs to be protected (e.g., using locks).

There are two main approaches to achieve this. Either placing
locks in the implementation of the stack, or by placing locks in the

280

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

1 struct stack {

2 const char *elements[MAX];

3 int count;

4 };

5
6 bool stack_push(struct stack *s, const char *e) {

7 if (s->count < MAX) {

8 s->elements[s->count ++] = e;

9 return true;

10 } else {

11 return false; // Full.

12 }

13 }

14
15 const char *stack_pop(struct stack *s) {

16 if (s->count > 0) {

17 return s->elements[s->count --];

18 } else {

19 return NULL; // Empty , signal error.

20 }

21 }

Listing 16: Implementation of a simple stack in C.

1 struct stack s;

2
3 void other(void) {

4 stack_push (&s, "a");

5 }

6
7 int main(void) {

8 stack_init (&s);

9 thread_new (&other);

10 printf("Popped:␣%s\n", stack_pop (&s));

11 return 0;

12 }

Listing 17: Example of a main program that illustrates
problems with the stack implementation in concurrent
programs.

code that uses the stack. Ideally, students use both approaches when
solving the problem in the class so that the teacher can highlight
the difference between their solutions. In particular, the former
approach makes the stack thread-safe since it is safe to use from
multiple threads concurrently. This helps students move towards
stage U2 in the framework.

Even though adding locks to the stack avoids race conditions, the
program in Listing 17 does not behave as intended. Since the thread
that pops an element does not wait for other threads to push an
element, the pop might fail and return NULL. A convenient solution
to this problem is to use a semaphore to make stack_pop wait until
there is an element to pop. The key insight here, which further
helps development of stage U2, is that abstractions in concurrent
systems also have the option to wait for something, just like the
synchronization primitives. In particular, stack_pop could either

return NULL or wait until an element is available. In this case, the
latter makes the example program behave as intended.

Finally, to help students to reach stage U3 of the framework, they
need to consider (potentially with the help of the teacher) where
synchronization primitives should be declared. In this case, there are
essentially two options: either inside the data structure or globally.
For the locks, either option works, but the latter is suboptimal as it
needlessly disallows different stacks from being used concurrently.
It is not possible to declare the semaphore globally, as its counter
represents the number of elements in the stack. If multiple stacks are
used simultaneously, they would therefore not behave as expected.
These problems are, however, not shown by the simple example
program and thereby benefits from discussions with a teacher.

5.3.6 Course Content: Summary. One observation from above is
that there is a common theme between the different stages. In
stage U1, we first try to illustrate the problem or the concepts that
should be learned through an example that the students can use
to experiment later on. In stage U2, students are then asked to use
the example to experiment and observe its behavior in order to be
able to explore the concepts. However, due to the non-deterministic
nature of concurrency, it is essential to reason about the behavior
of the system in relation to the observations, and in particular to
determine which behaviors are undefined and which are defined.
Finally, in stage U3, we see exercises where students need to use
what they have learned so far to reason about more general cases,
or cases that can not be easily or reliably observed in practice.

Also, this illustrates the interleaving of understanding a new
concept with applying previous steps, so that learning the new
concepts acts as a process of learning to apply the previous concept.
This is, of course, not the case for the last concept: creating abstrac-
tions. This part thus has to be further practiced through additional
exercises.

It is also worth noting that the examples above illustrate the
overall progression in the course with relevant examples. There are,
of course, more examples at each level that students can use to prac-
tice. In particular, the course contains a series of lab assignments
where students apply these skills in a larger codebase.

5.3.7 Practical Considerations. The outline for teaching concur-
rency presented in this context is used to teach concurrency in
the course outlined in Section 5.3.1. However, the exact code ex-
amples are more specific to operating systems, and the ordering of
the stages differ. The stages are reordered to ensure that students
have enough background to start working with the synchronization
assignments in Week 3. This means that, rather than introducing
the three main topics one by one in their entirety, they are instead
introduced iteratively, in small pieces. That is, the three concepts
above are covered multiple times at different depth. The drawback
of this approach is that it is difficult to have a deep discussion of the
more advanced concepts initially. For this reason the first iteration
only focuses on the memory model and synchronization, leaving
creating abstractions for later iterations. There are, however, advan-
tages to this approach. First and foremost, it lets students advance
to a stage where they are able to use synchronization primitives to
experience earlier. Secondly, it naturally leads to repetition of all
concepts in the course, which Armoni [6] noted is important.

281

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

In spite of the drawback mentioned above, the iterative approach
works well in practice. As such, this approach is an option in courses
that involve a number of dependent concepts, and where all con-
cepts are necessary for students to be able to start solving interest-
ing assignments. Another option would be to re-design the assign-
ments to be better aligned with the idealized ordering above. This
has been done to some extent by adding introductory assignments
in Progvis, but it is not practical to implement completely.

5.4 Context 4 - Recursion in Secondary
Education

5.4.1 Context of the Field. Recursion is a fundamental technique
in computer science, but is considered difficult for novices to under-
stand [4, 50, 92]. The source of this difficulty has been attributed
to a wide number of specific misconceptions that have been iden-
tified and modelled by various authors [36]. According to some
studies, students tend to develop highly divergent and idiosyncratic
models of recursion and “speak a very different language from that
of the experts” [51, pp. 306] when it comes to the topic, indicat-
ing that novel pedagogical approaches for recursion education can
potentially be impactful.

5.4.2 Context of the Module. This context outlines a module for
secondary school students that could be introduced as a stand-
alone workshop or integrated into a course, for instance one that
prepares students for the Advanced Placement (AP) Computer Sci-
ence A examination in United States, in which recursion under-
standing is tested [16]. Following the same design as a recursion
workshop described in a 2024 paper [86], participants will be in-
structed in recursion using the visual programming language Al-
got [87, 93], a recursion-based programming language which has
been tested in controlled studies in secondary and tertiary educa-
tion settings [35, 86, 88, 89]. In Algot, the program state is always
visible, which may help students understand the transition from
concrete examples to abstract concepts by visually tracing how
specific values change as an operation is executed. By observing
how the the operation behavior changes under different inputs and
input categories, students are expected to have a better foundation
for generalization.

5.4.3 Application of Abstraction Skills within this Context. Decades
of research has studied the specific problems that students expe-
rience with conceptualizing and applying recursion. Hamouda et
al. [36] composed a list of problematic aspects of recursion that
have been described frequently in the literature, for example the
passive and active control flow of a recursive function after reaching
the base case [32], the limiting case [69] (meaning how to formulate
and trigger a stopping condition), and comparisons to loops [7].
Generally, in order to implement and understand recursive prob-
lems, students must manage the relationship between the whole
problem and its parts, which means identifying the underlying
structure, isolating the repetitive elements, and defining a stopping
condition. To do so, students must apply abstraction skills, mean-
ing that they must understand which aspects of a problem can be
separated into self-similar subproblems and to discard the elements
of the problem that are not relevant, for example how the recursive
algorithm handles specific input values.

Figure 12: Computing a factorial in the visual programming
language Algot using concrete example values.

5.4.4 Applying our Framework. Using our model of concept forma-
tion, we propose the following application of our framework for
teaching recursion at the secondary school stage:

• Understanding
U1: Observation: We propose instructor-led, live coding activ-

ities, which are considered one of the best practices for
teaching programming [73]. Students will be shown exist-
ing programs in Algot for demonstrating recursion, such
as a factorial (see Figure 12) or tree-based algorithms. In
this stage, Algot is used mostly as an algorithm visualiza-
tion tool that shows how specific values change through-
out the execution of the program. The instructor can use
Algot to address common misconceptions about recursion,
for example by using (i) the step-through functionality
to explore demonstrating backward and forward control
flow within recursive calls and (ii) the query panels for
demonstrating the control flow of the program, showing
how a stopping condition can be defined, for example.

U2: Inductive and deductive inferences: Using Algot as a level
four algorithm visualization tool according to the taxon-
omy by Naps et al. [60], the teacher will ask students to
explore alternative input values for the recursive programs
that are under consideration. The teacher will prompt stu-
dents to consider which parts of the program stay the same
and which change as the input values differ. This way, the
teacher can help students in making inferences about the
mechanics of the algorithm that is being considered; for
instance, for the factorial function, the students may ob-
serve that the algorithm will always reach the stopping

282

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

condition no matter how large the input value is, but that
the output grows rapidly.

U3: Hypothetical thinking: In a group-based problem solving
sessions, students are asked to consider how the problems
they were shown generalize onto other inputs, for exam-
ple, what are reasonable preconditions, what branches
are explored for certain classes of inputs, and how the
structure of recursive code differs from the structure of
iterative code.
At this stage, students formulate hypotheses about the
behavior of recursive algorithms beyond the examples pro-
vided. They participate in group-based problem-solving
sessions where they discuss the outcomes of edge cases
(such as when a recursive function receives negative, zero,
or extremely large input values), first by predicting the
function’s behavior and then by testing their hypothe-
ses using Algot, possibly observing outcomes like infinite
recursion or other errors. Using the live functionality of
Algot, students will be able to trace their programs us-
ing specific input, thereby understanding not only what a
function returns, but why.
Students will also identify and discuss the structures in
recursive solutions, such as divide-and-conquer strategies,
and consider how these patterns apply to different types
of problems. Ultimately, students are expected to be able
to write their own recursive algorithms when given a
problem that they have not seen before. This progression
indicates that the students have moved beyond specific
examples to a generalized understanding of recursion, and
in this way, have met the goals of the framework by being
able to apply abstract concepts to unfamiliar situations.

• Application
A1: Observation: In this direct instruction module, we will use

Algot as a programming language as opposed to a static
algorithm visualization tools. The instructor will describe
specific, broad problem domains and explain how they can
be solved in recursion, followed by implementing these
solutions in Algot.

A2: Inductive and deductive inferences: Algot will be used as
a programming language for hands-on, student-led activ-
ities, implementing recursive solutions “by recipe”; stu-
dents are given problems where specific recursive algo-
rithms are first explained in plain language using real-life
examples, after which students are then asked to imple-
ment them in a skeleton environment inwhich appropriate
example input values have already been given. We pro-
pose (i) unplugged activities that have been introduced at
the lower secondary [53] such as calculating integer pow-
ers of two with recursion, using group communication
and Lego blocks, (ii) secondary school programming com-
petition problems like Bebras Challenge problems, such
as the binary search problem shown in Figure 1312, and
(iii) tree-based recursion problems that have been tested
in Algot at the secondary level such as assigning every

12See https://bebras.it/platform/html/player_teacher.html?class=screenshot&code=
2018_Q27

node in a binary tree a value that is proportional to its
depth [86].

A3: Hypothetical thinking: Using Algot’s extension for test-
ing [31], we propose a test-driven approach for generat-
ing hypotheses about the programs, verifying whether
the student-implemented algorithms are correct, inviting
students to invent edge cases and to test their solutions
accordingly. Test-driven approaches support hypothetical
thinking by allowing students to measure their beliefs or
preconceptions about their code against reality.

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

Leak

There is one (and only one!) leak in the neighborhood terminal
pipes. The plumber has asked all the homeowners to turn off
the water in their homes. She then closes the valve between
two houses and checks the water meter to see if the leak is
between those two houses. For example, if by closing the
valve between house 8 and 9 the meter indicates water flow (as
shown in the picture), the plumber knows that the leak is cer-
tainly between house 1 and 9 (and there are no leaks between
9 and 16). How can the plumber find the leak by checking as
few pipes as possible?

