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Abstract—Fingerprints are likely the most widely used 

biometric in commercial as well as law enforcement 

applications. With the expected rapid growth of fingerprint 

authentication in mobile devices their importance justifies 

increased demands for dependability. An increasing number of 

new sensors, applications and a diverse user population also 

intensify concerns about the interoperability in fingerprint 

authentication.  In most applications, fingerprints captured for 

user enrollment with one device may need to be “matched” 

with fingerprints captured with another device.  We have 

performed a large-scale study with 494 participants whose 

fingerprints were captured with 4 different industry-standard 

optical fingerprint devices. We used two different image 

quality algorithms to evaluate fingerprint images, and then 

used three different matching algorithms to calculate match 

scores. In this paper we present a comprehensive analysis of 

dependability and interoperability attributes of fingerprint 

authentication and make empirically-supported 

recommendations on their deployment strategies. 

Keywords - biometric systems; empirical assessment; 

experimental results; design diversity; interoperability 

I.  INTRODUCTION 

Fingerprint-based user authentication is one of the most 
prolific commercial branches of biometrics. Since the 
authentication process needs two samples from each user, 
most systems need to anticipate that the device used for a 
user’s enrollment (creation of the so called gallery image or 
template) may not be the same as the device used at the time 
of identification or identity verification (so called probe 
image or template). Fingerprints can be acquired through 
different live-scan sensing technologies: optical, solid-state 
and ultrasound [1]. In optical sensors, the finger is placed on 
the surface of a transparent prism which is typically 
illuminated through the left side and the image is taken 
through a camera. The light entering the prism is reflected at 
the valleys and absorbed at the ridges of a fingerprint. In 
solid-state devices, the finger is modeled as the upper 
electrode of the capacitor, while the metal plate is modeled 
as the lower electrode. The variation in capacity between 
valleys and ridges can be measured when the finger is placed 
on the sensor. In the case of swipe solid-state sensors, 
impressions are obtained by swiping the finger on the surface 
of the sensor. Ultrasound sensors exploit the difference of 

acoustic impedance between the skin of the ridges and the air 
in the valleys of a finger. 

Even within the specific sensing technology, the 
acquisition quality may vary across sensors [5]. Different 
arrangements of sensing elements in each device may 
introduce variations and distortions in the biometric data. In 
particular, differences in resolution and scanning area impact 
the feature set

1
 extracted from the acquired image. A 

biometric matching system is required to handle variations 
introduced in the biometric data through different devices 
[1]. While device diversity is to be expected, commercial 
fingerprint matchers typically show a decrease in inter-
device matching performance [3]. For systems deployed at 
US international airports, sensor interoperability is 
important. In this application, fingerprints are currently 
enrolled using a 500 dpi optical sensor with a sensing area of 
1.2" x 1.2".  As different devices may be used for 
verification, limited interoperability between the devices is a 
significant concern. Interoperability grows in importance as 
the scale of adoption of biometric devices and the pace of 
innovation increase: older biometric devices get replaced 
with newer designs, but the samples enrolled with older 
devices remain in operational use.  

In this paper we provide a comprehensive analysis of the 
effects of interoperability on the overall dependability of the 
fingerprint matchers. Failures in our case are defined as 
false-matches (a fingerprint is judged to belong to a person 
when in fact this is not the case) and false-non-matches (a 
fingerprint is judged to not belong to a person when in fact 
this is the case). We use data from a large-scale study in 
which we collected all ten fingerprints of 494 participants 
using 4 different biometric devices. The analysis in this 
paper uses right point fingers only. The use of one finger is 
typical for authentication applications. The sample of 494 is 
large because we are dealing with human participants and we 
follow a properly approved collection protocol that requires 
volunteers to dedicate one hour of time to biometric data 
collection for which they are adequately compensated. The 
fingerprints were captured twice per person: once for the 
purpose of creating the enrollment or gallery image and the 

                                                           
1 A feature extractor module extracts the information from the fingerprint 
image by detecting characteristics representative of the identity with 

respect to the matching process. These characteristics are referred to as a 

feature set and are used by a pattern classifier to make the decision about 
the identity of the user. 



second time for the purpose of creating the probe image for 
identification or authentication. The quality of each image is 
evaluated using two different image quality algorithms. In 
the analysis, we match the probe and gallery images. We use 
three different off-the-shelf products to calculate the match 
scores for each pair of images. This gave us a rich dataset for 
interoperability analysis, which allowed us to categorize and 
rank results: per soft-biometric (gender and age); per 
fingerprint capture device; per matcher and per fingerprint 
quality evaluation algorithm. We then performed exploratory 
analysis to identify various cause-and-effect patterns in our 
data set. This enabled us to make empirically-supported 
recommendations on optimal deployments for different 
scenarios, depending on the flexibility and choice (in terms 
of fingerprint capture devices, fingerprint quality algorithms 
and matching algorithms) for a given application. 

The rest of the paper is organized as follows: Section II 
presents background and related work; Section III describes 
the experimental setup; Section IV presents the results of our 
analysis; Section V presents a discussion of the empirically-
supported deployment recommendations we can make based 
on our observations. Finally Section VI presents conclusions 
and provisions for further work. 

II. BACKGROUND AND RELATED WORK 

Recent investigations focused on the impact of diverse 

fingerprints capture platforms and soft-biometrics on match 

error rates. 

1) Interoperability Literature  

In [2] the authors statistically measured the degree of 

change in match scores across different optical devices. 

Results of the Kendall’s rank correlation test pointed out 

that there is a significant difference between sensor pairs 

and that the change is not symmetric when inverting the two 

devices. In [3] the authors proposed a learning-based 

approach to improve cross-device fingerprint verification 

performance. They extracted quality and intensity-based 

characteristics of fingerprint images acquired using four 

different commercial optical devices and scanned ink rolled 

prints. They were concatenated with the match score into a 

feature vector used for training a pattern classifier. The 

model was developed for both intra-device and cross-device 

matching for all device pairs. Poh et al. designed a Bayesian 

Belief Network (BBN) to estimate the posterior probability 

of the device d given quality q, referred to as p(d|q) [4]. 

