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The Economics of Shipping Decarbonisation: Carbon, 

Production, Cost, and Allocative Efficiencies 
 

Highlights 

• Applied an economic measure of shipping efficiency using stochastic frontier analysis. 

• Carbon and production efficiencies have increased, but cost efficiency has decreased. 

• Vessels that spend more time at sea and are newer exhibit higher production efficiency. 

• Comparing productivity with price, fuel is underused, and capital is overused. 

• Allocative inefficiency has a higher impact on total cost than technical inefficiency.  

Abstract 

We investigate the trade-off between environmental and economic performance in the case of the 

shipping industry. Existing environmental regulations largely omit the economic efficiency dimension 

which, in turn, delays the industry’s clean energy transition. We apply a stochastic frontier analysis to 

assess the relationship between carbon emissions and economic factors as capital, labour, earnings, and 

transport work, both across all major shipping segments and at an individual-vessel level. The empirical 

results suggest that, during the post-pandemic period, vessels have become more carbon and production 

efficient but less cost efficient. Technical and operational inefficiencies raise the total cost of owning 

and operating a vessel by 6%, with market price dynamics and inefficient allocation of economic 

resources increasing it by 17%. There is scope for the average vessel to reduce its carbon emissions by 

31% although carbon efficiency varies significantly depending on the vessel type and period. As such, 

policy interventions need to be carefully designed in order not to cause an undersupply of specific vessel 

types which can negatively impact the trade of various commodities globally. 

Keywords 

Decarbonisation regulation; carbon efficiency; allocative efficiency; greenhouse gas pricing; 

net zero shipping; stochastic frontier analysis.    
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1. Introduction 

Various policies have been adopted across industries to facilitate the net-zero energy transition 

in line with the Paris Agreement. To minimise the risk of market distortion, greenhouse gas 

(GHG) reduction measures shall be designed comprehensively to combine socioeconomic 

elements with technical feasibility (Fisch-Romito et al. 2025). This study focuses on the 

shipping industry to highlight the importance of explicitly incorporating the economic 

dimension when designing environmental regulations.  

The maritime industry facilitates more than 85% of international trade in goods (Clarksons’ 

SIN 2024) but, at the same time, is responsible for nearly 3% of GHG emissions (UNCTAD 

2023). In response, the International Maritime Organization (IMO) – the United Nations’ 

specialised body responsible for preventing the marine and atmospheric pollution caused by 

ships – has set a target of achieving net-zero shipping by or around 2050 (IMO 2023). 

Efficiency maximisation is at the forefront of the net-zero transition with various strategies and 

measures implemented to achieve that. In the short run, vessels can improve energy efficiency 

through naval engineering improvements (e.g., energy-saving devices), by using renewable 

energy sources (e.g., wind propulsion) to cover part of their energy needs, by burning fuels 

with lower carbon intensity than oil (e.g. liquefied natural gas [LNG]), and by optimising their 

operations (mainly through speed reduction). However, alignment with the IMO’s mid- and 

long-term targets will require most vessels to burn net-zero fuels such as green methanol, 

ammonia, hydrogen, and biofuels instead of fossil fuels.  

To encourage the adoption of such practices and improve the technical and operational 

efficiency of vessels, the IMO has introduced a series of measures in recent years, including 

the Energy Efficiency Design Index (EEDI), the Energy Efficiency Existing Ship Index 

(EEXI), and the Carbon Intensity Indicator (CII). These can have significant economic 

implications.  

Nevertheless, those measures do not account for the economic-environmental trade-off faced 

by market participants and, thus, fail to mobilise green investment. Such intervention is crucial 

as the income generated by greener vessels does not seem to justify the required capital 

expenditure (Petropoulos 2022). Therefore, for shipowners to undertake the riskier and more 

expensive greener investment, there need to be strong economic (dis)incentives which are not 

provided by the existing measures. 
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In response to that, regulators are proposing economic, market-based, measures that integrate 

financial (dis)incentives into energy efficiency requirements or carbon intensity restrictions. At 

an international level, there have been ongoing discussions regarding the introduction of a 

maritime GHG emissions pricing mechanism (IMO 2024). At regional level, the most 

prominent economic measure is the European Union’s Emissions Trading System (EU ETS), 

implemented in 2024. 

Such measures, however, seem to overlook the interrelation between carbon dioxide emissions 

(CO2) and economic variables as the income generated by a vessel, the capital costs required 

for its acquisition or retrofitting, and the labour, maintenance, and fuel costs associated with 

operating it.   

To this end, this paper relates those key economic indicators with technological and 

environmental measures and assesses the carbon, technical, and allocative efficiencies of the 

shipping fleet. Furthermore, it introduces a measure that directly relates the economic and 

carbon performances of a vessel. Based on that, it analyses the performance of each major 

shipping segment over the period 2021-2024. Such economic assessments are important for 

the well-functioning of the industry. Informed by those, policymakers can evaluate the 

economic implications that environmental measures have on investors and establish a fair 

system that incentivises them towards net-zero shipping. The shipping industry, in turn, can 

identify ways to improve its economic efficiency while complying with the decarbonisation 

regulations.  

There are several research gaps this paper aims to fill. First, it proposes an economic 

measurement of shipping carbon efficiency. Second, it develops carbon, technical, and 

allocative efficiency measures and assesses the performance of the shipping fleet in recent 

years. Third, it distinguishes the impacts of economic resource allocation from the effects of 

technical improvements on the energy demand and total cost of a vessel. Fourth, it compares 

the price and productivity of energy with other economic inputs at both sector and vessel levels. 

Finally, it estimates how the above measures vary according to changes in economic inputs and 

discusses their potential market implications. To the best of our knowledge, this is the first 

research that thoroughly discusses the economic-environmental trade-off in relation to 

international trade and transportation.  

The remainder of this paper is organised as follows. Section 2 reviews the existing literature 

on energy efficiency and identifies the gaps that our research aims to address. Sections 3 and 4 
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describe the incorporated methodology and data, respectively. Section 5 presents and discusses 

the results. Finally, Section 6 concludes and provides policy and industry recommendations. 

2. Literature review 

There exist two areas of research in shipping energy efficiencies: one identifies the 

determinants of energy efficiency; the other investigates the barriers to the adoption of energy 

efficiency practices (Anderson et al., 2015; Barreiro, Zaragoza and Diaz-Casas, 2022; Jimenez, 

Kim and Munim, 2022).  

The former typically assesses the impact of technical and operational factors on energy 

efficiency. Sou et al. (2022) decompose the carbon intensity of vessel types into modal shift, 

capacity utilisation, energy intensity and carbon intensity. Their findings suggest that energy 

intensity reduction is the main contributor to the improvement of the Energy Efficiency 

Operational Indicator (EEOI) and Annual Efficiency Ratio (AER) from 2012 to 2018 while 

modal shift and capacity utilisation play a minimal role. Rehmatulla and Smith (2015b) survey 

170 companies on their implementation measures to improve EEDI, including fuel 

consumption monitoring, weather routing, and speed reduction. They find that company size 

and sector influence the implementation of decisions, probably due to different hidden costs, 

access to capital, and risk perception. Johnson and Styhre (2015) study a bulk shipping 

company through quantitative and qualitative data and find that enhanced port operation can 

increase energy efficiency by at least 2-8%. There are further publications that focus on the 

operational and technical aspects of energy efficiency (e.g., Lassesson and Andersson (2009), 

Lu et al. (2015), Nuchturee, Li and Xia (2020), and Duan et al. (2023).  

The other group of research typically uses surveys or interviews to identify the barriers to 

adopting energy efficiency measures. Jafarzadeh and Utne (2014) interview 12 participants 

from five shipowners in Norway and construct a framework of barriers to adopting energy 

efficiency practices, which include information uncertainty and risk in economics, technology, 

policy, and organisational structures. Johnson and Andersson (2016) interview 19 people in 

shipping companies and find that information asymmetry and organisational structures are the 

main barriers to energy efficiency adoption. Other researchers have similar findings 

(Rehmatulla and Smith, 2015a, 2015b; Dewan, Yaakob and Suzana, 2018; Hansen, Rasmussen 

and Lützen, 2020). 
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Few researchers have considered maritime economics and maritime financial markets when 

analysing either shipping energy or carbon efficiency. There are two main strands of related 

literature. One focuses on the cost to comply with energy efficiency regulations. Namely, 

Ammar (2018) investigates the cost of speed reduction to comply with EEDI for a Roll on-Roll 

off (Ro-Ro) cargo vessel and finds that, for the first and second phases, reducing ship speed by 

40% will reduce CO2 by 78.39% with a cost-effectiveness of $287.6/ton CO2. Ammar and 

Seddiek (2020) compare the cost effectiveness of dual-fuel engines, treatment equipment and 

speed reduction for EEDI compliance for containerships; they find that, for an A19 container 

ship, it is better to install dual-fuel engine infrastructure onboard which will generate annual 

fuel savings of $23.73 million. Rojon et al. (2021) review the literature on carbon pricing and 

suggest that, in general, carbon pricing increases transport costs by 0.4-16% and the prices of 

imported goods by 0-0.7%. Elkafas and Shouman (2022) compare the energy efficiency and 

annual cost of a diesel-electric system with a conventional one in a case study of a passenger 

ship; they find that the former has 10% less CO2 and 22% less cost than the latter. There are 

other studies examining the cost effectiveness of energy efficiency measures (Mermiris et al., 

2011; Yuan et al., 2019; Cullinane and Yang, 2022; Czermański et al., 2022) but none have 

gone beyond basic arithmetic calculations with monetary values. 

The other literature strand applies econometric modelling to study the determinants or barriers 

to energy efficiency. Agnolucci, Smith and Rehmatulla (2014) study the relationship between 

time-charter (TC) rates and EEDI in the dry bulk Panamax sector and find that only 40% of 

financial savings accrue to shipowners. Acciaro and McKinnon (2015) run an econometric 

model analysing the energy efficiency of 2,300 containership voyages in 2012. They find that 

energy efficiency, as measured by fuel consumption per transport work, is influenced by sailing 

speed, vessel age, vessel size, whether the vessel is owned or chartered, the operator and the 

route. Longarela-Ares, Calvo-Silvosa and Pérez-López (2020) study the determinants of 

energy efficiency investment for 6,750 vessels. They find that the vessel’s age and the existence 

of a TC contract (as opposed to a voyage contract) are negatively related to energy efficiency 

improvement, while the vessel’s size and EEDI are positively related to it. 

Nevertheless, none of the above studies consider the energy efficiency or carbon efficiency 

measurement itself. Focusing only on a physical-thermal measurement neglects key 

information on the economic trade-offs associated with shipping decarbonisation, thereby 

presuming that decarbonisation will be either a self-driven process or an obligation to comply 
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with policy. It is essential to investigate the economic interactions to quantify the losses and 

gains, the drivers of carbon efficiencies, and the degree of distortion in resource allocation. 

Data envelopment analysis (DEA) and stochastic frontier analysis (SFA) are two widely 

incorporated economic methods to measure energy efficiency and carbon efficiency (Filippini 

and Hunt, 2015) as they have the advantage of simultaneously considering the output and 

multiple inputs. For instance, a vessel may be more carbon efficient because it has installed 

energy saving technologies and, at the same time, uses low-carbon fuels. Traditional economic 

methods would either measure the carbon reduction per capital investment, or carbon reduction 

per fuel cost, but fail to consider the carbon reduction due to both capital and fuel inputs.  

Recent papers have documented the applications of DEA and SFA in energy efficiency and 

carbon efficiency in various fields, such as building (Önüt and Soner, 2006), carbon regulation 

(Tan et al. 2020), and global comparison (Cui and Li, 2015; Jin and Kim, 2019). DEA and SFA 

have also been used in transportation (Cui and Li, 2015; Cullinane and Yang, 2022; Zhang, Luo 

and Yang, 2025). For instance, Cullinane et al. (2006) applied DEA and SFA to examine the 

technical efficiency of container ports. However, few, if any research has applied either method 

in evaluating decarbonisation regulation. This paper applies SFA in shipping, which is 

responsible for close to 3% of global GHG emissions (UNCTAD 2023). Compared to DEA, 

SFA has the advantage of distinguishing stochastic noise from efficiency. Since the shipping 

industry is well known for its high volatility (Greenwood and Hanson, 2015; Moutzouris and 

Nomikos, 2019), the SFA method is preferred in this paper.  

