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Frequently Used Notations 
 
∞ :   infinity 

ε :  absolute error 

Ω :   sample space 

ω :   event, outcome 

a A∈ :  a  element of setA  

( )AI ⋅ :   indicator function of event A  

P :   probability measure 

A :   σ − algebra 

( ), ,Ω F P :  probability space 

nℝ :   n-dimensional Euclidean space  

+ℝ :   positive real line 

F :   Field 

( );n m×M F :  algebra of n m× -matrices with elements over F   

1n−′D :   space of Dirac distribution having derivatives up to an order 1n−  

D :  space of infinitely differentiable complex-valued functions on F  

( )B D :  Borel σ-field 

( )C∞ ⋅ :   set of smooth functions 

( )2L ⋅ :   space of quadratically integrable functions 

a.s.:   almost surely 

[ ],a b :   closed interval from a  to b   

( ),a b :   open interval from a  to b   

LTI :   Linear Time Invariant  

( )x t :   state vector parameter 

( )u t :   input vector parameter 

( )y t :   output vector parameter 
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a :   input signal 

2
⋅ :   Euclidean distance  

( )tδ :  Dirac function 

( ) ( )k tδ :  thk  derivative of the Dirac δ -function 

( )a tδ :   nascent delta function 

( )tϕ :   test function 

1 ,ij i j n
A a

≤ ≤
 =   : constant matrix in n n×ℝ  

{ }diag ⋅ :  diagonal matrix 

detA:   determinant of matrix A  

J :   Jordan canonical form of matrix A. 

O :   zero matrix 

( ), 1 2, ,...,m n n mV V λ λ λ≡ : Vandermonde matrix, which is defined in terms of scalars 

1 2, ,..., mλ λ λ ∈ℝ  (where m n≠ ) 

1A− :   inverse matrix A  
†A :   Moore-Penrose inverse of a matrix A  
DA :   Drazin inverse of square matrix A  

{ }1,2,3A :  {1, 2, 3}- generalized inverse of matrix A . 

qH :   nilpotent matrix 

*q :  the annihilation index of qH  

( )Ind A : the smallest non-negative integer such as ( )( ) ( )( )1Ind A Ind Arank A rank A +=  

[ ]( )nC ⋮ :  the n -order compound matrix of  [ ]⋮  

( )Re λ :  real part of a complex number λ  

( )Im λ :  imaginary part of a complex number λ  

* :   conjugate transpose index of the relevant matrix 

� :   action 
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⋅∐ :  order left multiplication of matrices 

LU :   “Lower Upper” factorization 

1,2, ,
maxj z

z d
ρ µ

=
=

…
: index of annihilation for the eigenvalue zµ . 

n
ɶ

:   set { }1,2,...,n  

ODE:   ordinary differential equation 

NBV:   normalized bounded variation function  

GDDS:  generalized differential delay system 

DDDS:  differential systems with distributed delay 

DDE:   delay differential equation 

DAS:   differential-algebraic system 

SVD:   singular value decomposition 

e.d.:   elementary divisors 

z.e.d.:  zero elementary divisors 

nz. f.e.d.:  nonzero finite elementary divisors 

i.e.d.:   infinite elementary divisors 

c.m.i.:   column minimal indices 

r.m.i.:  row minimal indices 

[ ]ˆ,s sF :  ring of polynomials in s  and ˆ 1/s s=  with coefficients on F  

sF G− :  the pencil ( ),F G  

ge :   ( ),n nI I  identity element of the group ( ),g ∗  on the set of ,
r
n nL  

sE :   a strict equivalence relation 

,
r
n nL :   the set on n n×  regular pencils 

( )z∆ :   the characteristic matrix defined by ( )
o

o

t
zt

t

zI A e d t
τ

µ
+

−− ∫ . 

:µ    NBV function [ ], n n
o ot t τ ×+ →ℂ  

sBm:   standard Brownian motion 

fBm:   fructional Brownian motion 
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( )0,1∈H :  Hurst parameter 

( )W tH :  Representation of fBm of Hurst parameter 

( )aΓ :   Gamma function 

XF :   distribution function of random variable X  

( ) 2 /21

2
xx e

π
φ −= :  the Gaussian probability density function 

( ) 2 /21

2
xx e dx

π

∞

∞

−

−

Φ = ∫ :  the Gaussian cumulative distribution function 

( )( ),K t
x dx

σ
φ

−∞∫ : the cumulative distribution function (cdf) of a random variable 

~ (0,1)X N  evaluated at the upper limit of the integral ( ),K t σ , denoting the 

probability that ( ),X K t σ≤ . 

 

( ),K t σ : /t σ  

... dt∫ :  (Lebesgue, Riemann) integral 

... tdW∫ :  Ito integral 

( )
... 

L

dz
γ
∫ :  so-called principal value integral lim  

i

i

dz
γ ω

ω
γ ω

+

→∞
−
∫ …  

( )W t :   Wiener process at time t 

ΙΓH :  a transformation which transforms the white noise (the derivative of 

sBm) to fractional noise (the derivative of fBm) 

( ) ( ),
o

T

t

s dW sξ ϕ ϕ= ∫ :  generalized stochastic (random) process 

( ) ( ),S S
Sσδ ϕ ϕ ξ σ ξ δ= ∫ : the linear continuous functional Sσδ  on the space D of 

infinitely differentiable complex-valued functions on F  with compact 
support 
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Chapter 1Chapter 1Chapter 1Chapter 1    

Introduction – Contribution 

In economic theory, input-output analysis has been developed for the description of 

the production of a multi-sector economy. An input-output model is a quantitative eco-

nomic technique that represents the interdependencies between different branches of a 

national economy or different regional economies. In the region of input-output eco-

nomics, many models were established to describe the real economics (see for example, 

Leontief (1966) and R. O'Connor, E.W. Henry (1975)). 

The economic traditional Leontief dynamic input-output model is described by 

[ ]1k k k k kx Ax L x x g+= + − + , 

where the vector 1, 2, ,

T

k k k n kx x x x =  ⋯  is the total output vector and ,i kx  is the 

total output from sector 1 i n≤ ≤ . The vector kg  is the final net product and ,i kg  de-

notes the final net product of sector 1 i n≤ ≤ . The matrix ,ijA a =   1 ,i j n≤ ≤ , is the 

direct consumption coefficient matrix (also called the Leontief intput-output matrix) and 

,ijL l =   1 ,i j n≤ ≤ , is the capital coefficient matrix. Initially, this model has been stud-

ied in discrete-time where the matrices A  and L  have been assumed to be constant over 

time, i.e. that market and technology do not change under the considered time period. 

The discrete-time version of this input-output model has been used widely because of 

the nature of the problem (see for example Luenberger and Arbel (1977), Szyld (1985) 

and references therein). However, as it is true, the production of a nation (or a factory) 

in real economic terms is in fact continuous. Thus, an analogous continuous in time dy-

namic input-output model of the form   
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( ) ( ) ( ) ( )x t Ax t Lx t g t= + +ɺ , 0t > , 

has been also proposed and studied in the literature of economic modelling (see 

Fleissner (1990), Jodar and Merello (2010), Zhao and Jiang (2009) and references there-

in). In this input-output model, the capital coefficient matrix L  is not always invertible, 

since the product of some sectors can not be treated as a capital product or/and utilized 

by others (for example, agriculture, service sectors also do not produce durable goods 

etc.). In fact, the element ijl  of matrix L represents the amount of stock of commodity i , 

as a capital good, that sector j  must have on hand for each unit of production. Since not 

every sector produces significant capital goods, it is common for some rows of the ma-

trix L  to contain only zero elements. System above, which can be formally written as 

( ) ( ) ( )Lx t Mx t f t= +ɺ , 0t > , 

where M I A= − , ( ) ( )f t g t= −  and L  is a non-invertible constant matrix, is a linear 

time invariant (LTI) singular system and it is often called degenerate (or of descriptor 

type). It is useful here to emphasize that the parameter ( )f t , 0t ≥  can be considered 

either as just a (regular or irregular) disturbance or as the Leontief dynamic input-output 

model's control vector, as long as the quantity of the final net product can be affected by 

various ways. 

