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ABSTRACT

The 
f undament al 
electrodynamics 
difficulties 
field theory

creating 
are 

discussed 
with

a nonlinear 
advanced.The 
with especial 

elementary

of
of 

the

reasons for 
particles 

are
which arise 
of Born and Inf eld is reviewed.

field theory 
foundations 
regard to 

charges.The nonlinear

The methods of solving soliton equations are 
presented.The multisoliton solutions of many nonlinear partial 
differential equations are summarised.

The attempts to treat solitons as particles in 
interaction are reviewed including the Bov/tell-Stuart analysis 
of soliton interaction in terms of the singularities of the 
complex multisoliton solution.

The concepts of nonlinear and linear superposition of 
solitons are presented.

The author derives ..by an original technique the 
multisoliton solution of the sG (solitons,antisolitons and 
breathers) using the theorem of permutability.The multisoliton 
solution is shown explicitly to decompose into a collection of 
solitons,antisolitons and breathers in the asymptotic limits of 
time.

The author proposes a new linear superposition principle 
for the multisoliton solutions of many equations.With this new 
principle the solitons are identified throughout the 
multisoliton interaction and the soliton interaction is 
analysed.The soliton positions (taken to be the projections on 
the real axis of the singularities of the complex multisoliton 
solution) are found to be related to the roots of a polynomial 
of degree N.In addition to providing a means of understanding 
soliton interaction,the new linear superposition principle of 
the author leads to remarkable connections between the 
multisoliton solutions of many equations.lt also allows the 
author to find close global approximations to the multisoliton 
solutions.
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Part 1. Synopsis

Chapter 1.

This is the introduction to the thesis.The need for a 

nonlinear field theory of elementary particles is discussed.

Chapter 2.

We review the foundations of electrodynamics and examine 

the fundamental difficulties therein.We review various attempts 

to place electrodynamics on a new footing and hence remove the 

previously unsolved difficulties.We have made the chapter as 

comprehensive as possible even to the extent of examining 

attempts at creating a field free electrodynamicsCie.the 

Wheeler-Feynman action-at-a-distance theory).

Chapter 3.

We review the methods developed to solve soliton 

equations ?Backlund transformations, and list the N parameter 

solutions of many of the soliton equationsCwith which directly 

or indirectly our original contribution is concerned).

Chapter 4.

In this chapter we attempt to cover as many aspects of 

research done in the field of solitons in which solitons may be 

regarded as particles.This includes research done on how sG 

solitons interact,the Bowtell-Stuart technique,singularities of 

nonlinear partial differential equations in general, including 

rational solutions and connections with solvable many-body 

problems. We also review work done on another linear- 

superposition principle f or the KdV equation.We examine some 

research done on the particle like nature of sG solitons in 
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bounded regions of space.In addition we review the 

controversial subject, of solitons under perturbation, including 

the so called "non-Newtonian behaviour”.This section of the

attempts at regarding "solitons" as elementary particles.

chapter includes a great many references so as to give a

picture of the depth of the controversy and of perturbed

soliton equations in general.Finally we review a number of



CHAPTER INTRODUCTION
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Our present model of the universe is one in which the 

world can described in terms of ''particles" and "fields";this 

division even exists in The General Theory of Relativity, where 

the fields are replaced by the concept of curved space-time.The 

field concept has of couse undergone change, due to the 

development of quantum mechanics,in that the energy of a 

configuration of field can only change by discrete amounts, and 

in so doing a "particle of field" is emittedCi.e a 

photon).However,ultimately,the concept of a universe divided 

into two essentially different constituents is an 

invention.

Generally speaking the field concept is more properly 

defined in Physics in that in the absence of "matter" the field

is a mathematical function obeying certain partial differential 

equations.Such an abstract field can have physical significance 

when we are able to define such entities as energy,linear 

momentum and angular momentum.On the other hand the definition

of "particles" seems to be on 

seem forced to assume

pointsCprovided we are not 

account-here we are left with 

"process").

There is no doubt that

much shakier ground.Ultimately we 

that they are mathematical 

taking quantum mechanics into 

the concept of the particle as a

the particle concept has in the

macroscopic domain been extremely useful.However, when one

attempts to understand the meaning of the phrase a truly

elementary particle" one is faced with great difficulty.Truly

elementary particles cannot be described in terms of physical

principles as they are the entities from which physical

priciples are constructed.Thus we can only define truly

elementary particles mathematically.Unf ortunately no such
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definition currently exists in theoretical physics.This means 

that at best all of the established structure of contemporary 

physics is phenomenological.

The concept of a truly elementary particle as a point 

runs into severe difficulties classically .In chapter 2 we 

explore the difficulties of the point charge concept(i.e 

principally the infinite field energy problem),but we emphasize 

here that the same difficulties arise in gravitational theory 

also.Quantum mechanics has added to the difficulties by 

supplying us with a host of new indefinables,such as virtual 

particles.These virtual particles are supposed to be the 

arbiters of the interaction between other particles!

Einstein 111 was one of the main champions of the 

"particle free" physics and believed that a pure field physics 

could only be achieved with the introduction of nonlinear field 

equations.Unfortunately Einstein died before solitons were 

discovered.lt is our contention that given the strides forward 

that have been made in the solution of nonlinear partial 

differential equations in recent years we should once again 

consider the problem of creating a particle free physics.

One of the extraordinary conceptual consequences of a 

pure field physics is the notion that the world may be an 

indivisible whole.This notion arises from a property only 

enjoyed by nonlinear differential equations-that if one finds 

two solutions of a nonlinear equation then the sum is not a 

solution, thus there do not exist independent units from which 

we can build the general solution.

The mechanistic idea of the universe as a piece of 

clockwork in which there were definable "separate" parts 

"interacting" with each other has had its day.We contend that 
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the "apparatus determined" behaviour of, say, an electron 

interference experiment, clearly indicates the new wholeness 

aspect of the uni verse.The idea that Einstein's nonlinear field 

approach may enable us to not only achieve a more satisfactory 

theory of classical physics,but also a deeper understanding of

Quantum theory has already started to be explored [21.

We argue that the currently known soliton equations can

be used as test cases for the pure field view of physics. We 

will see in the course of this thesis that the multisoliton 

solutions although being exact solutions of the field equations 

themselves,do appear to mimic the appearance of a collection of 

"separate" particles interacting via certain force laws. We

might choose to say that these "separate" solitons "generate"

fields which act on other solitons.This idea introduces some

important questions.Are the observable interaction fields of 

physicsteg electromagnetic field) just inferences from the 

behaviour of accelerating particlesYCould there be another more 

fundamental underlying field with soli ton-like solutions which 

so choreographs the motion of the solitons that we are led to 

believe that the solitons themselves generate interaction 

fieldsTIn chapter 7 of this thesis we will see that the 

sine-Gordon equation certainly appears to choreograph the 

motion of solitons so that we might believe that they generate 

interaction fields of their own<we are referring to the 

retarded action of solitons).

The ultimate objective of the present author is to make 

advances on the road to a particle free physics and in 

particular to explore the possibility of creating a nonlinear 

theory of electrodynamics in which electrons are soliton-like 
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excitations of the nonlinear field.lt is particularly important 

in this respect to employ dimensionless quantities (such as the 

charge to mass ratio of the electron).This is an ambitious aim 

and many giants of theoretical physics have attempted in 

various ways to make progress on this subject(chapter 2 and 

references therein).

Of course one of the most troubling aspects of the pure 

field nonlinear approach is the existence of the many particles 

and various fields of force which exist in our universe.Even if 

one achieved a successful nonlinear theory of

electrodynamics ,how could one extend the equations to include 

apparently unrelated forces?One would have to admit that the 

proposed nonlinear field equations of electrodynamics were but 

an approximation to a more general set of equations which 

encompassed other force fields of matter.

The more specific objective of the thesis is to further 

explore to what extent various multisoliton solutions of 

soliton equations could be looked at as a collection of 

interacting solitons and to discover whether there were any 

unifying principles involved.

The study of the multisoliton solutions of soliton

as a worthy topic of investigation as long ago as 1974 151.

equations as a collection of interacting solitons has been

unjustly neglected.Essentially the only researchers to explore

this subject in any depth are Bowtell and Stuart (1977,83) 13,41

who investigated the motion of singularities of the

complexified two soliton solutions of the sG and KdV

equations .This is suprising as Kruskal had suggested the above

If one was going to be able to look upon the raultisoliton
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solutions of soliton equations as particles in interaction it

seemed expedient to the author to discover whether the

multisoliton solution could be written as lineara

superposition of functions which could be clearly identified as

papersolitons for all time.In this respect the discovery of a

by Matsuda 161 on how the two parameter solutions of the sG in

the centre of velocity frame could be written as an exact

linear superposition of accelerating solitons and at the same

time the discovery of the Bowtell-Stuart papers was most

propitious.Beginning the PhD with these two discoveries

immediately determined to some extent the direction in which

the thesis had to go.

Clearly one had to determine how one could extend the

results of Matsuda to any number of solitons and in any frame

of reference.Matsuda’s approach did not lend itself to any

generalization and seemed totally specific to the centre of

velocity frame. At the same time the technique of Bowtell and

Stuart for determining the motion of sG solitons via the

singularities of the complex Hamiltonian density met with great

difficulties in non centre of velocity frames of reference

primarily because the Hamiltonian density developed

multiplicity of singularities thus making it more dificult to

a 7
identify those which we should associate with solitons. d'

Fortunately the present author discovered that there

existed a simple algebraic way of obtaining the Matsuda

results (Matsuda’s technique involved much integration of a

fairly complicated nature).This simple algebraic technique was

immediately generalizable to any frame of reference and any

number of solitons.lt was found that the N parameter solution

of the sGCby N parameter we mean a "soliton" solution which is
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a mixture of any number of soli tons ,antiso Li tons and breathers) 

$ could be written,
N

N

$ = F 4tan_1f
N L

i = 1

where f were the roots of a certain N degree polynomial in 

f.In non centre of velocity frames and for three soliton 

solutions of the sG and higher, the linear superposition 

functions f were not separable in x<the position variable) and 

tCthe time variable).This meant the elucidation of how the 

solitons and their associated complex singularities moved was 

going to be more difficult.One of the achievements of the 

thesis was the discovery of how the motion of the multisoliton 

complex singularities was related to the real functions 

involved in the linear superposition.

Bow tell and Stuart also observed [31 that the two and 

three soliton solutions of the sG could be built up in a

similar way to the formula for the tangent of two or three 

angles added together and they surmised that the N soliton

solution might be similarly constructed.The author took up this 

conjecture and rigorously proved it to be true and moreover

showed how it could also be made to encompass antisolitons and

breathers. Lamb [71 and Barnard L8J had developed an iterative 

technique for building higher parameter solutions of the sG,but 

they had not used it to determine the N parameter solution.The 

author developed an original technique for doing this and also 

demonstrated that it was indeed a multisoliton solution.

Another achievement of the thesis was the extension of 

the linear superposition principle originally proposed for the 

to many other soliton equations(KdV,MKdV,Boussinesq, 

Nonlinear Schrodinger, KP and the KdV hierarchy).In so doing it

was discovered that the f orm of the polynomial determining the 
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functions f involved in the various linear*  superpositions for*  
i

the different, equations had the same form.Thus a new connection 

between all these equations had been found.In addition this 

fact heightened the importance of the linear superposition for 

soliton equations.In actual fact another linear superposition 

principle exists for the KdV [93 which is totally different to 

that proposed by the author.In the course of the thesis we 

advance a number of reasons why the author’s linear 

superposition is more general and significant.

With the connection between the motion of the 

singularities of the multisoliton complex solution and the real 

linear superposition principle we have been able to determine 

how the sG solitons move for up to five parameters and in so 

doing have discovered many interesting features of multisoliton 

interaction.

As a consequence of attemptiiag to find good approximate 

formulae for how solitons move as a function of time for non 

centre of velocity cases of the sG, we have discovered close 

global approximations to multisoliton solutions of various 

soliton equations.In a very real sense these approximate 

multisoliton formulae are multisolitons in their own right.If 

we could find partial differential equations for which these 

new multisoliton solutions were exact solutions we would have 

made an important discovery.At present there are no soliton 

equations known whose multisoliton solutions are always close 

to the multisoliton solutions of other soliton equations.

The thesis is divided into two parts.In part onetchapters 

2-4> we review the background into which our own original 

contributionCpart 2> should be set.



CHAPTER 2 : ELECTRODYNAMICS

"‘VAaZ cMiain -izr rne id iftad tn -t Ac £ &xtnda,i i &n
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^A.Einstein , Journal of the Franklin Institute,vol 221,1936)
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§ O. Introduction

Classical electrodynamics is a very interesting example 

of a physical theory.lt accords with experience exceptionally 

well in certain areas ,yet it contains difficulties which have 

never satisfactorily been resolved.In this chapter we will 

explore some of these difficulties.To some extent the problems 

of' electrodynamics represent an inadequacy in the whole of 

theoretical physics.

There is at present no satisfactory definition of a truly 

elementary particle.The theory of special relativity asserts 

that no signal can exceed the speed of light .Thus an extended 

body must necessarily deform.In physics the process of

deformation of bodies is analysed in terms of an interaction 

between more primitive parts.Some authors 111 claim that an 

element ar y extended body could not be deformable precisely 

because of the previous remark.The contentious conclusion is 

then reached that "within the framework of classical theory 

elementary particles must be treated as points'TU.This 

conclusion is disputable because ,as we shall see later in this 

thesis,soli tons are extended bodies which can deform and are 

elementary,yet they exist within classicai field theory.

W.Pauli 121 expressed deep seated convictions about the 

Problems facing electrodynamics,to quote:

‘•--there is no explanation for the fact that only multiples of 

a certain charge occur.The existence of an elementary charge 

has until now in no way been made plausible.lt is still an open 

Problem in theoretical physics.The electron itself is a 

stranger in the Maxwell-Lorentz theory as well as in the 

Present-day quantum theory.

The field particle description presents a conceptual 

Problem:although a field can be described mathematically



without the need for any test charges,it cannot be measured

without them.On the other hand,the test charge itself gives

rise to a field.However it is impossible to measure an external

field with a test charge and,at the same time,to determine the

field due to this charge.A certain duality exists.”

was

In part Born and Inf eld’s 181 motivation for their theory

precisely to replace the and

particles with Unitarian view,in which there is only one

physical entity,the electromagnetic field.The particles of

matter are considered as singularities of the field.

To some extent an opposite view’ to Born and InfeldCBI)

a

appears in the action-at-a-distance theory of Wheeler and 

Feynman [91.In this theory there are only charged particles.

BI were unaware of the rich mathematics which would come with 

the discovery of solitons.There is renewed hope that one day a 

new Unitarian field theoryCwithout singularities) of

Problems arising from

electrodynamics wall develop,involving soliton-like ob jects in

an essential way.

In §1 we will review the Maxwell- LorentzCML) theory of

electrodynamics.In §2 we discuss some of the f undamental

difficulties prevalent in ML theory,with particular regard to

ascribing a point-like nature to the

electron.In §3 we will present Dirac’s important modification

to ml theory 161,in which the infinities associated with

Radiative retardation were subtracted off in a relativistically 

invariant manner.Unfortunately the Dirac modified theoryCDML) 

still has problems such as runaway solutions and 

P^eocceZer ertion V/e discuss these also in §3.

In §4 we review alternative theories to DML and we also

discuss Wheeler-FeynmanfWF) theory.In the WF theory a physical

lnt.erpretation is given to the Dirac procedure,though it 
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involves the properties of' the entire universe 171.This is the 

so called absorber theory.

In §5 we concentrate on attempts to solve the 

relativistic two-body problem. A problem such as this is easily 

solved in Newtonian theory yet is beset with difficulties in 

the relativistic case.This problem is important, to this thesis 

as later we shall see that to some extent we are faced with the 

inverse problem with regard to soliton interaction.

§6 is a discussion of attempts to solve the problems of 

electrodynamics within the context of a nonlinear theory in 

which Maxwell's equations are no longer true. We will discuss in 

the main the BI theory, although another theory by Dirac 1411 

has some interesting properties also.The chapter ends with a 

short summary.
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and the

§ 1. Foundations of classical electrodynamics

Maxwell’s: equations for the electric field intensity E 

magnetic field B.where p is the charge density, j the current 

density vector,c the speed of light in vacuo are,

V.E = J V zs E = - 1 B <2.1>
c t

V.B = 0 > V z, B = 1 E + 4tt  j4 ____ <2.2>
c t c

The force on a charge e moving with velocity v in an

electromagnetic field is given by the Lorentz force equation,

F = eE + — v z-. JB <2.3>c

We may interpret this as a cZe/inztion of the electric and

magnetic fields. All of the above equations can be derived from

action principle in four dimensional form in accordance with

t*he fact that Maxwell’s equations are Lorentz invariant.The

action function

where,

S f or the whole system of charges

electromagnetic field is given by 111-

S S + S + S . C2.4)
f rn rn f

S -E ■bds <2.5 >
rn a

S —
rn f -El J\d*k <2.6 >

__1___ fF FlkdQ , dQ=cdtdxdydz 
■J i k

<2.7>s = 
f 16nc

freeassociated withactionS
rn is the material

P^rticles<summation is over the par tides).The integral J' is

along the world line of the particle between two particular

6Vents.ds,the infinitesimal interval is defined by,

ds = cdt<l-v2/c2)1/Z <2.8 >

Along with the requirements of Lorentz invariance S takes the

par*ticular form <2.5) so as to become the Newtonian action

S-1 r-t 2
~2Jamv dL in the appropriate limit.The Lagrangian associated

<2.9>L
m

With C2.5) is given by,



T h e  q u a ntit y S is t h e p art  of t h e a cti o n w hi c h  d e p e n ds o n t h e 
mf

i nt er a cti o n b et w e e n t h e c h ar g e d p arti cl es a n d t h e fi el d. T h e

f o ur * v e ct or A is c all e d t h e f o ur- p ot e nti al.I n t h e i nt e gr al A
L  t

is e v al u at e d at p oi nts o n t h e w orl d  li n e of t h e p arti cl e.  A °  is 

t * h e el e ctr ost ati c p ot e nti al a n d t h e s p a c e c o m p o n e nts of A
t

0 = 1, 2, 3) f or m t h e v e ct or p ot e nti al A. W e  writ e  A ’* = < < £, A). W e  fi n d

( 2. 6) c a n b e writt e n,

r nf

t

2 L dt , 
f r‘<  i

1

L
r nf

( 2. 1 0)

is t h e a cti o n ass o ci at e d wit h t h e el e ctr o m a g n eti c fi el d

e A—  A. v
c

its elf a n d is t h e t ot al a cti o n w h e n n o c h ar g es ar e pr es e nt  . T h e

el e ctr o m a g n eti c fi el d t e ns or F L ' is d efi n e d  b y,

( 2. 1 1)

l n t er ms of  el e ctri c a n d m a g n eti c  fi el ds.

' 0 E
X

E
y

E ^

- E 0 - B B
X z y

- E
y

B
z

0 - B
X

i - E - B B 0
L y X ✓

( 2. 1 1 a)

' ■' h er e E  , B ar e t h e C art esi a n  x c o m p o n e nts of  E  a n d B  et c.
X X

I n d eri vi n g M a x w ell's  e q u ati o ns fr o m s u c h a n a cti o n S w e

Firstl y  ass u m e t h e fi el ds t o b e  
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^ ■ ^ g es. G e n er all y i n d eri vi n g M a x w ell's  e q u ati o ns

of t h e

fr o m a n



be very large compared with the field of an individual 

particle.This assumption is justified provided we are not 

speaking of distances of the order of the classical electron 

radius<e Zmc ).Similarly Internal contradictions begin to

develop if we allow the fields to be of the order of the field 

the electron at the electron radius<m2c4/e3).In practice in

most cases these are not serious restrict ions,as the classical 

electron radius is very smallest 10 1 m> and the classical

electron field is very large.

Now consider <2.4-7).When

given field,S remains fixed
f

ignored.There is a variation of

in

we vary the trajectory with a

the variation and can be

as well as dx as in as
mf

trajectory.The Euler- Lagrangeis evaluated on the varied

equations become in this case,

<2.12)

The time component of the above equation is

dF
ke = eE.v <2.13)

dt

V/hich expresses the fact that the time rate of change of the

kinetic energy of the particle is the work done on the particle

bY the field per unit time.The space components of <2.12) give

L°rentz’s law<2.3) with

E = - 1 A
c t

- 70 <2.14)

B = V A <2.15)
Equations <2.14-5) give the two Maxwell’s equations not.

involving p or j.

Now if we vary the potentials A keeping the particle

tp^jectory fixedCand therefore also the four current

find 11] the equations necessary to minimize the action S

4n .1 
—— Jc <2.16)
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The time component (i=0) of the above gives the first ol

Maxwell’s equations (2.1).The space components give the

remaining equation (second of (2.2)).

LH^r gy~momentum tensor

Consider the action inf.egr.al for some system having the form,

S = J>(q,q ,)dVdt = | J>df2 (2.17)

where dQ is an element, of four dimensional volume and the 

Lagrangian is taken to be a function of only the field

variables q and q .The Euler-Lagrange equations which 

sLationarize "the integral are

It can be shown that a
A

]«<
tensor T

t

^q (2.18)

< e ne r g y- mo me n t um tensor >

6k <5?
v

T k
t q

A
(2.19)

satisfies,
V

<? T
k i

(2.20)0

A vanishing four divergence (above) leads to fTLkdSk over a

hyperplane containing all of three-dimensional space, to be

censer ved.The four momentum t kassociated with T is given by,

A
k

Pv - fTU'dS 
c J

If' we carry out the integration over the hyperplane

The

the

PV 1 fTiOdV
C O

(2.21)

energy density is given by T ’ and the momentum density is

vector with components 1 -„,1O ,„ZO m3O,£<T ,T ,T ). 
c

For the pure electromagnetic field,

J_  p pkl
6n kl

(2.22)

The energy-momentum tensor associated with this Lagrangian

ls<at ter symmetrization-seeHl),

,ik 1 . 1 tk.^ ntrn.
T = 4?r Q_F F i + 5 e FtmF ’ 

stk • .ls the metric tensor with signature (1,-1,-1,-1).

(-F F (2.23)
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Gauge transformations and field invariants

We see from <2.14-5) that for a given <</>,A),E and B are

unique.However we can change the A, in such a way that E and B

are unchanged.Such changes to are known as

change A
k

to A' 
k

trans formations.If we

A' = A - d 1 or A' = A + 7f , = 0 ~ - f <2.24)
k k k c t

where f is ani arbitrary scalar function of coordinates and

time, the action s„,f <2.6) contains a new term which is the

integral of a perfect differential.Thus it does not vary when

the trajectory is varied,consequently the field equations are

onchanged.The gauge invariance <2.24) means that we may choose

a set of potentials <0,A) obeying

<2.25)+ 7.A = 0 , d^A = 0

This is known as the Lorentz Gau^e .Actually we can even make

changes to <p and A in <2.25) which leave the equation

unchanged. We can add Vf to A and subtract —f
c t

from <£>,provided

i satis! ies ,7 . -2V 1-c 1 =O.The 
tt

Lorentz gauge is invariant to

“0c t

k

A
k

Lorentz transformation.Other gauges can be chosen such as the

Coulomb gauge ,defined by V.A 0, which is not Lorentz

ldvariant(see also 139J for another interesting gauge).

From the components of the electromagnetic field tensor F we

Gan form two invariants (under Lorentz transformation).These are 

t’he quantities,

^i-klm

F FLk , £?kLrnF F
Ik tk I m

<2.26)

is known as the completely antisymmetric unit tensor of

fourth rank,and is defined by

r 1 iklm even permutation of 0,1,2,3

iklm
£• = a-1 iklm odd permutation of 0,1,2,3

[ O other vise

From Fvk , iklmand s we can form a new tensor F* 'tn known as the

eJUal of FLk.Flm = £/kl"’F .The
2 vk

invariant quantities <2.26) may

be expressed in terms of F m and the electric and magnetic
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fields in the following way.

t
—F
4

pllTI
2 Im

B2 E2 ' F
Im

E.B

for convenience we 2.11a)

F'J =

note<see

' 0 -E -E -E ? " 0 -B -B -B 1
X y z X y z

E 0 -B B -Xz B 0 E -E
X z y , F. . = X z y

E B 0 -B B -E 0 -E
y z x y z X

E -B B 0 B E -E 0
I z y X I 2 y X

moving chargesof and

<2.28)

Retarded potentials,fields radiation

If we choose Lorentz gauge <2.25),Maxwell?s equations can be

written,

or,

4tt

.,2 * i d A

<?x
k

4rc i

c ' <2.29 )

-4np <2.30)□ A c J >

□ d2/dx2 + ^2/dy2+d2/dz2-c 2^Z/^t2 

The above equations have solutions,

I p
t + R /’ C0 

ret.
__L_ dV

K +<<£ )
ret O

^ctdv | dV +<<£ )
adv O

<2.31)

A
ret

where

t - R / c

~R dV +<A )
ret O

A
Cldv

dV +<A )
adv o

is the distance from the point where the field is

evaiuated to where the charge or current was<ret) ,or will

b^Cadv), located at time t-R/c(ret) or t+R/c<adv).The times

R

R

J t + R, ■' C

R

f-±R,/c are known as the advanced or retarded times.Equation

^2.31) states that in order to calculate the potentials at the

Present time ,we must use the charge densities and currents at

the retarded or advanced time.Normally the advanced solutions

ruled out because of caus'ahty.Charges are supposed to 

cous*e disturbances in the fields which propagate away in the 

forward time direction.

It can be shown that the potentials for a charge moving 

aIong an arbitrary path r=r <t) are given by,
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e
(R - v.R/c)

ev
c(R - v.R/c) (2.32)

these are known as the Li£nard~Wiechert potentials.R is the 

position of the field point relative to the charge point, 

R=r-r^ (t) at the retarded time t' ,given by t' = t-R(t')/c.All 

quantities in (2.32) are evaluated at this time.v is the 

velocity of the charge.

If a charge is accelerated,but observed in a ref erence 

frame in which its velocity is small compared with light, then

if can be shown that the total instantaneous power

radiated,W,is given by,

W = 2eZv2Z3c3 (2.33)

§ 2. Problems in Electrodynamics

The energy of a static point charge is given by,

U = (87T)~1/E2dV (2.34)

lhtroducing non-electroma genetic forces which hold

where E is the Coulomb field having magnitude

E = e/R2 (2.35)

Vhen (2.34) is integrated with (2.35), over all space up to a 

r<*dius a,we find the total energy U is given by

U = eZ/2a = m c2 (m = eZ/2acZ) (2.36)
& &

is the electromagnetic mass of the charged particle.Clearly 

when a->0 U->co ,so the self energy of a point charge is infinite. 

Vhen the momentum P of the electromagnetic field of a charge

Moving with small velocity v is calculated it is

Si ven by 131,

_ . , ... ... 2 . 2.1/2P = (4v/3).m Z(l-v /c ) e

found to be

(2.37)

In this formula the coefficient of v is wrong if all the mass

of the particle is taken to be electromagnetic (m =1, according

to special relativity).The discrepancy can only be removed by

the charge
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together.This is consistent with the infinite self energy 

Problem,as without some non-electromagnetic force holding a 

charge together,a point charge would explode.

When a charge is accelerated it emits radiation,this 

gives rise to a braking force known as radiation reaction.The 

1 irst attempts to incorporate radiation reaction force in the 

equations of motion of charged particles in electromagnetic 

fields was made by Abraham and Lorentz [41.They attempted to 

construct a theory in which the mechanical momentum of a 

charged particle in an electromagnetic field was of purely 

electromagnetic origin.They assumed that a charged particle

could be represented by a sharply localized charge density pCx) 

ln the particle's rest frame.Assuming there was no flow of 

Momentum out of,or into a volume surrounding the charge,they 

wrote the conservation of momentum

JCpE + c 1jzxB>dV = 0 <2.38)

ln the form of Newton's second law

dP = F
dt ext

<2.39)
where,

Particle.To evaluate

F = ftpE
ext J ext

+ c 1JzvB )dV
ext

<2.40)

8 • + c_1jzsB )dV 
s <2.41)

The total fields E and B are the sum of the external fields

E
ext and B and the selfext

fields E ands B of the chargeds

<2.41) they assumed:

Al. The particle is instantaneously at rest

A2. The charge distribution is rigid and spherically

symmetric.

The first assumption meant j rx O.They expanded the retarded

s<=4i fields in powers of the retardation time At ~ 

ls the dimension of the particle,and found that [2,41

a/c where a
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dp
dt

oo

E x (2.42)

with ,

K<°> = -4m v/3 e (2.43)

k '1’ = 2e2 v/3c3 (2.44)

n 2 _ ,<n> n - 1 (2.45)K a

where m is defined e in (2.36).

If we let a->0 so that we can neglect higher terms in the

expansion we get,

dp
dt -4m v/3 (2.46)

There were severe difficulties with the Abraham-Lorentz 

model of a charged particle:

1. The model is nonrelativistic(A2).

2. The electromagnetic mass m enters (2.46) with the
o

wrong coefficient.

3. To ignore K<n> n>2 we had to say a->C),but this makes m

infinite.

4.For a localized charge density not to explode there 

would have to be powerful non-electromagnetic forces 

holding it together.

F’oincar^by accomodating 4 above into the theory in a

Relativistic manner was able to eliminate 2 and cure l.He 

Proposed that the total stress-energy momentum tensor should be 

£iven by

S = T + P (2.47)
M 1 J ’d

v?here T was given by (2.23) and P was a non-electromagnetic 

s^Ress-energy tensor.The four momentum is a true Lorentz 

1hvariant and is given by

(2.48)

ln accordance with (2.21).

The Poincare model showed that it was erroneous to 
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imagine that within the Maxwell-Lorentz theory the self energy 

could be purely electromagnetic in origin.Only the total self 

energy or mass m given by,

—2 f._OO _ O O. . _ . _ .m = c JCT + P >dV (2.49)

has any physical meaning.Of course the origin of the so called 

Poincare stresses was completely unknown.

§ 3. Dirac’s modification

The Lagrangian for a single pax'ticle in a free external

field characterized by field tensor Fpq(x),which starts the
i n

motion,and Fpq the self field of the par tide,can be written

t5K2.5-10>.

£ 
free

+ (Fpq+Fpq)(F
16 7T c in

1 +Ftn)
pq pq

- Idsc J

(2.50)

z p(x-z)CAp+Ap )
p I n

where £
free

Fpq respectively.pCx-z) 
L Ki

,given in m (2.9) and AP,AP
i n

correspond to Fpq

and is an invariant charge density.z is

the four vector position of the particle on its world line.The

dot over z refers to differentiation 
P

lnterval(proper

with respect to the

time).If AP and AP
t r.

are varied

independently,the equation of motion for the particle is

mcz
p

and the “equation of motion”

Fpq 
ret,q

Fret +
pq

ptn ]
pq

(2.51)

for the self

~ Jdsp(x-z)zp

The term FLn in
pq

Particle.The first term,involving

<2.51) represents the

the

field is

(2.52)

external force on the

retarded field Fret
pq

^presents the self f orce and is infinite for a point

Particle.In the previous section we saw that according to the

+

Abraham-Lorentz model the self force contained an infinite part

bating to

Pinite part

the infinite self energy of a point particle and a

relating to radiative reaction.

Dirac 161 discovered a way of separating in a unique and 
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Lorentz invariant. way the finite part of the self force 

connected with the radiation field,from the infinite part

connected with the infinite self energy.This was accomplished

by writing,

„ret i r ad 1 ,_ret _adv. (2.53)F = —r + —(F + F )
pq 2 pq 2 pq pq

where the radiation field is defined by

nra.d „ret
r = r

pq pq

- Fadv

pq
(2.54)

and is calculated from,

Ar<xd _ Aret . adv
- A (2.55)

p P P

We then have(see 151 chap 4 §4)

A^ad = c 1|<Dret- Dctdv)J^(x')dx' = c 1jD(x-x')J^(x')dx' (2.56)

where,

DCx-x' > = (2n) ±6I(x-x' )Zlsignum(x°- x°* )

6 is the Dirac 6 function.

It can be shown I5J that the self-force corresponding to

1 p ct cl
~r in (2.53) is finite and gives the following formula for
£ Pq

the reaction force

Krad = -(2eZ/3c3)(z + z z2) (2.57)
p self p p

where the term dependent on z corresponds to the reaction 
p

force discovered by Abraham and Lorentz(2.46).The term

^pendent on z z2 corresponds to the reaction force due to 
p

Radiated energy,in accordance with Larmor’s formula (2.33).

The infinite part of the self force is due to —(Fret+ p<xdvj |n
2 pq pq

^2.53).If we now evaluate the contribution this makes to the 

pr®t
pq term in (2.51),we find that the infinite part of the

Seii-force K°° is given by
p self'

K00 = fds zq 6(x-z)(Fret + Fadv) (2.58)
p self 2 c 3 pq pq

hirac 161 was able to show that K°° , , had the form
pself

K°° = -6m c z (2.59)
p self P

Trn other words (2.58) reduced to a force equation for a single
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particle with inertial mass 6m<inf ini te).Equations <2.57) and

<2.59) taken together and substituted into <2.51) gave the

force equation f or particle acted on by an external force

characterized by the

(m+6m)cz

field tensor Fpq 
t ri

Ftn<z)zq + 2 
pq 3

2<z
p

+ z z2) 
P

<2.60)

a

e

p c
e

We then put

m+6m = m
exp

(2.61)

where rn
exp

is the experimentally measured mass of the

elementary charge.This clever procedure enabled useful

equations (i.e 2.60),involving no infinities to be obtained.In

effect since 6m is infinite we are taking the bare mas's- rn to be

negatively infinite.This essentially phenomenological procedure

is known as mass renormalization.Such mass renormalizations are

prevalent in Quantum Field Theory.lt can be seen that such a

procedure does not offer insight into the structure of a truly

elementary charged body.

Solutions of Lorentz-Dirac equation <2.60) in absence of

external fields.

In the absence of an external field <2.60) becomes
>i ... " “2
Z = T <Z + Z Z ) 

P P P

2eZ/3mc2

<2.62)

Clearly the "physical solution" z =0 
p

satisfies <2.62).

Unfortunately the equation has other "unphysical solutions".If

choose a frame of reference such that at s=0,z<0)=Cl,0,0,0),

T

z<0)=(0,C,0,0),G being an arbitrary constantCacceleration in

bhe rest frame at s=0,along x axis),we find the solution of

c 2.62) is 15,pl96-71.

zo= cosh[T<eS/T-l>] , =sinhlT<e -1)1, z ,z = 0
2 3

<2.64)

This solution is unphysical since the velocity <v=z c/z ) i o

eventually equals light speed.This is an example of a runaway

sdution.Even in the low velocity limit, when the Larmor term

z
i
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'' z
<z z > can be 

P
ignored <2.62> has runaway solutions [l,p207J.

Eliezer [10i examined many situations in vzhich the

Lorentz-Dirac equation gave unphysical solutions and even

claimed that in some situations there were only unphysical

solutions.Plass Ell] however refuted this and showed that

physical solution could be found?though it is

unsatisfactory that we should have to choose a solution.Even in

a

these so called physical solutions a phenomenon known as

preacceleration occurred.This had first been observed by Dirac

[6] in the case of a charged particle vzhich is disturbed by a

momentary pulse of radiation.Here we give the treatment of this

Problem based on that of Plass [11].

We assume that the particle's velocity is small compared

with light >and is moving along a single axis of the coordinate

system.In this case <2.62> becomes with an external force f<t)

Z = TZ + f<t>

This has the exact solution 
00 — t / t -

r e fCt+t'Jdt' J o

C2.65)

<2.66 >T *z

If we let f<t) be a pulse

f<t) = kd<t~t > o <2.67>

find from (2.66)

" = {
<k/r>exp[-<t -t>Zr] , t<t

O

t>to
<2.685

0 >

Clearly the particle has started to accelerate before the

Pulse arrives. After the pulse arrival the acceleration is 

2ero,but the particle has increased its velocity.Plass rules 

out as unphysical other solutions to <2.65 > in which once again 

fhe speed of the particle approaches that of light as t->ao 

t6>10].



38

§ 4. Other' theories of electrodynamics.Wheeler-Feynman theory.

Stabler 1121 sought to remove the infinities associated 

with electron self energies and the microacausality inherent in 

the Lorentz-Dirac equation,by proposing a theory in which the

action of a charge on itself is removed.This

by considering each discrete charged particle p

was accomplished

to be a source

of a retarded electromagnetic field F<p>.An energy- momentum

stress tensor is then constructed having the form

CT )em = C4n> *£ ' CF<P> 
tj tlp, q

Fil £ p<p>p(q).-s a (2.69)
4- Im Lrn tj

where Z'
p- q

indicates that p=q is excluded from the summation.The

retarded electromagnetic field tensor F p> satisfies Maxwell’s
V j

equations C2.16) and also F , ,
tk,l

HF + F
lt,k

0,C which can

also be deduced from (2.11).

In Stabler’s theory the source of radiated energy is not

bhe electromagnetic self energies of the particlesCaction of

electron on itself),but is due to the net changes in the

Potential and kinetic energies of the particles in

interaction.Particles only radiate in the field of another

Particle. According to Stabler’s theory,single isolated,and

accelerated particles would not radiate.The term isolated

though not defined in detail appears to mean isolated

olectrically.Thus according to Stabler,a charged particle

falling in a gravitational field would not radiate.

Cornish 1131 presents a more general theory than

Stabler’s.He assumes that Maxwell’s equations hold for point 

charges,but the equations of motion of the charges are regarded 

as being dependent on the particular energy-momentum tensor 

chosen.This method leads to a certain class of theories of 

which that of Lorentz and Dirac is just one.Stabler’s theory 

afso becomes one of the possible theories,which Cornish refers 

as the interaction theory .Cornish shows that only when the
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number of charges is small do the Lorentz-Dirac and interaction

theories differ* significantly.

It is interesting to observe that the various arguments

used to derive Larmor’s theorem([4J, chapter 14) merely assume

we have an accelerating charge.lkw it is caused to undergo

acceleration is not stipulated.Thus certainly as a consequence

of conventional electrodynamics a charge should radiate as a

consequence of acceleration in a gravitational field.

Wheeler and Feynman 171 in their paper entitled

“Interaction with the Absorber as the Mechanism for Radiation”

adopt the following postulates.

l.An accelerated charge in otherwise charge-free space

does not radiate energy.

2.The fields which act on a given particle arise only

from other particles.

3.These fields are represented by one-half the retarded

plus one half the advanced Lienard-Wiechert solutions of

Maxwell’s equations.

The electrodynamics 17,91

was based on a mathematical formulation of electrodynamics in

which no direct use is made of the notion of field.This

^ction-at-a-distance concept owed its origin to the papers of

Schwartzchild 1141,Tetrode 1151 and Fokker 1161.

In WF theory the action of system of charged particles ina

interaction is given by,

-Du cfds<a>+- T e
a c

<i Ct < b

61Cx<a>
rn

' < b>.,-x :
rn

m m
)<X -X ,

( ct> ( b>

C2.70)
XT 1 < <X> J n)ldx dx 

n < b >

where the differential interval for the particle a,ds is

o

^lso written,

, <a> ds C2.71)

ar*d 6(x> is the Dirac 6 function C6(x)=O,x?zfO.J'00
-oo 6<x)dx=l>.

V dx' a'dx L
i < a)
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Let the world line of a typical particle a be altered from

rn (aK
X <S )

< a>
to m . (a>. . _ mx <s )+6x

< a>
(s<a>).We

< Cl>
de/ine(vector potential

of particle b at point x),
A ( bL- A

A <x) 
n

e f 6[<x
b J rri

( bK m
X )<X 

rn
m <b) <b>x )ldx <s )
< b> n

<2.72 >

Then the variation in S as we vary the world line of a typical

particle is,

oS=~Pm c
a

Cl

. ( a)
- dx

d<6x’ > + y
,<a) «i> L
us b/a

e
Cl

l bz iCiz ,c nA <x >d<6x 
n < a>

.. < b) . (a.).. , r,)+d>A <x )dx
n < a>

(Cl)Set u
i

, (a> . , <a>dx /ds t and integrate by parts all terms under

the integral sign except the lastll,p60LNow noting that the

integrated terms vanish at the limits of the variation of the

C

world line,since 6xv is zero,we obtain.
<a>

6S
. (a >du , V e

~b?^ ct c.

<JA‘b>Z<?xnKJ 6x ds <a>

In view of the arbitrariness of 6x l
<a>

it follows that the

integrand must be zero.Thus,

. <a. >du c -j—I ds
with,

e /c V 
a b/a

c,<b>x <a>. nF <x >u
Fit < Cl>

<2.73 >

Equations

equations<2.12>

excluded.It can

Equations are

F<b><x)
Fit

except

<b> n dA Zdx
i

-a . c b) . . idA /dx 
n

<2.74>

are

that self

identical

actions

to

are

Lorentz’s

explicitly

be shown

obtained

from

[91.The

<2.72> and <2.74> that Maxwell’s

vector potential defined in

m * a

n

<2.72) can be written,

A<b> = KA<b>) + <A<b)> 1/2 <2.75)
Ft Fi ret n adv

where CA<b'> is the retarded or advanced Lienard-Wiechert
fi <>

Potential of particle b,depending on the subscript .From these 

Equations can be derived all the f amiliar properties of 

electromagnetism in areas where we do not consider the self 

Action of charges.

WF account for radiative retardation by invoking a
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supposed property of the entire universe '.perfect

crbsorbtion.This property means that when a charge is

excited,all electromagnetic disturbances arising f rom it should

tend to great distances from

it. They express this <k>using ,F and
rot

p<k>

adv
, which are the

retarded and advanced fields due to the par tide.They

assume that an absorber surrounds the charge such that out.s-icfe

the absorber,

E<F<k>
" ret 
k

+ F<k>) = 0
adv

WF then go on to show that as a consequence of this,

E<F<k>
ret 

k

F<k>>
adv

0 , everywhere

From this the entire field acting on the ath charge is given,

according to the theory outlined

Previously,by

(k >r <f + f
ret 

k^a
adv

<2.78>

which can be written,

E F
k^a

account

,<k> a>+ <F
ret ret

of <2.77>

F<a>)/2 
adv E

all

<F<k> - F<k>>/2
, ret adv
k

<2.79 >

the third term vanishes.The second term

Was suggested by Dirac<2.54) and provides the radiative damping

Force.In the Abraham-Lorentz theory the radiative reaction

force arose as a consequence of a charge acting on itself.

In the WF theory the radiation reaction force becomes a

Property of the entire uni verse.There are still problems in the

WF timetheory itswithconnected symmetry.In our

exPerience, radiation is an irreversible phenomenon.This aspect 

ls discussed further in 171. Naturally the WF theory is 

sensitive to the structure of the whole universe,further 

’’^plications of this are explored in 1171.

In concluding this section on linear electrodynamics,we 

Point. out that due to the difficulties of runaway solutions and
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preacceleration in the Lorentz-Dirac theorytwith which the WF

theory agrees),other modifications in electrodynamics have been

proposed,aimed at removing the difficulties 118,193. A survey of

different ways of deriving the Lorentz-Dirac equation which

also discusses its limited 1203.In

this paper the author shows that the Lorentz-Dirac only applies

when the acceleration which the charge undergoes is very

small.This is due to the limited applicability of the

Lienard-Wiechert formulae.