Clustering is applied to each device to explain hidden 

quality factors. However, such data clustering does not 

explicitly model the influence of each device. Jain and Ross 

considered the interoperability issue as one related to the 

variability induced in the feature set when different sensor 

technologies are used (e.g. optical vs. capacitive) [5]. When 

matching images acquired by Digital Biometrics and 

Veridicom sensors, they reported an Equal Error Rate (EER) 

of 23.13%, compared to an EER of 6.14% and 10.39% 

when using only Digital Biometrics and Veridicom, 

respectively. Ross and Nadgir subsequently proposed a 

compensation model which computes the relative distortion 

between images acquired using different devices [6]. The 

model is based on a thin-plate spline whose parameters rely 

on control points manually selected in order to cover 

representative areas where distortions can occur in the 

fingerprint image. Their method is, therefore, not 

completely automated. 

2) Age/Gender Literature.  
Past studies examined effects of fingerprints from 

different age groups and gender [7]. Effects of ageing 

impact the quality of fingerprints. Over the life of the 

individual, the skin becomes drier and thinner; reduction of 

collagen causes skin wilting. These factors affect the sample 

provided to the fingerprint sensor [8]. Age affects the 

differences in quality of the physical state of the fingerprint 

(e.g., skin deterioration), while the ridge/valley pattern is 

believed to remain stable over the life time of an individual.  

Regarding gender, most of the works analyzed ridges in the 

spatial domain. They observed that females present a higher 

ridge density compared to males, due to finer epidermal 

ridge details. Ridge density is defined as the number of 

ridges which occurs in a certain space [9]. In 1999, Acree 

manually counted ridges in a well-defined area [10].  
In [11] [12] fingerprints are classified based on gender / 

age using statistics such as white lines count and ridge count 

that are manually extracted as proposed by Acree. Recently, 

a method based on both discrete wavelet transform (DWT) 

and singular value decomposition (SVD) has been proposed 

for gender and age estimation in [13]. 

3) Biometric Fusion, parallel vs. sequential Literature  

The key to create a secure multibiometric system is in the 

design of the fusion scheme. The consolidation of biometric 

information can be performed at various levels: sensor level, 

feature extraction level, match score level, rank level 

(identification operation) and decision level 

[14][15][16][17][18]. Fusion may be able to provide better 

recognition results, if designed well. Combining match 

scores from different matchers has proved to be an effective 

fusion strategy because it offers the trade-off between the 

information content and the ease of fusion implementation. 

The benefits of multibiometrics depend on the diversity of 

component information [19][20]. Intuitively, the classifier 

working with better data would produce better results than a 

classifier operating on noisy data. Hence, researchers 

introduced quality-based fusion schemes, where the quality 

measures of the samples are incorporated in the fusion to 

improve performance [21]. 

An interesting open research issue pertains to the 

estimation of the decision reliability with respect to the 

fusion scheme [22]. The sequential fusion strategy considers 

systems sequentially, and the goal is to make decisions by 

employing as few systems as possible. Research suggests 

that participating systems should be ordered by decreasing 

match confidence [24] [25]. Better understanding of 

differences between fingerprint systems studied in this paper 

may allow us to develop effective multi-sensor fusion 

schemes. 



III. EXPERIMENTAL SETUP 

The dataset we use has been collected in 2012. Each 
participant’s fingerprints were captured by multiple optical 
sensors. The order of use of fingerprint scanners was the 
same for all 494 volunteers. Each of them self-reported 
gender and age.  

Figure 1 shows the number of participants (x-axis) by age 
(y-axis) and gender (blue=male; red=female). The gender 
ratio is almost equal, with 52% male participants. The 
majority of participants in the dataset are young, with 50% 
aged 27 and below.  

 

 
Figure 1.  Christmas tree diagram showing the number of participants (x-

axis) for each age (y-axis) and gender (bar colour) in the dataset. 

Fingerprints were acquired using four Live-scan devices 
(D0 – D3

2
, see Table I). The choice of these devices was 

partially influenced by availability (we have them in our lab) 
and sponsor’s interest, but we should stress that all of them 
are high-end devices, widely used in industry and hence 
representative of common real world installations. For each 
Live-scan device participants provided two sets of 
fingerprints (in the same lab visit, i.e. one after the other), for 
each device consisting of: rolled individual fingers on both 
hands, left slap (i.e. slapping the four (non-thumb) fingers on 
the device), right slap, and thumbs slap. The optical sensor 
utilizes a glass platen, a laser light-source and a Charge-
Coupled Device (CCD) or a Complementary Metal–Oxide–
Semiconductor (CMOS) camera for constructing fingerprint 
images. When finger is placed on the glass platen, a laser 
light is reflected through the prism and facilitates the 
imaging. Fingerprints were collected without controlling the 
quality or the position of the finger. For the purpose of the 
analysis in this paper we have used the right hand’s index 
fingerprints only. 

Fingerprint image quality was assessed using two 
different quality algorithms:  

• The NIST (National Institute for Standards and 
Technology) Fingerprint Image Quality (NFIQ) 
algorithm

3
 [23]: an open source tool that has become the 

                                                           
2 In the rest of the text, we will be using the abbreviations (D0-D3) to refer 

to these four respective devices. The same instance of each device were 
used throughout the data collection. 
3 http://www.nist.gov/itl/iad/ig/nbis.cfm  

industry standard for fingerprint image quality 
assessment; the quality is classified into five levels, 1 
(highest) to 5 (lowest).  

• The MITRE IQF [27] uses the two-dimensional 
frequency information of the image, the power spectrum, 
to assess fingerprint quality. The quality score ranges 
between 0 (lowest) and 100 (highest). 
While the NFIQ quality score predicts the impact that the 

image has on the matching system performance in terms of 
error rates, the MITRE IQF score gives an assessment of the 
visual quality of a fingerprint image. Figure 2 shows 
examples of the highest and lowest quality fingerprints, 
according to the NFIQ. 

Table I.  Characteristics of the live-scan devices used in our study. 