However, in Engineering now, very recently, in the very interesting paper by Kar-

canias (2008), we can see that the always challenging problem of integrated engineering 

design, which is strongly linked to systems and control theory (and their applications), 

is revealed as a typical structure evolution process. Such processes emerge in many ap-

plication domains and in the engineering context in problems such as integrated system 

design, integrated operations, re-engineering, lifecycle design issues, networks etc. 

Thus, it has been shown that the formation of the system, which is finally used for con-

trol design, evolves during the earlier design stages. The process synthesis and the over-

all instrumentation are also critical stages of the evolutionary process that shapes the 

final system structure and thus the potential for control design. Karcanias (2008) aims at 
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revealing the control theory context of the evolutionary mechanism in overall system 

design. 

Familiarizing with the proposed results by Karcanias (2008), we can also claim that 

the characteristics and the nature of the process synthesis and the global instrumentation 

depend on the type of available models. Thus, there are models where some of the in-

ternal variables are classified into potential inputs, outputs, internal variables and re-

ferred to as oriented models, or models where no classification has been made of the 

internal variables these are called implicit models. All such models may be used for se-

lection of effective sets of inputs and outputs, they are referred to as progenitor models 

and they may be classified as: (a) Internal Models, (b) External Models and (c) Internal–

External Models. 

As we will see later, in this PhD thesis  we are mostly interested in internal models. 

These models, see also Lewis (1989), have a very long history and are primarily de-

scribed in terms of first order ordinary nonlinear equations and they are the standard 

state-space descriptions of the implicit type  

( ) ( )( ), 0F x t x t =ɺ  (or ( )1, 0k kF x x + = ), 

where ( )x t  is the vector of all internal model variables. In the linear case, the above 

reduces to matrix pencil model can be defined by  

( ) ( )Ex t Ax t=ɺ  (or  1k kEx Ax+ = ). 

When the inputs ( )u t , outputs ( )y t  have been defined, then the nonlinear control 

model is defined by  

( ) ( ) ( )( ), , 0F x t x t u t =ɺ , ( ) ( ) ( ) ( )( ), ,y t G x t x t u t= ɺ   

(or ( )1, , 0k k kF x x u+ = , ( )1, ,k k k ky G x x u+= ), 

and in the linear case is expressed by the singular model  
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( ) ( ) ( )Ex t Ax t Bu t= +ɺ ,  ( ) ( )y t Cx t=  (or  1k k kEx Ax Bu+ = + ,  1k ky Cx+ = ). 

In the literature, linear internal models are called Descriptor (differential/difference) 

systems (or generalized systems or differential algebraic systems), and they have a key 

role in the modelling and simulation process of constrained dynamical systems in many 

applications. Thus, such systems have been intensively studied, theoretically as well as 

numerically, in the last decades. For a systematic and comprehensive exposition of im-

portant aspects regarding the theory, the numerical treatment and many applications of 

first order descriptor differential/difference systems, see for instance Campbell (1980, 

1982), Karcanias and Hayton (1982), Griepentrog and März (1986), Lewis (1986), Dai 

(1989), Hairer, Lubich and Roche (1989), Willems (1989), Brenan, Campbell and Pet-

zold (1996), Eich-Soellner and Führer (1998), Kunkel and Mehrmann (2006), Karcanias 

(2008), Pantelous, Zimbidis and Kalogeropoulos (2010) and the references therein. 

The strong motivation behind this PhD thesis is based on the significant extension 

of the continuous in time Leontief model in order to bring it closer to reality and to 

make it as general as it is possible covering many interesting cases and phenomena. 

Thus, in the present PhD thesis, the study of the derived equations is being considered 

in order to cover differenct very general case that the total output, the total demand, as 

well as the entrances of the coefficient matrices to depend on different economic pa-

rameters such as the individual and cooperative decision processes, the resource limita-

tions, the environmental and geographical constraints, the institutional and legal re-

quirements and the purely random fluctuations. For this purpose, as it will become 

clearer with the next paragraphs and sections, different types of implicit systems will be 

proposed, considered and developed, In most cases, the existence and the solvability 

will be investigated. Our task is motivated theoretically, as we are not providing numer-

ical algorithms.  

Analytically, this PhD thesis deals with the following 5 interesting topics:   
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A) Impulsive Control: Change the Initial State in Zero Time  

In the 2nd Chapter, a solid methodology has been proposed for approximating the 

distributional trajectory that transfers the state of a linear differential system in (almost) 

zero time by using the impulse-function and its derivatives. The motivation behind this 

section is related to investigate the change of the status of a economical system almost 

instantly, i.e. in zero time (for instance, the change of the nominal interest rate from 

Central Banks).    

The new results are based on the research work proposed by Gupta and Hasdorff in 

1963. As a first step, using some basic elements of measure theory, we show that the 

input vector has to be a linear combination of the δ -function of Dirac and its deriva-

tives, i.e. 

( ) ( ) ( )
0

.
n

k
o k

k

u t a tδ
=

=∑  

Our approach is based on the approximation of the Dirac function using the Gaus-

sian (Normal) function. However, since the methodology is quite general, the present 

results can be further modified and extended using other different kinds of approxima-

tions of the Dirac function, for instance Airy functions. Concluding, the present work 

has involved the following three distinct problems:  

(i) We have started with the impulsive trajectory that transfers the origin to a point in 

the state space and used this as the central point motivating the need to approximate 

distributions by smooth functions.  

(ii) After that, we have examined the family of Gaussian functions, which may be used 

to approximate distributions and we have defined an appropriate Euclidean metric to 

measure how good the approximation is and investigates the link of the σ parameter 

of Gauss functions to the time and, inevitably, to the distance from the desired initial 

state.  
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(iii) We have pre-determined the minimal time required for achieving a solution to the 

above standard controllability problem in terms of approximations to the distribu-

tional solutions, by using Gaussian families for the approximation. Finally, the CIZT 

algorithm has been proposed for the calculation of the coefficients of our input func-

tion.   

 

B) Generalized Inverses: Vandermonde and Special Matrix 

In the 3rd Chapter, three main results have been proposed and discussed: First, we 

have provided a (quasi) LU factorization, and secondly we have calculated analytically 

the generalized inverses of the rectangular (and square) Vandermonde matrix, which is 

defined in terms of scalars 1 2, ,..., mλ λ λ ∈ℝ  (where m n≠ ) by the following expression: 

( )

1
1 1

1
2 2

, 1 2

1

1

1
, ,...,

1

n

n

m n n m

n
m m

V V

λ λ
λ λλ λ λ

λ λ

−

−

−

 
 
 ≡
 
 
  

⋯

⋯
≜
⋮ ⋮ ⋱ ⋮

⋯

. 

Finally, similar results with the Vandermonde matrix have been presented for a 

special structure matrix, i.e.  

( )
( ) ( )

( ) ( )

2 3 1

2 3 1

2 2

3

1
1

1

1 * * *

1 * * *

0 1 2 3 * * * 1

0 0 1 3 * * * 1 2 .

1
0 0 0 0 0 1 *

1

n

n

n

n

m
n

m
j

n

n n

d

m d

µ µ µ µ
λ λ λ λ

λ λ λ
λ λ

λ
λ

−

−

−

−

−
−

−

 
 
 
 −
 

− − 
 
 
 
 − 

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 

Both matrices have appeared recently in control and system theory’s literature, 

where the change of the initial state of a linear system in zero time is required, see also 

2nd Chapter. This is a complementary to the 2nd chapter as it considers the case that the 

economical system might be descriptor, see for more details Pantelous et al. (2010). 
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C) Descriptor Delay Differential Systems: Solutions Properties 

In the 4th Chapter, a special class of generalized regular differential delay systems 

with constant coefficients, i.e. 

( ) ( ) ( ) ( )
o

o

t

t

Ex t A x t s d s Bu t
τ

µ
+

′ = − +∫  

is extensively studied, where ,  n nE A ×∈ℂ , det 0E =  and n lB ×∈ℂ  are constant matrices, 

u∈ ( )[ , ), l
oC t ∞ ℂ  is a control (column vector function of dimension l ), and ot t≥ , 

where 0τ >  is constant. Furthermore, there exists a unique normalized bounded varia-

tion (NBV) function (or distribution) [ ]: ,o ot tµ τ+ →ℂ . 

