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 a b s t r a c t

For event analysis, the information from both before and after the event can be crucial in certain 
scenarios. By incorporating a contextualized perspective in event analysis, analysts can gain deeper 
insights from the events. We propose a contextualized visual analysis framework which enables 
the identification and interpretation of temporal patterns within and across multivariate events. 
The framework consists of a design of visual representation for multivariate event contexts, a data 
processing workflow to support the visualization, and a context-centered visual analysis system 
to facilitate the interactive exploration of temporal patterns. To demonstrate the applicability and 
effectiveness of our framework, we present case studies using real-world datasets from two different 
domains and an expert study conducted with experienced data analysts.

© 2025 The Authors. Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University 
Press Co. Ltd. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In some event analysis scenarios, analysts are focused on a 
specific type of event. For example, a football analyst may want to 
analyze passing events during a football game. A typical approach 
is to extract and analyze the occurrences of such events. However, 
event analysis goes beyond the moments of occurrence. Analysts 
may also be interested in the causes, consequences, and other 
aspects related to the events. In many cases, this information 
is likely to be found from before and after the events. From 
this perspective, focusing solely on the moment of the occur-
rence may not provide sufficient information for event analysis. 
Therefore, it is meaningful to reframe event analysis tasks from a 
contextualized perspective.

For a multivariate time series with events recorded, we can 
define an event context as a multivariate time slice surrounding 
the point of time when an event occurs. Shifting the analysis 
object from the event occurrence to the event context introduces 
several challenges:

The first challenge is that event context, compared to event 
occurrence, is a more complex object to visualize. Its visual 
representation should be easy to understand, and should allow 
analysts to observe the changes over time within the context.
Secondly, analyzing multivariate event contexts requires handling 
increased data volumes and multiple dimensions. Finally, the vi-
sual analysis of event contexts could be a flexible and open-ended 
process, requiring the integration of human insight.

∗ Corresponding author.
E-mail address: simingchen@fudan.edu.cn (S. Chen).
https://doi.org/10.1016/j.visinf.2025.100234
2468-502X/© 2025 The Authors. Published by Elsevier B.V. on behalf of Zhejiang Univer
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
To deal with these challenges, we propose a framework for 
visually representing and exploring multivariate event contexts. 
The framework includes three main components: a design of 
visual representation for multivariate event contexts, a data pro-
cessing workflow, and a context-centered visual analysis system.

We apply this framework to two real-world datasets and
present case studies. In the first case, we analyze passing event 
contexts in a football match, identifying several distinct behavior 
patterns across different passing event contexts and offering in-
sights into tactical strategies. In the second case, we analyze harsh 
braking event contexts in a truck’s driving records, identifying 
several driving patterns and various responses to road conditions. 
These case studies demonstrate the general applicability of our 
framework to various domains. We also conduct an expert study 
to collect feedback on our analysis framework and system, which 
helped validate the effectiveness of our approach.

Overall, our study makes the following contributions:

• We propose a multivariate event context analysis frame-
work that helps analysts identify and explore temporal 
patterns within event contexts through interactive visual
analysis.

• We introduce a method for visualizing multivariate event 
contexts, which includes a visual representation design
based on color coding and high-dimensional context infor-
mation ordering.

• We provide a context-centered visual analysis system to 
support the processing and exploration of event contexts.
sity and Zhejiang University Press Co. Ltd. This is an open access article under the 
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2. Related works

Our work is closely related to existing studies on multivariate 
data visualization and event visual analysis. This section provides 
an overview of the related works in these fields.

2.1. Multivariate data visualization

Multivariate data visualization is a widely studied area. Cui 
(2019) provides a literature review on visual analytics, in which 
he categorizes and discusses the applications of multivariate data 
visualization. A primary approach is to represent multivariate 
information in a single chart or view, such as using parallel 
coordinate plots. 3D visualization and animation can also increase 
the number of variables represented in a single view. Another 
approach to visualizing multivariate data is to construct multiple 
related views. The information that can be displayed in a single 
chart is limited. Therefore, in recent studies, multiple views are 
often adopted for multivariate data visualization. Multiple views 
are often realized as interactive visual analysis systems, such 
as Smartadp (Liu et al., 2016), which analyzes large-scale GPS 
trajectory data for billboard placement, and Srvis (Weng et al., 
2018), which solves ranking decision problems by combining spa-
tial environmental information. Wang et al. (2022) also provide 
a multi-view visual analysis system for spatio-temporal data to 
help developers observe when, where and how the model failure 
happens in autonomous driving systems.

Multivariate data poses challenges to visualization due to its 
complexity. Excessive volume, multiple dimensions, and
information redundancy may all cause difficulties in visualiza-
tion. Therefore, data mining techniques are widely used to sim-
plify multivariate data before visualization. The corresponding 
techniques include dimensionality reduction, projection, cluster-
ing, sampling, and others. Nonato and Aupetit (2018) provide 
a literature review on multivariate projections (MDPs) for vi-
sual analytics, categorizing MDP methods, transformations, anal-
ysis tasks, and layout enhancements. Kisilevich et al. (2010) 
provide an overview of spatio-temporal clustering, especially
trajectory clustering. Andrienko and Andrienko (2013) support 
using clustering and interactive analysis for large-scale spatio-
temporal data, and apply color assignments to projected data. 
TPFlow (Liu et al., 2018) models multivariate spatio-temporal 
data as tensors, proposing an algorithm that automatically seg-
ments the data into uniform partitions and extracts potential 
patterns from each of them. Deng et al. (2023) develop a data 
mining framework to extract evolution patterns from large-scale 
spatio-temporal series and propose a technique called GeoChron 
which leverages the evolution pattern to organize and visual-
ize large-scale spatio-temporal series in a pattern-aware and 
narrative-preserving way.

In our work, we use various multivariate visualization meth-
ods, utilizing both single-chart representations of multiple
dimensions (e.g., parallel coordinate plots) and multi-view inter-
actions. We also employ data mining techniques such as dimen-
sionality reduction and clustering to support data visualization.

Our work is innovative in the visualization of event contexts. 
To the best of our knowledge, there has been limited research 
dedicated to the visualization of event contexts. Andrienko and 
Andrienko (2024) visualizes event contexts in matrices. And in 
our work, we propose a visual representation specifically de-
signed for multivariate event contexts.
2

2.2. Event visual analysis

Substantial work has been done on the detection, comparison, 
and visual analysis of event sequences. In these studies, flow 
charts, Sankey diagrams, and their variations are often used to 
visualize the temporal order, synchronization, and interaction of 
events. Due to the complexity of event analysis tasks, each work 
focuses on specific aspects of event analysis or approaches them 
from different perspectives.

For example, some studies approach event analysis from a 
sequence analysis perspective. Eventpad (Cappers and van Wijk, 
2017) offers a graph-oriented approach to analyzing event se-
quences, enabling both temporal analysis of the sequences and 
structural analysis of associated multivariate data. DecisionFlow
(Gotz and Stavropoulos, 2014) processes high-dimensional tem-
poral event sequences of thousands of different types, supporting 
interactive real-time analysis of high-dimensional event sequence 
data. Sequence Braiding (Bartolomeo et al., 2020) focuses on 
event alignment and comparison. IVESA (Bernard et al., 2024) 
focuses on the analysis of time-stamped event sequences (TSEQs), 
which are time-oriented event occurrence sequences without 
value information. Some other studies focus on causality analysis 
in event sequences. Jin et al. (2020) applies Granger causality 
testing to explore causality in spatio-temporal events. VAC2 (Zhu 
et al., 2024) provides a combined causality visual analysis system 
to help users effectively explore combined causes in temporal 
event sequence data.

There are also application-focused event studies. PassVizor
(Xie et al., 2020) deals with football passing event sequences, 
helping to reveal dynamic patterns and tactics in passes. Pmu 
tracker (Arunkumar et al., 2022) provides a visualization platform 
for epicentric event propagation analysis in the power grid.

Meanwhile, there are studies that focus on the contextual 
nature of events. Although treating events as sequences is valu-
able, examining events within contexts can be equally important. 
For instance, Frequence (Perer and Wang, 2014) is an interactive 
frequent event sequence mining and visualization interface that 
considers the user’s temporal context by defining pattern dura-
tion in sequences. CoNTA (Cappers and van Wijk, 2016) supports 
contextual analysis of network traffic alerts. Andrienko et al. 
(2011) propose a conceptual model supporting the analysis of 
movement data with spatio-temporal context. Chen et al. (2019) 
introduce a workflow for analyzing movement events, including 
event contextualization, context pattern detection, and explo-
ration. In their work, they visualize and compare event contexts 
based on a single variable.