Another paper 1211 compares the Lorentz-Dirac and WF

theories with the little known formulation of electrodynamics

due to Synge [221.The author shows that in most experimental

situations the Synge theorytwhich considers only retarded

interactions between particles and no self interactions) agrees

closely with the other two.The agreement occurs because in the

Synge theory two or more particles moving with similar

velocities and accelerations do radiate when subjected to an

Accelerating field.lt turns out that the Synge theory predicts

t-he same radiation as the Lorentz-Dirac theory.At present

Experimental tests of the Lorentz-Dirac theory are inconclusive

C233.

§ 5. Relativistic two-body problem

There is a very important problem which has never been

solved either in electrodynamics or in relativistic

field- particle interaction in general.This is the two-body

Problem, which is how to determine the trajectories of two

Particles interacting via relativistic fields (non-instant-

aneous).

The artificial case of two charges approaching each other

^long a line ,such that one charge responds to the retarded L-W
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field and the other to the advanced L-W field,has been solved 

1241.

Further recent work on the relativistic two body problem 

has been carried out in E251.These authors consider the case of 

two particles of equal mass and charge, interacting in the 

centre of velocity frame,via half advanced-half retarded 

fieldsCas in WF theory).The results indicate a non-zero minimum 

distance of closest approachteven for initial speeds 

approaching that of light).A graph of acceleration versus 

time<centre-of-velocity) is double-peaked with a local minimum

at t=O,when the particles are closest.For non-relativistic

speeds the graph has a single maximum at t=O<as expec ted).The

double peak is interpreted in the following way.As the

particles approach,sometime before the point of minimum

separation,their mutual advanced fields are a maxi mum (as if 

they were at the point of minimum separation).Thus the 

acceleration peaks early.Time symmetry gives a similar picture 

for the retarded interaction,where the acceleration peaks 

iate.

As we shall see later in the thesis such behaviour is not 

Reproduced with interacting sine-Gordon solitons.In this f rame 

they appear to be interacting simultaneously.For an interesting 

discussion of instantaneous actiori-at-a-distance in

Relativistic mechanics see 128,291.

Calculations on a similar problem with particles 

interacting via retarded L-W potentials and no radiation 

Reaction have also been carried out 126,271.The results 

indicate:

1.Charges do not have a minimum distance of closest 

approach as a function of initial velocity.

2.The maximum acceleration occurs after the charges have
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collided, and are on their way back.

Related to this latter point. [271 is the fact. that in this 

case,the speeds of the particles long after the collision were 

substantially izicre^sed on the speeds of the particles long 

before the collision.Thus, energy was not conserved.

Further references on the two-body problem may be found in 

1301.

§ 6 Nonlinear electrodynamics.Born-Infeld and others.

A theory of electrodynamics in which the primary physical 

entity is field and in which we have the possibility of 

particle-like configurations of this field,was proposed by Born 

and Infeld(BI).Some other early theories of electrodynamics are 

discussed in Pauli's book on relativity 1311.

The basic idea of the BI theory was to change Maxwell's

field equations in such a way that the total energy of a

singularity in the field becomes finite.lt is interesting that

BI appeared to think that arbitrarily introduced charges would 

need to exist in their theory.Their primary motivation being to 

remove the infinite self energy of the point charge.Ho we ver a 

much more interesting interpretation of the BI theory is that 

there is no need to introduce charges as the nonlinear field 

Equations in "free space" support charge-like solutions.

In the BI theory the field tensor F is still defined as
mn

in Maxwell's theory

F = A - A (2.80)
mn n,rn m,n

However the Lagrangian for the Maxwell field (2.22 with 

different units),

£ = -- F Fmn (2.81)
M 4 rnrt

replaced by,



45

£
BI

2 -11+ <2b > j? pmr’ 
rnn

<4bVtf Fmr'
rrm

■>.] } <2.82)

Note that
BI

preserves the relativistic invariance,by

being built out of field invariant.s<2.27).Of course such a

Lagrangian is not. unique and Born originally proposed,

<£■ bz{l Ll+<2b2) *F Fmn I1/2l
rnn J

b is some absolute unit of field strengthCe.g the field at the

surface of a classical electron).Clearly if F Zb « mn 1 £ ->
BI

The Bl field equations are,firstly 
-c_1B 

t7 Zs E <2.83 >

7 B 0 <2.84 >

which follow from <2.80) with the definition of the field

tensor(2.11a).The other pair of field equations are found from

the Euler-Lagrange equations derived from stationarizing

dQ, where
BI

the variation is carried out on the four

potentials .These are ,

which f or
M

give

. f d£[ dA
v t ,rn

d Fml = 
m

)

0

0 <2.85)

<2.16,with .L
J 0).For the BI

Larangian we
BI

have,1*

where.
<) Gml

rn
0 <2.86a)

T

Gml
Fml <2b2>_1 <F

fl + <2bZ>“‘f J 2 -2<4b > <F
i

.1/2

/“>■)
<2.86b 5

will find it useful to define scalar fields X and y/,

= [1 + <2bZ> *F f l  J
LJ

<4b2) 2<r ,Fm)2J-vr
-1/2

f1 +
2 2

B - E

y/<E,B>

dF Fkl 
k I

dA
I , k

b2 b4

<2bZ>"1F Flj 2<E.B)
b2

'v y i
dF F 

k I --wL- 1

8F
dA

I , k
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(2.86) then becomes in three dimensional form.

7 •X<E y/B) = 0 (2.87)

7 o X<B + -^E) -1 d

c at *<E Y'B ) (2.88)

These equations should be

derived from £
M

in free

equations

symmetry.They assumed

\7

(2.83-4)

(2.89b) follows from

BI discovered

space.

.E = 0 , 7 o B —1—= c E
t

a time independent solution

and (2.87-8),in the case

B = 0,from which it follows,

7 a  E = 0

E / E(t)

7 ■ZE = 0

2.88) as y/(E,O)= 0 and xE =

to the BI

of radial

(2.89a)

(2.89b)

(2.89c)

f(E),from the

the definition of ^.(2.89c) follows from (2.87).For radial E

(2.89a) is also satisfied(see B.Hague-Introduction to Vector

Analysis).<2.89c) can be written

-2 d r

which reduces to,

This has solution

dr

dE
dr

E

rZE

I <1 E2/bZ>1Z2 J

2E _+ — <1 r
EZZb2) 0

0 (2.90)

(2.91)

±b _ . . .4 —1/2[l+(r/r ) 3o
(2.92)

where r is a constanto of integration.Since we require E to

become Coulomb-like when r is large we find it necessary for ro

bo be given by,

r o
(e/b)1/Z (2.93)

^hd hence we may write,

E ±e - 2 
I’ 

O
r,,z z x4Il+tr/r ) 1o (2.94)

Solution is such that the electric field is finite for all r.
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There appears to have arisen some controversy about

solution <2.94) recently.S. Deser L32J erroneously claims that

the only solution of' the BI field equations(2.83-4,2.87-8) in

the static case is the zero solution B=E=O.This is manifestly 

untrue for we have by straightforward argument a non-zero 

solution in the static case.Murphy 1331 taking up from Deser in 

a paper romantically entitled "Requiem for the Born-Inf eld 

electron", thought he had found the exact source of Born and 

Infeld’s error.In the original BI paper BI indulged in the 

curious procedure of involving vector fields D and H,which 

normally enter Maxwell's equations in material media.A key step 

in Bl's argument was V.D-0 which BI wrote for radial symmetry

2 2as d<r D)/dr =0,hence they concluded D = e/r .This seemed to be 

necessary for BI to obtain the static solution (2.94).Murphy 

pointed out correctly that BI should have written

—2 2 3r dCr D)/dr=0.He then points out that D=er/r is not a 

solution of V.D-0, but inst.ead is a solution of V.D-4rre6<r), 

where e6(r) is an external charge density.This mistake on Bl’s 

part led Murphy to believe (2.94) was incorrect.We have seen 

here however,that (2.94) is correct without involving D.

We now show that the energy associated with the static

solution (2.94) is finite. We saw in equation C2.19) how to find

the energy-momentum stress tensor associated with a given

La grangian.In this case the "coordinates" are the vector

Potentials.Thus,

B IT k
lYi

A
l,m dA

I

c? £
rn BI

(2.95)

Where £ is defined
BI

in (2.82).Hence

T
rn

-A Gkl 
l,rn

(2.96)

is defined in (2.86b).Multipying by img and rearranging onGkl

k

k
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indices,we obtain,

tk dAl o< t Kc . - <2.97)T = - — G
t

l - g BI

The above expression is not symmetric as an energy-momentum

L 1cstress tensor should be.To symmetrize [l,p811 we add to T ,

dA1 k
d£G 1

I

.^<AlGkS
dx

The above

seeking.The

definitions

Ttk = c dAL _ 
dxL

-FaGklT’-k

expression is the

energy

dx
ik .

~ g £
BI

symmetric

is given

and and employing <2.86b)

T°° -X<FOlF°L yF F I?

'£
BI

expression we

by

<2.98)

T°°.Noting

we find

£
BI

were

the

of x

bringing out g’° in the bracketed expression gives,

Thus

This

over

T°°

for the static solution.

T°° e 2<i E2ZbV1ZZ

is

all

f ,o Lf >
ol <2.99 >

b2il <l-E2Zb2>1/2J <2.100)

the expression obtained by BI. When T°° is integrated

s p ac e we f 1 nd ,

„oo 0.098e2/r
o

2 
rn c 

e

where m
e

is the mass of the electron.Thus the "radius” of the

electron r becomes ,o

ro
1.81x10 1<5metres

Also the field constant b has an enormous magnitude thus

justif ying the use of Maxwell's equations except when distances 

°F the order r are encountered.o

Curiously BI also showed that the motion of just such an

equation<2.3>.Dirac also much later 1341 gave a reformulation

elementary charge in an external field satisfied an equation

which was a generalization of the Lorentz force
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of the BI electrodynamics in which the action for a Bl charge

was described in a very similar way to conventional

electrodynamics,but using the BI Lagrangian.

In retrospect,and in the light of recent soliton

resear ch,it is apparent that both Born and Inf eld and Dirac did

not fully appreciate the full revolutionary conceptual nature

of the theory.The BI equations are nonlinear and therfore offer

the hope of multicharge solutions.A two-charge solution would

be one for which the total field as time a ±oo, looked like a

linear superposition of two single charge f ields<2.94).In the

nonrelativistic limit,at large separations we would expect the

accelerations of the BI charges to be consistent with the

mutual BI,Lorentz-like force fieldfi.e the acceleration of the

charge would be proportional to the field at that point).

The BI equations should be looked on as describing a

continuous underlying field.If we examine the energy density of

the field, we should find certain where the energy

density is very great .These regions of high energy density

would be the "charges".The particle-like nature of the BI

charges would be a derived concept.Instead we would have a

nonlinear Bl field evolving in time from the initial state in

such a way as to mimic the effect of two or more

interacting with one another.Such concepts as "force fields"

would be illusory.

With the recent developments in the theory of solitons

^nd solitary waves the interpretation of the BI theory given

above is gaining ground 133,361.The main dificulty is in

solving the Bl field equations,except in very special

cases. There now appear to be connections between the so called

E»I scalar field" and a nonlinear Lionville equation 1371.

Unf o r t u na t e ly these authors believe that the classical
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Liouville equationCu
tt

has solutions

[381.Ho we ver this has recently been shown to be incorrect

[391.)

may

Other choices of Lagrangian than that of Born and Inf eld

still lead to the Maxwell- Lorentz theory as an

approximation [401.It may be that some other Lagrangian will

lead t.o more tractable equations.

A di f f er ent nonli near theory of electrodynamics has been

proposed by Dirac [411.He criticizes the adoption of the

Lorentz gauge<2.25) in the Maxwell- Lorentz theory,as it leads

to difficulties in the transition from a Lagrangian form of

electrodynamics to Hamiltonian form.The latter beinga

essential in Dirac’s view for making the transition to a 

quantized form of the theory.Dirac’s attitude to the existence 

of gauge transformations is explained in his own words: 

'‘they indicate that there are more variables present in the 

mathematics than are physically necessary."

Dirac’s idea was to use the “superflous” variables in the 

theory without charges to describe the charges themselves.Gauge 

transformations in the new theory become foz-bidden.He considers 

destroying the gauge transformations by imposing the condition,

A A — k
rn

where k is a universal constant .The new Lagrangian which takes 

this into account is then,

£ = - —F Fmr' + -X<A Am-k2)
4. mn 2 rn

[>irac then obtained a theory in which the structure of

elementary charges was not important,,as in his view,“such 

totalled description is not needed when quantum phenomena are 

r*ot being considered...".

More recently other workers [421 have discovered

Solutions of the Dirac equations which are static and
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spherically symmetric and may be regarded as charged

partic les. They also found that these so lut, io ns Cone for each

sign of charge) were connected with different vacua,and that a

conserved topological current could be defined 

conserved charge was proportional to the 

whose associated

charged particle

number.

§ 7. Summary

We have presented in this chapter an outline of the

Maxwell-Lorentz theory of electrodynamics.Ultimately we have 

seen that the theory becomes beset by difficulties in 

association with the description of an elementary charge.

We have reviewed various attempts to rid electrodynamics 

of these difficulties,including the interesting,but

extaordinary theory of Wheeler and Feynman.In this theory the 

fields of interaction are removed and replaced by an 

action- at-a-distance theory which is sensitive to the 

properties of the entire universe.lt is interesting to note 

that all these theories(§3,4> do not shed any light on the 

structure or meaning of an elementary charge.

Two theories which were at least capable of defining an 

elementary charge were those of Born and Inf eld,and Dirac.Both 

these theories involved nonlinear partial differential 

equations.A fact which we should find,not entirely

unexpected.si nee an multicharge solution can not be regarded as:

true linear superposition of many single charge

Solutions.This is simply because charges interact with each 

other.Nonlinear equations have the potential for explaining 

this basicCbut hitherto unexplained) property of the world.

In a nonlinear theory "particles*’ would become mere

Cental constructs.The essential reality being the underlying
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nonlinear field.The world would become a unity,incapable of 

division into seperate partsCexcept as an approximation,when 

"particles" were far apart).

Of' course such a radical shift in the conceptual 

foundations of theoretical physics would also extend into the 

quantum domain,and perhaps supplant it with a new set of more 

fundamental,less phenomenological concepts.lt is interesting to 

not that Dirac felt the search for a complete classical 

electrodynamics to be very important,since he says:

"...the troubles of present quantum electrodynamics should be 

ascribed in my opinion,not to a fault in the general principles 

of quantization,but to our working from a wrong classical 

theory."141,the first paper!.

The author’s view in this thesis is that,in a nonlinear 

theory, terms such as "particle","field of interaction" are 

only of secondary importance.However, they are central to both 

conventional classical theory and quantum theory.A nonlinear- 

theory of "particles" may indeed cause a radical shift in the 

whole of theoretical physics,both classical and quantum.



CHAPTER 3 : SOLITON EQUATIONS
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§ 0. Introduction

In the last chapter we saw that a nonlinear partial 

differential equation Cnlpde > offered us the prospect of a 

continuous underlying field obeying the nlpde,forming a more 

fundamental description of particles in interaction.That 

prospect started to become much more of a reality when Zabusky 

and Kruskal 111 observed numerically the interaction of

2pulse-like entities having a sech form.They had been 

investigating the properties of the Korteweg-de VriesCKdV) 

equation,

u - 6uu + u = 0 C3.1)
t X XXX

Zabusky and Kruskal had found that an initial cosine

2profile decomposed into a series of pulsesCsech > travelling to

appeared,then disappeared,and finallythe right, which

reappeared as the motion continued.The pulses were such that

the larger ones moved with greater speed.The pulses were given

the name "solitons" to indicate their solitary wave/particle

properties.

When the interaction of solitons was investigated

further,the following picture emerged.Let us suppose that long

before the interaction,the larger soliton was to the left of

the smaller.lt was found that Jong after the collision,the 

faster soliton would be found to the right of the smaller.Thus 

it appeared that the larger soliton had passed through the 

smaller soliton.In addition to this it was found that,the exact 

initial speeds possessed by the solitons were recovered.The 

only trace that there had been an interaction at all,was in the 

phase shifts of the solitons.That is to say they occupied 

different positions from those they would have occupied had 

they travelled at constant speed throughout the collision.
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Looking at the interaction in more deLail Zabusky and

Kruskal round that when the left-most, (initially) 

much larger (and faster) than the other soliton,it 

soliton was

appeared to

swallow up the smaller one,re~emitting it later. However ,when 

the solitons were of comparable size and speed,the interaction 

took a different form.As they approached one another the larger 

soliton started to decrease in amplitude and speed,while at the 

same time the smaller soliton increased both its amplitude and

speed.In this case the solitons appeared to have exchanged

their identities.

Lax 121 provided a more rigorous analysis of the

evolution of the two soliton profile and discovered a third

mode of interaction.In this intermediate case,the larger

soliton emitted a separate pulse which was absorbed by the

smaller soliton.As a consequence of this,the amplitude of the

larger soliton diminished and the amplitude of the smaller

soliton grew larger.A criticism of these modes of interaction

was provided by Bowtell and Stuart 131.Further support for

their analysis of KdV soliton interaction will be found in part

two of this thesis.

We shall adopt the following definition of a soliton

141.A soliton is a solitary wave which preserves its shape and

speed in collisions with another wave,or at worst

shape and speed with that of another soliton.

The first known observation of a soliton was by John

Scott Russell ISJ.The KdV got its name from two early Dutch

investigators of shallow water waves,Korteweg and de Vries 161.

Further references to Scott Russell and the early history of

the KdV can be found in an appendix in reference 141.

It is not the primary concern of this thesis to examine
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physical systems which support the soliton equations.There is 

ample literature on the subject E41 and especially 171.

We now list a number of nlpde's which are at some stage 

considered or referred to in this thesis.

Korteweg-de VriesCKdV)

u ~ 6uu + u
t X XXX

= 0 C3.1>

Replacing u with —u removes the sign from C3.1),we shall also

refer to this as the KdV.C3.1> can be derived from the

equation,

2W - 3w 4- W 
t X XXX

0

By differentiating the above with respect to x and setting 

u=w we obtain <3.1>.We will refer to the equation in w as the
X

derivative KdV.

Modified Korteweg-de VriesCMKdV>

u + 6u 2u + u =0 C3.2>
t X XXX

This can also be derived from the equation,

w + 2w3 + w =0
t X XXX

by differentiating the above with respect to x and setting u=w
X

we obtain (3.2).The equation in w,we refer to as the derivative 

MKdV.

Kadomtsev-PetviashiviliCKP)

This is also called the two-dimensional KdV.

above with sin replaced by sinh,and can be simply obtained from

Boussinesq

<u
t

- 6uu
X

+ u > + u = 0 C3.3>
XXX X yy

<u - 6uu + U ) - u = 0 <3.4>
X X XXX X tt

sine-Gordon

u u = sin u C3.5>
XX tt

The sinh-GordonCnot a soliton equation) is the same as the

<3.5> on replacing u with iu.
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Nonlinear or cubic Schrodinger(NLS)

u + iu + a I u I Zu = 0 <3.6)
XX t

Liouville

u - u = eu (3.7)
XX tt

There are also equations refered ho as modified KF and 

modified Boussinesq,which are obtained by changing the power of 

u in (3.3-4) to 2,and changing its sign.The Liouville is the 

only equation in the list above which at present is not yet 

known to possess N-soliton solutions .

We now give a short summary of the contents of this

chapter .In §1 we will review the inverse scattering method as

developed for the KdV by Gardner,Greene,Kruskal and

Miura(GGKM).We will also discuss the linear superposition 

principle (Isp) developed for the KdV by GGKM.

In § 2 we will briefly review Lax’s operator-theoretic

generalization of the GGKM method for solving the KdV

equation.

In § 3 we will discuss the very general technique for

solving nlpde's developed by Ablo witz ,Kaup,Newell and

Segur(AKNS) which was inspired by Zakharov and Shabat’s inverse 

scattering method for the NLS.

Backlund transformations and nonlinear superposition 

principles(nlsp) form the topic of § 4.Later in the thesis we

shall see how the nlsp for the sGCalso known by the grandiose 

title of "the theorem of permutability"),will enable us to 

derive the multisoliton solutions of the sG.

Andreev claims to have found N soliton solutions 181,but this 

is found to be false 191. Andreev’s N soliton solution turns out 

to be a 1 soliton solution*
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In §5 we list the N soliton solutions of the equations 

which concern us in this thesis.Originally this thesis was to 

be exclusively connected with the sG equation,however 

discoveries made by the author were found to be applicable to a 

large number of soliton equations,so as a result,the horizons 

of the thesis have widened.

The chapter ends<§6) with a discussion of certain topics 

which have arisen in the chapter and how they relate to the 

main topic of the next chapter.

§ 1. The Inverse Scattering Method

The essential ideas of the inverse scattering methodCISM) 

for solving the KdV equation were given by GGKM 1101.It is 

their treatment of the problem which we outline here Illi. 

Consider the time independent Schrodinger- equation,

p + (X-u>p = 0 C3.8)
xx

where p would be known in quantum mechanics,as the wave 

function,and here,we shall refer to it as the eigenfunction.The

potential u(x,t> is taken to be a solution of the KdV equation

<3.1> and time t is just a parameter-having nothing to do with

the time which enters the time dependent Schrodinger equation.

X=XCt> is the eigenvalue.If u in C3.8> is substituted into the

KdV we find,

C3.9a>

where,

Q = <p + <p - 3Cu+X>p
t XXX X

C3.9b)

If we integrate C3.9a) with respect to x over the interval

<~co,+oo>,we find that,provided tends to zero sufficiently

Rapidly as | x | -* oo,

0X 
t

C3.10>
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Substituting C3.10) into C3.9a) we obtain,

QXX

Noting C3.8),we see that Q is a solution of C3.8).Thus Q must

be a sum of linearly independent solutions of C3.8),with

coefficients possibly dependent on t.Thus,

Q = <p^ + <p - 3Cu+X)^ = FCt)^> + DCt)<p 2dx C3.ll)

Since p vanishes as | x |-> oo ,we must have DCt)-0,to prevent Q

from becoming unbounded.

Equation C3.ll) determines the time evolution of <p.If the

potential uCx,t) is given at some fixed,initial time t,C3.8)

may have a finite number of bound states with discrete

eigenvalues X
n

2
k ,n=l,2,..,N and,a

n
continuum state X=kZ>0.The

eigenfunction <P n associated with the bound state

2 
eigenvalue,X =-k 

n n
may be written,

-22L q = o

,as x-> -oo

where we have chosen to normalize cp ,so that, n
f°° £>2dx = 1
J -00 n

C3.12)

C3.13)

The wave function associated with the unbound state is

related to the situation of a steady plane wave being partly

transmitted and reflected by the potential uCx,t) for some

fixed time solution of C3.8) is a linear

combination of plane waves expC±ikx).The boundary conditions of

a potential which may partly reflect and transmit,are written,

<P e
-tkx + RCk,t)evkx ,x-> oo C3.14a)

a

and

TCk,t)e Lkx ,x->~oo C3.14b)

In accordance with the
*

quantum mechanical interpretation of <p<p

as a probability density,we have,

1 C3.14c)

Essentially the problem to be solved,amounts to finding 
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u(x,t) for a given u(x,0) satisfying (3.8).This can be broken 

up into three steps.

1. The direct problem.

Solve (p + IX-u(x,0)142 = 0 for given u(x,0) to find any
XX

distinct eigenvalues X and determine the .scattering data 

R(k,0),T(k,0) as | x |-> co.

2. Evolution of the scattering data in time.

From (3.11) together with (3.14) determine R(k,t),T(k,t)

3.The  inverse problem.

Find u(x,t) from R(k,t),T(k,t) for arbitrary t.

In our case,since u(x,t) is a solution of the KdV subject to

the initial condition at t=0 ,u(x,0)=u (x),the above procedureo

enables the KdV to be solved.

Now imagine we have completed step l.Ve are in possession

of a set of eigenfunctions <p (x,0),associated with the 
n

eigenvalues X=-k2.We also have determined R(k,O),T(k,O),by

solving the Schrodinger equation (3.8) at t=0,with the

asymptotic forms of <p (for many examples of this see §25 1121).

vZ For the discrete eigenfunctions <p ,the time dependence is 
n

determined from (3.11) with D=0.Hence,

d<p ) + C<p ) - 3(u+X >C<p ) = F (t)«? (3.15)
n I n xxx n n x n n

Multiplying by ip ,and then integrating by parts over

C~oo,+oo>,and also using (3.8),we find,

00 co
f ^2dx = F (Of £>2dx 

dt J 2 n n J n-00 -oo

However,the wave functions are normalized (3.13),thus F (0=0. n

Clearly

(42 ) + C<p ) - 3(u+X )(«2 ) = 0
n t n xxx n n x

(3.16a>

(3.16b)

Now assuming u->0 as x->-oo and noting (3.12),we find
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de n
dt~

4k3 c
n n

which has solution

c (t) 
n

3
-.-..4k t

C €0>e n 
n

Similarly the time dependence of the reflection and
2

transmission coefficients follow from X=k ,putting (3.14) with

u->0 when | x | ->oo into (3.11) with F and D equal to zero.We find,

T(k,t) = TCk,0),R(k,t) R(k,0)e8tk l

Summarizing:

Thus we

k (t)
Fl

G (t) n

T(k,t)=

RCk,t)=

k (0)
n 3 

4k t 
c CO)e n 

n

T(k,0)

R(k,0)eaUc 1

have completed step 2.Equations (3.17)

(3.17a)

(b)

(c)

Cd)

specify

the time evolution of the scattering dat.a.We now turn to step

3.Fortunately this is a problem already solved in 1955 by

GeFfand and Levitan 1131 and also by Marchenko (see

1141,bibliography for a list of the Marchenko papers).

The potential u(x,t) is given by

J

u(x,t) = -2 — K(x,x,t) dx (3.18)

where K(x,x,t) is a solution of the GeFfand-Levitan-Marchenko

integral equation,

KCx,y,t) + B(x+y,t)
00

+ J B(y+y' ,t)K(x,y' ,t)dy * = 0 ,y>x (3.19a)

with,

B(x,t)
n
E2 x—k ■ c (t)e n

Fl
Fl = 1

<t>x 1 00 L
- J R(k,t)e dk

-co2rc (3.19b)

Thus we have seen how to solve a nlpde (KdV) in terms of

solving two linear pde’s.Namely^the time independent

+

Schrodinger equation,with

linear integral equation

a given potential u(x,0),and the

defined in (3.19).In general for 



arbitrary B(x,t) it, is not very easy to solve (3.19a).

The following additional facts emerge from the previous 

analysis.

1. The number of solitons moving to tho right which emerge 

from u(x,O) as time evolves are in one to one relationship with 

the number of bound states associated with (3.8) with potential 

u(x,0).Furthermore,as t->oo the solitons are arranged in order of 

speed(amplitude),with the fastest,on the extreme right.

2. Non-soliton or oscillatory disturbances emerging . from 

u(x,O) move to the Ze/t,and are present when R(k,O)^O.

solitons,well separated and each,moving at

3. When u(x,0)>0 there is no bound state(potential

hill),and no solitons emerge.In this case we only have

oscillatory disturbances as in 2.

4 .If u(x,0) admits bound states and R(k,0)=0 (zero

reflection) then u(x,t) can be determined explicitly.In this

case the asymptotic ( 11 || ->oo) case consists of a collection of

constant speed.

The N-soliton case is obtained by solving (3.19) with

K(x,x,t) d ..= > dx (3.20a)

A = det(I+C) (3.20b)

where I is the NxN unit matrix,and G is the NxN matrix defined

below,

c (t)c (t)
.expl- (k +k >xl

m n s
(3.20c)

and the N-soliton solution of the KdV is,

u(x,t)
thus,

-2~ K(x,x,t) dx (3.21a)

C I k + k
*- m n

.2
u(x,t) = -2-”Z In det(I+G) dx (3.21b)

The above solution was first obtained using the inverse 
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scattering technique by Wadati and Toda U6I.Hirota had 

previously obtained the same solution using his own direct 

method 1171.

In the 1-soliton case, 

det(I+C) = 1 + (2k ) £c2(t)e Zk/
1 1

2 
-V-1 ~2k <X-4k t>l+(2k > c (0>e i i

1 1

Substituting this into (3.21b) gives,

u(x,t) 2k2sech2£
i 1

(3.22a)

-2k <x-4k2t-6>
i i

(b)

6 = (2k
1

) 1lnCc2/2k >
i i

(c)

(3.22) is the well known single soliton solution of the KdV.

When (3.19) are solved with R(k,O)=O,the initial step is to 

assume that,
N

K(x,y,t) = -£ c (t)^ (x,t)exp(-k y) (3.23)
m rn m

m = 1

so that the problem becomes to determine the unknown functions 

ip .In fact ip turn out to be the normalized eigenfunctions of 
m m

the associated time independent Schrodinger equation(3.8)1111,

y/ = A 
mm dx

ip - tu(x,t)+k2lv - 0 (3.24)m m rn

When (3.23) is substituted into (3.19),the ip aci'G found by
rn

solving (3.25) below,

(I+G)^ = E (3.25)

where I,G are the matrices defined before(3.20c) and

x- s.T _ —k x -k x -k XTip-Cip ip ,..,ip ) , E=(c e i ,c e 2 ,..,c on ) (3.26)
1 2 N 1 2 N

Since det(I+G)^O till,I+G is non-singular and has an 

inverse,we may write,

ip = (I+G)_1E = A _±QE (3.27)

where Q is the classical adjoint matrix of I+G.Since I+G is 

symmetric Q is identical to the matrix of cofactors of I+G.

GGKM Illi were able to deduce a Isp for u.They showed that if 
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V <x,t) are the N eigenfunctions in C3.24) and C3.27) then,
m

N
u<x,t> = -4’T k y/2<x,t> <3.28 >

tr'i H'l
rn=l

In this lsp GGKM decided to define the quantity

z-4k w <x,t) to be a soliton.Thls was very natural,especially 
m m

since as 111 ->oo,each such term does tend to a single

soliton<3.22).We shall see in part two of this thesis that

there is an alternative equally natural lsp which we can define 

for the multisoliton solution of the KdV.Like the GGKM

soliton,our own soliton definition is also a soliton of form 

<3.22) in the |1 | ->oo limit.There are also a number of other

attractive features possessed by our own soliton

definition,which are not possessed by the GGKM soliton.

§ 2. Lax’s method

Lax 121 showed that the KdV was one of an infinite number

of pde’s that govern the variation of the potential in

Schrodinger’s equation <3.8) in such a way as to leave the

eigenvalues fixed with' respect to variations of the time

parameterCin the potential).

Let us represent <3.8> in operator form,

2Lep = \fp , L = D -u , D = d/dx <3.29)

Now suppose,

= Bep <3.30)

where B is a linear differential operator.lt is then found that

the derivatives of X with respect to the time parameter, X. are

controlled by the equation,

<3.31a)

where,

EL,Bl = LB-BL <3.31b)
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Thus,provided we choose B so that,

—u + EL,Bl = 0 t €3.32)

then X = O.The
t

simplest operator which can lead to constant

eigenvalues is,

B = aD 1
(3.33a)

we then find,

EL,B V = z!a nV + a Bip + au <p
1 X XX X

Choosing a to be constant gives,

EL,B 1 = au (3.33b)
1 X

Substituting this into (3.31a) we find,

(u - au )<p = “X4p (3.33c)
t X t

Thus,provided u^ =au ,X =0.This
X t

result is not particularly

exciting as it says that any potential of form u(x+at) will

leave X fixed in time.When we pick an operator quadratic in

D it so turns out that we once again obtain (3.33c).Lax 

discovered that only operators B, r odd, produced evolution 

equations for u different to (3.33c).Thus consider B^ below,

B = aD3 + fD + g
3

where a is again constant,while f and g are functions of u and

its spatial derivatives.We find,

EL,B l<p = (2f +3au )d V + (f +2g +3au )D«p + (g +au +fu )£>
3 XX XX X XX XX XXX X

Requiring the coefficients of D2 and D to vanish leads

eventually(choosing a=-4) to,

- EL,B 1 = - (u ~6uu ) + c u
3 XXX X 1 X

The pde satisfied by u which keeps X =0 I is thenCfrom 3.32),

~u - u +6uu + c u =0
t XXX X 1. X

The last term may be elimated by change of variables

(dx->dx+c^(t)dt),so that eventually we find,

u - 6uu + u =0 
t X XXX

■y This is the KdV equation.Using this technique an infinite 
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number of higher order equations characterized by B , n e DM, 

can be constructed which leave the eigenvalues of the 

Schrodinger equation invariant in timeCsee §5).

§ 3. The AKNS method

Zakharov and Shabat 1181 extended the Lax method and 

developed an inverse scattering technique which enabled the NLS 

C3.6) to be solved.The Zakharov-Shabat method was further 

generalized by Ablowitz,Kaup,Newell,and SegurCAKNS) C191.They 

found that many nlpde’s could be solved by the following 

methodCsometimes referred to as the two component method). 

Consider the equations,

v + ifv = q(x,t)v C3.34)lx s 1 2

v - ifv = r(x,t)v
2x 2 1

under the scheme.

Choosing 

given by,

the time dependence of the eigenfunctions v ,v 1
to be 

2

(3.35)V 
It

= A(x,t,()v + B(x,t,()v
1 2

V = CCx,t,C>v - A(x,t/)v
2t 1 2

We can obtain the conditions for the eigenvalues < to be time

invariant by cross differentiation of systems (3.34-5).We find

s\ = 0 if,

A = qC -rBX
(3.36)

B^ + 2i£B = q^ - 2Aq

C - 2i<C = r + 2Ar x t

Finite expansions of A,B,C in terms of the eigenvalue parameter

2i£ and the potentials q and r,determine equations solvable
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CLASS 1

A = -4i<3 - 21qi< rqx qr’x (3.37)

Substituting (3.37)

Setting r=l

MKdV (3.2).

CLASS 2

i cos0
4

C3.39) substituted

qcos$

4q<2 + 2iq <

4r<2 - 2ir-xC

into

2q r

2qr2

gives

obtain,(3.36),we

ql ■ 6rqq
X + qxxx

0 (3.38)

r - 6rqr + r 0t x xxx

the KdV equation (3.1) and r=±q gives the

into (3.36) give,

-1 (3.39)

, r = rcos0 , xt (cosd>) = 2(qr)
X X

(3.40)

Setting r=-q=0 /2 then gives the sG equation in the form

0 
xt

sin</>

A

B

C + r
X X

C 1 ,B 1 k
2 qt < C 1 " k _12 <

There are still more classes of equations solvable by

this method 1191.The solutions of all these pde’s for q and r

are given by the f o llowing .If the initial

potent ials,q(x,0),r(x,0) are sufficiently smooth and vanish

rapidly as | x | -» oo,then q(x,t) and r(x,t) are given by(for all

time),

q(x,t) = -2K(x,x) (3.41)

r(x,t) = -2K (x,x)
2

where and are the solutions of theK K

Gel'fand-Levitan-Marchenko equations,

K(x,y) (3.42)

_  ( n i_
KCx,y) + i F(x+y) + jK<x,s)F(s+y)ds = 0
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§ 4. Backlund Transformations(Brs)

A Backlund transformation for a second order pde for

dependent, variables ,77) is defined as a pair of equations,

= P(^' ,^,^,£^,£,77) (3.46)

The consistency condition <p[. <p' ~ provides a new equation

for ip' .Sometimes the equation satisfied by tpf is the same as

that satisfied by £>.In this case we refer to the transformation

as an auto-Backlund transformationfaBTXTo clarify the meaning

of (3.46),consider the sG equation in the form,

= sin^> (3.47a)

where,

% = , 77 = (x+t)/2 (3.47b)

The equations,

7 <p^ + 2a sinl(<p' + p)/2] (3.48a)

+ 2a 1sinE(^>' + ^/)/2] (3.48b)

are of the form (3.46),together they comprise an aBT for the sG

equation.This is clear by cross differentiating (3.48) with

respect to T) and £ ,and then applying the consistency

requirement.

Backlund transformations have a long historyC^ 100

years),and a detailed list of references to early work on 

subject is given in 1211.BT*s generally relate the solutions 

the

of

one equation with the solutions of another. A well known example

of this is the BT which connects the Liouville equation u =eu
xy

with the wave equation u =0 121,221. Since
xy

the latter has a

general solution,one can also be found for the Liouville

equation.The Liouville also possesses aBT’s 127J.The general

method for determining BT’s (when they exist) between pde’s is

known as Clairin's method 121,221.
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Lamb pioneered the use of BT*s,as a method of finding

solutions to the sG equation 1231.A first solution in the case

of the sG can be obtained

obvious solution of the sG).The resulting equations are,

These equations

solutionCsoliton

(3.47b) we have,

p'

where,

r

can

2a sin!<p' /21

2a 1sint</21

be integrated to give

or antisoliton) solution of

(3.49a)

(3.49b)

a 1-parameter

the sG.Noting

4tan 1explar; + £/al = 4tan S^xpEt^Cx-ut)] (3.50a)

<l-u )2 -1/2
• ' > a = ±E(l-u)Z(l+u)I1/Z ,|u| < 1 (3.50b)

The positive sign in (3.50a) corresponds to the soliton(kink)

and the negative sign to the antisoliton(antikink).We could in

principle now use the solution (3.50) as p in (3.48) and

determine a two parameter solution <p' .Such a method involves

complicated integrals,and anyway there exists a much simpler

way of determining higher parameter solutions,known as the

theorem of p&rmut ability Cf or the sO.This method involves only

algebraic calculations.lt was this method that Lamb 1231 used

to obtain the few known solutions of (3.47),incuding those

found by Perring and Skyrme 1251,prior to the discovery of the

inverse scattering method L20,24I.In discussing this method,it

is useful to use a diagrammatic representation.

From a solution (p of the sG we apply the BT(3.48) with
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parameter a^,to generate ^.We do the same with parameter a^ to 

generate p^.Then we apply (3.48) again to <p with parameter* 

a ,similarly we apply (3.48) to ip with parameter a .Both these 
2 Z i

final transformations may produce the same solution having 

parameters a^ and a^.Considering (3.48a),we then have the 

following equations.

the sum of the last

c«\ - (p )_ o £ = 2a sinl($2 +<p )Z211 1 o (3.51a)

% - h>f = 2a2sinl(p3+pi )/21 (b)

% - O <
= 2a sinlCp +<p )/21

2 2 0
(c)

% - p )
2 s

= 2aAsin[(£>3+v>2 )/21 (d)

The sum of the first pair of equations and

pair have the same left hand side.Equating the right hand sides

gives us an algebraic relation between
3 12 u

,which we

write,

tan[(© )/41 = k tant C<p -<£> )/41 
^3 O 12 1 2

(3.52a)

k
1 2

(a +a )(a -a )
12 12

Cb>

This is the theorem of permutability.Star ting with the vacuum

solution <p,higher parameter solutions can be built up

iteratively.We may also begin at an N-2 parameter starting

point,and find the N parameter solution as pointed out by

Barnard 1261.1n addition Barnard stated implicitly the

following.To build a strictly N soliton solution using (3.52), 

we must use 1 parameter soliton and antisoliton solutions, 

a It ernately. So that for instance,to build from (3.52) the three 

soliton solution,we would choose to be a soliton, <p* an

antisoliton and <p a soliton.We will see exactly why this is so 

in chapter 5-Choosing a and a in complex conjugate pairs
1 2

enables the breather solutions to be obtained 1231.

Further work on BT’s for the generalized sGCp^FGp),including 

the sinh-Gordon and Liouville equations),in which exact 
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conditions necessary for aBT’s to exist are found,is given in 

[271.

It was long not after Lamb’s pioneering work on aBT’s for 

the sG,that Wahlquist and Estabrook discovered that the KdV 

also possessed aBT’s [281.Writing the KdV in conservation form,

u +(-3u 2+u  ) = 0 (3.53)
t XX X

they introduced the function w such that u=w .(3.53) becomes,
X

(derivative KdV-see introduction)

w = 3uZ-u = 3wZ-w (3.54)
t XX X XXX

If w and u are solutions of (3.53-4),then different solutions 

w' ,u' are defined by the BT

w' = -w -kZ/2 +Cw* ~w)Z/2
x x

2 2 2w' = -w ~k u'+2u +u(w'~w) +2u (w'-w) It X

The single soliton solutions of (3.53-4) are,

w = ktanh^

u = w = -(k2/2)seah2£
X

e = -kCx-kZt-x >/2 
o ..

Also (3.53-4) have singular solutions,

w = kcoth£

u = ~(kZ/2)cosechZ£

(3.55a)

(3.55b)

(3.56a)

(3.56b)

(3.56c)

(3.57a)

(3.57b)

By succesively applying the BT’s (3.55),in a similar way

to the sG, Wahlquist and Estabrook were able to produce a nlsp

for the derivative KdV,analogous to the sG(3.52).

k2
1w = w

3 O

k2
2

2(w -w )
2 1

(3.58)

where wo is the starting solution of (3.54) and w and 
2

w are i

solutions generated by the BT’s with parameters k and k .The
2 1

N soliton solution of (3.54) could be generated by starting

with the vacuum solution w =0 and using 1 parameter solutions w o
Az

or w. Wahlquist and Estabrook noted that only a certain choice
Az

of w.,w will produce the N soliton solution by iteration.This t t
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was as follows.In the sequence of N 1-parameter solutions 

leading: to the N soliton solution,the regular solutions(3.56a) 

and the singular solutions(3.57a) must be used alternately .For 

instance to build the 3 soliton solution from (3.58),w must beo

a regular solution,w a singular solution,and w a regular
1 2

solution.

Wahlquist and Estabrook note that "it is hard to resist 

the particle-antiparticle analogy suggested by this 

structure".We shall see when we discuss the N soliton solutions 

of various equations in §5,how the sequence of 1-parameter 

solutions needed to build the N soliton solution of the KdV,is 

exactly analogous to the sequence required to build up the N 

soliton solution of the sG.

It is now known that many soliton equations possess BT’s 

and associated nlsp’s.Wadati 1291 discovered the aBT for the

MKdV (in derivative form),

w + 2w + w =0 (3.59)
t X XXX

which when u=w
X

becomes the usual form of the MKdV(3.2).The

BT’s are,

(3.60)—w
x

+ 2ksin(w' -w)w'
x

w' 
t

-8k2u-4ku
X

From these (one only needs the first of the equations

—w 
t

above) we obtain the nlsp,

tanKw -w )/21 = a o

k + k
1 2

k - k
1 2

tanKw -w >/21
1 2

(3.61)( ]

and the inverse scattering method(AKNS) are explored 1301.

This has identical form(apart from factor 2) to the sG

equivalent (3.52).The reason the nlsp’s for the MKdV and sG are

so similar becomes evident when the connection between the BT’s
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§ 5. N-soliton solutions

The KdV belongs to a hierarchy of equations as we saw in

§2.This hierarchy is defined by [311,

u 
t

Zn*l

B
n+l

L 1

4

2 2& /dx

B o
where in the above

where,
u<x,t )

2n+l

T eXp[
<x =0,1 -1

J

-22n+1CB
n+

u,u ,u ,
x XX

N
: a.?. 

. _ J J 
J =1

<3.63c)

)
1 X

,n=-l,O,l,... <3.62a)

LB <3.62b)n
X

u - 1 r U dx <3.62c)
2 j 00 x

-1 <3.62d)

and all higher derivatives vanis

has N soliton solutions,

= -2<ln t ) <3.63a)
XX

+ r A. .a.a. <3.63b)
£< V<J<N tJ b J J

£ <x,t ) = £ +
j 2n+i j

<-l)nk2n+1t
J 2n+l

where

n=l

n-2

If N=3

A.
tj

k x
J

In

+ <3.63d)

<3.63e)

2 U.
LJ t

<3.63f)

k ,6 «= [R and k <k.,i<j.For Lb ‘ 'v J

u 
t

3

<u
XX

in <3.63b)

example.