In practice, these kinds of systems can model the size of a population or the value 

of an investment. By considering the regular Matrix Pencil approach, we finally decom-

pose it into two subsystems, whose solutions are obtained. Moreover, since the initial 

function is given, the corresponding initial value problem is uniquely solvable.  

Finally, an illustrative application is presented using dde23 MatLab (m–) file based 

on the explicit Runge - Kutta method. 

 

D) Generalized Neutral Differential Multi-Delay Systems: Solutions Properties 

In the 5th Chapter, the generalized singular neutral differential multi-delay system 

with constant coefficients, i.e.  

( ) ( ) ( ) ( ) ( )
1 1

i i i i
i i

Ex t Ax t B x t C x t Du t
ρ ρ

τ τ
= =

′ ′= − − + − +∑ ∑  

where, E , A and , ×∈ℂ n n
i iB C  for 1,2, ,i ρ= …   are constant matrices, with det 0E = , 

and the input function 1[ , )ou C t∈ ∞  (column vector function of dimension l ) is as-

sumed to consist of all differentiable functions whose derivative is continuous (continu-

ously differentiable), and ot t≥ , 1 20 ρτ τ τ< < < <…  are constants, is studied.  
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These kinds of systems are inherent in many economical, physical and engineering 

phenomena. Using the Matrix Pencil theory we decompose it into five subsystems, 

whose solutions are obtained. Moreover, the form of the initial function is given, so the 

corresponding initial value problem is uniquely solvable. 

 

E) Generalized Stochastic Differential Delay Systems: Generalized Random Proc-

esses 

In the last Chapter, we consider the generalized linear regular stochastic differential 

delay system with constant coefficients and two simultaneous external differentiable 

and non differentiable perturbations, i.e. 

( ) ( ) ( ) ( ) ( ) ( )Ex t Ax t Bx t Cu t Df t Rw tτ′ = + − + + +  

where w is a (fractional) white noise of dimension s , [ , )of C t∞∈ ∞  is a smooth input 

(column vector function of dimension k ), and [ , )ou C t∈ ∞  is a control (column vector 

function of dimension l ). The , , n nE A B ×∈ℂ , with det 0E = , n lC ×∈ℂ , n kD ×∈ℂ , and 

n sR ×∈ℂ  are constant matrices. 

These kinds of systems are inherent in many application fields; among them we 

mention fluid dynamics, the modelling of multi body mechanisms, economics and the 

problem of protein folding. Using regular Matrix Pencil theory, we decompose it into 

two subsystems, whose solutions are obtained as generalized processes.  

Moreover, the form of the initial function is given, so the corresponding initial 

value problem is uniquely solvable. Finally, two illustrative applications are presented 

using white noise and fractional white noise, respectively. 

Analytically, we use standard Brownian motion (sBm), ( ){ }, 0W t t ≥ , on the prob-

ability space ( ), ,Ω F P . Moreover, if ( )C Uϕ ∞∈  is as a test function, then 
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( ) ( ),
o

T

t

s dW sξ ϕ ϕ= ∫  

in the sense of equality in law. More precisely, the Wiener integral is defined as the ex-

tension to ( )2L +ℝ  of white noise, see Kuo (1975) and Borodin and Salminen (2002) for 

more details about the construction of the Wiener integral as the extension of white 

noise. 

Moreover, we show a way to adapt the traditional white noise calculus to the frac-

tional white noise case. Firstly, we recall that if ( ){ }, 0W t t ≥  is a standard Brownian 

motion (sBm) on the probability space ( ), ,Ω F P , then it is defined 

( ) ( ) ( ),
o

T

t

W t Z t s dW s= ∫
H

H , 0t ≥  

which is the representation of fBm of Hurst parameter ( )0,1∈H  on the same probabil-

ity space (see Hu, 2005, for more details) , where  

( )
( ) ( )

( )

1
1 31 12
2 22 2

1 1 3
2 2 2

1
,    0 1/ 2

2
,

1
,                                       1/ 2 1

2

t

s

t

H

s

t
k t s s u u s du if

s
Z t s

k s u u s du if

−
− −− −

− − −

  
     − − − − < <        
 = 

 
 − − < < 
 

∫

∫

H
H HH H

H

H

H H H

H H

H H

 

Also 

( )

3
2

2
1

2 2
2

k

 Γ − 
 =

 Γ + Γ − 
 

H

H H

H H

, ( ) 1a s

o

a s e ds
∞

− −Γ = ∫  is the gamma function. 
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CCCChapter 2hapter 2hapter 2hapter 2    

Approximating Distributional Behaviour of Linear Systems Using 

Gaussian Function and its Derivatives  

 

2.1 Introduction  

The use of Dirac δ − distributions in the study of LTI differential system problems 

is a well-established subject going back to Gupta and Hasdorff (1963), Zadeh and 

Desoer (1963), Verghese (1979), Verghese and Kailath (1979), Karcanias and Kouvari-

takis (1979), Campbell (1980, 1982), Willems (1981), Jaffe and Karcanias (1981), Cobb 

(1982, 1983), Karcanias and Hayton (1982), Karcanias and Kalogeropoulos (1989), 

Willems (1991), and references there in. The work so far has dealt with the characterisa-

tion of basic system properties such as infinite poles and zeros Verghese (1979), Vergh-

ese and Kailath (1979) for regular and singular (implicit) systems, as well as the study 

of fundamental control problems where the solution is expressed in terms of Dirac δ −

distributions. Typical problems are those dealing with the notions of almost ( ),A B -

invariance and almost controllability subspaces Willems (1981), Jaffe and Karcanias 

(1981).  

In particular, the study of distributional solutions plays a key role in many areas in 

systems and control such as: 

(i) Controllability, Observability. 

(ii)  Infinite zero characteristic behaviour. 

(iii)  Almost invariant subspaces, almost controllability spaces. 

(iv) Dynamics of singular systems etc. 
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The distributional characterization is also linked to solution of a number of control 

problems. The solution of such problems have theoretical significance, given that distri-

butions cannot be constructed and only smooth functions can be constructed and im-

plemented. The idea of approximating distributional inputs with smooth functions that 

achieve a similar control objective was first introduced by Gupta and Hasdorff (1963), 

Gupta (1966).  

In the present section, which actually extends and provides a rigorous reformula-

tion of the early ideas presented in Gupta and Hasdorff (1963), we consider the problem 

of approximating Dirac distributions with smooth functions of infinite support, and 

more specifically using the Gaussian density and its derivatives. Thus, a new methodol-

ogy is proposed for approximating the distributional trajectory that transfers the state of 

a LTI differential system in (almost-) zero time by using an impulsive input. So, with 

the new approach, the following three distinct problems are addressed: 

(i) First, we determine the (unique) impulsive input signal (and its smooth appro-

ximation) which transfers the state of the system from the origin to an arbitrary 

point in state space in (almost-) zero time, subject to appropriate controllability 

assumptions. 

(ii)  Then, we calculate the approximation error in the state-trajectories of the system re-

sulting from substituting impulsive input signals by smooth signals. Thus, for the 

very first time (according to the author’s knowledge), the optimal choice of two 

significant parameters of the Gaussian distribution and its derivatives, i.e. time t  

and volatility ,σ  characterising the family of all smooth approximating functions, 

is considered and eventually an elegance formula combining them is derived. 

(iii)  Finally, we solve two state-space maximum-distance problems in the context of 

(almost) zero-time state-transition. These correspond to two different types of con-

straints on the coefficients of the impulsive input signal and its smooth approxi-

mation, involving the Euclidian and infinity norms of the vector of coefficients. It is 

interested for further consideration that we can prove that both problems are 
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tractable and can be solved via an SVD and the solution of a quadratic 

programming problem with box constraints. 