We consider SFA the best approach for estimating cost, production, carbon, and allocative 

efficiencies in shipping. Similar to the appropriate technology model for measuring relative 

efficiency (Caselli and Coleman, 2006; Rossi, 2022), using SFA to estimate allocative 

efficiency also involves comparing input prices with marginal productivity. However, our 

method does not assume that vessels choose technologies, as most vessels in the current fleet 

still use fossil fuel. In contrast, we assume that vessels choose input levels based on the 

prevalent technologies. Furthermore, we do not decompose total factor productivity into 

allocative efficiency and other factors as in many publications (e.g., Casey (2024), Hornbeck 

and Rotemberg (2024)), because output in shipping is largely driven by global demand. For 

instance, during market downturns, newer and efficient vessels are used first while, during 

market booms, older and inefficient vessels are also heavily utilised (Moutzouris et al. 2024). 
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Finally, relevant research emphasises the usefulness of simulation and sensitivity analysis in 

estimating the effects of carbon taxes and fuel prices on the energy transition, identifying the 

optimal choices to balance climate change mitigation and economic turbulence (Aghion et al., 

2016; Barrage, 2020; Coulomb, Henriet and Reitzmann, 2021). We also perform sensitivity 

analysis to examine the potential effects of regulation interventions and market dynamics on 

the carbon and economic efficiency of shipping which, in turn, strengthens the paper’s 

recommendations. 

3. Methodology 

In general terms, efficiency is the ratio of the useful outputs from a system to the inputs to it. 

These inputs and outputs can be defined and measured in both physical-thermodynamic and 

economic-thermodynamic terms (Patterson, 1996; Allan et al., 2009). This paper focuses on 

economic inputs and outputs using a stochastic frontier analysis. This measures efficiency 

relative to the frontier, i.e., it provides a relative measurement compared to the best practice on 

the frontier (Kumbhakar and Lovell, 2003).  

As CO2 is closely related to energy use, it can be considered as an input in production. 

Technical carbon efficiency refers to a firm’s objective to minimise CO2 subject to output and 

other inputs, Optimisation (1). Production efficiency, Optimisation (2), corresponds to 

maximising output given energy and other inputs. Cost efficiency, Optimisation (3), is related 

to minimising the total cost given a fixed level of output and inputs.   

Carbon efficiency: 𝑚𝑖𝑛⁡(𝐶𝑂2|𝑔𝑖𝑣𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟⁡𝑖𝑛𝑝𝑢𝑡𝑠) (1) 

Production efficiency: 𝑚𝑎𝑥⁡(𝑜𝑢𝑡𝑝𝑢𝑡|𝑔𝑖𝑣𝑒𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟⁡𝑖𝑛𝑝𝑢𝑡𝑠) (2) 

Cost efficiency: 𝑚𝑖𝑛⁡(𝑡𝑜𝑡𝑎𝑙⁡𝑐𝑜𝑠𝑡|𝑔𝑖𝑣𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑎𝑛𝑑⁡𝑖𝑛𝑝𝑢𝑡𝑠) (3) 

To illustrate technical carbon efficiency, consider a simple model with only two inputs, CO2 

and another input, such as capital. In Figure 1, Vessel E is not on the frontier, indicating 

inefficiency. Vessel A and Vessel B are on the frontier with 100% efficiency. The technical 

carbon efficiency of Vessel E is OC/OE. The isoquant line defines relative prices. The allocative 

carbon efficiency of Vessel E is OA/OC. The overall cost efficiency of Vessel E is expressed 

as OA/OE. 
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Figure 1 Technical carbon efficiency and allocative carbon efficiency 

In general, technical carbon efficiency is the carbon emission difference between Vessel i 

(𝐶𝑂2𝑖) and the minimum level (𝐶𝑂2∗) at the frontier, given the vessel’s economic outputs and 

other inputs.  

CO2 is used as an input to measure carbon efficiency (Dong et al., 2013; Sun and Huang, 2020; 

Tan et al., 2020); especially in the transport sector (Cui and Li, 2015; Wanke et al., 2020). As 

various studies suggest (Gandhi, 1996; Lin and Ahmad, 2016; Kosmas and Acciaro, 2017), 

capital, operation and energy can be considered as inputs in the transport production function. 

In line with recent literature (Garcia-Marin and Voigtländer, 2019; Orr, 2022), output can be 

measured by either production quantity, such as the vessel’s transport work (expressed in ton-

miles), or the economic income generated (e.g., vessel earnings).  

Capital in shipping is measured as the newbuilding or resale price minus depreciation. 

Operation comprises the crew onboard the vessel, and staff and materials required for repair, 

maintenance, and technological upgrades. As energy consumption is associated with CO2, the 

latter can be used as a proxy for the former. Therefore, we specify the inputs as operation, 

Other input 

B  

A  

Carbon emissions  

Isoquant line 

m=-𝑤1/𝑤2 

E  
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capital, and energy in the production function. Then, carbon efficiency is measured as the 

relative CO2 given the vessel’s outputs, operation, and capital inputs.  

If we specify a functional form for 𝐶𝑂2∗ and assume that the output corresponds to TC 

earnings, the technical carbon efficiency of Vessel i can be expressed as: 

𝐷(𝑇𝐶, 𝐾, 𝑂𝑃) =
𝐶𝑂2∗

𝐶𝑂2𝑖
=
𝑓(𝑇𝐶, 𝐾, 𝑂𝑃)

𝐶𝑂2𝑖
 (4) 

where OP is operation, K is capital, E is energy, and TC is time charter earnings. 

Then, taking the natural logarithm on both sides of Equation (4) and re-arranging yields: 

𝑙𝑛𝐶𝑂2𝑖 = ln[𝑓(𝑇𝐶, 𝐾, 𝑂𝑃)] − ln⁡[𝐷(𝑇𝐶, 𝐾, 𝑂𝑃)] (5) 

Incorporating a Cobb-Douglas production function, we obtain Equation (6):1  

𝑙𝑛𝐶𝑂2𝑖𝑡 = 𝛼0 + 𝛼1𝑙𝑛𝑇𝐶𝑖𝑡 + 𝛼2𝑙𝑛𝐾𝑖𝑡 + 𝛼3𝑙𝑛𝐿𝑖𝑡 − ln[𝐷(𝑇𝐶, 𝐾, 𝑂𝑃)] (6) 

where ln[𝐷(𝑇𝐶, 𝐾, 𝑂𝑃)] is the inefficiency term which is also denoted by 𝑢𝑖 as it is part of an 

error term. The technical carbon efficiency of firm i is 𝐷(𝑇𝐶, 𝐾, 𝑂𝑃) = 𝑒𝑢𝑖, ranging from 0 to 

1.  

In a stochastic frontier analysis, the error term also includes a stochastic noise, 𝑣𝑖: 

𝑙𝑛𝐶𝑂2𝑖𝑡 = 𝛼0 + 𝛼1𝑙𝑛𝑇𝐶𝑖𝑡 + 𝛼2𝑙𝑛𝐾𝑖𝑡 + 𝛼3𝑙𝑛𝑂𝑃𝑖𝑡⁡ −𝑢𝑖𝑡 + 𝑣𝑖𝑡 (7) 

Following Battese and Coelli (1992), for the panel data analysis part of the empirical 

estimation, we use an Error Components Model as it allows for time-varying efficiencies. For 

the cross-sectional data analysis part, in line with Aigner, Lovell and Schmidt (1977), Meeusen 

and van Den Broeck (1977) and Stevenson (1980), we assume half normal, exponential and 

truncated normal distributions of the inefficiency term and compare their goodness of fit. 

Vessels achieve production efficiency when maximising output subject to a given set of inputs 

(Equation (2)). The production function in shipping may be expressed as: 

𝐷 ∗ 𝑉 = 𝑓(𝑂𝑃, 𝐾, 𝐸) (8) 

where total world seaborne trade (𝐷 ∗ 𝑉) is aggregated by cargo type and measured in ton-

miles. To disaggregate cargo types into the associated vessel types, we use the deadweight 

 
1 For robustness, we have also examined translog models.  



10 

 

tonnage (DWT) of each type as weights. To illustrate the procedure, Equation (9) shows the 

estimation of the transport work of one Suezmax oil tanker: 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⁡𝑤𝑜𝑟𝑘⁡𝑜𝑓⁡𝑜𝑛𝑒⁡𝑆𝑢𝑒𝑧𝑚𝑎𝑥⁡𝑜𝑖𝑙⁡𝑡𝑎𝑛𝑘𝑒𝑟⁡

≈ 𝑊𝑜𝑟𝑙𝑑⁡𝑠𝑒𝑎𝑏𝑜𝑟𝑛𝑒⁡𝑜𝑖𝑙⁡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑

×
𝐷𝑊𝑇⁡𝑜𝑓⁡𝑎𝑙𝑙⁡𝑆𝑢𝑒𝑧𝑚𝑎𝑥⁡𝑜𝑖𝑙⁡𝑡𝑎𝑛𝑘𝑒𝑟𝑠

𝐷𝑊𝑇⁡𝑜𝑓⁡𝑎𝑙𝑙⁡𝑜𝑖𝑙⁡𝑡𝑎𝑛𝑘𝑒𝑟𝑠 × 𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑆𝑢𝑒𝑧𝑚𝑎𝑥⁡𝑂𝑖𝑙⁡𝑡𝑎𝑛𝑘𝑒𝑟𝑠
 

(9) 

Production efficiency can be written as: 

𝑙𝑛(𝐷 ∗ 𝑉)𝑖𝑡 = 𝛽0 + 𝛽1𝑙𝑛𝑂𝑃𝑖𝑡 + 𝛽2𝑙𝑛𝐸𝑖𝑡 + 𝛽3𝑙𝑛𝐾𝑖𝑡 + 𝛿𝑖𝑡 + 𝑣𝑖𝑡 (10) 

where 𝛿𝑖𝑡 is the technical production inefficiency. In contrast to 𝑢𝑖𝑡 in Equation (7), the sign of 

𝛿𝑖𝑡 is positive; since the objective is to maximise production, inefficiency reduces the optimal 

production level.  

Cost efficiency aims to minimise total cost subject to given output and prices of inputs. 

Equation (11) shows cost efficiency with transport work as an output: 

𝑙𝑛𝐶𝑖𝑡 = 𝛾0 + 𝛾1𝑙𝑛(𝐷 ∗ 𝑉)𝑖𝑡 + 𝛾2𝑙𝑛𝐿𝑝𝑖𝑡 + 𝛾3𝑙𝑛𝐹𝑝𝑖𝑡 + 𝛾2𝑙𝑛𝐾𝑝𝑖𝑡 − 𝜃𝑖𝑡 + 𝑣𝑖𝑡 (11) 

where 𝐶 is total cost, 𝐿𝑝 is cost of operation (approximated by wage), 𝐾𝑝 is cost of capital 

(loan rate), 𝐹𝑝 is the unit cost of energy (fuel price), and 𝜃𝑖𝑡 is the cost inefficiency.  

Economists decompose cost efficiency into technical and allocative components (Farrell 1957). 

Allocative efficiency compares the marginal rate of technical substitution (MRTS) of a pair of 

inputs with their relative prices (Kumbhakar, Wang and Horncastle, 2015). For example, if the 

MRTS of energy input over capital input is larger than their relative prices, then energy input 

is underused and capital input is overused. This study uses the output-oriented method of 

measuring allocative efficiency, following Schmidt and Lovell (1979), Kopp and Diewert 

(1982) and Kumbhakar, Wang and Horncastle (2015). 