-3uZ)
x

,KdV <3.64a)

u = <u -5uZ-10uu +10u3)
t XXXX X XX X

5

<3.64b)

Also note that <3.635 may be written in the form [14Kl<i,j<N>

r=detM (3.66a)

M = <5 + 2<k +k )* 2<k +k ) 1expi<^ +? )
tj LJ t J L J 2 L J

<3.66b)

Solutions .Single soliton.

<3.67)

<3.68)

Observe what happens if we allow the exponential in the
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single soliton solution,to be negatiue ,and take the modulus of

T.

uCx,t> = -211n|l - e^qi = -2kZcosech2? C3.69>
XX 1 1

This is the singular solution C3.57b).We can look at the 

inclusion of negative exponential terms in r as analogous to 

the way in which antisolitons enter the multisoliton solution 

of the sG.In this way we see how it is not so unexpected,that 

we should have to use singular solutions in building up the N 

soliton solution of the KdV.Instead we see that the manner of 

building up multisoliton solutions of the KdV and sG are 

closely related.In fact we can even introduce complex conjugate 

amplitudes k. in <3.63) and produce singular breathers 1321.

The KdV also has the property,that as 11 | -»oo,[331

C3.70a>
where,

N

= nlnBT
n

n -1
b* = nij2 > b' 

n in n
j=l

(3.70b>

with u. given in
tj

(3.63f>.We also have.

+
6“

n
>

N

E Fl
n = l

C3.70c>0, 6 = 6 -6
n n n

The superscripts on <5 refer to the limits t->±co.

MKdV equation

The N parameter solutions of the derivative MKdVCu=w satisfies
x

equation (3.2»,

w + 2w3 +
t x

w
XXX

C3.59)0

are given by 122,33,341.

w detCI-iM) j-if Im
[ Re detCI-iM> C3.71a>

where I is the NxN unit matrix and M is the NxN matrix with 

components,

m = 2k Ck+k > ^xpLCk+k, >x-8k3t+n 1 <3.71b>
jl l I j I j I ll

where,

T) ,k e R for solitons and antisolitons.<£,=1 for solitons and 
J J L
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1 1
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i ii

C 3. 7 2 b >
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T w o  s olit o ns. N = 2  . £ =s  = 1.
1 2

d et CI-l M) = 1- u 2 e * A -i o A +
1 2

< 3. 7 4 a >

z "

t a n( w/ 2 >
e * +  e s 2

“  2  F + 7 ~
1 - u e i a

1  2

C 3. 7 4 b >

✓

u 2 is d efi n e d  as f or t h e K d V C 3. 6 3f >.  
1 2

S olit o n- a ntis olit o n. < £  = 1, < £  =-l. W e  fi n d,
1 2

1
Jt a n C w/ 2 >

+ u 2
1  2

< 3. 7 4 c >

1

*-  
k  = k  .

2 1
a = rsi n/j.

u = C k
1 2  1

- k X k
2 1

■± + k 2 >  1  = i t a n / U C 3. 7 5 >

d et CI-i M) is d et er mi n e d  b y ( 3. 7 4 a > wit h,

= r +i a + ni , f2 = r-i n + o *

r = 2/ ?[ x- 4 C ^ 2 - 3 a2 >tl  , Q  = 2 o[ x- 4 C 3/ $ 2 - a2 >tl

< 3. 7 6 a >

C 3. 7 6 b)

T o  o bt ai n  t h e st a n d ar d br e at h er * s ol uti o n w e  c arr y o ut t h e p h as e

c h a n g e b el o w,

7) +  l n Cf ?/ c x > C 3. 7 7)

w e  t h e n fi n d,

t a n C w/ 2) = C/ 3/ c O  si n Q s e c hr C 3. 7 8)

T his  is t h e br e at h er  s ol uti o n.
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The asymptotic solution of C3.71) in the no breather case 

was investigated by Hirota [333 and Wadati

N ± 
u = 2F & k sech<£ +<5 > 

n n n n
n = l

1341.They found that

C3.79)

with 6 defined as with the KdV. n

sG equation

The N parameter solutions of the sG 1221 are seen

below.The solution for combinations of solitons and

antisolitons was first obtained by Hirota using: his direct.

met, hod 135],

cp = —4 tan <3.80a>

where I is the NxN unit matrix and M is the NxN matrix with

components,
x-

,nkr2ai£l<ak+a1

where for

ak+al

2

solitons and

soliton/ant isolit on asymptotic speed)

ak+at

2 y+7?t
L )

antisolitonsCu is

Cb)

the

(c)

for solitons and breathers ^L=l,for antisolitons <^=-1.

Associated with each breather is a pair of complex parameters,

al’al+1 and a pair of complex Phases

ai,rai=ae ’a=C1+vL> «-vt> .aetR,|vJ<l Cd)

are the breather speeds. Also we note that for breathers,

Ca -a )ZCa,+a, ) = itan^z
I L+l I l+l

Ce)

Solutions.

Soliton.N=l,<£; =l.We
1

find

Thus,

Xm = e i
11

C3.81)

Similarly for the

. -IX$ - 4tan e 1 C3.82a)

antisoliton case(s =-l).
1

^■‘expj x(
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0 = 4tan 1-exi C3.82b)

Two solitons.N--2 .£ =£ =1. 
£ 2

0 = 4tan 1
ss

u - Ca -a >ZCa +a > = Cl-u u 
£2 12 1 2 £ :

>ZCu -u >
1 2

set
4 tan 1

I1 +

C3.83a>

Cb>

C3.84)

Breather .N=2 =£ =l.From
1 2

C3.80d> =aA=aCcos/j-isin/j>.We find,

X =r+iQ , X =
1 2

=r-iQ C3.85a)

11

•x

J

a
2

F=r coS7J.Cx-vt)+7?R , Q^^sin^-Ct-vx>+77^ Cb>

where in the above 77=77 +177 .Now,

detCI-iM) = l-Citan/j)2e2r-ierCem4-e L“>

We change phase as with the MKdV,7j 7)- lntanp .The above

becomes,

det CI-IM) l+ezr-2er CsinCDiZtan/u

Thus,from C3.80) we obtain the standard breather solution,

tanC</> Z4>
b

sinQ.sechfZtan/u C3.86)

Note that if we go into the rest frame of the breather,by

Lorentz transformation,

x Y Cx'+vt') , t
v

Y Ct'+vx')
v

C3.87)

C3.86) becomes,after setting tan/u=u.

tanC</> Z4> = sincrut' .sechox' Zu 
b

C3.88a)

, 2.-1/Za - Cl+u > Cb>

Since the "phase velocity" of a sG breather is equal to

the translational velocity,we see that the sG breather is

simpler than the MKdV breatherC3.78).The asymptotic nature of

the sG is similar in stucture to the KdVCalthough because the

sG is bidirectional the asymptotic argument is simplerXThe sG

phase shifts have an identical form 1351.
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KP equation

The N soliton solution of the KP equation was first

obtained by Satsuma [361 and also by Manakov.et al.1371.

The KP equation,

Cu ~ 6uu +
t x

u > +
XXX X

u = 0 
yy

C3.3)

has solutions identical in structure to the KdV.

uCx,t>
where,

T>
XX

(3.89a>

? (x,y,t> 
j

N
E«.r + 

. J J
J =1

Cb>

Cp -q >x + Cp2-qZ)y + <p3-q3>t + 6
J J J J J J J

F A a a. I
LJ V J J

Cc>

Cd>

where p .We

setting p =-q
L t

2 u
<-j

Ce>

note that the KdV is recovered from the

[381. t may also be written r=detM,where

above by

M is the

NxN matrix with components,

<p -q >Cp -q > 
t t j j

<p.-q ><p -q.> 
l J J L

exp|~Q .+£ >
L J

C3.89d>+

In special circumstances the KP has resonant soliton 

solutions [37,391, in which a two space dimensional solution 

encloses a finite volume.These special solutions are called ZM 

solitons,after their discovers,Zakharov and Manakov.The KP 

equation considered here is the firstClike the KdV) in a whole 

hierarchy of equations,which by certain transformations (e.g 

p =-q > may include the Boussinesq and others [38,401.

Boussinesq equation

The Boussinesq equation has solutions of the same 

functional form as the KdV,but with the great advantage of 

having bidirectional solutions and equal amplitude 

solitons.This means that two soliton collisions of equal 

amplitude are likely to be easily analysedCas we shall see in
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part two of the thesis).The sG is the only other soliton

equation possessing these attributes that we consider in this

thesis.

The N soliton solution of the Boussinesq equation,

Cu
x

6uu + u >
X XXX X

u = 0 
tt

C3.4)

has the ubiquitous Hirota form 1411,

T

u<x,t> T )
xx

<3.90a>

V exp
<x =0,1 

j

r N
EaA- t J=1 J J E

l<t < j<N
A. a.a. 

ij i j J
<b>

1

+

£ = k <X“£ v.t) + 77
J j ’ 1J J J

<c>

v
j

A 
ij

<l+k2>1/2
J

, 2 = In u
tj

<d>

<e>

2
U

l J

<i v -s v >z+3<k -k.)2 
it j j_________i J
v -e v >Z+3<k +k >2 

i j j i J

<f >
<<£.

L

The N soliton solution has

<£?. = ±1
L

Ce>

the usual asymptotic properties.

Solutions.

Single soliton.

u<x,t> 2k2sech2e
i i <3.91)

Two soliton.

A particularly interesting two soliton solution is one in which

solitons having equal amplitudes,collide with equal and

opposite speeds.This case is characterized by choosing k^=k=k2?

e =1,£? =-l.Then we have from 
1 2

<3.90),

£ = k<x-vt)+n = kCx+vt)+Y) ,u2 = vZ/<vZ+3kZ>
1 11 2 12

<3.92>

After adjusting phases 77.

u

-In u ,we find,
12

2Iln<l + 2u icoshvtekx + eZkx)I
12 XX

<3.93>

In part two of this thesis we shall see how we can express the

above as a linear superposition of accelerating solitons.
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Nonlinear Schrbdinger equation

The N soliton solution is given in 118,421.Backhand

transformations and a nlsp can be found in 143,441.The N

envelope soliton solution

U
XX

<3.6 )

is given by,
i 7?

<2«) tin det<I +
*

GG >1
XX

<3.94)

where I is the NxN unit matrix and G is the NxN matrix with

components,

<c

NLS,

We

c 
mn

* 1/2 
c 1

m n
★ 

k -k 
rn n

exp i<k
m

*
k )x

n > k constant 
m

<3.95a)

c <t)
rn

exp<4ikZt
rn

+ r >rn
y constant 

rn
<b)

Hirota 1421 gives the explicit N soliton solution to the

0 <3.96)

only quote the single soliton solution,which is like a real

and imaginary breather added together.

The one-soliton solution is,
*

y/ = <P*+P*)exp 77 /<l+expt>j +77 J) 

where,

77 =P x - Q t - t/O> =
i 1 i i

P = p +iq Q = -i/?P2 = o* +ip 
X 1 1 f 1 1

= <q*-ph/J

SO,

77 = <p x-<7 t+£?> + iCq x-p t+b)1 1 1 1 1 

Defining,

r = <77 +>7*>/2 , Q = <77 -77*>/2
1 'i 1 i

<3.97) becomes,

y/ = p^tcosfisechr + isinQsechD

or as it is usually written,

<3.97)

<3.98)

<3.99)

<3.100)
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<3.101)

This is the familiar envelope soliton.In <3.100) we see the

similarity with the breather solutions of the sG or MKdV

equations.

§ 6. Summary

In this chapter we have discussed the main soliton

equations and have looked at the primary methods of

solution.During the course of our exposition of the GGKM

inverse scattering method for the KdV, we discussed how the N

soliton solution could be expanded as a sum of N terms.Each

term involved a squared eigenfunction of the associated

Schrodinger equation.lt seemed natural for GGKM to interpret

each of these terms as representing a soliton for all

time.

Others 145,461 have taken up this suggestion,and

attempted to analyse,in detail,how solitons of the KdV

interact.We will discuss these papers in more detail in the

next chap ter,which is specifically concerned with particle-like

approaches in soliton theory.

We examined the Backlund method for finding solutions to

soliton equations and looked at a the remarkable nlsp connected

pattern for

with t.hem.We noted

(regular /singular or

solutions. We saw in

pattern for the KdV

the sG

was a disguised

the peculiar use of alternating

soliton/antisoliton) to build up

an original argument that the

form of the

solutions

N soliton

alternating

alternating

equation.

Examining N soliton solutions in §5,we saw how a large

class of them are very similar .This is fortunate,since when we

examine how a lsp may be used to study how the solitons

interact for all time,our ideas will automatically apply to
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many equations.

Soliton equations are especially interesting because of 

the collisional properties of solitons.This was evident in 

Zabusky and Kruskal’s 1965 paper 111. Yet,despite the amazing 

strides forward in our understanding of soliton equations ,our

understanding of how solitons 

thesis we aim to rectify the 

progress has been made (chapter 

detailed interaction of solitons.

interact is sketchy.In this

situation,and build on what

4) to fully understand the



CHAPTER 4 : SOLITONS AS PARTICLES AND THEIR INTERACTION.



§ O. Introduction

This chapter is perhaps the most varied of the 

thesis.There are a great many aspects of soliton research which 

hint of the possibility of regarding solitons as "elementary 

particles”.The work of Perring and Skyrme reviewed in §1 was a 

direct attempt to construct a theory of elementary particles

based on solitons (of the sG).We concentrate on their method of 

determining the intersoliton potentials.

Ovex* a period of time there have been a number of diverse

attempts to understand how sG solitonsCin particular)

interact. We review these attempts in §l.The most successful

approach to soliton interactionCtwo parameters) was devised by

Bowtell and StuartCBS).Their method consisted of allowing the

space variable to become complex, thus allowing the complex

Hamiltonian density to develop poles.Remarkably the dynamics of

the singularities of the two soliton solutions could easily be

review the BS

findings in §2.

The singularities of the complexified sG can be simply 

mapped into the real singularities of the shG equation. 

Pogrebkov explored the motion of these real singularities and 

rediscovered some of the BS work.He also numerically analysed 

the motion of the real singularities of the "soliton-breather" 

solutions,and noted an interesting feature of their 

interaction.Namely,the incoming "free soliton" replaces the 

trapped breather soliton.The equivalent sG case and many others 

have been analysed by the author and the findings are presented 

in part two of the thesis.

In §3 we review how multisoliton solutions may be 

constructed by nonlinear superposition of asymptotic
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solitonsCBSXWe discover,how, via certain invariants we may 

switch the sG soliton interaction on or off. We also review

Matsuda’s remarkable,but generally unknown,discovery of an 

explicit linear superposition of accelerating solitons for the 

sG two parameter solutions.

Linear superposition as a means of understanding soliton

interaction was suggested by GGKM for the KdV equation.Yoneyama

and independently Gaenepeel and took up thisMalfliet

suggestion by GGKM,and attempted to analyse two soliton KdV

interaction in detail.The concept of linear superposition of

solitons also arises with respect to the cnoidal solutions of

soliton of acceleratingequations.Finally Jinear superposition

solitary waves appears with regard to the two-solitary wave

solutions of the 4-0 equation CMoshirXWe review all these

aspects in §3-

In §4 we review work done on the motion of

singularitiesCreal or complex) of solutions of nlpde’s.Kruskal

first suggested that allowing the spatial variable to become

complex might be a profitable way of understanding soliton

interactionCKdV).

In addition to soliton solutions many soliton equations

have rational solutions possessing singularities for complex

spatial variable.The motion of these singularities has been

shownCKdV) to be related to a solvable many body problem,of

particles interacting via a —2r potential.This exposes the

amazing richness of soliton equations.The motion of real

singularities of the apparently non-soliton Liouville equation

also has interesting dynamics.

Galogero and Degasperis discovered that certain coupled 

systems of nlpde’s were solvable by the inverse scattering
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method.These new equations had interesting soliton

dynamics.They found single soli tons, moving as if under the

influence of an external pot.enfial.The N soliton solutions of

their equationsC'boomeron") developed poles in the complex 

plane. Analysing the two soliton solution of their equation 

which was Galilean invariant),they were able to obtain the 

dynamics of the solitons explicitly and discovered that they

2 moved as if under the influence of a mutual cosech r potential 

<r= relative separation of solitons).

The solution of nlpde’s in bounded regions of space is a 

relatively new topic.We review some work done on the solutions 

of the sG in bounded regions in §5.We find solutions which can 

be regarded as particles bouncing off barriers or inside 

potential wells.This subject is particularly interesting as we 

might look for possible quantum-like behaviour of classical 

solitons.

In §5 we also review some of the research carried out on 

perturbed soliton equations.There has been considerable 

controversy connected with the subject of sG soliton dynamics 

under the influence of perturbations.We have included a very 

large number of ref erences on soliton perturbation mainly f or 

completeness but also to illustrate the difficulties of

understanding soliton dynamics under perturbation.The behaviour

the sG soliton when exposed to weak applied fields can be 

quite suprising.Over short time scales the soliton moves in a 

manner- such that its position is not proportional to tZ.This is 

the so-called "non-Newtonian" behaviour .This latter term should 

r^ally read "non-Newtonian point-like" behaviour,as over short 

time scales the bulk movement of highly deformable bodies is* 

non-Newtonian" in general.
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Finally in §5 we note that Gorshkov and Ostrovsky were 

able to deduce via an asymptotic analysisCwhich they pioneered) 

that the solitons of the KdV and MKdV repel each other .This has 

also been confirmed by a very recent numerical analysis.This 

repulsion is in agreement with BS and also our own work on the 

subject >and disagrees with the workers using the GGKM lsp to 

analyse soliton interaction.

In §6 we give a short review of some interesting papers 

on higher dimensional solitary waves.We .also review briefly 

some interesting work on the quantum-like properties of 

classical solitons.We end the chapter with some conclusions.
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§ 1. Attempts at deducing the force laws obeyed by sG solitons 

in interaction.

The possibility of regarding sG solitons as particles in

interaction in the context of a field theory of matter was

first put forward in 1958 by Skyrme 11-41.Perring and Skyrme

151 re-discovered the two parameter solutions of the

= sin^XX tt

2-soliton solution
2 —1/2 tanCp/4) = usinhj-x/cosh^ut ,^=Cl-u >

Soliton-antisoliton

tan(p/4) = sinh^ut/ucosh^x

Breather
2 —1/2 tan(^/4) = sinc/ut/ucoshox ,<?=Cl+u >

C4.1)

C4.2>

C4.3>

<4.4>

The appearance of these solutions is seen below.

two solitons

soliton-ant i so 1 i ton

breather

Actually,these were discovered earlier by A.Seeger,H.Donth and

A-Kochenddrfer.Z.PHYS. 134 (1953)pp 173-193.



90

Perring and Skyrme defined the position of the soliton to

be given by,

cos^ = -1 = (2n+l>H, ne Z) C4.5)

Equation C4.1) can be deduced from the Hamiltonian density,

2C = ~ [<jt>2 + <p2 + 2Cl~cos<p>]
Zu L x

<4.6)

The sG admits static periodic solutions [6i.For a "periodic

array of solitons" separated by distance R,we have,

x = kF([p-nl/2,k) , 0 < x < R/2

R = 2kK(k)

where FCc*,k) is the incomplete elliptic integral of 

C4.7a)

C4.7b)

the first

kind,defined by,

F<ot,k) - f Cl-k2sin2<9> £x2d3 = u ,a = am(u) 
J O

and K is the complete elliptic integral of the first kind

KCk)=FCrc/2,k),0<k^l.<p satifying (4.7) is a monotonic increasing 

function of x with "period" R,such that for xe£nR,Cn+l)RJ,n<= (N

<p<x> = p(x-nR) + n^>CR)

The above follows from the fact that for R/2<x<R ,

pCx) = C4xz zR-1><£<R/2)“£>Cx -R/2)

A sketch of <p is seen below(note similarity to soliton

ladder).

The

soliton per interval) is from (4.6)

3 C4.8)
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where E<k) is the complete elliptic integral of the second kind

defined by,

rr/2
ECk) = ECk,rr/2) = r <l-k2sin29>lx2de

J o

Since the soliton rest mass is 8,if (4.9) represents two body

Now from C4.7b) R»1 corresponds to k—>1 and R«1

corresponds to k—->0.Thus we find,

R»1 3 =• 8 + 32e R
o <4.9a)

R«1 3o
= 8 + (2rr2/R - 8) C4.9b)

forces,the intersoliton potential for large R should be of the

— R
order 16e .These results are essentially those of Perring and

Skyrme,but we have used a treatment of them given by Hsu 161.

In a similar way we can obtain a static solution for a periodic 

array of solitons and antisolitons with separation R 161.In 

this case <p(x) is defined by,

x = KCk) - FC^,k) ,0<x<R/2 ,R>tt  <4.10a)

R = 2KCk) (4.10b)

% = sin \k 1cosC<p/2)) (4.10c)

A sketch of is seen below.Note similarity to soliton

antisoliton ladder.

I'he energy per unit separation is

3 =o
81 ECk) - <l-kZ)KCk)/2 1

and we find,

R » Tl 3 =o
8 - 32e"R <4.11a)

r : - 3 =o 8 - <8-2R) C4.11b)

^hen R—the graph of <P versus x tends to the constant
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solution <p = n,and when R < ny<p = n is the only solution.

Rajaraman 171 obtained <4.9> and C4.ll) using a classical

approximation to the quantized sG.

Rubinstein 181 attempted to obtain the intersoliton

forces directly,by examining: the two soliton and

soliton-antisoliton solutions of the sG when the solitons were 

very far apart .He imagined a solution of the sG which was a 

small departure from Ca> a sum of two fixed solitons and Cb> a 

sum of a fixed soliton and a fixed antisoliton.He found that in

case (a) after, a short time interval,the solitons had moved

apart indicating repulsion.While in case Cb) after the short

interval the components had come closer together,indicating

attraction.He calculated the "force" between two kinks as

proportional to, 2q, where N =1C-1>
t

for soliton

Cantisoliton),and 2q is the relative separation of the

N N e 
i 2

a

kinks,which he assumes is large compared with their widths.

BS 191 criticized Rubinstein’s approach.Firstly,

Rubinstein’s "force" was actually an impulse.Secondly two 

soliton solutions are strictly time dependent,he nee we cannot 

imagine we have two fixed kinks which we can "let go".Despite 

fhese doubts about the validity of the Rubinstein method,we 

find that Rubinstein’s results agree, at least, qualitatively 

with the results of previous authors discussed.

In Hsu’s paper 161 a number of methods were developed for 

extracting information about multisoliton potentials.These

niethods were based on earlier work by Troost 1101 and

Vinciarelli Illl.Vinciarelli had obtained an effective

— 2
s°llton-antisoliton potential,V =-2msech <mR/2),where

so.
m is the

free soliton mass(8) and R the soliton-antisoliton separation.

Hsu found a formula for V which was more sharply 
so.

decreasing
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than Vinciarelli's.Hsu used a technique which related the 

potential to the time delay/advance incurred by the interaction 

Cwith respect to no interactionXThe technique is fairly

complicated and does not give an explicit formula for the

inter soliton potential.

Bef ore we discuss the BS technique for analysing

intersoliton interaction,we mention a paper by Ringwood

C121(published 3 years after the BS paperXIt is important

because Ringwood obtained an exact formula for the intersoliton 

potential,as a function of time,by a completely different 

technique to any others’.

From the Lagrangian density for the sG,

£ = + 2<cos^> - 1)1/2 C4.12)

we may obtain the energy-momentum tensor

T'V = £ C4.13)

(where as usual <p = ^/djA.The momentum in the spatial 
, i/

interval la,bl,P Ib is given by,
1 <3

b
P|b = f <3xTo1 C4.14)

1 a J a

and the force in the spatial interval is,

d f dxTO1 = -T111 b C4.15)
O J a. 'a

For the soliton-soliton solution C4.2),Ringwood obtained the 

force (-T11I ° > in the centre-of-velocity frame F ,given by,
1 -00 ss

F = -8uZ^2sech2/ut C4.16)
aS

and for the soliton-antisoliton solution he obtained,

F = -8u2x2[sinh2^ut-u2cosh2^ut]/[slnhZxut+u2J2 C4.17)
so.

As we shall see C4.16) agrees with the BS results,however 

^4.17) does not.The BS technique gives an infinite force at 

^=0, while Ringwood's formula above is finite.lt seems likely 
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that Ringwood's technique may break down because of this 

singularity.

§ 2. The Bowtell-Stuart technique

The curious fact about the BS method 191 for analysing sG

soliton

for so

interaction is that it has apparently gone unnoticed

long.Hsu<1980> makes no reference to BS.Ringwood cites a

number of researchers including the Ra jaraman paper which is in

of Physical Review as that of BS’.In fact thethe .s’czme volume

only paper the

which cites the

come to in the

author has

BS paper is

f ound anywhere in the literature

one by Matsuda 1131,which we will

next section.Strangely, Matsuda's paper appears

to have gone unnoticed also.

BS in an attempt to analyse the motion of solitons

throughout the interaction introduced the idea of allowing the

spatial variable to become complex.Kruskal 1141 had earlier

suggested that this might be a useful way at getting at KdV

soliton interaction,though he did not pursue the subject.

The N soliton solution of the sG may be written<Hirota[15J>,

ip = 4tan 1Cg/f> C4.18)

where,

_< o> .
S = E exp# 

~ 0 £ J 
t *

C4.19)£ exp#^ . ,
ft — o , 1 

V

Superscripts

N N

0. . = E A At At + Ea^.QC. + a ) C4.20a)
tj . VJ L J L Lt V

t < j 1=1

= X - u t , r. = <i-
2. -1/2 

U ) C4.20b)
L L t

Ce) and Co) on the summation signs denote

all possible combinations p =0,1 under thesummation over

f

N N

condition Z /u even, Z ,
1=1 L t = l

ft odd ,respectively.BS showed that, 
i
A2 1 2A = In u.

tj 
C4.21)
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where u . is the common speed of the i and J solitons in 

the c-of-v frame,and is given by,

u = 11—u u -Cl-uZ>lzZCl-u2>lz ZJ/Cu -u > <4.22>
tj t J t J L J

Subst.ibut.ing C4.18) into the sG Hamilt.oni.an density (4.6) 

gives,

X- = 8CfZ+gZ>_ZECfg -gfx>2+Cfgt-gft>2+g2f2] (4.23)

For real spatial variables x, 3€ is always finite,ho we ver if 

x—>x+iy,3(? may develop poles when,

f = ±ig (4.24)

Consider the single soliton solution(z=x+iy),

(4.25)

has poles at the branch points of <p when s

Thus,for

z = ut + ijz(2n+l)rr/2

a single soliton we

,ne (4.26)

have a sequence of regularly

spaced poles parallel to the imaginary axis with a single

projection on the x axis,which moves at speed ut.

In the two soliton case the poles are determined by

(4.2),

sinhz = ±icoshjzut/u (4.27)

solving for real and imaginary parts gives,

X = ± -In 
r

rcosh?-'ut+ (cosh
I

2 , 2.1/2
2-ut-u ) (4.48a)

y = C2n+l>7TZ2jk ,

Thus, associated with the two

lines of poles lying parallel to

Positioned symmetrically about it,also

Projections given by (4.28a).As time evolves the lines

there are only

soliton solution

the imaginary

(4.28b)

are two

axis and

two real

of poles,

initially moving at speed u toward each other,slow down,stop,

and then accelerate away from one another.

ns 2

J

If we choose a pair of poles with fixed imaginary part,we
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find they move along a line parallel to the x axis.In this way

we have particle representation of interacting solitons. We

identify the centre of mass of the real soliton with the

position of the associated pole of the Hamiltonian density(or

field branch point).

From the positions of the poles we can calculate exactly

the velocity,acceleration and forces experienced by the pole

particles.The force between the representative pole particles

is found to be,

F = S^sechVx (4.29)

In time dependent form(using (4.27)) the above can be

written F=8/'Zsech22ut. .This is the result found by

Ringwood(4.16) 3 years later. Associated with (4.29) is the

a

potential,

V(X) = 8/(1- | tanh? X | > (4.30)

When the solitons are far apart (4.29) gives,

(4.31)

Thus the results of §1 agree with the BS findings,in the

appropriate limit.

The soliton-antisoliton solution(4.3) which BS took in 

the equivalent form(p—>-^+27T),is,

Kp = 4tan 1(ucosh^z/sinh^ut)
so.

(4.32)

Poles of SK occur when.

coshj'Z = ±isinh^ut/u (4.33a)

Solving we find,

p1 nh^ut+(si nh^ut2 +u" )1 2
(4.33b)X = ±

1
r u )

y = (2n+l)7r/2^ , ne Z (4.33c)

As with the two soliton case,we find pairs of pole
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particles moving along straight, lines parallel to the x axis. We

can calculate easily the velocity,acceleration and forces which

the pole particles are subjected to.The force is found to be,

F = 8p2cosechVx <4.34>

and this corresponds to a potential,

At

VCX) <4.35>

t=0,X=0, so F is infinite.At this point the pole particles

pass through each other in opposite directions,at the speed of

light.BS also employed the same technique with the breather

solution<4.4>,

- 4tan \sino*ut/ucosho"z> 
b

, cZ-Cl+U J ,U<5 K <4.36>

The pole positions turn out to be given by,

X ■ * J -fsin(c/ut >+ Csin2c/ut+u2 >1 /2
u ] <4.37a>

y = <2n+l>7r/2o' , ne Z <4.37b)

The attractive force between breather poles has the same

form as the soliton-antisoliton case,

2 2F = 8cz cosech &X C4.38)

VCX) = 8c<l- | cothoX | ) C4.39)

The motion of the bound breather poles is periodic.They

oscillate about x=0 with period t  and amplitude A given by,

A 1
<7

Pogrebkov 1161

singularities of the

Hipping <p—»i<p.This

t-anh.Otherwise all

the sG.The singular

r = Zn/cni

, f 1+<1+U2>
u

examined motion of the

<4.40)

C4.41)

real

shG,which is obtained from

changes the inverse tangent into

the sG by

an inverse

solutions are identical in form to those of

soliton solution of the shG is <X=x<x-ut)>,

= 4tanh XeX = = lnLtanh2<X/2)l
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In the above <p develops real singularities when e" = 

lathis is of course,identical to the condition that the pole 

projections of sG must satisfy. Actually the idea of mapping the 

sG to the shG can be quite useful,as in the laboratory frame,it 

is easily shown that the two parameter shG possesses only two 

real singularities.Ho we ver analysis of the two parameter 

complex sG shows it can have an infinite number of poles (see §5 

chapter 6).This confirms the author’s contention that the extra 

poles are of no significance as only two have real projections.

We note that the two parameter solutions’ associated 

poles(sG) can be described by a relativistic two body 

Hamiltonian,

9C = 8Cl-xZ>_1ZZ + 8<1-x 2>"1/Z + V (4.42)
£ 2

where 8 is the rest mass of the solitonsCor antisolitons) and 

• 2 • 2
x^-x^ are the squared velocities obtained by differentiating 

<4.28a,4.33b,4.37a).For the two soliton solution

V(X) 16^(1- | tanh^X | >,while for the soliton-antisoliton

solution VCX) | cothj^X | ) and for the breather

VCX) for two soliton cases or

soliton/antisoliton cases,as t—>±00,2?—>16^, while in the breather

case when t=T,x -x =0,and
1 2

16cx < rest energies ofse

constituents.This indicates the bound state nature of the

breather.

A generalisation of equation (4.42) is useful in higher

parameter cases as it enables us to calculate numerically a 

global potential as a function of timefchap 7). Another point 

of interest here is the "gravitational" nature of the force 

between "neutral"(equal numbers of solitons and antisolitons) 

Collections of solitons.Since the attractive force between 

°Pposites is greater than the repulsive force between 
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like (4.29,4.34), we may profitably imagine that there are two

potentials acting between solitons;gravitation~like,and

electrostatic like.The "electric potential" generated by a

soliton<+) or antisoliton(-) would be,

v = +8^f I cothrx I ~ I tanhrX | ] <4.43a>

and the "gravitational" would be given by,

= BzflV
9

When X is large,

| tanh^'X | + | cothj^X | )2 j <4.43b)

16^expO2yX) , 16^expC-8^X) C4.44)V
o

+ V
9

For a large collection of N solitons and antisolitons in 

equal numbers,the total potential acting on a lone soliton or 

antisoliton would be ^ld^ expC-S^ X) due to the "gravitational" 

potential alone,where here X would represent the distance from 

the lone soliton to the "centre of mass" of the large 

collection.The "electric potential" would rapidly tend to zero.

§ 3. Linear and nonlinear superposition

Nonlinear superposition principles(nlsp) have been 

established for a number of important soliton equations.These 

Were reviewed in the last chapter .We saw that in particular the 

and MKdV shared the same nlspCapart from a factor of 2).

BS [91 gave an interesting presentation of the two and 

three soliton solutions of the sG.They found that by 

introducing the pairwise c-of-v speeds u. <4.22),the actual
J

solutions of the sG,for two or three solitons,could be obtained 

frorn a linear superposition of single solitons.As we have 

seen,the single soliton solutions of the sG may be expressed, 

1=1,2,3 tanGp/4>=expX. ,X (x-u. t),/. = Cl-uZ) 12 (4.45)
l i L I t t v

A linear superposition of these solutions is given by
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Thus,

tan<«? Z4>
123

3

^123“
t= 1

(4.46)

(4.47)
1 - F tan(^)./4)tan(«> Z4>

1*3

To obtain the three soliton solution,BS observed that we merely

tan(<p Z4>
123 E u2 tan(<p Z4)t.an(a? Z4)

L J v Jt * j

C4.48)

can

off

let

12

We note,in addition to this, that

be done in pairwise fashion in the

the interactions between solitons 1

u =l,u =1,(4.48) can
13 23

then be written,

the switching operation

following way.To switch

and 2 with soliton 3,we

tan(p Z4>
123

tan(p Z4>
12

tanQ Z4) + tan(^ Z4 )
i 2 9

1 - tariCp*2Z4>tan<£*3Z4)

tan(<p*/4) + tan(^Z4)

2
1 - u* ^tanC£>i/4>tan<<p2/4)

C4.49a>

C4.49b)

is just the known two soliton solution of the sG.Thus from

<4.49a>,

123
<p + <p

12 3
C4.49c>

This demonstrates very clearly how the presence of u Z1
tj

1

generates the interaction.

Matsuda £131, as an intended approximation to the two

soliton solutions of the sG investigated whether the two

s°liton solution could be expressed as a linear superposition 

°f accelerating kinks,

(p = 4tan 1exp> Lx+< (t)l + 4tan *exp/£x-£ (t)l 
ss

(4.50)

Using a rather obscure variational approach,involving the

Valuation of some complicated integrals,Matsuda discovered 

that if,
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<(t) = -In
r

^coshyut+Ccosh2?- ut- u2 >1 z 2 j
(4.51)

p is the exact two soliton solution,given by(after <p—><p+2rr), 
ss

tan(p Z4) = - cosh^ut/usinh^x 
ss

(4.52)

He was also able to obtain exact results for the soliton

antisoliton solution <p and the breather solution <p .
sot b

—1 —1ip = 4tan exp? Ix+oCt)] + 4tan exp-?-[x-7?(t)l
sa

(4.53a>

7)(t) = ~ In 
r

^sinh^ut+ (sinly ut2 +u2 )1 " 2
(4.53b)

tan(p /4) = -cosh/'-x/usinh^ut
sa

(4.53c)

—1 —1<p = 4tan expofx+^(t)] + 4tan exp-otx-^ (t)l 
b

(4.54a)

<(t> = :
O

1 . fsin(cyut)+(sin2c7ut+u2 )lz 2
- In -

I
C4.54b>

(4.54c)

Comparing the above expressions with the moving pole

]

u )

formulae of BS we see that Matsuda’s accelerating kinks move in

an identical manner.Thus a connection is established between

Lhe BS poles and linear superposition of accelerating

ki nks. Unf o r t unat e ly Matsuda’s technique fails for general

Lorentz frames and for higher parameter solutions(>2).The

important feature of the lsp above is that each accelerating

kink carries a branch point with a single projection on the

r^al axis.

Linear superposition appears in a number of places in the

liter at ur e. We have already seen it formulated f or the KdV by

GGKM 1171 in the last chapter .Yoneyama 1181 and Caenepeel and

M^lfliet [191 analysed in detail,soliton interaction via the

QGKM lsp.We shall review their findings shortly.

Many soliton equations have solutions which have not been

Warded as "soli ton- like" in their nature.We refer to the

cn°idal solutions .These were first found for the KdV by Kortweg
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and de Vries 1201.Cnoidal solutions are periodic functions

involving Jacobian elliptic functions .We have already met with

static cnoidal waves for the sG in §l.We referred to these

solutions as a "periodic array of solitons".In fact,cnoidal

wave solutions of soliton equations can generally be thought of

as a linear superposition of an infinite number of solitons.

This was shown generally,by Zaitsev 1211 and for the KdV by

Kor-pel and Banerjee I221.Cnoidal waves have regularly repeating 

poles in the complex plane.The interaction of cnoidal waves 

with solitonsCa subject as yet unexplored) might be profitably 

explored by the BS technique.

The ” equation,

p - p - p - p3 (4.55)
kX it

has a kink solution,

2 -1/2p - p = i tanhl^(x-vt)/-/21 , /=(1—v ) (4.56)
c

Equation (4.55) is known not to support multisoliton solutions 

(as energy is lost in a multisolitary wave collision).However 

from our point of view it is interesting to note that the two 

^ink solution p can be written as a linear superposition of 

decelerating kinks plus some radiation,

p = p If (t)(x-a(t)J + p If(t)(x+a(t)l-l+^(x,t) (4.57)
12 c c

The radiation component is the oscillatory term 

■£(x,t).The above result was discovered in a numerical analysis 

bV Moshir I231.Matsuda 1131 had tried an ansatz like C4.57) for 

hhe p4, equation,but without the success he achieved with the 

SG.

Yoneyama and Caenepeel and Malfliet(CM) analysed the two 

s°liton interaction of the KdV via the GGKM IspCchapter 3),

2
u(x,t) = - T4kZ/(x,t) (4.58)

rn rn
ni= 1
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Defining each soliton for all timeCafter GGKM) by,

U
L

2 2 
—4k ip 

t L
<4.59 >

they foundCwe follow CM’s treatment),

u = ~-4k2cZC0>e 2kA[l 
i ii

u c2C0)e Zk2^2ZC2k )]2/D2
12 2 2

C4.60a>+

2 2 —2ku = -4k c (0)e V»C1
2 2 2

A/<2k >]2/D2
i <4.60b>+

where,

D=1
c2 CO >

1
2k

i

-2k 
e

GM study the

the KdV which

The

u
12

Ck -k >/Ck +k > i “ C4.60c)

<4.60d)
cZCO>

2
2k

2
+ U

12

x-4kZt

particular example of

has the form at t=0,

c2C0)c2C0>
1 2
2k

i
2k

2

-2<k ?+k ? >
& 11 2 2

C4.60e>

the

2
u<x,0> = -6sech x

eigenvalues and eigenfunctions of

Problem CGGKM 1171) are ,

two soliton solution of

the associated

C4.61a>

scattering

k =2
i

c C0>=273 i <4.61b>

k =1
2

<P =(V3/2)sechx.tanhx 
2

c C0>=76
2

C4.61c>

obtain for u. Cx,t>,the following,

u Cx,t>
1

~24coshZ?
2

C2cosh2?icosh?-s1nh2? sinh? > 2
C4.62a>

u Cx,t>
2

-6s inh22?
i

C2cosh2? ^cosiy 2~sinh2£sinh? >2
C4.62b>

time evolution and shapes of these functions,is 

figures Ca>-Ce> taken from the CM paper.

shown in

A +

2 1 2
k > k

1 2

-2k ? 
e zz

e.

L

2
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-2 0 2 4.

x

• < 1 > 
X

The positions of the solitons are taken to be at the

Geritre-of-mass" defined below,

( L>X =a

CO 00
: Jxu. dx Ju dx

- 00 - <X)L
<4.63)

GN1 show that at t=0 the speeds of the solitons are given by,

<3
= 19.2 C4.64)-2.4
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They note the suprising backward velocity of the smaller 

soliton.In actual fact the "soliton’’ u has two maxima for all
2 

finite time.Also u^ has a zero(B on the figures) between the 

double peak,for all finite time .This zero point moves at a 

constant speed equal to the asymptotic speed of the faster 

incoming soliton.Yoneyama shows that u^ is always a double peak 

(though one of the peaks becomes very small,tending to zero,for 

large time magnitudes).He also shows graphically that u^ can 

also have a double peak for certain speed ratios.As t—>±oo 

however u and u do become identical to constant speed12
2 solitons with the classic sech shape.These authors using the 

definition of soliton position above,find the force between KdV 

solitons to be attractive,with the faster soliton passing 

through the slower.

A major criticism one can make of the above method of 

soliton representation is connected with what happens when we 

allow the spatial variable to be complex.lt easily seen that 

t*he KdV two soliton solution develops poles when D=0 L241.This 

implies that each u carries all the poles.This is most
I

Unsatisfactory.

A more recent analysis obtaining the results above can be 

found in a paper by Moloney and Hodnett L251.lt is clear from 

t*heir approachCwhich is independent of inverse scattering 

t'heory) that Boussinesq solitonstthe two soliton solution of 

i-he Boussinesq is identical in structure to the KdV two soliton 

s°iution) must interact in a very similar way to KdV solitonsC 

**e attractively).We shall see latei* in our own contribution to 

f-his thesis however ,that the Boussinesq equation has a two 

s°libon solution which can be exactly decomposed into 

Accelerating solitons of exact sech2 form.Moreover these 

s°litons are found to repel one anotherCeach of these solitons 
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carries a s-ingle pole).

Detailed analysis of the motion of the poles of the KdV 

two soliton solution can be found in a paper by BS I241.They 

found that the faxtliful poles interacted repulsively .Gorshkov 

et al 1701 also came to the conclusion that the KdV(&MKdV) 

solitons interacted repulsively.Indeed a very recent numerical 

analysis by LeVeque 1801 confirms Gorshkov and Ostrovsky’s 

work.Both these papers were considering the interaction of KdV 

soli tons,in the two soliton solution,provided the speed ratios 

were small.Actually Gorshkov and Ostrovsky’s work is of great 

generality,we shall comment on it again in §5.The authors own 

original work on the subject also comes to the conclusion that 

KdV solitons interact repulsively and in the same manner as BS 

faithful poles.

§ 4. Singularities associated with nonlinear partial

differential equations.