More specifically, in sub-section 2.2, we present the problem formulation for a LTI 

differential system. In sub-section 2.3, we provide a brief review of the different types 

of approximations of distributions by smooth functions and explain their significance in 

characterizing system properties. In sub-section 2.4, we assume that the system is con-

trollable, and under this assumption we establish an interesting connection between a 

time-parameter t   and a volatility parameter σ  of the Gaussian density function used in 

the approximation. It turns out that the fraction /t σ  can be fixed (to a sufficiently large 

value) and in this case parameter t  (or σ ) parameter controls the state-transition time 

and the accuracy of the approximation (which can be interpreted probabilistically). A 

new algorithm is proposed for calculating the smooth input signal that approximates the 

distributional input which transfers the origin of the state-space to an arbitrary target 

point (subject to a controllability assumption) and the distance (Euclidean norm) be-

tween the actual terminal state and the target state; this distance is subsequently mini-

mized subject to magnitude constraints imposed on the coefficients of the control signal. 

Finally, in sub-section 2.5 we define the distance from the origin using the Euclidean 

norm. Moreover, we consider the problem of maximising the distance from the origin 

with constrained input. Sub-section 2.6 concludes the paper. 
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2.2 Problem Definition 

We consider the linear time invariant (LTI) system 

( ) ( ) ( )ox t Ax t bu t′ = + ,                   (2.2.1) 

where ( ) ( )( ), 1;x t n∞∈ ×F FC M  (smooth function over the field = ℝF  or ℂ , whose 

elements belong to the algebra ( )1;n× FM ), and  ( ) 1o nu t −′∈D  (where 1n−′D  is the space 

of Dirac distribution having derivatives up to an order 1n− ) are the state vector, and the 

impulsive input, respectively and ( );A n n R∈ ×M  and ( )1;b n R∈ ×M . Following also 

Gupta and Hasdorff (1963), we assume that   is simple and expressed as 

{ }1 2, ,..., nA diag λ λ λ= ,                          (2.2.2) 

where 0i jλ λ≠ ≠  for every i n∈
ɶ

 (  ). This assumption can be further re-laxed; see for 

more details Remark 2.4.1.  

This chapter deals with the following key question: “Can we develop an approxima-

tion to impulsive behaviour with a respective approximation of the related system and 

control properties?” 

The answer to this question underpins, the development of a smooth approximation 

of impulsive trajectories and thus also of the related system and control properties. A 

number of control problems involving distributional solutions relate to the adjustment of 

initial conditions with distributional inputs, resulting to distributional state trajectories; 

these imply changing the given state of a linear system to a desired state in minimum 

time. The important questions that arise are: 

(i) How can we approximate distributions and their derivatives by different families of 

smooth functions and their derivatives? 

(ii)  What are the different types of approximation?  
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(iii)  What is the impact of the approximation on the properties of the associated control 

problem and on the nature of the resulting transition, when smooth functions are 

used? 

It is assumed that the input to the LTI is a linear combination of the Dirac δ -

function and its first 1n−  derivatives, i.e. 

( ) ( ) ( )
0

n
k

o k
k

u t a tδ
=

=∑ .                         (2.2.3) 

which is a linear combination of Dirac δ -function and its first 1n−  derivatives,  where 

( )kδ  or 
k

k

d

dt

δ
 is the thk  derivative of the Dirac δ -function, and ka  for oi n∈

ɶ
 ( on ≜
ɶ

 

{ }0,1,2,..., 1n− ) are the magnitudes of the delta function and its derivatives. We shall 

denote the state of the system at time 0t −=  as ( )0x −  and at time 0t +≥  as ( )0x + .  

Now, practically speaking, we assume that ( ) [ ]0 0 0 0
T

x − = …  at 0t −=  and 

( )0x +  [ ]1 2

T

nx x x= …  at 0t +≥ . Furthermore, we assume that the system is con-

trollable and thus we can transfer the state to any desired point of the state space.  

Furthermore, we assume that our system is controllable, i.e. we can transfer the 

state to any desired point. Let the state of the system at time 0t −=  be ( )0 0x − =  and at 

time 0t += , ( )0x + . The existence of an input that transfers the state of the system 

(2.2.1) from ( )0 0x − =  to ( )0x +  requires that the vector ( )0x +  belongs to the control-

lable subspace of the pair, see Antsaklis and Michel (2009). The necessary and suffi-

cient condition for the state of a system (2.2.1) to be transferred from ( )0 0x − =  at time 

0t −=  to some ( )0x +  { }|A b∈ �  at 0t +=  by the action of a control input of type (2.2.3) 

is that the resulting trajectory ( )x t  is expressed as ( ) ( ) ( )
1

0

n
k

k
k

x t tβ δ
−

=

=∑  where the coef-
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ficients kβ  for ok n∈
ɶ

 are chosen to be the components of ( )0x +  along the subspace 

2 1{ , , , , }nb Ab A b A b−… , respectively according to some projections law. 

In the next sub-section, we consider some background results on the approximation 

of Dirac delta function are presented. 
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2.3 Approximations of Dirac Delta Function  

The approximation of distributions by smooth functions is a problem which has 

been considered in the literature. In this section, we review the main results in this area 

and suggest a systematic and rigorous procedure for approximating distributions and 

their derivatives. If the standard approximating technique of the Dirac δ -function is 

followed, (see Gupta and Hasdorff, (1963), Gupta, (1966), Zemanian, (1987), Cohen 

and Kirchner, (1991), Estrada and Kanwal, (2000), Kanwal, (2004) etc) the change of 

the state in some minimum practical time depends mainly on the accuracy of the ap-

proximations that have been generated. The relation between the type of approximation 

used and the duration of the resulting state-transition is one of the important issues con-

sidered in this section. 

The Dirac δ -function can be viewed as the limit of the sequence function 

( ) ( )
0

lim a
a

t tδ δ
→

= ,                                    (2.3.1) 

where ( ) ( )( ), 1 1;a tδ ∞∈ ×C MF F  is called a nascent delta function. This limit is in the 

sense that 

( ) ( ) ( )
0

lim 0a
a

t f t dt fδ
+∞

→
−∞

=∫ .                               (2.3.2) 

These properties can often be simulated by using a smooth, finite approximation of 

the Dirac distribution. Such approximations have additional advantages. In fact, ap-

proximating the Dirac distribution by a smooth function may actually be a better repre-

sentation of the solution sought in the particular problem, especially if the width of the 

approximation function can be coupled to the physics of the problem. Following the 

ideas of Cohen and Kirschner (1991), a suitable approximating function, which is con-

venient for computations, should satisfy the following important properties everywhere 

on the domain under consideration: 

1. Its limit with some defining parameter is the Dirac distribution (see eq. (2.3.1)). 
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2. It is positive, decreases monotonically from a finite maximum at the source point, 

and tends to zero at the domain extremes. 

3. Its derivative exists and is a continuous function. 

4. It is symmetric about the source point, for instance 0 (see eq. (2.3.1) and (2.3.2)). 

5. It can be represented by a simple Fourier integral (for infinite domains) or Fourier 

series (for finite domains). 

Next, we discuss the appropriate approximation of Dirac function based on the fi-

niteness or infiniteness of the time domain. 

 

2.3.1 Infinite Time-Support Approximations  

We first point out that the best nascent delta function depends on the particular ap-

plication. Some well known (and very useful in applications) nascent delta functions are 

the Gaussian and Cauchy distributions, the rectangular function, the derivative of the 

sigmoid (or Fermi-Dirac) function, the Airy function etc; see for instance Gupta (1966), 

Zemanian (1987), Estrada and Kanwal (2000), Kanwal (2004) et al. and recently the use 

of a finite difference formula which is converted into an appropriate sequence; see 

Boykin (2003). A short review of such approximations is given next.  

Nascent delta functions very useful in applications are: 

● The Cauchy function, 

( ) 2 2

1 1 ikt ak
a

a
t e dk

a t
δ

π π
∞ −

−∞
= =

+ ∫ , 

● The rectangular function, 

( ) ( )/ 1
sin

2 2
ikt

a

rect t a ak
t c e dk

a
δ

π π
∞

−∞

 = =  
 

∫ , 

where 
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( )
1, 1 1

.
0,          1

t
rect t

t

− ≤ ≤=  >
 

● The derivative of the sigmoid (or Fermi-Dirac) function, 

( ) / /

1 1

1 1a t tt a t a
t

e e
δ −= ∂ = −∂

+ +
, 

● The Airy function  

( ) 1
a i

t
t A

a a
δ  =  

 
. 