Consider minimising the total cost subject to the production function: 

𝑚𝑖𝑛⁡⁡𝐶 = (𝐿𝑝 ∗ 𝑂𝑃 + 𝐹𝑝 ∗ 𝐸 + 𝐾𝑝 ∗ 𝐾)  

subject to 

𝑙𝑛(𝐷 ∗ 𝑉)𝑖𝑡 = 𝛽0 + 𝛽1𝑙𝑛𝑂𝑃𝑖 + 𝛽2𝑙𝑛𝐸𝑖 + 𝛽3𝑙𝑛𝐾𝑖 − 𝑢𝑖 + 𝑣𝑖 

(12) 

The returns to scale, r, correspond to: 
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𝑟 = 𝛽1 + 𝛽2 + 𝛽3 (13) 

The constraint minimisation yields:  

𝑓𝐸/𝑓𝐿 = 𝐿𝑝/𝐹𝑝 ∗ 𝑒𝑥𝑝⁡(𝜀1) (14) 

𝑓𝐾/𝑓𝐿 = 𝐿𝑝/𝐾𝑝 ∗ 𝑒𝑥𝑝⁡(𝜀2) (15) 

𝑓𝐾/𝑓𝐸 = 𝐹𝑝/𝐾𝑝 ∗ 𝑒𝑥𝑝⁡(𝜀3) (16) 

where 𝑓𝐾, 𝑓𝐸  and 𝑓𝐿 are the first-order partial derivatives with respect to capital, energy and 

operation respectively; 𝜀1, 𝜀2 and 𝜀3 are the allocative inefficiencies for the input pairs 

(operation, energy), (operation, capital) and (energy, capital) respectively. Subscripts i are 

omitted for simplicity and all variables are in vector form. 

Since allocative efficiency measures the relative usage of a pair of inputs, e.g., energy input 

compared to operation input, switching the input pair can derive a different allocative efficiency 

ratio for capital input versus operation input. For instance, 𝜀1
′  measures the input pair (energy, 

operation) in Equation (17) while 𝜀2
′  measures the input pair (capital, operation) in Equation 

(18): 

𝑓𝐿/𝑓𝐸 = 𝐹𝑝/𝐿𝑝 ∗ 𝑒𝑥𝑝⁡(𝜀1
′) (17) 

𝑓𝐿/𝑓𝐾 = 𝐾𝑝/𝐿𝑝 ∗ 𝑒𝑥𝑝⁡(𝜀2
′ ) (18) 

Taking the natural logarithm of Equations (14), (15), (16), (17) ,and (18), and replacing the 

first-order conditions, these equations can be further transformed into Equations (19), (20), 

(21), (22) and (23): 

𝜀1 = 𝑙𝑛(𝛽2/𝛽1) − 𝑙𝑛(𝐹𝑝/𝐿𝑝) − 𝑙𝑛𝐸 + 𝑙𝑛𝑂𝑃 (19) 

𝜀2 = 𝑙𝑛(𝛽3/𝛽1) − 𝑙𝑛(𝐾𝑝/𝐿𝑝) − 𝑙𝑛𝐾 + 𝑙𝑛𝑂𝑃 (20) 

𝜀3 = 𝑙𝑛(𝛽3/𝛽2) − 𝑙𝑛(𝐾𝑝/𝐹𝑝) − 𝑙𝑛𝐾 + 𝑙𝑛𝐸 (21) 

𝜀1
′ = 𝑙𝑛(𝛽1/𝛽2) − 𝑙𝑛(𝐿𝑝/𝐹𝑝) − 𝑙𝑛𝑂𝑃 + 𝑙𝑛𝐸 (22) 

𝜀2
′ = 𝑙𝑛(𝛽1/𝛽3) − 𝑙𝑛(𝐿𝑝/𝐾𝑝) − 𝑙𝑛𝑂𝑃 + 𝑙𝑛𝐾 (23) 

 

Following Kumbhakar, Wang and Horncastle (2015), the effects of technical and allocative 

efficiencies on input demand can be estimated by solving the simultaneous equations obtained 

from Equation (12), which yields Equations (24), (25) and (26): 
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𝑙𝑛𝑂𝑃 = 𝛽1 −
1

𝑟
(𝛽0 + 𝛽1𝑙𝑛𝛽1 + 𝛽2𝑙𝑛𝛽2 + 𝛽3𝑙𝑛𝛽3)

+
1

𝑟
(𝛽1𝑙𝑛𝐿𝑝 + 𝛽2𝑙𝑛𝐹𝑝 + 𝛽3𝑙𝑛𝐾𝑝) − 𝑙𝑛𝐿𝑝 +

1

𝑟
ln(𝐷 ∗ 𝑉)

+
1

𝑟
(𝛽2𝜀1

′ + 𝛽3𝜀2
′ ) −

1

𝑟
(𝑣 − 𝑢)⁡ 

(24) 

𝑙𝑛𝐸 = 𝛽2 −
1

𝑟
(𝛽0 + 𝛽1𝑙𝑛𝛽1 + 𝛽2𝑙𝑛𝛽2 + 𝛽3𝑙𝑛𝛽3)

+
1

𝑟
(𝛽1𝑙𝑛𝐿𝑝 + 𝛽2𝑙𝑛𝐹𝑝 + 𝛽3𝑙𝑛𝐾𝑝) − 𝑙𝑛𝐸𝑝 +

1

𝑟
ln(𝐷 ∗ 𝑉)

+
1

𝑟
(𝛽2𝜀1

′ + 𝛽3𝜀2
′ ) − 𝜀1

′ −
1

𝑟
(𝑣 − 𝑢)⁡ 

(25) 

𝑙𝑛𝐾 = 𝛽3 −
1

𝑟
(𝛽0 + 𝛽1𝑙𝑛𝛽1 + 𝛽2𝑙𝑛𝛽2 + 𝛽3𝑙𝑛𝛽3)

+
1

𝑟
(𝛽1𝑙𝑛𝐿𝑝 + 𝛽2𝑙𝑛𝐹𝑝 + 𝛽3𝑙𝑛𝐾𝑝) − 𝑙𝑛𝐾𝑝 +

1

𝑟
ln(𝐷 ∗ 𝑉)

+
1

𝑟
(𝛽2𝜀1 + 𝛽3𝜀2) − 𝜀2

′ −
1

𝑟
(𝑣 − 𝑢)⁡ 

(26) 

In Equations (24), (25) and (26), there are four parts: Part 1 is dependent on allocative 

efficiency 𝜀; Part 2 is dependent on technical efficiency 𝑢; Part 3 is dependent on stochastic 

noise 𝑣; and Part 4 is independent of 𝜀, 𝑢 or 𝑣. We can estimate input demand without any 

efficiency (𝑛𝑜𝑛𝑒), with technical efficiency (𝑡𝑒), with allocative efficiency (𝑎), and with both 

technical and allocative efficiencies (𝑏𝑜𝑡ℎ).  

For instance, for operation input: 

Assuming 𝜀 = 0, 𝑢 = 0 and 𝑣 = 0, operation input demand without efficiencies, 

𝐿𝑛𝑜𝑛𝑒, is: 

𝑙𝑛𝑂𝑃𝑛𝑜𝑛𝑒 = 𝛽1 −
1

𝑟
(𝛽0 + 𝛽1𝑙𝑛𝛽1 + 𝛽2𝑙𝑛𝛽2 + 𝛽3𝑙𝑛𝛽3)

+
1

𝑟
(𝛽1𝑙𝑛𝐿𝑝 + 𝛽2𝑙𝑛𝐹𝑝 + 𝛽3𝑙𝑛𝐾𝑝) − 𝑙𝑛𝐿𝑝 +

1

𝑟
ln(𝐷 ∗ 𝑉) 

(27) 

Assuming 𝜀 = 0, 𝑢 = ⁡�̂� and 𝑣 = 0, operation input demand with technical 

inefficiency, 𝐿𝑡𝑒, is: 

𝑙𝑛𝑂𝑃𝑡𝑒 = 𝛽1 −
1

𝑟
(𝛽0 + 𝛽1𝑙𝑛𝛽1 + 𝛽2𝑙𝑛𝛽2 + 𝛽3𝑙𝑛𝛽3)

+
1

𝑟
(𝛽1𝑙𝑛𝐿𝑝 + 𝛽2𝑙𝑛𝐹𝑝 + 𝛽3𝑙𝑛𝐾𝑝) − 𝑙𝑛𝐿𝑝 +

1

𝑟
ln(𝐷 ∗ 𝑉) −

1

𝑟
(−𝑢)⁡ 

(28) 

Assuming 𝜀 = ⁡�̂�, 𝑢 = 0 and 𝑣 = 0, operation input demand with allocative 

inefficiency, 𝐿𝑎, is: 
(29) 
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𝑙𝑛𝑂𝑃𝑎 = 𝛽1 −
1

𝑟
(𝛽0 + 𝛽1𝑙𝑛𝛽1 + 𝛽2𝑙𝑛𝛽2 + 𝛽3𝑙𝑛𝛽3)

+
1

𝑟
(𝛽1𝑙𝑛𝐿𝑝 + 𝛽2𝑙𝑛𝐹𝑝 + 𝛽3𝑙𝑛𝐾𝑝) − 𝑙𝑛𝐿𝑝 +

1

𝑟
ln(𝐷 ∗ 𝑉)

+
1

𝑟
(𝛽2𝜀1

′ + 𝛽3𝜀2
′ ) 

Assuming 𝜀 = ⁡�̂�, 𝑢 = ⁡�̂� and 𝑣 = 0, operation input demand with both inefficiencies, 

𝐿𝑏𝑜𝑡ℎ, is: 

𝑙𝑛𝑂𝑃𝑏𝑜𝑡ℎ = 𝛽1 −
1

𝑟
(𝛽0 + 𝛽1𝑙𝑛𝛽1 + 𝛽2𝑙𝑛𝛽2 + 𝛽3𝑙𝑛𝛽3)

+
1

𝑟
(𝛽1𝑙𝑛𝐿𝑝 + 𝛽2𝑙𝑛𝐹𝑝 + 𝛽3𝑙𝑛𝐾𝑝) − 𝑙𝑛𝐿𝑝 +

1

𝑟
ln(𝐷 ∗ 𝑉)

+
1

𝑟
(𝛽2𝜀1

′ + 𝛽3𝜀2
′ ) −

1

𝑟
(−𝑢) 

(30) 

The input demand functions for the energy and capital inputs can be derived in a similar 

manner. Accordingly, by adding up all the effects from each individual input, the overall effect 

on costs can be estimated: 

𝑐𝑛𝑜𝑛𝑒 = 𝐿𝑝 ∗ 𝑂𝑃𝑛𝑜𝑛𝑒 + 𝐹𝑝 ∗ 𝐸𝑛𝑜𝑛𝑒 + 𝐾𝑝 ∗ 𝐾𝑛𝑜𝑛𝑒 (31) 

𝑐𝑡𝑒 = 𝐿𝑝 ∗ 𝑂𝑃𝑡𝑒 + 𝐹𝑝 ∗ 𝐸𝑡𝑒 + 𝐾𝑝 ∗ 𝐾𝑡𝑒 (32) 

𝑐𝑎 = 𝐿𝑝 ∗ 𝑂𝑃𝑎 + 𝐹𝑝 ∗ 𝐸𝑎 + 𝐾𝑝 ∗ 𝐾𝑎 (33) 

𝑐𝑏𝑜𝑡ℎ = 𝐿𝑝 ∗ 𝑂𝑃𝑏𝑜𝑡ℎ + 𝐹𝑝 ∗ 𝐸𝑏𝑜𝑡ℎ +𝐾𝑝 ∗ 𝐾𝑏𝑜𝑡ℎ (34) 

Finally, we can estimate the effects of technical and allocative efficiencies on the total cost by 

comparing the values of the latter with efficiency and without efficiency: 

Effects of technical efficiency on total cost: ∆𝑐𝑡𝑒 = 𝑐𝑡𝑒 − 𝑐𝑛𝑜𝑛𝑒 (35) 

Effects of allocative efficiency on total cost: ∆𝑐𝑎 = 𝑐𝑎 − 𝑐𝑛𝑜𝑛𝑒 (36) 

Effects of both technical and allocative efficiencies on total cost: 

∆𝑐𝑏𝑜𝑡ℎ = 𝑐𝑏𝑜𝑡ℎ − 𝑐𝑛𝑜𝑛𝑒 
(37) 

4. Data 

Data are obtained from Clarksons’ Shipping Intelligence Network (SIN) and World Fleet 

Register (WFR). These are at vessel type level and individual vessel level for two separate 

analyses. The first analysis employs panel data for 15 vessel types from 2021 to 2024 at an 

annual frequency. Table A1 in Appendix A summarises key characteristics of each vessel type. 