 
Device Model 

Resolution 

(dpi) 

Image size 

(pixels) 

Capture 

area (mm) 

D0 Cross Match 
Guardian 

R2 
500 800 x 750 81 x 76 

D1 i3 digID Mini 500 752 x 750 81 x 76 

D2 
L1 Identity 

Solutions 

TouchPrint 

5300 
500 800 x 750 81 x 76 

D3 Cross Match Seek II 500 800 x 750 40.6 x 38.1 

 

 
Figure 2.  Fingerprint samples with NFIQ quality scores of (a) 1, best and 

(b) 5, worst. 

We generated the match scores using three Commercial 
Off-the-Shelf (COTS) fingerprint matching products: 

• (M1) Identix BioEngine Software Development Kit
4
;   

• (M2) Bozorth3, a minutiae based fingerprint matcher 
developed by NIST [23]; 

• (M3) BIO-key WEB-key Software Development Kit
5
. 

In the rest of the text, we will be using the abbreviations 
M1, M2 and M3 to refer to these three matching algorithms. 

A matching algorithm compares two fingerprint images 
and returns a score based on the similarity between the two 
templates. The higher the score the more likely it is that the 
two templates come from the same finger.  

The initial aims of our study are to compare the diversity 
that exists in the following dimensions: 

  

                                                           
4 http://www.morphotrust.com/pages/117-fingerprint-palm 
5 http://www.bio-key.com/products/overview-2/web-key   



• Fingerprint capture devices 

• Matching algorithms 

• Image quality algorithms 

• Age 

• Gender 
For each COTS matcher we are interested in the scores 

from two matching scenarios: i) comparing two fingerprints 
captured with the same device (intra-device), and ii) 
comparing two fingerprints captured with different devices 
(inter-device). 

The notation reflecting the types of similarity match 
scores is shown in Table II. Since the total number of 
impostor scores could be very large, we limited it to a 
random subset which is still sufficient for statistical analysis.  
Table III reveals the number of scores in each category. We 
were unable to generate an equal number of impostor match 
scores (DMI/DDMI) for M3 because of license limitations, 
but the number is sufficient for the analysis. 

Table II.  Notation table for similarity score computations. 

Device Match Genuine (DMG): Genuine match scores are 
generated when we match templates of the same user’s right point 
finger. The image captured in the first user’s interaction with a 
sensor is stored in the gallery (the database of fingerprint images 
which we search). The image acquired using the same device the 
second time is used as a probe (the set of images submitted for 
identification or verification). Since we have 494 participants and 4 
devices, the total number of DMG scores is 1,976.  

Device Match Impostor (DMI): Impostor match scores are 
generated by matching the fingerprint template of a participant 
against those of all the other participants. DMI scores include only 
those in which both the gallery and probe images are acquired using 
the same device.  The number of imposter scores is very large.  We 
limit our analysis to randomly obtained 96,684 DMI match scores 
for matchers M1 and M2, and 77,616 DMI match scores for M3.  

Diverse Device Match Genuine (DDMG): Genuine match scores 
generated when gallery and probe images are acquired using 
different devices. For each participant, having 4 collection sensors, 
we have 6 possible combinations with two match scores for each 
probe, resulting in a total of 5,928 match scores (494 * 2 * 6). 

Diverse Device Match Impostor (DDMI): Impostor match scores 
generated using images from different devices.   

Table III.  Match score for different match scenarios. 

Matching Participants 

Number 

of 

devices 

Samples 

Similarity scores 

M1 M2 M3 

DMG 494 4  2 1,976 1,976 1,976 

DDMG 494 4 2 5,928 5,928 5,928 

DMI 494 4 2 96,684 96,684 77,616 

DDMI 494 4 2 290,052 290,052 232,848 

IV. EXPLORATORY ANALYSIS 

A. Image Quality Analysis 

1) Soft-Biometrics (Age / Gender) 
As explained previously, for each of the captured images 

in our dataset we obtained a fingerprint quality score from 
two different algorithms: NFIQ and MITRE. Our analysis of 
quality starts by investigating how the participants’ soft-

biometric traits, gender and age, affect the quality score. We 
have done an exhaustive analysis of fingerprint image quality 
per device, age and gender. Due to space constraints in the 
paper, we will only be able to summarize the main results. 
The complete analysis is provided in a technical report [26]. 
A reminder that the NFIQ algorithm assigns a score between 
1 and 5 to each fingerprint image (1=highest quality; 
5=lowest quality), and the MITRE algorithm assigns a score 
of 1-100 (1=lowest quality; 100=highest quality). 

Looking at the NFIQ results, we found that on average 
the gender of the participant does affect the image quality 
assigned by NFIQ. Amongst the high NFIQ scores (1-2) the 
majority of images are from male participants; the lower 
quality scores (3-5) have a majority of images from female 
participants, as shown in Figure 3. 

 
Figure 3.  Bar chart showing the proportion (y-axis) of male (blue bars) 

and female (red bars) particpants for each NFIQ image quality score (x-

axis) across all devices. 

Figures 4 and 5 show the average NFIQ and MITRE 
quality scores respectively (x-axis) for all images by age (y-
axis) and gender (blue=male; red=female) across all devices. 

A general trend can be observed from these graphs, for 
both genders: the average image quality decreases as the 
participants’ age increases

6
.  However, we found that NFIQ 

is better determinant or discriminator of fingerprint image 
quality. In general, the variances in the quality scores 
assigned by the MITRE algorithm were relatively low, hence 
difficult to use it as a discriminator. In the image quality 
assessment process MITRE normalizes the power spectrum 
with respect to the total energy and the gray level of the 
image. The normalization process suppresses the influence 
of contrast, and we believe this is the cause of low image 
quality variance across age groups for MITRE. 

We observed similar trends to Figures 3, 4 and 5 when 
we generated graphs for each device (details are in [26]). 

 

                                                           
6 There are a few exceptions to this, such as 63 year old females and 57 

year old males, where there is a clear increase in image quality (though the 
sample sizes in those cases are relatively low). 



 
Figure 4.   Christmas tree diagram showing the average NFIQ image 

quality (x-axis) pre age (y-axis) and gender (bar color) across all devices. 

 

Figure 5.  Christmas tree diagram showing the average MITRE image 

quality (x-axis) pre age (y-axis) and gender (bar color) across all devices. 