In our work, we define event contexts as multivariate time 
slices surrounding the event occurrences, and focus on the ex-
ploration of patterns within them. Our definition of ‘‘context’’ 
is distinguished from the concept ‘‘episode’’ as used in other 
works on temporal pattern analysis, such as Shirato et al. (2023b) 
and Andrienko et al. (2023). The key difference lies in the event-
centered nature of ‘‘context’’, whereas ‘‘episode’’ does not em-
phasize the presence of events. In the realm of temporal pattern 
analysis, our approach is explicitly event-oriented.

To our knowledge, there have not been studies that approach 
multivariate event visual analysis from a contextualized per-
spective. Thus, in this paper, we provide a framework for the 
contextualized visual analysis of multivariate events.

3. Overview

In this chapter, we will first introduce our target data type 
and provide a specific definition of event contexts. Next, we will 
present the analysis tasks derived from discussions with experts. 
Finally, we will give an overview of the multivariate event context 
analysis framework we propose and the methods employed.
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3.1. Data and definitions

Our framework is designed for multivariate time series data, 
which should include time and several other numerical variables. 
Specifically, when the data contains variables representing spatial 
information, it is referred to as trajectory data. Though spatial 
variables are not essential in our target data, our framework 
includes functions for trajectory analysis.

Occurrences of events and their types should be recorded in 
the data. Furthermore, it is important to note that the framework 
is designed for analyzing recurring events instead of sporadic or 
anomalous events. Therefore, the data should include multiple 
records of the same event type. For instance, the tracking data 
in a football match might record multiple occurrences of passing 
events.

To use our framework, time series with uniform time inter-
vals is the most suitable. For time series with non-uniform time 
intervals, methods such as interpolation are needed to unify the 
intervals before extracting event contexts.

For a time series that meets the above conditions, with T  time 
points and n variables, we denote it as X = {xt}T×n, where xt
is the multivariate data entry at time point t . The time intervals 
in this series are equal and denoted as ∆t . Event(t) ∈ {0, 1} is 
a binary variable that indicates whether a target event occurs at 
time point t . If a target event occurs at t , we define its context Ct
as a time slice around t . To be specific,
Ct = {X[t − a∆t, t + b∆t] | Event(t) = 1} , a, b ∈ N

The event context Ct includes (a + b + 1) data entries, where a
entries are before the event, and b entries are after the event. The 
values of a and b are selected by the analyst based on the specific 
analysis scenario.

3.2. Analysis tasks

Our framework is designed for experienced data analysts. We 
aim to propose an visual analysis framework that help analysts 
in gaining insights into events from a contextualized perspective. 
We discussed with several experts who have more than five years 
of experience in data analysis, and gathered their requirements 
for analyzing multivariate event contexts. During the discussions, 
the experts raised several needs related to the mining of contexts, 
the recognition of temporal patterns, and the interpretability of 
these patterns. From the discussions with experts, we derive the 
following analysis tasks:

• T1: Visualize multivariate event contexts.
• T2: Identify event contexts with similar temporal patterns.
• T3: Interpret the meanings of temporal patterns within sim-

ilar event contexts.

3.3. Analysis framework

To support the analysis tasks, we propose the following anal-
ysis framework as shown in Fig.  2. In the framework, the target 
data goes through a data processing workflow to generate visual 
representations of event contexts. Then, we provide a context-
centered visual analysis system that allows users to identify and 
interpret patterns within contexts interactively. In the system, 
users can also perform real-time data processing tasks such as 
clustering.

The visual representation of event contexts is designed based 
on a ‘‘building block’’ metaphor. It enables comparisons based on 
similarity and the identification of temporal patterns within the 
contexts. A detailed introduction to the visual representation of 
event contexts is in Section 4.
3

The data processing workflow consists of 4 steps. In Step 1 
Event context extraction, the event contexts Ct are extracted from 
original data X . The collection of all the data entries included in 
extracted event contexts is denoted as a data subset C = {Ct}. In 
Step 2 Projection and coloring, C is reduced to two dimensions 
to enable the use of a 2-D colormap, which assigns a represen-
tative color to each data entry. In Step 3 Clustering and Step 4 
Reordering, event contexts are clustered and ordered based on 
similarity. Details about the data processing workflow will be 
discussed in Section 5. For each step, various statistical algorithms 
will be considered and compared.

4. Visual representation of multivariate event contexts

In order to visualize multivariate event contexts (T1), we 
first work on the design of the visual representation for event 
contexts.

Multivariate event context is a complex object. It contains 
multiple variables as well as temporal information. First, we 
consider how to represent multivariate information in the visual 
representation. Visualizing event contexts requires a simplifica-
tion of information, since it is impractical to visually display all 
the variables within a context. One feasible approach is to retain 
similarity only. More specifically, we can set a design goal: when 
comparing two visual representations of contexts, the viewer 
should be able to assess their similarity. We can obtain the sim-
ilarities between data entries through dimensionality reduction. 
However, results of dimensionality reduction algorithms involve 
unavoidable distortions. Therefore, the representation that we 
design allows only approximate judgments of similarity.

Secondly, we consider how to represent temporal informa-
tion in the visual representation. In the definition provided in 
Section 3.1, a multivariate event context is a combination of 
data entries at multiple time points. We thus consider designing 
the visual representation of a event context as a combination 
of representations of various time points. The advantage of this 
design lies in that it aligns the data level definition and the visual 
representation of an event context, making it easy to understand.

Therefore, we have developed the visual representation for 
multivariate event contexts as described below. We first project 
all the data entries included in the event contexts (denoted as 
C in Section 3.3) onto a 2-D plane. As shown in Fig.  3, using a 
2-D colormap, each data point can be assigned a corresponding 
color. In visualizations, color coding is regularly used to represent 
changes in data values. Color coding can represent both changes 
in a single dimension such as changes over time (Bernard et al., 
2012), and changes in two dimensions such as changes over a 2-
D plane (Andrienko and Andrienko, 2023). We use color coding 
to represent the proximity of the projected data. In terms of 
comparison, similar colors indicate closer proximity. For example, 
with reference to the colormap, we can see that red points are 
closer to orange points, while blue points are farther away.

Assume that we have an example event context with 5 data 
entries (where a = b = 2). Now, each data entry has a color 
representing it, as shown in Fig.  4-a. Next, as illustrated in Fig. 
4-b, we represent each data entry as a colored block and stack 
them from top to bottom in time order. To be specific, in this 
case, block t3 in the middle represents the data entry in which 
the event occurs. Block t1 and t2 represent the two data entries 
before the event. Block t4 and t5 represent the two data entries 
after the event. This design can be seen as a ‘‘building block’’ 
metaphor, where each colored block represents a data entry, 
and assembling them together forms the event context. It allows 
analysts to observe temporal changes within the context. For 
example, a transition from blue to yellow can be observed in this 
example context, indicating the potential temporal changes at the 
variable level.
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Moreover, we consider how to display a large number of event 
contexts and make it easier for analysts to identify common 
patterns among them. When individual event contexts are placed 
together as shown in Fig.  5-a, their colors make them comparable 
for analysts. To visualize multiple contexts, we arrange them 
horizontally together as shown in Fig.  5-b. However, this is not 
sufficient for the task of pattern identification (T2). When there 
is a large number of contexts, clustering and ordering are needed 
to improve the arrangement of contexts based on similarity, as 
illustrated in Fig.  5-c. After this rearrangement, contexts that 
look most similar will be placed together. This approach makes 
it easier for analysts to identify common patterns among event 
contexts.

In summary, using this ‘‘building block’’ metaphor, we repre-
sent each data entry as a colored block and assemble them into 
the visual representation of an event context. The representations 
are further arranged and displayed based on similarity to ensure 
that similar contexts are placed together, making pattern identi-
fication easier for analysts. In the next section, we will discuss in 
detail all the methods used to generate and arrange these visual 
representations.

5. Data processing workflow

In this section, we present the data processing workflow. The 
workflow is used to extract event contexts from raw data and 
represent them visually as described in the previous section. The 
workflow includes 4 steps: event context extraction, projection 
and coloring, clustering, and reordering. We will detail each step 
of the data processing workflow and discuss the selection of 
statistical methods.