Figure 13: A modified version of a recursion problem from
the The Bebras International Challenge on Informatics and
Computational Thinking.

5.4.5 Summary and Comparison. In this context, we show how
our proposed context fits to a course that guides students through
a progressive learning path that begins with concrete observation
and moves towards abstract understanding. Initially, students trace
recursive algorithms in Algot, working with specific examples on
trees and linked lists, followed by engaging in inductive and deduc-
tive reasoning by experimenting with different input for recursive
functions. Lastly, students employ hypothetical thinking to gen-
eralize the patterns they have learned onto new and unfamiliar
problems.

We also note that this approach is well-aligned with the princi-
ples of Concreteness Fading [28], where learning also transitions
from concrete representations to abstract concepts. This helps to
illustrate the connection between our proposed framework and
existing frameworks. Algot’s visual programming environment
supports this transition by providing concrete, live examples that
can be discarded as students progress toward more abstract repre-
sentation.

5.5 Context 5 - Teaching Linear Data Structures
in CS2/CS3

5.5.1 Context. The context discussed in this section introduces
linear data structures in a CS2 course at a US university. The course

283

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

https://bebras.it/platform/html/player_teacher.html?class=screenshot&code=2018_Q27
https://bebras.it/platform/html/player_teacher.html?class=screenshot&code=2018_Q27

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

involves 3 hours of live programming lectures over 3 days in a week
across 15 weeks of semester. There is a 1 hour lab session each
week to further enhance the understanding of concepts explored
during that week. The topics start with a general review of memory
management in C programming language and quickly escalate to
linear data structures, sorting algorithms, complexities to recursion,
non-linear data structures, searching algorithms etc.

5.5.2 Prerequisite Expectations. This course follows from a pro-
cedural programming course (CS1) in C programming language.
Singly Linked List (SLL) is the second data structure introduced
where data is stored in an ordered way. The first linear data struc-
ture introduced is a simple array/list. Leading up to the discussion
on singly linked lists, the students work on smaller exercises with
pointers and reference manipulation exercises to prepare.

5.5.3 Activity: Motivation. The students often look for motivation
when a new concept to solve a problem is introduced and a solution
to the problem already exists. A good motivation exercise keeps
the students invested in the learning process from understanding
the problem to applying it. The question that comes up every time
this topic is introduced is - “Since there is an array to store data in
an ordered manner, why do we need a linked list at all?” To answer
this question, we do a simple exercise in the classroom. We ask the
students to assume that the classroomwith students is a computer’s
memory and the seats occupied by students are unused/available
memory. Now the teacher ask the students to allocate an array of
size 5; i.e. we need to find 5 students sitting next to each other since
arrays need consecutive free space to be allocated. We next increase
the array size to be allocated to 10. The number of available options
goes down because it is nowmore difficult to find 10 students sitting
next to one another. When the array size goes up to 20, we mostly
have one set of 20 students sitting together. So, we establish that
as the size of the array goes up, it is increasingly difficult to find
consecutive free memory space to allocate to the array. This leads
us to establish the need for a data structure that can hold large
amounts of data efficiently and hence the motivation for singly
linked lists. This example therefore uses the move abstraction skill
at levels U1 and U2 in the framework.

5.5.4 Activity: Building Blocks. In order to understand a singly
linked list, the students need to have a good understanding of the
building blocks that make the list (and thereby developing the iden-
tify abstraction skill). So, the structure of a single node of the singly
linked list is first introduced to the class. The students at this point
are simply in stage one of cognition of the proposed framework
where they make an observation of the code presented to them. The
code in Listing 18 is presented to the class and is self referential.
The students are encouraged to discuss and comment on whether
the code would compile. The students try to induce and deduce an
answer from their previous knowledge of code syntax moving them
to stage U2 of the framework. There is usually a small percentage
of the class that says the code presented in Listing 18 would not
compile. Their argument states: “How can you define a next_node
of the type sll_node within the definition of sll_node?” At this
time, we move to stage U3 of the framework by writing the code
to construct the node and execute it to prove that the presented

1 // Step 1 - Create the struct for sll_node

2 typedef struct sll_node{

3
4 // Step 2-1 - Create a int to hold data

5 int data;

6
7 // Step 2-2 - Create a struct to hold pointer

to next node

8 struct sll_node* next_node;

9
10 }sll_node;

Listing 18: Example of a code defining the structure of a
single node.

1 sll_node* insert_node = (sll_node *) malloc(

sizeof(sll_node));

2
3 insert_node ->data = 100;

4 insert_node ->next_node = NULL;

Listing 19: Example of constructing a single node, allocating
memory and updating data/reference variables.

code in Listing 18 is in fact correct. We create a reference to a sin-
gle node and allocate memory space to it in the main method. We
further assign values to the data and the next_node reference as
shown in Listing 19. The code executes resolving any reservations
about it that students had. The students confirm their understand-
ing through application and we can move to the next concept. By
passing through the three stages of cognition, the students develop
the proposed framework’s outcome skill of “Understanding”.

Since the students are now in acceptance of the self referential
code for a single node, we move towards a diagrammatic repre-
sentation of the single node in memory. We call these memory
diagrams and they help create a visualization of the code. The mem-
ory diagram for code in Listing 18 and 19 is given in Figure 14.
The students once again start with the framework’s stage U1 of
observation but this time to develop an understanding of a different
abstraction (memory diagrams). The students make an observation
of the nuances of representing a memory space, reference pointer
and labeling variable names and such through this exercise. The
students ask questions to learn about how the primitive data is
stored versus a variable that holds a reference.

Figure 14: Memory diagram of a SLL node

284

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

The students move to the next stage of cognition, U2, where they
induce from their observation of a single node and deduce how that
can be extended to the idea of a singly linked list that is a list con-
sisting of multiple list nodes using the memory diagram approach
as shown in Figure 15. The students deduce how to make reference
manipulations through a diagram and gain an understanding of the
second abstraction presented to them. The memory diagram helps
establish the reference connections that need to be constructed for
successfully building a linked list. As they move to the final stage
of the framework, U3, the following statements are made by the
instructor to help the students observe the properties of a SLL

• A reference is needed to hold on to only the first node in the
list,

• Each internal node’s next_node reference must point to the
next node in the list,

• The next_node reference of the very last node in the list
must point to NULL.

Figure 15: Memory diagram of a SLL with multiple nodes

At this point in time, we can assume that the students are ac-
quainted with the two abstractions presented to them: the code
and the diagram for the idea of a singly linked list. We write the
code for a singly linked list that consists of the handle/reference
to the first node or the head node in the list of nodes as given in
Listing 20. We continue to write the code to allocate space for the

1 // Step 3 - Create the struct for sllist

2 typedef struct sllist{

3
4 // Make the sll_node member called head_node

5 struct sll_node* head_node;

6
7 }sllist;

Listing 20: Example of code defining the structure of a SLL.

singly linked list as shown in Listing 21 within the main method.
The students’ attention is drawn to observe that the (empty) list
initially has its head_node reference point to NULL.

Once the students have been introduced to the idea of a single list
node and singly linked list both visually using thememory diagrams
and code, they need to utilize, and thus develop, the abstraction
skill of moving between different abstraction levels.

We move on to the next set of topics that deal with how to
manipulate (insert, access, update or remove) data within the list.
In teaching those topics, which will also help in assessing whether

1 // Step 4 - Dynamically allocate a sllist

2 sllist* the_list = (sllist *) malloc(sizeof(

sllist));

3
4 // Step 4-1 - Set the head_node to NULL

5 the_list ->head_node = NULL;

Listing 21: Example of code constructing a SLL, allocating
memory and updating data/reference variables.

students have reached the stage 2 subgoal of understanding how to
move between abstraction levels as it relates to the concepts of a
single list node and singly linked list.

5.5.5 Activity: Inserting into SLL. In this section, the students are in
stage one of the framework where they observe the entire process
of writing the code to insert into an empty list and to the end of the
list. The students are expected to observe and gain understanding
of reference manipulations done in code and via memory diagrams
for the process of adding a node to the list. They will be later be
expected to draw from their understanding to apply to a different
kind of list manipulation. The next exercise introduces the reference
updates that are needed to construct and insert a new node into
a SLL. A new function is added to insert a node into the list. The
function parameters include the reference to the SLL the_list that
was constructed in Listing 21 and an integer value that needs to be
stored in the new node. The insert function definition is given in
Listing 22.

There are some special cases that need to be considered when
adding a new node to an SLL that are discussed in the following
sections.

1 void insert(sllist* the_list , int the_value){

2 //Code to insert a list node goes here!!

3 }

Listing 22: Function definition of insert function

A. Adding a new node to an empty list: This is the
simplest case to add a new node to the SLL. First, a new
node (insert_node) must be constructed with memory al-
located and data and next_node references updated to the
integer value (passed in as a parameter) and NULL respec-
tively. Next, there needs to be a check in place to infer that
the SLL is in fact empty. If the list is empty, the head node
reference points to NULL (the same as when the_list ref-
erence was created above in Listing 21). If the list is empty,
the_list reference’s head_node reference must be updated
to point to the new node. The example code to insert into an
empty list is given in Listing 23. We write the code alongside
the students in a live programming exercise. The students
are creating code and observing the code writing process
while doing so. The students are asked to draw the memory
diagram for an SLL with a single node. The three statements
(listed above) defining the properties of an SLL are revisited
by the instructor. The students then are asked to deduce

285

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

if the properties of an SLL are satisfied by their memory
diagram.

1 // Create a sll_node pointer called insert_node

2 sll_node* insert_node = (sll_node *) malloc(

sizeof(sll_node));

3
4 // Set the insert_node 's data to the_value and

next_node to NULL

5 insert_node ->data = the_value;

6 insert_node ->next_node = NULL;

7
8 // Check if the list is empty

9 if(the_list ->head_node == NULL){

10
11 // Set the head node to point to insert_node

12 the_list ->head_node = insert_node;

13
14 // And return

15 return;

16 }

Listing 23: Example code to insert into an empty list

B. Adding a new node to the end of the list: In a singly
linked list, the common place to add a new node by default
is at the end of the list. The code for the previous case (add
to empty list) can be extended to add to the end of the list.
We can continue after line 16 in Listing 23 by adding an else
block that will contain the code for adding to a non-empty
SLL. If the list is not empty, we need to traverse to the end of
the list and update the next_node reference for the last node
in the list to point to the new node. The code for adding a
new node to the end of a non-empty SLL extends from the
code above as given in Listing 24. We continue the process
of live coding where the students create code in parallel and
the observation of the code continues and possibly moving
into the stage two of deducing from the code they have been
typing in so far.