2) Image Quality Algorithm Comparison 
We also compared how the two fingerprint quality 

algorithms rate the quality of the same image. In an attempt 
to make the MITRE algorithm’s quality scores more 
comparable with NFIQ, we grouped the MITRE scores into 
four broad groups

7
: 0-25 (1-lowest score), 26-50 (2), 51-75 

(3) and 76-100 (4-highest score). Again, we generated 
graphs exhaustively for images from each device, 
subcategorized by age and gender (full details are in [26]).  

Figure 6 is a sample from these exhaustive results. The 
plots show the distribution of fingerprint quality pairs for 
female participants’ images captured with device D0, for 
each age group. 

The x-axis shows the MITRE scores grouped into four 
categories as explained above, and the y-axis shows the 
NFIQ scores. The highest image quality pair (4 for MITRE, 
1 for NFIQ) is in the top right corner. A value in the plot 
represents the frequency of images that were assigned a 
quality score from NFIQ (x-axis) and a score from MITRE 
(y-axis). A high frequency of images is represented by a dark 
red color and a low frequency by light yellow. Grey squares 
represent image quality pairs with zero images. 

The plots illustrate that the MITRE algorithm does not 
discriminate image quality as effectively as NFIQ does, 
which is consistent with what we showed previously. In each 
of the plots, NFIQ assigns a quality score between, at least, 1 
and 4. MITRE however, only assigns quality scores between 

                                                           
7 These are based on the BioAPI quality score categories [27]  

3 and 4. This is especially prominent in the 60+ age group, 
for both genders. In fact, we had a total of 34 images that had 
the worst NFIQ quality rating of 5, but were rated in the 
excellent group (76-100) by MITRE. 

According to MITRE, 99.63% of the images in our 
dataset have a quality score in the range of 3 and 4 (50-100). 

 

 
(a)   (b) 

 
(c) 

Figure 6.  3-Dimensional plots comparing the fingerprint quality scores 

assigned to female participants using capture device D0 by NFIQ (y-axis) 

and MITRE (x-axis). Plot (a) is with 18-29 year olds, (b) is with 30-59 year 

olds, and (c) is for 60+ year old participants. 

Figure 7 contains three 4-dimensional plots showing how 
the NFIQ image quality of probe and gallery images, 
captured by device D3, affects the resulting genuine match 
scores from algorithms (a) M1, (b) M2 and (c) M3. The 
intensity of the color shows the normalized match score 
(light yellow=low, dark red=high and black=no data). The 
size of the square represents the proportion of data with a 
given image quality score pair, (probe image quality, gallery 
image quality). The size of the squares in each of the plots is 
the same because the image quality scores are independent of 
the matcher. The matching scores were normalized in the 
range 0 to the maximum matching score of each matcher 
(each matcher uses a different range). 

Figure 7 (a) illustrates a clear correlation between high 
probe/gallery image quality scores resulting in a high match 
score from matcher M1. Figure 7 (b) shows that this trend 
also holds for matcher M2. It can also be seen from (a) and 
(b) that high match scores are still achievable when the probe 
image has a high image quality, such as with image quality 
pairs (1, 3) and (1, 4).  



   
(a)     (b)     (c) 

Figure 7.  4-Dimensional plots showing the average normalized genuine match score from matcher M1 (colour intensity) for comparsions with a certain 

probe image quality (x-axis) and gallery image quality (y-axis). The frequency of image quality pairs (x,y) is represented by the size of the square. Plot (a) 

uses match scores from matcher M1, (b) from matcher M2 and (c) from matcher M3. 

Figure 7 (c) shows that matcher M3 is less sensitive to 
image quality: we can see that high match scores have also 
been achieved from low image quality pairs such as (5, 5), 
(4, 4) and (4, 5) as well as high image quality pairs. This is a 
desirable property of a matching algorithm. 

We have generated plots exhaustively for each intra-
device pair, matcher, match type (imposter/genuine), age and 
gender of participants (full details in [26]). For imposter 
graphs, in most cases we observe little variance in match 
scores across all probe/gallery quality pairs, except for 
device D0 with matcher M1 where we see a similar trend to 
Figure 7 (a). We have also noticed that swapping the probe 
and gallery images does not give the same match score i.e. 
the match scores are dependent on the order that images are 
passed to the matcher. 

3) Device Ranking by Image Quality 
Tables IV (a) and (b) summarize the rankings of the four 

devices by image quality per gender and age group (dark 
green=highest ranked; dark red=lowest ranked).  

Table IV.  The average (a) NFIQ and (b) MITRE image quality from each 
(age, gender, device) triplet.The final column shows the ordering of devices 
for each (age, gender) pair, based on a descending average image quality. 

Participant Device Device 

 Sequence Age Gender D0 D1 D2 D3 

18-29 
Male 1.530 1.878 1.905 1.702 D0, D3, D1, D2 

Female 1.396 1.935 2.104 1.735 D0, D3, D1, D2 

30-59 
Male 1.526 2.500 2.513 1.712 D0, D3, D1, D2 

Female 1.748 2.684 2.820 2.112 D0, D3, D1, D2 

60+ 
Male 2.500 3.222 3.278 2.778 D0, D3, D1, D2 

Female 3.071 3.476 3.524 3.095 D0, D3, D1, D2 
(a) 

Participant Device Device  

Sequence  Age Gender D0 D1 D2 D3 

18-29 
Male 83.530 74.449 73.199 71.577 D0, D1, D2, D3 

Female 82.087 73.761 71.617 71.483 D0, D1, D2, D3 

30-59 
Male 83.404 72.679 72.141 70.987 D0, D1, D2, D3 

Female 81.180 70.879 69.209 69.903 D0, D1, D3, D2 

60+ 
Male 77.944 67.944 66.000 67.000 D0, D1, D3, D2 

Female 76.857 70.429 69.048 66.071 D0, D1, D2, D3 
(b) 

For both NFIQ (Table IV (a)) and MITRE (Table IV (b)) 
the device that captures the best quality images, on average, 
is D0 across genders and age groups. The two algorithms 
disagree on the second best device, with NFIQ listing D3 and 
MITRE D2. We explain in the next section whether the 
quality rankings agree with those from match scores. 