5.1. Step 1: Event context extraction

As is mentioned in Section 3.1, the target data for extracting 
event contexts is multivariate time series, with events of interest 
recurring over time. Analysts need to first determine the time 
interval and the length of event contexts. By definition, they need 
to choose the ideal time interval ∆t and the number of data 
entries they would like to include before and after the event (i.e, 
a and b).

We can offer some guiding principles for making choices of 
time interval and context length. Firstly, the choice of context 
length should depend on the nature of the specific event. For 
example, constructing event contexts in minutes is acceptable for 
driving records, but may not be suitable for fast-changing events 
in football matches. As for the time interval, the rate of change 
in the phenomenon under analysis should be taken into consid-
eration. Besides, the choice of the time interval is constrained 
by the quality of the raw data. The smaller the granularity of 
the raw data, the more choices the analyst has in choosing the 
time interval. However, when raw data granularity meets the 
requirements, we still advise analysts not to include too many 
data entries in the context, as this may lead to overlaps in the 
visualization.

Fig.  6 illustrates the context extraction process. We denote the 
data subset C = {Ct} as the collection of all the data entries 
extracted from original data X . In some cases, due to the potential 
temporal overlap of event contexts, certain data entries might 
be included in multiple event contexts. But they will not be 
duplicated in data subset C .

Before moving on to the next steps, some data preprocessing 
measures are suggested for the data subset C . We suggest remov-
ing outliers and normalizing the data because the algorithms we 
use, such as k-means, are sensitive to outliers. To reduce mul-
ticollinearity in dimensionality reduction, we also recommend 
eliminating highly correlated variables. 
4

5.2. Step 2: Projection and coloring

After extracting data subset C from the original data, it is 
reduced to two dimensions so that a representative color can be 
assigned to each data entry using a 2-D colormap. These colors are 
used in constructing the visual representation of event contexts. 
Closer colors indicate greater similarity.

The choice of dimensionality reduction method is worth dis-
cussing. In our practice, we experimented with MDS, t-SNE, and 
auto-encoders, which are commonly used methods for dimen-
sionality reduction. MDS and t-SNE are manifold learning algo-
rithms, while auto-encoders are self-learning neural networks. 
Our experiments show that MDS has a high time cost for large 
data sets, making it unsuitable for the task. Auto-encoders are 
faster but produce unstable results, with projection distributions 
varying significantly across runs. In contrast, t-SNE offers better 
stability and has acceptable time costs. Another advantage of t-
SNE is that it preserves local neighborhoods within data. In our 
analysis, we focus on groups of similar event contexts as our 
goal is to identify patterns. Therefore, it is essential to accurately 
recognize contexts close to each other in the original space. 
However, it is important to note that clusters farther apart in 
t-SNE results may not be comparable in terms of distance. The t-
SNE algorithm gives close positions only to close neighbors, while 
slightly less similar data points can be placed quite far apart, 
which will result in getting a very different color.

In the rest of this paper, we use t-SNE as the default projec-
tion method. However, other methods may have advantages in 
different scenarios.

5.3. Step 3: Clustering

In most cases, analysts need to handle a large number of event 
contexts. Therefore, To assist analysts in identifying contexts with 
shared patterns (T2), the visual representations of event contexts 
should be displayed in an organized way. First, similar event 
contexts need to be grouped together so that analysts can study 
them in clusters or smaller groups.

K-means, a partition-based clustering algorithm that can ef-
ficiently handle large numbers of samples, is used here to clus-
ter event contexts. Event contexts need to be transformed in 
order to make them processable for k-means. To be specific, 
for each event context, the matrix Ct is flattened into a vector 
vec(Ct ) with (a + b + 1) × n dimensions, where vec(Ct ) =

[x(t−a∆t), x(t−(a−1)∆t), . . . , x(t+b∆t)]. K-means is then applied on 
these vectors. 

K-means requires a predefined number of clusters. In practice, 
there is no standard answer for the optimal number of clusters, 
and analysts cannot determine beforehand how many groups the 
contexts should be divided into. Therefore, in our work, a human-
in-the-loop approach is adopted, allowing analysts to decide the 
number of clusters. Reference information will be provided for 
analysts in the visual analysis system to support real-time cluster-
ing. Analysts can continually adjust the number of clusters until 
they achieve the ideal results.

5.4. Step 4: Reordering

K-means only provides an initial grouping of event contexts. 
Before proceeding with pattern identification (T2), the arrange-
ment of event contexts needs to be further optimized within 
each group. Fig.  7-a shows a group of contexts arranged in their 
original order (typically the time order of their occurrences). In 
this order, the contexts are visually disorganized. Ideally, similar 
looking context representations should be close to each other, 
as shown in Fig.  7-b. This will improve visual coherence, and 
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Fig. 1. The visual analysis system for multivariate event contexts. The system has 5 views: the Timeline (A) which shows the distribution of event occurrences 
over time; the Context View (B) which shows the visual representations of contexts; the Reference View (C) which provides reference information for analysts; the 
Parallel Coordinates View (D) which shows the original values of variates and supports filtering; and the Space View (E) which shows the trajectories of contexts.
also ensure that neighboring event contexts are the most similar. 
Therefore, the reordering of event contexts within clusters is 
another important step in the data processing workflow.

Event contexts can either be reordered based on their original 
form Ct ∈ R(a+b+1)×n or on their projected forms C ′

t ∈ R(a+b+1)×2

produced in Step 2. It is essential to recognize that statistical 
methods define similarity in different ways. Similarity encoding 
can vary significantly due to differences in definitions of distance 
and the inherent random variations present in some algorithms. 
Therefore, although the colors of contexts are assigned based on 
similarity, reordering using other statistical methods does not 
guarantee consistent results. To avoid inconsistency, we suggest 
reordering based on C ′

t  instead of Ct . This is because the similarity 
of the projected 2-D data aligns with the similarity of their 
assigned colors. As is shown in Fig.  8, reordering on projected data 
yields better visual coherence.

Essentially, reordering event contexts is a similarity-based 
vector sorting task on vec(C ′

t ). One potential approach is dimen-
sionality reduction again, such as using MDS or t-SNE to reduce 
event context vectors to one dimension and then sorting them 
based on the projected values. Another approach we consider is 
principal component analysis (PCA), since ordering vectors by the 
first principal component value is also reasonable, as it explains 
most of the variance in the original data. We also experiment with 
the OPTICS algorithm, a density-based clustering algorithm that 
generates a similarity sequence as a byproduct. In short, OPTICS 
works by sequentially selecting the nearest neighbors of a given 
point, and then arranging similar objects together according to 
the sequence produced.

Fig.  9 shows the reordering results produced by MDS, t-SNE, 
PCA, and OPTICS. Compared to the original order, all of the results 
show improvements. Among these, OPTICS has several advan-
tages. It offers slightly better visual coherence than the other 
methods, and is also the most time-efficient. Another advantage 
of OPTICS is that, due to its operating principle, it tends to place 
hard-to-sort examples at the end of each cluster, which is visually 
beneficial.

Some analysts may prefer t-SNE for consistency, as it is previ-
ously used in data projection. However, t-SNE is highly sensitive 
to parameter settings. In practice, we observe that without proper 
5

parameter tuning, t-SNE may fail to converge. Perplexity, a crucial 
parameter for t-SNE, must be adjusted based on data size. In this 
case, perplexity requires manual adjustment for each cluster since 
the number of event contexts per cluster may vary significantly. 
In contrast, OPTICS does not have this issue. Its parameter se-
lection does not significantly affect the output. Therefore, due to 
its advantages in parameter selection flexibility, time efficiency, 
and ordering characteristics, we choose OPTICS as the default 
reordering method.

After completing these 4 steps of the data processing work-
flow, analysts can obtain organized visual representations of 
event contexts. In the next section, we will introduce the context-
centered visual analysis system that allows analysts to engage in 
data processing and exploration.