1 // Otherwise , create a curr_ptr reference to the

head_node

2 sll_node* curr_ptr = the_list ->head_node;

3
4 // Iterate until the next_node is NULL

5 while(curr_ptr ->next_node != NULL){

6
7 curr_ptr = curr_ptr ->next_node;

8
9 }

10
11 // Set curr_ptr 's next_node equal to insert_node

12 curr_ptr ->next_node = insert_node;

Listing 24: Example code to insert to the end of list

Figure 16: Exercise to understand the stopping point for tra-
versal

One aspect of the process of inserting to the end of an SLL is
traversing the list. It is very important for the students to cap-
ture the essence of traversing the list in entirety because that
concept is reused multiple times in list manipulation (update
and remove functions). It is also a concept that a number
of students have trouble getting right. We dive deeper into
developing the understanding skill of the traversal process
with the help of an exercise. The students are expected to
read the code in Listing 24, trace through the code if the
condition in the while loop is changed to:
while(curr_ptr != NULL)

instead of
while(curr_ptr->next_node != NULL)

The students are then encouraged to move to stage U2 in
the framework and deduce through code tracing and map
the code to the correct memory diagram without executing
the code. The students are required to map the curr_ptr
reference in Case A and B to (1) or (2) in the Figure 16. Once
they have selected an answer, they are asked to execute both
sets of code and record the result. When executed, Case B
results in a segmentation fault and shows the students what
the stopping condition needs to be so that the curr_ptr ref-
erence does not fall off the end of the list. We re-emphasize
the importance of understanding how far to traverse in the
list as the list traversal is a technique that is a directly trans-
ferable concept when removing or updating in a SLL. Finally,
to help students reach stage U3 of the framework, they are
asked to trace the code and develop an understanding of the
traversal process.
The students are encouraged to draw the memory diagram
of the SLL after a node has been added to the end of the
list. The students use their understanding of empty list and
SLL memory diagrams and take their skills to move between
abstraction levels from the previous exercises to create a
memory diagram for adding a new node to the end of the
list.
In a singly linked list, adding to a list by default translates
to adding to the end of the list. However, in order to solidify

286

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

(a) Before and after memory diagrams to add a new node
to the front of the list

(b) Step 1: Construct a node, allocate memory, update data
and next node reference

(c) Step 2: Update next_node reference of new node to point
to first node in the_list

(d) Step 3: Update head_node of the_list reference to point
to the new node

Figure 17: The steps involved in adding a node to the front of a linked list.

students’ understanding of the reference updates further,
exercises to add to the beginning and middle of the list are
also explored as explained in the following sections.

C. Adding a new node to the beginning of the list To insert
a node to the beginning of a list, a new function is required
as adding to the front of a SLL is a specialized function and
ordinarily not a default function of a SLL. The function def-
inition for inserting at the beginning of the list is given to
the students as shown in Listing 25. The students are given

1 void insert_front(sll_list* the_list , int

the_value){

2 //Code to insert at the front of the list goes

here!!

3 }

Listing 25: Example code to insert to the front of list

before and after memory diagrams and asked to write the
code for the reference updates needed to achieve the changes

as shown in Figure 17a. The students are expected to make
their observations and deducing from what they have seen
so far.
Following the before and after memory diagrams, students
are given the intermediate memory diagrams of each step
required to get to the final diagram. This scaffolding helps
students narrow down their observations to move between
abstraction levels of memory diagram to one line of code. The
changes for Step 1 are shown in Figure 17b. The students are
expected to observe the memory diagram and hypothesize
that they need to construct a new node to create the line of
code for this step.
The changes for Step 2 are shown in Figure 17c. The students
are expected observe that next_node reference of the new
node needs to be updated to point to the reference that
is pointed to by the head_node of the_list. This aims to
develop their abstraction skill (create) to write appropriate
line of code to complete this step, in particular by developing

287

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

the outcome skill of application (A1 and A2) in this and the
following steps.
The changes for Step 3 are shown in Figure 17d. The stu-
dents should observe that the head_node reference for the
the_list must be updated to point to the new node and
write the line of code for this step.
To finish off the exercise, the students are required to discuss
and answer if the insert would work as intended if the steps
2 and 3 are swapped (i.e., Step 3 is executed before Step 2.)
This exercise helps the students to solidify their outcome
skill of understanding. They will have to use the identify
abstraction skill to use, make observation of the before and
after diagram, deduce that swapping the lines in the code
would not work. They should be able to redraw the memory
diagrams and explain that if Step 3 is performed first, the
handle to the list (with nodes 100, 200, 300) is lost.

D. Adding a new node to the middle of the list: A new
function is required to add to the middle of the SLL as the
location of insertion needs to be passed in as a parameter
to the function. The function definition for inserting in the
middle of the list is given to the students as shown in Listing
26. The students are given a before and after diagram for

1 void insert_middle(sll_list* the_list , int

the_value , int index){

2 //Code to insert at index in the list goes

here!!

3 }

Listing 26: Example code to insert in the middle of list

inserting into the middle of the list as shown in Figure 18a.
The key steps in achieving the final list would need the steps
in Figure 18. The changes for step 1 to 4 are shown in Figures
18b to 18e.
The exercise to add to the middle of the list is very similar to
the previous exercise to add to the front of the list. This helps
students to hone their outcome skill of understanding while

developing their abstraction skills to identify similarities
between the previous exercise, working on their moving
skills between abstraction levels of memory diagram and
code and practicing their skills to create small snippets of
code.
As a final exercise, the students are asked to answer the
following two questions:
• “In Step 2, why do we stop traversing at the node before
insertion index?”
The discussion for this question leads us to the motivation
for the next topic to come in instruction - a doubly linked
list. In a singly linked list, one can only traverse in the
forward direction. We stop traversing at index - 1, so
that we can connect next_node reference of the new node
to the node at index and the next_node reference of the
node at index - 1 to the new node (in that order).

• Would switching steps 3 and 4 produce similar result? This
question start the students thinking on how to achieve a
similar result with a different approach. In trying to manip-
ulate references in a different order, their understanding
and confidence in applying their previous learning gets
them more prepared for solving the next exercise with
minimal support.

5.5.6 Activity: Removing from SLL. Finally, the students are given
an exercise to remove a node from the list. At this point, the students
are given a prompt in the natural language with no intermediate
support withmemory diagrams to get to the final code. The students
are expected to apply their understanding of reference manipula-
tions from the previous sections and generate the before and after
memory diagrams for the remove action. They need to produce
the intermediate memory diagrams and the final remove functions
to remove from the end of the list, beginning of the list and mid-
dle of the list. This exercise aims to help students to develop their
application outcome skill and go through the stages of observing,
deducing and hypothesizing and developing their abstraction skills
to identify, move between abstraction levels and create code from
all the knowledge they have gained for supported practice exercises
so far.

288

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

(a) Before and after memory diagrams to add a new node
to the middle of the list

(b) Step 1: Construct a new node with the data parameter
and next_node set to NULL

(c) Step 2: Define a counter and iterate until the counter
reaches one less than the required index. Store the refer-
ence to the last node visited in a temporary variable

(d) Step 3: Update the next_node reference of the new node
to the next node of the temporary variable from previous
step

(e) Step 4: Update the next_node reference of the temporary
reference to the new node

Figure 18: The steps involved in adding a node to the middle of a linked list.

289

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

6 Discussion
This section summarizes insights from applying the framework
to the contexts (Section 5). These insights were then used to com-
plement the final framework with insights of how the framework
may be applied. This final version of the framework is presented in
the next section (Section 7). We also discuss how our framework
differs from other systematizations, present the limitations of our
approach, and propose avenues for future work.

6.1 Fitting the Framework to Contexts
Applying the framework to the contexts initially resulted in much
discussion within the group, mostly regarding which abstraction
skills were actually used at different stages of concept formation,
and whether the distinction between inference types and core ab-
straction skills were useful. These discussions led to multiple revi-
sions of the framework. The final version presented in this paper is
thus the result of an iterative design process and we are confident
that the framework is able to adequately describe the activities
within all of the contexts. The wide range of topics covered in the
contexts in Section 5 also helps verify that the framework is general
enough to suit a wide range of abstraction-related topics.

One thing that is noteworthy, however, is that the contexts take
different approaches to use of the framework, ranging from analysis
of existing teaching to proposals of new teaching and learning
activities.

In Context 1, the framework is used to evaluate existing teaching
of a specific low-level concept and identify opportunities for im-
provement, demonstrating the framework’s usefulness as a practical
tool for evaluating and planning teaching activities. The context
relies on the well-documented pedagogical device of a notional
machine. As such, it illustrates that it is possible to use such peda-
gogical devices within the framework. It is also worth noting that
this context purposefully focuses on the first and second stages of
concept formation, leaving the third and most advanced stage of
concept formation to later activities and courses.

In Contexts 2 and 3, usage of the framework was structured
around the activities in the course—for each high-level activity in
the course, the instructor described which abstraction skills were
involved at each stage, and which sub-goals of the activity were
used to help the student develop certain skills. These two contexts
also demonstrate the versatility and effectiveness of the framework
in specialized, advanced areas of computer science in addition to
the more foundational topics considered in the other contexts. In
Context 2 in particular, the framework aided the instructor in struc-
turing a large and complex topic into a suitable progression for
students. In this case, the framework highlighted the reasoning stu-
dents needed to make at each stage of concept formation, and what
kind of questions an educator can use to achieve them. Similarly,
Context 3 illustrated how the understand and apply outcome skills
are related, especially in a larger module.

Context 4 is a proposal for a new unit of teaching, designed
according to the framework. In this context, the framework is used
to ensure that the proposed activities are appropriately staged and
that both outcome skills are targeted. This context also illustrates
the leap in inferential deductions between stage 2 and 3 of the
framework (i.e., the difference between condensation and reifica-
tion in the Sfard model [75]) for recursion. In particular, it shows

that in stage 3 students understand the purpose, mechanism, and
implementation of a concept, and are able to relate it to other con-
cepts.

Context 5 is perhaps the most formal and bottom-up application
of the framework. Each low-level learning objective is considered
separately and the abstraction skills involved are identified. This
approach leads to the development of specific activities (discus-
sion prompts, coding demonstrations) that are informed by the
students’ expected stage of concept formation and the abstraction
skills involved.

The range of different approaches to the use of our framework
highlight its flexibility and adaptability to different contexts and
purposes.

6.2 Insights from Applying the Framework
Although the framework is flexible, applying the framework to
different contexts produced insights about teaching activities that
are suitable at different stages, as well as the ordering of different
but intertwined concepts.

6.2.1 Suitable Learning Activities. In the contexts, we have seen
a large number of activities being used to help students advance
through the stages of the framework. A common theme is that
students need to be active at least in the learning activities that aims
to develop stages 2 and 3 of the framework. How students are active,
however, differs between contexts. In some contexts, students are
activated through questions from the teacher during lectures, and
at other times through assignments or parts of assignments that
students solve on their own, or with the help of a TA.

As mentioned, for stage 1, the situation is a bit different. It is
typically associated with learning activities where students do not
need to be as active, because the main focus in stage 1 is to observe
and make inferences on what is directly observable. As such, there
are many situations where stage 1 is covered during a lecture,
through introductions or questions from a teacher.

Since the learning activities that are suitable will necessarily
vary depending on the concept being learned, the framework only
offers guidance by framing the content in the stages and core skills
presented in the framework. Due to the desire for the framework
to be general enough to encompass multiple concepts, it is not able
to prescribe particular activities apart from this framing.