B.  Fingerprint Match Analysis 

1) Relationship of COTS Products by Match Scores 
As explained previously, we calculated match scores for 

fingerprint pairs using three different COTS products. Match 
scores were calculated under two setups: both gallery and 
probe images captured by the same device (intra-device 
match – DMG/DMI match scenarios, as described in Table 
II); and the probe and gallery images captured with different 
devices (inter-device matching – DDMG/DDMI match 
scenarios). For these setups, we calculated genuine match 
scores (i.e. when the gallery and probe images belong to the 
same participant – DMG/DDMG) and impostor match scores 
(when the gallery and probe images come from different 
participants – DMI/DDMI).  

Figure 8 shows scatter plots of normalized match scores 
for the three COTS matcher pairs (a) (M1, M2), (b) (M1, 
M3) and (c) (M2, M3), where both probe and gallery images 
were captured with device D0 (intra-device). We will use 
Figure 8 (a) to explain what this and the subsequent plots are 
showing. The x-axis represents the normalized match score 
of COTS matcher M1 and the y-axis the normalized match 
score of matcher M2. The blue dots are the genuine match 
scores, and the red dots are the imposter match scores. For 
M1 and M2, we see that there is a positive correlation 
between the match scores, with M1 scores being generally 
higher

8
.  

Figures 8 (b) and (c) then show the comparison of match 
scores between COTS matcher pairs (M1, M3) and (M2, 
M3), respectively. Since most of the genuine scores (blue 

                                                           
8 We had one very high match score from M1, as can be seen from the right 

hand side of Figure 8 (a). This causes the normalized scores of M1 to 
appear on the left half of the plots, but this does not affect the trend. 



dots) fall on the top left hand corner of these graphs, this 
suggests that matcher M3 scores are generally higher than 
both M1 and M2. We see that the imposter scores are also 
generally higher for matcher M3, but there appears to be 
little overlap between genuine and imposter scores, 
suggesting that M3 outperforms both M1 and M2.  

Figure 9 shows corresponding matcher pair scatter plots, 
where the gallery image was captured with device D0 and 
the probe image was captured with D3 (inter-device). 
Comparing Figures 8 and 9, we see that the trends are similar 
in general, but the genuine match scores, which indicate 
similarity, are lower in the inter-device plots (Figure 9).  

Figure 10 (a) shows the bottom-left 10% of Figure 8 (a), 
which illustrates the trend of the imposter scores (red dots) 
and any overlapping areas with genuine scores. In general 
we see a trend towards higher imposter scores for matcher 
M2. Figures 8 (a) and 10 (a) seem to indicate that M1 
outperforms M2: M1 scores are generally higher for genuine 
matches and lower for imposter matches, in comparison with 
M2. The actual performance of each COTS matcher will 
depend on where the matching threshold

9
 is set.  

Figure 10 (b) shows the 10% zoomed bottom-left corner 
of Figure 9 (a). Comparing Figures 10 (a) and (b) we 
observe: 

• An increased number of genuine match score points 
visible in the zoomed inter-device plot, Figure 10 (b). 
This suggests that there are additional low genuine match 
scores in the inter-device scenario.  

• An increased number of high imposter match scores in 
Figure 10 (b), compared with Figure 10 (a). 

• A combination of low genuine match scores and high 
imposter match scores in the inter-device scenario would 
suggest that for these setups the performance would be 
negatively affected, due to the larger overlap. 

We generated similar graphs for all other intra and inter 
device pairs, for all COTS product pairs; the trends we 
described for these figures are consistent in all cases (full 
details in [26]). 

2) Device & COTS Matcher Ranking by Equal Error 

Rate 
The performance of a biometric system in the identity 

verification mode is measured in terms of False Match Rates 
(FMR) and False Non-Match Rates (FNMR). The Equal 
Error Rate (EER) is the operating point at which the FMR 
and FNMR are equal, and it is commonly used in literature 
to compare the relative performance of different systems.  

First we show the rankings of devices when both the 
probe and gallery images are captured with the same device 
(intra-device). Table V shows this ranking, sub-categorized 
by age, gender and matcher. The last column lists the device 
rankings, by ascending EER. In general, the trend is that 
device D0 has the lowest EER and is therefore ranked 
highest across the different subcategories.  

The interesting point, however, is the existence of a 
variation in rankings related to the combination of human 
and system factors.  For example, devices D2 and D3 are 

                                                           
9 The matching threshold is the value below which we would consider the 
matching outcome between the two fingerprints to be a reject. 

ranked highest in some situations. This is most common with 
female participants, which contributes to D3 being ranked 
highest with matcher M2 (second row in Table V). 

More commonly with the older age groups, there are 
multiple devices with identical EER (where this is the case 
we have put these devices in curly brackets {}), though we 
should note that the number of participants in these groups is 
lower, as shown in section IV.A. 

Table VI shows the EER for each COTS matcher for 
each device pair (both inter- and intra-device). We see that 
matcher M3 universally has the lowest EER. This is 
consistent with the results presented so far, where we saw 
that matcher M3 had higher genuine match scores compared 
with M1 and M2. Even though it had relatively high 
imposter scores, there seemed to be little overlap between 
them. This is now confirmed by the low EER in Table VI. In 
most cases, M1 is the second best matcher. This is again 
consistent with our observations in the previous section. We 
also see that in the majority of cases the intra-device 
configurations have the lowest EER.  

Figure 11 shows the Equal Error Rate (EER) across all 
intra-device (a) and inter-device (b) pairs, categorized by 
participants’ age group and gender, for each matching 
product. The main observations from Figure 11 are: 

• Overall, the inter-device EERs are higher (worse) than 
those in the intra-device plots.  There is also a steeper 
decline in performance for 18-29 and 30-59 age groups in 
the inter-device comparison scenarios.  

• Both plots show a consistent increase (deterioration) in 
EER as the participant age group increases. There is a 
single exception to this, where the EER decreases 
between 30-59 and 60+ age groups for female 
participants with M3 matcher in intra-device scenario. 

• Female participants generally have a higher (worse) EER 
than men.  