6. Context-centered visual analysis system

This section provides a detailed introduction to the interactive 
visual analysis system (Fig.  1) designed to support exploratory 
analysis. This system serves as the platform for demonstrating 
the visualization of multivariate events (T1). Moreover, T2 and T3 
will primarily be accomplished through the interactive analysis of 
analysts using the system. The system has 5 views: the Context 
View, the Reference View, the Parallel Coordinates View, the 
Timeline, and the Space View. The Context View displays the 
visual representations of contexts. The Reference View provides 
reference information related to clustering and projection. The 
Parallel Coordinates View allows researchers to examine and fil-
ter original data values. The Timeline and the Space View display 
the temporal and spatial information of contexts. Interactivity 
and cross-view linking are implemented across all views.

6.1. Context View (B)

The Context View (Fig.  1-B) is the core of the system and the 
center of interactive exploration. Here, the visual representations 
of event contexts are displayed according to clustering results. At 
the top of the view, analysts can select the number of clusters and 
perform real-time clustering. Additionally, contexts within each 
cluster will be reordered based on similarity automatically.
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Fig. 2. The multivariate event context analysis framework. The framework consists of a design of visual representation for multivariate event contexts, a data 
processing workflow, and a context-centered visual analysis system.
Fig. 3. With data projection and a 2-D colormap, each data entry can be assigned a representative color based on similarity.
Fig. 4. An event context and its visual representation. We use colored blocks 
to represent each data entry, and stack them together to form the visual 
representation of an event context.

By default, contexts are colored according to the projected 
color. Analysts can choose to color the contexts by any variable 
using the dropdown menu at the top. This single-variable coloring 
function helps analysts trace specific visual patterns back to the 
original variables.

Additional interactions with the Context View can be carried 
out through brushing. Since clustering and reordering tend to 
place similar contexts together, analysts can easily brush and 
select groups of similar contexts for further exploration. Analysts 
can select contexts either partially or fully, and the selected parts 
will be filtered and highlighted across all views.

6.2. Reference View (C)

The Reference View (Fig.  10) provides analysts with reference 
information related to projection and clustering. It consists of 3 
sub-views:

• Reachability Plot: Positioned at the top, the Reachability 
Plot is generated by OPTICS. This sequence represents the 
density-based clustering structure of all contexts. Analysts 
can generally estimate the number of potential clusters by 
observing the number of valleys in the reachability plot.

• Data Projection View: Positioned in the lower left, this view 
displays the 2-D projections and colors of data entries in 
6

Fig. 5. The display of the visual representations of event contexts.

C = {Ct}, representing the results of Step 2 in the data 
processing workflow. Here, analysts can observe the distri-
bution of the projected data entries and the proximity of 
their corresponding colors.

• Context Projection View: Positioned in the lower right, this 
view shows the 2-D projection of entire contexts (i.e, the 
2-D projection of vec(Ct ) using t-SNE), allowing analysts to 
see how contexts are distributed on a 2-D plane. This view 
serves as a reference for clustering.

The Reference View responds to interactions in the Context 
View. After re-clustering, different marks will represent different 
clusters in the Context Projection View, allowing analysts to ex-
amine clustering results. When contexts are brushed and selected 
in the Context View, they will also be highlighted in the Data 
Projection View and the Context Projection View.
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Fig. 6. For each event occurrence recorded in the original data X , an event context can be extracted. The extracted contexts are time slices with the same length, 
columns, and time intervals. Then, all the data entries included in event contexts form the data subset C .
Fig. 7. A cluster of contexts before and after reordering.

6.3. Parallel Coordinates View (D)

The Parallel Coordinates View (Fig.  1-D) enables analysts to 
examine the original variables in detail, which is important for 
pattern interpretation (T3). In this view, the polylines are dis-
played in projected colors of corresponding data entries. Analysts 
can also choose to color the lines by single variable or by time 
from event using the dropdown menu at the top (Fig.  11).

The Parallel Coordinates View and the Context View will re-
spond to each other (Fig.  12). In the Parallel Coordinates View, 
analysts can brush on the axes to restrict variable values. Brushing 
multiple axes allows for multiple restrictions. Therefore, the Par-
allel Coordinates View assists analysts in filtering event contexts 
under specific situations during exploration.

6.4. Timeline (A) and Space View (E)

The Timeline (Fig.  1-A) and the Space View (Fig.  1-E) are 
used to display temporal and spatial information respectively. 
The Timeline has 2 parts. The upper part is a histogram showing 
the distribution of events over time. The lower part is draggable, 
with all the events and their information marked at their time of 
occurrence.

The Space View is used to draw trajectories when spatial 
variables are included in the event contexts. As shown in Fig.  13, 
we plot trajectories using scatter points, and the colors of the 
trajectories correspond to those in the visual representations of 
contexts. Within a trajectory, the points increase in size over time.

When brushing happens in the Context View, the selected 
event contexts will be highlighted on the Timeline, and their 
trajectories will be plotted in the Space View.

7. Case study

In this work, our goal is to propose a general framework which 
is applicable in different event context analysis scenarios. There-
fore, in this section we will apply the framework to datasets from 
two different domains. The first dataset consists of data collected 
from a football match, where we identify and explore various 
7

passing context patterns. The second dataset contains driving 
records, where we explore driving patterns in harsh braking 
contexts.

7.1. Case 1: Passing event contexts in a football match

In Case 1, we demonstrate how analysts can use our frame-
work to identify passing event contexts with similar patterns (T2) 
and analyze the meanings of these patterns in terms of player 
behavior and tactical considerations (T3).

The data are collected from a match in the 2018–19 Bundesliga 
season. This data records the positions of all players and the 
ball on the field every 40 ms, resulting in around 3.5 million 
records throughout the game. Additionally, the dataset logs ball 
possession status and specific events such as passing and shoot-
ing. Based on the original records, some calculated metrics are 
also included in the dataset, such as positions within the team 
space. The team space is a spatial reference system proposed 
by Andrienko et al. (2019) for football analysis. The team space 
represents the relative placements of the players within a team. 
In the team space, the coordinates of an object represent its 
relative position within the current team formation. In this case, 
the Space View represents the team space (as shown in Fig.  14). 
Other quantitative indicators in the dataset include measures of 
threat and pressure, defined by Andrienko et al. (2017). Pres-
sure assesses the defensive team’s force exerted on the ball or 
attacking players.

In the football match, we focus on the abundant passing 
events. We take 25 data entries both before and after a pass at 40-
millisecond interval, forming a 2-second context around the pass. 
We extract 130 passing event contexts of one team, and import 
them into the system for exploration. We include variables such 
as ball speed, ball height, pressure on the ball, pressure on the 
attacking team, threat to the defensive goal, potential threat to 
the attacking team’s goal, distance of the ball from the defensive 
goal, and the ball’s location within the team space.

7.1.1. Determining the number of clusters
We first need to choose an appropriate number of clusters. 

This decision can be guided by the Reference View and the 
current clustering result displayed in the Context View. In this 
case, the reachability plot shows the existence of at least 3 valleys 
(Fig.  15-a). The Context Projection View also suggests that the 
contexts may be divided into roughly 3 groups. Therefore, we 
begin by selecting 3 clusters and perform clustering within the 
system, yielding the results shown in Fig.  15-b. With 3 clusters, 
k-means produces results that align well with context projection.

However, when observing the Context View, analysts may find 
that this result is too general, with too many contexts in the same 
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Fig. 8. Comparison of reordering based on original contexts Ct and their projected forms C ′
t .
Fig. 9. Comparison of reordering results produced by OPTICS, t-SNE, MDS, and PCA.
Fig. 10. The Reference View. This view consists of 3 sub-views: the Reachability 
Plot (top), the Data Projection View (lower left), and the Context Projection View 
(lower right).

cluster. We can increase the number of clusters as needed and 
compare the results. Re-clustering can be done directly within the 
system. Fig.  15-c shows the results when the number of clusters is 
set to 5. Compared to 3 clusters, increasing the cluster count leads 
to more detailed groupings. Still, the choice of cluster number has 
no universally correct answer. It is a decision made by the analyst 
based on a comprehensive consideration over the Reference View 
and the Context View. In this case, we proceed with 5 clusters.
8

7.1.2. General features of clusters
Once the number of clusters is determined, analysts can ex-

plore the general characteristics of each cluster through interac-
tions. For example:

Cluster 1 (Fig.  16-a): Passing contexts in this cluster share 
a common trait. They occur at the farthest distance from the 
opponent’s goal, closest to the team’s own goal. Although the 
team is in possession, they are not yet in a position to attack and 
are, in fact, facing considerable pressure from their opponents.