6.2.2 Ordering Concepts, Stages of Concept Formation, and Ab-
straction Skills. In spite of the linear nature of some of the system-
atizations in Sections 2 and 3, our framework does not impose a
strict linear progression in general. The only constraint is that for
a particular concept and a particular abstraction skill, the student
needs to progress through the three stages of concept formation
in sequence. Apart from that, it is left up to the educator (or the
student) to move across the framework as they see fit.

Contrasting examples of different approaches to ordering con-
cepts and skills can be found in Context 3. This context initially pro-
poses an idealized linear progression, allowing students to progress
through all three stages of concept formation with respect to one
concept before moving on to the next. This is beneficial since it
encourages students to have a complete understanding of the pre-
requisites before building further skills (in this case, learning the

290

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

memory model before starting on synchronization). While this
avoids situations in which students make incorrect inferences on
higher abstraction levels, thus improving self-efficacy, it has the
downside that it does not re-visit previous stages to reinforce learn-
ing, which Armoni [6] noted is important.

Towards the end of Context 3, an alternative structure is pro-
posed, driven by the need to prepare students for the start of the
computer lab assignments. As such, this structure visits the first two
stages for one concept (in this case, the memory model), followed
by the first stage for the next concept (in this case, synchroniza-
tion). This means that students arrive at a point where they have
a workable understanding of synchronization, which allows them
to start working independently on lab assignments and advancing
their understanding through independent practice. Future lectures
are then used to re-visit these concepts to further develop them
so that students can eventually reach the final stages for each of
them. This gives students time to make additional inferences and
references of their own and internalize the material, before it is
re-visited by the teacher, so that students are in a better position to
perform the higher-level inferences that are required for the higher
stages of the model.

Context 2 provides further examples of teaching intertwined
abstract concepts at different stages of concept formation. In this
context, it can be seen that before moving up a stage of concept
formation in the understanding (or application) of a certain skill,
students may be required to jump to a lower stage of concept for-
mation in the understanding or application of another skill. This
reinforces our insight that the topics or even the skills developed
using our framework need not be linear or prescribed in the order
in which they should be taught. The modular nature of the frame-
work indeed allowed for targeted reinforcement of abstraction skills
at each stage, ensuring that students could integrate theoretical
knowledge with practical problem-solving strategies. The reflective
components of the framework provided valuable feedback loops,
enabling continuous refinement of both teaching methods (and en-
suring the teacher is aware of students’ understanding) and student
understanding itself.

6.2.3 How Educators Can Use the Framework. In reflecting on the
application of our framework to the contexts, we noted a slight
disconnect between what instructors are interested in and what
the framework speaks of. This can be seen by the fact that all of
the contexts describe teaching of a specific concept or topic. The
vertical dimension of the framework (i.e., the stages of concept
formation) are useful for thinking about how to teach a topic as
they suggest a clear progression. The different abstraction skills,
however, are not always apparent from the outset.

In some cases (e.g., when learning about a certain abstraction),
there is an emphasis on the identifying skill since the goal is to
learn about an abstraction or concept, with moving and creating
appearing as “secondary skills” that are necessary and/or practiced
simultaneously. In the case of concurrent programming, for exam-
ple, themoving skill is required at some stages of learning a concept
but not all.

In light of this, it is useful to identify two different ways in which
educators can use the framework, summarising our insights from
its application to our own contexts: (1) designing a module to teach

something specific, and (2) analysing an existing module to identify
opportunities for improvement.

When designing a new module or unit of teaching, one can
start by considering the stages of the framework in order to plan
a progression for learning some concept or abstraction. It is, of
course, useful to try to map each activity to individual abstraction
skills, and try to include as many stages of each skill as is suitable
(e.g., if one realizes that U3 of moving is required, it is likely a good
idea to cover U2 and U1 as well).

Another important consideration is that a skill such as creating
may require students to first reach the threshold in the other two
core skills first; this may particularly be the case at an advanced
point in A1–A3. Conversely, at a concrete point in U1 and U2
identifying and creating may be very similar. These particularities
are greatly dependent on the context, so we leave this up to the
educator.

When analysing existing teaching, it is still interesting to look
at the progression of the concept as a whole, but it is more impor-
tant to map the individual abstraction skills that are used to the
cognitive stages to ensure that the “higher” stages are preceded by
corresponding “lower” stages to help students build their skills.

For both use cases, the educator does not need to fill in every step
of the framework. However, a gap or leap in the stages of concept
formation with respect to a skill or concept (e.g., beginning with
U3 or leaping from A1 to A3) indicates a problem that should be
addressed.

Finally, educators can use our framework in conjunction with
other systematizations, which provide teaching tools to present
concepts and foster skills at each stage. For example, Contexts 2
and 4 both make use of the Concreteness Fading [29] pedagogical
framework. Additionally, because our framework is designed to
be flexible and does not impose requirements around ordering of
topics or content of curricula, it can also be applied within various
approaches to CS education, ranging from traditional models to
critical models (e.g., [54]).

This section has explored various examples of how the different
contexts align with the framework. Tables 8 and 9 present a range
of examples drawn from these contexts to offer a more practical
resource for teachers. These tables show specific questions and ac-
tivities that teachers can implement at each stage of the framework,
providing actionable guidance to integrate the framework into their
teaching practices.

7 Our Proposed Framework
In Section 4.1, we defined the following design criteria for our
pedagogical framework. The framework should:

• use the conceptual stages of existing systemizations of ab-
straction as thresholds to describe how students develop
understanding;

• guide students through these stages by using mental pro-
cesses that require abstraction skills;

• be specific enough to be actionable within a Computer Sci-
ence education context;

• be general enough that it is widely applicable within a Com-
puter Science context.

291

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

Table 7: Our pedagogical framework showing the two outcome skills across the three stages of cognition & the three abstraction
skills.

Outcome skill Stage of cognition Abstraction skill
Identifying Moving Creating

Understanding

U1: Observe
Seeing commonalities and
differences between
representations; finding an
appropriate representation.

Switching between
representations by
adding or removing
detail.

Constructing a
representation. This
can be from a single
representation; or
multiple (creating a
new entity).

U2: Induce and deduce

U3: Hypothesize and deduce

Applying

A1: Observe

A2: Induce and deduce

A3: Hypothesize and deduce

In its first iteration (Table 4), the framework includes three or-
dered stages of cognition (observe, induce and deduce, and hypothe-
size and deduce), which describe the conceptual stages of our frame-
work and address our first design criterion. The framework identi-
fies outcome skills (understanding and applying) and abstraction
skills (identifying, moving, and creating), which offer guidance on
helping students progress through the cognitive stages, meeting
our second design criterion.

However, after applying the framework given in Table 4 to a
range of teaching contexts (Section 5) and reflecting on its suc-
cesses and limitations (Section 6), we felt we may be imposing an
unnecessary structure on the framework, which in turn limits its
applicability. Therefore, the framework needs adaptation in order
to meet our third and fourth design criteria and enable application
in a wide range of Computer Science education contexts.

As a result, we have revised the structure of our framework as de-
scribed below and summarized in Table 7. Our proposed framework
has three ‘components’ educators can use to help their students
develop important skills or familiarize themselves with important
concepts:

• Stages: these stages are hierarchical and allow the educator
to think about the information the student has and what the
educator expects them to do with it.
– Stage 1: Observe
– Stage 2: Induct and deduct
– Stage 3: Hypothesize and deduct

• Abstraction skills:
Abstraction Skills

Understanding

Identifying Moving Creating

Applying

Identifying Moving Creating

Understanding and applying are outcome skills, they must
be considered as actions on a concept and the intricate skills
must be considered in relation to abstraction levels.

• Tools: these are ways to aid in the design of prompts and
questions that can help with the progression across a stage;
this list is not necessarily exhaustive.
– Block model
– Fyfe’s concreteness fading
– Notional machines
– Statter and Armoni’s guidelines on how to use the PGK
hierarchy in practice [64, 79].

This is summarized in Table 7. Tables 8 and 9 show good practices
for the application of our framework taken from the case studies in
Section 5.

The framework can be used to promote the development of ‘out-
come abstraction skills’ of understanding and applying concepts;
these skills are not teachable on their own, they must be developed
in relation to a concept. Considering the other abstraction skills,
identifying, moving and creating aid in helping this development
whether teaching or learning. The framework can also be used to
teach these three intricate skills, either in isolation or in conjunction
with other intricate skills.

When used as a framework for the development of an outcome
skill in relation to a given concept, the three other skills are mech-
anisms for helping the students progress through a stage and the
end goal must indicate that the outcome skill has been acquired in
relation to the concept.

When using the framework as a mechanism for fostering the in-
tricate abstraction skills, the end goal must be some sort of indicator
that the skill has been acquired.

7.1 Limitations
Our framework rests on other research, providing a synthesis of
established models, frameworks, and pedagogy of abstraction skills
from computer science and other fields. However, much like some
of the systematizations that our framework is built on, our final
work relies on certain assumptions.

For one, our understanding of abstraction skills is limited by
our understanding of human behaviour and what this behaviour
says about the cognitive process. The accuracy of empirical data

292

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

Table 8: Examples of scaffolding techniques for each stage and skill of the understanding outcome taken from the contexts in
Section 5. The different techniques should be applicable to a large range of CS contexts.

Stage of
cognition

Abstraction skill
Identifying Moving Creating

U1

* Use Concreteness Fading to
identify key aspects (Context 2:
Mock auction to identify
players, strategies, and playoff.
Context 4: Matryoshka dolls
for recursion)

* Identify problems that are
unique to a concept/situation
(Context 3: Problems unique to
concurrent programming)

* Illustrate new aspects of a
concept/situation with code,
live-coding, diagrams, software, ...
(Context 3: Running code and
observe different results each time
Context 4: Algot as a visualization
tool. Context 5: Presenting code).

* Use Concreteness Fading to move
between concrete and abstract notions
of a concept/situation (Context 2:
Rock-Paper-Scissors)

* Present diagrammatic representations
(Context 5: Memory diagrams)

* Show a code and ask the students to
modify it (Context 3: Synchronize a
program)

* Guide de students to observe
specific properties (Context 5: Statements
to observe the properties of a SSL)

* Live coding while the students create
code in parallel (Context 5: Add a new
node at the end of a list)

U2
* Ask “what if” questions
(Context 2: “What would have
happened if ...”)

* Use a notional machine to bridge
from an existing model to another
one (Context 1: Notional machine
from existing memory diagram to
block-and-arrow memory diagram)

* Help students to generalize one or
more solutions (Context 3: Consider
the counter in the semaphore to be
tracking a particular resource)

* Ask students to trace code (Context 5:
Add a new node to the end of a list)

* Having discussion on a code
(Context 3: Importance of critical
sections).

* Ask students to explore alternative
input values (Context 4: Recursive
programs)

U3

* Ask “why” questions
(Context 2: “Why did you
choose ...”)

* Ask students to predict the
output of a program (Context 3:
The memory model)

* Discuss the differences between
special cases of an instance (Context 3:
Special case of a semaphore)

*Ask students how shown problems
generalize onto other inputs
(Context 4: Recursive programs)

* Give intermediate diagrammatic
representations (Context 5:
Intermediate memory diagrams)

* Highlight the difference between
different approaches (Context 3: Creating
abstractions)

* Ask to create code from observing
multiple representations (Context 5:
Adding a new node to the beginning
of the list)

* Ask students to discuss their answers
(Context 5: Adding a new node to the
beginning of the list)

293

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

Table 9: Examples of scaffolding techniques for each stage and skill of the applying outcome taken from the contexts in Section
5. The different techniques should be applicable to a large range of CS contexts.