The second analysis utilises cross-sectional data from 664 individual vessels in 2023, which is 

the most recent full calendar year for which actual data were available when performing the 

analysis. Cross-sectional data is used for individual vessels due to data availability and to avoid 
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the effects of price volatility and global shipping demand on efficiency estimates. The 

individual vessels correspond to either Capesize bulk carriers or very large crude carriers 

(VLCCs) as they constitute the largest vessel types in the two most important shipping sectors 

in terms of volume transported.2 

Table 1 shows summary statistics of the panel data where all monetary values are adjusted for 

inflation by the US Consumer Price Index. Capital is approximated by the average newbuilding 

price, which includes the cost of any technology installed at the time of purchase. Operating 

expenses (OPEX) serve as a proxy for the total labour costs plus any maintenance costs and 

technological upgrades of the vessel after purchase. Carbon emissions are the average CO2 

when the vessel is being operated for a day. The revenue is approximated by the time charter 

earnings which is the income that the shipowner receives by leasing it out to a charterer. 

Transport work is the weight of the cargo carried times the distance travelled, measured in 

billion ton-miles. Operation is proxied by the average number of crew working on a vessel. 

The cost of capital is approximated by the rates for shipping loans, provided by Marine Money. 

Due to data availability and the fact that most vessels are around 10 years old, we use loan rates 

from 10 years ago (2011-2014). Fuel price is approximated by the average price of Very Low 

 
2 In 2024, the dry bulk and tanker sectors accounted for 52.7% and 24.4% of the total seaborne trade (Clarksons’ 

SIN 2024). 

Table 1: Summary statistics for panel data for 15 vessel types from 2021 to 2024 (annual 

frequency) 

 
Min Median Mean Max s.d. 

Newbuilding price ($m) 17.1 42.2 47.6 103.8 23.7 

Operating expenses ($/day) 4,524 6,447 6,669 9,430 1,464 

Carbon emissions (tons/day) 52.3 99.1 112.4 230.7 55.0 

Time charter earnings ($/day) 10,708 24,203 31,106 105,452 17,912 

Transport work (billion ton-miles) 0.9 2.5 3.2 7.3 2.1 

Number of crew 17.0 23.6 23.0 27.0 2.4 

Loan rate (%) 2.7 2.9 2.9 3.1 0.15 

Fuel price ($/ton) 526 535 588 756 113 

Notes: The total number of observations is 60. The data for 2024 are adjusted for the full calendar year. The 

15 vessel types include Aframax, Panamax, MR, and Handy product tankers; VLCC, Suezmax, and Aframax 

crude oil tankers; Post-Panamax, Neo-Panamax, Intermediate, and Feeder containerships; Capesize, 

Panamax, Handymax, and Handysize bulk carriers. 
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Sulphur Fuel Oil (VLSFO) from 13 major ports worldwide (Clarksons’ SIN 2024).3 For 

robustness, we carry out a sensitivity analysis with respect to the loan rate and fuel price in 

Appendix B.  

Table 2 summarises the cross-sectional data. Age is based on the year that the vessel was built. 

Distance refers to the total nautical miles (NM) a vessel travelled in 2023. Deadweight tonnage 

measures the cargo-carrying capacity of the vessel. Design speed corresponds to the optimal 

speed of the vessel according to its design. Time at sea is calculated by dividing the distance 

by the design speed of the vessel. Fuel efficiency is the fuel consumption per NM at the vessel’s 

design speed. The operating expenses are calculated as the daily average of the annual total 

labour cost plus maintenance and upgrade costs. Reduced usage of a vessel will result in lower 

OPEX.  

Table 2: Summary statistics for cross-sectional data of individual vessels in 2023 

 
Min Mean Median Max s.d. 

Age (years) 1 13 13 27 5 

Distance (NM) 307 62,014 66,704 92,847 19,299 

Deadweight tonnage 178,438 250,941 209,191 442,470 71,568 

Design speed (knots) 8.0 14.8 14.8 21.5 1.3 

Time at sea (day) 0.8 220 238 325 71 

Fuel consumption at design speed 

(tons per day)  
28 72 67 145 22 

Capital ($ m) 10 70 57 2350 108 

Operating expenses ($/day) 28 3,953 3,731 9,413 1,597 

Transport work  

(million tons cargo * NM) 
93 15,437 13,437 36,529 7,288 

Total fuel consumption  

(thousand tons/year) 
1.9 371 337 857 165 

Loan rate (%) 1.5 4.5 3.9 8.0 1.6 

Wage ($/year) 24,120 39,824 34,198 82,637 12,239 

Fuel price ($/ton) 494 552 494 620 63 

Notes: The total number of observations is 664. The individual vessels include Capesize bulk carriers and VLCCs. 

 
3 In 2024, circa 95% of vessels in the world fleet are not fitted with scrubbers and therefore require burning 

VLSFO to comply with the IMO’s sulphur emission limit, implemented in 2020 (IMO 2020). The 13 ports are 

Fujairah, Genoa, Gibraltar, Hong Kong, Houston, Japan, Korea, Los Angeles, Panama, Philadelphia, Rotterdam, 

Shanghai, and Singapore.  
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In Table 2, the total fuel consumption for 2023 is calculated by multiplying the fuel efficiency 

by the distance travelled. Similar to Table 1, the loan rate is from 10 years ago (2011-2014) but 

adjusted according to the country the vessel owning company is based in. The wage is estimated 

by calibrating the minimum and maximum wage at 24,000 USD/year and 83,000 USD/year, 

respectively ((Maritime Zone 2025; Crewell 2025) and then adjusting by the labour cost by 

country and year, as provided by the International Labour Organization (ILO 2024). The fuel 

price is the average price of either High Sulphur Fuel Oil (HSFO) or Very Low Sulphur Fuel 

Oil (VLSFO) from 13 major ports worldwide in 2023, depending on whether the vessel is 

equipped with a scrubber. For robustness, Appendix B presents the results from a sensitivity 

analysis, varying the loan rate, the wage, the fuel price, and the speed. 

5. Results 

The empirical analysis consists of three parts. Section 5.1 provides a preliminary analysis of 

carbon efficiency based on 15 main vessel types, while Section 5.2 uses SFA to assess the 

carbon, production, and cost efficiencies of those. This allows us to examine how the results 

vary across the main shipping segments. On the one hand, these findings can offer insights to 

shipping investors when deciding in which sector to allocate their resources when optimising 

their economic-sustainability trade-off. On the other hand, they can indicate to policymakers 

which sectors may require more attention henceforth in terms of sustainability efforts. 

However, these two sections do not account for within segment variation. Thus, to obtain a 

more complete view of the trade-off under consideration, Section 5.3 performs the SFA analysis 

based on individual vessels in the two biggest segments, i.e. Capesize bulk carriers and VLCCs.  

5.1 Preliminary analysis by vessel type 

A prevalent measure of carbon efficiency is the transport work per ton of CO2 – this refers to 

the ratio of a vessel’s nominal cargo-carrying capacity (i.e. the DWT) times the distance the 

vessel sailed over the carbon emissions incurred during that period. Our findings suggest that, 

from 2021 to 2024, the average vessel transported 0.072 million ton-miles of cargo per ton of 

CO2 emitted. 
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Figure 2: Transport work per ton of carbon emissions by vessel type (D*V/CO2) 

Note: D is distance, V is deadweight.  

According to Figure 2, while transport work per ton of CO2 for a given vessel type is relatively 

stable over time, it varies largely across sectors and segments. Overall, bulk carriers and oil 

tankers perform better than containerships. This finding is in line with UNCTAD (2023) and 

can be explained by the fact that containerships sail at much higher average speeds (i.e. by 

roughly 3 knots according to Clarksons SIN (Clarksons’ SIN 2024)) and, thus, emit 

disproportionately more CO2 than the other vessels. Furthermore, they typically spend more 

time at ports loading/unloading cargo where, while they emit CO2, they do not produce any 

transport work. Bulk carriers, which seem to be the best performing ones, have higher 

productivity than the others as they sail for more distance – and at relatively lower speed – for 

each ton of cargo transported. 

Product tankers have a lower volume of transport work per ton of CO2, which may be due to 

their lower cargo capacity, the shorter routes they serve, and their longer port stays compared 

to the crude oil ones. Finally, bulk carriers and oil tankers have higher variation in transport 

work per ton of CO2 because of the large differences in the sizes across the vessel types.  

An alternative measure of carbon efficiency is the vessel earnings per ton of CO2. This 

quantifies the trade-off that the vessel owner faces between the economic benefit and the 

environmental cost from running a vessel. We find that, from 2021 to 2024, the average vessel 

earned (in TC terms) roughly 295 US dollars per ton of CO2 emitted.  
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Figure 3: Time charter earnings per ton of carbon emissions of tankers 

 

Figure 3 suggests that the TC earnings per ton of CO2, that is carbon efficiency, for oil and 

product tankers experienced a significant rise from 2021 to 2023. This can be attributed to 

higher TC rates during those years caused by the increased global oil demand, mainly due to 

the end of the COVID-19 lockdowns and the war in Ukraine. As the growth of oil demand 

slowed down after 2023 though (IEA 2024), carbon efficiency did not increase at the same rate 

in the next year.  

For containerships (Figure 4), TC earnings per ton of CO2 increased significantly from 2021 

to 2022 because of the prosperous shipping freight market conditions during COVID-19. When 

the market reverted to its normal levels in the next year, carbon efficiency rapidly decreased. 

From 2023 to 2024, there were two opposing effects due to the Red Sea Crisis. On the one 

hand, the additional distance that containerships had to sail – by not being able to transit 

through the Suez Canal but navigating around the Cape of Good Hope instead – reduced the 

effective supply of the fleet, thus, driving TC earnings up. On the other hand, the increased 

sailing time resulted in more shipping emissions for a given trip, e.g. from China to the 

Mediterranean Sea. As a result, carbon efficiency only mildly increased in 2023-2024. 

In the case of dry bulk vessels, TC earnings movements are the main factor for the fluctuations 

in carbon efficiency and its overall mild decrease from 2021 to 2024 (Figure 4). Note that the 
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Red Sea Crisis did not affect the tanker and dry bulk sectors as much as the container one as 

the latter is much more reliant on trading routes involving the Suez Canal. 

Figure 4: Time charter earnings per ton of carbon emissions of bulk carriers and 

containerships 

 

A further important finding is that the smaller the vessel within a sector, the higher TC earnings 

per ton of CO2 it generally has; e.g. Aframax tankers are more carbon efficient than Suezmax 

and VLCC ones. This is because, while larger vessels typically enjoy higher TC earnings, they 

also have much more significant energy needs and, thus, fuel consumption and emissions than 

smaller ones. Therefore, for a ship operator that wants to maximise their revenue subject to 

CO2, it is optimal to focus on smaller vessel segments. 

Our findings indicate that vessel size has a positive effect on transport work per ton of CO2 but 

a negative one on earnings per ton of CO2. From an economic perspective, this suggests that 

larger vessels are more carbon efficient in transporting goods while smaller ones in generating 

revenue.  

Figure 5 compares the net earnings per ton of CO2 between eco-engine vessels and 

conventional-engine ones for various vessel types.4 In contrast to the previous analysis for 

which the relevant data are not available, we now use net earnings instead of TC earnings as 

 
4 Figure A1 in Appendix A also compares net earnings per ton of CO2 between various vessels but further classifies 

by scrubber-fitting status. 
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they capture more accurately theshipowner’s/operator’s inflows. Namely, those correspond to 

the respective TC earnings minus the fuel, port, canal, and EU ETS (if any) costs. 

Figure 5: Net earnings per ton of carbon emissions by built year 

Note: The carbon emissions values are obtained by taking the average of the carbon intensity from LPG, LNG, 

LSFO, and HSFO. “eco vessel” refers to all ships with a 2-stroke engine which have an electronically controlled 

fuel injection system. Those are typically built in 2015 while the ones with a conventional engine in 2010. 

Clarksons’ SIN do not provide any data on the net earnings of containerships. 