Cluster 2 (Fig.  16-b): This cluster has a positional character-
istic, with the ball trajectories generally located in the rear-right 
section of the team space. These passes are closer to the oppo-
nent’s goal than those in Cluster 1, but they are still relatively 
distant. The coloring reveals that contexts in Cluster 2 are not 
entirely homogeneous. There are more distinct patterns in Cluster 
2, which will be explored in the following.

Cluster 3 (Fig.  16-c): Compared to Cluster 2, passes in Cluster 
3 are closer to the opponent’s goal. Contexts in Cluster 3 can also 
be further divided to see more specific sub-patterns.

Cluster 4 (Fig.  16-d): Most of the passes in this cluster are con-
centrated in the front of the team space, indicating that these are 
forward passes close to the opponent’s goal. Some passes within 
this cluster are very close to the goal, suggesting that the team is 
in an active offensive phase, seeking scoring opportunities.

Cluster 5 (Fig.  16-e): These passes are concentrated in a spe-
cific location within the team space, positioned at a moderate 
distance from the opponent’s goal. Cluster 5 also contains distinct 
sub-patterns.

In summary, we can broadly describe the characteristics of 
passing event contexts within each cluster. However, there are 
more specific patterns within clusters. The next step is to brush 
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Fig. 11. Analysts can choose to color the lines in the parallel coordinates view by projected color, a single variable, or time from event.
Fig. 12. The Context View and the Parallel Coordinates View will respond to each other. Brushing and filtering can be done in both views.
Fig. 13. Two trajectories plotted in the Space View and their corresponding 
event context visual representations.

and explore these similar contexts individually and investigate 
the behavioral patterns they represent. As mentioned, our sys-
tem applies OPTICS to reorder the contexts within each clus-
ter, arranging them by similarity. This allows analysts to brush 
sub-patterns directly within each cluster.

7.1.3. Exploring specific patterns
We can take a set of contexts from Cluster 3 as an example 

(Fig.  17). These six contexts share the same pattern. Their pro-
jected colors shift from purple-gray to purple-red. This pattern 
may interest analysts as it indicates variable-level changes around 
9

Fig. 14. The Space View represents the team space in Case 1. The orientation 
of the team is as indicated in the figure.

the pass. After brushing these contexts, we observe similar pass-
ing trajectories in the Space View. In the team space, these passes 
are generally horizontal, directed towards the left side of the 
team. By changing the coloring based on different variables, we 
find that two other variables show significant changes around the 
pass: the ball speed and the pressure on the ball. As shown in 
Fig.  17, ball speed increases significantly after the pass, while de-
fensive pressure on the ball decreases substantially. This suggests 
that these passes are intended to relieve defensive pressure by 
transferring the ball horizontally.

In Cluster 2, we can also identify a set of unique passing event 
contexts (Fig.  18). Their visual representations show a color tran-
sition from cyan to light brown. After brushing these contexts, we 
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Fig. 15. Clustering results of passing event contexts with different cluster number.
Fig. 16. The Parallel Coordinates Views and the Space Views of cluster 1 to 5.

observe similar trajectories in the Space View. It becomes appar-
ent that these are long-range passes from the back of the team’s 
formation towards the front. When we adjust the coloring based 
on different variables, we notice several variables change as the 
pass occurs. As illustrated, the ball speed increases significantly 
after the pass. Notably, the ball’s height also rises considerably, 
indicating that these are powerful long passes. Additionally, by 
examining the distance from the ball to the opponent’s goal and 
the potential threat to the team’s own goal, we see that these 
passes start near the team’s own goal, and are directed away from 
it. In most instances, the threat to the team’s own goal decreases 
after the passes. Therefore, we can deduce the behavior pattern 
under these passing contexts. These are long passes happened 
10
Fig. 17. A set of passing event contexts selected from Cluster 3.

near the team’s own goal, directed towards the opponent’s goal. 
The likely objective of these passes is to get the ball away from 
the team’s own goal and shift towards an offensive stance.

7.1.4. Pattern exploration starting from specific situations
In the previous section, we demonstrate an exploration pro-

cess that begins from the Context View. Analysts first identify 
visual patterns of interest and then investigate the underlying 
behavior via interactive analysis. However, this is not the only 
exploration path. If analysts are interested in a specific situation, 
they can start from the Parallel Coordinates View by restricting 
variable values to filter particular situations.

For instance, an analyst may be interested in contexts where 
the team has a high chance of scoring (Fig.  19). The analyst could 
first set the distance to the opponent’s goal to a range of 0–0.3, 
representing close proximity to the goal. To narrow down further, 
the analyst could set the pressure on the ball to a low range, 
indicating minimal defensive pressure on the ball. This setting 
filters a situation where the team is close to the opponent’s goal 
with low defensive pressure, maximizing the scoring opportunity. 
Most of these filtered passing event contexts appear in Cluster 
4. Returning to the Context View, the analyst can then compare 
these contexts to examine their similarities and differences (Fig. 
20):
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Fig. 18. A set of passing event contexts selected from Cluster 2.
Fig. 19. The filtered contexts where the team has a high chance of scoring.
Fig. 20. Exploration of the filtered contexts by variate in Cluster 4.
The first group of contexts shows high pressure on the ball 
before the pass, indicating that the player successfully bypassed 
defenders with the pass, reducing the pressure level. In the sec-
ond group, initial defensive pressure is lower, and the passes 
bring the ball significantly closer to the opponent’s goal while 
avoiding defenders. The third group of contexts occurs very close 
to the opponent’s goal, with the ball in the closest possible 
position throughout the match and with the highest threat level 
towards the goal. Clearly, this group of passing event contexts 
represents the most offensive scenarios in the entire match.

If the analyst is interested in contexts where the team’s own 
goal is under threat (Fig.  21), they can set the distance to the 
opponent’s goal to a range of 0.7–1.0, indicating proximity to 
11
the team’s own goal. The analyst can narrow down further by 
setting a high threat level to the team’s goal, filtering a situation 
where their goal faces serious danger and has a risk of conceding. 
These filtered contexts appear in Cluster 1. After returning to the 
Context View and coloring by the threat to their own goal, two 
main patterns emerge (Fig.  22):

In the first two groups, the passes help clear the ball away 
from the goal, reducing the threat of conceding. In the third 
group, the players choose to pass towards their own goal, which 
increases the potential threat but decreases the immediate pres-
sure on the ball. This set of contexts illustrates a defensive tactic 
where the team responds to high pressure near their goal by 
passing back to evade opponents.
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Fig. 21. The filtered contexts where the team’s own goal is under threat.
Fig. 22. Exploration of the filtered contexts by variate in Cluster 1.
In this case study using football data, we demonstrate how 
to use the framework we proposed to explore patterns within 
passing event contexts. We show how analysts can interactively 
perform clustering and exploration within the system. Given that 
football players typically cooperate in formations during a match, 
it is likely that the contexts with shared patterns can reveal the 
team’s strategy in similar situations, or more specifically, the 
coordination between specific players within the team.

7.2. Case 2: Harsh braking event contexts in driving records

In Case 2, we focus on the harsh braking event contexts in 
driving records. Compared to Case 1, this case requires construct-
ing event contexts from datasets with uneven time intervals. 
Additionally, we analyze contexts with longer time spans and 
more complex patterns. We identify harsh braking event contexts 
with similar patterns (T2) and analyze the meanings of these pat-
terns in terms of driver behavior and responses to road conditions 
(T3).

We use data from the records of a truck driving in Greece 
over a period of 3 months. The data include vehicle information 
such as model and fuel tank size, as well as movement data 
like location, direction, speed, engine status, mileage, and fuel 
level. Driving events such as harsh braking, sharp turns, and rapid 
accelerations were recorded at corresponding timestamps.

This data is previously used in the work of Chen et al. (2019), 
in which the authors discussed the length of event contexts with 
domain experts, and decided to choose ±5 minutes. We adopt 
this choice and construct 10-minute long event contexts with 60-
second time intervals by averaging the original data entries. In 
this case, we focus on the contexts of harsh braking events. In 
total, we extract 300 harsh braking event contexts and import 
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them into the system for analysis. The included variables are 
latitude, longitude, altitude, speed, and steering angle.