Stage of
cognition

Abstraction skill
Identifying Moving Creating

A1
* Ask recall questions
(Context 2: “How are payoffs
calculated in an auction?”)

* Show code and diagram
representations of the same code
(Context 1: Moving between
abstractions of pointers)

* Ask students to explain code
[modifications] (Context 5: Adding a
new node to the beginning of the list)

A2

* Present problems where
specific concepts are first
explained in plain language
using real-life examples
(Context 4: Implementing
recursive solutions “by recipe”)

* Move from a representation to
another one that is closer to the code
implementation (Context 0: Recursion)

* Move from the natural language
description to an automatically
generated code implementation using
GenAI (e.g., “Prompt Problems” or
“Explain in Plain English” exercises)
(Section 2.4)

* Ask students to implement solutions
using skeletons in which appropriate
example input values have already
been given (Context 4: Implementing
recursive solutions “by recipe”)

A3

* Ask students to identify
the parts of the code that are
working and are not working
(Context 0: Recursion)

* Ask students to produce intermediate
diagrammatic representations
(Context 5: Removing from SSL)

* Apply prerequisite knowledge
while teaching new concepts (Context 2:
Apply prior understanding of payoffs to
the new concept of auctions)

* Give additional exercises (Context 3:
Practice creating abstractions)

* Ask students to generate test for edge
cases and to test their solutions
(Context 4: Test-driven approach)

is dependent on how, where and when it is collected; in turn, any
insights obtained from the analysis of empirical data heavily de-
pends on the soundness of the methodology. Our thematic analysis
of the established systematizations was deductive; in other words
our resulting framework contains the same biases as the theory
it is grounded in, and our interpretation of the theory potentially
adds to this bias.

Our evidence, being based in reflections from practitioners, is
also subjective as it is limited by the context: content, competency
of the cohort and mental model of the practitioner, amongst other
things.

Our working group contained a broad range of expertise, which
allowed us to cover a good range of the CS undergraduate curricu-
lum through our chosen contexts. However, we acknowledge that
there are other important contexts, such as artificial intelligence,
that we could have addressed but did not. The selection of contexts
reflects the expertise and focus areas of our group. We do not claim
that the presented contexts form a complete representation of what
CS undergraduates need to learn. Even if they did, the reflections
would still be subject to the practitioner’s bias. Therefore, we be-
lieve that as a tool for pedagogical reflection, our framework would
benefit from insights contributed by a wider range of practitioners.

Finally, we cannot yet claim the framework improves student
outcomes, this is something we feel we would like to explore in-situ;
in turn, this evidence would lend some validity to our current and
future insights.

8 Conclusion
By synthesizing existing pedagogical models of abstraction from
Computer Science and adjacent fields we have constructed a novel
framework for teaching abstraction. This synthesis in combination
with the experience, reflections, and discussions of eleven Computer
Science Education experts have resulted in the framework presented
in this paper.

This framework has been demonstrated to possess the versatility
necessary to be broadly applicable. From specific introductory con-
cepts (e.g., pointer semantics in C) to broad more advanced topics
(e.g., concurrent programming). In both caseswe have demonstrated
the framework’s usefulness for evaluating and planning teaching
activities to achieve desired learning outcomes for students. It is
readily applicable to situations where the educator has practical
constraints and cannot use tools that prescribe a linear order of
teaching topics and/or skills, only prescribing that a student needs
to progress through the three cognitive stages in sequence for a
particular abstraction concept and abstraction skill.

In conclusion, we believe that the framework will be useful either
as a separate tool or in combination with existing systematizations.
Future empirical work remains to evaluate the effectiveness of the
framework in the field and to provide additional insights into its
applicability.

294

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

8.1 Future Work
Our current work can be extended by addressing some of the points
in the limitations. In particular, controlled experimental studies
based on the contexts could strengthen the validity argument of
the paper. For example, the efficacy of our framework for teaching
recursion in secondary school education (Context 4) can be tested
in an empirical setting by applying the Basic Recursion Concept
Inventory [36] as a posttest, either in its original form or in a modi-
fied version depending on the time available and the background
of the students in a way that has been tested before [86].

Additional case studies from more diverse computer science
learning contexts could also strengthen the framework by further
demonstrating its versatility.Withmore use of the framework, some
opportunities may arise for including additional subcategories of
abstraction skills should that prove helpful.

Acknowledgments
Wewould like to thank Prof. JosephWood, Department of Computer
Science, City St George’s, University of London for his input in the
discussions that led to the proposal for this working group.

This work was supported via grants and studentships by:
• the Doctoral College and Department of Computer Science at
City and St Georges, University of London, United Kingdom.

• the graduate school CUGS at the Department of Computer
and Information Science at Linköping University, Sweden;

• the National Recovery and Resilience Plan (NRRP), Mission
4, Component 2, Investment 1.1, Call for tender No. 104
published on 2/2/2022 by the Italian Ministry of Univer-
sity and Research (MUR), funded by the European Union –
NextGenerationEU – Project Title “Learning Informatics” –
CUP E53D23007720006 - Grant Assignment Decree No. 959
adopted on 22/04/2022 by the Italian Ministry of Ministry of
University and Research (MUR).

References
[1] ACM Committee for Computing Education in Community Colleges (CCECC).

2023. Bloom’s for Computing: Enhancing Bloom’s Revised Taxonomy with Verbs
for Computing Disciplines. Association for Computing Machinery, New York, NY,
USA.

[2] Dan Aharoni. 2000. Cogito, Ergo sum! cognitive processes of students deal-
ing with data structures. In Proceedings of the Thirty-First SIGCSE Technical
Symposium on Computer Science Education (Austin, Texas, USA) (SIGCSE ’00).
Association for Computing Machinery, New York, NY, USA, 26–30. https:
//doi.org/10.1145/330908.331804

[3] Shaaron Ainsworth. 2008. The Educational Value of Multiple-representations
when Learning Complex Scientific Concepts. In Visualization: Theory and Practice
in Science Education, John K. Gilbert, Miriam Reiner, and Mary Nakhleh (Eds.).
Springer Netherlands, Dordrecht, 191–208. https://doi.org/10.1007/978-1-4020-
5267-5_9

[4] John R. Anderson, Peter Pirolli, and Robert Farrell. 2014. Learning to program
recursive functions. In The nature of expertise. Psychology Press, 153–183.

[5] LorinWAnderson, David R Krathwohl, PeterWAirasian, KathleenACruikshank,
Richard E Mayer, Paul R Pintrich, James Raths, and Merlin C Wittrock. 2001. A
Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy
of Educational Objectives. Pearson.

[6] Michal Armoni. 2013. On Teaching Abstraction in CS to Novices. Journal
of Computers in Mathematics and Science Teaching 32, 3 (July 2013), 265–284.
https://www.learntechlib.org/p/41271

[7] Alan C. Benander and Barbara A. Benander. 2008. Student monks–Teaching
recursion in an IS or CS programming course using the Towers of Hanoi. Journal
of Information Systems Education 19, 4 (2008), 455–467.

[8] John B. Biggs and Kevin F. Collis. 1982/2014. Evaluating the Quality of Learning:
The SOLO Taxonomy (Structure of the Observed Learning Outcome). Academic
Press. Google-Books-ID: xUO0BQAAQBAJ.

[9] Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst, Walker H. Hill, David R.
Krathwohl, et al. 1956. Taxonomy of educational objectives: The classification of
educational goals. Handbook 1: Cognitive domain. Longman New York.

[10] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Concur-
rency Memory Model. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI
’08). Association for Computing Machinery, New York, NY, USA, 68–78. https:
//doi.org/10.1145/1375581.1375591

[11] Axel Böttcher, Kathrin Schlierkamp, Veronika Thurner, and Daniela Zehetmeier.
2016. Teaching abstraction. In 2nd. International conference on higher educa-
tion advances (HEAD’16). Editorial Universitat Politècnica de València, Editorial
Universitat Politècnica de València, 357–364.

[12] Gillian M. Boulton-Lewis. 1995. The SOLO Taxonomy as a Means of Shaping
and Assessing Learning in Higher Education. Higher Education Research &
Development 14, 2 (1995), 143–154. https://doi.org/10.1080/0729436950140201

[13] Jerome S. Bruner. 1966. Toward a Theory of Instruction. Belknap Press of Harvard
University, Cambridge, MA.

[14] Francisco Enrique Vicente Castro and Kathi Fisler. 2017. Designing a multi-
faceted SOLO taxonomy to track program design skills through an entire course.
In Proceedings of the 17th Koli Calling International Conference on Computing
Education Research (Koli Calling ’17). Association for Computing Machinery, New
York, NY, USA, 10–19. https://doi.org/10.1145/3141880.3141891

[15] Ibrahim Cetin and Ed Dubinsky. 2017. Reflective abstraction in computational
thinking. The Journal of Mathematical Behavior 47 (2017), 70–80. https://doi.
org/10.1016/j.jmathb.2017.06.004

[16] College Board. 2021. AP Computer Science A: Course Overview (updated january
2021 ed.). College Board. https://apcentral.collegeboard.org/media/pdf/ap-
computer-science-a-course-overview.pdf

[17] Cornelia Connolly, Eamonn Murphy, and Sarah Moore. 2006. Introducing the
APOS Model to Teaching Computing at Higher Education. In Proceedings of
the 9th International Conference on Engineering Education. iNEER, 4–11. https:
//www.ineer.org/Events/ICEE2006/papers/3260.pdf

[18] Julia Crossley. 2023. How do Students Conceptualize and Represent Abstract
Ideas? An Initial Exploration.. In Proceedings of the 2023 ACM Conference on
International Computing Education Research - Volume 2 (Chicago, IL, USA) (ICER
’23). Association for Computing Machinery, New York, NY, USA, 82–86. https:
//doi.org/10.1145/3568812.3603455

[19] Julia Crossley. 2023. Processes of Abstraction and Representation: An Initial
Exploration.. In Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education V. 2 (Turku, Finland) (ITiCSE 2023). Association for
Computing Machinery, New York, NY, USA, 617–618. https://doi.org/10.1145/
3587103.3594148

[20] Julia Crossley. 2024. Exploring a framework of computational expression. In
Proceedings of the 2024 UK and Ireland Computing Education Research conference
(UKICER ’24). ACM, New York, NY, USA, 3 pages.

[21] Julia Crossley, Marjahan Begum, and JosephWood. 2023. Qualitative insights into
abstractions skills from exam scripts. In Proceedings of the European Computer
Summit. Informatics Europe.

[22] Quintin Cutts, Sarah Esper, Marlena Fecho, Stephen R. Foster, and Beth Simon.
2012. The abstraction transition taxonomy: developing desired learning outcomes
through the lens of situated cognition. In Proceedings of the Ninth Annual Inter-
national Conference on International Computing Education Research (Auckland,
New Zealand) (ICER ’12). Association for Computing Machinery, New York, NY,
USA, 63–70. https://doi.org/10.1145/2361276.2361290

[23] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Prompt Problems: A
New Programming Exercise for the Generative AI Era. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (Portland, OR,
USA) (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
296–302. https://doi.org/10.1145/3626252.3630909

[24] Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2024. Computing Education in the Era of Generative AI. Commun.
ACM 67, 2 (Jan. 2024), 56–67. https://doi.org/10.1145/3624720

[25] Avinash Dixit. 2005. Restoring fun to game theory. The Journal of Economic
Education 36, 3 (2005), 205–219.