Eco vessels have 27-54% more net earnings per ton of CO2 than conventional ones. In line 

with recent papers (Jia, Jiang and Azevedo, 2024; Moutzouris et al., 2024), this is not only due 

to their reduced CO2 but also because they receive larger TC rates. The documented, 

significantly higher carbon efficiency of eco vessels can also improve the environmental, social 

and governance (ESG) profiles of shipping companies, which might be particularly important 

to publicly listed ones.  

Furthermore, potential implementation of a GHG emissions pricing mechanism will have a 

significantly less adverse impact on eco vessels compared to conventional ones. A point for 

consideration by policymakers is that such a mechanism may have heterogeneous effects on 

the various shipping sectors. Namely, larger vessel sizes might be impacted significantly more 

as they have much lower earnings per ton of CO2 than smaller ones.   

However, neither earnings per ton of CO2 nor transport work per ton of CO2 is an ideal 

measure of carbon efficiency as they fail to consider other input factors, such as operation and 

capital, and are highly dependent on the numerator of the respective ratio. As a result, TC 
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earnings per ton of CO2 may overestimate carbon efficiency for small vessels while transport 

work per ton of CO2 may underestimate it – and vice versa for large vessels. To that end, the 

next subsection presents a more holistic measurement of carbon efficiency, incorporating the 

SFA framework. 

5.2 Stochastic frontier analysis by vessel type 

This subsection applies SFA to analyse the carbon, production and cost efficiencies of the same 

vessel types and for the same period as above.  

We begin by estimating the carbon efficiency using Equation (7). This input-oriented measure 

estimates how much CO2 (dependent variable) can be reduced subject to given values of 

capital, operation, and TC earnings (independent variables). Hence, by also considering capital 

and operation inputs, it is a more advanced economic measurement than those employed in 

Section 5.1. Namely, it mitigates potential significant fluctuations of TC earnings and avoids 

estimation bias resulting from the absence of cost estimation. 

Table 3 displays the results from three representative models which vary depending on the 

assumptions about the efficiency effect, the time trend and the distribution of the error term. 

Sigma squared tests if the model captures the total variance of inefficiency and noise. Gamma 

examines whether the inefficiency component is a main factor of the total variance. Log 

likelihood examines if the model is better with an inefficiency term than without one. Based 

on those statistics, Model (3) clearly has the highest goodness of fit and, thus, we focus on the 

associated estimation results.  
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According to Table 3, the mean efficiency across all vessel types is 69%, suggesting that there 

is potential to reduce CO2 by 31% on average subject to the given levels of capital 

(newbuilding price), operation (crew plus maintenance and upgrades), and TC earnings.  

The significantly positive time trend indicates that carbon efficiency has increased over the 

years or, equivalently, for a given level of TC earnings subject to the same operation and capital 

input, less CO2 is emitted. This may be due to increased operational efficiency of vessels over 

time, possibly accelerated by the implementation of CII since January 2023. Other recently 

imposed measures, such as EEXI and EU ETS, might have played a role in that too.  

Capital and operation are significantly positively associated with CO2. However, the 

magnitude of the impact is low as a 1% increase in capital (operation) is associated with a 

0.09% (0.12%) increase in carbon emissions. This is because higher newbuilding price and 

OPEX typically relate to larger vessels which, in turn, are more energy and, thus, CO2 

intensive. On the other hand, TC earnings are not significantly related to CO2. This is in line 

with shipping economic theory where TC earnings are determined in equilibrium by the 

demand for time-chartered vessels and the available fleet for long-term contracts. In prosperous 

Table 3: Carbon efficiency of vessel types 

 
(1) (2) (3) 

 Dependent variable: ln(CO2) 

Efficiency trend1 Increase Increase Increase 

Time effect Yes No Yes 

Distribution Half normal Truncated normal Truncated normal 

(Intercept) 4.61*** 4.61*** 0.98*** 

ln(K) 0.79 0.73 0.09*** 

ln(OP) -0.46** -0.38 0.12*** 

ln(TC) 0.06 0.01 0.04 

Mu  0.32 0.07*** 

Time   0.05*** 

Sigma Squared 0.07 0.06 0.005*** 

Gamma 0.78 0.82 0.08*** 

log likelihood 19.84*** 22.96*** 42.27*** 

Mean efficiency 0.83 0.75 0.69 

Note: significance levels: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’. The total number of observations is 52. 
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markets, vessels in the spot market sail at higher speeds (to serve as many voyages as possible 

and maximise the shipowner’s revenue) and, thus, increase their CO2. In contrast, this is not 

the case in the TC market where the vessel is fixed for a standard period. Furthermore, the 

implementation of CII might have further disentangled speed from market conditions. 

Figure 6 disaggregates the carbon efficiency results by vessel type and year. As discussed in 

Section 3, the minimum carbon efficiency score is 0 and the highest is 1.  

Figure 6: Carbon efficiency by vessel type and year 

 

Evidently, carbon efficiency strictly increases in all cases. As discussed above, this suggests 

improved operational efficiency of vessels, possibly due to recent regulatory measures. In 

contrast, Figures 2 and 3 – that were based on a more simplified measure of carbon efficiency 

– provided a cloudy picture across time and sectors.   

The rest of the results are overall in line with the findings and economic justifications presented 

in Subsection 5.1. First, containerships are less carbon efficient than bulk carriers and tankers. 

Therefore, there is more scope for improvement and policy intervention in that sector. Second, 

the larger the vessel within a sector, the lower the carbon efficiency it generally has. In other 

words, larger vessels produce more CO2 for a given level of TC earnings. Future environmental 

regulations should consider the differences in carbon efficiency across vessel types. A 

simplified linear model of carbon pricing may cause an undersupply of specific vessel types, 

negatively impacting the trade of certain commodities. 
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Production efficiency is estimated based on Equation (10) for three model specifications (Table 

A2 in Appendix A). The mean production efficiency of 60% implies that the average vessel can 

improve its transport work by 67% (i.e. increasing from 60% to 100% efficiency) for a given 

level of emissions, operation, and capital. From a policy perspective, this finding suggests that 

vessels should be producing more transport work for their current emissions or, in the language 

of IMO, they should have much better carbon intensity performance. From the ship operator’s 

point of view, it suggests that vessels are sub-optimally utilised. 

On the bright side, Figure 7 demonstrates that production efficiency has been strictly increasing 

in the period 2021-2024 across all vessel types. This trend is in line with the increasing trend 

of carbon efficiency (Figure 6) and reinforces the argument that progress is being made in the 

operational efficiency of vessels; although, stricter regulatory measures might be needed in the 

coming years. 

Figure 7: Production efficiency by vessel type and year 

 

Specifically, bulk carriers and oil tankers generally have lower production efficiency than 

containerships. This is because, in contrast to the former, containerships typically operate as 

liner services, i.e. fixed itineraries over fixed schedules, which increases the utilisation of the 

vessel. The relatively good performance of product tankers can be explained by the highly 

competitive nature of that sector where, to realise profits, very efficient vessel utilisation is 

required. Furthermore, production efficiency in general decreases with the size of the vessel. 
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As discussed in Subsection 5.1, this may be due to the fact that smaller vessels are more 

efficiently utilised than larger ones. 

Cost efficiency is estimated based on Equation (11) for three model specifications (Table A3 

in Appendix A). The mean cost efficiency across all vessel types is 66%, suggesting that there 

is potential for the average vessel to reduce its total cost by 52%5 while producing the same 

level of transport work.  

The significantly negative time trend indicates that cost efficiency has decreased over the years 

or, equivalently, that it has become more expensive to produce the same level of transport work. 

This is the case across all vessel types as demonstrated in Figure 8. 

Figure 8: Cost efficiency by vessel type and year 

 

The declining cost efficiency may be explained by the rising costs in shipping due to stricter 

environmental regulations. Indicatively, eco vessels cost roughly 25% more than their 

conventional counterparts (Moutzouris et al. 2024). In line with this argument, Table A3 shows 

that the cost of capital has the highest influence on the vessel’s total cost.  Of particular interest 

is the fact that cost efficiency has deteriorated more rapidly from 2023 to 2024. One reason for 

this is the inclusion of shipping in the EU ETS since 2023 which has increased the voyage costs 

of a vessel. The most important factor though is the Red Sea Crisis and the fact that, as analysed 

 
5 Calculated as (100%-66%)/66% ≈ 52% 
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above, vessels need to sail a significantly larger distance and, thus, burn more fuel when 

diverting around the Cape of Good Hope instead of transiting through the Suez Canal. Table 

A3 demonstrates the significance of increased sailing distance (through the transport work 

variable) on the total cost. 

5.3 Stochastic frontier analysis by individual vessel 

This subsection incorporates SFA to estimate the production and allocative efficiencies of 

individual vessels based on cross-sectional data of 664 Capesize bulk carriers and VLCCs in 

2023.  

Similar to Subsection 5.2, production efficiency is estimated based on Equation (10). However, 

incorporating individual-vessel data in this subsection allows us to control for additional 

variables such as vessel age and time travelled at sea, as well as a dummy variable to distinguish 

between the Capesize and VLCC sectors. This enables more thorough investigation and 

interpretation of the findings. 

 

Table 4: Production efficiency of individual vessels 

 (1) (2) (3) (4) 

 Dependent variable: ln(D*V) 

ln(OP) 0.07*** 0.03 0.07*** 0.07*** 

ln(E) 0.80*** 0.72*** 0.80*** 0.80*** 

ln(K) 0.12*** 0.17*** 0.12*** 0.12*** 

Constant 10.89*** 11.14*** 10.91*** 10.93*** 

Age 0.32***  0.32*** 0.34*** 

Time  -0.001*** -0.00002  

Capesize (dummy)    0.22 

U sigma 0.11*** 0.07*** 0.11*** 0.11*** 

V sigma 0.16*** 0.17*** 0.16*** 0.16*** 

Log likelihood 181*** 163*** 181*** 181*** 

Returns to scale 0.99 0.92 0.99 0.99 

Mean efficiency 0.89 0.87 0.79 0.89 

Note: significance levels: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’. The total number of observations is 664. All models assume 

exponential distribution for the inefficiency term. We present the standard deviations of the inefficiency effect (U 

sigma) and that of the stochastic noise (V sigma). The returns to scale are estimated through Equation (13). 
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Accordingly, four representative models that differ in terms of the incorporated control 

variables have been estimated (Table 4).6 All models have significant log likelihood values and 

U and V sigmas, implying that both inefficiency effect and stochastic noise are present, and the 

inclusion of an inefficiency term improves their performance. 

Energy (fuel) is highly significant in all models and has the largest magnitude by far. This is 

due to its direct positive relationship with transport work; the more cargo is transported and for 

longer distances, the higher the vessel’s energy needs. Capital is also strongly positively related 

to transport work in all cases, although, with a much smaller coefficient. More expensive 

vessels usually have larger capacity and improved technical specifications which, in turn, can 

improve the transport work. Operation is significantly positively associated with transport work 

in all but one case. Similar to capital, higher OPEX is typically for larger vessels which, in turn, 

have more transport capacity.   

The above implies that higher fuel consumption, capital expenditure and OPEX are associated 

with higher annual transport work of each vessel. In particular, the constant returns to scale 

(the respective coefficients are close to one) indicate that doubling the inputs may result in 

approximately double the output.  

The signs of the control variables are in line with economic theory (n.b. a positive sign means 

a negative effect on production efficiency, and vice versa). Namely, higher production 

efficiency is achieved by younger vessels, and vessels sailing for more time. Furthermore, 

production efficiency does not significantly differ between the two vessel types, which is in 

line with Figure 7 and the associated analysis.  

Figure 9 shows the distribution of the production efficiency of the individual vessels, which 

can range from 0 (lowest feasible) to 1 (highest feasible). This is a measurement of a vessel’s 

technical and operational capacity to transport goods subject to given levels of capital, 

operation and energy inputs, and relative to their peers among those vessel types. 

Evidently, most vessels have rather similar production efficiency, i.e. between 90% and 98%. 

Subsection 5.2 identified that Capesize and VLCC vessels have relatively low production 

 
6 All models assume that the inefficiency term follows an exponential distribution. Table A4 (Appendix A) presents 

additional models with different assumptions for the distributions of the inefficiency term. Furthermore, various 

translog models have been estimated with principal component analysis and the estimation results for the control 

variables and overall efficiencies are similar. 
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efficiency compared to the other vessel types and that additional policy measures might be 

required to improve their performance subject to their emissions.  