In the Reference View (Fig.  23), the reachability plot shows 
around 6 distinct valleys. Here we skip the step of determining 
the number of clusters which has been discussed in Case 1, and 
choose to have 6 clusters. Given the larger number and longer 
time span of the harsh braking event contexts (10 min), the 
visual representations show more complex patterns than those 
of passing event contexts.

There are some interesting contexts in Cluster 5 (Fig.  24-a). In 
these contexts, the visual representations transition from purple 
to cyan. After coloring by different variables, the following pattern 
is revealed: the vehicle remains almost stationary during the 
first half of the context, then gradually begins to move. After 
a harsh braking event, the vehicle maintains a high speed and 
goes straight while the altitude gradually decreases. This pattern 
suggests that the driver starts, brakes harshly upon approaching 
a slope, and then maintains a high speed while going downhill. 
This driving pattern recurs frequently, and the paths are quite 
consistent. We can infer that this might be a slope that the truck 
often drives through on its routine route.

In some event contexts in Cluster 1 (Fig.  24-b), there are more 
intricate patterns which may interest the analyst. After coloring 
by different variables, it becomes evident that this pattern is most 
closely related to changes in the steering angle. In the early part of 
the contexts, the driver begins moving forward while turning the 
steering wheel to the right. After a harsh brake, the driver quickly 
steers left, then switches back to the right, and finally returns the 
wheel to the left at the end of the context. This pattern represents 
the driver’s behavior on a winding road. The reason for the harsh 
brake is also revealed. To go through the road, the driver needs 
to adjust the steering angle frequently. To safely complete these 
turns, the driver brakes to decelerate.
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Fig. 23. Harsh braking event contexts in driving records.
Fig. 24. (a) A set of harsh braking event contexts from Cluster 5. (b) A set of harsh braking event contexts from Cluster 1.
Fig. 25. Harsh braking event contexts with patterns related to steering angle in Cluster 4 and Cluster 6.
In Clusters 4 and 6, similar patterns related to steering angle 
can be observed. The contexts in Cluster 4 (Fig.  25-a) represent 
a driving sequence involving a left turn, a harsh brake, and a 
right turn. The contexts in Cluster 6 (Fig.  25-b) show an even 
more complex pattern where the driver switches between left 
and right turns frequently. Examining the relation between steer-
ing angle and speed in the Parallel Coordinates View reveals a 
consistent behavior: when the steering angle is large (with values 
approaching 0 or 1), the driver tends to decelerate. Conversely, 
when going straight (with angle values near 0.5), the speed is 
often higher. This pattern aligns with common driving practices, 
since reducing speed during turns and increasing it on straight 
paths helps maintain safe control over the vehicle.

In this case study of driving data, we focus on harsh braking 
event contexts with a longer time span. These event contexts 
show more complex and diverse patterns. Using the analysis 
framework we proposed, we are able to identify and analyze the 
underlying patterns in these more intricate contexts. The frame-
work assists analysts in identifying groups of event contexts that 
occur under similar road conditions and enables them to observe 
the driving behavior patterns associated with these contexts.

8. Expert study

In order to examine the effectiveness of our analysis frame-
work, we conducted an expert study with five data analysis 
experts. In this section, we will present the feedback from experts 
on our framework and visual analysis system.
13
8.1. Participant background

We invited five experts with over five years of experience in 
data analysis to participate in our study. Three of these experts 
(denoted as E1, E2, and E3) had at least three years of experience 
in visual analytics, and had also developed visual analysis sys-
tems. E1 had additional experience in event analysis, including 
anomalous event and user interaction event analysis. The other 
two experts (denoted as E4 and E5) had no experience in visual 
analytics.

8.2. Study procedure

The study began with a 20-minute tutorial introducing the 
concept and definition of event context and our method for 
visualizing it. We also introduced our visual analysis system and 
demonstrated how to interpret patterns within a set of event 
contexts using the system.

Next, we invited participants to use our visual analysis system 
and complete four operational tasks:

Task 1: Perform real-time clustering with the help of the 
Reference View.

Task 2: Select a single event context of interest, explore and 
identify its feature.

Task 3: Select a group of event contexts with common tem-
poral patterns, explore and interpret the patterns.
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Task 4: Start from a situation of interest, filter and explore the 
event contexts under this situation.

Finally, we conducted interviews with each expert. We asked 
two sets of questions, one about our visual analysis system and 
the other about our overall analysis framework.

8.3. Operational tasks

For the operational tasks, we used the same dataset as in 
Case Study 1, which included 130 passing event contexts from 
a football match. We will detail the experts’ performance and 
feedback in each task. 

In Task 1, experts were asked to perform real-time clus-
tering with the help of the Reference View. This task aimed 
to test whether our design for real-time clustering is feasible, 
and whether sufficient information was provided for analysts 
to determine the number of clusters. All the experts were able 
to understand the information provided by the Reference View, 
and completed clustering within three minutes. We recorded 
the number of clusters chosen by the experts and asked for the 
reasons of their choices. Among the experts, E5 referenced the 
Reachability plot and the Context Projection View, and chose 
to directly select three clusters. The other experts preferred to 
compare the clustering results of different cluster numbers before 
making a decision. The number of clusters chosen varied from 
three to seven, reflecting their individual preferences. E1 consid-
ered ‘‘cluster numbers within a certain range are all acceptable.’’

In Task 2, we asked experts to select an event context of 
interest from the context view and analyze its feature. This task 
aimed to assess if analysts understood the definition and visual 
representation of event contexts. We found that experts tended 
to choose contexts with significant color variation. E3 specifically 
chose a context with the greatest color difference by checking the 
distribution of colors in the Data Projection View. We observed 
that experts preferred to use the Parallel Coordinate View in this 
task, and were able to interpret the reason of color changes from 
the perspective of at least one variable.

In Task 3, we further invited experts to select a group of 
event contexts with common temporal patterns and interpret 
these patterns. This task aimed to test whether our system could 
effectively support pattern identification and interpretation. We 
found that experts increasingly used the single-variable coloring 
function in the Context View, as it could help observing temporal 
patterns across multiple contexts based on a specific variable. In 
this task, experts showed varying interests and analysis paths. For 
example, E2, a football enthusiast, showed great interest in this 
task and enjoyed integrating domain knowledge into the explo-
ration. During the analysis, E2 identified three different passing 
patterns: backward passes, long passes, and offensive plays. E3 
selected a set of orange contexts and discovered that they were 
distributed distinctly in the Context Projection View. E3 sought 
to explore what made these contexts unique, and found out that 
these were passes occurred closest to the opponent’s goal, posing 
the greatest threat. E3 also referred to the Timeline to identify the 
sequential relationships between these offensive passes. Overall, 
every expert was able to identify event contexts with similar 
patterns, and was able to interpret the patterns using various 
functions in the system.

In Task 4, we asked the experts to think of a specific situation 
and use the Parallel Coordinates View to filter event contexts 
under that situation. This task aimed to assess if our system could 
support event context analysis starting from a specific situation. 
The experts thought of various situations and successfully filtered 
and analyzed the contexts. For example, E2 first filtered a sit-
uation involving offensive plays by restricting the pressure on 
the ball and the threat to the defensive goal. E2 then restricted 
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the left–right variable in the team space to observe attacks from 
both the left and the right side of the team. E2 concluded that 
the team was more proficient in attacking from the right side. 
E3 was curious about a situation where the football was close to 
the opponent’s goal but did not pose any threat. E3 found that 
there were indeed passes that occurred under such situation. E1, 
E2 and E5 all noticed that the event contexts they filtered under 
a specific situation were mostly clustered together and located 
close to each other. They concluded that our method effectively 
groups similar event contexts together.

8.4. Expert feedback

At the end of the expert study, we conducted interviews with 
each expert. We organize the expert feedback collected from 
these interviews as follows.

8.4.1. On the visual analysis system
We first asked experts a set of questions related to the usage 

of the visual analysis system. The experts agreed that the system 
enabled them to perform clustering, identify event contexts with 
similar patterns, and further explain these patterns.

We also asked the experts which views or functions in the sys-
tem they found most helpful. Almost all experts chose the Context 
View and the Space View, describing them as ‘‘intuitive’’ or ‘‘rich 
of information’’. Regarding the interpretation of temporal patterns 
within contexts, we observed two preferences among the experts. 
E1, E4, and E5 preferred using the Parallel Coordinates View, 
while E2 and E3 favored single-variable coloring function in the 
Context View.