[26] E. Dubinski. 1991. Reflective Abstraction in Advanced Mathematical Thinking.
Advanced Mathematical Thinking (1991).

[27] Ursula Fuller, Colin G. Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro
Hernán-Losada, Jana Jackova, Essi Lahtinen, Tracy L. Lewis, Donna McGee
Thompson, Charles Riedesel, and Errol Thompson. 2007. Developing a computer
science-specific learning taxonomy. SIGCSE Bull. 39, 4 (Dec. 2007), 152–170.
https://doi.org/10.1145/1345375.1345438

[28] Emily R Fyfe, Nicole M McNeil, Ji Y Son, and Robert L Goldstone. 2014. Con-
creteness fading in mathematics and science instruction: A systematic review.
Educational psychology review 26 (2014), 9–25.

[29] Emily R. Fyfe and Mitchell J. Nathan. 2019. Making “concreteness fading” more
concrete as a theory of instruction for promoting transfer. Educational Review

295

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

https://doi.org/10.1145/330908.331804
https://doi.org/10.1145/330908.331804
https://doi.org/10.1007/978-1-4020-5267-5_9
https://doi.org/10.1007/978-1-4020-5267-5_9
https://www.learntechlib.org/p/41271
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1080/0729436950140201
https://doi.org/10.1145/3141880.3141891
https://doi.org/10.1016/j.jmathb.2017.06.004
https://doi.org/10.1016/j.jmathb.2017.06.004
https://apcentral.collegeboard.org/media/pdf/ap-computer-science-a-course-overview.pdf
https://apcentral.collegeboard.org/media/pdf/ap-computer-science-a-course-overview.pdf
https://www.ineer.org/Events/ICEE2006/papers/3260.pdf
https://www.ineer.org/Events/ICEE2006/papers/3260.pdf
https://doi.org/10.1145/3568812.3603455
https://doi.org/10.1145/3568812.3603455
https://doi.org/10.1145/3587103.3594148
https://doi.org/10.1145/3587103.3594148
https://doi.org/10.1145/2361276.2361290
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/3624720
https://doi.org/10.1145/1345375.1345438

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

71, 4 (2019), 403–422. https://doi.org/10.1080/00131911.2018.1424116
[30] Aakash Gautam, Whitney Bortz, and Deborah Tatar. 2020. Abstraction Through

Multiple Representations in an Integrated Computational Thinking Environment.
In Proceedings of the 51st ACM Technical Symposium on Computer Science Educa-
tion (Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery,
New York, NY, USA, 393–399. https://doi.org/10.1145/3328778.3366892

[31] Maximilian Georg Barth, Sverrir Thorgeirsson, and Zhendong Su. 2024. A Di-
rect Manipulation Programming Environment for Teaching Introductory and
Advanced Software Testing. In Proceedings of the 24th Koli Calling Interna-
tional Conference on Computing Education Research (Koli Calling ’24). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 2, 11 pages.
https://doi.org/10.1145/3699538.3699564

[32] Carlisle E George. 2000. EROSI—visualising recursion and discovering new errors.
ACM SIGCSE Bulletin 32, 1 (2000), 305–309.

[33] David Ginat and Yoav Blau. 2017. Multiple Levels of Abstraction in Algorithmic
Problem Solving. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association
for Computing Machinery, New York, NY, USA, 237–242. https://doi.org/10.
1145/3017680.3017801

[34] David Ginat and Eti Menashe. 2015. SOLO Taxonomy for Assessing Novices’
Algorithmic Design. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (SIGCSE ’15). Association for Computing Machinery,
New York, NY, USA, 452–457. https://doi.org/10.1145/2676723.2677311

[35] Oliver Graf, Sverrir Thorgeirsson, and Zhendong Su. 2024. Assessing Live Pro-
gramming for Program Comprehension. In Proceedings of the 2024 on Innova-
tion and Technology in Computer Science Education V. 1 (Milan, Italy) (ITiCSE
2024). Association for Computing Machinery, New York, NY, USA, 520–526.
https://doi.org/10.1145/3649217.3653547

[36] Sally Hamouda, Stephen H Edwards, Hicham G Elmongui, Jeremy V Ernst, and
Clifford A Shaffer. 2017. A basic recursion concept inventory. Computer Science
Education 27, 2 (2017), 121–148.

[37] Orit Hazzan. 1999. Reducing Abstraction Level When Learning Abstract Algebra
Concepts. Educational Studies in Mathematics 40 (1999), 71–90. Issue 1.

[38] Orit Hazzan. 2002. Reducing abstraction level when learning computability theory
concepts. In Proceedings of the 7th Annual Conference on Innovation and Technology
in Computer Science Education (Aarhus, Denmark) (ITiCSE ’02). Association for
Computing Machinery, New York, NY, USA, 156–160. https://doi.org/10.1145/
544414.544461

[39] Orit Hazzan. 2008. Reflections on teaching abstraction and other soft ideas.
SIGCSE Bull. 40, 2 (June 2008), 40–43. https://doi.org/10.1145/1383602.1383631

[40] Orit Hazzan and Jeff Kramer. 2016. Assessing abstraction skills. Commun. ACM
59, 12 (dec 2016), 43–45. https://doi.org/10.1145/2926712

[41] Jonathan H. Hill, Bernice J. Houle, Susan M. Merritt, and Allen Stix. 2008. Ap-
plying abstraction to master complexity. In Proceedings of the 2nd International
Workshop on The Role of Abstraction in Software Engineering (Leipzig, Germany)
(ROA ’08). Association for Computing Machinery, New York, NY, USA, 15–21.
https://doi.org/10.1145/1370164.1370169

[42] Charles A. Holt andMonica Capra. 2000. Classroom games: A prisoner’s dilemma.
The Journal of Economic Education 31, 3 (2000), 229–236.

[43] Cruz Izu. 2022. Modelling the Use of Abstraction in Algorithmic Problem Solving.
In Proceedings of the 27th ACM Conference on on Innovation and Technology in
Computer Science Education Vol. 1 (Dublin, Ireland) (ITiCSE ’22). Association for
Computing Machinery, New York, NY, USA, 193–199. https://doi.org/10.1145/
3502718.3524758

[44] Cruz Izu, Amali Weerasinghe, and Cheryl Pope. 2016. A Study of Code Design
Skills in Novice Programmers using the SOLO taxonomy. In Proceedings of the
2016 ACM Conference on International Computing Education Research (ICER ’16).
Association for Computing Machinery, New York, NY, USA, 251–259. https:
//doi.org/10.1145/2960310.2960324

[45] Joint Task Force on Computing Curricula, Association for Computing Machinery
(ACM) and IEEE Computer Society. 2020. Computing Curricula 2020: Paradigms
for Global Computing Education. Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/3467967

[46] Hieke Keuning, Isaac Alpizar-Chacon, Ioanna Lykourentzou, Lauren Beehler,
Christian Köppe, Imke de Jong, and Sergey Sosnovsky. 2024. Students’ Per-
ceptions and Use of Generative AI Tools for Programming Across Different
Computing Courses. In Proceedings of the 24th Koli Calling International Con-
ference on Computing Education Research (Koli Calling ’24). Association for
Computing Machinery, New York, NY, USA, Article 14, 12 pages. https:
//doi.org/10.1145/3699538.3699546

[47] Yifat Ben-David Kolikant. 2004. Learning Concurrency as an Entry Point to
the Community of Computer Science Practitioners. Journal of Computers in
Mathematics and Science Teaching 23, 1 (2004), 21–46.

[48] Jeff Kramer. 2007. Is abstraction the key to computing? Commun. ACM 50, 4 (apr
2007), 36–42. https://doi.org/10.1145/1232743.1232745

[49] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Comput. C-28, 9 (1979), 690–691.
https://doi.org/10.1109/TC.1979.1675439

[50] Elynn Lee, Victoria Shan, Bradley Beth, and Calvin Lin. 2014. A structured
approach to teaching recursion using cargo-bot. In Proceedings of the Tenth
Annual Conference on International Computing Education Research (Glasgow,
Scotland, United Kingdom) (ICER ’14). Association for Computing Machinery,
New York, NY, USA, 59–66. https://doi.org/10.1145/2632320.2632356

[51] Dalit Levy. 2001. Insights and conflicts in discussing recursion: A case study.
Computer Science Education 11, 4 (2001), 305–322. https://doi.org/10.1076/csed.
11.4.305.3829

[52] Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D. Gordon. 2023. “What It Wants Me To
Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association
for Computing Machinery, New York, NY, USA, Article 598, 31 pages. https:
//doi.org/10.1145/3544548.3580817

[53] Violetta Lonati, Dario Malchiodi, Mattia Monga, and Anna Morpurgo. 2017. Noth-
ing to Fear but Fear Itself: Introducing Recursion in Lower Secondary Schools.
In 2017 International Conference on Learning and Teaching in Computing and
Engineering (LaTICE). 91–98. https://doi.org/10.1109/LaTiCE.2017.23

[54] James W. Malazita and Korryn Resetar. 2019. Infrastructures of abstraction:
how computer science education produces anti-political subjects. Digital Cre-
ativity 30, 4 (2019), 300–312. https://doi.org/10.1080/14626268.2019.1682616
arXiv:https://doi.org/10.1080/14626268.2019.1682616

[55] Susana Masapanta-Carrión and J. Ángel Velázquez-Iturbide. 2018. A Systematic
Review of the Use of Bloom’s Taxonomy in Computer Science Education. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Education
(SIGCSE ’18). Association for ComputingMachinery, New York, NY, USA, 441–446.
https://doi.org/10.1145/3159450.3159491

[56] ClaudioMirolo, Cruz Izu, Violetta Lonati, and Emanuele Scapin. 2022. Abstraction
in Computer Science Education: An Overview. Informatics in Education 20, 4
(2022), 615–639. https://doi.org/10.15388/infedu.2021.27

[57] Orna Muller and Bruria Haberman. 2008. Supporting abstraction processes
in problem solving through pattern-oriented instruction. Computer Science
Education 18, 3 (2008), 187–212. https://doi.org/10.1080/08993400802332548

[58] Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. ’Explain in plain
English’ questions: implications for teaching. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (Raleigh, North Carolina,
USA) (SIGCSE ’12). Association for Computing Machinery, New York, NY, USA,
385–390. https://doi.org/10.1145/2157136.2157249

[59] Liat Nakar, Mor Friebroon, and Michal Armoni. 2024. From Modelling to As-
sessing Algorithmic Abstraction – the Missing Dimension. In Proceedings of the
23rd Koli Calling International Conference on Computing Education Research (Koli,
Finland) (Koli Calling ’23). Association for Computing Machinery, New York, NY,
USA, Article 4, 12 pages. https://doi.org/10.1145/3631802.3631815

[60] Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer,
Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger,
and J. Ángel Velázquez-Iturbide. 2002. Exploring the role of visualization and
engagement in computer science education. In Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education (Aarhus,
Denmark) (ITiCSE-WGR ’02). Association for Computing Machinery, New York,
NY, USA, 131–152. https://doi.org/10.1145/960568.782998

[61] Greg L. Nelson, Filip Strömbäck, Ari Korhonen, Marjahan Begum, Ben Blamey,
Karen H. Jin, Violetta Lonati, Bonnie MacKellar, and Mattia Monga. 2020. Differ-
entiated Assessments for Advanced Courses that Reveal Issues with Prerequisite
Skills: A Design Investigation. In Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education (Trondheim, Norway)
(ITiCSE-WGR ’20). Association for Computing Machinery, New York, NY, USA,
75–129. https://doi.org/10.1145/3437800.3439204

[62] Keiron Nicholson, Judith Good, and Katy Howland. 2009. Concrete Thoughts
on Abstraction. In Proceedings of the 21th Annual Workshop of the Psychology of
Programming Interest Group. 8. https://ppig.org/files/2009-PPIG-21st-nicholson.
pdf

[63] Jacob Perrenet, Jan Friso Groote, and Eric Kaasenbrood. 2005. Exploring students’
understanding of the concept of algorithm: levels of abstraction. SIGCSE Bull. 37,
3 (jun 2005), 64–68. https://doi.org/10.1145/1151954.1067467

[64] Jacob Perrenet and Eric Kaasenbrood. 2006. Levels of abstraction in students’
understanding of the concept of algorithm: the qualitative perspective. SIGCSE
Bull. 38, 3 (June 2006), 270–274. https://doi.org/10.1145/1140123.1140196

[65] Jean Piaget. 1972. The Principles of Genetic Epistemology. Routledge and Kegan
Paul, London, UK.