Figure 9: Histogram of production efficiency of individual vessels 

 

To further investigate the performance of vessels, Equations (35)-(37) estimate the average 

effects of technical, allocative, and both inefficiencies combined on the demand for operation, 

energy, and capital.  

The technical efficiency focuses on the production and operational capacity of the vessel, i.e. 

how to maximise transport work with respect to the units of input but without considering their 

prices. In the “Technical inefficiency” column in Table 5, a positive value indicates that the 

average vessel requires a higher amount of input to reach the same level of output compared to 

Table 5: The effects of inefficiencies on input demand of individual vessels 

 
Technical inefficiency Allocative inefficiency Both inefficiencies 

Operation 7.1% 255.9% 278.0% 

Energy 6.1% -36.5% -32.6% 

Capital 5.9% 57.7% 70.6% 

Note: a positive value indicates that, due to inefficiency, the input demand is higher; a negative value indicates 

the opposite. 
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the vessel(s) on the efficient frontier. The respective results suggest that the average vessel 

overuses operation, energy, and capital by around 6-7%. Such input overuse results in 

substantial additional costs for the average shipowner/operator. 

The allocative efficiency investigates how resources can be allocated more efficiently, i.e. how 

to minimise the total cost for a given level of transport work based on the prices and 

productivity of operation, energy, and capital. Combining the two efficiencies accounts for both 

transport work maximisation and cost minimisation. In the “Allocative inefficiency” column 

in Table 5, a positive (negative) value indicates that the average vessel has overused 

(underused) the input, i.e., the average vessel should have used less (more) of this input because 

its price is relatively high (low) compared to the transport work it produces. In the “Both 

inefficiencies” column, a positive (negative) value indicates that the average vessel has 

overused (underused) the input due to the combined effects of technical and allocative 

inefficiencies.  

The effects from allocative inefficiency are much larger in magnitude than those from the 

technical one, indicating that resource allocation plays a more crucial role in improving the 

overall vessel efficiency compared to operational or technical adjustments. Specifically, the 

magnitude of the operation allocative inefficiency suggests that operation is overused by more 

than 2.5 times. With the development of digitisation and automation, shipping companies may 

be able to reduce the operation input required to reach the same level of transport work (subject 

to safety regulations). In the meantime, better maintenance of vessels might assist with bringing 

down the total operating expenses of the vessel. 

The results further suggest that capital is overused by 58%. However, it is rather challenging 

for shipowners to reduce the capital invested due to regulations that require vessels with higher 

carbon efficiency. Regulation has been a known contributor to input misallocation in the 

transportation industry (Kumbhakar 1988; Bitzan and Peoples 2014). If we consider capital as 

a quasi-fixed input, an overuse of capital may indicate that the excess capital expenditure 

needed to comply with the increasingly strict environmental regulations does not generate 

sufficient return to shipowners. 

Currently, the prices of vessels with modern electronic eco engines are 25% higher than of 

conventional ones, but their income premia are only 9-15% (Moutzouris et al. 2024). As 

discussed in Subsection 5.1, vessels have significantly improved economic performance 

relative to their CO2: for Capesizes, the eco figure is $401/ton CO2 against $280/ton CO2 for 
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the non-eco one; for VLCCs, $420/ton CO2 and $278/ton CO2, respectively (Figure 4). 

However, this does not seem sufficient to justify, in purely financial terms, the significant 

excess investment required (Petropoulos, 2022; Jia, Jiang and Azevedo, 2024). Looking 

forward, this is also the case for vessels that are capable of burning alternative fuels as LNG. 

Indicatively, the prices for an LNG dual-fuel containership are between 12% and 28% higher 

compared to an oil-fuelled one (Clarksons’ SIN 2024).  

Therefore, for shipowners to undertake greener investments, there need to be strong economic 

(dis)incentives which are not provided by the existing measures of carbon and energy 

efficiencies. In response to that, a major topic of discussion in recent IMO meetings is the 

introduction of market-based measures to reward and, thus, accelerate the investment in 

alternative-fuelled vessels and technologies (IMO 2024). 

The energy allocative inefficiency of -37% (Table 5) suggests that fuel input is underused, i.e., 

fuel is relatively cheap for the transport work it produces. If we consider fuel as a quasi-fixed 

input due to the exogenous global shipping demand, we may conclude that currently fuel is 

underpriced. The use of alternative fuels or the introduction of decarbonisation regulation 

would raise the fuel costs. Within a range of 0-37% increase, this would not severely impact 

vessels’ output, other things being equal. In Appendix B, we conduct a sensitivity analysis 

simulating the impacts of hypothetical changes in fuel price and speed (as speed reduction is a 

straightforward method to reduce fuel consumption).  

The sensitivity results (Figures B5, B7, and B8) suggest that an increase in fuel price of up to 

37% does not severely affect a vessel’s overall efficiency and total cost.  The increase in fuel 

price can be even higher if the fuel input needs of vessels decrease with the use of more efficient 

engines, vessel designs, and energy-saving technologies. Indicatively, the price of LNG – 

which is a transitional and not net zero fuel – in 2024 has been 17% higher on average compared 

to the fuel oil equivalent (Clarksons’ SIN 2024);7 thus, within the acceptable range mentioned 

above. However, currently, most net-zero fuels (e.g., biofuel, green ammonia, green methanol) 

are priced more than 37% higher than oil (S&P Global 2025; IMO 2025). Long-term strategic 

planning is required, such as monetary incentives (subsidies), for the use of green fuels. 

Without supportive measures for the operators of greener-fuelled vessels, enforcing a net-zero 

 
7 This calculation is based on the LNG bunker price in Northwest Europe (in terms of intermediate fuel oil 380 

cSt equivalent) and the average price of HSFO (380 cSt) across bunkering locations in Antwerp, Hamburg, and 

Rotterdam. 
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transition could significantly affect the well-functioning of the shipping fleet and the financial 

health of companies. 

To explore how the technical, allocative, and both inefficiencies affect the annualised cost of 

financing and running a vessel, Figure 10 presents the distributions of the individual vessels 

through violin plots. For a given effect on the total cost (y value), the wider the plot, the more 

observations.  

Figure 10: Change in total cost of an individual vessel 

Notes: the wider the plot for a given y, the more observations correspond to that value. The line in the middle 

denotes the median value. Outliers, i.e., observations above 100%, have been removed. 

The relatively flat plot of technical inefficiency in Figure 10 suggests that its effect on the total 

cost is similar across vessels. In contrast, the allocative inefficiency plot is more spread out, 

indicating that its effect varies largely depending on the vessel. For the median vessel, the 

technical and allocative inefficiencies have increased the total cost by roughly 6% and 22%, 

respectively. The median in the violin plot of the combined inefficiencies is around 20%, very 

similar to that of the allocative one, implying that the latter is the dominating factor.  

The large difference between the technical and allocative inefficiencies shows that allocating 

economic resources appropriately is more important from a cost reduction perspective than the 

benefit that technical and operational improvements can yield with respect to productivity. In 

turn, environmental regulations could have a relatively high impact on the total cost of 

individual vessels if resource allocation cannot be optimised. For instance, if vessels are 
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required to equip the more expensive alternative-fuel engines, the impact on their total cost will 

be substantially higher than the benefit this can bring to their operational performance.  

The current decarbonisation pathway requires significant capital investment in low-carbon 

technologies (Klaaßen and Steffen, 2023; Calcaterra et al., 2024), which also applies to the 

upgrade to alternative-fuel vessels in the shipping industry. However, the rise in interest rates 

in recent years poses a concern for easy access to capital for shipping investors. Our sensitivity 

analysis in Appendix B shows that, if the loan rate (cost of capital), increases from an average 

of 4.5% to over 6.5%, the typical shipping investor may start to consider switching from 

investment in newbuilding vessels to more expenditure on energy, vessel maintenance, and 

vessel upgrades, such as energy saving technology instalment. At the end of 2024, only 7.2% 

of the existing fleet (in gross tonnage terms) can burn alternative fuels while roughly half of 

the newbuilding orderbook is still for vessels that will be burning oil (Clarksons’ SIN 2024). 

Our findings in Table 5 and Figure 10 imply that this underinvestment can be more effectively 

addressed with economic measures that can optimise the resource allocation of shipping 

companies rather than with purely technical improvements. 

The findings and analysis above identify potential effects that environmental regulations can 

have on productivity, shipping costs, and resource allocation. Appropriate economic measures 

and resource allocation are crucial in facilitating the transition towards net zero (Coulomb, 

Henriet and Reitzmann, 2021; Oehmke and Opp, 2024; Mengesha and Roy, 2025). In the 

shipping context, regulatory interventions can improve the carbon efficiency of vessels, but 

need to be applied with careful consideration.  

6. Conclusion 

With the increasing focus on the transition towards net-zero shipping, multiple regulatory 

measures have been implemented for the industry to comply with. However, those measures 

do not account for the economic aspect of the transition. Assessing the dynamic relationship 

between environmental performance, monetary income, and expenditure can be of significant 

value to shipowners, capital providers, charterers, and regulators alike.  

This research aims to address this gap by examining the carbon, production, cost, and allocative 

efficiencies of the shipping fleet. To that end, it applies a stochastic frontier analysis at an 

aggregate level across 14 major vessel types from 2021 to 2024, but also for 664 individual 

Capesize bulk carriers and VLCCs. To estimate carbon efficiency, carbon emissions are 
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regressed on capital expenditure, operating expenditure, and vessel earnings. Allocative 

efficiency is estimated by comparing the productivity of capital, operation, and energy with 

their relative prices. An input with low productivity relative to its price is overused, and vice 

versa.  

Our findings suggest that the average vessel transported 0.072 million ton-miles of cargo per 

ton of CO2 emitted and earned USD 295.1 per ton of CO2 emitted over the period 2021-2024. 

Vessels with electronic eco engines have 27-54% higher earnings per ton of CO2 than 

conventional ones. As expected, production efficiency decreases with the age of the vessel and 

increases with the time it spends at sea. Larger vessels are overall more carbon efficient in 

transporting goods while smaller ones in generating revenue. Notably, it has become more 

expensive over the years to produce the same level of transport work. 

The empirical estimation indicates that there is scope for the average vessel to reduce its CO2 

by 31% subject to given levels of earnings, capital, and operating expenses. Additionally, the 

average vessel can improve its transport work by 67% for a given level of CO2, capital, and 

operating expenses. Furthermore, there is potential to reduce its total cost by 52% while 

maintaining the same level of transport work.  

The technical and allocative inefficiencies combined increase the owning and operating costs 

for the median vessel by roughly 20%. Allocating economic resources appropriately can play 

the most important role in reducing those costs. We find that fuel is relatively cheap for the 

transport work it produces. Therefore, while the use of alternative fuels or the introduction of 

greenhouse gas pricing mechanisms would raise the fuel costs, within a range of 0-37% 

increase, this would not severely impact vessels’ output, other things being equal.  

These findings have strong implications for the industry as they imply that investing in and 

operating certain vessel types might optimise the economic-sustainability profile of a company. 

They also yield significant policy recommendations regarding the introduction of economic 

measures to accelerate the energy transition of the shipping industry. Overall, this research 

demonstrates the importance of explicitly accounting for the economic dimension when 

drafting environmental policies for capital and energy intensive sectors with construction lags 

and volatile cash flows. 
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Appendix A: Additional figures and tables 

Appendix A provides additional figures and tables for the empirical estimation in Section 5 of 

the main paper, which includes additional information on vessel types (Section A.1), 

production efficiency and cost efficiency of vessel types (Section A.2), and additional models 

of production efficiency (Section A.3). 

A.1 Additional information on vessel types 

Table A1 shows the typical sizes of the 15 vessel types analysed in this paper. Vessel size is 

usually measured by deadweight tonnage except for containerships, the size of which is usually 

measured by Twenty-foot Equivalent Unit (TEU) which is a standard container. The 15 vessel 

types are classified into four categories by the type of goods carried, i.e., product tanker, crude 

oil tanker, containership, and bulk carrier. 