Regarding the system’s usability, the experts gave positive 
feedback. However, we noticed that E4 and E5, who had no prior 
experience in visual analysis, required more time to learn the 
system and raised more questions during the study. E4 mentioned 
that ‘‘for those unfamiliar with visual analytics, understanding and 
using the numerous interactive features in the system requires learn-
ing.’’ E5 mentioned that ‘‘there are many views in the system thus 
I sometimes get lost’’. We agree with E4’s opinion that ‘‘tutorials 
and demonstrations of the system are crucial.’’ Regarding our sys-
tem, we consider providing detailed tutorials and demonstrations 
essential, especially for users unfamiliar with visual analytics.

8.4.2. On the analysis framework
We then asked the experts a set of questions about our analy-

sis framework, including their opinions on our definition of event 
context, visual representations, and analysis methods. 

The experts approved our definition of event context and 
the design of its visual representation. E4 commented that ‘‘the 
visualization design is rational and effective; though it is a little 
challenging, it can be understood with training and explanation.’’ 

The experts also agreed that our method for analyzing event 
contexts effectively supports the tasks of pattern identification 
and interpretation. E3 commented that ‘‘the method successfully 
grouped similar patterns together, enabling analysts to clearly see 
the temporal patterns.’’ E1 commented that ‘‘it provides overviews 
as well as details.’’

8.4.3. Advantages of contextualized analysis of events
We discussed with experts about the advantages of analyzing 

events from a contextualized perspective. We derive from the dis-
cussions that the main advantage of a contextualized perspective 
is it introduces the temporal dimension into individual events. 
This enables causal and situational analysis of events, and thus 
enhances the practical applicability.

E1, E4, and E5 mentioned that without a contextualized per-
spective, it is impossible to analyze the cause, course, and con-
sequence of an event. E2 approved of the necessity of analyzing 
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the context of events, as every event occurs under a situation. 
From this perspective, the preceding of the context represents the 
situation faced, the event itself represents the response to this 
situation, and the succeeding of the context represents the result 
of that response. Therefore, understanding the whole context is 
essential in many analysis scenarios. 

Furthermore, the experts comments that the strengths in 
causal and situational analysis make the contextualized perspec-
tive beneficial in practical applications. For instance, E1 men-
tioned that ‘‘in many analytical scenarios, the context allows
analysts to see more tactics or strategies.’’ E2 mentioned that ‘‘sit-
uational analysis within contexts is particularly beneficial for tasks 
such as capability assessment for sports players and responsibility 
determination for traffic accidents.’’

8.4.4. Suggestions for improvement
At last, we collected suggestions for improvement from the 

experts. For the system, E3 and E5 suggested for more inter-
actions starting from the Timeline which would help analysts 
better understand the connections between sequential events. E4 
suggested adding more operational hints to the system interface 
to guide users. Regarding the analysis method, E2 and E5 believed 
that incorporating automated result generation capabilities could 
make our framework suitable for users with less analytical ex-
perience. We agree with these suggestions and regard them as 
valuable directions for future work.

9. Discussions

In this section, we will discuss some of the design choices, 
limitations, and future directions of our work.

9.1. Color usage

Our visualizations presented have a high reliance on colors. 
Color serves as the primary visual channel in our design. We 
choose to use colors due to the effectiveness and scalability of 2-D 
colormaps in representing 2-D information (Bernard et al., 2015). 
However, this design choice imposes certain requirements on the 
color resolution capabilities of the analysts and their equipment. 
Our approach relies on users’ ability to identify and compare 
the differences in colors. Therefore, it has certain applicability 
limitations.

9.2. Dimensionality reduction methods

Our approach has a high reliance on dimensionality reduction 
methods, which are applied multiple times at different levels of 
data processing. During the analysis process, it is essential for 
analysts to have a understanding of the dimensionality reduc-
tion method they use. For example, the default method used in 
this work, t-SNE, is a neighborhood-preserving dimensionality 
reduction algorithm. When performing similarity analysis based 
on projected colors, analysts must be aware that only colors 
relatively close are comparable. Otherwise, incorrect similarity 
judgments may occur.

9.3. Scalability

Although the increase in data volume reduces the efficiency of 
the statistical methods we use, the primary scalability challenges 
in our work stem from visualizations. The increase in data volume 
can slow down the response speed of the visual analysis system 
and cause overlaps in views such as the Context View and the 
Parallel Coordinate View.
15
For individual event contexts, the Context View can clearly 
display the color changes in contexts with fewer than about 30 
data entries. For contexts with more data entries, it is recom-
mended to increase the time interval and reduce the number of 
data entries. Another feasible solution, as we adopted in Case 1, is 
to include all data entries in data processing, but to sample within 
the contexts when drawing them in the system.

As for the overall data volume, we tested the system with 
datasets of varying sizes. We observed that the primary limiting 
factor in the system’s performance is the number of contexts. Sig-
nificant congestion and overlap occur in the Context View when 
the total number of contexts exceeds about 500. As a solution 
to handling large amounts of contexts, we suggest clustering the 
contexts and importing each cluster into the system separately 
for analysis.

9.4. User involvement

In this work, we leave substantial room for the analyst’s in-
volvement within our framework. As for data processing, the 
decisions on the time interval, the length of contexts, as well as 
the number of clusters, are made by analysts. This is because the 
selection of these parameters can vary greatly depending on the 
specific analytical scenario.

As for visual analysis, we also do not prescribe a fixed an-
alytical process for analysts. This is because we observed that 
the process of exploring event contexts is typically open-ended 
and non-linear. From our expert study, we also observed that 
the analysts have various interests, and their interests tend to 
emerge gradually during their exploration. Therefore, we only 
suggest that analysts first complete the clustering. After that, as 
demonstrated in Case 1, analysts can either start from interesting 
patterns in the Context View or from filtering specific situations 
using the Parallel Coordinates View.

Overall, in this work we do not aim at providing an auto-
mated or structured solution to users. Instead, we choose to leave 
more decision-making space for users to ensure flexibility and 
adaptability. However, this choice also results in limitations in our 
target user group. Based on expert suggestions, in future work, we 
will work on incorporating more automation and intelligence to 
reduce our reliance on user knowledge.

10. Conclusion

In this study, we present a framework for the visual analysis 
of multivariate event contexts, which consists of a design of 
visual representation, a data processing workflow, and a context-
centered visual analysis system. By incorporating a contextual-
ized perspective in event analysis, the framework facilitates the 
identification and interpretation of temporal patterns within and 
across events. We present case studies using real-world datasets 
from two different domains and an expert study conducted with 
experienced data analysts to demonstrate the applicability and 
effectiveness of our framework.

CRediT authorship contribution statement

Lei Peng: Writing – original draft, Visualization, Software. 
Ziyue Lin: Visualization. Natalia Andrienko: Writing – review & 
editing, Methodology, Data curation, Conceptualization. Gennady 
Andrienko: Writing – review & editing, Methodology, Data cura-
tion, Conceptualization. Siming Chen: Writing – review & editing, 
Supervision, Methodology, Conceptualization.



L. Peng, Z. Lin, N. Andrienko et al. Visual Informatics 9 (2025) 100234
Ethical approval

Informed consent was obtained from all participants prior to 
their involvement in the study. Signed consent forms are on file 
and available upon request.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared 
to influence the work reported in this paper.

Acknowledgments

The authors want to thank the reviewers for their suggestions. 
This work is supported by Natural Science Foundation of China 
(NSFC No. 62472099 and No. 62202105), Federal Ministry of 
Education and Research of Germany and the state of North-Rhine 
Westphalia as part of the Lamarr Institute for Machine Learning and 
Artificial Intelligence (Lamarr22B), and by EU in project CrexData
(grant agreement No. 101092749).

References

Andrienko, N., Andrienko, G., 2013. A visual analytics framework for 
spatio-temporal analysis and modelling. Data Min. Knowl. Discov. 27, 55–83.

Andrienko, N., Andrienko, G., 2023. It’s about time: Analytical time periodization. 
In: Computer Graphics Forum. Wiley Online Library, e14845.

Andrienko, N., Andrienko, G., 2024. Exploring relationships between events in 
context.

Andrienko, G., Andrienko, N., Anzer, G., Bauer, P., Budziak, G., Fuchs, G., 
Hecker, D., Weber, H., Wrobel, S., 2019. Constructing spaces and times for 
tactical analysis in football. IEEE Trans. Vis. Comput. Graphics 27, 2280–2297.