Following Boykin (2003), the finite difference formula may be easily converted 

into a sequence that approaches a derivative of the Dirac delta function in one dimen-

sion. Thus, we obtain 

( )
1

,
2 2

0,          
2

a

a a
t

at
a

t

δ

 − < <= 
 >


 ,                    (2.3.3) 

which approaches ( )tδ  as 0a→ . An expression for the derivatives of ( )tδ
 
is given 

by,  

    ( ) ( )
0

00

1
lim ,

kk k

j a jk a
jk

d
x a x b h

dx h
δ δ

→ =→

  = +  
   

∑            (2.3.4) 

where ox t t= −  and the ja  are appropriate constants defining the finite differences 

Boykin (2003), and 

( ) ( ) ( )| 1 |
o

k k
k

t t xk k

d d
u u

du du
δ δ− = − . 
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The expression (2.3.4) is exactly what we would obtain by making the substitution 

( ) ( )af t tδ→  in the following finite difference approximation for the thk  derivative of 

a smooth test function f  evaluated at ot  : 

( ) ( )
0

1
|

o

kk k

t t j o jk
j

d
f t a f t b h

dt h=
=

 ≈ + 
 

∑ .              (2.3.5) 

Note that ja  and jb  are suitable chosen constants and (2.3.5) becomes exact in the 

limit 0h → . Furthermore, due to the fact that f  is sampled at discrete points, we can 

write 

( ) ( )( ) ( )
0

0

1
| lim

o

kk k

t t j o jk h
j

d
f t a t t b h f t dt

dt h
δ

+∞

= → = −∞

   = − +  
   

∑ ∫        (2.3.6) 

 

2.3.2 Finite Time-Support Approximations 

Unfortunately, the Gaussian function is not a good approximation of the Dirac dis-

tribution on a finite domain, namely that the first derivative (which is important in this 

paper) can be discontinuous at a special point. Thus, recently, a different approximation 

has been proposed by Cohen and Kirschner (1991), which satisfies all the properties (1) 

through (5). This is the β -function of classical probability theory. This function has the 

expression 

( )
( ) ( )

( ) ( )

1 1

2 1 ,
2 ,

0                            ,

a b

a
B a b

otherwise

π

π θ π θ
θ

β θ π

− −

−

 + −
∀ ∈

= 



J
                 (2.3.7) 

where J  is a finite interval and 

( ) ( ) ( ) ( ) ( )
( )

1 1
,

a b a b
B a b d

a b
π θ π θ θ− − Γ Γ

+ − =
Γ +∫≜ J

, 
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where ( )xΓ  is the well-known Gamma function. Since, in the next few lines of the pre-

sent paper, the infinite time domain is used, the interested reader may consult Cohen 

and Kirschner (1991) for further details. 

 

2.3.3 Why a Sum of Dirac Delta Functions? 

However, in our approach, our time domain is infinite and the classical Gaussian 

function, i.e. 

( ) 2 2/2

0 0

1 1
lim lim

2
t t

t e σ

σ σ
δ

σ
φ

σσ π
−

→ →

 = =  
 

,                    (2.3.8) 

where  ( ) 2 /21

2
xx e

π
φ −=  is being used.  

Consequently, the approximate expression for the controller (2.2.3) is given by  

                       ( ) ( )
1

1
0

1
,

n
k

k k
k

t
u t aσ σ σ

φ
−

+
=

 =  
 

∑                         (2.3.9) 

where ( )
ii

i

i

t d t t

dtσ σ
φ φ

σ
      =              

. 

Then, we take the limit      

( ) ( )
0

limou t u tσσ →
= .                        (2.3.10) 

Moreover, at the end of this section, we are answering another significant question: 

“why a sum of Dirac delta functions?”  

Considering the results of 2nd sub-section and the whole discussion till that part of 

the 3nd section, generally speaking, we should point out that the input for the linear dif-

ferential system (2.2.1) should be given by a single-layer distribution; see Zemanian 

(1987), Estrada and Kanwal (2000) and Kanwal (2004). This kind of distributions has a 

huge importance in many applications.  
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Lemma 2.3.1 If U  is a bounded closed set in F  and Y  is a neighbourhood of U , then 

there exists a function such that 1n=  on U , 0n=  outside Y , and 0 1n≤ ≤  over F .  □  

Definition 2.3.1 Let S  be a piecewise regular curve in F  and σ  is a locally integrable 

function defined on S . The linear continuous functional Sσδ  on the space D of infi-

nitely differentiable complex-valued functions on F  with compact support is defined as 

( ) ( ),S S
Sσδ ϕ ϕ ξ σ ξ δ= ∫  

 ϕ∀ ∈D  and is called single (or simple) layer on S  with density σ .        □  

Note that ( ) ( ) ( )S S
x x Sσδ δ ξ σ ξ δ= −∫ . 

Definition 2.3.2 Let S  be a piecewise regular curve in F  and Sµδ . The linear continu-

ous functional ( )/ Sd dt µδ−  on the space D of infinitely differentiable complex-valued 

functions on F  with bounded support is defined as 

( ) ( ) ( )
/ ,S S

d x
d dt S

dt

ϕ ξ
σδ ϕ σ ξ δ

−
− = ∫   ϕ∀ ∈D .             □  

Consequently, it can be easily shown that every distribution ( )S xσδ  that has com-

pact support is of finite order, see Zemanian (1987) Estrada and Kanwal (2000). Thus, it 

is deduced that every distribution ( )S xσδ  whose support is the point x τ=  has the 

form ( ) ( )1

0

n k
kk

c tδ τ−

=
−∑ , i.e. a linear independent combination of Dirac δ -function and 

its first 1n−  derivatives. Consequently, since we are interested in transfering the state 

of system (2.2.1) at time 0t −=  from the initial point ( )0x −  and at time 0t +≥  to 

achieve ( )0x + , (2.2.3) is appropriate, when the support point is 0τ = . 
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2.4. Design of Approximate Input Signal  

In this section, we will try to answer to the following questions: “if we wish to 

achieve state ( )0x +  at time 0t +≥  what are the necessary coefficients ka  for k n∈
ɶ

 and 

what is the optimal choice of σ
 
that it takes the state there at time 0t +≥ ?”  In this di-

rection, the following known results are significant.  

Lemma 2.4.1 The solution of system (2.2.1) is given by  

( ) ( ) ,
t

At A
ox t e e bu dτ τ τ−

−∞

= ∫               (2.4.1) 

where A is diagonal and ( )ou τ  is given by combining (2.3.9) and (2.3.10).      □  

Remark 2.4.1 Recall that for simplicity it is assumed that matrix A is diagonal, i.e. 

(2.2.2) , with distinct eigenvalues; as Gupta and Hasdorff (1963) have also assumed in 

their work. This reduces the complexity of various mathematical expressions and the 

number of technicalities involved, without introducing any real loss of generality. The 

general case can be tackled by defining a n n×  non-singular similarity transformation 

[ ]1 2, , , nQ v v v= …  ( );n n∈ ×M F  that takes A into the Jordan canonical form. 

In the next lines, we present briefly the more essential part. Further details are omit-

ted, since they are far beyond the scope of the present version of the PhD thesis.  

Thus, there exists an invertible matrix ( );Q n n∈ ×M F  such as 1J Q AQ−= , where 

( );J n n∈ ×M F  is the Jordan canonical form of matrix A. Analytically,   

{ }1 2 , , , ,o q q kJ block diag J J J J+ += …  

• The block diagonal matrix { }1 2 , , ,o qJ block diag J J J= … , where  
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( )

1 0

1
;

1

0

i

i
i i i

i

J

λ
λ

τ τ

λ

 
 
 = ∈ ×
 
 
 

⋱
M F  

is also a diagonal matrix with diagonal elements the eigenvalue iλ , for i q=
ɶ

. Conse-

quently, the dimension of oJ  is ,s s×
1

q

ii
s τ

=∑≜ . 