Table A1 Typical size of each vessel type 

Vessel category Vessel type Typical deadweight tonnage Typical TEU 

Product tanker Aframax 115,000  

Panamax 74,000  

MR 50,000  

Handy 37,000  

Crude oil tanker VLCC 310,000  

Suezmax 150,000  

Aframax 115,000  

Containership Post-Panamax  17,000+ 

Neo-Panamax  8,000-16,999 

Intermediate  3,000-7,999 

Feeder  100-2,999 

Bulk carrier Capesize 180,000  

Panamax 76,000  

Handymax 60,000  

Handysize 35,000  

 

Figure A1 compares the net earnings per ton of CO2 of vessels fitted with a scrubber device 

(formally known as an exhaust gas cleaning system [EGCS]) to those without one, i.e. eco with 
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scrubber versus eco and non-eco with scrubber versus non-eco. This aims to complement the 

analysis for Figure 4, where only eco against non-eco vessels are compared. 

Figure A1: Net earnings per ton of carbon emissions by eco and scrubber status 

 

The results suggest that installing a scrubber does not have a large impact on vessels’ net 

earnings per ton of CO2. This is because scrubbers do not reduce CO2 but only sulphur 

emissions (the marginal differences are because scrubber-fitted vessels receive a slightly higher 

TC rate).   

A.2 Production efficiency and cost efficiency of vessel types 

Table A2 summarises the regression results for the production efficiency, based on Equation 

(10) and three model specifications. In contrast to the carbon efficiency estimation, this is an 

output-oriented SFA, where the dependent variable is transport work (D*V), and the 

independent ones are the capital, operation, and CO2 inputs (CO2 is considered an input as it 

is directly related to energy consumption). As shown in Equation (1), this model estimates by 

how much transport work can be increased subject to the current input levels.  
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Table A2: Production efficiency of vessel types 

 
(1) (2) (3) 

 Dependent variable: ln(D*V) 

Efficiency trend Increase Increase Increase 

Time effect Yes No Yes 

Distribution Truncated normal Half normal Half normal 

Intercept -12.44*** -6.64*** 1.00*** 

ln(K) -0.53  -0.06  0.54  

ln(OP) 2.39** 0.35*** 0.95** 

ln(CO2) 1.39  1.33*** 0.90 

Mu  0.0005  0.68  

Time  0.11    

Sigma Sq. 0.41  0.58** 0.997 

Gamma  0.95  0.997*** 0.74  

log likelihood  11.94*** 55.68*** 11.93*** 

Mean efficiency  0.51 0.60 0.51 

Note: significance levels: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’. The total number of observations is 56. 

The goodness of fit statistics suggest that Model (2) is the best performing one. Operation and 

CO2 are both significantly positively associated with transport work while capital is not. The 

economic analysis of the findings is included in the main text. 

Table A3 summarises the regression results for the cost efficiency, based on Equation (11). In 

line with Stopford (2008), the total cost is approximated by the sum of capital expenditure, 

operational expenses (OPEX) and energy cost. The independent variables consist of the 

respective input prices – i.e., loan rate (cost of capital), wage (unit cost of OPEX) and fuel price 

(cost of energy) – and the vessel’s output, measured through its transport work.  

Based on the significance of the time trend and the goodness of fit statistics, Model (3) is the 

most appropriate specification. The loan rate and wage are both strongly positively associated 

with the total cost. These are rather fixed costs that the shipowner needs to pay on a continuous 

basis and, thus, substantially affect the total cost. Hence, their respective coefficients are 

positive and rather large in magnitude. Transport work is also positively related to the total 

costs as, the more cargo the vessel transports over longer distances, the higher the variable 

costs, i.e., voyage costs such as fuel expenses, port charges, and canal dues.  
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While the negative sign of fuel price might seem counterintuitive, a possible explanation is 

that, when fuel prices are high, ship operators place significant emphasis on the optimisation 

of operations and on reducing fuel expenses unless operating the vessel yields a profit. In 

addition, high fuel prices can influence the decision to lay up a vessel. For instance, in bad 

freight market conditions where voyage costs might exceed the freight revenue, it is common 

market practice to lay up an old and less efficient vessel instead of commercially operating it 

and realising losses. Note that the coefficient of fuel costs is significantly smaller in absolute 

terms than the one of loan rate. This is in line with the fact that the capital needed to invest in 

a vessel is much larger in magnitude and is considered a fixed cost as opposed to fuel expenses.  

Table A3: Cost efficiency of vessel types 

 
(1) (2) (3) 

 Dependent variable: ln(total cost) 

Inefficiency trend Increase Increase Increase 

Time effect No No Yes 

Distribution Half normal Truncated normal Truncated normal 

Intercept 12.24*** -7.45*** -16.83*** 

ln(loan rate) 6.05*** 5.6*** 4.25*** 

ln(wage) 0.83  -0.69*** 1.55*** 

ln(fuel price) -1.33*** -0.95*** -0.7*** 

ln(D*V) 0.45*** 0.69*** 0.41*** 

Mu  0.77*** 0.54*** 

Time   -0.3*** 

Sigma Sq. 0.13  0.16*** 0.08*** 

Gamma 0.82  0.95*** 0.9*** 

ln likelihood 9.75*** 23.15*** 37.31*** 

Mean efficiency  0.76 0.42 0.66 

   Note: significance levels: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’. The total number of observations is 56. 

 

A.3 Additional models of production efficiency 

Table A4 shows three models with various assumptions on the distribution of the inefficiency 

term. 



46 

 

Table A4: Production efficiency of individual vessels: Additional models 

 (1) (2) (3) 

 Dependent variable: ln(D*V) 

Distribution Half normal Truncated normal Exponential 

Intercept 9.12*** 9.21*** 9.21*** 

ln(OP) 0.02 0.02 0.02 

ln(E) 0.94*** 0.93*** 0.93*** 

ln(K) 0.13*** 0.13*** 0.13*** 

Mu  -105  

U sigma 0.01 2.82 0.08*** 

V sigma 0.20*** 0.19*** 0.19*** 

Lambda 0.03 15.14** 0.40*** 

Log likelihood 124*** 124*** 124*** 

Note: significance levels: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’. The total number of observations is 664 vessels.  
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Appendix B: Sensitivity analysis 

Appendix B presents sensitivity analysis results for alternative values of key model parameters 

as loan rate (Section B.1), fuel price (Section B.2), wage (Section B.3), and speed (Section 

B.4). 

B.1 Loan rate 

First, we vary the loan rate (cost of capital) corresponding to the vessel type dataset (Table 1), 

while keeping all other variables constant. The initial loan rates range from 2.7% to 3.1%, and 

1% is added to it for each sensitivity analysis (Table B1).  

Table B1: Sensitivity analysis of vessel types by varying the loan rate 

Loan rate (%) Min Median Mean Max s.d. 

Initial 2.7 2.9 2.9 3.1 0.15 

Sensitivity Analysis 1 3.7 3.9 3.9 4.1 0.15 

  Sensitivity Analysis 2 4.7 4.9 4.9 5.1 0.15 

 …      

  Sensitivity Analysis 12 14.7 15.9 15.9 15.1 0.15 

As the loan rate is only incorporated in the cost efficiency estimation, the results checked for 

robustness relate to Table A3 and Figure 8. The best model of each sensitivity analysis is 

selected; coincidentally, they all include a time effect, a declining trend and a truncated normal 

distribution for the error term. All the coefficients are significant at either the 95% or 99% 

confidence level. The results of the coefficients, time effects and mean efficiencies are 

presented in Figure B1. From left to right, the loan rate increases by 1% in each model, and 

there are twelve sensitivity analyses in total. The coefficients of the loan rate are on the right 

y-axis and everything else on the left one.  

The coefficients of the loan rate increase as the rate rises since, the more expensive capital 

becomes, the more it contributes to total cost. However, the fact that the coefficients of the 

other variables, the time effect and the mean efficiency remain relatively stable, shows the 

robustness of the model and the associated results. This is further confirmed by Figure B2, 

where the cost efficiencies across the 15 vessel types remain stable despite the change in the 

loan rate.  
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Figure B1: Coefficients of the cost efficiency models by varying the loan rate 

   

 

Figure B2: Cost efficiency of vessel type by varying the loan rate 

  

Loan rate + 1% Loan rate + 2% 

(to be continued) 
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(continued) 

  

Loan rate + 3% Loan rate + 4% 

  

  

Loan rate + 5% Loan rate + 6% 

  

  

Loan rate + 7% Loan rate + 8% 
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(continued) 

  

Loan rate + 9% Loan rate + 10% 

  

  

Loan rate + 11% Loan rate + 12% 

 

Second, we vary the loan rate (cost of capital) corresponding to the individual vessel dataset 

(Table 2), while keeping all other variables constant. The initial loan rates range from 1.5% to 

8.0%, and each of the seven sensitivity analyses adds 1% to them (Table B2). The loan rate is 

not decreased because the initial values are at a historical low from 2011 to 2014.  

Table B2: Sensitivity analysis of individual vessels by varying the loan rate 

Loan rate (%) Min Mean Median Max s.d. 

Initial 1.5 4.5 3.9 8.0 1.6 

Sensitivity Analysis 1 2.5 5.5 4.9 9.0 1.6 

Sensitivity Analysis 2 3.5 6.5 5.9 10.0 1.6 

…      

Sensitivity Analysis 7 8.5 11.5 10.9 15.0 1.6 
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As the loan rate is solely used in the allocative efficiency estimation, the results checked for 

robustness relate to Table 4 and Figure 10. An exponential distribution of the error term is 

assumed along with vessel age and time travelled as control variables since this specification 

provides the best goodness of fit. 

The main results in Table 4 suggest that, while allocative inefficiency decreases the demand 

for energy, it increases the demand for operation and capital. In other words, energy is 

underused but both operation and capital are overused. Figure B3 summarises the effects of 

allocative inefficiency on the input demand for operation, energy, and capital when the loan 

rate is increased. The sensitivity analysis first re-estimates the optimal input demand given the 

new rate and then compares each vessel’s input demand with the optimal level via SFA. In 

doing so, we incorporate own-price and cross-price elasticities and estimate how allocative 

efficiency adjusts according to the new set of inputs.  

Figure B3: The effects of allocative inefficiency on input demand by varying the loan rate 

  

                  Note: all models assume an exponential distribution of the error term.  

When the loan rate increases by 7%, the allocative inefficiency of capital decreases from (an 

overuse of) around 60% to (an underuse of) circa -60%. Equivalently, capital is overused if the 

loan rate is low but underused when it is high. Furthermore, the rise in the cost of capital slightly 

increases the overuse of operation and decreases the underuse of energy. However, the changes 

in the allocative inefficiency of operation and energy are much smaller compared to that of 

capital, which proves the robustness of the model.  
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Figure B4 presents the effects of the technical, allocative, and both inefficiencies combined on 

the total cost when the loan rate is increased.  

Figure B4: Change in total cost by varying the loan rate 

  

Loan rate + 1% Loan rate + 2% 

  

Loan rate + 3% Loan rate + 4% 

  

Loan rate + 5% Loan rate + 6% 

 

 

Loan rate + 7%  
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The shapes of all plots in Figure B4 look overall similar to the respective ones in Figure 10, 

which confirms the robustness of the model. As the loan rate increases, the blue violin plot 

remains unchanged. Thus, as expected, the loan rate does not affect the technical performance 

of the vessel. However, when the loan rate increases, the allocative inefficiency first declines 

(i.e., the red plot widens and the median decreases) and then rises (i.e. the red plot becomes 

thinner and the median increases). Namely, the results suggest that a higher loan rate can 

improve the allocative efficiency by reducing the overinvestment in vessels and, in turn, the 

overuse of capital. However, when the rate becomes too high, the excess capital costs result in 

capital inefficiency.  

B.2 Fuel price 

We now examine the sensitivity of the results to changes in fuel price. The fuel price in the 

initial analysis for the different vessel types ranges from 526 to 756 $/ton, with a mean and 

median of 535 and 588 $/ton, respectively. In Table B3, the price is varied in increments of 100 

$/ton.  

Table B3: Sensitivity analysis of vessel types by varying the fuel price 

Fuel price ($/ton) Min Mean Median Max s.d. 