Kruskal 1141 pioneered the polar representation of

solitary waves.He noted that if one allowed the space

v-s»riable(x) to become complex(z=x+iy),then the single soliton

solutions of the KdV equation,

u + uu + u =0 t X XXX

u = 3csech217c(x-ct)/21

(4.65a)

<4.65b)

v(x,t) = 37ctanh[7c(x-ct)/21

Possessed double poles at the positions,

z - ct = (2n+l)niZ7c ,ne Z (4.66)

noted that it would be easier to deal with the derivative

KdV,

v + 2
V + V = 0 (4.67)t X XXX

vhich has soliton solutions,

(4.68)

Th>e principal part of tanh may be written as a Laurent
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expansion around each pole given by,

so,
tanhz = J2 Cz~sni/2> 1

s , odd

C4.69)

vCz,t) = 6 £ Cz-ct-sni/Yc) 1
s , odd

C4.70)

Kruskal proposed that a soliton be thought of as a

"parade of poles’*.He suggested that the two soliton solution of

C4.67) be looked at,in the form,

vCz,t) 6
% Ct)

2

where when t

E
, odd

“00 ,

6
z - ? Ct)

1
E £

s, odd

r ct) C t+S7Ti/-/c ,
1 i

£ ct)
2

c t+rTri/Vc
2

C4.71b>

Kruskal noted that the trajectories of the poles in the

complex plane coincided with the zeros of the Hirota function

2

t  ,as the solutions of the KdV Cu) can be written,

u = 12Cln t ) C4.72)
XX

Thickstun 1261 studied the pole motion in this way,but 

only for rational speed ratiosCof solitons).A much more 

comprehensive analysis of the poles of u was given by BS 

C241.lt turns out that there are a large collection of 

Poles,with different modes of behaviour,associated with the two

soliton solution.Their number and behaviour is intimately

connected with the soliton speed ratio p.However it is possible 

C241 to identify two distinct solution functions z^Cp,t) and 

z2^P,t> for all p «=Cl,oo) and for which the imaginary parts of 

2fp,t) are independent of time.These are the so called 

^sithful poles'*.

127-9]

One of the many extraordinary features of soliton

G<iuations, is that the motion of poles of the rational

s°lutionsCKdV> can be related to the motion of n

>one-dimensional particles interacting via certain potentials
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The rational solutions of 0,have the

form 1301,

u<x,t>
N

2 r Lx-x <t>3~2
3=1 s

C4.73a>

Substituting this into the KdV requires the following G= d/dt),

C4.73b>

C4.73a> may be written in Hirota form,

uCx,t)

P Cx,t>
N

2tln P (x,t)l
N XX

N

= n tx-x ct>i
t

i =1

C4.74a>

(4.74b>

If N=2 there are no satisfying C4.73c). When N=3,the roots

are proportional to the cube roots of unity,and we have 1311,

P = x3 + t
3

<4.75a)

u<x,t> 6xCx3-2t>/Cx3+t>2 C4.75b>

Equations (4.73b) are related Tto the integrable many body

x

x 
j

0 , 1 < J < N

Problem of N particles on a line occupying positions (x^,..,x^)

and speeds (y*,..,yw> and defined by the Hamiltonian 1333 ,

x = 2 E y> E <YV"2 

t=l j < k

The polynomials P (x,t) in (4.74),satisfying the KdV,may be
N

obtained by a limiting process 1341 from the Hirota N soliton

solutions.

note that u in (4.73a) has been written as a linear

SuPerpOsitiOn .This suggests that a connection may exist between

author's lsp for the KdVCchapter 6) with this limiting

Process, and the rational solutions(and in particular the

<(t)>.

Integrable means 3 N independent constants of the motion I (q,p) 

w^ose Poisson brackets II , I 1=0 V i ,k.Since one of the constants 
. t k
s the Hamiltonian itself,ail the I . are constant in timel32J.

C JcGp) = generalized posit ion , momentum coordinates.
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The Inverse Scattering Method has been considerably 

extended by Wadati 1301 to matrix nlpde's,and even further 

still by Galogero and Degasperis 130J.They discovered certain 

coupled nlpde’s which had solutions in which,single solitons 

could move as if in an external potential Ci.e single solitons

moving with changing speed).The external potential commonly had 

the effect of causing incoming solitons to bounce backhand 

return to their original location.The term "boomeron" was 

coined to describe these soli tons, the equations being known as

boomeron equations.These equations also have N soliton

solutions.The interaction of the solitons in the two soliton

case was analysed by Calogero and Degasperis 1351.

We will not consider their analysis in detail as it

involves large sets of quite complicated equations .The

important point as far as we are concerned,is that by

considering the zeros in the complex plane of a function DCx,t)

which was involved in the two soliton solution,the two soliton

solution developed poles.There were two poles per periodic

strip in the complex plane and the poles moved parallel to the

r'eal axis Ccf BS poles).The boomeron equations are Galilean

invariant,so that the two soliton solution could be analysed in 

t-he c-of-v frame.

It was found that the solitons moved as if repelling each 

°ther via a g2cosech2(pr) potential,where g and p are constants 

^nd r is the relative separation of the solitons .The boomeron 

Equations have other solutions with solitons interacting via 

ether potentials,indicating the rich structure present.

We have already seen how the singular solutions of the 

shG are in 1-1 correspondence with the soliton solutions of the 

s^ The Liouville equation,

<y - a = expCo) C4.77a)
xx tt 
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belongs to the same family of generalized sG equations and 

possesses aBT's E361.Unfortunately it does not possess the zero 

solution and so a simple nlsp leading to a two parameter 

solution is not obtainable.The general solution of (4.77a) is 

E37-81(there is a BT from C4.77a) to the linear wave equation),

„ , fsA' (x+t)B' (x-t) 1 z « r>m x

(J A(x+t)+B(x-t) 1

where A,B are thrice continuously differentiable functions of

their arguments,and A',B'>0 C' = differentiation with respect to

argument).If we choose 1371,

A = Sexp ^(l-v)i/2(l+v) 1/2(x + t -x^)/8^ (4.78a)

B = -8exp £-(l-v)1/2(l+v) 1/2 (x - t -xo)/sj (4.78a)

we find,

expo* (32) 1sech2t^<x-vt-x 
o

)/81 ,r=(l-v2) 1/2 (4.79)

(4.79) is the so called solitary wave solution of C4.77a).c/
1

possesses a real singularity when x=vt+x ,and more generally o it

’will possess singularities whenever A(x+t)+B(x-t)=0.

It is shown in 1381 that if the initial profile of & is

such as to possess N singularities,then this number is

invariant in time.The singularities are found to move like

classical particles.A Hamiltonian action-at-a-distance

formulation is given for the motion of the singularities in

t391.investigations of nonlinear relativistic pde's which 

describe singularities interacting via lightlike fields are 

described in 139,401.

Clearly the investigation of the motion of singularities 

nlpde's is a fascinating topic.However it is much more 

Satisfact,ory to investigate the motion of singularities in the 

complex plane of nlpde’s having multisoliton solutions.The 

s°Htons in the real plane have all the virtues of being 

don-singular,  while the complex singularities give us the means 



Ill

of describing the interaction of solitons

particles.We should view the fact that 

in terms of point

many solitons have

associated singularities in the complex plane, as neither

trivial nor coincidental.

§ 5. Solitons in bounded regions of space and under

perturbation.

We concentrate in this section on the sG equation.though 

we will give a very wide list of references on perturbed 

soliton equations.There has been much controversy regarding the 

behaviour of sG solitons perturbed by external fields.In fact, 

■as the references show,the controversy is not merely restricted 

to the sG equation.First we look at the fascinating topic of 

solitons in bounded regions of space.Fascinating,because 

quanta! objects reveal their true nature most markedly in 

bounded regions of space (quantized energy levels etc).The 

behaviour of solitons of the sGCbeing neither particle nor 

wave might reveal some surprising behaviour in bounded regions.

The solution of the sG in bounded regions of space has 

been investigated by DeLeonardis,Trullinger and Wallis (DTW) 

1411.

We first examine the solutions of the sG in the form,

2 2<p - c + w sin«? = 0 (4.80)
tt O XX O

When dimensionless variables x —> w x/c ,t —> w t are 
o o o

introduced (4.80) becomes the standard sG (4.1).

firstly DTW solve this equation in the region x<0,subject to 

the ‘'free" boundary condition,

p (0,t) = 0 (4.81)
X

To achieve this the parameters c^,w^ in (4.80) are regarded as 

^t©p functions and (4.80) is re-expressed,

<P - f[cZ-cZ0(x)J«> I + [wZ-wZ&(x)lsin£> = 0 (4.82)
Lt ! O O xjx OU 
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where 0(x) is the step function, defined by 0(x)=O x<O,l, x>0.

(4.82) can be rewritten as,

P tt
+ C2

xx O
(4.83)

where <5(x) is the Dirac 6 function.

Nov/ assume

<P (p 4 p 
sa

(4.84)

where p
set

is the familiar soliton-antisoliton solution of the

sG (4.3)

set
4tan 1(sinh^ut/ucoshyx) (4.85)

Substituting (4.84) into (4.83) we find ip satisfies

p -c2p 4c2<5(x)L(p > +ip ]4w2[sin(p +p)-sinp 1 = 0 (4.86)
tt O xx O set xx O sa sa

But from (4.85) (p ) =0 at t=0,.\ (4.86) has solution
sa x

P = 0 (4.87)

Now we know that (4.85) represents an antisoliton

travelling from the right and passing through a soliton

travelling from the left (at t=0).Thus a sG soliton impinging on

a free boundary bounces off as an antisoliton.This kind of

pulse inversion on reflection is familiar to us in the 

deflection of a pulse(on a rope say) at a fixed boundary.DTW 

examine also the solution of (4.82) with the "fixed" boundary 

condition

p(0,t) = 0 (4.88)

The soliton-soliton solution of the sG

p = 4tan_1(usinhy'x/coshyut)
ss

has just this property.Thus a soliton reflecting from a fixed 

b°undary, reflects as a soliton.Allowing the space variable to 

complex(BS) gives us the following picture.A soliton 

lrnPinging on a free boundary specified by (4.81) is attracted 

towards the boundary.A soliton impinging on a fixed boundary,is 

re*Peded from the boundary.lt slows down and stops before it 

hits the boundary and then accelerates back to where it came 
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from.Using the Matsuda decomposition of the two parameter 

solutions, we can see that the boundary has an effect on the 

incoming soliton for all finite time.Far from being free the 

soliton is accelerating or decelerating,depending on the 

boundary condition.

Zakharov and Shabat 1421 had observed a similar effect

with the nonlinear Schrodinger equation

iy/ + yy ■ 
t xx

(this is not the usual NLS which has a positive coefficient of

5.

DTW go on to examine the solutions of the sG under two

box type boundary conditions,

yj(O,t) = y>(L,t) = 0 (4.89a)

For

^(0,t) = y?(L,t) = 2ti (4.89b)

boundary condition (4.89a) there is one independent

0 ,

0 ,

solution,

y>(x,t) = 4tan 1<Acnlf?(x-x );k J.cn[£2t;k 1) 
Ol f 9 (4.90)

where,

cn(u,k) = cosy/ , sn(u,k) = siny/ ,sc(u,k) tany/,

dn(u,k) = (l-k2sin2y/)1/ 2

<4.91>
y/ = am

Pl = 21K<k )
f ,1=1,2,3,. , x = L/21 o l

quarter period of the cn function.cn is zero when

xts argument is an integer multiple of the quarter period.If A

is found that,taken to be independent Ae IR+ then it

k2 
f

A2
r-

1 , 2 A2 1
,k =

9
1 —

1+A2 /?2(1+A2) 1+A2 Q2(l+A2)

Q2 = /3?'+ (1-AZ)/(1+A2)

(4.92a)

(4.92b)

*^kf) is the

J

and (4.92a) can be used to determine /3 as a function of

A. Tf1 the box size,L—> oo then it can be shown that (4.90) is the
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breather solution.The behaviour of the branch points for the

sequence of solutions above,would be interesting.

Corresponding to boundary conditions <4.89b) is the

solution,

£><X,t) 4tan 1[A.sc</3x;k )dn<Qt;k )J
f 9

<4.93)

where A must satisfy the condition A <A<1 with A
th th

specified

by L=«-A^ 

k2= 1 - A2 +

)K<k ),where k =<1-A f f
AZ/[/3Z<l-AZ)],kZ= 1 - 1Z A2

9

4 )lz Z.For A^A ,
t h th

+ 1z W2<1-AZ)1 <4.94a)

<4.93) is

[3L = K<kf) , Q A/? C4.94b)

possibly the more interesting solution,as it

represents to some extent a moving single soliton.If the box

size L—> co <4.93) can be shown to approach the two soliton

solution <p
ss

.Graphs of the spatial variation of <p satisfying

C4.93) for a fixed length of box and different amplitudes A,for

different timesC<p is always a single kink),clearly suggest the

picture of a particle bouncing around in a box.p satisfying 

<4.93) is monotonic and DTWCas with Perring and Skyrme §1) 

define the position of the soliton to be x Ct),given by,

£>Cx Ct),t) = n <4.95)
c

Again,the behaviour of the singularities of <p would be 

interesting.The motion of the soliton in the boxCwith position 

defined in C4.95)) has interesting dynamics and DTW were able 

construct a model of a relativistic particle in a potential 

'veil whose motion closely agreed with the motion of the 

soliton.The force on the analogous particle was sharply

P^pulsive near the edges of the box.The particle stopped and 

burned back before reaching the wall,achieving maximum kinetic 

Energy jn f,he centre.

^^Utons under perturbation

In many physical situations soliton equations describe 

P*^nomena in rather idealized conditions.Thus it is natural to 
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investigate the behaviour of solitons satisfying equations 

which differ from the pure soliton equation ,only by the 

presence of small perturbing terms.There has been much research 

on this topic 143-~681.Many of the papers are connected with a 

controversy which arose concerning the behaviour of sG solitons 

satisfying the equation,

u - u + sin u = y■ - Pu (4.96)
tt XX t

where ^=^(t)«l and r is a constant.}- is described as an applied 

field,and Pu^ as a damping term 143,50,511.

Fogel,Trullinger, Bishop,and Krumhansl(FTBK) 1431 and

Reinisch and Fernandez(RF) 150,511 used a method of linearized 

perturbations.

V7e present the treatment given by RF.Assume F=0 for the 

moment.The soliton or antisoliton solutions of (4.96) with x-0

are,

(O> u 4tan 1exp±}'(x~vt> (4.97)

Consider the soliton in its rest frame,so that the

argument of 4tan ±exp(.) is ±x.First consider a solution to

^4.96) with ^,r=0,

(4.98a)

ip = f (x)exp(-iwt) (4.98b)

After substituting (4.98) into (4.96) and linearizing we find

<o> ,u = u + y

t-hat f satisfies,

-f + <1
XX

This equation allows the

2
2sech x)f (4.99)

"bound state" solution,

f (x) = (1/V2)sechx 
b

(4.100a>

the continuum,

2
°k 1+k2 , (1 /72 n )eL kx ( k+i t anhx)/a>

k
(4.100b)

C4-100a) is regarded as being connected with the translational

Motion of <o> the soliton,since ,6f (x) + u
b

<5«1,corresponds to a

0 ,

f, (X) 
k

I

tr’anslation of the soliton u<o> by an amount proportional to 6.
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Since f
b

and f form a complete 
k

set. of functions which span the

space of functions y<x,t?,we may

We

may be

express any function y/ 
oo

y/(x,t? = y>, (t?f (x? + f dky/(k,t?f (x?
b b ■-* k

-CO

now turn

subsfit.ut.ed

y<k,t? determined,

(4.101?

to the perturbed sG with ?;=x(t?,r=0.(4.101?

into (4.96? and equations for y/ (t? and
b

(y/ ? = nr^(t?/V2
b tt

(4.102a?

co
(y/(k,t?? + o?V<k,t? = x(t?r dz'f*(z'?

tt k J k-co
(4.102b?

where * refers to complex conjugation.Solving the above

equations with u(x,0?=u<O? gives,

00 *

y/ (t?=(n/72?F(t? , y-k<t?=F} (t?J dz'f’k<z'?
-oo

<4.103a?

t t '
F(t?=J* dt'J dt"x<t">

o o
>

(4.103b>

^nd g(t? is a solution of

« + <<« = X<t> <4.103c>
K

RF define the position of the soliton to be the coefficient of 

fb(x? in (4.101? and the velocity v(t? is given by,

v(t?=±(l/2V2?y< (t? (4.104?
b

where the +(-? sign corresponds to a soliton(antisoliton?.Using

C4.103? RF obtain the solution of (4.96?

(4.105?

they then show that,

^.<x,t? = (n/V2?fb(x?F(t? £1 - — f dx' f (x' ? + F(t?
n b J-co

(4.106?

th& first order in s=wt«l (short time scales?.Howe ver since

r 00 i
?=n:/i^,the coefficient of f (x? 

b
vanishes*.Thus when

continous(phonon? spectrum is ignored (4.102a? leads to a

Newtonian law of motion ip (t?=(n/V2?F(t?.This was the
b

result

°ktained by FTBK.However over short time scales this motion is 
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cancell&d by the continous spectrum.

Thus according bo RF,for small time scales there is no 

classical particle-like behaviour for s0 solitons.RF also 

carried out numerical analysis which supported their 

conclusion.A number of papers have been written attempting to 

clear up the controversy 153,62,651,and have been answered by 

RF 154,63,661.Many other different approaches to the perturbed 

sG equation have been devised and they generally agree with the 

conclusions of FTBK,however they are over longer time scales.

A perturbation theory based on an inverse scattering 

theory method was devised by Kivshar and Kosevich 157,611;their 

findings agree with those of RF.

Finding a correct definition of the soliton position is

central to the argument .Bergman et al 1561 produce a much more 

physically based perturbation theory for the sG,in which the 

position of the soliton is more clearly defined.Noting that

is a peaked function,

<4.107)u(°1 - ±2? sech^<x-ut >
X

they define the position of the soliton to be Q,

Q
1

2tt

00
r xu dx j X-00

and velocity Q ,

1 00z*
Q xu dx2n J xt-00

<4.108)

<4.109)

The momentum can be obtained from the Lagrangian density

^4.12) for the sG,and is given by,
oo

P = f u u dxJ t X-co
Assuming 0 as x -> ± oo

00

p = r u u dxJ tt X
-00

et al,then find that with f=0 for

<4.110)

<4.111)

the perturbed

u t

SQ<4.96),
oo

P = J* ^<t)u dx
-oo

<4.112)
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thus using <4.107),

P = 2nx<t) (4.113)

which is the Newtonian law.Ho we ver according to Bergman et al,

if x(^*^ Is switched on at. time t=0 there is a transient time

inversely proportional to r in which the soliton form is

distorted.This is their explanation of the so called

"non™ Newtonian" behaviour discovered by RF.

Rice 1601 developed a view in which the soliton could be

regarded as a deformable particle whose translational motion is

coupled to internal degrees of freedom.Thus it was possible 

that an external field applied to a soliton could,by exciting

internal kinetic energy lead to a translational velocity which

was not simply that of a Newtonian particle.We give the final

remarks on this subject to Kaup 1621.He makes the following

points:

they(RF) observed were the combined transient effects of

l.The soliton or kink is not rigid and is not a point

particle.

2.An extended particle will respond with a time delay to

an externally applied force.In Kaup’s words,"What

a soliton reshaping itself and experiencing a time 

delay."

3. RF?s analysis was limited to short time scales.

4. The concept of the "soliton" arises by considering long 

time scales,as in multisoliton interaction.

Perturbation 147,621.

5.The RF definition of soliton positionCpoint where

u (x,t) is a minimum) X differs from that used in other

perturbation theories.

note that controversy also surrounds KdV solitons under

The general concensus emerging on the subject of 
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perturbed solitons is the folio wing.Over short time intervals 

the soliton may move in an unexpected manner,while undergoing 

shape deformation.After longer time intervals the soliton is in

general found to be acceleratingCwith some shape deformation)

in accordance with Newtonian behaviour of particles.With any

extended object there can be difficulties in defining the

position.lt certainly would be instructive to examine the

motion of the poles associated with a perturbed Hamiltonian

density as, we have seen how they provide a useful and

unambiguous representation of the soliton position.

In closing this section on perturbation theory we mention

the papers of Gorshkov and

small parameter asymptotic

Ostrovsky I69,70I.They investigate a 

scheme for a system of solitary

waves with close velocities.They found that a Lagrangian may be 

introduced analogous to that for classical particles in

interaction via a pairwise potential.As we have already 

mentioned they found the interaction between KdV and MKdV

solitons to be repulsive.The Gorshkov and Ostrovsky method is 

very general in character .LeVeque 1801 investigated numerically 

exactly the same situationCin the two soliton case) as that 

envisaged by Gorshkov and Ostrovsky and also found repulsive 

interaction.He also produced an approximation to the two 

s°liton KdV solution u(x,t> in the following form,

uCx,t>= A Ct>sechZIa (tXx-p Ct»]+A Ct)sech2Ia (tXx-p <t»]

2was valid to O<£ ).LeVeque‘s approximation is

i^stricted to solitons travelling with nearly equal speeds.We 

shall see in part two of the thesis another approximation 

induced by the author which appears to provide a good

1 112 2 2

finding exact formualae for A and
L

difference in the soliton speeds

<p. .He showed that if the

was O<<£?),then the above

^Presentation
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approximation(of form above) for markedly different soliton

speeds.

§ 6. "Solitons" as elementary particles

Perring and Skyrme were the first to specifically use the

sG solitons as model particles in interaction 151.Enz 1711

expressed in an independent examination,the attractive reasons

which lie behind the idea of regarding elementary particles as

solitons(or solitary waves).These were:

1.Finite energy and field.

2.Stability.

□ .Discrete mass and charge.

The author has already expressed a number of other attractive

elementary

particles.

One of the reasons why soliton equations in spatial

dimensions higher than fare likely to be complicated was

provided by Derrick 1723.He considered relativistic fields $

having a Lagrangian £ of the form,

U($) (4.114)

Derrick showed that static field solutions (x) having finite

Energy

E (■£>) 
c

= + U(£>)ldx <4.115)

2

were only possible in one spatial dimension.

Despite this restriction,higher dimensional "solitons" of

r^latively simple form have been found 173-41.

Enz 175-61 has discovered four dimensional "solitons"

based on an action principle built from two coupled scalar

fields 0(x,y,z,t) and </>(x,y,z,t).For a single field 0,the least

^Gtion principle is introduced for W,

(4.116a)

W = J< ksin2# + AKVfl-c 2#2)1 Jdxdydzdt (4.116b)

6W = 0
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This is essentially the sG LagrangiariCchoosing 1 spatial

di me ns ion), and leads to the Euler-Lagrange equation,

□ 0 = Ck/2A)sin2<9 (4.117)

This is the higher dimensional sG and does not support

2finite energy solitons in space dimensions or

higher.However,by analogy to this Enz produced a new action

priciple for two scalar fields & and

6W = 0 , W = J<ksin20 + AD^ + EDZ)d4x
o <4.118a)

D = KVe)2- c Z&Z] + sin2e.[<V0)2- c 2021
o t t

<4.118b)

where K,A,E are constants.Enz showed that the Euler-Lagrange

equations associated with <4.118) have a relatively simple

solution with cylindrical symmetry.The field configuration is

infinitely

solitons are of "string-like” type.Interesting toroidal

"solitons" of equations derived from a generalization of the

Enz Lagrangian density above,

Cd ®)2 + sinZ@.<d $)2 + K2sinZ® <4.119)

have been found by Williams [77KEnz uses K=0). Williams finds

reasons to think that N soliton solutions may be possible.

In the conclusion to one of his papers,Enz 1751,notes the

interesting fact that many of the parameters associated with

hhe field structures,are discrete.This includes parameters

^presenting mass and charge.Ho we ver the theory is entirely

c^as,sicaf in nature.

Quantum-like features even enter into the sG.Klein E781

drives an equation from the sG which is shown to possess

Envelope solitons.  These envelope solitons have the property

^at the energy of the soliton is a constant times the carrier

^oquency.This is reminiscent of de Broglie waves.

In [791,a classical field model is proposed involving a

Sc^lar field interacting with the electromagnetic field which
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is shown t.o possess discrete particle-like solutions. All the 

particles have the same charge.

At present,the only drawback to current higher 

dimensional soliton research is that as yet,multisoliton 

solutions have not been found.This means that we cannot explore 

the possibly very interesting soliton-soliton interactions.In

the author’s view it is precisely these intersoliton

interactions which are physically most interesting.

§ 7. Conclusions

In this chapter we have explored various aspects of the

particle-like nature of solitons.The soliton is an extended

body,which in the case of the sG equation,is also

Pelativistic.This means that it occupies a unique position in

mathematical physics.

Classical physics describes a world consisting of points

possessing mass and charge,and "giving rise to" fields of force

such as gravity or electric force.In order to compare the

soliton with the familiar world of classical physics we must

way of describing solitons.Bowtell and Stuart

Achieved this for the sG by associating singularities in the

complex plane with soli tons,and they were able to obtain

explicitly the orbits frame .Hence

^hey could determine the dynamics of the solitons.

Many other attempts have been made to get at how sG

solitons interact .These were only partly successful,but they

generally agreed with BS results in the appropriate

mi t .Mats uda made a remarkable discovery,that the two

P^ameter solutions of the sG in the c~of-v frame,could be

Wr‘itten as a linear superposition of accelerating kinks.The

^ihks moved exactly like the BS poles.This f act established the 
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mut.ual importance of the results.

Many soliton equations have rational solutions and these 

turn out to be related to solvable many body problems.Since the

rational solutions can be approached by a limiting process from

soliton solutions,there may be a connection with soliton

interaction and these solvable many body problems.

To some extent the KdV has provided an embarassment of

riches as the N soliton solution can be represented using two

diff erent lsp’s.When various researchers investigated the two

soliton solution of the KdV using the GGKM lsp,they discovered

that the solitons took on a quite different shape from their

asymptotic counterparts.They also found the interaction to be

attractive.In an analysis of the pole structure of the two

soliton solution of the KdV,BS discovered that the poles

repelled each other.

Our own original work on this subject in part two of the

thesis,also supports the mutual repulsion of KdV

solitons.Incidentally we also find the shapes of the

decelerating solitons to be quite different from their

asymptotic counterpartsCexcept in the asymptotic limit).

Two independent pieces of researchCGorshkov et al,and LeVeque)

dlso support repulsive KdV soliton interaction.

The topics covered in this chapter f orm a good case for

thinking of solitons in some way to be like particles.The link

between soliton interaction and the nip de supporting the

^H-dtisolitons however,is far from understood.We have seen signs

bhat solitons may behave in some respects like quantum

°bjects.This is not so surprising,since solitons cannot be

^scribed purely as point particles,neither can they be thought

Of ds linear waves.They certainly hold out the prospect of a

^6eper understanding of the world.
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l’art 2. Synopsis

Chapter 5.

In this chapter we prove the three parameter* solution of 

the sG directly by employing the theorem of permutability f or 

the sG The direct method becomes hopelessly complicated for 

more than three parameters,however we discover that the N

parameter solution has a simple structure if certain constants

k are allowed to be ±1.Using this result we prove rigorously

that the N parameter solution can only have a certain form when

k *±1.

We transform the N parameter formula to another , by phase

shift and then show that the new formula is a multisoliton 

solution of the sG.

Chapter 6

In this chapter we prove that the multisoliton solutions 

of the sG,MKdV,KdV and relatives can be written as a linear- 

superposition of soliton like forms.We also demonstrate that a 

similar kind of linear superposition applies to the Nonlinear 

Schrodinger equation. All the linear superpositions f ound

thinvolve the roots f of an N degree polynomial having a 

common form.

We explore connections with the roots f of the linear 

superposition polynomial(lsp) and the technique used to find 

the N soliton solutions in Inverse Scattering Theory.

We investigate the properties of the f and derive the 

eXact formulae for f up to the 4 degree lsp.
t

We discover the relationship between the singularities of 

t'he complexified N soliton sG solution and the roots f of the 

^al lsp.
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Under- certain circumstances the lsp for the sG takes on a 

simpler structure and vze examine this.

Because of the symmetry enjoyed by the sG the solitons 

and antisolitonsCand breathers) can be written in different 

ways.We show that one representation is to be preferred over 

others in that it produces lsp’s with real roots. We also show 

that although the lsp derived in this chapter is natural it is 

not in fact unique.

Chapter 7

In this chapter we have analysed in detail the behaviour 

of the roots of the two parameter lsp.In a numerical analysis, 

we have produced graphs showing the appearance of the roots fi 

of the lsp’s for the sG,MKdV,and KdV .Although as we have seen 

the lsp's have the same form, we find that, in mixture cases 

and breathers,the f can develop points of inflexion.In the 

case of the two parameter sG solution,we find that points of 

inflexion do not arise.

W’e also examine both analytically and numerically the 

anomalous behaviour of the KdV two soliton solution as a sum of 

interacting separate parts.

We develop a mathematical technique for approximating f 

and discover that the approximations f are very good in i

certain circumstances.We also propose a way of improving the 

Approximation still further .As a result of these investigations 

discover new soliton solutions which are good global 

approximations to known rnultisoliton solutions.

We present extensive numerical analysis concerning the

Motion of solitons and antisolitons for a number of

^dltisoliton solutions of the sG<up to five parameters).We also
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demonstrate the 

investigate soliton

We end the thesis 

topics for further

retarded interaction of sG 

dynamics.

with some concluding remarks

research.

solitons and

, which include
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§ O. Introduction

In this chapter we will derive from first principles the

N parameter solution £ of the sG equation,where N ns+na+2nb

and ns is the number of solitons,na the number of antisolitons

and nb the number of breathers.The method we are using is

original.The sG has a theorem of permut ability (chapter 3,§4)

which relates the N parameter solution to two N-l parameter

solutions and a N-2 parameter solution.This tempts one to try

to prove $

N
by induct ion.Unfortunately the algebra becomes

impossibly complex for N>4. We demonstrate this for N=3 in §1.

£
N

5 <x,t;k > ,where
N tj

k 
tj

(a +a )/Ca -a > 
t j

and a ,a are the 
t J V j

constants entering into the Backhand transformations.

If we set k 
tj

signumC j-i) then tan(5 Z4) has a very
N

simple form,namely that of the tan of a sum of N angles .each

angle being taken with alternating + sign is

taken).The functional dependence of 5 on x bi and t is thus

determined.We establish this result in §1-

The constants k enter 
t-j

the formula for tan(5
N
/4> only as

multiplying coefficients,by virtue of theorem of

permutability.The symmetry of $ ,induced by
N

the theorem of

permutability means that to establish how the constants k
tj

are

included in the formula f or we
N

need only consider a

K This is carried out in §3.

From 3? Cx,t;k > N bj
$ Cx,t;uZ ),where uZ = 

N L J i- j

Bowtell and Stuart 111.

we prove

k Z. This
i-j

$

N

In §4 we prove that $
N

an

has

becomes

just a collection of

alternative formula for

the form suspected by

asymptotically Ct -» ± oo)

solitons,antisolitons and breathers with

the well known phase shift property.

In our concluding remarks we note that essentially
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identical arguments to those in preceeding sections can be used 

to prove the N parameter solution of the MKdV.This is because, 

as we saw in chapter 3, the sG and MKdV share the same theorem 

of permutabiltyCapart from a factor of 2).It seems likely that 

the KdV might also be amenable to a similar treatment provided 

we work with the more fundamental Hirota t  function for which u 

= (In r) where u satisfies the KdV equation [21.
xx

NOTATION

t(l,.,N) tan(5 Z4>
N

t(l,.,NZi) tan($ Z4) , where
N-l

$

N-l
is a N-l parameter

solution not involving parameter i.

t(l,..,NZi,r) tan($ /4>
N-2

,where <5

N-2
is N~2a

iparameter solution not involving parameters and r.

t(i) tan(£ (i)Z4) ,where 5 (i>i i is a parameter1

solution.

We express the theorem of permutability in the following

form,

t(l,.,N)

t(l,..,NZi,r) + ( tCl,..,NZr) 
lr [ 1 + tCl, . . ,NZr)t(l,

>nzd  1
.,NZi> J

t(l ,

1 k
l  r

t<i,..N/i,r>f ~ 1
t 1 + t(l , . . ,NZr)t(l , . . , NZi ) J

(5.1)

This is a rearrangement of the theorem of permutability as 

expressed by Barnard [31.

We also note the equation below which follows from the 

definition of k
kj

kk +kk + k k = 1
12 13 21 23 31 32

^erameters 1,2,3 represent any triple of parameters.

(5.2)
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§ 1. The Three Parameter Solution of the sG

Consider (5.1) with N-3 and i=2 and r-3,

t Cl ,2,3)

r tCl,2) “ tCl,3) j
I 1 + tCl,2>t<l,3) J

tc»[ t<l,2)
1 + tc

C5.3)

where,

tCl,2> = N /D
12 12

and t<l,3> = N /D
13 13

and,

N
12

k EtCl>-tC2)l
12

N
13

k EtCl)-tC3>J
13

D
12

l+t(l)tC2) D
13

l+tCl>t<3)

Denoting the numerator and denominator of C5.3) by N
123

t <: 1 > + k
2 3

1 k
2 3

and D*23 respectively,we obtain,

N
123

<l+k k -k k )tCl>
12 23 13 23

k k
23 12

tC2) + k k t<3)
23 13

+ tz<l)tC2Xl-k k -k k > + tz<l)t<3Xl-k k +k k >
12 13 23 13 12 13 23 12

+ tCl>t<2>tC3Xk k -k k +k k > + k k t3Cl>
12 13 23 12 23 13 12 13

+ t3<l)tC2>tC3>

Employing C5.2) we find,

N
123

[l+t2Cl>Hk k tCl)+k k tC2)+k k tC3)+tCl)tC2>tC3)]
21 31 12 32 23 13

Similarly we find,

D = El+tZCl)JEl+k k td)tC2>+k k t<l>t<3>+k k t<2>tC3>]
123 13 23 12 32 21 31

Thus the 3 parameter solution of the sG is

Ek k tCl)+k k tC2)+k k tC3>+t<l>tC2>tC3>] 
1213 2123 3132

tCl,2,3> =------------------------------------------------------------------------------------------------------
El+k k tCl)tC2)+k k tCl)tC3)+k k tC2)t<3>] 

1323 1232 2131

C5.4)

^cause of the symmetry £ -> -£ ,enjoyed by the sG.We may choose

Now let k = signumCj-i),C5.4> becomes, 
tj

t<l,2,3>
EtCl) - t<2> + t<3> + tCl>tC2>tC3>]

C5.5>-
El + tCl)tC2> - tCl)tC3> +tC2)tC3>]

Clearly 5 = $ - $ +$
123 1 23
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an alternating signature for 3? or t(i>,

tCi) -> C-l>t+1tCi>

If tCi) are chosen to have alter mating signature then in 

effect we are building a three soliton solution from two 

solitons and an antisoliton <i.e. t(2> is the antisolitonXThe 

alternating structure of t(l,..,N> imposed by the theorem of 

permutability is of central importance as vzill be seen in the 

first lemma of the next section.

§ 2. The N-Parameter Solution when . = signum(j-i)

LEMMA 5.1

If in a N-parameter solution of the sG ,t.(l,..,N) we let,

k -> signum(j-i) V i,j (5.6)
ij

then,

N
t(l,..,N) = tan f 7 C-l>m+1® Z4

rn=l
(5.7)

Proof: By induction on N

N = i

from

t(l) = tan($ Z4) ,by1 definition

t(l,2> = k12 l“T“i tCl>t<2>J ’1O11OV’ directly

(5.1).Applying (5.6) and noting definitions of t(i) we see

N = 2

immediately that C5.7) is true.

now assume the lemma to be true for N-2 and N-l parameters.

(5.8)tCl,..,N/i,r>

Lan
1-1

( 2

m= 1

(-l)m+1$ .
m

r -1 

z4 + y 

i L->
m= i +1

c-l>m5 Z4 +
rn

N

v <-n
rri- r+ 1

",-1S /41
m J

tcl»..,NZr) (5.9)

t-1
tan[ Z /4

m= i

+(-l)v+ Z4
L Kri

N

Z4 +y (-l)m£ Z41
i JL» tn J

m — r+1

r -1

m = i +1
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t<l,..,N/i) <5.10)

i - 1 r-l

tan f 7 <-l)rn+1S /4 + y C- 
l L m Li
m=l m=i + l

rn J

where the changes in the exponents of -1 are a result of the

mising parameters altering the sequence of signs.

C5.1) gives with <5.6) Ci < r) >

t<l,.,N)

t<l,..,N/i,r) +
1

1 + tCl,..,NZr>tCl,..,NZi> J

ftCl , . . ,N/r) tci, .,N/i)

1 t<l , ..N/i,r) ft Cl , . . ,N/r) t<l,.., N/i)

1 + tci,..,N/r)t<l,..,N/i) j

C5.ll)

Because of the definition of tC.) ,the quantity in large

brackets can be written as tanCA) where noting <5.9-10) ,

t -1
•‘(I

rn- 1

C-l)m+±$ Z4
rn

r-l N

+c-l)t + 1£ Z4 + y C-l)rT1+1$ Z4 +y C-l)m5‘
i L '

m= i +1

rn L '
m = r+ 1

Z4
m ]

L - 1

- f 2 <-l>m+1®mZ4

m= 1

+ C-l)r5 Z4
r

r-l

+ y <-i)ms /4 
/. nt

m - t +1

N

+ y <-i)m$f /4^

m= r+1

A <-l)L + /4
I

r -1

m=i+ 1

l>'n+1s Z4 
m

r-l

c-i)tn5

m= 1 +1

m
Z4

A c-l)t + 1$ Z4
L

+ <-l)r+1$ Z4 +
r

r — 1

2 V C-l)m+1$ Z4
L» nt

m= i +1

<5.12)

note that for s'equentic/i i and r ,

A A
s

C-1>L+1C$ - $ ) Z4
t r

<5.13)

considerable simplification.

^5-8) together with C5.12) when substituted into <5.11) gives,
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t(l,..,N)

tan ( 1 <-l>m+x/4 +1 <-

m= 1 m= l  +1

N

l>m5 Z4 + 5 <-l>m-1$ Z4 +
rn i > m

rn — r+ 1

A )

with A given by (5.12).

Inspection shows that the above simply reduces bo

t(l,..,N) tan

N

y <-i>m+i
rn=T

$ Z4
m J

>

This is the assertion of the lemma B

We will need the formula

is given below.

N

tan S' cxCl) =
l = i

N N 3 N

JaCl ) - J 'TpxCl ) +. . <-i>r y
t — i I = i j — i j

l =
j J

for the tangent of N angles.This

<5.14)

2 r + 1 N r.
____ j . . n + 1 V1 "i—r1 1 1 ) +. . (-1) } Ol(l )

1 j , Z. . 1 j
j = i i . = i j = i 

j

N 2 N 2 r N m

! - J JJaCl ) +..C-l)m+1 I TTad >
l — 1 J — A L . = 1 J = 1 I = 1 j = i J

j J J

where n is the nearest odd integer < N and m is the nearest

Even integer < N.Thus we see all combinations of odd tuples

Appear on the numerator of (3.13) ,while all combinations of

even tuples appear on the denominator.

We will also need the following definitions.

even(odd) permutation of the N tuple 1,2,..,N which we 

denote by £ is one for which there are an even(odd) number of 

ordered pairs (i,j) taken from £ such that i>j.This is 

Equivalent to saying that an even(odd) permutation requires an 

Even(odd) number of pairwise rearrangements to recover the 

E^dered N tuple £.The sign of a permutation c is defined by : 
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sgn o is 1 if o is even and -1 if a is odd.

A transposition is a permutation t  defined by the following.

T<i) j , T<j> = i , T<k) - k , k i,j .

If i<J then t  = l,2,..<i-l),j,<i+l>,..,(j~l),i,<j+l>,..N.

are 2<j-i+l> + 1 pairs <k,l) k>l ,There

Cj4> , <j,x> , <x,i) ,where x = i+l,...,j-l .Thus t  is odd.

LEMMA 5.2

The coefficient of the m tuple in the tan of N parts

taken with alternate signs is identical to the signCsgn) of the

associated N tuple,where the associated N tuple of the m tuple

j„>->j is j ,..,j >k >..,k where k < k i < j.1 m 1 m IN t J

Proof:

The coefficient of the m tuple in the tan of N parts

taken with alternate signs is , see <5.13) l)e =

ofe is the number the m tuple arid p is^~1>^, where evens in

the number of extra evens in the m tuple in excess of the

number the m tuple would have if it was the identity m tuple

!>2>3,..,m, i.e e=[m/21+p.C[J means nearest integer to).

To increase the number of evens in the tuple by p would

Require p transpositions of the associated tupleCi.e swapping

P odds in the m tuple with evens in the remaining tuple).Thus

t-he sign of just such a transposed associated N tuple is

^-l^.This is precisely the coefficient of the m tuple in the

tan of N parts taken with alternate sign ■

We give an example Consider the three tuples taken over 7

par>ameters.The coefficient of tCl)t<2)t<3) is l,but 123 is an

m

N

lc^eritity 3 tuple of the associated 7 tuple 1234567.Now consider
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tCl>tC2)tC4> ; this has a coefficient in t(l,..,7> of -l.Now

124 13567 has a sgn of “1 as it is an odd permutation.

COROLLARY 5.1

If an alternating signature 1Por the alternating N

parameter solution of the sG be chosen then the tan of the new

N~ parameter solution so formed is just the tan of a sum of N

partsCl-parameter) taken with positive sign.

Proof:

The alternating signature is $ -> C-l>m+1$
rn rn

.From lemma

5.1 the tan of the alternating N parameter solution is given by

t<X..,N) = tan

N

f £ C-l>m+\/4 

rn = 1

Clearly under the signature change above >

t<l,..,N) tan ]

§ 3. The N-Parameter Solution of the sG

In the following lemma we will set all k to 1 or -1 
LJ

with one exception denoted k .We will choose i and r to be ir

sequential and avail ourselves of the considerable

simplification this brings.By permuting the original input

P^rametersta > we can of course obtain any desired k in place
i tj

k. .Examining the form of the N parameter solution so 
tr

°t*tained will enable us to decide on what multipliers k the 
vj

Coefficient of the m tuple depend (lemma 5.3).

In theorem 5.1 we shall deduce that there is only one 

Possible function of the k which is the multiplier of the m 

t-Upie >....tCi > in the N parameter solution of the sG.
1 rn
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In theorem 5.2 we will determine an alternative form of

the N parameter solution Ci.e that proposed by BS for

solitons).

LEMMA 5.3

The coefficient of the m tuple tCj >t<X>...tCj )
1 2 m

in the

N parameter solution of the sG equation depends on the set of

k , 
J. r.
t t

{ k
I J.r.

Lb

: 1 < i < m , j> j
l l

, j. ,r. e <1,..,N>
L L

r *
t }

eg (5.14)

N = 7 m - 4 j = 2J1 j = 6 j = 7
3 4

j = 4
2

The coefficient of the 4 tuple tC2)t(4)tC6>t(7> depends on

{k ,k ,k
j 21 23 25

,k »k >k
41 43 45

k ,k
<51 <53

>k ,k
<55 71

>k
73

We note the coefficient of the N tuple is 1

Proof:

Let k = signum (m-n) except when m=i n=r=i+l. mn

Then the theorem of permutability gives(5.1>

tCl , . .,N/i, r> + k
l  r

t(l,..,N/r) - t<l,..,N/i> "I
1 + tCl,..,N/r>tCl,..,N/i> J

1 - k tCl
l  r

. N/i,r> tCl,..,N/r) - tCl,
1 + tCl,..,N/r)tCl

>NZi) 1
.,N/i> J(

Using lemma 5.1 for sequential parameters i,r C5.13) the above

becomes,

aj>e missing.No ting that k = -k and also denoting , 
ir rt

ban C-1)L+1$ /4 by tCi) and similarly for the expression with
L
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r as the parameters write the above equation.

r

t<l,..,N>

1

tan J ®tZ4
1 = 1

tc i > tCr>

1 + tCi)tCr>

tCi > tCr>

+ k
t r

v.

f
k

I r
tan y 3? t /4

1 = 11 + tCi>tCr> J

This may be written ,

tCl,..,N>

Now

C5.14) into

tan X i Z4 [1 + tCi>tCr>^j tCi> + k tCr) 
r r t

1 + tCi>tCr>

we substitute the

the above equation

formula for

tCr > 
t

1 tan V i Z4
J th 1

the tan of N parts

.We have supressed the signs as

r 
i k t C i > 

t r

+ k
t

+ k
r

as we are only interested in howarise in tan Zthey would

the k attach
tj

of tCi).We obtain

themselves

>

to pai*ticular multiplicative

N + N + ... + N
2 [ <

tci =

1 4- D + D + . . . + DC n/Z]
i 2

tuples

where .