• Matcher 3 is the least sensitive to the age of participants 
with one exception: where 30-59 year old females with 
matcher M1 have a lower EER than M3.  

3) Optimal Verification Device with Fixed Enrollment 
In the previous section we observed device rankings by 

EER. Here we look into the similarity match scores in more 
detail to analyze whether there are any special cases that 
would allow us to select an optimal device or matcher to 
maximize system performance. For each enrollment device, 
age group and gender, we ranked the highest match score 
with all verification devices. We then count the number of 
participants for whom a given verification device gives the 
highest match score.  

Table VII shows the proportion of highest ranked 
genuine match scores for each device pair and each matcher, 
categorized by age group and gender. To illustrate how these 
values should be read we use the first row, with COTS 
matcher M1, as an example. In this case the enrollment was 
carried out for 18-29 year old males with device D0. The 
value in the D0-D1 cell can be read as “when we enrolled 
18-29 males with device D0, for 13.69% of these 
participants, the highest match scores during verification 
were obtained with D1”. 



 
   (a)    (b)    (c) 

Figure 8.  Intra-device scatter plots using probe/gallery images from device D0, showing the correlation of genuine (blue) and imposter (red) match scores 

between matchers (x-axis, y-axis) (a) (M1, M2), (b) (M1, M3), and (c) (M2, M3). 

 
   (a)    (b)    (c) 

Figure 9.  Inter-device scatter plots using (probe, gallery) images from devices (D0, D3), showing the correlation of genuine (blue) and imposter (red) 

match scores between matchers (x-axis, y-axis) (a) (M1, M2), (b) (M1, M3), and (c) (M2, M3). 

 
(a)    (b) 

Figure 10.  10% zoomed scatter plots for matcher pair (M1, M2) for intra-device pair (a) (D0, D0) and inter-device pair (b) (D0, D3). 

The percentages are grouped across verification devices 
for a given participant profile and enrollment device. The 
highest percentages for each grouping have been highlighted 
with a green cell background, second highest yellow, third 
highest orange, and last in red. Note that the percentages 
between the four verification devices for a given enrollment 
device do not always add up to 100%; one or more of the 
highest match scores may be identical across verification 
devices. 

We notice a consistent trend in Table VII for COTS 
matchers M1 and M2, where the largest proportion of 
highest match scores are with intra-device pairs (the 
diagonal). We also notice that D2 as a verification device 
consistently gives the lowest proportion of highest match 
scores for inter-device pairs.  

COTS matcher M3 differs from M1 and M2. We observe 
the following: 

• D1 and D2 have identical proportion of highest match 



scores when used as the verification device. 

• D0 has the highest proportion of match scores when the 
enrolment is carried out with device D0 or D2. (The only 
exception to this is for 60+ males, where the number of 
participants is small). 

• For M3, as we illustrated with the scatter plots, we 
observe maximum match scores with multiple device 
pairings (a large number of blue dots in Figures 8 (b)-(c) 
and 9 (b)-(c) were in the upper most line). Hence, the 
proportions of highest match scores are much higher in 
comparison with matcher M1 and M2. 
We have generated similar tables for imposter match 

scores, however, these have been omitted from the paper due 
to space constraints (full details are in [26]). In summary, we 
did not observe as clear a trend as we did for the genuine 
scores. The proportion of lowest imposter scores is more 
evenly spread between the verification devices. But, we did 
observe that for matchers M1 and M2, device D1 
consistently had the highest proportion of lowest match 
scores. 

Table V.  Device performance sequences in an intra-device setup, for each 
(age, gender, matcher) subcategorization, using Equal Error Rate (EER) as 

a performance measure.  

Age Gender Matcher 
Device Sequence 
(By EER, Ascending) 

ALL ALL 1 D0,D3,D2,D1 

ALL ALL 2 D3,D0,D2,D1 

ALL ALL 3 D0,D3,D2,D1 

18-29 MALE 1 D0,D1,D3,D2 

18-29 MALE 2 D0,D1,D2,D3 

18-29 MALE 3 {D0,D1,D2},D3 

18-29 FEMALE 1 D3,D0,D2,D1 

18-29 FEMALE 2 D0,D3,D2,D1 

18-29 FEMALE 3 {D0,D1},{D2,D3} 

30-59 MALE 1 {D0,D3},D2,D1 

30-59 MALE 2 {D0,D3},D2,D1 

30-59 MALE 3 {D0,D1,D2,D3} 

30-59 FEMALE 1 D0,D3,D2,D1 
30-59 FEMALE 2 D3,D0,D2,D1 

30-59 FEMALE 3 {D0,D3},D1,D2 

60+ MALE 1 {D0,D1,D2,D3} 

60+ MALE 2 {D0,D1,D2},D3 

60+ MALE 3 {D0,D1,D2,D3} 

60+ FEMALE 1 D0,{D2,D3},D1 
60+ FEMALE 2 D2,D3,D0,D1 

60+ FEMALE 3 {D0,D2,D3},D1 

 

 

 

 

 

 

 

Table VI.  The Equal Error Rate calculated for each matcher for all device 
pairs. 

Device Matcher (EER) 

Probe Gallery 1 2 3 

D0 D0 0.399% 0.554% 0.003% 

D0 D1 3.057% 5.106% 0.915% 

D0 D2 2.607% 2.561% 0.704% 

D0 D3 0.783% 1.158% 0.499% 

D1 D0 2.840% 4.946% 0.939% 

D1 D1 2.472% 4.409% 0.719% 

D1 D2 2.952% 6.609% 0.735% 

D1 D3 2.902% 5.316% 1.221% 

D2 D0 2.044% 2.973% 0.538% 

D2 D1 2.977% 6.824% 0.628% 

D2 D2 1.896% 1.709% 0.608% 

D2 D3 3.553% 3.560% 0.662% 

D3 D0 0.806% 1.083% 0.383% 

D3 D1 3.185% 5.420% 0.872% 

D3 D2 3.812% 3.613% 0.859% 

D3 D3 1.668% 1.100% 0.227% 

 
(a) 

 
(b) 

Figure 11.  Equal Error Rates (y-axis) from each matcher algorithm by age 

group (y-axis) and gender (dashed line=female, solid=male). Plot (a) is 

with all intra-device pairs, and (b) is with all inter-device pairs. 