[66] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots Are Here: Navigating the Generative AI
Revolution in Computing Education. In Proceedings of the 2023 Working Group
Reports on Innovation and Technology in Computer Science Education (Turku,
Finland) (ITiCSE-WGR ’23). Association for Computing Machinery, New York,
NY, USA, 108–159. https://doi.org/10.1145/3623762.3633499

296

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

https://doi.org/10.1080/00131911.2018.1424116
https://doi.org/10.1145/3328778.3366892
https://doi.org/10.1145/3699538.3699564
https://doi.org/10.1145/3017680.3017801
https://doi.org/10.1145/3017680.3017801
https://doi.org/10.1145/2676723.2677311
https://doi.org/10.1145/3649217.3653547
https://doi.org/10.1145/544414.544461
https://doi.org/10.1145/544414.544461
https://doi.org/10.1145/1383602.1383631
https://doi.org/10.1145/2926712
https://doi.org/10.1145/1370164.1370169
https://doi.org/10.1145/3502718.3524758
https://doi.org/10.1145/3502718.3524758
https://doi.org/10.1145/2960310.2960324
https://doi.org/10.1145/2960310.2960324
https://doi.org/10.1145/3467967
https://doi.org/10.1145/3699538.3699546
https://doi.org/10.1145/3699538.3699546
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/2632320.2632356
https://doi.org/10.1076/csed.11.4.305.3829
https://doi.org/10.1076/csed.11.4.305.3829
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1109/LaTiCE.2017.23
https://doi.org/10.1080/14626268.2019.1682616
https://arxiv.org/abs/https://doi.org/10.1080/14626268.2019.1682616
https://doi.org/10.1145/3159450.3159491
https://doi.org/10.15388/infedu.2021.27
https://doi.org/10.1080/08993400802332548
https://doi.org/10.1145/2157136.2157249
https://doi.org/10.1145/3631802.3631815
https://doi.org/10.1145/960568.782998
https://doi.org/10.1145/3437800.3439204
https://ppig.org/files/2009-PPIG-21st-nicholson.pdf
https://ppig.org/files/2009-PPIG-21st-nicholson.pdf
https://doi.org/10.1145/1151954.1067467
https://doi.org/10.1145/1140123.1140196
https://doi.org/10.1145/3623762.3633499

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

[67] James Prather, Brent N Reeves, Juho Leinonen, Stephen MacNeil, Arisoa S
Randrianasolo, Brett A. Becker, Bailey Kimmel, Jared Wright, and Ben Briggs.
2024. The Widening Gap: The Benefits and Harms of Generative AI for
Novice Programmers. In Proceedings of the 2024 ACM Conference on Interna-
tional Computing Education Research - Volume 1 (Melbourne, VIC, Australia)
(ICER ’24). Association for Computing Machinery, New York, NY, USA, 469–486.
https://doi.org/10.1145/3632620.3671116

[68] Inioluwa Deborah Raji, Morgan Klaus Scheuerman, and Razvan Amironesei. 2021.
You Can’t Sit With Us: Exclusionary Pedagogy in AI Ethics Education. In Proceed-
ings of the 2021 ACM Conference on Fairness, Accountability, and Transparency
(Virtual Event, Canada) (FAccT ’21). Association for Computing Machinery, New
York, NY, USA, 515–525. https://doi.org/10.1145/3442188.3445914

[69] Ian Sanders and Tamarisk Scholtz. 2012. First year students’ understanding
of the flow of control in recursive algorithms. African Journal of Research in
Mathematics, Science and Technology Education 16, 3 (2012), 348–362.

[70] Eddie Antonio Santos and Brett A. Becker. 2024. Not the Silver Bullet: LLM-
enhanced Programming Error Messages are Ineffective in Practice. In Proceedings
of the 2024 Conference on United Kingdom & Ireland Computing Education Research
(Manchester, United Kingdom) (UKICER ’24). Association for Computing Ma-
chinery, New York, NY, USA, Article 5, 7 pages. https://doi.org/10.1145/3689535.
3689554

[71] Carsten Schulte. 2008. Block Model: an educational model of program compre-
hension as a tool for a scholarly approach to teaching. In Proceedings of the Fourth
International Workshop on Computing Education Research (Sydney, Australia)
(ICER ’08). Association for Computing Machinery, New York, NY, USA, 149–160.
https://doi.org/10.1145/1404520.1404535

[72] Andrew D. Selbst, Danah Boyd, Sorelle A. Friedler, Suresh Venkatasubramanian,
and Janet Vertesi. 2019. Fairness and Abstraction in Sociotechnical Systems.
In Proceedings of the Conference on Fairness, Accountability, and Transparency
(Atlanta, GA, USA) (FAT* ’19). Association for Computing Machinery, New York,
NY, USA, 59–68. https://doi.org/10.1145/3287560.3287598

[73] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY,
USA, 164–170. https://doi.org/10.1145/3430665.3456382

[74] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. X86-TSO: A Rigorous and Usable Programmer’s Model
for X86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97. https:
//doi.org/10.1145/1785414.1785443

[75] Anna Sfard. 1991. On the dual nature of mathematical conceptions: Reflections
on processes and objects as different sides of the same coin. Educational Studies
in Mathematics 22, 1 (Feb. 1991), 1–36. https://doi.org/10.1007/bf00302715

[76] Richard R. Skemp. 1976. Relational Understanding and Instrumental Understand-
ing. Mathematics Teaching 77 (1976), 20–26.

[77] David H. Smith, Paul Denny, and Max Fowler. 2024. Prompting for Compre-
hension: Exploring the Intersection of Explain in Plain English Questions and
Prompt Writing. In Proceedings of the Eleventh ACM Conference on Learning @
Scale (Atlanta, GA, USA) (L@S ’24). Association for Computing Machinery, New
York, NY, USA, 39–50. https://doi.org/10.1145/3657604.3662039

[78] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
ACM Transactions on Computing Education 13 (06 2013), 8:1–8:31. https://doi.
org/10.1145/2483710.2483713

[79] David Statter and Michal Armoni. 2020. Teaching Abstraction in Computer
Science to 7th Grade Students. ACM Trans. Comput. Educ. 20, 1, Article 8 (jan
2020), 37 pages. https://doi.org/10.1145/3372143

[80] Filip Strömbäck, Linda Mannila, Mikael Asplund, and Mariam Kamkar. 2019. A
Student’s View of Concurrency - A Study of Common Mistakes in Introductory
Courses on Concurrency. In Proceedings of the 2019 ACM Conference on Inter-
national Computing Education Research (Toronto ON, Canada) (ICER ’19). ACM,
New York, NY, USA, 229–237. https://doi.org/10.1145/3291279.3339415

[81] Filip Strömbäck, Linda Mannila, and Mariam Kamkar. 2021. The Non-
Deterministic Path to Concurrency – Exploring how Students Understand the
Abstractions of Concurrency. Informatics in Education 20, 4 (2021), 683–715.
https://doi.org/10.15388/infedu.2021.29

[82] Filip Strömbäck, Linda Mannila, and Mariam Kamkar. 2022. A Weak Memory
Model in Progvis: Verification and Improved Accuracy of Visualizations of Con-
current Programs to Aid Student Learning. In Koli Calling ’22: 22nd Koli Calling

International Conference on Computing Education Research (Koli, Finland) (Koli
2022). Association for Computing Machinery, New York, NY, USA, Article 14,
12 pages. https://doi.org/10.1145/3564721.3565947

[83] Keiichi Takaya. 2008. Jerome Bruner’s Theory of Education: From Early Bruner
to Later Bruner. Interchange 39 (2008), 1–19. https://doi.org/10.1007/s10780-008-
9039-2

[84] David Tall and Michael Thomas. 2002. Intelligence, learning and understanding in
mathematics. Post Pressed, Flaxton, QLD, Australia.

[85] Josh Tenenberg. 2019. Qualitative Methods for Computing Education. In The
Cambridge Handbook of Computing Education Research, Sally A. Fincher and
Anthony V. Robins (Eds.). Cambridge University Press, 173–207. https://doi.org/
10.1017/9781108654555.008

[86] Sverrir Thorgeirsson, Lennart C. Lais, Theo B. Weidmann, and Zhendong Su.
2024. Recursion in Secondary Computer Science Education: A Comparative Study
of Visual Programming Approaches. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE
2024). Association for Computing Machinery, New York, NY, USA, 1321–1327.
https://doi.org/10.1145/3626252.3630916

[87] Sverrir Thorgeirsson and Zhendong Su. 2021. Algot: An Educational Pro-
gramming Language with Human-Intuitive Visual Syntax. In 2021 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC). 1–5.
https://doi.org/10.1109/VL/HCC51201.2021.9576166

[88] Sverrir Thorgeirsson, Theo B. Weidmann, Karl-Heinz Weidmann, and Zhen-
dong Su. 2024. Comparing Cognitive Load Among Undergraduate Students
Programming in Python and the Visual Language Algot. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1 (Portland,
OR, USA) (SIGCSE 2024). Association for Computing Machinery, New York, NY,
USA, 1328–1334. https://doi.org/10.1145/3626252.3630808

[89] Sverrir Thorgeirsson, Chengyu Zhang, Theo B. Weidmann, Karl-Heinz Weid-
mann, and Zhendong Su. 2024. An Electroencephalography Study on Cognitive
Load in Visual and Textual Programming. In Proceedings of the 2024 ACM Con-
ference on International Computing Education Research - Volume 1 (Melbourne,
VIC, Australia) (ICER ’24). Association for Computing Machinery, New York, NY,
USA, 280–292. https://doi.org/10.1145/3632620.3671124