N = z tCl) + k tCi> + k tCr)1 tr rt

~N =
2

, 3 , 2 , *
,n tCl )+ k tCi>Z n tCl >+ k tCr)Z n tCl . >-tCi)tCr)Z tCl)
j = i j j=i J Ft J = 1 J

N
3
, 5 , 3

z ,n tCl >+ k tCi>Z n tCl >+ k tCr)Z n tCl >-tCi)tCr>Z n tCl >
j = i J IF J = 1 J rt J = 1 J j = i J

<-l>I+1N
r

» 2 r - i 
s .n tci >+ 

j = i j

, 2r-2 , 2 r - 2 , 2 r - 3

k tCi)Z n tCl >+ k tCr>Z FI tCl >-tCi)tCr)Z n tCl ) 
tr j = 1 j rt j = 1 J J = 1 J

"D =
1

,2

£.n tci) + k tCi) Z td > + k tCr) Z tCl > -
J - 1 j tr r t

tCi)tCr>
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D
2

z n ta >+ 
j = * j

, 3
k t(i)E n t<l>+

IF J=1 J

C-l>rD
F

, 2 r

s n ta >+
J = i J

, 2 r — 1

k tti)E n ta >+
LF J=1 J

, 2 r - 1 , 2 r - 2

k.taoz.n ta >-ta>tcr>s n ta >J = 1 J 'Ft J = i J

Examine N^and in particular the term k tCiXLet us
LF

so permute

the basic input parameters (a > that the consecutive

parameters i and r achieve all possible k .As
LF

we examine

k t(i) for
LF

varyi ng r we will see that the coefficient of tCi)

can be any k chosen from
If

the set

Next

K r € <1,..,N>

examine the term k tCi) 
lf

2

s n ta > 
J = i J in N we write

2

this in the more explicit form k t<i>tcj>ta> with j,l i or

r .Now varying r,we see that the coefficient of t<i>tCj>ta> can

be any k chosen from 
LF

the set

But of course we may

obtain the other

t<i)tC j)tCl>.Clearly

chosen from the set

r * i,J,l |

permute

possible

the parameters i,j,l so that- we

terms kjtCi)tCj>t<l> or

the coefficient of t(i)tCj)ta) can be

k ,
K ku r * i,j,l r «=

It is clear that this kind of reasoning can be applied

T°r any tuple .Thus we find the coefficient of the m tuple

TH
in the N parameter solution of the sG must

depend on ,

h > 
r1 1

k
J r
2 2

>••••> k
J r rn th

r. e <l,...,N>\<j.> |

This is the assertion of the lemma ■
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We comment on a point, which arises in r*elation to t.he

above in the exact analysis of the three parameter case seen in

§2.There we saw for example that the coefficients of t(l> t<2>

and t(3> were the following

tCl> : 1 + k k - k k
12 23 13 23

t(2> : k k
12 32

t(3> : k k
13 23

It would seem that the coefficient of tCl> could depend

on a combination of k not considered in the above lemma.This 
tj

is untrue .because had we allowed the "missing parameters" i and

r in(5.2> to be other than 2 and 3 respectivelyCbut selected

from <1,2,3> > we would have explicitly got the coefficient of

tCL) to be k k
21 31

.Since we are free to choose i and r

arbitrarily we can conclude that quantities like

1+k k -k k
12 23 13 23

must be equal to k k without proving' it
21 31 »

directly from the definition of k
tj

.This illustrates the power

of the approach used in the previous lemma.

We will need the following lemma in the theorem that follows.

LEMMA 5.4

The p+1 polynomials Cx+l)^ r<x-l)r ,r = are

linearly independent.

fi'oof:

Let

y = ft Cx+lZ + .. + ft Cx+l)^"rCx-l)r+ .. + ft = 0
1 r <u+ 1

Set x = 1 all terms vanish except the first.Thus ft = 0.

Similarly x = -1 gives ft =0.
P+i

differentiating y with respect to x we find
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^+1

y' = 5 1 </j-r+l>Cx+l>'w_rCx-l>r 1 + Cr-lXx+l>^~r+1Cx-l>r-Z J
r =1

If r = 2 the second term in the square brackets is Cx+1>
p:—i

If r = /j the first term in the square brackets is Cx-1) .

All other terms involve at least one double product

(x+l)(x-l).Thus setting x = ~1 in y gives ft = 0 and x = 1

gives ft = 0 C given that ft and1 1 ft are both zero^+i ).It is

clear that at each successive differentiation two terms not 

involving the double product Cx+lXx-1) as a factor will be 

released.Thus setting x = 1 and x = -1 causes a pair of 

coefficients /?. to vanish.Thus we find that the polynomials 

<x+l>'u_rCx-l>1 r=O,l,..,/u are linearly independent ■

COROLLARY 5.2

The solution of the following is the trivial solution.

o = 0 (5.15)

where,

a = cf O1,-1,..,-1,1,1,..,l;j-l negatives)
t j t -1

c/ = o' = 1 V j
ij o J

and o' (x ,x ,..,x > are the elementary symmetric functions of k 12 m

Proof:

Since,
1

O' X
LJ

<x+l>^ rCx-l>r =
i =:

Mth o defined above we may write
i-j

ft Cx+1)^ + .. + ft Cx+l)^ Cx-1) + .. + ft Cx~1}^ = 0
' 1 r (U+l

Equating coefficients of x to zero we obtain o ft = 0 with o’ and
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(3 defined above,but, in lemma 5.4 we saw that (3 = 0 V i.This is
t

precisely the trivial solution.Hence the corollary is proved a

We now turn to the main result of this section.

THEOREM 5.1

tCj ).....tCj ) ,denoted
1 rn

The coefficient of the m tuple

CCj^..J >m
in the N parameter solution of the sG equation is

given fey , m N— m
C<V’V = TT TT \r C5.17)

1=1 1 = 1 I I
where it is to be understood that if r X j VI -1 l,i Ci.e m = N >

then (X > is one.

e.g. N = 5

GC1,2,3) = k k k k k k
14 15 24 25 34 35

GC1) = k k k k
12 13 14 15

Proof :

In lemma 5.2 we saw that GCj ,..,j > under mapping
1 ' rn

C5.6)

was the sign of the associated N tuple.In lemma 5.3 we

discovered the k that GCj*,...,j > depended on.Since we can

permute the j L in the m tuple without affecting GCj i ),itrn

themust be a symmetric function of k on which it 
tj

depends.This means we can take CCjA,...,j ) to be given by,

1
CX O' + ...

2 2
a o' (5.18)

where o are the
i

elementary symmetric functions on the set

<5.14) given by

O
1 = 1 k

j.»•.
L 1

2

&
2 ■2TT-,J. r. t t

<5.19)
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r

where Z n denotes the sum of all combinations of r tuple

products taken from the set <5.14).

e.g. N = 3 m = 3 j = 1
1

j = 2 j = 3
2 3

<7 = k + k + k + k + k + k
1 14 15 24 25 34 35

<7 = k k k k k k
<S 14 15 24 25 34 35

Powers of <7. have been excluded in <5.16) since we saw in lemma t

5.3 that when k. . = signum<j-i) with one exception k. ,only the

first power in k ocurred.If there are N parameters then the tr

the associated N tuple once .Hence when the mapping <5.6) is

number of k in
tj

the set <5.14) is = m<N~m).When k is given
tj

by mapping <5.6) each pair <i,j) in the associated N tuple f or

which i<j is associated with k = -1 and changes the sign of

introduced into <5.18) we obtain the following ,u+l equations in

the unknowns a ,where the right hand sides are a consequence i

of lemma 5.2 .
<5.20)

a <7 + ot o' <1,1,..,1) + . . + 04 o' <1,1,..,1) = 1
11 2 2 h V

a <7 <-1,1,.. ,1) + a <7 <-1,1,. . ,1)+. .+ a <-1,1, ..,1) = -1
11 2 2 fit

<-l,
1 1

.,~1> + 04 Of <~1
2 2

,-l> +..+ a <7 <-l,..,-l)

We write <5.20) in the following way,

T<7 a = t <5.21)

where <7T is a ^+1 x /u+1 matrix defined by ,

= <7 <-l,-1,..,-1,1,1,..,1;1-1 negatives) J^l"
r

^<7 ) =<7=lVitl o

ex is the column vector <0,04 ,ot ,...,04 ) and 12 p

column vector <0,l,-l,l,...,<-l>|U ).

<5.22)

is the

^he solution space of the associated homogeneous equations of 

^5-19) namely,
T<7 04 = 0 <5.23)
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is trivialCcx = 0) because of corollary 5.2.As a consequence of

Tthat corollary detCoO r- 0 and consequently det Co > 0.

The general solution of <5.21 > is the sum of the solution of

the associated homogeneous system C5.23) and a particular 

solution of C5.21>.The particular solution is easily provided:

a - 0 i < /j , a =1 <5.24)

This then is the general solution to <5.21> also.

Substituting C5.24) into <5.18> we see the theorem is proved a

We give the four parameter solution of the sG as an example,

A + B
t<l,2,3,4> =

1 + C + D

where,

A = k k k t<i> +k k k t<2> +k k k tC3) +k k k t<4>
12 13 14 21 23 24 3 1 3 2 3 4 4 1 4 2 43

B =

+

k k k t<l)t<2)t<3> + k k k t<l)tC2)t<4)
14 24 34

k k k tCl)t<3)t<4)
12 32 42

13 23 43

+ k k k t<2>t<3)tC4>
21 31 41

G = k k k k t<l>t<2)
13 14 23 24

+ k k k k tCl>t<3)
12 14 32 34

+ k k k k tCl>t<4)
12 13 42 43

+ k k k k t<2>t<3>
21 24 31 34

+ k k k k t<2)t<4)
21 23 41 43

+ k k k k t<3>t<4>
31 32 41 42

D = t<l>tC2>tC3>t<4>

We now determine the N parameter solution of the sG in another

form.
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THEOREM 5.2

The N parameter solution of the sG is given by,

breathers (N=ns+na+2nb) then

t(N-i)ZZ 1 Zl+l Zl+l

J/-

tan XIJ Z4 = p - 1 q = p + 1 C5.25)bJ [ N/2 ] 2 m 2 rn

1+ 2 TTt<p> TT<
m = 1 P - 1 q = p + £

where the unscripted summation sign indicates taking all

combinations of r=21+l or 2m integers from 1,..,N in place of

l,..,r.If there are ns soli tons,na antisolitons and nb

C5.26)

1 < p < ns tCp) = exp X
P

Ca)

ns+1 < p < ns+na tCp) = -exp X
p

Cb)

ns+na+1 < p < N-l tCp) = i exp(r iQ ) Cc)
p p+i P P+i

<p = ns+na+1,ns+na+3,.. , N- 1 )

tCp+1) = -i exp(r + iQ ) Cd)
p P+i p p+a

and where ,

X = r Cx - u t) + a Ce)
p p p P

r Y cos u. Cx - v t) + a Cf>
p p+i p p p

Q Y sin u Ct - v x) + (3 Cg>
p p+i P P P

and ,

1 — p ns+na Y = <1
2 -1Z2- U > Ch)

P P

hs+na < p Y = <1
Z .-1ZZ- v ) Cl)

P p
-1 . 2 2 . +1ZZsin /j = 2?t /t COS Id = t Ct - 4n ) C j)

1 u |, | v | < 1 and t  > 4n <x and (3 are real phases.

T is the breather rest frame period. v is the breather

Asymptotic speed<t=~co> u is the soliton or antisoliton

Asymptotic speed.

The quantities u2 are defined below. <5.27)
pq

1 ~ P < ns+na a = ?- 1<1 - u > 1 <a>
p p p
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ns+na+1 < p < N-l . * exp ~i/j ,a = a 
p+i p

<b>
* = complex conjugation.

2u = <a
pq p

~ a ) (a + a) 
q p q

CO

Note u2 = k 2
pq pq

e.g. N = 4

tan S Z4 = A
N ------

1 - c + D

where,

A = tCi) + tC2) + t(3) +t(4)

B = u2 u2 u2 tCl)t(2)tC3) + 2 
U U

2 2
U tCl)t<2)tC4)

12 13 23 1 2 14 2 4

+ u2 U2 U2 tCl)tC3)tC4) + 2 
U U

2 2
U tC2)t<3)tC4)

13 14 34 2 3 24 3 4

c

D

+

u2 t<l)tC2) + u2 tCl)tC3) + u2 tCl)t<4)
1 2 1 3 14

u2 tC2)tC3) + u2 tC2)tC4) + u2 tC3)tC4)
2 3 2 4 34

2 2 2 
U U U u2 u2 u2 t(l)t<2)tC3)t<4)

12 13 14 23 24 34

Proof:

2
When the u are replaced by 1 for all p,q then corollary 

pq

5-1 applies.Thus to prove the theorem in general we have only 

to deduce (5.25) from the application of theorem S.l.This can 

be done via a phase shift as will be seen below.

Io theorem 5.1 we saw in particular that the coefficients of 

the quantities tCj) were Ci.e 1 tuples),

CCj) = TT k re <l,..,N>X<j>
' ' Jr

J

map CCj)tCj) to tCj) by phase shift so that,

tcj) = TT k. tcj)
r Z j

After this transformation the m tuple DCj ,j ,..,j ^becomes
1 2 rn

(5.28)
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b<J ,..J >
1 nt

e.g. N - 4 2 tuple

k k k
2 1 2 4 3

k t<2)t<3>
1 34

TT
r . j .

L L

k t<j >
J . r . t

L t

<5.29 >

TT
j .

L

TT
. J.

L
r

t

k
J r

I

k k
21 24 31

k k
3 4

t<2)t<3>

k k k k
21 23 24 31

k k
3 2 34

-k 2 t<2)t<3>
23

-U2 t<2)t<3)
23

Without loss of generality we choose J
I

<l,..?m>.Thus we

write <5.29) ,

TT x 1 r

D<l,..,m>
TT

1

k
2 1-

2

TT k t<l> . . . t<m)
1 1 nt r

nt

TT k TT k11 1 r 1 ' 2 r
rAl r-A2

TT■ rar 
r Am

where r e Now for 1 e
t

>

TT \r
1

Ak k
Lm+1 lm + 2

TT k,
Lr

kl2 k
l 3

...k k ...k
c tn t TTi+1 LN

Thus the coefficient of t<l)...t<m) ,G<l,..;>m> is given by ,
m m

G<l,..,m> (rk-u
rAi 1A2

m

k ... TT k 1
2r I 1 ntr I 

r Ant

-1

Setting out these quantities
m

in a table ,

Clearly ,

G<l,..,m>

This

IT
r Ai

m

TT
rA2

m

TT
r Ant

k it

k
2r

k
mr-

k
1 2

k
2

k k k ...k
13 14 15 Im

k k k ...k
1 2 3 2 4 2 5 2m

k
m 1

rn<m—l>zz2

<"1)

proves the theorem ■

k k k ...k
m2 m3 m4ntnt-1

TT x’2
J > V

<_l>[tr.Z2] p-

j> i

2 U
vj
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So far* we have been referring to "the N parameter 

solution of the sG".In the next theorem we establish that it is 

indeed a "N soliton " solution. We show that in the asymptotic 

time limits (5.25) does become a sum of ns solitons,na 

antisolitons and nb breathers.The only trace remaining in the 

future of a previous interaction being the so called phase 

shift.We also find that the sum of the phase shifts is zero.

§ 4. The N-Parameter Multisoliton Solution

THEOREM 5.3

The N parameter solution of the sG defined in <5.25) is a 

ns soliton,na antisoliton and nb breather solution.

Proof:

Let us suppose that all the speeds u

Csolitons/antisolitons) and v (breathers) have been arranged

so that if u < u or 
t j

u < V
i J

then i > j.

Let us move in a frame of reference moving at speed w

along the positive x axis Ci.e w = u or v depending on p).Thus

Z —l/'Zx , , y <x + w t) , t -> > Ct + w x> ,where y = Cl-w > 
old r old r r

Substituting the above into C5.26e,f> we obtain ,

x rr [ xci - u w ) + Cw - u )t] C5.30a)
p p p r- r p

r -> yy sin /u r xci - v w > + <W “ V >t] C5.30b)
pp+i p P r r p

As a consequence(5.26a-d), C5.31)

' 0 r < P ' 00 r < P
Hm tCp) = < oo r > P lim tCp) = < 0 r > P

1 -» -co f inite r = P t -> +C0 finiteK. r - P

Where if p is an antisoliton parameter the limit is -oo instead 

oo above.

Let L represent the number of parameters for which p < r

aud let M represent the number of parameters for which p > r.

Now consider (5.25) as t -> -oo , where r is a soliton or

^r*tisoliton parameter Ci.e. rest frame of soliton or



149

antisoliton).There will be certain tuples which consist, of 

all the terms t(p) which tend to an infinite limit plus a term 

t(p = r) having a finite limit.Clearly we can factor such terms 

out on the numeratorCodd tuples) and denominatorCeven tuples) 

of the N parameter solution C5.25). When the numerator and 

denominator are factored in this way all that is left in the

factorized part is unity plus many terms that tend to zero in

the asymptotic limit.This is precisely because we have factored

out the tuples containing all the t(j) which tend to infinity.

There will be two possible cases in the t -oo limit

according to whether L is an odd or even integer.Thus ,

L odd CASE (5.32)

L- £
(~1 )~2~

lim tant -> -oo
TT t<p>

P= 1
TT 2

U 
pq 

q = p + £

e.g N = 8 r

r
L+ £

(-1) 2 TT tcp> TT %<, 
p= i q-p+£

12345678

uZ t(r)
pl-

4' Z4 N

1

->

4

r - 1 r - 1

r

—£

t(l)u2 u2 t(2)u2 t(3)
£ 2 £ 3 2 3

lim tan S'
N

Z4
, 2 2 2 t(l)u u u

£ 2 £ 3 £ 4
t(2)u2

2 3
u2 t(3)u2 t(4)

3 424

Leven CASE (5.33)

Um tant -> -oo

r 
Lz 2 

c-i> TT t<P> TT

p - 1 q —P +£

2
U

pq

r - £ 
Lz 2

<-i> it  t<p> JT

p= £

r - £

IT u2 t(r)
1 1 pr 

P= i
2 

U

q = p+ £

L -> -CO

4* Z4 N

2

->

e-g.N = 8 12345678r 5

r

r - 1

lim tan
-oo 4 Z4 N

t(l)u2
£ 2

u2 t(2)u2
£5 2 3

2 2 4 2U U t(3)u
2425 34

t(4)u2 t(5)
4 5

->

2 
U

£ 3

2 
U

1 4

2 
U

3 5

t(l)u2 uZ u2 t(2)u2 u2 t(3)uZ t(4)
£ 2 £ 3 £ 4 2324 34
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When t -> ao we have the following

M odd CASE 3

lim tan S' Z4 -> 
N

t -> CO

N N

<-i>~ IT ‘•‘p* TT Z
p = r + 1 q = p + 1

N N

TT «P> TT Z 

p = r q = p + 1

<5.34 >

e.g.N = 8 r = 5 12345678

45 4d 47 4fl 56 57 5 0 <57 68 70

M even CASE 4 <5.35)

lim tan S' Z4 ->

. N N

<-o TT t<p> TT uL

p = r q = p + 1

N

TT U2 t<r>
11 rq

q— r +1t -> co N
M 2 N N

c-o IT t<p> TT uT

p = r + 1 q=p+l

e.g.N = 8 r = 4 12345678

lim tan
t -> co

S' Z4 N ->

t<4>u2 2 
U

2 2 . rC,^ 2 2 2,..x2 2 U U t<5>U U u t<6)u U t<7)u2 t<8>

t<5)u2 u2 u2 t<6)uZ u2 t<7)uZ t<8>
5 <5 57 5S <57 <50 70

Cases: 1 and 3 both can be brought to the same form as

cases 1 and 2 by mapping S' -» S' + 2n ,this cause tan S' Z4 to 
NN N

become its negative reciprocal.Clearly depending on whether the 

totel number of parameters is even or odd we can have four 

asymptotic cases Cl & 3) ,<1 & 4) ,<2 & 3) ,and <2 & 4).For all 

t*hese cases we find only the rest frame one parameter term left 

*h the asymptotic limits.Hence the theorem is proved for

solitons and antisolitons.

define the phases :

r -1

\ = In TT u2 t<r> , =
1 1 pr r

p = 1

In

N

TT u2 t<r> 
’ ’ r q 

q = r +1
<5.36>
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We now consider breather rest frames .The analysis is 

slightly more involved as dominating tuples come in a number of 

varieties. We may have tuples containing no breather rest frame 

terms,tuples containing one breather rest frame term and 

finally tuples containing both breather rest frame terms.As

before, we take these dominating terms out as f actors in the

numerator and denominator of the N parameter solution (5.25).

L odd

lim tan

c-l> 2

r - 1

- TT t-cp> TT
L P = 1 q = p + 1

t -> - co 'P Z4 -> N

L+ 1
r - 1 r + 1 r + 1

q = P + 1

L.+ 1
(-1) 2

Removing factors

TT TT
p= 1

of

denominator in the above

r+lXr r+l\r’

+ TT t<P> TT < I 

p= i

r — 1

TT «p> TT
p= 1 q=p+i

we find,

from numerator and

r r

2 
U

q = p + 1 ' ' < iq = p + a J

r -1

lim tanf Z4 
N

t —CO

r - 1

X.

TT u2

2 2 2 u u u t(4)
14 24 34

11 p r 
p= 1

r - 1

TT11 p r + 1
p= 1

tCr>tCr+l>

TT u2 tCr)
< p=1

TT
P= i

2 u
pr +

tCr+1>
i

1
2 u
r r + 1

r - 1 r - 1

P r
+

lirn tan'P /4
- CO

(• expt X + r
>tCr)tCr+l> ]

C5.37)

exp(\ )t(r) +exp(K )t(r+l>
F + 1

2 u
r r + 1

X
r + 1

4= 8 r 12345678

m tan’f Z4t -> -co N

'tCl>u2 2 
U 

12 13
tC2>u2 t<3)f 1

23

2 
U

45

2 2 2 . . . . 2 2 2 „ . u u u t(4)u u u t<5)
14 24 34 15 25 35 J

t(l)u2 u2 t(2)u2 tC3>[
1213 23

+ U2 U2 U2 t<5> 1
15 25 35 J
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L even

lim t.an 4' Z4
N

t — 00

L. / 2C-l >
r r

TT t<P> yy u2

exp( X+ + X+ >tCr>tCr+l>
r r + 1

' 1 1 pq
p=l q = p+l

r + l\r r + l\r

+ TT «p> TT <
P = 1 q = p + 1 P

L/2C-l >
r - 1 r - 1

tt  t<p> rr 

p=l q=p+lP

r + 1 r + 1

- tt  t<P5 TT up„ 

p= i q = p+ i

lim tan’P _Z4t - oo N

expCX )t<r) + expCX.
r r + 1

>t<r+l >
<5.38 >

r
i 1 2 

U
r r + 1

expC \ + X. >tCr)tCr+l> r +1 j
M odd t -> +oo
lim tant -> +oo Z4

N

L- 1
c-i>“z”

rI
N N

L+l

c-l> 2

and

N N

tCp)
p= r + 2 q = p + 1

N\ r + 1

denominator we find ,

limt -> + ootan \P Z4 a 
N

2
U 

pq
11 tcp> i 

p = r

N

tCp) u2
pq p=r + 2 q = p +1

Extracting the factor

2 
U

q = p+ 1

N

TT “zpq q = p+ 1

from the

-■

numerator

(■ 2 
U 

r r + 1 )
<5.39>

exp(X+>t<r>
r

+exp<X >t<r+l>
r + 1

In the case M even we find by similar arguments that lim tan ’P Z4t -> + oo
Equals an expression which is the negative reciprocal of

^5.39).Thus we have shown the theorem to be true also for

leathers.!

We note that it is a consequence of the

I-hat in the interaction of solitons ,antisolitons

above theorem

and breathers

that like exchange with like, as if x;e begin in a
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soliton/antisoliton/breather rest, frame in the remote past, we

once again find ourselves in a soliton/antisoliton/breather

rest frame in the remote future.This also leads to the

conservation of the numbers of soli tons,antisolitons and

breathers.

We comment, on some properties of the phase shifts X
r

Suppose represents soliton or antisoliton

parameter*.Consider :

2 expCX ) = u tCr) 
r . _ , P1'P- i

r -1 r -1

2 2 2u t(r> u t(r)u
kr Lr- l+lr

r -1

(5.40)

where the first product on the right hand side has k ranging 

over the set of soliton or antisoliton parameters less than

r, while the second product sign has 1 ranging over only the

soliton in breather parameters (first parameter of the pair)

less than r.

Now from the definition of uZ (5.27c) , 
lr

2
U

I + 1F

*>

r a

This means soliton and antisoliton phases are real as both

sides of the above equation are multiplying each other in a

soliton or antisoliton phase (5.40).

Now suppose r represents soliton in a breather .Then ita

follows,

[ exp(X ) ]
■p= 1

r -1

[ TT “k/^’TT J
r -1

(.IT u>x.>)
*

r - 1
*

r -1r -1

TT u2 t(r>
’ 1 kr+l IT

r -1

u2 t(r) TT u2 t(r> 
l-t-lr+l ' 1 lr+1

This; last step is a consequence of the fact that k ranges over

solit,on or antisoliton parameters so that a is real ,while 1 
k 
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ranges over all soliton in breather parameters(l^r) so a, is

complex.We have also employed C5.27b~c).

We can write this last result,

r-1 r-1

! Hu2 t(r)l = | | u2 tCr)
I 1 1 pr I ' 1 pr+ 1

C5.41)

v p = l J p=l

Thus if r is a breather parameter (soliton) ,

(X ) = X
r r+1

Similar results obtain for Xh .

COROLLARY 5.3

The sum of the phase shifts in the N parameter solution of the

sG is zero.

Proof:

The phase shifts are defined by

r -1

X
r

In TT u2 tCr)
1 1 pr 

= 1p=

X
r

In

N

TT u2 tCr>
1 1 rq

q = r + 1

Thus,
N

NN

= 2
r = 1

2-:
r = 1

|I u2 tCr)
11 rq

q = r + 1
"x

InX > 
r r - 1

I

The quantities in the numerator

be set out into two groups ,

I j

and denominator of C5.41) can

DenominatorNumerator

u U . . U
12 1 3 IN

U U . . U
23 24 2N

U U ,U
34 35 3N

1

u
1 2

U U
13 2 3

U U U
14 2 4 34

U
N- in

1 U U
IN 2N

. . . U
N-1N
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These tables are clearly rearrangements of one another .The 

argument of the In in (5.41) is therefore l.So the result is 

proved Q

§ 5. Concluding remarks

We have seen in this chapter how the "N soliton" solution

of the sG can be built via a nonlinear superposition of

asymptotic components (solitons ?antisolitons,breathers). Such 3

nonlinear superposition though f ormally important and

interesting, does not. however reveal in any obvious manner how

solitons, antisolitons and breathers interact with one

another.Neither does it tell us how the identity of solitons

etc changes during the interaction.

In the next chapter we will see how the ”N soliton”

solution of the sG(MKdV,KdV and others) can be written as a 

linear superposition of accelerating solitons.This enables us 

not only to follow the motion of the solitons throughout the 

interaction but also to identify individually the solitons for 

all time and thus determine how they change their shape during 

the interaction.

Linear superposition plays an implicit role even in the 

arguments connected with nonlinear superposition used in this

chapter .Firstly we saw in §2 how when the parameters k

signum(j-i) the N parameter solution became a linear

superposition of single parameter terms.Further to this we also 

studied $ when one of the k (k > was allowed not to be N vj vr-

il.In this case we sawCproof of lemma 5.3) ,

tan $ Z4
N

Where the prime on the summation sign meant that i and r were
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excluded.Now let. ,

tan $ Z4 = k tan |<-l>t+1C^ >Z4
vr tr ! t r

$ is the two parameter solution of the sG.With this the 
ir

equation above becomes simply ,

tan $ Z4 = tan | V 5.Z4 + 5? Z4 1
N LA.1 J

3 = k x - k3t +6 ,u2 = <k -k >2Z<k +k >2 ,k > k
Li i 112 12 12 12

saw in the chapter 3 how an alternating structure is present 

ih the theorem of permutability satisfied by u.

Clearly further work on this topic would be valuable.

or,

$ = y i +
N Z I tr

1=1

That is to say the being considered here is just a

linear superposition of N-2 non interacting solitons and one 

interacting pair 3? .

Although we have addressed all the arguments in this chapter 

specifically to the sG,essentially identical arguments can be 

used for the MKdV.Though the MKdV being a unidirectional 

Galilean invariant equation ,means that we cannot by Galilean 

transformation enter the rest frames of all the solitons.So 

that the MKdV equivalent of theorem 5.3 would be different.

A theorem of permutability for the Hirota t function

associated with the KdV which satisfies [21 ,

TT _ T T + TT - 4t  T + 3t 2 = 0
xt X t xxxx X XXX XX

is implicit in an article by Wahlquist [3J.lt is very likely

that with it we could formulate similar arguments to derive the 

N-soliton solution as those advanced in this chapter.

We note the 1 and 2 soliton formulae for t  satisfying the 

above equation Cu satisfying the KdV is given by u =-2Clnr>* >.

t = 1 + exp 3 ,t =1 +exp 3 +exp 3 + u2 exp<0 +3 >
1 1 12 1 2 12 1 2

T is the one soliton solution,r the two soliton solution.
1 12
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§ O. Introduction

In this chapter we introduce the linear superposition 

polynomials Clsp's) for the N parameter solutions of a large 

number of soliton equations.By N parameter we mean in general a 

mixture of solitonsCsG,MKdV,NLS,KdV and relatives),

antisolitons and breathers(sG, MKdV). The Isp’s enable us to

identify the solitons for all time and hence calculate how they

interact with one another and also how they change their

shape.

To the theoretical physicist interested in the

particle-like nature of solitons,the detailed processes of 

their interaction are of great interest.Given the stability of 

solitons in collisions, and their characteristic asymptotic 

shapes,it is natural to suppose that the solitons are not lost 

in the multisoliton profile, and that perhaps their shapes are 

not altered very much.This is indeed the case as is explained 

in this chapter .The remarkable finding of §1 is that the basic 

form of the lsp is the same for all the soliton equations 

considered.

In §2 we find that the roots of the Isp turn out to be 

the eigenvalues of certain matrices which arise in inverse 

scattering theory.

In §3 we explore general properties of the roots of the 

lsp without solving the polynomial itself .As exact formulae for 

the roots of polynomials of degree higher than 4 do not in 

general exist, the exploration of the properties of the roots 

from general considerations is very important.Ve give the exact 

formulae for the roots of polynomials of degree less than or 

equal 4 in §4, though only the roots of the quadratic are 

Revealing.

In §5 we explore the links between the motion of
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singularities of the N parameter complexified sG solution and

the lsp,coming to the important conclusion that points where

the roots of the real Isp are equal to one( for solitons in

breathers* or otherwise J and minus oneC for antisolitons in

breathers or otherwise) coincide with the positions of the

projections of the branch points on the real axis.

In §6 we discuss how, with a special choice of

phase(perfect phase), the soliton interaction is centred on the

origin of the x,t plane, and we are able thus to determine the

location of some of the solitons at time t=0 without solving 

the lsp.We also discuss how if we select the asymptotic speeds 

in a certain way,the behaviour of the roots of the lsp, and 

hence the solitons is completely time symmetric.

In §7 we discuss the reasons for choosing a particular 

antisoliton representation(sG,MKdV),thus discovering that 

whether the roots of the lsp are real, is sensitive to allowed 

transformations of the N parameter solution.We also discuss the 

non-uniqueness of the lsp(sG,MKdV).

The chapter ends with some concluding remarks.
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§ 1. Multi-soliton solutions of the sG ,MKdV ,NLS ^RdVCS:

relatives) as linear superpositions of accelerating solitons.

In this section, we prove that the sG,MKdV,NLS ,KdV and 

other equations having multisoliton solutions of KdV 

f or m(KP, Boussinesq, higher KdV etc), have multisoliton solutions 

which can be written as a linear superposition of

characteristic functions.Formally the linear superposition(LS) 

is similar to a LS of non-interacting solitons,but where the 

argument which is a linear function of x and t(and y possibly) 

is replaced by a nonlinear function, g<x,t> = In fCx,t).The 

functions f Cx,t) are the roots of the polynomial which we will l

define below.lt is remarkable that the form of the polynomial 

is identical for all the equations under consideration.

We establish these facts in the theorems that follow.

THEOREM 6.1(sG)

The N-parameter solution of the sG equation is given by ,

N
$ = 4 y

N Lm =
tan 1 f

i tfii
<6.1)

where f are the 
TH

roots of >

HCf) = 0 <6.2>

and ,

N l l
IKf) = fN * 1 TT«p> H-:,

p=i -
<6.3>

where the unscripted summation sign indicates taking all

combinations of 1 integers taken from l,..,N.If there are ns

Solitons ,na antisolitons and nb breathers (N=ns+na+2nb) then
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C6.4>

Cp = ns+na+1,ns+na+3, . . ,N-1>

1 < p < ns tCp)

ns+1 < p < ns+na tCp)

ns+na+1 < p < N-l tCp)

= exp X
p

Ca>

= -exp X
p

Cb>

= -j exp(P + iQ )pp+i pp+i Cc>

tCp+l> = +i exp(r - iQ )
pp+i pp+i

Cd>

and where ,

X
P

= / Cx “ u t) + cx
p

Ce>
p p

r y cos fj Cx - v t> + cx Cf>
p p+i p p p P

Q y sin u Ct - V x> + /?
p P+1 P P p p

and >

1 < p < ns+na r = Cl -
2 -1/2 

u > Ch>
p P

= Cl -
2 . —1/2

ns+na < P Y V 1 Cl>
p P

sin u = cos n
— 1.2 . 2 . +1/2

= r Cr - 4n 1
p P p P P

1 u |, | v | < 1 and t  > a and (3 are real phases.
p

t is the breather rest frame period, v is the breather 
p

asymptotic u is the soliton or antisoliton

asymptotic speed.

The quantities 2 
U

pq
are defined below. C6.5>

1 < p < ns+na r_1ci
p

Ca>a 
p

u > 1
P

* 
a

p
ns+na+1 < p < N-l b exp +iyj 

p
Cb>a

p
>a

p +1

b
p

Cl+v )’1/2
p

* complex conjugation

2 
U

pq
Ca

P
a >2 

q
Ca + a > 2

p q
Cc>

e.g. n = 3 f. are the roots of the following polynomial , L

12 13 23

- EtCl> + tC2> + tC3>l f2

+ lu2 tCl>tC2> + u2 tCl)tC3> + u2 tC2>t<3>3 f
12 13 1 3

2 2 2
- U U U tCl>t<2>tC3> = 0
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Proof:

VZe saw in corollary 5.1 and theorem 5.2 that tan$ Z4 has
N

the form of a tan of N parts in t(p) with the addition of

invariants u
vj

.Now the theorem asserts that

tan $ Z4
N

N

tan \ f
Zj rn

m=l

so that noting; the formula for the tan of N parts given in §3

of the last chapter vze see the above is the N parameter

solution provided (6.6)

(f )
1 m

t(l) + t(2) + . . . + t(N)

& (f ) 
I m q=p + l

<7 (f )
N tn

where the <7
I

are the elementary symmetric functions on the N

f +
1

f +
2

2
I

N

+ f
N

I I

f
p

1

N

p = ± P

variables f .
m

However the f are the
rn

N roots of (6.2-3) thus ,

H(f) = TT (f-f ) = fN + ... + (-1)1<7 (f
1 1 rn li

m= 1

>fN-1 +

Clearly substituting (6.6) into the above we obtain (6.3) ■

THEOREM 6.1(MKdV)

The N-parameter solution of the MKdV equation

w + 2 w
t X

+ w =0
xxx

(6.7a)

is given by ,

N
-1 _

w = 2 ) tan f (6.7b)
N Z.ni= rn1

the roots of (6.2) with H(f) defined inwhere f are
rn

^6-3),and where ,

N N
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C6.8)

Cp = ns+na+1,ns+na+3,..,N-1)

1 < p < ns

ns+1 < p < ns+na

t<p> = exp X 
p

tCp) = -exp X
p

Ca>

Cb)

ns+na+1 < p < N-l tCp) = -i exp(T + iQ ) Cc>
pp+i pp+i

Cp = ns+na+1,ns+na+3, . . ,N-1)

tCp+1) = +i exp(T - iQ ) Cd)
pp+i  pp+i

and where ,

X 1/2= u Cx — u t ) + ot Ce)
P P p p

r = 20 Ex - v t] + a Cf)
p p+i p p p

Q = 277 Ex - w tl + /? Cg)
P p+i p p p

and ,

1 < p < ns+na u = 4 1.2
Ch)

P "p

ns+na+1 < p < N-l v =4 C©2 - 3 772 > Ci)
P P p

„ w = 4 C3 e2 -j-)2 ) cp
P p p

where k >k i>j and w >3v a,© real phases, and period t  =77/77 .

1 J P P p p

u are asymptotic soliton or antisoliton speeds,k are soliton 
p p

or antisoliton amplitudes.v and w^ are breather velocity and

breather phase velocity respectively.© and 77 are the real and 
P P

imaginary parts of the breather amplitude respectively.

2The quantities u are defined below. C6.9)
pq

1 < p < ns+na a = k
p P

ns+na+1 < p < N—1 a = ©
p P

Cp = ns+na+1,ns+na+3, .., N-l)
2 .u = Ca
pq p

Ca)

+ i77
P

* 
, a = a

p+i p
Cb)

. 2 - . -2 Cc)- a ) Ca + a )
q p q

Proof:

As for the sG.The proof that this N parameter solution is a

rnultisoliton solution has not been demonstrated in this

thesis.Ho we ver the solution C6.7) coincides with the

’ttultisoliton solutionCno breathers) of Hirota 111
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C6.10)

The LS fox' the more common form of the MKdV

2
u + 6u u + u = 0 t X XXX

where u w is given below, by differentiating with respect

to x equation C6.7b).

N Cf )
tri x

1 + f 2
tri

or in terms of the argument g
rn

defined by ,

= In f
tn

N

= - ) Cg > sech g 
Zu m x

tn = i

C6.11)

<6.12)

C6.13)

THEOREM 6.2 CKdV,& RELATIVES)

The N-soliton solutions of the KdV equation ,

the KP equation ,

the

are

f
rn

we

u 
t

6uu
x

+ U
XXX

0 <6.14)

C u - 6uu
t X

+ u
XXX

)
X

+ u
yy

0 C6.15)

Boussinesq equation ,

C u - 6uu
x x

+ u
XXX

)
X

+ U 
tt

0 C6.16)

given by ,

are

once

becomes

with ,

u
N

N

1-2
tn“ 1

Cln 11 + f 1)
tn xx

C6.17)

the roots of

again express

U 
bl

A
rn

Where the quantities

equations.

C6.2)

f m in

with HCf) defined by C6.3) If

terms of g
m Cf m

exp g ),C6.17)
tn

N

J;
2
tnx

tCp)

1

2

+

A sech2Cg Z2)
tn

Cl +

and

rn
> <6.18)

f >
tn

2 
U

pq

£tnxx
C6.19)

are given by the following
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(6.20)

tCp) = exp X

For the KdV ,

V 1/2 x X x .X = u (x - u t) + a
p p p p

u = 4 kz
p p

u2 = Ck -
pq p

k )2Ck + k )~2
q p q

For the KP ,

X = Cr - s )x + C rZ - s2 )y + < r3 - s3 )t + a 
ppp  pp  p p p

u2 = Cr - r )2Cr - s ) 2 Cs - s )2Cs - r )
pq p q p q p q p q

For the Boussinesq ,

X = k Cx - <£7 u t) + ot
P p p p P

. z 1/2
u = Cl + k ) > ■£' = ± 1

P p p

2 2 -2 „ 2 , -Z -1u = 1 i> + 3Ck - 1k ) IE + 3Ck + k ) 1
pq pq p q pq p q

where

v = £ u - £ U
pq p p q q

(a)

Cb)

Ca)

Cd)

Ce)

CD

Cg>

Ch)

Ci)

<J>

<x are real phases 
P

and for the KdV k k .For the 
p q

KP r * s .
p P

Proof:

As we saw in chapter 3 of this thesis all the above

equations have multisoliton solutions which may be expressed in

the following way ,

u = - 2Cln t )
N xx

C6.21)

where ,

Z InCu2 ) 
i < j<N LJ

] C6.22)

with X defined above.Now t above can be written ,
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C6.23>

Nil

T = 1 + .1 2 TT «P> TT
l-l p = l q=p + l

where,as before the unscripted summation sign indicates summing

over all combinations of 1 integers taken from N,and t<p> is

defined in C6.20a).Setting u2 
pq

= 1 in <6.23) gives ,

t  = 1 +

N

y & ct<N» 
i=i

C6.24>

where o^CtCN» are the elementary symmetric functions on the N

variables tCNXOf course C6.24) can be written in a yet more

familiar form ,
N

- = TT
1 = 1

Cl + tCl»

It is clear* that if when u2 x 1
pq

N

we

+ rl5
T = TT «

I = 1

let ,

then the following equations must hold ,

O’ Cf 
1 tCl) + t<2> + + t<N>

1 TT/P
p= 1

I

f

it  t,<P> tt  

p = 1 q= p+ 1

> m f + f i ;2 f
N

2
I I

N N N

IT TT «2pq
p- 1 q = p + 1

These are f amiliar to us already from theorem 6.1CsG).Hence as

then f must be
P

the roots of C6.2) with HCf> defined in

C6.3>.» 

e.g N = 3

1 + fT + f + f + ff + 12" " f f +
1 3

f f +
2 3

f
2 3

f f 13 1 2

. x . X . 2 X+X-1+e i +e z +e a +u e 1 z 
12

. 2 X +X , 2 X +X 2+u e 1 +u e 1 3 +u
13 23

2 
U 

12 13
2 X +X +X 

u e i 2 3
2 3
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Naturally the linear' superposition principle above also 

applies bo the whole hierarchy of KdV equations which we saw 

defined in chapter 3.

CONJECTURE 6.0CNLS)

The N envelope soliton solutions of the Nonlinear Schrodinger

equation ,

u + iu + Jt|u|2u = 0 C6.25)
XX t

are given by ,

N

|u |2 = Y2«
N

X Cln El + f f* 1) C6.26)
m= 1 rn rn xx

where f are the roots of <6.2-3) and tCp) and uZ are defined
m pq

by, C6.27)

tCp) = 1 V7 exp X
1 P

Ca>

X = -2t ) Cx - t) + a Cb)
p p p p

2 * *
u = w w w =: Ck -k )/Ck -k > <c>

pq pq pq pq p q p q

where the amplitude k is
p

given by

k = ? + ii9 Cd)
p p p

Proof:

We do not provide a proof of this.However, it is likely 

that a proof would be similar to that of the previous theorem 

but using the Hirota expression for the argument of the log in

C6.26) [21.
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§ 2. Roots of linear superposition polynomialsGsp’s) as

eigenvalues of matrices and links with inverse scattering

theory.