  
 
 



Table VII.  Showing the percentage of DDMG scans (where participantprobe == participantgallery) with the highest match score for each verification device 
(columns) for a given participant profile (age, gender) and enrollment device (rows), from COTS products M1, M2 and M3. 

Matcher / Verification Device (With highest % of genuine match scores)   
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M3 

  D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 D2 D3 
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18-29 

M 

D0 73.214 13.69 3.571 9.524 72.024 7.143 7.143 14.881 74.405 36.31 36.31 36.31 

D1 26.786 54.762 5.952 12.5 19.643 51.19 8.333 23.214 46.429 58.929 58.929 33.929 

D2 23.81 7.738 62.5 5.952 16.071 3.571 70.238 10.714 47.024 36.905 36.905 30.357 

D3 21.429 9.524 2.976 66.071 13.69 7.738 5.357 73.81 38.69 36.31 36.31 64.881 

F 

D0 80.87 6.957 5.217 6.957 75.652 5.217 4.348 15.652 73.043 26.957 26.957 32.174 

D1 22.609 59.13 7.826 10.435 19.13 46.957 14.783 21.739 45.217 46.087 46.087 41.739 

D2 12.174 13.913 67.826 6.087 17.391 4.348 72.174 7.826 44.348 35.652 35.652 35.652 

D3 19.13 9.565 2.609 68.696 11.304 1.739 1.739 86.087 35.652 39.13 39.13 54.783 

30-59 

M 

D0 73.077 8.974 5.128 12.821 70.513 6.41 5.128 17.949 71.795 29.487 29.487 29.487 

D1 19.231 55.128 7.692 21.795 28.205 55.128 3.846 19.231 41.026 51.282 51.282 41.026 

D2 16.667 8.974 66.667 7.692 14.103 8.974 62.821 14.103 52.564 46.154 46.154 34.615 

D3 12.821 5.128 3.846 78.205 15.385 6.41 5.128 75.641 33.333 33.333 33.333 62.821 

F 

D0 78.641 7.767 1.942 11.65 69.903 5.825 2.913 25.243 59.223 48.544 48.544 31.068 

D1 17.476 59.223 11.65 12.621 22.33 58.252 11.65 16.505 52.427 55.34 55.34 49.515 

D2 16.505 12.621 61.165 9.709 19.417 5.825 67.961 9.709 48.544 48.544 48.544 43.689 

D3 26.214 2.913 0.971 69.903 13.592 4.854 2.913 80.583 33.981 41.748 41.748 54.369 

60+ 

M 

D0 55.556 11.111 0 33.333 88.889 0 11.111 0 33.333 44.444 44.444 55.556 

D1 0 55.556 33.333 11.111 22.222 55.556 0 22.222 44.444 88.889 88.889 33.333 

D2 22.222 11.111 55.556 11.111 22.222 0 66.667 11.111 33.333 44.444 44.444 22.222 

D3 11.111 0 22.222 66.667 22.222 11.111 11.111 66.667 44.444 44.444 44.444 33.333 

F 

D0 66.667 9.524 4.762 19.048 66.667 4.762 9.524 28.571 61.905 23.81 23.81 47.619 

D1 33.333 47.619 9.524 9.524 19.048 47.619 14.286 23.81 42.857 57.143 57.143 33.333 

D2 14.286 4.762 76.19 4.762 23.81 4.762 71.429 4.762 52.381 38.095 38.095 42.857 

D3 23.81 4.762 0 71.429 14.286 0 0 85.714 47.619 23.81 23.81 61.905 

V. DISCUSSION 

In this section we build upon our exploratory analysis 
of fingerprint quality (IV.A) and similarity match scores 
(IV.B) to make evidence-based recommendations for 
optimizing fingerprint biometric system deployments. 

A. Discussion of Fingerprint Quality Analysis 

The main conclusions we can draw from the 
fingerprint quality analysis with our data set are: 

• Observation: Image quality decreases with age for both 
genders. This is consistent across all devices for both 
image quality algorithms. This is to be expected as with 
age hand moisture levels decrease, the cumulative 
effect of finger injuries increases and our fingerprints 
deteriorate. Hence the quality of the fingerprint image 
also deteriorates.   
Recommendation: For older subjects, where the 
operating environments allow it, it is important to set a 
more stringent threshold for acceptable fingerprint 
image quality scores. This may cause delays in image 
capture (due to multiple acquisition attempts), but it 
would lead to improved authentication performance.  

• Observation: Male participants exhibit higher 
fingerprint image quality. This may be explained by the 
fact that biometric devices have traditionally been most 
widely deployed in male-dominated operating 
environments, such as the military and law 
enforcement. Hence, we conjecture that the quality 
algorithms have also been optimized using male-

oriented data sets. Additionally, as noted in [8] 
and [9], female fingerprints have higher ridge density. 
With more ridges in the same image area, ridge clarity 
might suffer and feature extraction is more difficult. 
This could have a negative impact on quality and 
subsequently on match scores.    
Recommendation: For operating environments where 
biometric devices are currently deployed, such as in 
border control, it is important that the system designers 
are aware that the fingerprint quality algorithms as well 
as the image capture software within the devices may 
have been optimized for a predominately young male 
population. This may necessitate setting the threshold 
on match scores conditional on the subjects’ age and 
gender, provided one can trust these, to optimize 
system performance. 

• Observation: The lowest fingerprint quality scores are 
obtained by older females (60+). This again may be 
explained by our conjecture on the training sets used to 
optimize fingerprint quality algorithms (young, 
predominantly male populations).    
Recommendation: Same as in previous bullet point. 

• Observation: NFIQ is a better discriminator for 
fingerprint image quality than MITRE IQF.   
Recommendation: Given a choice between these two 
fingerprint quality algorithms, our analysis suggests 
that the system designer should consider using the 
NFIQ algorithm to better discriminate between good 
and bad quality fingerprint images. Accepting and 
using a good quality fingerprint image is important 



since we have observed a positive correlation between 
image quality and match scores. 