• Also, each block matrix { },1 ,2 , , , ,
jj j j j dJ block diag J J J= … ,   

( ),

1

1

;

1
j

j

j

jj z j j

j

J z z

λ
λ

λ

λ

 
 
 
 = ∈ ×
 
 
 
 

⋱

⋱

M F  

for 1, 2, ,j q q k= + + … , and j jz d=
ɶ

 .            □  

However, only for the simplicity of calculations, we have already assumed that the 

matrix A is in diagonal form. Consequently, the solution (2.4.1) is transposed into  

( ) ( )
0

lim  
t

At Ax t e e bu dτ
σσ

τ τ−

→
−∞

 
=  

 
∫ , 

or equivalently,      ( ) ( )
1

10
0

1
lim

t n
kAt A

k k
k

x t e e b a dτ

σ
φ τ τ

σ σ

−
−

+→ =−∞

  =   
  

∑∫ . 

As 0σ → , the energy of the input signal “concentrates” around 0τ = . Hence the 

zero-time state-transition problem involves setting 0t +=  and selecting the coefficients 

ka  so that (an arbitrary) (0 ) nx + ∈ℝ  is reached (recall that controllability of the pair 

( , )A b
 
is assumed).  

Remark 2.4.2 To reduce the complexity of the solution (due to the large number of 

terms involved), see the following Lemma and its discussion, we exploit the fact that  
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( )
21

21
/  ,

2

t

t e σσ
π

φ
 −  
 =  

and its derivatives tend to zero very strongly with /t σ → ∞ , see similar statements by 

Gupta and Hasdorff (1963). Define ( )/ ,t K tσ σ≜
 
and assume that t is fixed to a posi-

tive value, so that ( ),K t σ → ∞  as 0σ → . Then, 

( ) ( )( )
( ),

/ , 0,
K t

t K t
σ

σ σφ φ
→∞

→≜  

and its derivatives       ( ) ( ) ( ) ( )( )
( ),

/ , 0
K t

k kt K t
σ

σ σφ φ
→∞

→≜ ,   ok n∈
ɶ

. 

where ( ) ( ) ( )0 / /t tσφ φ σ≜ .                □        

A suitable choice of ( ),K t σ  depends on the choice of the transition time-variable 

t  and the volatility-parameter σ . In practice, t  can be fixed, since we can pre-define 

the duration of the (almost) zero- transition between the initial and final (target) state of 

the system when solving the (almost-) zero- time state transition problem (e.g., we can 

select t to be of the order of 610t −∝  seconds, say). This is the approximate version of 

the exact problem and can be formulated as follows: 

For a fixed value of the time parameter *t t=  and a fixed 0ε >  determine 

        ( ) ( ){ }* * *ˆsup : ,R x t x tσ σ ε+= ∈ − <
                               

 (2.4.3) 

where ( )*x t  is the target state and ( )*x̂ t  is the actual terminal state resulting from the 

approximation of the input signal, see equation (2.4.1).  

This is in the form of a distance-approximation problem. Roughly, for a fixed state-

transition time-duration, we seek the “smoothest” input signal for which the error toler-

ance of the distance between the target and actual terminal state is kept within a pre-

defined level ε . Note, that since this distance tends to zero as 0σ →  and the only 

source of error arises from the approximation of the Dirac delta function and its deriva-
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tives, an alternative equivalent formulation of the problem is to determine (for a fixed 

value *t t= ), 

( ) ( )( ){ }* *sup : , , ,k
k oR K t k nσ σ σ εφ+= ∈ < ∈

ɶ
 

where the kε  are suitable positive constants.  

The following lemma is required for subsequent developments. The objective is to 

develop approximation bounds for the terminal state when the impulsive inputs in equa-

tion (2.4.1) are substituted by their smooth approximations.  

Lemma 2.4.2 Consider ( )u tσ  
defined in equations (3.8). Then 

( ) ( )
2 2111

12
1

0 1

,i i

t m kn k
k mt ki

k i ik m
k m

t t
e u d a e e

ιλ σλτ λ
σ

λτ τ
σ

φ
σ

φλ λσ
σ

− +−
−− − −

− +
= =−∞

      = + +     
      

∑ ∑∫
 

(2.4.4)

 

where ( ) ( )(0) x xφ φ≜ , ( ) ( ) ( )( 1) 12 erf 2 1
x

x y dy xφ φ− −

−∞
= −∫≜ , ( )0,1 .x∈  

Proof. Substituting the expression (2.3.9) into the integral ( )i

t

e u dλτ
σ τ τ−

−∞
∫ , and we ob-

tain  

( ) ( )
( ) ( )1 1

1 1
0 0

/
/ .i i

kt tn n
kk

kk k
k k

a
e d a e dλ τ λ τ τ σ

τ σ τ τ
σ σ

φ
φ

− −
− −

+ +
= =−∞ −∞

=∑ ∑∫ ∫  

Consider first the term corresponding to 0k = ,  

( )
2

2 2 2 211 1
122 2

/ 1
.

2

i
i

t t

i

t
e d e e d e

ι ι
τ λ σλ σ λ σλ τ στ σ

τ τ λ σ
σ σσ π

φ
φ

 − + − − 

−∞ −∞

 = = + 
 

∫ ∫

  
Consider first the term corresponding to 0k = ,  
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( )
2

2 2 2 211 1
122 2

/ 1
.

2

i
i

t t

i

t
e d e e d e

ι ι
τ λ σλ σ λ σλ τ στ σ

τ τ λ σ
σ σσ π

φ
φ

 − + − − 

−∞ −∞

 = = + 
 

∫ ∫

  
Consider next the term corresponding to 1k = . Integration by parts and using the equa-

tion above gives 

 
( ) ( ) ( )

2

/ /1
/i i i

t t
t

ie d e e dλτ λτ λ τφ φ
φ

τ σ τ σ
τ τ σ λ τ

σ σ σ
− − −

−∞
−∞ −∞

+
′

=∫ ∫

 
( )

2 21
12

1
                               / .i t

i i

t
e t e

ιλ σλ φ φσ λ λ σ
σ σ

− −  = + + 
   

Similarly,   

( ) ( ) ( )

( ) ( )
2 2

3 2 2

1
2 12

2

/ /1
/

1 1
                              / / .

i i i

i

t t
t

i

t
i i i

e d e e d

t
e t t e

ι

λ τ λ τ λ τ

λ σλ

φ φ
φ

φ φ

τ σ τ σ
τ τ σ λ τ

σ σ σ

λ σ σ λ λσ
σ σ σ

φ

− − −
−∞

−∞ −∞

− −

= +

   = + + +    

′′ ′
′

′


∫ ∫

 

A recursive application of this procedure gives 

( ) ( ) ( )
2 21

1 12
1 1

1

/ 1
,i i

kt k
k mt m k k

i i ik k m
m

t t
e d e e

ιλ σλ τ λτ σ
τ λ λ λ σ

σ σ σ
φ

φ φ
σ

−− − − + −
+ − +

=−∞

   = + +   
   

∑∫  

from which the result follows.      □  

Choose ( )0 / 0 ,Kσ σ+ +≜  sufficiently large so that ( ) ( ) ( ) ( )( )0 / 0 ,k k Kφ φσ σ+ +≜  

0≈ , ok n∈
ɶ

. Then the following approximation is valid 

( ) ( ) ( )( )
2 20 1

12
1

/
0 , .i

k
k
i ik

e d e K
ιλ σλ τ τ σ

τ σ λσ
σ

φ
φλ

+

− − +
+

−∞

≈ +∫  

Combining expressions (2.4.2) and (2.4.4) then gives 

( )( ) ( ) ( )( )
2 21 10 , 12

0

0 , 0 , ,
i i

nK k
i i i k i

k

x K b e K a
λ σ σ λ σ

σ σ λ σφσ λ
+ −++ − +

=

≈ + ∑        (2.4.5) 
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for 1,2, ,i n= … .  

The approximate almost zero-time state-transfer problem can now be defined as 

follows: Suppose that parameters (0 , )σ+  have been chosen so that ( ) ( )0 /kφ σ+ ≜

( ) ( )( )0 , 0k Kφ σ+ ≈ , ok n∈
ɶ

. Then, given  ( )0 nx + ∈ℝ  determine real scalars ,ka  ok n∈
ɶ

 

such that (2.4.5) are satisfied with equality for all {1,2, , }i n∈ … .  