We saw in chapter 3 how multisoliton solutions of the KdV

type equations could be represented in the form ,

where I is the N x

whose components c 
mn

c
rnn

2k1 z2
rn

2(ln det II + C 1)
XX

(6.28)

unit

may be

matrix and G

written (KdV)

is the N x N matrix

k1/z
n

(k + k ) *exp +X )
m n 2 rn n

(6.29)

U 
N

N

This may be expressed in terms of uZ defined in (6.20) , 
mn

c mn (1
2 x1/Z bv .ir >

u ) exp ~(X +X )
mn 2 rn

(6.30)
n

In the above u2 can be any of the
rnn

expressions defined in

(6.20).The N envelope soliton solution of the NLS can also be

written(chapter 3) in a form analogous to (6.28) „

72« (In det CI + GG* 1)
XX

(6.31)

where this time G is the matrix having components ,

(6.32)

c mn
l<k -k*>1/2

rn m
(k -k*)1/Z

n n

* -1 
(k -k )

m n
1 xw exp ~ (Y2 m

*
+ Y )

n

where

Y
rn

X +
rn

2it£ x +
rn

2(?Z-7)2)tl
m rn

(6.33)+

by (6.27b)./3 is
rn

where is given phase.X
rn

a complex

This can also be expressed in a similar form to

(6.30),with 2 
U

pq
defined by(6.27c).It is clear from the form of

(6.25) and the proof of the theorem(6.2 KdV) that if G is a

diagonalizable matrix its eigenvalues are f
rn

where f
m

are the

proof of this has been given by Bryanroots of (6.2).A rigorous

and Stuart(paper I in the appendix to this thesis.Also the

eigenvalues f are shown to be distinct.This means that the m
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eigenvectors 0 associated with eigenvalues f and satisfying ,
rn rn

C <t> = f <p (6.34)
rn m rn

are linearly independent.Thus the matrix T whose columns are

the N eigenvectors diagonalizes C by a similarity
rn

transformation ,i.e

D = T_1C T (6.35)

where D is the diagonal matrix with elements f .
rn

We give an example of some of the above remarks in the

case of the two envelope soliton solution of the NLS.

The eigenvalues of C (6.32) are given by ,

det

1 exp 
r

—(Y
2 1

+Y ) - fi — i i
i(k -k*)

1 2

2 2 exp —(Y +Y )
2 12

* 1 Z2 . * . 1 Z2(k -k ) (k -k ) 1 * 1 *
2 2 1 1 exp —(Y +Y )

2 2 1
1 exp —(Y +Y ) - f

2 2 24

i(k -k ) 1 J
2 1

= 0

(6.36)

which gives after some algebra the following equation for f ,

f2- If 11 [eXP 2 (Y +Y*> + exp 
ii

—(Y +Y*)lf - u
2 2 2 J

2 
exp

12

1 * * 
—(Y +Y +Y +Y 
2 1 i

with u
12

defined in (6.27c).Noting (6.33) this becomes an

_ ) = 0
2 2

example of to (6.26) ,(6.2-3) with (6.27).According

I 1 2
U = V2« (In 11 +

★ 
f f 1) + V2« (In 11 + f f*l)

1 2 ' 1 1 XX 2 2 xx

with f ?f the1 2 two roots of the above quadratic(both pure

imaginary).

We note that if we let f = h/i in (6.36) and define a

matrix B = iC then the eigenvalues of B are h^ and since B is

Hermitian h are real.Note they are also positive and distinct.
rn

We saw in chapter 3 that the wavefunctions of the associated

scattering problem for the KdV were given as the solutions of 

the equation below ,
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(I+C)^ = E (6.37)

where in this case y T(w ,y»' > and
1 2 N

E = (7 2k exp X ,...,7 2k exp X )T
11 N N

with C defined in (6.29).

Let us define a new set of "wave functions"

T V (6.38)

where T is the matrix defined previously (after equation 6.34).

This allows us to write (6.37) in the form ,

<I+D>x T *E (6.39)

It is important to note that * Is not a superposition of t/J.

with constant coefficients^.38> as the elements of areT

functions of x and t

§ 3. General properties of the roots of the LSP.

In this section we attempt to discover as much

information as we can about the functions f which are
rn

the

roots of the isp (6.2-3) without solving <6.2-3).As <6.3) is a

polynomial we can only solve it exactly for N < 4.For

simplicity we do not address the following theorems and

corollaries to the KP.

COROLLARY 6.1

The N roots of (6.2-3),f are
Hi

never zero for -oo < x,t < oo

Proof:

We saw in (6.6) that ,

N N N

TT f = TT tcp’ TT up„
P = 1 P = 1 q=p + l

It is clear that the above product never vanishes in a

bounded region of the x,t plane as for all the equations nt(p)

has the form of an exponential in x and t.Thus no individual f 
rn

can vanish ■
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COROLLARY 6.2

If the N roots f are real then V m f is either always 
m rn

positive or always negative.

Proof:

Since f are continuous functions of x and t which never m

acheive the value zero they must retain their sign ■

COROLLARY 6.3

For fixed time and x -> ± oo C6.2-3) has N roots f
rn

whose

moduli tend to zero in one limit and infinity in the other

(modulus is used in the complex sense ).

Proof:

It is clear from the various definitions of tCp) given for the 

NLPDE’s in the earlier theorems that as x -> -oo C+oo) | tCp> | 

tends to zero V p .This means that in the appropriate limit 

o Cf ) -> 0 V l.Thus HCf) -»■ fN in this limit so that clearly
I p

HCf) = 0 has N zero roots in this limit.

Now consider the limit for which |tCp>| -» oo V p. Let 3 a f
p

such that |f | is finite.Clearly ,
P NN

| HCf >| = | fN - [tci>+..tCN>]fN~1+...4-c-i>NTT tcp> TT u2 |
P P P ' ' 1 ' pq

p=i q=p+l

N N

= i TT«p> TT< i-i A i
JI? i CJ— £) d" 1

where A just represents dividing HCf) term by term by the

N N

factor ~j~T tCp) j | u2 . Clearly the moduli of all the terms in
p — i q~ p p

A except for one which has unit modulus,tend to zero in the 

limit.Thus |HCf )| becomes infinite.But HCf) = O.-+e .Thus |f |
p p

can not be finite.B
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THEOREM 6.3

If the number of parameters N for the sG and MKdV equals

the number of soliton parameters Cantisoliton),then all the

roots of (6.2-3) are real,positiveCnegative) and 

include the KdV,Boussinesq in this.If we are talking

distinct .We

about the

NLS then the roots of C6.2-3) are purely imaginary.

Proof:

In paper I in the appendix it is proved by Bryan and

Stuart that the roots f of (6.2-3) are identical to the 
rn

eigenvalues of the matrix defined in (6.30).For the NLS similar 

arguments to those in I can also be applied to the matrix ;

B = iC with C defined in (6.32).B can be written as the product

of matrices (square brackets)) ,

B
rnn

[exp 1
2

6 Y 1 [ h J Eexp x <5 Y* 1 (6.40)
mn rn mn Z mn m

where 6 is
mn

the Kronecker delta function and h is
rnn

defined

by. h
rnn

= Ck -m
. * 1/2 * 1/ZX. . *. -1k) Ck - k) (k - k)

m n n rn n
(6.41)

In paper I it was shown by Bryan and Stuart that matrices

of the same form as (6.30) have real,positive(negative for

antisolitons) and distinct eigenvalues.Clearly this independent

of the definitions of X
rn

for the various equations.Similarly

since B is Hermitian it has real eigenvalues and similar

arguments as those in I give that the eigenvalues are

distinct .Thus the eigenvalues of C are purely imaginary .■

We note that for mixtures of solitons,antisolitons and 

breathers(sG,MKdV) the matrix C is complex and symmetric (non 

Hermitian),so that the eigenvalues are not necessarily 

real,al though for two parameter cases it is easy to demonstrate 

their reality.As yet,a proof of the reality of the eigenvalues 

in mixtures has not yet been devised
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We now move on to prove the equivalent, of theorem 5.3 for 

the lsp C6.2-3),that is to say we show that, 4tan Af where f are 
m rn

the roots of (6.2) tend asymptotically to constant speed

solitons > antisolitons or parts of breathers.To prove this we 

shall need the following lemma.

LEMMA 6.1

If the polynomial Cz e C»t <=

HCz)

N
V a (t)
/. m 

m= O

N-m 
Z C6.42)

is such that ,

lim a (t)/a Ct)
t-> ±oo

rn

r, r+1
= r
= r+1 k

(6.43)

then (6.42) possesses in

zero root ,

finite and non zero

the limit t -> ±oo a single finite non

m

r
m
m

k C6.44)

and N-r-1 zero roots and r roots of infinite modulus.

Also if ,
r

lim a <t>/a <t> . m r
t->±00

then C6.42) possesses

0
1
k1 
k

2

finite

m x r ,r+l ,r+2
m = r
m = r+1 , k f i nite noni zero

m = r+2

in the limit t -> ± oo two

C6.45)

non zero

<

k

roots satisfying ,

<6.46)

and N-r-2 zero roots and r roots of infinite modulus.

Proof:

We will consider only t -> -oo as the proof is readily

adapted for t -> co .Consider first the case of C6.42) together 

with C6.43).
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Define ,

a (t)/a <t> 1 r■+£ r
and

f Cz)
1

N a z o
N-l

-a z
£

+..<-1/ *a
r+2

N-r-z , . ,.Nz +..C-1) a
N

We have that >

<

a
r - £

N- r - 1

Consider a circle G
£

of radius R
1

then on this circle >

<

[
a o a

r - £
a

r
a 

r

+
a

r + 2
a

r

a N
a 

r

Noting (6.43) we see that as t -> -oo the quantity on the

rhs of the inequality becomes arbitrarily small.Thus on G £

apply Rouch6?s theorem from

zeros of HCz) f (z)+g (z> £ i

zeros

G .In i

g^ are

complex

inside

of g*Cz> inside G .Clearly

addition since R can be £

possess r roots of infinite modulus.

Now consider a circle G
2

of

analytic functions we may

analysis.Thus the number of

G* equals the number of

g^Cz) has

arbitrarily

radius R
2

N-r zeros inside

large HCz) must

such

then using the same argument as bef ore can be made

arbitrarily small in the limit as t -» -co .Thus the zeros of

H(z> inside G
2

are equal in number to the zeros of g^ inside

-There are2 N-r-1 zeros of inside G .Thus 
2

HCz) also has

N-r-1 zeros inside C .It is clear 
2

that since a zero has been
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lost between C* and G^, HCz) possesses a zero k.

Since R^ above can be arbitrarily small we see that H(z> has

N-r-1 roots of zero modulus.

We now consider the case of (6.42) together vzith

<6.45).Define

r+2 . . N-r-2a <t)z
r+2

4 xr x+ x N-r-2 2=<-l) a (t>Z lz
r

(a /a )z 
r+1 r

+ a /a 1 
r+2 r

Also define ,

f (z)
2

with z the roots of m the

N a z o
N—r+1 r+3z +C-1)N-l , ..r-l-a z +..C-1) a : 1 r-l

a N-r-3 , x , .N
l z +..C-1) a
r+3 N

then it follows that ,

z

R3 ’

then clearly the above may be written ,

<

a 
o[ a
r

. . +
a 
r-l |R I3 +

1 3 1

a
r + 3 IM'*a a

r r

4- .
a 

N. +
a

r

Now, noting (6.45) we see that as t -> -oo the rhs of the

inequality above becomes arbitrarily small.Thus on G3

|S2(z)| > | f2<z> | .Again,by Rouch6 ?s theorem,the zeros of

H(z)=g (z)+f2 2(z) inside G3 are equal in number to the zeros of

Cz) inside2 G .Thus the3 number of zeros of HCz) inside C 3 is

N-r.HCz) has r zeros outside G .3

Now consider a circle G4 of radius R such 4 that | z 1 < lzJ1 >

t-hen using a similar argument to the above we find
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can be made arbitrarily small in the limit as t ->

-oo .Thus the zeros of H(z) inside C^ are equal in number to the

zeros of g (z) inside C .There are N-r-2 zeros of g (z) inside
2 4 2

C^ ,H(z) has r+2 zeros outside C^.Clearly H(z) has two zeros in

Carrying out a similar argument as before in a circular

region C
5

| z? | we find

once again the zeros of H(z) inside are equal in number to

the zeros of S2<Z> N-r zeros

inside C .thus
3

HCz) has a root when | z | = | z | .Similarly there

zeros of g (z)
2

inside C ,thus a root was 
4

lost

between and C ,so HCz) has

since R
3

in the argument above is arbitrarily large ^H(z) has r

roots of infinite modulus and since R* is arbitrarily small

HCz) has N-r-2 roots of zero modulus inside C^.This proves the

theorem.!

THEOREM 6.4(sG)

In the limit as ± oo and x fixed,the only non zero

finite roots of (6.2-3) in frame of reference moving at speed

u ,where u
r r

is soliton or antisoliton asymptotic

speed(see 6.4),are given by

G
4

a

<

t

a

W : 
r

a

f = expt X )t(r)
r

(6.47)

or in a frame of reference moving at speed v/ -v ,where v is a 
r r r

breather asymptotic speed(6.4),the only non zero finite roots

of (6.2-3) are given by , (6.48)

f2 lexpCX >t(r)+exp(X *)t(r+l)lf +
zt ±expCX +X
r r

)t(r)t(r+l)=0
r +1

where the ± superscripts refer to the limits t takes and where

t(r) are defined below. (6.49)

lSr<ns t(r) = exp x (a)
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ns+l<r<ns+na tCr) <b>

ns+na+1 <r <N-1
< r = ns +na + 1 , ns+na+3,. . ,N- 1 >

t(r) = -i expir
rr+l

+iQ I
rr+l

(c)

I* t(r+l>
* 

t(r) C6.49d)

where ,

r
rr+l

(cosp? 
r
)x Q 

rr+l
(sin/j )t

r
(e>

u defined 
r

in (6.4 j).

pr
X 

r
In Cf>

u2 defined in (6.5). 

pq

Proof:

We assume that all the speeds u and v have been arranged

so that if u <
t

u or u < v then
J t J

i>j.To enter the asymptotic

rest frames of the soli tons,antisolitons or breathers w’e carry

out the following Lorentz transformation.

Xotd * Y <x + w t) , t a y <t + w x) ,Y 
old rr

Z -1/2 (1-w )
r

Substituting the above info (6.4) gives

r

X 
P

a YY Cx(l
P

u w ) 
P r

+ (w
r

u )tl 
p

+ a
p

pp+ l* YY co s /j  IxCl
P P

V w ) 
P r

+ (w
r

v
P
)tl + a

p

Q a 
pp+ i YY sinu [t(l 

p Pp
V W ) 

P r
+ (w

r
v )xl 

p
+ ft

p

and when p=r we find >

X = x , 
P

r
pp+ 1

(costz )x ,
r

Q
PP+ 1

Csin/j )t 
r

However noting (6.4) we find in general

Z-

<

“OO

0 r<p
oo r>p 
k r=p

i V,

co
0 
k2

r<p 
r>p 
r=p

(6.50)

k ,k
1 2

finite non zero.

that

Consider soliton or antisoliton rest frames.lt is clear

as t-> “oo (+ao) particular products of t(p) entering the

Polynomial H(f) (6.3) will dominate.These dominating products

will involve p< r or p<r Cp>r or p>r).Any other product when
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ii 1 1 pq / 11 i '
p= 1 q-p + 1 p = l q-p + i

divided by a dominating product will involve tCp) p>r Cp<r) on

the numerator and the uncancelled tCp) per Cp>r) on the

de nominator.Clearly from C6.50) such ratios will tend to

zero.Numerous examples of this were given in the proof of

theorem 5.3 in the last chapter.Denoting the general

coefficient of C6.3) by a^Cx,t),

a^Cx,t> = C-l)1 2
L L
77 t<P> 77 u2
11 11 pq
p = l q=p + l

we find ,

a Cx, t) r 0 l*r-l,r
lim ---- -—----- r-r- - 1 1 l=r-la Cx,t^
t-> -CO r-1 < k 1=i’

where

r r r-1 r-1

k = TT «p> TT < / TT«p>TT< = exp X

expCX + X >tCr)tCr+l> 
r r+1

Similar results apply for the t-> + co limit, where we find that ,

NN NN

k = 77 t<P> 77 u* 77 «p> 77 u2q = exp x*
P=r q=p + l p=r+l q=p + l

In the case of breather rest frames,noting C6.50) we find

that as t-> -co Ct->+oo), dominating products of tCp) entering HCf)

will be those for which p < r Cp > r) or p < r and p < r+1 p^r

Cp > r p?^r+l and p > r+l> and

find ,

finally p < r+1 Cp > r+2).Thus we

a Cx,
11m ---------a Cxt-> -CD r-1

t)

where
r r r r + 1

ii

■H TT tCp) TT u2 +
1 ' pq TT

P = i q=p + l p= 1 q

r q

' 0 m r-l,r,r+l
1 m = r-1

< k m = r1
I k m = r+1

2

r+1 r-1 r-1

TT1-*21 ' pq
77 t<p> 77 u2

p + i / p=a  q=p+i

= expCX >tCr> + expCX ^tCr+l)

and

k
2

r +1 r+1 r-1 r-1

TT <-<p> TT % X TT «p> TT %
p= 1 q=p + l p= 1 q=p + l

2 
U

rr+1
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Similarly for t-> +oo .Now applying- lemma 6.1 and noting

corollary 6.2 that the roots of 

that the theorem is proved.!

COROLLARY 6.4 <sG)

In the limit as t->

positiveCnegative) real roots 

solitons<antisolitons) in breathers or otherwise.

HCf) keep their sign,we see

“00 there are as many

of <6.2) as there are

Proof:

It is clear that if r of the previous theorem belongs to 

a soliton<antisoliton) then f is positive<negative).To

conclude the proof, we must examine the roots of the quadratic

— 2 <6.48).We write X. = a + i/3.We have already seen that u = -r J rr+1

2 2w where w is real.Thus <6.48) becomes
rr+1 rr+1

f2 - 2exp<r +a)sin<Q +/?) f - wZ exp2<r +ot) = 0
rr+1 rr+1 rr+1 rr+1

this has real roots of opposite sign and we may define the 

positive(negative) root to be the solitonCantisoliton) 

component.This completes the proof of the corollary.®

We now obtain immediately.

COROLLARY 6.5<sG)

If the N roots of <6.2> are real for all time then there 

are as many positive roots of C6.2) as there are solitonsCin 

breathers or otherwise) and there are as many negative roots as 

there are antisolitonsCin breathers or otherwise).

Proof:

Corollary 6.4 gives us that the assertion is true when 

t-> -oo.Corollary 6.2 thus gives us that the assertion remains 

true for all time.®



180

Corollary 6.5 together with theorem 6.4 assures us that

there is no transmutation of solitonCantisoliton) to

antisolitonCsoliton) and means that it is sensible to d&fine

-i
soliton to be represented by 4tan f

<6.2) and an antisoliton to be

f< 0.Although it is not entirely

where

represented

satisfactory

a

f> 0 is a root of

by 4tan *f where

we must end this

(6.2) with twosection on the properties of the roots of

conjectures.

CONJECTURE 6.1CsG,MKdV>

The N roots of (6.2) are real for all 

mixtures of solitons,antisolitons and breathers).

CONJECTURE 6.2

The positiveCnegative) roots of C6.2) 

time Ci .e .including

are monotonic

increasing (decreasing).

Were we able to prove the second conjecture we would be assured 

that if a root of C6.2) f was positive Cnegative) then f=lC-l>

would define the position of a single point as a function of 

time.In §5 we shall see that such points are of importance as 

they coincide with the projections on the real axis of the

positions of the branch points of the complexified multisoliton

solution.Certainly conjectures 1&2 are easily verified for two

parameter cases as we shall see in the next section and

especially §1 chapter 7.
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§ 4. Exact, solutions of the lsp.

For the case of two parameters (6.2-3) becomes simply.

f2 It(l)+t(2)]f + u2 t(l)t(2> = 0
12

<6.51>

If we choose t(l> and t(2> to be solitons(i.e t(m> exp X ),we 
m

obtain on solving the quadratic,the roots f
m

,given by,

(6.52)

f*=exp^ + C<x (a)

f =exp^ X
2 <

<(X ) + In
2 ) 

u f12 J (b)

X

: >/2
2

XX = (X +X
+ 1 ;

(X -X )/2
1 2

(c)

< (r) = lnlcosh r + (cosh2r 2 xl/2^
U ) 1

12
(d)

where X are
rn

any of the X defined in §1.

Choosing the soliton-antisoliton solution (sG,MJ<dV)

(i.e. t(l) exp X ,t(2)
1

exp X^> we obtain on solving

(6.51) the roots , (6.53)

fi=exp| X^ + t ?(X )J (a)

f2=-exp| 77CX ) +ln <b)

2
77 (r> = lnlsinh r + (sinh r . 2 .1/2..+ u ) I

12
(c>

Finally choosing the breather solution(sG,MKdV) (using

6.4,6.8)

we obtain the roots where w 12

X 2 u 12 }

(6.54)

ft = exp{ r + <(□ )l
12 12 j (a)

fz = -exp| r
12

> + In w2 I
12 121 Cb)

<(r) = InEsin r + (sin2r + w2 >1/Z]
s 12 Cc>

We establish the fact that all the roots are monotonic

functions of x in the next chapter.We also discover that the

roots may in some cases develop points of inflexion.



182

In the case of the sG and Boussinesqtsolitons only) in

the centre of velocity frame <6.52-4) take on a particularly

simple for ms. We express these having chosen the phases ex = -In 
rn

w .We refer to (6.4) and (6.20).
12

Two solitons

f = exp y lx + y 1^(?ut)l (6.55a)

f = exp r Cx - ^-1CC^ut) + r_1ln u*J (6.55b)

where u is the common centre of velocity speed(for the sG u <1) 

2 —1/2and for' the sG x = (1-u ) while for the Boussinesq x is a

positive constant of arbitrary magnitude.

soliton and antisoliton(sG)

-i
f = exp x lx + 7)(j ut)Ji (6.56a)

-1 -1 2
f^ = - exp y tx - >)(^ut) + f In u12^ (6.56b)

breather(sG)

f = exp o' lx + & (2nt/r )1 (6.57a)

f = exp & lx - o 1^(2nt/T> + & 1ln wZ I
2 12

(6.57b)

-1& - cos pi (6.57c)

where /j and t  are defined in (6.4 j).

Thus we see that for these special cases the two 

parameter solutions of the sG and Boussinesq equations can be 

written as a linear superposition of fixed shape solitons.The 

accelerating solitons have shape 4tan *exp g (g=lnf) for the 
rn
2 2 sG and for the Boussinesq are given by -Cy Z2)sech (g /2).Note 

that here the amplitude factored.19) is a constant.We shall see 

in the next chapter how in general all the solitons of the 

various equations considered in this chapter change their shape 

during interaction.

It is clear from the polynomial nature of (6.3) that 

exact formulae for the roots are going to be limited to N < 4

>due to the unsolvability of the quintic or higher.In actual
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fact the explicit formulae for the roots of C6.3) for N=3 or 4

are not very useful. We include them below just. for

completeness.

Three parameter exact solutions

The cubic (6.3) when N=3 has exact solutions,

f = F t(m)Z3 i
2(PZ3)1/Zcosa (6.58a)

f
2 E t(m)Z3 + (PZ3)1' Z(cosa + V 3 sincO (b)

f
3 = E t(m)Z3 + (PZ3)1' 2(cosa -73 sincx) (c)

where ,

Q = -2(£ t(p))3Z27

<E t(p))2Z3 - r U2 t(p)t(q)
P4

+ <r t(p))T uZ t(p)t(q)Z3 - TT uZ t(p)
pq 1 1 pq

a = 3"1cos"1[-C27Q2/4P3)1/Z]

(6.59a)

(b)

(c)

P

where and [| are sums and product over the parameters p,q

such that q > p.

Four parameter exact solutions

(6.2) and (6.3) when N=4 become ,

f-1 Af3 + Bf2 Gf + D = 0 (6.60a)

where ,

G

B

A = t.(l)+t(2)+t(3)+t(4) (b)

UZ t(l)t(2) + U2 t(l)t(3) + 
12 13

u2 t(l)t(4)
1 4

(c)

+uz t(2)t(3) + U2 t(2)t(4) +
2 3 2 4

u2 t(3)t(4) 
3 4

U2 UZ U2 t(l)(2)t(3)
12 13 23

2 2 
U U

12 14
uz t(l)t(2)t(4) 

2 4
Cd)+

2 2
+U U U 

13 14
2 t(l)(3)t(4)
34

U2 U2 U2 t(2)t(3)t(4)
23 24 34

2
2 3

D = u2
1 2

2 2 
U U U

13 14
uZ t(l)t(2)t(3)t(4) 

3 4 Ce)2 U
2 4

(6.60a) has roots ,

f
1 E

f
2 E

f
3 E

f
4 E

t(m)Z4 7q 7r + 7r 7p + 7p Vq (6.61a)

t(m)Z4 7q 7r 7r 7p 7p 7q (b)

t(m)Z4 7q 7r 7r 7p + 7p 7q (c)

t(m)Z4 7q 7r + 7r 7P 7p 7q (d)

+

+
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where ,

M = C12H2 - I)Z6G C6.62a)

Cb)p = M - 2 CP/3)1/2 coscx

q = M + CP/3)1' 2Ccosa + /3 sincO Cc)

r = M + CP/3)1' 2Ccosa - V3 sina) Cd)

P = 3MZ - 3H Ce)

Q = MZ - 3HM - G/2 CD

ot = | cos-1I-C27Q2/4P3)1 Cg)

H ’ 16
B
6 Ch)

I = D - AC + B Ci)
4 12

« = ? - AB
8

+ A3
32

When all the roots are real 12H2 - I > 0 ,H > 0 ,G > 0 .

§ 5. Singularities of the complexified N parameter solution.

In this section we are going to examine in detail how we

can determine the motion of the singularities of the

complexified N parameter solution of the sG.It is clear from

the argument used that it could be adapted to prove similar

results with the other equations considered in this

chapter .When the spatial variable x is allowed to be

equations considered in

N parameter solutions of all the

this chapter develop singularitiesCsee

also chapter 4).

We have seen that the N parameter solutions of the sG and

MKdV can be written as a sum of inverse tangents of f ,where m

f^ are the roots of (6.2-3).Inverse tangents have branch points 

when their arguments are equal to ±i.Hence the N parameter 
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solutions: of the sG and MKdV develop branch points when ,

±i C6.63a)

the KdVExamining the linear* superposition principle for

class of equations(6.17> we see that the N soliton solution

develops poles when ,

f =rn -1 C6.63b>

Also we find for the NLS, N soliton solution develops

poles when ,

f * f tn rn = -1 C6.63c>

In order to define the complex Isp consistently we must

consider the consequence of not allowing the time variable to 

be complex.The sG is Lorentz invariant.Under a Lorentz 

transformation old variables x' ,t' are transformed to x,t as 

follows.

x = ^Cx' -vt' > , t = j'Ct' -vx' >

If we allow x' to be complexCx'-*• z' ),it would seem that

we are forced into allowing t also to be complex.We do not wish

to do this.So we must define a more restricted complex Lorentz

transformation ,

z = j'Cz' -vt' > ^Ct' -vx' ) ,where x'

Noting this, we can now define the complex lsp for the

t

sG.This can be written

N

H<fe > = Cte > C-1)L BL<feLe>N C6.64>

where ,

I

+ iC E Y
. p

p= 1

I X I

+ e  s >}• n p, pq J ’’ pqq = p+l •7q=p+i
<6.65>2 exp{ E

V p = I

where as before the unscripted summation sign means taking all

combinations of 1 integers from 1>..,N and where
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signs

1 < p < ns X = X , Y = r y + C6.66a)
p p P p p

ns+1 < p < ns+na X = X +i77 , Y = r y + V Cb>
p P P p P

ns+na+1 < p < N-l X = X +i37T/2 , Y = Y y + Cc>
p P p p p P

< p = ns + nct + 1 , ns + na+3,. . ,N — 1 >

X = X + irc/2
P+i p+i ’ Vi y o y

P P
+ p

P
Cd)

The quantities X are as defined in C6.4) with the
P

outside theexception that, the minus exponentials and i's

the form of complextaken inside the exponentials inhave been

constants. Also O' = COS/U 
p p

. We also define X 
p

when

ns+na+l<p<N-1 to be given by X = r +iQ with
p PP+i PP+i

X = X .?> are imaginary phases.Since u
P+i p p pq

is in general

complex we have let uZ = r exp its ).
pq pq pq

The real lsp is recovered when ,

0 = 0 ,y = 0 ,2> = 0 V
p

P <6.67)

We now define and prove the main result of this section.

THEOREM 6.5(sG)

The only branch points of the complexified N parameter

solution of the sG which exist for all time ,move along a line

in the complex plane parallel to the real axis.The line is

definedCmodulo 2tt ) fry >

Y = n/2 Vp 
P

C6.68a)

In addition ,the projections of the branch points on the

real axis move in an identical manner to the points which

satisfy,

for solitons in breathers or otherwise,

HC1) = 0 C6.68b)

and for antisolitons in breathers or otherwise,

H<-1> 0 (6.68c>
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Proof:

As we have seen the complexified N parameter solution of

the sG develops t Q branch points when fe ± i in C6.64).HC±i,z>

is clearly an analytic function of z.For the moment we

concentrate on the positive sign above.We define U(x,y,t) and

V(x,y,t) to be the real and imaginary parts of H(i,z).The

Cauchy-Riemann equations are ,

(6.69)U
X

V
y

U
y

Setting H(i,z) to zero(6.2) we find ,

U(x,y,t) = 0 V(x,y,t) = 0 (6.70)

(6.70) defines x and y as functions of time, and therefore the

orbits in the complex plane of those points which satisfy

(6.69)

i. Differentiating (6.70) with respect to and noting

we find (dot indicates total derivative with respect to

y = CU2
X

+ V2) \v U -V U >
lx X t

H Cx,y,t> C6.71)

Now if we can find an equation

i e

x x

t

@(y) = 0 V = 0=> U or (6.72)

then y will also vanish(if both U
X

and V vanish
X

then y will

be undefined).Differentiating (6.71) with respect to t again

gives ,

y = H x + 
lx

H y + H = 
lyz it

H (x
2

(6.73)

Clearly if (6.72) holds then H
lx

and H it
both vanish as

they have the same y dependence as y,thus y vanishes

also.Clearly any total derivative of y with respect to t

vanishes when (6.72) holds.

then

We now examine the behaviour of (6.64) when t a -oo to see

if we can establish a condition of the form of (6.72).The

asymptotic behaviour of the real lsp has been examined in

that we mayfrom the argument usedtheorem 6.4.It is clear

carry over to the complex case the results then obtained.This
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For consider two complex functions aCt> and bCt) which

is because in the complex case we would be interested in

lim 1 HCfet£S 1 and this tends to terms with dominatingta-oo1 1

moduli Csee proof of theorem 6.4>.

are such that- lim |bCt>/aCt> = 0 then since ,

| a | (1- | b/a | > < | a+b | < | a | C1+ | b/a | >

we must have lim^ > | a+b | = | a | -Thus we may assert the 

following.

In the limit, as t->-oo ,

1 S p < ns+na

ns+na+1 < p S N-l

If e%| = IexpCX +iY +X. > I
1 p 1 1 ppp1

If eL0pl = IexpCX +£CX >+X"+iY I
’ p 4-p — p p p

C6.74a>

Cb>

< p = ns+na,+ 1 , ns +na+3 , . . N - 1 )

lr & |f e p+i = 1expCX •-?CX >+X +iY 1 Cc>
' p + 1 1 +P -p p + i p 1

where £ O is defined in C6.54) and we have noted C6.66) and

defined ,X^ = CX ± X )/2 .X. are defined in C6.49O.
Zp p p+l p

Now the condition for branch points C6.63a> means

10I f e pl = 1 and thus we must have ?
1 p 1

Y = 7i/2Cmod 2n> V p 
P

This is an equation of the form C6.72>.It now remains to be 

shown that this condition implies that either U or V is zero.

We prove this below.

The general term in the expansion of HCi,z> is given by

Substituting Y 
p

rr/2 into the above and rearranging ,

H^Ci,z>

I I 1 i

+ 1 r s n exp HECn/2> + CN-1>tt /2]
pqj •• pq

q=p + l -/q=p+l p= *

Thus we find.

HtCi,z> = Hl <1> exp CiNn/2)
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where ^1) is the general coefficient, of the real polynomial 

with f = 1(6.2-3).Noting the definitions of U and V we see from

the above that U or V equal zero.Solutions of H(i,z) = 0 are

identical to ,

H(l) = 0

By very similar arguments we also conclude that solutions of

H(-i,z) are identical to ,

H(-l) = 0

This proves the theorem!

We now discuss a peculiar property of the lsp's (6.3).For 

simplicity, consider the two soliton caseCthough we have not 

proved an equivalent of the previous theorem for the KdV or 

other equations it is likely that an equivalent will be able to 

be proved).

The two soliton lsp for the sG (6.51) can be written,

.2 r X . X . 2 X + X n xx r-c- xf -Cei + ezlf+uei 2 = 0 (6.75a)
12

where,

X = r <x-ut)+« (6.75b)
tn tn rn

We have solved the quadratic (6.75a) and found the roots 

f to be real,positive and monotonic increasing (see §1 chapter 
rn

7).Therefore setting each f to 1 defines a single real point 
rn

as a function of time .These points as we have seen above are 

the projections on the real axis of the branch points.Now 

consider substituting f=l into (6.75a).We obtain.

X X- 2X+X x, XX f-XXl-Cei + e21 + uei 2 = 0 (6.z6)
12

Now define ,

a (t) = exp(-^ u t + ex )
m tn m tn

and choose u so that ,
tn

y = p Zq p > q p < p p ,q e EN +
mm rn 2 1m

Substituting into (6.76) we find
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1 p x/q p x/q Ilaei + a e 2 1 + a a u
1 2 12:

?■ Jp+p>x/q
i e i 2 
12

0 (6.77)

Defining 0 x/qe we can write the above as a polynomial

of degree p^+p^ *n

,<p +p >
0 1 21 1 a $>pi + a 0P2 ] + a a uz <

1 2 1 2 12
0 (6.78)

(6.77) has p +p roots most of which are
1 2

complex(including negative real roots for 0).We know of course 

that (6.77) possesses only two real roots as it factorizes into 

(1-f )(l-f ) and f achieves the value 1 only once.
1 2 m z

(6.78) is similar in form to a polynomial defining the

rational polesCrational speed ratios) of the two soliton 

solution of the KdV 13,41.As we have seen in theorem (6.5) the 

positions of the projections of the branch points of the

complexified N parameter solution of the sG on the real axis 

are defined by (6.68b),of which (6.77) is a special

case.Clearly these projections cannot be complex.So the extra 

complex roots of (6.77) are of no significance.This argument 

really illustrates the usefullness of the rea? linear 

superposition.

In the case of the KdV although we have not proved a KdV 

version of theorem 6.5, as the underlying Isp has a similar 

form to the sG it is pretty clear that the above arguments 

would also apply to the KdV.

Finally in this section we consider the consequences of 

(6.68a).Solving (6.68a) we find that it can only be true if all 

the complex phases v are functions of a single complex phase 
p

i>=v^(say) and we find ,

1 < p < ns+na v> - (4m +l)nZ2 + [p-(4m + l)nZ2]y Zr (6.79a)
p p i pi

ns+na+1<p<N~1 = (4m +1)tt Z2 + [v~(4m +1)7t Z21o ' / Z/ (b)
p p i ppi

(p = ns + na+1,ns + na+3,. . ,N- 1 >

2/ = V m <= Zp+1 p p



191

§ 6. Time symmetric Isp’s and perfect phase(sG).

Although in general the lsp (6.2-3) is difficult to

solve,under' a special choice of phase it. possesses some simpler'

properties.Also if the asymptotic speeds of the solitons and

antisolitons are selected in a special way the lsp for the sG 

develops some useful features.We explore these topics in this 

section.

In the previous chapter we began by discussing the N 

parameter solution of the sG in terms of the constants k. =u 1. 
M ! J

In actual fact the associated Isp with the constants k has 

some desirable properties. We will describe such Isp's as having 

perfect phase.To illustrate these properties we examine the 

three parameter polynomial with perfect phase.

f3 - Ik k t(l) + k k t(2) + k k t(3)lfZ (6.80)
£213 2123 3132

- Ik k t(l)t(2) + k k t(l)t.(3) + k k t(2)t(3)lf
13 23 12 32 21 31

+ t(l)t(2)t(3) = 0

Now choose the phases ex (6.4) to be zero and let x=0 and1 m

t=0.t(m) then become equal to unity and (6.80) represents a two 

soliton-one antisoliton interaction.(6.80) becomes ,

f3-Ik k + k k + k k lfZ-Ik k+kk+kklf+l = O
12 13 2 1 2 3 3 1 3 2 13 23 12 32 21 31

2
Nov/ the coefficients of f and f are both minus 

one(5.2),so that we find f = f = 1 and f = -l(the subscripts 
13 2

are nominaD.Thus from §5 we see that we can immediately see 

that the solitons and antisoliton are coincident at the 

originCtaking their position to be the projection on the real 

axis of the associated branch point).Choosing the three soliton 

case with perfect phase(t(2) -> -t(2)) and carrying out similar

steps to those before we find that (6.80) becomes ,

f3-Ik k - k k + k k lfz-[-k k+kk-kk If -1 = 0
12 13 2 1 23 3 1 32 13 23 12 32 21 31

This can be written
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(f l)(f2 (l+2k k >f + 1) = 0
12 23

Thus since one root is unity a single soliton is located

at the origin at time t=0.

If the asymptotic speeds for these three parameter cases

are chosen in the following way we find ourselves in the centre

of velocity frame.

U
1

-u = u
3

u
2

0 (6.81)

Substituting (6.81) into (6.80) and noting the

definitions of t(p) (6.4) with a
rn

O.Also from the definition

of k we find k = k
tj 12 23

.Thus (6.80) becomes ,

(6.82)

f3 Ierxp(t) k2 exlf2
12

+ tk2 e2*'*
12

erx+xp(t)lf _ x+2^x 0

where ,

p(t) = 2k k coshy ut
12 13

Putting x=0 into (6.82) we find ,

f3 Ep(t> k2 If2 + Ek2
12 12

p(t)lf + 1 = 0

which can be written ,

(f + lXf2 El + p(t)-k2 If + 1) = 0 
12

Thus in this case we see that an antisoliton is located

at x=0 for all time.Similar results apply for the three

soliton, case where we find (6.80) becomes , (6.83)

f3 Ierxp(t) 2 x 2 + k e If
12

+ Ek2 e2Zx + e?x+xp(t)lf
12

x+2^x 0

Putting x=0 into the above and factorizing we find ,

(f IXf2 + Il 0

So a soliton is located at x=0 for all time.We note that when

t=0 in (6.83) it is easily seen that f=eA is not a

solution.So,although the soliton does not move throughout the

interaction,its characteristic function changes with time.It

does this in such a way that when t -> ±00 f -> ex but f(0,t)=l

for all time.This indicates that points such that f=l(-l for

antisolitons) ai*e invariant,changes to f pivoting about this
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point.In the next chapter we will see how this happens

numerically.

In general when we choose a centre of velocity frame such

that,

where

C6.81)

-u , 
N-r+l

u 
<N+1>Z2

k
mr>

k
pq

is an example

With

r < CN+1>/2,N odd

odd.We find ,

, where p=N-n+l

r<N/2,N even (6.84a>

and q-N-*m+l C6.84b>

of this.

this special choice of speeds numerical calculate ions

suggest that the Nth degree lsp<6.2-3> becomes Cwhen x-0 and

u 
r

0 N

t=0 )

<f+l>‘N/2,<f-l>“N+1>/21 0

where Iml indicates the nearest integer < m .This indicates

that all the solitons and antisolitons are coincident at time

t=0.

We have examined numerically the N=3,5 cases in the next

chapter.lt is also clear that the speed pairing property of

(6.84a> together with C6.84b) induces HCf> to be a symmetric

function of time .Consider the triple product associated with

parameters 124 in a five parameter polynomial.lt is given by,

noting C6.84a>.

...ill Y <x-u t>kkkkkke1 1
13 15 23 25 43 45

Y <x-u t> Y <x+u t> e 2 2 e 2 2

this pairs with the triple product associated with 245 ,

. . ... Y <x_u Y <x+uk k k k k e 2 2 e 2 2
1 23 41 43 51 53

which becomes applying C6.84b> ,

k
2

Y <x+u t> 
e i 1

k . . , . . Y <x~u t> Y <x+u l>kkkkke3 z <=.' 3 3
4 5 43 25 23 15 13

This clearly when added to the 124 term 

Y <x+u t> 
e i 1

produces a time

dependent term involving cosh^ut.
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§ 7. Antisoliton represent.art.ion and non-uniqueness of ttie

lsp (sG, MKdV).

The sG possesses the symmetry £>'-><£> + 2nn,ne Z.This means

that we can represent in particular an antisoliton in two ways

<p = 4 tan ~e ip <= (~2it ,0)

or
p* = 4tan 1 e x V?' e (0,2n)

(6.85a)

(b)

We chose (6.85a> as our representation of an

antisoliton-this was no accident .Consider the following.The

soliton-antisoliton solutions of the sG may be written in the

following two ways ,

tan ^>/4 -i u
12 (

tarFp' /4 u
12

[

expX^ - expX^

1 + exp(X +X )
12 

expX^ +exp-Xz

1 + exp(X -X )
12

) (6.86a)

We have already seen in this chapter how

terms of the roots of

<P

J
may

(6.86b)

be written in

a quadrat icKf^f^).Thus ,

+ 4tan_1f
2

4 tan Xf
i

(6.87)

f are the real rootsCone 
rn

of which is negative) of

2 _1 X xi -u (e i
12

ex2)f ex +x
1 2 = 0 <6.88)

It would seem natural to represent <p' given by (6.86a) also in

the form (6.87) but where f are
rn

the roots of ,

(6.89) has

plane).

Thus

associating

antisoliton

*2 X xi -u (e i
12

+ eX2)f . x -x+ e t 2 = 0 (6.89)

complex roots(for certain regions of the x-t

the

a

would

the particular

important.

accelerating

single f
rn

break down

antisoliton

soliton picture characterized

with an individual soliton

here.It is clear from this

representation chosen is

by

or

that

very

We can of course obtain a real functioned Isp for <p'

given by (6.86b) by noticing that = <p + 2n.
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Thus we may write

— 1 —1ep’ - 4tan t + 4tan t + Zn 12

where f are the roots of <6.88). Adding the 2rr to 4tan 1f we 
m 2

obtain ?

p' = 4tan *f + 4tan X-f 1 <6.90)
12

Since f is negative (6.90) gives us a real lsp for <p' in 

terms of the appropriate accelerating solitons.In general we 

would add 2.na.rc to an N parameter solution of the sG having na 

antisolitons in the form (6.85b) to obtain the lsp involving 

arctans with real arguments.

We end this section by noting that the lsp <6.2-3) is not 

unique.lt is quite possible to find other polynomials having

— £
roots h which are such that T 4tan h = $ .It must be said

rn rn N

though that they are somewhat artificial and their

interpretation at present remains unclear.We illustrate this

for two parameter cases only.