• Observation: D0 captures the best quality fingerprint 
images across all age groups and genders. There is an 
agreement on the best device by both NFIQ and 
MITRE, though they disagree on the second best 
device for image quality (NFIQ ranks D3 as second 
best; MITRE ranks D1).  
Recommendation: If the designer has a choice, then D0 
would be the most optimal device amongst the tested 
ones, on average, for fingerprint capture in both 
enrollment and verification. 

B. Conclusions for COTS Matching Product Analysis 

The main conclusions we can draw from the COTS 

matching product analysis with our data set are: 

• Observation: The match scores for intra-device 
pairings are generally better than for inter-device ones, 
especially for M1 and M2. However COTS matcher 
M3 seems to improve device interoperability.  
Recommendation: If the system architect has a choice, 
then the same device for enrollment and verification 
should be used. Otherwise, if the operational 
environment cannot avoid a diverse setup, product M3 
should be used to mitigate against lower match scores 
that may result from using different devices. 

• Observation: With COTS matchers M1 and M2, the 
largest proportion of highest match scores are obtained 
with intra-device configurations (Table VII). This 
would suggest that these matchers are highly sensitive 
to the choice of fingerprint capture devices (hence they 
would offer low interoperability). 
Recommendation: If there is a choice, as stated in the 
previous bullet point, M3 is, on average, the optimal 
COTS product to use when images have been captured 
with diverse devices.  

• Observation: D0 tends to be the device with the highest 
match scores and lowest EERs on average. But there 
are some exceptions (usually for female participants) 
where devices D2 and D3 were ranked the highest.  
Recommendation: The most optimal device pair in the 
majority of cases, in terms of system performance, is 
where D0 is used for both enrollment and verification. 
But the optimal choice differs in some cases, especially 
for female participants cf. earlier discussion on the 
datasets used for algorithm optimization. 

• Observation: M3 is the best COTS product in the 
majority of configurations we looked at (highest match 
scores, and lowest EERs), but there are some 
exceptions when we categorize by age and gender. It is 
also the product that is least affected by low quality 
fingerprints (as we noted in section IV.A), age, or inter-
device matching (as we observe from Table VII), 
which would suggest that this is also the best COTS 
product, on average, to use to improve interoperability.
  
Recommendation: If there is a choice, using matcher 
M3 will result, in the majority of cases, in optimal 
system performance. However, this matcher is also 

more expensive than the other two in our study.  

• Observation: Matchers M1 and M2 assign the largest 
proportion of highest match scores to intra-device 
configurations (Table VII).  
Recommendation: In configurations where the same 
device is used for enrollment and verification, M1 and 
M2 can provide comparable and sometimes better 
performance than M3 (see technical report for full 
details [26]). 

VI. CONCLUSIONS 

In this paper we presented results of a large-scale 
empirical study in which the fingerprints of 494 
participants were captured with 4 diverse fingerprint 
biometric devices. Match scores were generated with 3 
different COTS matching products, two of which are 
commercial and one (M2) is available as open source.  The 
fingerprint image quality was analyzed with 2 popular 
image quality algorithms. The results were then 
categorized per gender and age group. This allowed us to 
make a range of empirically-supported recommendations 
on the design and deployment principles of fingerprint 
biometric systems. 

A summary of main conclusions is as follows. 

• Better image quality fingerprints are obtained from:  
o Younger participants: this is mainly due to wear 

and tear, and physiological ageing processes in the 
fingerprint and is consistent with results from other 
studies [7], [8]. 

o Male participants: we conjecture that this is 
because the fingerprint image quality algorithms, 
biometric capture devices and match algorithms in 
general tend to be optimized for male-oriented 
populations such as the military and law 
enforcement. 

• NIST NFIQ fingerprint image quality algorithm is a 
better discriminator of quality compared with MITRE 
IFQ.  

• Cross Match Guardian R2 fingerprint capture device 
(abbreviated as D0 in our paper) was on average the 
device that captured the best quality images, and from 
which the most optimal performance was obtained in 
terms of match scores and equal-error rates. 

• On average, better (higher) match scores are obtained 
when the same device is used for image capture at both 
the enrollment and verification stages, indicating 
interoperability problems in fingerprint capture 
devices. 

• BIO-key WEB-key Software Development Kit 
Matcher (abbreviated as M3 in our paper) was on 
average the matcher that gave the most optimal 
performance (in terms of equal error rates) and was the 
least affected by the source of the image capture 
devices, or the quality of the fingerprint image. So this 
would be the COTS matcher we would recommended 
to improve, on average, match scores when the 
fingerprint images have been captured with diverse 
devices. We should note that it is also a more 



expensive of the three COTS products in our study.  
It should be noted that even though we selected best on 

average fingerprint capture devices, fingerprint quality 
algorithms and match score algorithms, none of them 
could be rated as best universally in our data set. Hence a 
promising avenue for further work, which we are currently 
pursuing, is how we can take advantage of diversity at 
these layers to improve the overall system performance. 

The results we presented apply to the studied devices, 
COTS matchers and fingerprint image quality algorithms 
but are likely to indicate broader concerns for the mass 
deployment of biometric authentication. However we 
refrain from making more detailed generalizations until we 
complete statistical significance tests. We are currently 
working on quantifying the significance related to the 
recommendations made. Another limitation of our study 
which prevents us from making more general conclusions 
is that the data was collected primarily at a University 
campus (at West Virginia University). Hence the 
convenience population sampling in the collection resulted 
in the majority of young college students.     

Other avenues for further work include: 

• Analyzing the effect of user habituation on image 
quality and match scores. In other words, if the users 
are instructed on how to provide a biometric sample 
with a specific device, does the image quality and 
match scores improve significantly? This might be 
especially important for intra-device deployments to 
improve interoperability and for female or elderly 
participants where we see the lowest image quality and 
match scores. 

• Analyzing the different unimodal (i.e. fingerprints 
only) multi-device score fusion techniques to improve 
overall system performance of intra-device 
deployments.  

• Analyzing the improvements that may be obtained 
from multimodal fusion (e.g. fingerprints as well as iris 
or face biometrics). 

• Analyzing what soft-biometric traits can be inferred 
from fingerprint images. This might be especially 
useful in forensic applications. 
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