Note that the impulsive response is recovered as 0σ →  in which case the approx-

imation in the above equation becomes exact; in this case we also have that 

ˆ(0 ) (0 )i ix x+ +→ , ( )( )1 0 , 1iK σφ λσ− + + → , and  

( )
1

0

0

ˆ 0 , 1, 2, ,i

n
k

i i k i
k

x b e a i nλ λ
+

−
+

=

= =∑ …
 

so that 

( ) ( )( ) ( )
2 21

12 ˆ0 0 , 0 , 1,2, , .
i

i i ix e K x i n
λ σ

σφ λσ+ − + +≈ + = …
 

Theorem 2.4.1 now follows. 

Theorem 2.4.1 Let { }1 2, , nA diag λ λ λ= …  with i jλ λ≠  for i j≠ , ( )1 2

T

nb b b b= …  

and assume that the pair ( , )A b  is controllable. Let also { }1 2
ˆ 1/ ,1/ , ,1/ nB diag b b b= …  

and denote by ( )1 2, ,..., nV V λ λ λ≜
 
the Vandermonde matrix 

( )

2 1
1 1 1

2 1
2 2 2

1 2

2 1

1

1
, ,..., .

1

n

n

n

n
n n n

V V

λ λ λ
λ λ λλ λ λ

λ λ λ

−

−

−

 
 
 =
 
 
  

…

…
≜

⋮

…

 

Then the coefficient vector [ ]1 1

T

o na a a a −= ⋯  of the input signal defined in (2.3.9) 

which solves the almost zero-time state-transfer problem is given by  
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( )1 0 1ˆ ˆ 0Aa V e B x
+− − ⋅ − += ,                                          (2.4.6) 

 where  

( ) ( )( )
( )( )

2 21
12

0 ,
ˆ 0

0 ,
i

i

i

i

x K
x

e K
λ σ

σφ

σ σ

σ λ

+
+

− + +
≜  , .i n∈

ɶ        (2.4.7)  

Proof. Expression (2.4.4) can be re-written as 

2 2

1
0

/2 1
0

(0 )
ˆ (0 )

(0 )
i

i

n
k i

i i k
k i

x
x be a

e
λ

λ σ φ
λ

λσ
+

+−
+

− +
=

= ≅
+

∑ for i n∈
ɶ

.  

Thus we can write ( ) 0ˆˆ 0 Ax Be Va
++ ⋅=  or equivalently (2.4.6). Note that the indicated in-

verses 1V−  and 1B̂−  exist due the assumption that the eigenvalues of A are distinct, and 

the assumed controllability of ( , )A b , respectively.           □  

Ideally the parameters * 0t +=  and σ  should be chosen so that the distance 

( ) ( ) ( )( ) ( )( ) 2
* *

12
ˆ ˆ, ,

               

n

i ii
x t x t x K t x K tσ σ σ σ

=
 − = − ∑  

is “small”. Clearly the distance is zero provided that ( ),K t σ  is selected so that  

( )( )
2 21

1 2, 0
i

iK t e
λ σ

σ λ σφ
−− + − =

      
(2.4.8) 

for all i which requires 0σ → , in which case (2.4.8) implies that 

( )( ) ( )( ),1
0 0lim , 1 lim 1 ( , ) .

K t
K t x dx K t

σ

σ σφ φσ σ−
→ → −∞

= ⇔ = ⇔ → ∞∫       
(2.4.9) 

In probability theory and statistics, the normal or Gaussian function ( )xφ  is widely 

used. The graph of ( )xφ  is bell-shaped and is known as the Gaussian function or bell 

curve. Actually, in this case we are interested in  
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( )( ),K t
x dx

σ
φ

−∞∫ , 

which is the cumulative distribution function (cdf) of a random variable ~ (0,1)X N  

evaluated at the upper limit of the integral ( ),K t σ , denoting the probability that 

( ),X K t σ≤ . In practice, if | | 1iλσ <<  for all i, we can assume that equation (2.4.8) is 

approximately satisfied if ( )0 , 3.9K K t σ ≥≜  (in which case ( )1 4
0 1 10Kφ − −> − , see rel-

evant table value for the Standard Normal Distribution which represents area to the left 

of Z score). Thus, a reasonable choice for the volatility parameter is 

* 1 * *
0 0.256K t tσ −= ≈ .  

The results of the section are summarized in the following algorithm. 

 

Algorithm TIAZT  (Transfer In Almost Zero Time) 

1st Step: Define the terminal (target) state of the transition ( )0x + . 

2nd Step: Using the required transition time ( )* 0t +≡  define the optimal volatility pa-

rameter * *0.256tσ = . 

3rd Step: Finally, the coefficients of the input signal [ ]1 1

T

o na a a a −= ⋯  defined in 

equation (2.3.9) are obtained by (2.4.6), i.e. ( )1 0 1ˆ ˆ 0Aa V e B x
+− − ⋅ − +=  where all variables 

are defined in Theorem 2.4.1.  

 

Remark 2.4.4 From the control viewpoint it is important to choose appropriate time 

duration for the state transition. This ultimately depends on the type of application, e.g. 

due to control signal magnitude or “slew-rate” limitations. It is clear from the imposed 

proportionality * 1 *
0K tσ −=  that increasing the duration of the state-transition results is 

“smoother” input signals, which is often desirable. For example, if the system operates 
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in a feedback loop (in which case the input signal is generated by a feedback controller), 

highly discontinuous signals typically correspond to system overdesign (e.g. excessive 

closed-loop bandwidth) and may have detrimental effects on the stability and perfor-

mance characteristics, e.g. in terms of reduced robust stability margins and sensor noise 

amplification.                □        

Example 2.4.1 (See Gupta, 1966) Consider the system 

( )
( )

( )
( ) ( )1 1

2 2

2 0 1
,

0 3 2 o

x t x t
u t

x t x t

′   −   
= +      ′ −      

 

where ( )x t  and ( )ou t  are the state and the input signals, respectively. Suppose we 

wish to transfer the state of the system from ( ) ( )0 0 0
T

x =
 
to ( ) ( )0 3 4

T
x + =

 
at time 

0 1 sµ+ =  (1 microsecond). Application of the TIAZT algorithm gives 

1st Step: Here the desired state is ( ) ( )0 3 4
T

x + = . 

2nd Step: The transition duration has been pre-determined as 60 10+ −= s, so the opti-

mal volatility parameter is * 72.56 10σ −= ⋅  (taking 0 3.9K = ). 

3rd Step: Here, ( ) ( )6 6
1 1ˆ 10 10 3x x− −≈ =  and ( ) ( )6 6

2 2ˆ 10 10 4x x− −≈ = . The inverse of 

the Vandermonde matrix is: 

( )
1

1 1 1 2 3 2
2, 3 .

1 3 1 1
V V

−
− − − −   

= − − = =   − −   
 

Thus, the coefficient vector [ ]0 1

T
a a a=  is calculated as: 

1-6

-6
1

3 -2 1 0 3 5exp(2 10 ) 0
 

1 -1 0 2 4 10 exp(3 10 )
oa

a
a

−
 ×         

= = ≈          ×          
. 
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2.5 Distance Problems 

2.5.1. Distance from the origin in state-space 

In this section, we define the distance from the origin corresponding to a state tran-

sition of the system (2.2.1) from the zero (or ground) state, ( ) [ ]0 0 0 0
T

x − = ⋯ . 

Using the Euclidean norm this is defined as  

( ) ( ) ( ) ( ) ( )2
2 2

1
0 0 0 0 0

nT
ii

r x x x x x+ − + + +
=

− = =∑≜  ,                  (2.5.1) 

 (see Fig 2.5.1). The time interval of the transition has been defined in previous sections 

as 0+  ( *t ) and the target state is ( )ˆ 0x + . 