<6.91)

<6.92)

<6.93)

h2 + R<x,t.)B<x,t)h + 1 - R<x,t)<l - C<x,t)> = 0 <6.94)

Define ,

ep = 4 tan 1h + 4tan h <6.95)
h 1 2

where h are the roots of <6.94).We conclude from <6.93-5) ,
rn

tan <p Z4 h
-RB

1-<1-R<1-C)) 1-G
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Thus ,

+ 8k7T ,k <= 2

So we see that the alternative quadratic produces

essentially the same two parameter solution as the original.lt

is perfectly possible to choose R so that the roots of C6.94)

are real yet the arguments of the arctans are very different

from those produced by C6.9D.R can also be chosen so that

asymptotically the 4tan 1h
m

become f ree solitons or

antisolitons.

The behaviour of the branch points of the complexified sG

N parameter solution is not sensitive to the individual lsp

chosen(as v?e can look for the branch points of $ =4 tan 1A<z,t)
N

by setting A<z,t)=±i and ACz,t) i.s’ unique).Ho we ver the natural

Isp <6.2-3) produces a soliton motion which coincides with the

motion of the branch points<§4).This confirms its importance.

§ 8. Concluding Remarks

The results of this chapter are sufficiently attractive

and common to a large number of soliton equations that we might

hope that they may lead to a deeper understanding of the

relationship between soliton equations and soliton

interaction.

The fact that there are special points on the real

accelerating solitons which move like the singularities of the

complex solitons establishes the importance of the real linear

superposition.There are still many questions to be

answered.Numerical calculations described in the next chapter

support the conjectures 6.1-2,yet they have resisted all

attempts at proving them.

In addition we have not been able as yet to determine

partial differential equations which are satisfied by the roots



197

of the lsp.This is obviously a worthy topic of further

investigation as it may lead to a new way of solving soliton

equations.

Except in the case of two parameter solutions in the

centre of velocity frametsG, Boussinesq) the positions and 

shapes of the accelerating solitons can only be determined 

numerically.We shall see in the next chapter how we can 

determine good approximate formulae describing the shape change 

of solitons and their motion.

In the review chapters of this thesis we discussed a 

linear superposition principle (different from the author’s) 

for the KdV. Apart from the obvious drawbacks possessed by this 

it presents a problem in that each proposed soliton carries all 

the poles of the complexified two soliton KdV solution.Thus at 

best we must conclude that though it may have mathematical 

merit?it is physically unimportant.



CHAPTER 7 : SOLITON INTERACTION AND THE BEHAVIOUR OF THE

ROOTS OF THE LSP
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§ O. Introduction

In this chapter we study analytically (§1) and 

numerically C§ 2 > the behaviour of the functions f. which are the 

roots of the Isp defined in the last chapter(6.2-3).In so doing 

we illustrate many of the properties possessed by the f..

We shall see in §1 that f. for two parameter cases are 

monotonic though it is possible for f to become stationary and 

also develop points of inflexion.We also see that numerical 

calculations support the conjectures (6.1-2) of the last 

chapter.We have solved the lsp (6.2-3) numerically for the sG 

and MKdV equations for up to three parameters.At no stage were 

roots lost. This indicates the conjectured reality of the 

roots(for cases involving mixtures of solitons and antisolitons 

or breathers).Also we always find the roots to be monotonic 

f unctions.

In addition to the above we also present time evolution 

graphs of two parameter cases and their decomposition into 

separate parts.We discover both analytically (§1) and 

numerically (§2) that as the two soliton solution of the KdV

evolves,the two parts into which 

some suprising proper ties.For t 

soliton develops(emits) another 

rapidly .Similarly we find the 

can be decomposed develop

0 the originally faster 

hump which moves away 

originally slower soliton

develops a negative hump which again moves off rapidly.These 

extra humps eventually move off together (becoming infinitely 

distant from the solitons left behind) and their sum becomes 

zero.Such a fragmentation phenomenon does not manifest itself 

with either the sG or MKdV equations.We have explored the 

analytical reasons for this in §1.

In §3 we consider a method of approximating f as
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functions of the form exp [a.(t)x + f? Ct)l.By setting x=0 in

the Isp we can obtain in certain cases explicit formulae for ex
i 

and /?^.In fact this approximation proves to have zero error in 

two parameter centre of velocity frames for the sG and 

Boussinesq equations as shown in the previous chapter .Of course 

this form of approximation assumes the f. to be perfectly 

exponential in appearancetas a fuction of xXClearly it is in 

error in cases where f have points of inflexion.Nevertheless 

we find it to provide a good approximation when f < 1.

In §4 we study the motion of points such that f^=l or 

f.=-l.Ve saw in the previous chapterCfor the sG) that such

points coincide with the positions of the projections on the 

real axis of the singularities of the complexified N parameter

solution.As we saw in chapter 4 ,Bowtell and Stuart were able

to obtain explicit formulae for the positions of such points as 

functions of time in the two parameter cases of the sG.Such

exact results are not forthcoming in higher parameter 

cases.Though, using the approximations of §3 we can obtain 

surprisingly good approximate formulae for the positions of the 

solitons or antisolitons, especially in certain special 

casesCtime symmetric,perfect phase-see §6 ,chapter 6).

We have carried out extensive numerical analysis of 

higher parameter solutions of the sGCup to 5 parameters).We 

have discovered that the breather in interaction with solitons 

or antisolitons, can be "broken-up” only to reform later,made 

out of different constituent parts.Thus although breathers 

cannot be destroyed ultimately,they can lose their identity for 

a period during the interaction with a soliton or antisoliton.

In §5 we consider approximate formulae for intersoliton 

forces and indications of retarded interaction amongst 
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solitons.

The chapter ends with some concluding remarks.

Note that we have referred on the graphs to the MKdV and 

the derivative MKdV.These are respectively equations C6.7a) and 

(6.10).We also note that figures 7.1-43 were produced on the 

author’s own home computerCAmstrad PC1512-hence the slightly 

rough appearance),figs 7.44-49 were produced using the City 

University computing facilities.

§ 1. Analytical properties of the roots of the two parameter 

Isp for the sG,MKdV and KdV equations.The analytical behaviour 

of the two parameter solutions as a sum of separate parts.The 

behaviour of the roots of the three parameter,two 

soliton-antisoliton solution at x=0,t=0.

In two parameter cases the lsp has roots of a relatively 

simple form as we saw in §4 chapter 6.We are going to discuss 

below such things as the monotonicity of ftroots of the lsp) 

and also stationary points and points of inflexion.Then when we 

examine the graphs of f computed numerically we will be able 

to compare our analytical findings with the features present on 

the graphs.Even in three parameter cases with perfect phase we 

will be able to deduce exactly, without solving the lsp, the 

properties of the f. at position x=0 at time t=0.

Two solitons

The two soliton lsp with perfect phase is given by,

1 2

0 (7.1a)

where for the sG,Cu >u )
1 2
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X = x Cx-u t>
l  i t

ll =
12

<b>

and for the MKdV and KdV,Ck >k )
1 2

X = 2k Cx-4kZt> 1
L L L

k -k
1 2

Ui2~ k +k
12 J

Cc>

Solving: (7.1> we find,

= exp g
1,2

C7.2a>

Differentiating C7.2b> with respect to x we find,

g = X ± In
1,2 +

'cosh X + (cosh2X - U2 >1/z_
-12

u
1 2

where X = CX ± X >/2 .
+,- 1 2

Cb>

where the

k k ± i

that

noting

f
t

are

we

Cg )
1,2 x

6Cx,t>

constants

k ± k 6Cx,t>

sinh X

(cosh2X

k =CX
+ ,-

k .We can see that
2

Ccosh2X

the definitions of k

also bounded

LX LX

below

>

C7.3a>

<b>

may also establish the

2 . 1 Z2
U >

1 2

) .For the
X

1>1/2 <

MKdV and KdV

< 1 V x,t,since

CcoshZX 2 
U

12

>X and f
L

0 V x,t

u <l,so 
12

>1/z.Thus

we see easily that,

by zero.Examining

following,

lim g = X + In u
1,2 2,1 12

x----» -CO

Also examining C7.2> for fixed

X = constant
i

lim g = X - In u
1 1 12

t —> -co

lim g = +co
1

t —> +CO

X = constant 
2

C7.3c>

(7.2) for fixed t

,lim = X + In u C7.3d>

x —>

X weL

1,2
+00

find,

1,2 12

, lim = -oo C7.3e>

t --> -co

, lim S2 = X +1 In u
12

t --> +00



203

12
lim g

i
+CD , lim g2 X + In u

2
(7.3f)

—00 -CD

lim g

t —>

X - In
2

u
12

+ 00

, lim g2

t —>

~CD

+00

Differentiating <7.3a) with respect to X once and then

twice,we find,

cosh X
Cg )

1,2 xx 2 .3/2
U )

1 2

(7.4a)

<g >
1,2 XXX

3 2+ k (1-u )
12

sinh X .(2coshZX u2 )
1 2

It is clear from the above

(cosh2X 2 .5/2
U )

1 2

(7.4b)

Thus g do

that (g ) / 0 V “oo < x,t <ao
1,2 XX

not possess points of inflexion.

We may write the derivative of f
L

with respect to x

f
LX S f.’ ” LLX

(7.5a)

above pointthat cannotwe see possess a

inf lexion.However possibility

points of inflexion.

which is deduced from (7.3).

k <<

lim (g

f
1

k + k

We note the following

f
LXX

)
1,2 x

x —>-00

+
LXX

From (7.4a)

(g )
1,2 x

0 always.Thus fromwe see that

has the

Ixx

k ± k , V x,t + -

LX L

since g <
2xx

0 ’f2

,lim (g ) = k
1,2 x

x —> + 00

g occur 
LXX

>

From (7.4b) points ofclear

when sign g changes
LXX

the gradient of

the stationary
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about this point.We see also from C7.4a> that g are
LXX

symmetric functions about the point X^X^.It is also clear that 

as | x|—> ±oo ,g —> O.Thus we have the following picture,

For the MKdV and KdV,if we allow k
2

0,k ,k k hence i

u12 l,so the maximum and minimum of g grow
LXX

infinitely

large.Thus provided u
12

is close enough to 1, £ will
2xx 2x

possess two zeros.Hence f will from C7.5b) 
2

possess two points

of inflexion.Finally g have the following appearance as a

function of x for fixed t,

characterised by terms of the form v =C2tan f )
L L

the

case of the KdV solitons are characterised by terms of the form

u =w ,where
L XX

is given by, w=ln(l+f. >.Thus in
L

terms of g^ and

f ,v and
L L

may be expressed,

2S f.LX L

1 + f1 2

1 + f
L

g sech g
LX LLX

C7.7a>

f
LX L

1 + f
L'

+
LXX

Cl-h )g2 Jh
L LX L

(7.7b)

. 1f ) and in
L X

w

u
L

u
L

v
L

S;

x

L

h
L

f
L C7.7c)
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functions so that 0 < h
L

h
i

h
t

< 1, and as x 00 l,x -oo O.From (7.3a),C7.4a>

we see that w
£

does not have any points of inflexion as u*

w
1XX

* O.Due to the negativity of g however it
2xx

is possible

for u
2xx

0 so that may possess points of inflexion. To

analyse the appearance of v^ and u above we need 
t

to consider

more closely the behaviour of f Z(l+f2>
t L

and h .From
l

established properties of f. we can oo >y
t

0. Differentiating y. with respect to 
t

x,we find,

y - g f Cl+f >
LX LX t t

2<2<l-f2>
L

C7.8)

Noting C7.3c> we see that y. has stationary points only

when f.
t

l.Using (7.3e-f) we can establish the appearance and

motion of y. and h. as 111
t t

oo.y. become sech functions moving

at the soliton speeds,and h. become kink functions moving at

the soliton speeds.To understand the behaviour of v and u
t

we

need also to examine g. and g.
tx t

.As we have seen
txx

g, (fig a)

intersect when.

X
i

X
2

(7.9a>

Also g are at a maximum or 
LXX

minimum at this point Cfig b).a

The point with x coordinate x
tnt

moves at constant speed given

by (for MKdV and KdV),

where,
X 

tnt
t 

trit
C7.9b>v

k3 
£ 

k“ i
v

i nt
4

k

k3)
2 

k
2

C7.9c>

It is easily shown that, 

v 
tnt

4k2
i

<7.9d>>

Thus the intersection point moves at a speed greater than the

greatest soliton speed.We now can sketch on the same graph the 

appearance of g. and y^ for t « 0 and t » 0.
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be formed by multiplying the respective

graphs above and we findCnote as t becomes more positive the

2g y
IX L

Thus
t

whole graph translates along the x axis-so the origins of the x

axes on the two graphs above do not coincide),

the two terms andr.
t LXX

s = g2 <l-h )h
L LX L L

separately.First we examine t « O.From the above analysis we

thus have the following.
fig' S

Thus r.= 0 V x when t « O.We now examine the terms g2

and C1-K>K which on multiplying produces s .Differentiating

h <7.7c) we find h = f /Cl+f )z.Thus h Is always
L LX LX b LX
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maximum when

theand the

positive. Differentiating Cl-h )h for all t it is a

draw

1/2 i.e when l.Thus from established

properties

single humps of heights, Ck +k >2/4

conclude that u
t

r +s
t L

s when
L

2
Ck -k > /4.Thus we may

O.Thus each u has a

single hump in this limit.We now examine the markedly different

situation which obtains when t » O.As before we examine r and
t

s separately.

It is clear f rom the analysis above that we have the f ollowing

picture.

Multipying h and g to form r we obtain the following graph
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2
s possesses a single hump .s* has height Ck -k > Z4 and s^ has

2
height Ck +k ) /4.From the above analysis we can see thatu

I

r +s at t » 0 are quite different in appearance to u at 
i

t «

0,this is because when t » 0 r. 2* 0 ,instead r has
i

the

appearance given in fig i.r is
i

a very asymmetric function of

time only departing from zero at times greater than or equal to

the time when g
ixx

and h. overlap appreciablyCmaximum overlap

occuring at time t 0).We can therefore see that u* develops a

second hump in the vicinity of the region where g differs
ixx

from zero.Similarly we find that u^ develops a negative hump in

the same region.As t becomes larger the extra humps move away

from the solitonic humps s^ .Eventually Ct co) the extra

humps caused by the nonvanishing r
L

become infinitely distant

from the s .The
i

behaviour of u
L

and V
L

has been plotted in

figures 7.32-3 and 7.11 respectively.

Soliton- antisoliton

The soliton-antisoliton lsp with perfect phase is given by,

f2 (
x e i X -X

u
1 2

X +xe i i = 0 C7.10a>

where X
t

and u
12

are defined as before C7.lb).Solving <7.10a)

we find,

f
1,2

iexp g± 2 C7.10b)

1,2
X

+
In

[sinh X + <sinh2X + u2 )1/2_|
- 12 Cc>

where as before X

u
1 2

CX ± X )/2
1 2
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respect to x we find,Differentiating (7.10c) with

(g ) =
1,2 x

k^ ± k s (x , t) (7.11a)

£<X,t) =
cosh X (b)

<sinh2X + u2 -j 1 /2
1 2

where the constants k =(X ) .For+,- +,- X the MKdV and KdV

k k ±1 k .We can 2 see that 0 < <£?(x,t) < 1 V x,t,since

u <l,so
12

that cosh X = (sinh2X + 4X1/Z X 4 U:1) > (sinh ZX + u2 >1/2.
12

Examining (7.10c) for fixed t we may also establish the

following,

lim 2

-00

X +
1,2

In u
12

,lim gl,2
-> +00

X
1,2

+ In u
12

(7.12)

Differentiating <7.11a) with respect to X once and then

X X

twice,we find,

(g >
1,2 xx

+ k2(l-u2 >
12

si nh

x 4 2 ,9/2(sinh X + u )
12

(7.13a)

(g >1,2 xxx
± k3<l-u2 >

12

cosh X .<2sinhZX

(sinh X + u )12

(b)

g have stationary points tx when g
txx

O.From (7.13a) we see

that these occur when X1 X .Each g has2 IX single stationary

for

thedraw

following picture for g .

has a maximum

a minimum.lt is clear from

fixed t,tends to zero.Thus

point.Clearly from (7.13b) g S2Xand

£?(x,t)

have

from these results

MKdV

X

a

2 X u >
1 2
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Thus k /(k u ) < 1+ 12 so the minimum of g is2x not zero.Also

note that when Xi = X2 , g = 0 (7.13a).Thus
LXX

from (7.5) we

can conclude that, since for the sG equation g z 0 V x,t ,f. do
LX L

for the sG ,f. do not possess points of inflexion at the point

not possess stationary points.Also it is clear that for the

MKdV that f (the soliton i function) does not possess stationary

points.However f does2 possess one stationary point vzhen

X = i X .2

It also clear from the above analysis (using (7.5)) that

argument.

X = X1 2 .In the case of the MKdV,fi does not possess a point of

inflexion at X = X ,but f does. 12 2

We can show quite generally that f1 possesses no point of

inflexion V x,t for the sG and the MKdV,by the following

Examine (7.13b).g
LXX

has stationary points when eLXXX
O.These

occur when,

It is clear

sinh

from

Thus at the pair

±u /7 2 
12

(7.13a) that |g. |
txx

of points determined by

maximum or a minimumCi.e. (7.14a) does not

as

(7.14a) g
LXX

<7.14a)

is at

determine points of

X

-> 0

a

inflexion).Since the point where X* = determines a zero of

g and g is not zero at this point, we can conclude that
LXX LXXX

each of g possess one minimum and one maximum.Substituting
LXX

(7.14a) into (7.13a) we find the maximum modulus of g to be
LXX

given by,

2k2 (1 - u2 ) k 2
( ^niax , + 1 2 f - 1 (7.14b),€ixx' ’ 373 ’ k u J

K + 12 7

We have already seen the minimum of g2 is given by,
lx

> • lx min
= k2(l +

+
k Zk )2

- +
(7.14c)
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For’ both the sG and MKdV ) >
lx mtn

l.But k Zk u <
+ 12

1 arid

u < 1.Therefore
12 lx mtn

maxg .Thus
t XX

the coefficient of f
i

in the expression for f given by (7.5b)
lxx

is never zero.

be

so

It is much more difficult to ascertain whether f
2xx

can

zero at, points other than when X
1

X .Numerical evidence is 
2

far inconclusive as to whether further points of inflexion

exist. However the numerical evidence (figs 7.3 ,7.14) accords

with the analysis above concerning stationary points of

inflexion of the antisoliton function of the MKdV.

We now turn our attention to the breather lsp.

Breather

The breather lsp is given by,

fz (
r+i-ii r-lii e — e

U
1 2

]- 2r e 0 (7.15a)

where for the sG,

r = y cos/j(x-vt)+a

Q = y sin/Xt-vx)+f3
V

J

and for the MKdV,

u
12

i tan/j

r =
X

Q = 
x

tan)j

X cos/u

-vx sin/j V
< 1

- (7.15b)

r = 20(x-vt)+a

Q = 27)(x~wt)+/? 27) *■ (7.15c)

U
12

ir)/0

r
x

Q
X

= itan/j

Solving (7.15a) we find,

f
1,2

±exp g
1,2

(7.16a)

€1,2
r ± In

"sin Q + (sin2ft + tan2/j)1/2'
(7.16b>

tariff

Differentiating (7.16b) with respect to x we find,

(g )
1,2 x

k ± k \(x,t) (7.17a)

cosQ
X(x,t) (7.17b>

. 2 _ , 2 xl/2(sin £1 + tan /j )

where the constants k ,k are given by,

k
+

r , k
X

Q
X

(7.17c)
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—1Clearly |XCx,t)| < Ctan^) .Thus we find from C7.17a>,

k <1 k Cl C7.18a)

where for the sG,

v < 1 <7.18b)

and for the MKdV,

1 C7.18c)

C7.18b“c) follow from C7.17c) and C7.15b~c).Clearly g have 
LX

the following appearance.

fig m

We note that the minimum

<7.17) with respect to x we obtain,

MKdV is

zero.Differentiating

sinQ

1,2 xx
+ k2<l + tan2/u) --------------------------------

— 2 2 3y'2(sin Q + tan
C7.19)

sG

S IXX

Once again

we see that

noting

f
l

do

vanishes when Q 0

these points also.In

different. When sinQ

point and we

where n e Z

CcosQ=l).It is

C7.5) and the nonvanishing g
LX

f or the

not possess stationary points.Although

we do not have points of inflexion at

the

0

case of the MKdV the situation is

one of the f develops a stationary

find that f
i

CcosQ=-l),and

clear from

inflexion when f is
L

can clearly be seen

breather).

We now discuss

has stationary points when Q=<2n+l)rr

f^ has stationary points when Q=2nn

C7.19) that

stationary.The

in figs 7.5CsG

how despite the

f also have points of

features discussed above

breather) and 7.23CMKdV

considerable complexity of

the roots of the three parameter polynomialC§4 chapter 6) we

can determine the magnitudes of f CO,O),f CO,O),f C0,0>
L LX LXX

in
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the perfect, phase case without solving the three parameter 

polynomial.Such an analysis will enable us to explain certain 

nofable features of the three parameter graphs of f. produced 

numerically.We only consider here for brevity the two soliton 

antisoliton case,though it is apparent from the technique 

explained below that any three parameter case can be handled 

with equal ease.

The roots of the two soliton-antisoliton lsp

phase obey the followingC§6 chapter 6).Note 

antisoliton function.

f +f +f = k k tCl)+k k tC2)+k k tC3>
1 2 3 12 13 21 23 31 32

with perfect

f is the 
2

C7.20a)

f f +f f +f f =-lk k tCl)tC2)+k k tCl)tC3)+k k tC2)tC3)l Cb)
1 2 1 3 2 3 13 23 12 32 21 31

f f f = -tCl)tC2)tC3) Cc)
12 3

where for the sG,

Cb)

tCi) = exp^.Cx-u.t) , t Ci)
X

= r tci) C7.21a)

and for the MKdV,

tCi) = exp2k Cx-4kZt)
L t

, t Ci)
X

= 2k tCi)L C7.21b)

Henceforth we will use the symbol r. to represent 2k in

the MKdV case.Now differentiate C7.20) with respect to X.

We obtain,

f +f +f =r k k tCD+j'' k k tC2)+^ k k
1X 2x 3x 1 12 13 2 21 23 3 31 32

tC3) C7.22a)

f Cf +f )+f Cf +f )+f Cf +f )=
1 2x 3x 2 lx 3x 3 lx 2x

-ik k Cr +r )tci)tC2)+k k Cr +r )tci>tC3)+k k cr +r )tc2)tc3)i
13 23 1 2 12 32 * 1 3 21 31 2 3

f ff+f ff+f ff = -cr +r >tci)tc2>t<3> 
lx 23 2X 13 3X 12 1 2 ^3

Differentiating C7.22) with respect to x,

f +f +f =?2k k tCD+rZk k tC2)+rZk k tC3) 
lxx 2xx 3xx 1 12 13 2 21 23 3 31 32

f Cf +f )+f Cf +f )+f Cf +f )+
1 2xx 3xx 2 Ixx 3xx 3 lxx 2xx

2Cf f +f f +f f ) = -Lk k Cr +r >ZtCl)tC2>+
lx 2x lx 3x 2x 3x 13 23 1 2

Cc)

<7.23a)

Cb)

k k Cr +r >ZtCl>tC3)+k k
12 32 1 3 21 31 

Q +1 >ZtC2)tC3>]
2 3



214

f ff+f ff+f f f +
Ixx 2 9 2xx 19 9xx 1 2

f Cf f +f f )+f Cf f +f f )+f (f f +f f ) 
lx 2x 3 2 9x 2x lx 9 1 9x 9x lx 2 1 2x

-<y +r +r )1 2tci>tc2>tc3>

1
f =-rlk k <>- +y )+k k Cy +y >+k k +y >1

2x 2 19 29 1 2 12 92 1 9 21 91 2 9

1 2 3

Differentiating C7.23) with respect to x,

Cc)

C7.24)

f +f +f =r3
Ixxx 2xxx 9xxx 1

: k tC2)+? 3k k tC3>
21 29 3 91 32

k k: tCl)+r3i
12 19 2

f Cf + f
lx 2 X x 3xx

f Cf +f
2x Ixx 9xx

f Cf +f
3x Ixx 2xx

Ca)

2[f f +f f +f f 
ixx 2x lx 2xx Ixx

)+f Cf +f )+
1 2xxx 3xx x

)+f Cf +f )+
2 1 XXX 9x x x

)+f Cf +f )+
3 1 XXX 2x x x

+f f +f f •
9x 1 x 9xx 2x X 3 x

+f f 1
2x 3 xx

Cb)

-ik k Cr +r >3tci>t<2>+k k q  +z >3tci>tc3)
13 23 12 12 92 *1*3

+k k +y >3tC2>tC3)l
21 91 * 2 * 9

f ff+f Cf f +f f )+
Ixxx 2 9 Ixx 2x 3 2 3X

f ff+f Cf f +f f )+
2xxx 1 3 2xx lx 3 1 3X

f ff+f Cf f +f f )+
3 x x x 1 2 3xx lx 2 1 2x

Cc)

f Cf f +f f )+f Cf f +2f f +f f )+
ixx 2x 3 2 3x lx 2xx 3 2x 3x 2 3xx

f Cf f +f f )+f Cf f +2f f +f f )+
2xx lx 9 1 9x 2x lxx 3 lx 3x 1 9xx

f Cf f +f f )+f Cf f +2f f +f f ) :
3xx lx 2 1 2x 9X 1XX 2 1X 2X 1 2xx

-<r +T )3tCl)tC2)tC3>
2 3

Now examine the point x=0 t=0.Substituting into C7.20) we find,

19 2 9
f f f =~1
12 9

C7.25)

where we have employed the equation

and k =-k„ .Thus from

k k +k
12 19 :

C7.25),

Henceforth we

later examine the

equation.Substituting

k
21 23

+k k =1
i 91 92

C7.26)

f =f =1 ,
1 3

f =-l
2

C7.27)

shall concentrate

centre-of-velocity

C7.27) into

on the

solution

C7.22b) and

MKdV and only

of the sG

noting from

3

C7.21b) that at C0,0) tCi)=l.We obtain Cf C0,0)
<>

f )
<>

C7.28a)
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From the definition of k for the MKdV <k =<k +k )/<k -k ))
J t jtj

and the definition of y. given earlier ,it can be seen that the

right hand side of <7.28a) is identically zero.Hence,

0f
2x

<7.28b)

Substituting the above into <7.22a) we find,

f 
lx

+ f
3x

y k k +y k k +y k k
1 12 13 2 21 23 3 31 32

<7.28c)

(7.23) become at <0,0) using <7.27) and <7.28b) we find,

f +f
Ixx 2xx

=^Zk k + ;2k k + /Zk k
1 12 13 2 21 23 3 31 32

+f . __ __
3xx 1 12 13

<7.29a)

2f +2f f = -Ik k 
2xx lx 3x 13 ;

<x +y )Z+k k <x +?-' )2+k k Cy )2]
23 1 2 12 32 1 3 21 31 2 3

<b)

2<> +v +>- )
1 2 3

f
2xx

f
Ixx

f
3xx

-2f f
lx 3x

<c)

Adding <7.29a) and (7.29c) we find,

+ ^2k k -<v +>- 4-x )2
3 31 32 1 2 3

<d)

Now adding <7.29b) and <7.29d) we find,

4f =^2k k + yZk k + yZk
2xx 1 12 13 2 21 23 3 31

2k -<y +> )
32 1 2 3

<7.30)

-Ik k Q +y )z+k k Cy +y )2+k k Cy +y )2]
13 23 * 1 2 12 32 1 3 21 31 2 3

The last term above can be shown to be identically zero using

the definition of k and y .Also after tedious calculation the 
tj i

first two terms above can be shown to be identically zero.Thus

we find,

f
2XX

<7.31)

Substituting this into <7.29b) or <7.29d) and we find,

f f 
lx J3x

<7.32a)

Now consider <7,22c) at <0,0),we find on substituting

k

0

0

<7.27) and <7.28b),

y +y +y
1 2 3

f +f
lx 3x

<7.32b)

Clearly from <7.32) choosing f to be the zero root, 
3x

We

f
3x

f 
lx

2<k +k +k )
3

<7.33)

now investigate f
ixx

and f
3xx

.Examine

<7.24b).Substituting <7.27),<7 28b),<7.31) and <7.33) into

0
1 2 3 1 2
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(7.24b) at (0,0),gives,

(7.34a)
3f f +2f =-[k k c? +r >3+k k cy +r >3+k k cy +y >33

lx 3xx 2xxx 13 23 1 2 12 32 1 3 21 31 2 3

Also examining (7.24c) we find,

f -f -f -3f f - -Cy +7- +>■ >3
2xxx lxxx 3xxx 3xx lx 12 3

(7.34b)

Now substituting (7.24a) at, (0,0) into (7.34b)
(7.34c)

We saw earlier that for the MKdV( after equation (7.30)),

/Zk k + ^2k k + jy2k k -Cy +y +y )2 = 0 
1 12 13 2 21 23 3 31 32 1*23

Multiplying this by we obtain,

3 3 3 3-(>- +y +Y > +y k k +y k k +y k k =
123 1 12 13 2 21 23 3 31 32

>2(y +y )k k +^2(^ +y )k k +v2 (V +y >k k
3 1 2 13 23 2 1 3 12 32 1 2 3 21 31

(7.35a)

Now it can be shown by taking k k k out as a
13 12 23

factor and

cancelling that, (7.35b)
k k Cy +y >3+k k Q +) )3+k k <> +y )3= 
1929x2 123213 21 91*2*9

Y y Cy )k k +y Y ^Y +Y >k k +y Y Cy +Y )k k
1 2 1 2 13 23 1 3 1 3 12 32 2 3 2 3 12 13

Similarly by taking k k k out as a factor and
° 13 12 23

rearranging the right hand side of (7.35b) can be shown to be

identical to the right hand side of (7.35a).Thus we find,

— ^7 +Z +7 ) +Y k k +y k k +y k k =1*23 1 12 13 2 21 23 3 31 32

k k (y +Y )3_»*k k (>•' +x ) +k k Cy +y
13 23 1 2 12 32 1 3 21 31 2 3

(7.35c>

Subtracting (7.34a) from (7.34c) and substituting (7.35c) we

obtain,

6f f
3xx lx

(7.36a)0

But we saw earlier* in (7.33) that

f = 0
3xx

f 0 thus, 
lx

(7.36b)

Substituting this ,(7.31) and (7.33) into (7.29c) gives,

f
Ixx

+z )z
* 1 *2 * 3

(7.36c)

We summarize our findings,which apply only to the MKdV

equationzln the two soliton-antisoliton lsp with perfect phase 
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the roots are found to have the following properties at

x-O,t=O.The antisoliton function f and one of the soliton 
2

functions f have a stationary point of inflexion.The remaining 

soliton function f possesses neither a stationary point nor a 

point of inflexion.In addition,f =-l and f =f =1.
2 13

We now consider the perfect phase lsp for the 

centre-of-velocity frame of the two soliton-antisoliton 

solution of the sG at x=0 ,t=0.

As we saw in previous chapters,

k. =Ca +a )/Ca 
tj t j t

a ) ,a -y ±Cl+u ) ,/-■ 1
J t t J L

.. 2. 1/2=Cl-u >
L

C7.37)

Choosing the speeds of the solitons to be u,-u and the

antisoliton speed to be zero,we find,

k =u 1
13 1

C7.38a)

C7.26) becomes,

Substituting the

2k k
12 13

kz = 1
12

<7.38b)

above equations into the equation for f
2x

C7.28a) and the equation for f (7.30) we
2xx

find,

0 0f
2x

, f
2xx

C7.39)

Similar calculations lead to the conclusion that f ,f
lx 3x

are not zero

CO,O).The above

and do not possess points of inflexions at 

calculations confirm the numerical results seen 

in figs 7.37-8.

We close this section by examining the speeds of points

such that f . Cx,t) = k, x ,where k is a constant.As we have L t

already seen in this thesis for the sG equation, the points

where f. =lCfor solitons in breathers or otherwise) or f.=-l(for
t t

antisolitons in breathers or otherwise) represent the positions 

of the solitons and antisolitons.Indeed there is every reason 

to believe the same is true for the MKdV and the KdV.With this 

in mind we now examine x. at CO,(^.Differentiating the equation 
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f. =k we obtainCnoting f = ±expg. ),

x. = -g /g. C7.40)
V Lt IX

We saw that, in all two soliton cases that g ?*0 V
ix

x,t.Thus x are all finite.In the soliton-antisoliton case we 
L

found that in the case of the sG g *0 V x,t,so again.x is 
ix i

finite.However in the MKdV case although the soliton moves at 

finite speed as g *0 the antisoliton has infinite? speed at 

(0,0).It is easy to see from the analysis in that case that 

g (0,0>0 but g C0,0)=0.Glearly in interaction solitons and
2t 2x

antisolitons obeying the MKdV equation do not obey a law 

similar to Newton’s Third Law.

With the breather case of the sG we again found g ^0 V 
lx

x,t,so once again there was no infinite speed behaviour.lt is 

easily shown that in the breather MKdV case g^O.However we 

saw that g^ =0 periodically.Thus solitons and antisolitons 

within MKdV breathers periodically move at infinite speedCnot 

at the same time).

Turning now to the two soliton-antisoliton case,it can be 

shown by calculations of a very similar nature to those 

beforeCi.e by differentiating (7.20) with respect to t several 

times),that at (0,0) g^^O.Thus in the two soliton-antisoliton 

interaction of the MKdV one soliton and the antisoliton move 

with infinite speed at x=0 t=0,but the remaining soliton moves 

with finite speed.This as we have proved occurs when they are 

all coincident at (0,0).

Finally we saw that in the centre-of-velocity frame of 

the two soliton antisoliton solution of the sG equation,the 

antisoliton function g2^C0,0)=0.In this particular case x^ is 

not necessarily infinite as it is easily shown from the time 

equivalent of equation C7.22b) that f2<0,0)=0.So in this case 
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the speed is undefined by the above analysis.Clearly the limit, 

of x (0,0 would have to be carefully examined as t—> 0.

Numerical studies(§3) support the finding above>though in 

this thesis we have not studied the motion of MKdV,KdV solitons 

directly.
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§ 2. Numerical studies of the time evolution of the roots of 

the lsp.Two parameter solutions: of the sG,MKdV and KdV as an 

interact ion between separate parts.

We have computed the exact roots of the two parameter lsp 

for the sG^MKdV and KdVCsame as soliton case of MKdV) given by 

formulae C6.32-4), except that, we have chosen perfect. phase.This 

ensures that the interactions are centred on x=0 at time 

t=0.The results can be seen in the figures at the end of §2.We 

note the somewhat unexpected differences between the sG and the

MKdV.In the case of the sG all the functions f (twoI parameters

only) are very similar in appearance to simple exponential

functions.In the case of the MKdV the situation is quite

differentCexcept with pure soliton cases).We note in fig 7.14

that in a soli ton-ant iso lit.on case the antisoliton root of the 

lsp develops a point of inflexion.From figure 7.20 we see that 

the point of inflexion develops in a small neighbourhood of 

time t=0.

As we have seen the differences between the two equations 

manifest themselves in the definition of k ..This causes a
i-j

considerable difference in the exact f. and the approximate f..

One might have expected a noticeable difference in the f 

for the two equations in the breather case on account of the

more complicated nature of the MKdV breather .As we can see in 

fig 7.23 both the f for the MKdV breather can develop points

of inflexion<as opposed to neither in the case of the sG see

fig 7.5),though only one root possessess a point of inflexion 

at any one timeCsee fig 7.24 where tan 1f. compressess the

points of inflexion of f into a finite strip.Actually despite
i

these marked differences in the behaviour of the breather f., 
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the actual two parameter solution for* the two equations (figs 

7.6 and 7.24) are not so dissimilar.We note from fig 7.13,17,35 

that the points where f. = ±1 are very close to the maxima or 

minima of the solitons or antisolitons plotted.

The roots of the three parameter lsp for various 

situations are plotted in figs 7.36-43.These graphs were 

obtained by numerically solving the relevant cubic instead of 

using the exact formulae (6.58-9).The problem one has in using 

the exact formulae is computational in origin.These formulae 

involve small quantities being multiplied by large 

quantities.The trouble is a computer which recognizes numbers

*~38 15 “*38less than 10 to be zero will also reckon 10 xlO to be 

zero!

Examining figs 7.36-43 we see that three soliton f for L

the sG and the MKdV are quite similar to each other and to pure 

exponentials.We also note that there is a gradual change in 

gradient of the f. over the time interval chosen.Although we 

have chosen a centre of velocity frame for the sG the results 

in any other frame are broadly similard.e points of inflexion 

do not appear as a result of Lorentz transformation>.Comparing 

the two soliton -one antisoliton case for the two equations we

immediately see marked differences.

In the sG’s case the antisolitonCwhich happens not to be

moving throughout the interaction) develops a stationary point

of inflexion at time t=0.Fig 7.38 indicates that the

antisoliton f only develops the t point inflexion exactly at

t=0.At the same time the two soliton f retain i their pure

exponential-like appearance but we find that they intersect

each other at x=0,t=0.This latter fact indicates that the

solitons pass through each other (and the antisoliton).
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In the case of the MKdV Cfig 7.42)we find the behaviour 

of the soliton f is quite different,as was also discovered in 
t

§l.One of the soliton functionsCassociated with the slower* 

soliton) develops a stationary point of inflexion some time

before collision.As with the sG the antisoliton function also

develops a stationary point of inflexion and we find the

solitons and antisolitons to be coincident at t=:0.We can also

deduce from fig 7.42Cby looking at the slopes of the functions) 

that there is an exchange of speeds .The initially slower 

soliton picks up speed as a result of the collision, while the 

initially faster soliton slows down.

Comparing figs 7.39 with 7.43 we see that in both cases 

of the breather in interaction with a lone soliton,the 

antisoliton component of the breather moves away from the 

original soliton component of the breather,and forms a breather 

with the originally lone soliton.

§ 3. Approximations to the roots of the lsp

In this section we discuss a method of approximating the 

exact roots of the Isp’s for the sG,MKdV and KdV by simpler 

functions.These approximations enable us to determine formulae 

for the shapes of solitons and their motion.The latter is 

especially useful as in most cases the motion of the solitons 

can only be deduced numerically.The motion of the approximate 

solitons agrees very closely with the actual motion of the 

solitons in cases where breathers are not present.For | f | <1 

the agreement between the approximate f. ,denoted Cand f. is 

so good that we have not plotted the f for the two parameter
L

non breather cases except in the case of the soliton 

antisoliton solution of the MKdVCfig 7.20) in a small 
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neighbourhood of t-0.

Note however even in this case the position of the

approximate antisoliton does not depart greatly from the actual

antisoliton position.

f t when breathers are present are not such good

approximations to f ,although we observe from figs 7.7 and 7.28

that the agreement is better with the sG than with the MKdV.VZe

also note that in the case of the MKdV there are times when
•'v
f become very inaccurate.

L

The approximation method’s basic assumption is the

following ,

± exp la. Ct)x J.b Ct) t i

Consider the two parameter lsp with perfect phase,

f2 - k ItCl) + tC2)Jf + tCl)tC2) = 0
12

(7.41)

C7.42)

where tCl),tC2) and k are defined 12 in chapter 6.

Assuming the roots to be given by C7.41) we have ,
'Xz

f
1

zXz

+ f
2

k ItCl)
12

+ tC2)l C7.43a)

f f
1 ;2

tCl)tC2) C7.43b)

Differentiating C7.43a) with respect to x we find ,

Now setting x-=0 in

'V

1 f
2 2

k It Cl)
12 x

+ t C2)l
X

C7.43c)

C7.43) we find CtCi;O) tCi;x=O)) ,

k I
12

EtCl ;0) + tC2;0)l C7.44a)

a f + a i 1 :

b
1

+ b
2

b b1 2 tCl;0)tC2;0) C7.44b)

a b +
1 1

a. b
2 2

k It C1;O) + t C2;0)l
12 x x

C7.44c)

<x +a can be deduced 1 2 from C7.43b) and C7.44b).C7.44a-b) define

•a quadratic which we can solve for b .Thus from the remaining 

equations ot can be determined.
i

The technique is clearly readily generalised to higher

parameter cases also.The procedure for three parameters is
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given below.The three parameter perfect phase polynomial is

given by (6.80).The approximation method gives,

f + f + f = k k tCl) + k k tC2) + k k tC3) (7.45a)
1 2 3 12 13 21 23 31 32

f f +f f +f f =-<k k tCl)tC2)+k k tCl)tC3)+k
121323 13 23 12 32

k tC2)tC3)>
21 31

Cb)

*Xr 'V ■*\r

f f f
12 3

-tCl)tC2)tC3) Cc)

Differentiating C7.45a-b) with respect to x we find ,
X'

a f +
1 i

ot f
3 3 k k

12 13
t Cl) + k k t C2) 

x 21 23 x
+ k k t C3)

3 132 X
Cd)

•Xz -Xz

Cot +ot )f f
12 12

'X/ *Xr

Cot +ot )f f + 13 13
•V -X.

Cot +ot )f f
2 3 2 3

Ce)

+

+

-< k k Ct
13 2 3 X

Cl)tC2) + t(l)t
X

C2)l+k k it Cl)tC3)+tCl)t C3)l
12 3 2 X x

+ k k Et C2)tC3)+tC2>t <3)1 >
21 31 x X

Setting x=0 in (7.45) we find ,

b + b + b
12 3

k k t(l;0) + 12 13 k k tC2;0) + k k tC3;0)
21 23 31 32

C7.46a)

b b +b b +b b
12 13 2 3

-<k k tCl;0)tC2;0)
13 23

k k tCl;0)tC3;0)
12 3 2

Cb)+

+k k tC2;0)tC3;0) 
213 1

>

b b b
1 2 3

tCl;0)tC2;0)tC3;0) Cc)

++ ot b
2 2

ot b
3 3

k k t Cl;0)+k
1 2 1 3 X 21 23

t C2;0)+k k t C3;0) Cd) 
X 31 32 x

Cot +ot )b b
12 12

+ Ca +ot )b b + Cot +ot )b b
1313 2323

Ce)

a b
i 1

k

k k Et
13 2 3 X

Cl;0)tC2;0)+tCl;0)t C2;0)l
X

+ k k Et Cl;0)tC3;0)+tCl;0)t C3;0)l
12 3 2 x x

+ k k Et C2;0)tC3;0)+tC2;0)t C3;0)J > 
2 1 31 X X

C7.46a-c) provide us with a cubic which we can solve for b
t

and

C7.46c) together with C7.45c) provide an equation for

« +ot +ot ,this
12 3

together with C7.46d-e) provides three

simultaneous equations for ot .Thus
L

we can completely determine
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the approximating functions f .
t

We now consider the exact formulae for the approximating

functions for the sG,MKdV and KdV.

Two solitons

We find on solving C7.4) ,

where £ Cr)

C6.52c),k
12

sG C^ and

b Ct) i

b Ct)
2

a CO
1

a Ct)
2

exp ly + <<V > + In k
12

1 C7.47a)

exp ly <<y > In k
12

i Cb)

1 +

z-

sinh y

Ccosh y

s i nh y
x

V
Ccosh2y

------ 1/2
u2 )

12

------ 1/2
u2 )

12

is defined in C6.52d) and y+

u *,is defined in
12

k are defined in C6.4)

X+Cx=0) is

Cc)

Cd)

defined in

<6.5,9c) .We find that for the

and C6.8) respectively),

Cr + v )/2 
■1 2 r2)/cr± + r2) C7.48a)

while for the MKdV and KdV >

X = Ck
1

+ k
2
) Ck

1
k )/Ck

2 i
+ k )

1 2
u

12
Cb)

Soliton-antisoliton

We find on solving C7.44) ,

b CO i exp ly ) In k
12

1 C7.49a)

b CO
2

=-exp Ey + 77<y ) + In k
12

J Cb)

z* cosh y
ot Ct)

1
H + v>
V.

-------------------------------------- 1/2
Csinh2y + u2 )

12

Cc)

cosh y
a Ct)

2
X O - ---------------------------- izz

Csinh2y + u2 )
- 12 J

Cd)

where 7?Cr) is defined in C6.53c).
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Breather

C7.50a)b Ct) = exp [y^ + <£^Cy_) - sin w J

Cb)

Cc)

ex Ct)
2

cos y
- - ——

C sin y + w
Cd)

where £ Cr) is defined in C6.54c) and for the sG,

the speed v and the

y+ = ~r COS/J vt , y_ = x sio/u t C7.51a)

X = Y COS/J = VW Cb)

£ = 1 , W = tan/j Cc)

with cos ,sin (d and y defined in terms of

period r of the breather in C6.4).