Andrienko, G., Andrienko, N., Budziak, G., Dykes, J., Fuchs, G., Von Landes-
berger, T., Weber, H., 2017. Visual analysis of pressure in football. Data Min. 
Knowl. Discov. 31, 1793–1839.

Andrienko, G., Andrienko, N., Heurich, M., 2011. An event-based conceptual 
model for context-aware movement analysis. Int. J. Geogr. Inf. Sci. 25, 
1347–1370.

Andrienko, N., Andrienko, G., Shirato, G., 2023. Episodes and topics in multi-
variate temporal data. In: Computer Graphics Forum. Wiley Online Library, 
e14926.

Arunkumar, A., Pinceti, A., Sankar, L., Bryan, C., 2022. Pmu tracker: A visualization 
platform for epicentric event propagation analysis in the power grid. IEEE 
Trans. Vis. Comput. Graphics 29, 1081–1090.

Bartolomeo, S.Di., Zhang, Y., Sheng, F., Dunne, C., 2020. S equence b raiding: 
Visual overviews of temporal event sequences and attributes. IEEE Trans. 
Vis. Comput. Graphics 27, 1353–1363.

Bernard, J., Barth, C.M., Cuba, E., Meier, A., Peiris, Y., Shneiderman, B., 2024. Ivesa-
visual analysis of time-stamped event sequences. IEEE Trans. Vis. Comput. 
Graphics.
16
Bernard, J., Steiger, M., Mittelstädt, S., Thum, S., Keim, D., Kohlhammer, J., 2015. 
A survey and task-based quality assessment of static 2D colormaps. In: 
Visualization and Data Analysis 2015. SPIE, pp. 247–262.

Bernard, J., Wilhelm, N., Scherer, M., May, T., Schreck, T., 2012. Timeseriespaths: 
Projection-based explorative analysis of multivariate time series data.

Cappers, B.C., van Wijk, J.J., 2016. Understanding the context of network traffic 
alerts. In: 2016 IEEE Symposium on Visualization for Cyber Security. VizSec, 
IEEE, pp. 1–8.

Cappers, B.C., van Wijk, J.J., 2017. Exploring multivariate event sequences using 
rules, aggregations, and selections. IEEE Trans. Vis. Comput. Graphics 24, 
532–541.

Chen, S., Andrienko, G.L., Andrienko, N.V., Doulkeridis, C., Koumparos, A., 2019. 
Contextualized analysis of movement events. In: EuroVA@ EuroVis. pp. 
49–53.

Cui, W., 2019. Visual analytics: A comprehensive overview. IEEE Access 7, 
81555–81573.

Deng, Z., Chen, S., Schreck, T., Deng, D., Tang, T., Xu, M., Weng, D., Wu, Y., 2023. 
Visualizing large-scale spatial time series with geochron. IEEE Trans. Vis. 
Comput. Graphics.

Gotz, D., Stavropoulos, H., 2014. Decisionflow: Visual analytics for high-
dimensional temporal event sequence data. IEEE Trans. Vis. Comput. Graphics 
20, 1783–1792.

Jin, Z., Guo, S., Chen, N., Weiskopf, D., Gotz, D., Cao, N., 2020. Visual causality 
analysis of event sequence data. IEEE Trans. Vis. Comput. Graphics 27, 
1343–1352.

Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S., 2010. Spatio-Temporal 
Clustering. Springer.

Liu, D., Weng, D., Li, Y., Bao, J., Zheng, Y., Qu, H., Wu, Y., 2016. Smartadp: Visual 
analytics of large-scale taxi trajectories for selecting billboard locations. IEEE 
Trans. Vis. Comput. Graphics 23, 1–10.

Liu, D., Xu, P., Ren, L., 2018. Tpflow: Progressive partition and multidimensional 
pattern extraction for large-scale spatio-temporal data analysis. IEEE Trans. 
Vis. Comput. Graphics 25, 1–11.

Nonato, L.G., Aupetit, M., 2018. Multidimensional projection for visual analytics: 
Linking techniques with distortions, tasks, and layout enrichment. IEEE Trans. 
Vis. Comput. Graph. 25, 2650–2673.

Perer, A., Wang, F., 2014. Frequence: Interactive mining and visualization of 
temporal frequent event sequences. In: Proceedings of the 19th International 
Conference on Intelligent User Interfaces. pp. 153–162.

Shirato, G., Andrienko, N., Andrienko, G., 2023b. Identifying, exploring, and 
interpreting time series shapes in multivariate time intervals. Vis. Informatics 
7, 77–91.

Wang, J., Li, Y., Zhou, Z., Wang, C., Hou, Y., Zhang, L., Xue, X., Kamp, M., 
Zhang, X.L., Chen, S., 2022. When, where and how does it fail? a spatial–
temporal visual analytics approach for interpretable object detection in 
autonomous driving. IEEE Trans. Vis. Comput. Graphics 29, 5033–5049.

Weng, D., Chen, R., Deng, Z., Wu, F., Chen, J., Wu, Y., 2018. Srvis: Towards better 
spatial integration in ranking visualization. IEEE Trans. Vis. Comput. Graphics 
25, 459–469.

Xie, X., Wang, J., Liang, H., Deng, D., Cheng, S., Zhang, H., Chen, W., Wu, Y., 2020. 
Passvizor: Toward better understanding of the dynamics of soccer passes. 
IEEE Trans. Vis. Comput. Graphics.

Zhu, S., Sun, G., Shen, Y., Zhu, Z., Xia, W., Chang, B., Tang, J., Liang, R., 2024. Vac 
2: visual analysis of combined causality in event sequences. IEEE Trans. Vis. 
Comput. Graphics.

http://refhub.elsevier.com/S2468-502X(25)00009-9/sb1
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb1
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb1
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb2
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb2
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb2
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb3
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb3
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb3
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb4
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb4
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb4
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb4
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb4
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb5
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb5
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb5
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb5
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb5
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb6
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb6
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb6
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb6
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb6
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb7
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb7
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb7
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb7
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb7
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb8
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb8
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb8
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb8
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb8
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb9
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb9
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb9
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb9
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb9
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb10
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb10
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb10
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb10
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb10
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb11
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb11
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb11
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb11
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb11
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb12
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb12
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb12
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb13
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb13
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb13
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb13
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb13
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb14
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb14
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb14
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb14
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb14
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb15
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb15
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb15
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb15
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb15
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb16
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb16
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb16
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb17
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb17
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb17
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb17
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb17
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb18
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb18
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb18
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb18
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb18
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb19
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb19
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb19
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb19
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb19
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb20
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb20
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb20
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb21
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb21
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb21
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb21
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb21
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb22
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb22
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb22
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb22
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb22
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb23
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb23
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb23
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb23
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb23
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb24
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb24
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb24
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb24
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb24
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb25
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb25
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb25
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb25
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb25
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb26
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb26
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb26
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb26
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb26
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb26
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb26
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb27
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb27
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb27
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb27
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb27
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb28
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb28
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb28
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb28
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb28
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb29
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb29
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb29
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb29
http://refhub.elsevier.com/S2468-502X(25)00009-9/sb29

	Contextualized visual analytics for multivariate events
	Introduction
	Related Works
	Multivariate data visualization
	Event visual analysis

	Overview
	Data and definitions
	Analysis tasks
	Analysis framework

	Visual representation of multivariate event contexts
	Data processing workflow
	Step 1: Event context extraction
	Step 2: Projection and coloring
	Step 3: Clustering
	Step 4: Reordering

	Context-centered Visual Analysis System 
	Context View (B)
	Reference View (C)
	Parallel Coordinates View (D)
	Timeline (A) and Space View (E)

	Case study
	Case 1: Passing event contexts in a football match
	Determining the number of clusters
	General features of clusters
	Exploring specific patterns
	Pattern exploration starting from specific situations

	Case 2: Harsh braking event contexts in driving records

	Expert Study
	Participant background
	Study procedure
	Operational tasks
	Expert feedback
	On the visual analysis system
	On the analysis framework
	Advantages of contextualized analysis of events
	Suggestions for improvement


	Discussions
	Color usage
	Dimensionality reduction methods
	Scalability
	User involvement

	Conclusion
	CRediT authorship contribution statement
	Ethical Approval
	Declaration of competing interest
	Acknowledgments
	References