[90] Annapurna Vadaparty, Daniel Zingaro, David H. Smith IV, Mounika Padala,
Christine Alvarado, Jamie Gorson Benario, and Leo Porter. 2024. CS1-LLM:
Integrating LLMs into CS1 Instruction. In Proceedings of the 2024 on Innovation
and Technology in Computer Science Education V. 1 (Milan, Italy) (ITiCSE 2024).
Association for Computing Machinery, New York, NY, USA, 297–303. https:
//doi.org/10.1145/3649217.3653584

[91] J. Ángel Velázquez-Iturbide. 2021. An Analysis of the Formal Properties of
Bloom’s Taxonomy and Its Implications for Computing Education. In Proceedings
of the 21st Koli Calling International Conference on Computing Education Research
(Joensuu, Finland) (Koli Calling ’21). Association for Computing Machinery, New
York, NY, USA, Article 17, 7 pages. https://doi.org/10.1145/3488042.3488069

[92] Juan Diego Tascón Vidarte, Christian Rinderknecht, Jee-In Kim, and HyungSeok
Kim. 2010. A Tangible Interface for Learning Recursion and Functional Program-
ming. In 2010 International Symposium on Ubiquitous Virtual Reality. IEEE, 32–35.
https://doi.org/10.1109/ISUVR.2010.18

[93] Theo B. Weidmann, Sverrir Thorgeirsson, and Zhendong Su. 2022. Bridging
the Syntax-Semantics Gap of Programming. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Auckland, New Zealand) (Onward! 2022).
Association for Computing Machinery, New York, NY, USA, 80–94. https:
//doi.org/10.1145/3563835.3567668

[94] Uri Wilensky. 1991. Abstract meditations on the concrete and concrete impli-
cations for mathematics education. In Constructionism, Idit Harel and Seymour
Papert (Eds.). Ablex Publishing, 193–203.

[95] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (London, Eng-
land, United Kingdom) (EASE ’14). Association for Computing Machinery, New
York, NY, USA, Article 38, 10 pages. https://doi.org/10.1145/2601248.2601268

[96] Chunpeng Zhai, SantosoWibowo, and Lily D. Li. 2024. The effects of over-reliance
on AI dialogue systems on students’ cognitive abilities: a systematic review. Smart
Learning Environments 11, 1 (2024), 37 pages. https://doi.org/10.1186/s40561-
024-00316-7

297

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

https://doi.org/10.1145/3632620.3671116
https://doi.org/10.1145/3442188.3445914
https://doi.org/10.1145/3689535.3689554
https://doi.org/10.1145/3689535.3689554
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1145/3287560.3287598
https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1007/bf00302715
https://doi.org/10.1145/3657604.3662039
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/3372143
https://doi.org/10.1145/3291279.3339415
https://doi.org/10.15388/infedu.2021.29
https://doi.org/10.1145/3564721.3565947
https://doi.org/10.1007/s10780-008-9039-2
https://doi.org/10.1007/s10780-008-9039-2
https://doi.org/10.1017/9781108654555.008
https://doi.org/10.1017/9781108654555.008
https://doi.org/10.1145/3626252.3630916
https://doi.org/10.1109/VL/HCC51201.2021.9576166
https://doi.org/10.1145/3626252.3630808
https://doi.org/10.1145/3632620.3671124
https://doi.org/10.1145/3649217.3653584
https://doi.org/10.1145/3649217.3653584
https://doi.org/10.1145/3488042.3488069
https://doi.org/10.1109/ISUVR.2010.18
https://doi.org/10.1145/3563835.3567668
https://doi.org/10.1145/3563835.3567668
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1186/s40561-024-00316-7
https://doi.org/10.1186/s40561-024-00316-7

A Pedagogical Framework for Developing Abstraction Skills ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

A Threading Library in C
Below is the implementation of the primitives used in the concur-
rency examples in the paper. The names and semantics are the same
as in the educational operating system Pintos. The code below is an
implementation of the same semantics using Pthreads. This makes
it possible to compile the same program both inside of Pintos as
well as on other Posix-based systems (e.g., Linux). Therefore, stu-
dents don’t need to learn two different set of names initially. The
code below is typically not shown to students when teaching the
concepts, as it is just glue-code. Teaching rather focuses on the
implementation inside Pintos. Since that implementation is exclu-
sively in kernel mode, it does not have to account for system calls
etc. and is therefore easier to understand compared to what would
exist in e.g. Linux or other operating systems.

1 #pragma once

2
3 #ifndef _POSIX_C_SOURCE

4 #define _POSIX_C_SOURCE 20000101L

5 #endif

6
7 #include <stdbool.h>

8 #include <pthread.h>

9 #include <semaphore.h>

10 #include <time.h>

11 #include <errno.h>

12
13 struct semaphore {

14 sem_t os;

15 };

16
17 void sema_init(struct semaphore *sema , unsigned

value);

18 void sema_destroy(struct semaphore *sema);

19 void sema_down(struct semaphore *sema);

20 void sema_up(struct semaphore *sema);

21
22 struct lock {

23 pthread_mutex_t os;

24 };

25
26 void lock_init(struct lock *lock);

27 void lock_destroy(struct lock *lock);

28 void lock_acquire(struct lock *lock);

29 void lock_release(struct lock *lock);

30
31 typedef void thread0_func(void);

32 typedef void thread1_func(void *aux);

33 void thread_new(thread0_func *fn);

34 void thread_new1(thread1_func *fn, void *aux);

Listing 27: Threading library, header file

1 #include "os.h"

2 #include <stdlib.h>

3
4 struct thread_start {

5 thread_func1 *run;

6 void *aux;

7 struct semaphore started;

8 };

9
10 static void *thread_main(struct thread_start

*start) {

11 thread_func1 *run = start ->run;

12 void *aux = start ->aux;

13
14 sema_up (&start ->started);

15
16 (*run)(aux);

17
18 return NULL;

19 }

20
21 void thread_new1(thread1_func *fn, void *aux) {

22 struct thread_start info;

23 info.run = fn;

24 info.aux = aux;

25 sema_init (&info.started , 0);

26
27 pthread_t created;

28 if (pthread_create (&created , NULL ,

&thread_main , &info)) {

29 perror("pthread_create");

30 exit (1);

31 }

32
33 sema_down (&info.started);

34 sema_destroy (&info.started);

35
36 // Same semantics as in Pintos:

37 pthread_detach(created);

38 }

39
40 static void start0(void *aux) {

41 thread0_func *fn = aux;

42 (*fn)();

43 }

44
45 void thread_new(thread0_func *fn) {

46 thread_new1 (&start0 , fn);

47 }

48
49
50 void sema_init(struct semaphore *sema , unsigned

value) {

51 sem_init (&sema ->os, 0, value);

52 }

53
54 void sema_destroy(struct semaphore *sema) {

55 sem_destroy (&sema ->os);

56 }

57
58 void sema_down(struct semaphore *sema) {

59 while (sem_wait (&sema ->os) != 0) {

298

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy Marjahan Begum et al.

60 if (errno != EINTR) {

61 perror("sem_wait");

62 exit (1);

63 }

64 }

65 }

66
67 void sema_up(struct semaphore *sema) {

68 sem_post (&sema ->os);

69 }

70
71 /**

72 * Lock.

73 */

74
75 void lock_init(struct lock *lock) {

76 pthread_mutexattr_t attr;

77 pthread_mutexattr_init (&attr);

78 pthread_mutexattr_settype (&attr ,

PTHREAD_MUTEX_ERRORCHECK);

79 pthread_mutex_init (&lock ->os, &attr);

80 pthread_mutexattr_destroy (&attr);

81 }

82
83 void lock_destroy(struct lock *lock) {

84 pthread_mutex_destroy (&lock ->os);

85 }

86
87 void lock_acquire(struct lock *lock) {

88 pthread_mutex_lock (&lock ->os);

89 }

90
91 void lock_release(struct lock *lock) {

92 pthread_mutex_unlock (&lock ->os);

93 }

Listing 28: Threading library, implementation file

299

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by C
ity St G

eorges, U
niversity of L

ondon (form
erly C

ity, U
niversity of L

ondon) on A
pril 11, 2025.

	Abstract
	1 Introduction
	2 Background
	2.1 General Systematizations
	2.2 Models and Frameworks of Abstraction
	2.3 How Abstraction is Taught
	2.4 Generative AI

	3 Method
	3.1 Work of the Theory Group
	3.2 Work of the Context Group
	3.3 Interactions Between the Two Parallel Groups

	4 Results: Design of the Initial Framework
	4.1 Our Views
	4.2 Definitions for Abstraction Skills
	4.2.1 Measures of Abstraction Levels
	4.2.2 Abstraction Skills

	4.3 Categorization of Systematizations
	4.3.1 Inclusion-exclusion
	4.3.2 Models of Concept Formation
	4.3.3 Taxonomies of Abstraction Skills and Levels
	4.3.4 Frameworks for Pedagogical Practice

	4.4 Discussion/Summary of the Systematization
	4.4.1 Steps for Constructing our Pedagogical Framework

	4.5 Initial Version of the Framework
	4.6 Example: Applying the Framework to Recursion (Context 0)

	5 Results: Contexts and Instructional Tools
	5.1 Context 1 - Concept of Memory and Pointers in C for CS1
	5.1.1 Context of the Course
	5.1.2 Understanding Data Representation
	5.1.3 Moving Between Abstractions of Pointers
	5.1.4 Using the Dereference Operator
	5.1.5 Pointers to Arrays of Integers
	5.1.6 Conclusion

	5.2 Context 2 - Algorithmic Game Theory
	5.2.1 Context of the Field.
	5.2.2 Context of the Module.
	5.2.3 Application of our Framework Within this Context.
	5.2.4 Auctions Paradigm
	5.2.5 Nash Equilibrium Paradigm
	5.2.6 Extensive Games Paradigm
	5.2.7 Discussion

	5.3 Context 3 - Concurrent Programming
	5.3.1 Context of the Course
	5.3.2 Concepts in the Course
	5.3.3 Course Content: The Memory Model
	5.3.4 Course Content: Synchronization
	5.3.5 Course Content: Creating Abstractions
	5.3.6 Course Content: Summary
	5.3.7 Practical Considerations

	5.4 Context 4 - Recursion in Secondary Education
	5.4.1 Context of the Field.
	5.4.2 Context of the Module.
	5.4.3 Application of Abstraction Skills within this Context.
	5.4.4 Applying our Framework
	5.4.5 Summary and Comparison

	5.5 Context 5 - Teaching Linear Data Structures in CS2/CS3
	5.5.1 Context
	5.5.2 Prerequisite Expectations
	5.5.3 Activity: Motivation
	5.5.4 Activity: Building Blocks
	5.5.5 Activity: Inserting into SLL
	5.5.6 Activity: Removing from SLL

	6 Discussion
	6.1 Fitting the Framework to Contexts
	6.2 Insights from Applying the Framework
	6.2.1 Suitable Learning Activities
	6.2.2 Ordering Concepts, Stages of Concept Formation, and Abstraction Skills
	6.2.3 How Educators Can Use the Framework

	7 Our Proposed Framework
	7.1 Limitations

	8 Conclusion
	8.1 Future Work

	Acknowledgments
	References
	A Threading Library in C