For the MKdV we have ,

y = -20vt y =
+

X = 20 =

s? = -1 W =

the speed v and the period of

2'pwt C7.52a)

7)/0 Cb)

77/0 = V Cc)

where &,T) are defined in terms of

the breather in C6.8).

Now examining C7.49-50) we can immediately see the inaccuracy

of the approximation in the case of the MKdV at certain

times.Let t=0 in C7.9),we find ,

a CO)
1

Ck + k )
1 2

a CO) = 0
2

f Cx,0)
1

While in the

b CO) = 1
1

b CO) = 1
2

Ck +k )x
= e i 2

case of the

, f Cx,0) = -1
2

C7.53a)

Cb)

Cc)

breather the constancy of either

of the f at t=0 is a periodic phenomenon.We find ,
L
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t = nn/'Qw n <= Z

ex (0) = 40 , ex CO) = 0 C7.54a)1 2

b CO) = 1 , b CO) = 1 Cb)1 2

4 Q xf Cx,0) = e i , f Cx,0)
2

= -1 CO

and at times t = rrCn + 1/4 )/7?w we find similar results to the 

above with the subscripts 1 and 2 interchanged.None of these
■'Xr

difficulties arise with the sG which for all times has f which i

are exponential functions of x.

Clearly the problem with the approximation for the 

mixture cases of the MKdV lies in the fact that f possess 

points of inflexion.To obtain a more exact approximation in

these cases one would have to consider f having

± b. Ct)exp [ex Ct)x + 6 Ct)x3] 
l  it

differentiating C7.43a) three times we obtain ,

the form ,
Az
f I

Actually when one applies this one finds that 6 6 and the i

equations for b and ex are identical to those without the term 
t t

3 
in x .By

z 3(ai
+ 6<5 )b + Cex3 + 6<5 )b

11 2 2 2
k [t C1;O)

12 xxx
+ t C2;0)l

XXX

Thus 6
t

can be determined.

Of course an approximation of the form C7.55) no longer

makes it so easy to obtain the approximate motion of points

such that f =±1.However t it is certainly possible that the

equation ,

6 x3
t

x+ ex in b = 0
L

only has one real root.We have not investigated this point in

this thesis.

We now move on to discuss how for the sG in the centre of

velocity frame for three solitons or two solitons and one

antisoliton with one component fixed for all time we can solve

equations C7.46) exactly.

As observed in the previous chapter in the centre of
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velocit-y frames of referenceCwhen they exist.) the behaviour of 

the f. is time symmetric.This coupled with the fact that one 

soliton or antisoliton does not move for all time leads us to 

consider f. with the following properties,

ex Ct) = a Ct) = aCt),b Ct) = 1/b Ct) = bCt),b Ct) = 1 C7.57)
2 1 2 i 3

Three solitons

The soliton speeds are u,~u,O.k ~ = k .Denote k = k.
12 23 13

C7.46) becomes noting C6.4) where in perfect phase tC2)<0.

b + 1+1 
b

= 2k k
12

coshput + k2
12

C7.58a)

aCb + 1 J» + a = 2k k / coshput + k2 Cb)
b 3 12 12

Also C7.45c) becomes >

2a + a3
= 1 + 2r Cc)

Solving C7.58a) for b we obtain Cthe negative root interchanges

2
2k k coshyut + k +3

12 12

Also we find ,

b with b ),
1 2

bCt) = cCt) + X 2 X4. X 4 ,.1/2Cc Ct) - 1) C7.59a)

cCt) = C2k k
12

2coshjut + k - l)/2 Cb)

C) -l)Ck2
* 1 2 - 1 )

aCt) = / -
2k k cosh>-ut + k2 - 3 

12 12

q  -l)Ck2 - 1)
a (t) = 1 + 2 -------------------------- —--------------------

2k k coshxut + k2 - 3 
12 12

Analysing the two soliton antisoliton caseCb -1) we find ,

Cc)

Cd)

bCt) = dCt) + Cd2Ct) - 1)1/Z C7.60a)

dCt) = C2k k coshyut -
12

k 2 + 1)/2 
1 2

Cb)

-Dckz - i)
aCt) = + ---------------------------- —------------------

2k k coshyut + k +3 12 12

2a Ct) = 1 - a

C> -l)CkZ - 1)
12 Cd)
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Clearly c(t),d(t) are at a minimum when t=O.Now using

<5.2) which in this case becomes ,

2k k12
kZ

±2
1 C7.61)

we then find ,

cCO) k2 >1
12 > d(0) = 1

Thus bCt) is real for all t.

If is found that for all t
Ar

f <t> are very t close to f. Ct) 
L

in the pure soliton case(7.59).However in the two soliton

“V

antisoliton case, f (t)3
for the antisoli tonCi.e -exp oHt)x )

is found to depart significantly from fgCt) in a region close

to t= O,by virtue of the fact that f has a point of inflexion

at x=0 and t=O(see fig 7.38).Despite this f provides a

reasonable
Ar

approximationCnote f^CO,O) -1 f (0,0) ).The
3

Ar

soliton functions f are 1,2
very close to f for all t.

Ar

Using f we can find approximate multisoliton solutions

of the derivative MKdV

and the KdV ,

u
t
+

2
6u u +

x
U

XXX
0 <7.62)

u t -6uu +
X

U
XXX

0 C7.63)

The approximate multisoliton solutions of (7.62) are the

derivatives with respect to x of a sum of terms of form

2tan if .Thus
i

the approximate multisoliton solution of

Ar

(7.62),u is given by , N
•v
U

N
r <2tan 1f )

LX
C7.64)

where <£?. = 1 for solitons and -1 for antisolitons, t

The approximate multisoliton solution of (7.63) is given

byCnoting (6.58-9)),

'v

u
N

(7.65)

Ar

u for 
2

(7.62-3) are seen in the figures in §2.
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§ 4. The motion of sG solitons ,antisolitons, breathers in

int.eract.ion.

We have analysed numerically a number of higher parameter 

solutions of the sG.As we saw in the previous chapter in a 

multiparameter solution of the sG we can determine the motion 

of the solitons or solitons within breathers by setting f=l in 

the sG lsp C6.2-4),similarly to determine the motion of 

antisolitons in breathers or otherwise we set f=-l into the sG 

lsp.Computationally speaking this has an immediate advantage in 

that only under unusual circumstances do the roots of either of 

the resulting transcendental equations coincide (i.e solitons 

close to solitons,or antisolitons close to antisolitons).

The computer program created by the author to solve these 

trancendental equations was designed to be as general as 

possible,as such the number of solitons ,antisolitons and 

breathers in interaction that it would handle, was only7 limited 

by two factors jmemory required to store all the double 

precision(17 decimal places) numbers involved and the execution 

time.

For more than four parameters,especially involving 

breathers the execution time was quite great,depending of 

course on the range and number of positions of the 

particles.Since during the course of the interaction there were 

times when the particles came very close to one another or 

where the speeds changed very rapidly it was necessary to 

determine a variable number of positions of the particles per 

unit interval on the x axis.

This was accomplished by running the program several 

times with some regions of the x,t plane being examined much 

more closely than others.



276

Later, after* all the data making; up a very detailed 

picture of the particle interaction had been stored in various 

files,another program read all the files involved and created 

one very large data file, which could be subsequently used to 

produce the graphs seen in this section.lt was by this method 

that data could be collected without exceeding the execution 

time for a single run of the program.

The accuracy of the program was checked against the exact 

two parameter solutions of Bowtell and Stuart Cchapt er 4>.The 

agreement was exact up to 17 decimal places.

together,e.g consider a 3 parameter lsp at time t=-20 x=20,the

One of the problems which had to be overcome in writing the

computer program was connected with the highest

exponenttpowers of e) that the computer would
30

recognise, 88 G-10 >.The lsp for the sGCand others) involves

many exponential f unctions of x and t being multiplied

minimum power involved would be ~ 40,the maximum ~ 120 and in a 

four parameter case with t=-65, x= +20 one can have powers 

ranging from 85 to 340(see fig 7.46h>.

These enormous ranges of exponents could of course not be 

handled by the computer directly,and in fact the lsp had to be 

rescaled by the multiplication by a suitably large number .Of

had to be done by subtracting a suitable exponentcouse this

from each term in the lsp bef ore taking powers, and then a

comparison made of the log of the lsp with the exponent

subracted.We give a simple example Suppose we want to find the

zero of the function,HCx,t>= ex l-l at time t=~50.We start by

Putting in values of x beginning at x=50.HC50,-50)=e1OO-l.To

■ascertain the sign of H

-20
e .Thus we look at

we imagine multiplying the equation by

80the sign of InCe >-<-20>.Thls the 
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computer can handle.

The computer program was made "user friendly" so that 

after it had been designed the program could be run with the 

minimum of tuss.One could choose the frame of reference at will 

though likely frames of frames of reference could be opted for 

automatically.

We must point out that the data on the graphs relating to 

breathers was later discarded in favour of simply breather 

speed and periodCasymptoticXOn the graphs are seen a pair of 

speeds for breathers u1>u2 say .The breather asymptotic speed v 

can determined from this pair of speeds by the following 

formula ,

f
v = (1 +u u -VI — u VT - u )/Cu +u )

12 1 2 12

The breather asymptotic period r could be determined from,

t  = 2n/G\jy

where ,

.. , 2. -l/z& = Cl + U ) , Z = Cl -

/ 
u = Cl —u u ~VT 

1 2
-u2 vi

1
-u2 )ZCu — u )

2 1 2

The force plotted in the graphs is the relativistic

formula for force for a particle of rest mass

BCsoliton/antisoliton ) moving with speed vCt) and acceleration

aCt) and is given by ,

FCt) = 8aCt)ZCl - vCt)Z)3/Z

The potential for a system of solitons,antisolitons and 

breathers is defined by the sum of the following terms,

8x. for each soliton and antisoliton,

2 —1/2
16Cl + v ) lor each breather

b

2 —1/2-8C1 - v Ct) ) for each soliton or antisoliton in

breathers or otherwise
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where are the soliton or antisoliton speeds in breathers or

otherwise as functions of time,and /•- = <1 - v C-oo>^> lx z.v islib
the breathers’ aymptotic speed.

A plot of the potential as a function of time gives us a 

global indication of the attractiveness or repulsiveness of the 

forces involved.

Most of the graphs (figs 7.44a-7.48e) are self 

explanat.ory,the solid lines always refer to solitons whether in 

breathers or otherwise,the dotted lines refer to antisolitons 

in breathers or otherwise.

It is clear from fig 7.46a that the antisoliton component 

of the breather espouses another soliton leaving the original 

partner to become the lone soliton.There is then a range of 

times over which the soliton-breather system cannot be thought 

of as consisting of soliton and breather separately.One can see 

from fig 7.46g that overall the system is weakly repulsiveCnote 

small magnitude of positive potentiaD.However there is 

something very puzzling about the soliton-breather

interaction,this is shown in fig 7.46h.At a time close to -45 

the soliton and antisoliton components become

coincident,however the interaction between them at this time is 

not attractive.

The behaviour of the lone soliton at this time appears to 

be almost asymptotic yet clearly the behaviour of the breather 

is not asymptotic as normally the antisoliton component of the 

breather would pass through the soliton component (achieving 

light speed at the moment of coincidence). We note from fig 

7.46 j that the global potential starts to become more 

attractive as we approach time -50 but then grows more 

repulsive again appearing to reach a maximum at approximately
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time -45 seconds. Also,we note from fig 7.461 that over this 

entire region there is no discernable change of speed of the 

lone soliton.Even if one supposes this curious behaviour to be 

induced by the lone soliton the interaction is extremely 

strange, as at time -20 approximately, the soliton and 

antisoliton components of the breather do pass through one 

another,but here the lone soliton is much closer .The graphCfig 

7.46h) appears to suggest a many body interaction and not a sum 

of two body interactions.

From fig 7.47f we can conclude that when breathers are 

far apart they are weakly repulsive then gradually the 

potential becomes attractive, until eventually when they are 

very close the interaction is strongly repulsive.On fig 7.47d 

there is an interesting feature in the uneven double hump on 

the force plots for the two soliton components of the 

breathers.These humps are not exactly symmetrical about time 0.

In fig 7.48a we witness the "catastrophic collapse" of a

mixture of solitons and antisolitons.The situation for a

mixture of

similar, with

two solitons and two antisolitons is also 

all the components becoming coincident at

t=0.Their speeds being equal in magnitude to that of light.

§ 5. Dynamics of multisoliton interaction

Exact formulae for the position,velocity,and acceleration

a rare occurence.Asin interaction is on the wholeof solitons

Bowtell and StuartCchap 4> discovered, it

for the centre of velocity frame for all

solutions of the sG.As we saw in §4 of the

formulae a

the two parameter

is however possible

are also forthcoming for

last chapter, exact

special solution of the

Boussinesq.
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These formulae are identical in form 

the value taken by certain constants,and in

to the sG, except in

the formula for the

force as a function of separationCdue to the Boussinesq being:

non-relativistic).The acceleration of two Boussinesq solitons

of equal amplitude moving in opposite directions can be

shownCsee C6.55)) to be ,

” —1 2x = y cothQr/2)cosech ^r/2 <7.66)

where y k the amplitude of the solitons and r is their mutual

separation.

Although in general the two parameter lsp with

only be solved numerically there is a large class of solutions

which we can obtain exactly.The two soliton lsp with f =1 can 
L

f
t

be writtenCwith perfect phase), C7.67a)

|^expa^Cx-b^t)+expa )tl=0

where for the MKdV,

2 1 i 2 2

a = t 2k
t

4kZ
L

Cb)b
1

and for the sG,
ub

L
Y

l
a = I Cc)

Csee C6.4,8,20) ).

Choosing a.= 2a and
2

substituting y=exp into <7.67a)

and multipying the resulting equation by exp tC2b +b ) we
1 2

a x
2

a
2

obtain the folowing cubic ,

y3 + 2 ay + a y
1 2

C7.68)

-1 u
±2

-1 u e
12

2a b t
2 1

a (2b +b >t
e 2 12

It can be shown that the condition for real roots Q3+R2<0,

a
1

i
+ a

3
0

a b l 
e 2 2 , a

2 ' %

where,

Q <3a -a2)/9 , R = C9a a -27a -2a3)/54
1 12 3 12

C7.69)

is satisfied.Hence since the product of the roots is negative

we must have two positive roots and one negative,but y is an

exponential function of x,thus we need only consider the two
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positive roots(note the discussion at the end of §5 chapter* 6).

We give an example in the case of the MKdV,KdV two

soliton case where the amplitudes are k^=2 ,k =l,we find 
2

u =1/3.
12

Substituting these values into C7.67b) we find

. 481.. 48t.3 _ 481 48t 2Q = -e <l+e ) , R = e <l+e )

and we find the roots of <7.67a) become (using the standard

formula for roots of a cubic,noting which are positive) after

taking

cosa) 3

the log of V
1 _ . 48t. 1/2

X = 4t + - In ll+2<l+e ) cosoi 1
i 2

X = 4t + - In [1+ Cl+e48t)±z Z<73sina
2 2

1 - 1 481.1/2
a = — CoS <l+e )

3

<7.70)

We find that,

t->-co

t-*+oo

x -> 4t + 11173
1

x -> 16t + —ln/3
2

x 16t
2

x -> 4t
2

—In73
2

ln/3

<7.71)

This is the expected asymptotic behaviour.

L

Unfortunately <7.70) are sufficiently complicated to

render further differentiation uninstructive and the explicit

dynamicsCi.e force as a function of separation) is very

difficult to obtain.

To obtain a better picture of the dynamics of interacting 

solitons it might seem useful to employ the approximations 

developed in §3,but even here we are faced with great 

complication.If we set |b <t) | = exp (see §3) we may

write the position,speed and acceleration of the approximate 

solitonsCantisolitons) by
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x.Ct) = -[3 Ct)/a Ct)
t It

x (t) = -C/3 ex -/? a )/a2
I t L t t I

<7.72a)

Cb)

x Ct) t Cc)

As can be seen from the above,the expressions become very

parameter approximatecomplicated both for the two

solutions(7.47“32) and the special three parameter sG

solutions(7.58-60).This complication is due to the time

dependent ’’shape factor” ot. .In the centre of velocity two

parameter sG and Boussinesq cases the shape factor is a

constant.

If we look at the asymptotic region t->~oo the formulae do 

simplify.Examining the approximate solitons(whose motion 

becomes arbitrarily close to the motion of the real solitons in 

the asymptotic limits) we obtain the following results.

Note that from C7.72b) we must examine carefully the 

limiting behaviour of both terms in the numerator.In fact we 

find that for two parameter cases as t->-oo the term in a in the 

numerator of (7.72b) tends to zero, while the term in [3 does 

not.In the following X,v,y ,y are defined as before in §3.

Two soli tons

x -► -X 1Cl-i>) 1Iy + lnC2k cosh y )1 C7.73a)
i + 12

-1 ■ ±
x -> -X Cl+D 

2
ty - lnC2k cosh 

+ 12 y_ )i Cb)

-X Cl-D + y_ tanh y_ i Cc)

i • 1 ■-X~ Cl+i>) - y tanh y i Cd)

X -> -X XCl-2>) 1 
£

• 2 
y_ sechZy

•• -f ■ 2 2
x -> +X Cl+z>) 

2 y sech y CD
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Soliton-antisoliton

x -> -X 1C1+p> 1[y ~ lnC2k sinh y )] C7.74a)
1 + 12

x -> -X 1C1-l >) 1[y + InCZk sinh y )1 Cb)
2 + 12 -

• -1 —1 ”
x -> -X Cl+p) [y - y coth y J Cc)1 + — —

x -> -X 1Cl-v) 1[y + y coth y ] Cd)
2 + - -

" —1 ~1 ’ 2 2x -> -X Cl+p) y cosech y Ce)
1

x -> +X 1Cl-ti) 1 y2 cosechzy CD
2

In the three parameter centre of velocity cases(sG) we

find we can no longer ignore a in the expression for soliton

speed.The following results are obtainedCsee C7.57-9))

Three sG solitons in centre of velocity frame

x ->
1

C7.75a)

x -> -u tanh^ut

•• 2: 2 i — 1—1 2 2
~/u sech }ut - ~k±2k (y-DCk -l)u sech}-ut.^Ct)

Cb)

Cc)

*<t)= lnC4k cosh? ut) Cd)

-x
1

Ce)

The results for the two soliton-one antisoliton centre of

velocity case for the sG in the asymptotic region t->—oo are

k
1 2

x
2

given by,

x ->
1

C7.76a)

-u tanh^ut Cb)

Cc)

x<t)= lnC4k k cosh?ut)
1 2

Cd)

X = -X
2 1

Ce)

The smaller term in C7.75-6c) is related to the force

between the two solitons which are furthest apart as

—1 2exp-c*Cx -x )-> C4k k) sech > ut
2 1 12

and the f act that the acceleration is a sum of two terms
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suggests the two body nature of' the intersoliton forces.

Finally we discuss the implications of figs 7.49,which 

are graphs relating to the three soliton interaction for the 

sG.The speeds of the solitons are written close to the curves 

relating to them.The dotted line on fig 7.49a indicates the 

time at which the middle soliton is equidistant from its 

partners, we denote this time § ** -If the forces acting between 

solitons were instantaneous then one would expect the 

acceleration of the middle soliton to be zero at time t .Figure 

7.49b however clearly shows that the acceleration of the middle 

soliton becomes zero at a time t^+A,where A is of the order one 

time unit.

§ 6. Concluding remarks

As we have seen in chapter 2 the relativistic two body

problem has not as yet been solved.We suggest here that a study

The implication of this is that solitons interact via 

retarded forcesCwhich is not altogether unexpected considering 

the relativistic nature of the sG>.

However it also indicates that inter soliton forces are as 

real as the retarded forces between say, electrons.This soliton 

retarded behaviour also makes more puzzling the apparent 

instantaneous interactions between solitons in the centre of 

velocity frame (especially the two parameter cases of Bowtell 

and Stuart discussed in chapter 4).Of course unlike classical 

electrons interacting in the centre of velocity frame, soliton 

interaction is simplified by the lack of

radiation.Unfortunately, because the general two body

relativistic problem has not been solved we cannot compare the 

soliton behaviour with anything else.
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of the interaction of relativistic solitons may be of use in 

our attempts to understand the problem.The relativistic two 

body problem begins with an assumed potential acting between 

the particles, and the problem becomes one of determining the 

positions of the particles as a function of time,given that the 

interaction between the particles is retarded by the finite 

speed of propagation of signals between the particles.We are 

fortunate to possess in the two soliton solutions of the sG a 

knowledge of the exact positions of the solitons as functions 

of time.Our problem becomes the inverse of the standard one,in 

that we would like to know the potential that acts between 

solitons which is such that by retarded interaction it produces 

the known soliton positions.

Another feature of this chapter is the development of the 

approximate soliton solutions of various equations.As we have 

seen the approximate solitons are remarkably similar in most 

situations to the exact solitons.The interesting feature here 

is that we may regard the approximate solitons in their own 

right. Divorcing ourselves from the question as to whether the 

approximate solitons provide a good approximation to the real 

soli tons, there is no doubt that looked at in isolation they are 

solitons.

If partial differential equations could be found which 

had the approximate two soliton solution of another pde as an 

exact solution we would have discovered not only a new soliton 

equation but one which in some sense was close to known soliton 

equations.This would be a very interesting development in 

soliton theory, especially as the sG equation is often thought 

of as being a unique equation, possessing no close 

relatives.Such topics will no doubt merit future study.
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In this thesis we have strengthened the case for thinking

of solitons objects in interaction.

With the linear superposition principle we have

discovered way of identifying the soli tons,during the

interaction,and we have found the motion of these interacting

solitons to be correlated with the motion of the singularities

of the complex multisoliton solution.We have f ound that

each complex interacting soliton carries a singularity with a

single real projection. Thus,we have established a field/

particle duality for the multisoliton solutions of some soliton

a

equations.

As we have seenjthere is a pressing need to cure the

problems associated with point particles in field theory.We

have amply illustrated this, with our discussion of the

foundations of electrodynamics.These problems provided us with

keen motivation for the study of solitons and their

interaction.

The progress of physics has often proceeded by the

challenging of absolutes .This was most notable in the creation 

of the Special Theory of Relativity,where the notions of 

absolute space and time were challenged.We have argued in this 

thesis for an alternative to the absolute point particle e

have provided many good reasons for believing that the soliton

Cor solitary wave) is the best model we have for a truly

elementary particle.

The study of

imagine that the

interacting via mediating

would be more fruitful to

multisoliton Csolitary wave)

world

physics has taught us that it is useful to

is comprised of point particles

fields.We have suggested that it

describe the world in terms of a

> solution of a hitherto unknown

nonlinear partial differential equation.In this way we would be
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able bo provide a mathematical mechanism for the phenomenon of 

interacting: particles.

A radical shift in our understanding of "particles” would 

have far reaching: consequences not only in classical theory,but 

also in quantum theory.lt is our view that the supposed 

perplexities of the wave particle duality paradox are due in no 

small measure to our inability to define mathematically the 

meaning of the term "particle".This is why the discovery of 

solitons was so important.

The Born-Infeld nonlinear field theory was a most 

important attempt to provide a "particle” free field theory.The 

fact that the Born-Infeld theory is regarded as not being 

quantizable does not in our view diminish its importance.This 

is because without knowing the solutions of the Born-Infeld 

field equations ,we cannot be sure that quantization is even 

necessary.

We take the view that a nonlinear partial differential 

equation with multisoliton solutions is a theoretical 

laboratory.Our attempts to analyse the motion of the solitons 

mathematically can be likened to the experiments physicists 

perform in order to understand the world.Each new equation is 

like a new universe.lt is our goal, eventually, to find an 

equation in which solitons behave similar to known particles.

Specific suggestions for future research.

We suggest that further attempts be made to prove the 

main conjectures made in chapter 6.Namely:

1. The roots of the lsp(6.2-3) are real for mixtures of 

solitons fantisolitons and breathers.

2. The roots of the lsp are monotonic.

We also suggest that it be proved
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3.That  with perfect phase,and non-alternating signature 

the roots of the lsp are all ±1 at x=0,t=0.

The ubiquity of the lsp for many soliton equations suggests 

strongly that the equations may be able to be solved 

directly.lt is therefore extremely important that , partial 

differential equations which have the lsp roots as solutions, 

be sought.

As we have seen in the thesis the multisoliton solutions 

of many soliton equations can be written in terms of the 

determinant of a matrix.We found the roots of the lsp to be the 

eigenvalues of that matrix.We therefore must ask why is it that 

all these matrices are diagonalizable?

We saw that the interacting solitons of the KdV involved 

quantities,

w = ln<l+f > = fdf ZCl+f >
L J L V

and that the interacting solitons of the sG and MKdV involved

v = tan_1f = fdf ZCl+f2)
t J t t

This suggest that it might be interesting to study equations 

which have one soliton solutions,

u = Jdf/(l+fn> , where f= exptax+^'t]

We also mentioned in the thesis that when certain 

limiting processes are applied to the multisoliton solutions,we

can obtain the rational solutions.We suggest that a study of

the behaviour of the roots of the lsp under these limiting

processes might be worthy of our attention.

We saw in the latter part of chapter 7 that in a general

frame of reference the solitons (in a three soliton collision)

did not appear to be interacting instantaneously.This is

obviously a topic for further investigation. We could analyse

the interaction of an antisoliton with two solitons,such that

at t=0 say, the antisoliton was equidistant from the solitons.
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If retardation is confirmed as definitely present,then we are

faced with a theoretical puzzle.How do the solitons and

antisolitons appear to act on each other instantaneously in the

centre of velocity frames?

A further interesting topic to study would be the

investigation of whether there was a connection between

nonlinear superposition principles and Backlund

transformations.We give an example of a new nonlinear

superposition.

The solitary wave,

0 = 1/Cl+lnEcoshX^l) , X* = /Cx~ut> , „ 2a -i/z^=Cl-u >

satisfies the Liouville equation,

2 -2^v - e e tt

It is readily confirmed that the above solitary wave is a

true higher dimensional solitary wave solution of the equation,

V + V 
yy xx

2 —2lf>■<i) - e e
tt

with 0 = 1/y/ .

A linear superposition of the solitary waves 0 is

0 = 1/Cl+lnEcoshX 1> + 1/Cl+lnEcoshX T>
2 1 2

2 + InEcoshX 1 + InEcoshX 1
i 2

1 + IntcoshX 1 + IntcoshX J + lnlcoshX JlntcoshX J
2

We can create a nonlinear superposition by replacing

InEcoshX 1 + InEcoshX I with fj
1 2 [

InEcoshX I + InEcoshX 1] /t
1 2 J/

u
12

where u is defined the same way
12 J

as with the sG.We can then

write this nonlinear superposition in the linear form using

where 0 = l/y' .

X X

1 2 1

functions f.,
L

0 = 1/Cl+f > +
2 1

l/Cl+f >
2

where f
t

are the roots of the polynomial,

flnEcoshX 1 + InEcoshX 1[---------- £---------------- JL_
k u

12

1 f + InEcoshX MnEcoshX 1 
J 1 2 0
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The above polynomial has real roots as is easily seen by

considering the following quadratic,

0f2 - kCt +t >f + t t1 2 1 2

where k > 1 and t e K.Clearly Ct -t >2> 0 .Adding 4t t toL 1 2 1 2

both sides of tills inequality,we obtain Ct +t >2> 
i 2 4t t .Thus1 2

kCt +t >Z> 4t t .1 2 1 2

We can invent an infinite number of multisoliton formulas

using the roots f of the lsp of chapter 6.A simple candidate

for instance is,

The obvious question is

multisoliton formulas

lsp of chapter 6, it

<p
N

can

= I
L =1

we find the pde’s

as solutions? Given the

is natural to expect

which have these

ubiquity of the

it to provide us with

new multisoliton solutions.

Finally we suggest that it would be interesting to see to

what extent some of the ideas expressed in this thesis may be

carried over to the quantised sG equation.



REFERENCES



324

CHAPTER 1

Ell ndA-Einstein?L»InfeldsThe Evolution of Physics,2 " edition.

Cambridge University Press-1971-pp 242-

E21 D.Bohm,B=J.Hi 1ey-Nonlocality in quantum theory understood

i n terms of Ei nstei n' s non 1 i near field approach - FOUND PHYS 11 

(1981) 529.

L31 Chapter 4. ref 9

E43 Chapter 3. ref 3

E51 Chapter 4. ref 14

E6J Chapter 4- ref 13

173 Chapter 3. ref 23

E83 Chapter 3. ref 26

E93 Chapter 3. ref 11

CHAPTER 2

E 1 3 L.D.Landau,E.M.Lifshitz:The Classical Theory of Fields-

Pergamon Press-4th edition.

Physics,Vol 11(1966).Addison-Wesley-

E23 W.Pauli:Pauli Lectures on Physics,Vol l.MIT Press.1973-

E33 R.P- Feynman,R.B- Lei ghton,M- Sands:The Feynman Lectures on

Sons.

E43 J. D-Jackson: Cl asi cal Electrodynamics.1962-John Wiley

of Direct Interparticle Action.REV MOD PHYS 21

E53 A.0.Barut:Electrodynamics and Classical Theory of Fields

and Par t i c1es.1980.Dover-

E63 P.A.M.Dirac:PROC ROY SOC(LOND) A167 (1938) 148.

E73 J.A.Wheel er,R.P.Feynman:Interact!on with the Absorber as

the Mechanism of Radiation,REV MOD PHYS 17 (1945) 157

E83 M.Born,L.Infeld:Foundations of the New Field Theory,PROC

ROY SOC(LOND) A144 (1934) 425

E93 J.A.Wheel er,R.P.Feynman:Classical Electrodynamics in Terms

(1949) 425



t?.Fi£101 C. -J * El i ez er : The Inters.cti an of Electrons

rillL 1 1 J

with (1961) 37

£121

(1964) IBS

£13J F.H.J.Cornish:Classical Radiation Theory and F’oi nt

£141

L 151 (1922) 317

£161 1929) 86, PHYSICA 9 (1929)f A

,12 (1932) 145

•cS Di stance Phy si cs andi n

£181 T.C.Mo,C.H.Papas:New Equation of Classi cal

Charged Particles.PHYS REV D 4 (1971) 366

Classi cal

Electr od ynamics.ZEITS Fuh  NATURFORSCH la (1976) 11

£201 F.bonzalez-Gascon

Lorentz—Dirac Equation.IL NUOVO CIM :B (1976)

Electrodynamics.PHYS REV D 12 (1975) 2266

£221 J.L-Synge:On the electromagnetic two-body problem.PROC ROY

SOC (LOND) A177 (1940) 118

£231 C.S.Shen.PHYS REV D 6 (1972) 2736

£ 241 R.A.Rudd,R.N.Hi11:Exac11y SolvabIe Electr odynami c Two—Body

Problem.J.MATH PHYS 11 (1970) 2704 

£251 C.M.Andersen,H.C.Von Baeyer:Solutions of the two—Body

Problem in Classical Action—at—a—Di stance Electrodynamics:

Straight—Line Motion-PHYS REV D (1972) 2470



326

l 27 J J . C. Kasher: TayT or—ser i es method f or two body prob I ems i n

Relativistic Meehanics.J.MATH PHYS 8 (1967) 201

E293 D.G.Currie:Poincar^—Invariant Equations of Motion for

Classical Particles.PHYS REV 142 (1966) 142

Particles:Circular orbit solutions and the nonrelativistic 

limit.J.MATH PHYS 14 (1973) 815

E31 3 UJ. Paul i : The Theory of Pel at i vi ty. 1981. Dover Pub.

E323 S.Deser:Absence of Static Solutions in Source Free

Yang—Mills Theory.PHYS LETT 64B (1976) 463

E333 G.L-Murphy:Requiem for the Born—Infeld Electron.

INT J.THEOR PHYS 23 (1984) 1025

E343 P.A.M.Dirac:A reformulation of the Born—Infold

electrodynamics.PROC ROY SOC (LOND) 257A (1960) 32

E35 3 L.Vazquez:Localized solutions of a nonlinear 

electromagnetic field.J.MATH PHYS 18 (1977) 1259

E363 A.F.Ranada,Juan Us6n, L. VAz quez : Born—Inf el d effects in the 

electromagnetic mass of an extended Dirac particle.PHYS REV D 

22 (19S0) 2422

E 37 3 B.M.Bar b ashov,V- V.Nest erenko,A.M.Chervj akov:The soli t on s 

in some geometrical field theories.J.PHYS A 13 (1980) 301

E3S3 V.A.Andreev.TEOR MAT FIS 29 (1976) 213

E393 L.Bos,R.J.Torrence:Comment on the Liouville equation and 

multi solitons.PHYS LETT 111A (1985) 95

E 40 3 J . P1 eb ans k i : Non linear Electr od yn ami c s and El emen t ar y Laws.

BULL ACAD POL SCI Cl III 1 (1953) 34



19 (1967) 1095

B~~i i i c I ass i c a 1 theory o-f

(1951) 19 - A new classical

(LOND) 217 A (1952) 330 - PRO:



translation ser 2,1

vi« Methods of exdct = .4- . rnMM OijDE ApO MATJJ “~7 f i CT/l c?—X UU X Qal . r-_-» Si S i Ui -„i_ HF i I IM S S i X- / X Z / *T / Z Z

E123 L.D.Landau,E.M. r d.Li fschi tz:Quantum Meehani cs,3 edi ti on,vol

3.Course of Theoret:Lcax r hys i c s,pub F er gc*mof« r-re^>s 19 z /'

E133 I-M.Gel?fand,B..M.Levi tan :On the determi nat ion of a

d i f f eren t i a1 equa t i con from its spectral function.AMER MATH SOC

J— t-J* /

E 143 R.K.Dodd,J.C.Ei1 beck, J . D. Gibbon,H.C.Morri s:Soli tons and

Nonlinear Wave Equations,pub,Academic Press (1982)

E 153 I.Kay,H-E.Moses:Ref 1ecti onless transmissi on through

dielectrics and scattering potent!als.J.APPL PHYS 27 (1956) 150

E 163 M.Wadati,M.Toda:The Exact N—Soliton solution of the

Korteweg—de Vries Equation - J.PHYS SOC JF'N 32 (1972) 1403

E173 R.Hi rota:Exact Solutions of the Korteweg—de Vries Equation

for Multiple Collision of Solitons.PHYS REV LETT 27 (1971) 1192

E 183 V-E.Zakharov,A-B.Shabat:Exact theory of two dimensional

sei f focussing and one dimensional self modulation of waves in

nonlinear medi a. ZH. EKSP TEOR FIZ 61 (1971) 113 (SOV PHYS JETP

34 (1972) 62)

evo1ution equat ions of physical significance.PHYS REV LETT

E 193 M. J. Ab 1 owi tz , D. J. Kaup, A. C. Newel 1 , H. Segur : Non 1 i near

(197E:>) Izoz.

E2O3 AKNS:Method for Solving the Sine—Gordon Equation.PHYS REV

LETT 30 (1973) 1262

E21 3 G.L Lamb Jr.:Backlund Transformations at the turn of the

century.Lecture notes in Mathematics vol 515.BACKLUND

TRANSFORMATIONS ed R.Miura pub Springer Verlag 1976

Pulse Propagation in a Resonant Mediurn.REV MOD PHYS 43

E22 3 G.L. Lamb Jr.: Elements of Soliton Theory, pub John Wiley 3

'□on s 1980

E233 G.L.Lamb Jr.:Analytical Description of Ultrashort Optical

(1971) 99



E24J G.L.Lamb JrCoherent—optical pulse propagation as an

inverse problesi. PHYS REV A 9 (1974) 422

r nc? -5 
Li-J j Uni t iedy s

equation.NUCL

l  34 J M.Wadati:The Mod i f i ed Korteweg—de Vr i es Equati on.J.PHYS

SOC JPN 34 (1973) 12S9

l 3d J R.Hi rota:Exact Solution of the Sine—Gordon Equation for

Multiple Collisions of Solitons.J.PHYS SOC JPN 33 (1972) 1459

£361 J.Satsuma:N—Soliton solutions of the two-dimensional

Kortweg-de Vries Equation.J.PHYS SOC JPN 40 (1976) 286



5 v MMateev

> / i

Di i O' ;o 1 i t on E quat i oi

C TO ■>1- » 7 -J

20 (1980)

A 1977)

ri! i i_= X

205

i near Hi =

L 40 j

o+ M 9-i .•

a n d u u a n t u m

ed M.Jimbo,

£41 J R. Hi rota

1 ong waves i n

PHYS 14 (197 S10

£421 R.Hi rota Exact envelope—soli ton

wave equation.J.MATH PHYS 14 (1973) S05

E 431 M.Boiti 5 C. Laddom<=ida, F mpinel1i.IL NUOVu CIM B 62 (1981) 3F -E_> 1

£441 M.Boi ti C. Laddomada, F. Pempi nel 1 i : Mui tipi e—Ki n k—Sol i ton

Soluti ons of the Nonlinear Schrodinger Equation.1L NUOVO CIM B

65 (1981) 248

Kortweg—de Vries Two—Soliton n as

71 (19S4

hj the

CHAPTER 4-

£11 T.H.R.Skyrme.PROC ROY SOC (LOND) A 247 (1958)

£21 (1959) o

F31 26( 1
X

£41 262 (1961)

£51 chapter r ef Zu



E151 Chapter 3 ref TC"

E 163 A.K.Pog rebko v :Singular Solitons:An Example of the sinh-

Equat ion.LETT MATH PHYS 5 (1981) 277

E173 Chapter 3 ref 11

E 181 Chapter 3 ref 45

E 1 “•? 1 Chapter 3 ref 46

E20J Chapter 3 ref 6

E21 3 A.A.Zaitsev:Formation of stationary nonlinear wave^ by

super position of soli tons-SOV PHYS DOKL 28 (1983) 720

E221 A.Korpel,P.P. Banerjee:Exact Decomposition of cnoidal w

into associated so litons.PHYS LETT 82A (1981) 113

r 2 rs 1 M.Moshi r:Soli ton—Antisoliton scattering and capture in

theory.NUCL PHYS B 185 (1981) 318

E 24 3 Chapter 3 ref 3



T. P. Mol oney 5 P. F. Hodnett5 Sol i ton i n ter act i ons (f or the

Korteweg—de Mr ies equat ion a tlew per Aspectx ve. <_= .> H\ ; A x ■?

Lil

V 3 ent

solitons.d.MA IH ANAl AFP I

solutions of cn— equation and related many

1281

COMM PURE Al MATH (I 977)

pensions of

Non—Linear Part i a 1 Differential Equations.IL CIM r". 40

r o-? -? 
i_ xL_ > -i

0

j

;9

sol Lit i ons

of partial equat i of and equivalent many sdy

prob 1 43 (1978) 177

1301 Chapter 3 ref 4

£31 J H.Airault:Poles of e voi ut x or* equat i on -------------3
i 1 Li

L L.D.Landau,E.M.Lifshitz:"Meehani " , Vol 1 Course of

Deformations.ADV MATH 16 (1975) 197

E34J M. J.Ab Iowitz , J.Satsuma:Solitons

PHYS 19 (1973) 2180

■JU J olutiosis O"t ■up led

1361 Chapter

Chapter ref 22

■ : NUdVO CIM 19 (1977) 52



□ p +

singular i 79) 70

91 A.K.Pogrebkov,I Podorov:Relativistic Hamilto an

dynamics of singularities of e quat i on . ANN 1 b-

(1

E401 A.h Ui os

1982) 24

E. I ru 11

J ETE- (1973)

143J M.S.Fogel, 5.E.Trul1i nger,A 'S 1 cal

par t i c1e—like beha vi our

potentials and appli ed

E44J

REV A 16 (1977) 777

E45J V.I Karpman, E. M.Masiov: Perturbati solitons

C2FII ! tjU V PHYS JETP 46 (197

X? Z. i _____i
I IU

ROY SOO (LOND) A 361 (1978) 41

L4/J K. Ko, H. H.Kuehl:Kortweg—de Vries Soliton in a

varying medium.PHYS REV LETT 40 (1978)

variational principle -For sol 'O !O

’ P. Keener

7R 1

fc? £

6 ( 6

D. J

E493 T.Sasada:Behaviour of a

75A (1979)

(1979) 479



E623 u.j .Kaup:Comment on "Specific sine—Gordon soliton dynamics

in the presence of external driving forces".PHYS REV B 29 

(1984) 1072

Lb-jj »J~C. Fernandez , J. J. P. Leon, G. Rei n i sch: Response to Kaup’s 

comment.As above p 1075



L 64 J ce r n—1 i I-

e qu A )

r Ac 3 A = A i i ■—r C3’ ernal

f i ei PHYS O 4 m (1984) 309

JL = Revisiting k dy 1 £

pr essence of external fields

C673 P.C 2n k ink

pr esef it_e £ ce. J.rH f 1 -5

Dash:Defecti d eg en er ate riuce an --i g  y » >

perturbed sine

r aq  i i-
7 ? e£ O

asymp cot x theory (i974) 1511

E70j K A.Gorshkov,L.A.Ostrovsky:inter _____ ”
S<-j x lUi ?S

noni ntegr

PHYSICA 3D (1981) 428

a

i nvari ant as a consequence relat i vist r* .t

variational principle.PHYS REV 131 (196

r 1 G.H Derri ck.J.MATH PHY

r Cl a cal scaxar o n n in thr ee bps.i

Ji i HYS REV D 791

r "7Z1 1
i_ z j

”7 F’arsa: sol itons in physi cs.AM j _pHYS 47

U- A new type of sol iton with

J.MATH PHYS IS (1977) 347

E76J U.Enz:A particle model

E77J T G. Wi11iams:Stringlike solitons in toroidal

CAN j PHYS 5

E783 J.J.Klein:Nonlie ear wave e qua th intrin e

PHY 19 (1978) 1304



E 7 '■?.I G. Nrfoh 7 H1. Gx_h i f t s A u 1 cal field model fur charged

pari:icles.CAN J.PHYS 55 (1977) 2019

1 80 j R.J = Le Veque;Un the Interact i on of near1y e qua1 soli

tt le Kd V Equeit i on. SI AM J » APPL MA 1 H 47 (1987) 234

CHAPTER 5

ill Chapter 4 ref 9

E21 Chapter 3 ref 31 and also article by H»D.Nahlquist i

ref 21 chapter 3-

Chapter 3 ref 26

CHAPTER 6



APPENDIX

-



This article has been removed for copyright reasons

Journal of the Physical Society of Japan
Vol. 56, No. 3, March, 1987, pp. 905-911
A Linear Superposition Formula for the Sine-Gordon
Multisoliton Solutions
A. C. Bryan, J. Miller and A. E. G. Stuart


	Blank Page