Initial 526 535 588 756 113 

Sensitivity Analysis 1 426 435 488 656 113 

Sensitivity Analysis 2 326 335 388 556 113 

Sensitivity Analysis 3 226 235 288 456 113 

Sensitivity Analysis 4 626 635 688 856 113 

Sensitivity Analysis 5 726 735 788 956 113 

Sensitivity Analysis 6 826 835 888 1,056 113 

Sensitivity Analysis 7 926 935 988 1,156 113 

Sensitivity Analysis 8 1,026 1,035 1,088 1,256 113 

Sensitivity Analysis 9 1,126 1,135 1,188 1,356 113 

 

As fuel price is used in the cost efficiency model (Table A3 and Figure 8), Figure B5 presents 

the model’s coefficients based on the new prices. Figure B6 illustrates the cost efficiency by 

vessel type with the new prices. 

In the initial estimation, cost efficiency and fuel price exhibit a negative relationship. Figure 

B5 suggests that the coefficient of fuel price remains negative and relatively stable up to 400 
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$/ton increases but fluctuates significantly with further changes. At this point, also the 

coefficient of the loan rate and the mean efficiency vary substantially. This indicates that a very 

high fuel price not only increases the total vessel cost but also significantly alters its cost 

efficiency. These could have a negative impact on shipping supply, especially during market 

downturns. The large swings in coefficients and mean efficiency in Figure B6 confirm that the 

cost efficiency across the various shipping sectors fluctuates dramatically when the fuel price 

increases by more $400 per ton. On the other hand, the coefficient of the wage is rather stable. 

This is line with economic theory as a vessel’s OPEX are not affected by fuel price changes. 

Figure B5: Coefficients of the cost efficiency models by varying the fuel price 
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Figure B6: Cost efficiency of vessel type by varying the fuel price 

  

Fuel price – 300 $/ton Fuel price – 200 $/ton 

  

  

Fuel price – 100 $/ton Fuel price + 100 $/ton 

  

  

Fuel price + 200 $/ton Fuel price + 300 $/ton 

(to be continued) 
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(continued) 

  

Fuel price + 400 $/ton Fuel price + 500 $/ton 

  

 

 

Fuel price + 600 $/ton  

 

 

We then investigate how fuel price changes affect the efficiencies of individual Capesize and 

VLCC vessels. The fuel price in the initial analysis ranges from 494 to 620 $/ton, with a mean 

and median of 552 and 494 $/ton, respectively. In Table B4, the price is varied in increments 

of 100 $/ton.  
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Table B4: Sensitivity analysis of individual vessels by varying the fuel price 

Fuel price ($/ton) Min Mean Median Max s.d. 

Initial 494 552 494 620 63 

Sensitivity Analysis 1 394 452 394 520 63 

Sensitivity Analysis 2 294 352 294 420 63 

Sensitivity Analysis 3 194 252 194 320 63 

Sensitivity Analysis 4 594 652 594 720 63 

Sensitivity Analysis 5 694 752 694 820 63 

Sensitivity Analysis 6 794 852 794 920 63 

Sensitivity Analysis 7 894 952 894 1,020 63 

Sensitivity Analysis 8 994 1,052 994 1,120 63 

Sensitivity Analysis 9 1,094 1,152 1,094 1,220 63 

 

 Figure B7 presents the effects of allocative inefficiency on input demand when changing the 

fuel price (the initial results are summarised in Table 5 of the main text). 

Figure B7: The effects of allocative inefficiency on input demand by varying the fuel price 
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Figure B7 shows that, as fuel price increases, energy becomes slightly more underused. 

Meanwhile, capital’s overuse significantly decreases until it becomes slightly underused; 

operation’s overuse steeply increases. There is a disproportional change in energy and 

operation, because it is difficult for vessels to reduce energy use despite a large increase in fuel 

price, but much easier to dramatically increase expenses on maintenance and upgrades to 

minimise energy cost. As fuel price increases by more than $300 per ton, we can see that input 

misallocation becomes more severe. This is in line with the findings from Figures B5 and B6 

where an increase in fuel price of over $400 leads to severe fluctuations in cost efficiency. In 

conclusion, an increase of over 50% in fuel price may, on the one hand, facilitate green 

investment in vessels with higher OPEX but, on the other hand, hinder the stability of shipping 

supply. 

Figure B8 presents the effects of technical, allocative, and both inefficiencies on a vessel’s total 

cost with respect to different fuel prices. As fuel price increases, the red and green violin plots 

first become thinner and then wider, i.e., the effects on total cost first decrease and then 

increase. This can be explained by the fact that, a relatively small increase in fuel price worsens 

the allocative inefficiency which drives up the total cost; however, a sharp increase in fuel price 

may mobilise greener investment to improve energy efficiency and, thus, it may even reduce 

the total cost.  

 

Figure B8: Change in total cost by varying the fuel price 

  

Fuel price – 300 $/ton Fuel price – 200 $/ton 

(to be continued) 
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(continued) 

  

Fuel price – 100 $/ton Fuel price + 100 $/ton 

  

  

Fuel price + 200 $/ton Fuel price + 300 $/ton 

  

  

Fuel price + 400 $/ton Fuel price + 500 $/ton 

  

 

 

Fuel price + 600 $/ton  
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B.3 Wage 

Next, we vary the wage (cost of operation) corresponding to the individual vessel dataset (Table 

2). As the wage is solely used in the allocative efficiency estimation, the results checked for 

robustness relate to Tables 5 and 10. Table B5 summarises the respective wage in each 

sensitivity analysis.  

Table B5: Sensitivity analysis of individual vessels by varying the wage 

Wage ($/year) Min Mean Median Max s.d. 

Initial 24,120 39,824 34,198 82,637 12,239 

Sensitivity Analysis 1 22,120 37,824 32,198 80,637 12,239 

Sensitivity Analysis 2 20,120 35,824 30,198 78,637 12,239 

Sensitivity Analysis 3 18,120 33,824 28,198 76,637 12,239 

Sensitivity Analysis 4 16,120 31,824 26,198 74,637 12,239 

Sensitivity Analysis 5 14,120 29,824 24,198 72,637 12,239 

Sensitivity Analysis 6 26,120 41,824 36,198 84,637 12,239 

Sensitivity Analysis 7 28,120 43,824 38,198 86,637 12,239 

Sensitivity Analysis 8 30,120 45,824 40,198 88,637 12,239 

Sensitivity Analysis 9 32,120 47,824 42,198 90,637 12,239 

Sensitivity Analysis 10 34,120 49,824 44,198 92,637 12,239 

Figure B9 shows that the overuse of operation decreases when the wage increases. Specifically, 

when the wage increases by $10,000 per year, the overuse of operation decreases from around 

260% to 180%. Meanwhile, the overuse of capital roughly triples but energy use remains 

underused and overall unaffected by wage changes. When the wage decreases by more than ca. 

$8,000 per year though, capital becomes underused. This may be explained by the fact that, 

when the wage is rather low and the overuse of operation increases, it would require more 

capital expenditure for more vessels to operate. 
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Figure B9: The effects of allocative inefficiency on input demand by varying the wage 

  

Figure B6 presents the effects of the technical, allocative, and both inefficiencies combined on 

the total cost when the wage is varied. 

Figure B10: Change in total cost by varying the wage 
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(continued) 

  

Wage – 2,000 $/year Wage + 2,000 $/year 

  

  

Wage + 4,000 $/year Wage + 6,000 $/year 

  

  

Wage + 8,000 $/year Wage + 10,000 $/year 

 

As shown in Figure B6, the blue violin plots remain the same irrespective of the wage level. 

This is because the wage does not affect the technical and operational efficiency of the vessel. 

However, the red and green plots are sensitive to wage changes. When it increases, they become 

narrower with more values distributed at the higher end. That is, when the wage is higher, the 

negative effects of allocative inefficiency on the total cost become higher, and vice versa. A 

potential explanation is that, as operation is overused, a higher wage will result in less 

investment in vessel maintenance and upgrades (as the number of crew cannot decrease), 

causing higher inefficiency and total costs.  
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B.4 Speed 

Finally, we examine the effects of the sailing speed on the vessels’ efficiencies – in the 

benchmark case, all vessels are assumed to sail at their design speed (Table B4). For a given 

change in speed, the fuel consumption is estimated according to the cubic rule (Adland, Cariou 

and Wolff, 2020; Wu, 2020).  

Table B6 Sensitivity analysis of individual vessels by varying the speed 

 
Min Mean Median Max s.d. 

Initial       

Design speed (knots) 8.0 14.8 14.8 21.5 1.3 

Total fuel consumption (thousand tons) 1.9 371 343 857 165 

Sensitivity Analysis 1:  

Design speed – 0.5 knot 7.5 14.3 14.3 21.0 1.3 

Total fuel consumption (thousand tons) 1.7 335 305 777 150 

Sensitivity Analysis 2:       

Design speed – 1 knot 7.0 13.8 13.8 20.5 1.3 

Total fuel consumption (thousand tons) 1.6 301 274 701 135 

Sensitivity Analysis 3:      

Design speed – 1.5 knot 6.5 13.3 13.3 20.0 1.3 

Total fuel consumption (thousand tons) 1.4 269 246 630 122 

Sensitivity Analysis 4:  

Design speed – 2 knots 6.0 12.8 12.8 19.5 1.3 

Total fuel consumption (thousand tons) 1.3 240 220 565 110 

Sensitivity Analysis 5:  

Design speed – 2.5 knots 5.5 12.3 12.3 19.0 1.3 

Total fuel consumption (thousand tons) 1.1 213 195 505 98 

Sensitivity Analysis 6:      

Design speed – 3 knots 5.0 11.8 11.8 18.5 1.3 

Total fuel consumption (thousand tons) 1.0 189 173 466 88 

Sensitivity Analysis 7:       

Design speed + 0.5 knots 8.5 15.3 15.3 22.0 1.3 

Total fuel consumption (thousand tons) 2.1 410 371 944 182 

(to be continued) 
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(continued) 

Sensitivity Analysis 8:  

Design speed + 1 knot 9.0 15.8 15.8 22.5 1.3 

Total fuel consumption (thousand tons) 2.3 451 409 1035 200 

Sensitivity Analysis 9:  

Design speed + 1.5 knot 9.5 16.3 16.3 23.0 1.3 

Total fuel consumption (thousand tons) 2.5 496 449 1133 218 

Sensitivity Analysis 10:      

Design speed + 2 knots 10.0 16.8 16.8 23.5 1.3 

Total fuel consumption (thousand tons) 2.7 543 493 1237 239 

 

Since the speed and fuel consumption are used in the technical and allocative inefficiency 

estimates, the robustness of both to those changes is tested (Table 4 and Figure 10). Figure B11 

presents the effects of technical inefficiency on the input demand of operation, energy, and 

capital when speed is varied.  

Figure B11 The effects of technical inefficiency on input demand by varying the speed 
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Figure B11 shows that, as speed increases, the technical inefficiencies of all inputs increase, 

especially of energy and capital. As speed decreases below the design level, the technical 

inefficiencies of energy and capital steeply decrease towards zero. Due to the cubic rule 

mentioned above, fuel consumption and, thus, CO2 rapidly decrease when the speed falls. This, 

in turn, brings the energy costs of the vessel close to the optimal levels from a technical 

efficiency perspective. Furthermore, when the vessel’s speed decreases, the effective supply of 

the fleet is reduced which suggests that capital is more efficiently utilised. This finding is 

important in its own right, from both a ship operators’ and a policy perspective, as a widely 

discussed measure to reduce shipping emissions in the short run has been the so-called “slow 

steaming” of vessels.  

Figure B12 illustrates the effects of allocative inefficiency on the input demand of operation, 

energy and capital when speed is varied. As speed decreases, operation becomes relatively 

more overused and energy more underused, while capital becomes less overused. This is in line 

with the analysis of Figure B7. 

Figure B12: The effects of allocative inefficiency on input demand by varying the speed 
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Figure B13 presents the effects of technical, allocative, and both inefficiencies combined on 

the total cost when the speed is varied. The blue plots remain similar to the original one in 

Figure 10, but the red and green plots become wider as speed decreases, indicating that the 

allocative inefficiency significantly increases the total costs across vessels.  

Figure B13 Change in total cost by varying the speed 
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(continued) 

  

Design speed + 0.5 knot Design speed + 1 knot 

  

  

Design speed + 1.5 knots Design speed + 2 knots 

 