 

 

 

 

 

However, if the Dirac delta function and its derivatives are replaced by smooth sig-

nals (Gaussian function and its derivatives), this target state will not be reached exactly, 

in general. The distance in terms of the target state ( )ˆ 0x +  is defined as 

( ) ( )( )
( )( )2 2

2

2 2
21 1

1

0 ,
ˆ ˆ 0 ,

0 ,i

in n

ii i

i

x K
r x

e Kλ σ φ

σ σ

σ λσ

+
+

= = − +
=

 +
 

∑ ∑≜  

where (2.4.7) has been used. Note that fixing ( ),K t σ  and taking 0σ → , we get ̂ .r r→  

Example 2.5.1 Consider the system:  

( )
( )

( )
( ) ( )1 1

2 2

2 0 1
,

0 3 2 o

x t x t
u t

x t x t

′   −   
= +      ′ −      

 

Fig. 2.5.1: 2-ball with centre ( )0x −
 and radius ̂r  

( )0x −

S  

r  

( )0x +
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where ( ) ( )( ), 2 1;x t R R∞∈ ×C M  and ( )ou t  are the state vector and the input, respec-

tively. Let ( )0 0x − =  and ( ) [ ]0 3 4
T

x + = . Then 

( ) ( ) ( )( )
( ) ( )( )

2 2

2
2

2 2 21
1 21

0 , 12

0 , 9 16
ˆ ˆ 0 0 .

0 ,
i i

i

i

i

K

i

x K
r x x

e K
λ σ σ λ σ

β

σ σ
β β

σ λφ σ
+

+
+ −

=

+ − +

= − = = +
 
 +
 
  

∑


��������������

 

As 1 2, 1β β → , ˆ 5r r→ = .  

 

2.5.2 Maximum distance from the origin with constrained input 

Here we assume that the system (2.2.1) starts from the zero state at time 0t −=  and 

consider the problem of maximizing the distance to the terminal state in an (almost) ze-

ro-time state transition. This problem of course makes sense if the input signal is con-

strained in some sense, see Gupta (1964). Thus, here we also impose constraints on the 

coefficient vector of the input signal [ ]0 1 1

T

na a a a −= ⋯
 
in terms of the Euclidian 

and the infinity norms (alternatively, you can consider bounded energy, instead of 

bounded gain). Again, our approach reformulates, extends and supports the preliminary 

ideas proposed by Gupta (1964), as we can prove that both problems are tractable and 

can be solved via an SVD and the solution of a quadratic programming problem with 

box constraints, respectively. Especially, the connection of our problem with the litera-

ture of quadratic programming is very fruitful for further future consideration.    

Lemma 2.5.1 Let 0iλ ≠ , 1,2, ,i n= … . Then { }1 1

1 1
max ,

p nn n

i ii i
nλ λ

− −

= =
≤∑ ∑  for all 

1,2, ,p n= … .  

Proof. Define function 
1

1
( )

n x

ii
f x λ −

=
=∑  which can be written as ( 1)

1
( ) i

n m x

i
f x e −

=
=∑ by 

setting lni im λ= . Since ( 1)2

1
( ) 0i

n m x
ii

f x m e −
=

′′ = >∑  for all x∈ℝ , function is convex 
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for all x∈ℝ  and specifically in the interval 1 x n≤ ≤ . Thus ( )f x  attains its maximum 

at an edge of the interval 1 x n≤ ≤ , i.e. 

{ } { }1 1

11 1
max ( ) max (1), ( ) max , ,

p nn n

i x n ii i
f x f f n nλ λ

− −

≤ ≤= =
≤ = =∑ ∑  

for every 1,2, ,p n= …
 
as required.           □  

Under this framework, the following Theorem can be characterized as a useful 

complementary result of Theorem 2.4.1, where an interesting upper bound is given for 

the maximum distance of the zero-time state-transition problem when we have imposed 

constraints on the coefficient vector of the input signal a .
  

Theorem 2.5.1 Let { }1 2, , nA diag λ λ λ= … , ( )1 2

T

nb b b b= …  and assume that the 

pair ( , )A b  is controllable. Define { }1 2
ˆ 1/ ,1/ , ,1/ nB diag b b b= …  and denote by V ≜  

( )1 2, ,..., nV λ λ λ
 
the Vandermonde matrix

 

( )

2 1
1 1 1

2 1
2 2 2

1 2

2 1

1

1
, ,..., .

1

n

n

n

n
n n n

V V

λ λ λ
λ λ λλ λ λ

λ λ λ

−

−

−

 
 
 = =
 
 
  

…

…

⋮

…

 

Let [ ]1 1

T

o na a a a −= ⋯  be the coefficient vector of the input signal ( )ou t =  

( ) ( )1

0

n i
ii

a tδ−

=∑  
defined in (2.3.9). Then, if ( )ˆ 0x +  denotes the terminal state of the zero-

time state-transition problem with ( )ˆ 0 0x − = ,   

{ }1
0

1 1

( )ˆmax ( ) max , ,
min | |

nnA
ia i

i n i

t A n
x t Be V n

b

ρ λ
+

+ −+ ⋅
= =

∈

= ≤ ∑               (2.5.2) 

where the indicated matrix norm denotes the largest singular value (spectral norm) and 

( )Aρ  denotes the spectral radius of A.  
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Proof. In the notation of Theorem 2.4.1 the terminal state of the transition is ( )ˆ 0x +  

0ˆ ABe Va
+⋅= . Thus, ( ) 0

1
ˆˆmax 0 A

a x Be V
++ ⋅

= = , while the maximizing coefficient vector 

a  is the (normalized) singular vector of 0ˆ ABe V
+⋅ corresponding to the largest singular 

value. (If the largest singular value is repeated we can choose any linear combination of 

unit length of the singular vectors corresponding to the repeated largest singular value). 

Note also that  

* *
0 0 max | ( ) | ( )ˆ ˆ .

min | | min | |
A A i n i

i n i i n i

t A t A
Be V B e V V V

b b

λ ρ+ +⋅ ⋅ ∈

∈ ∈

≤ = =                (2.5.3) 

Now, 

{ }1 1

1,2, ,1 1 1
max max , ,

p nn nT
p n i ii i

V n V n V n n nλ λ
− −

= = =∞
≤ = = =∑ ∑…    (2.5.4) 

see Lemma 2.5.1 and Gupta and Hasdorff (1963), where 
1

⋅  and ∞
⋅  denote the in-

duced 1 and ∞-matrix norms, respectively. Equation (2.5.2) follows by combining (2.5.3) 

and (2.5.4).                        □  

Remark 2.5.1 Consider the almost zero-time state transition problem in which ( ),K t σ+  

/t σ+=  has been fixed and σ  has been chosen sufficiently small so that 1iλσ <<  for all 

I and approximation Gautshi (1975) is valid.  

Then we have  

( ) 00 Ax Be Va
++ = Γ , 

 
where ( ){ }2 2 1 (0 , ) / 2i idiag Kλ σ σφ λσ− +Γ = + . 

It follows that in this case 

( ){ }00 2 1
1max (0 ) ( ) max e (0 , ) ,iA

i n i i ia x Be V n b Kλ φψ λ σ λ σ
+++ − +

∈= = Γ ≤ +  

where  
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{ }2 1

1
( ) max , ,

2

nn

ii

n
n n

σψ λ
−

=
= ∑  

while the maximizing coefficient vectora  is the (normalized) singular vector of 0ABe V
+

Γ  

corresponding to the largest singular value.

 

Next, we impose magnitude constraints on the coefficients defining the distribu-

tional input signal. Again we assume that ( )ˆ 0 (0 ) 0x x− −= =  and seek to maximize 

( )ˆ 0x +  using the impulsive input 0( )u t  in equation (2.3.10) (or ( )0x +  using its 

smooth approximation ( )u tσ  in (2.3.9)) subject to the constraint:  

i ia c≤ , 0ic > , for i n∈
ɶ

                 (2.5.5) 

(see also Gupta and Hasdorff (1963)). Geometrically, we seek constants ia  for i n∈
ɶ

 in 

the ranges defined by (2.5.5) such as the radius r̂  depicted in fig. 2.5.2 is maximized, 

(starting from ( )ˆ 0 0x − = ) where 

( ) ( )2
2 02 2 2 2

1 11 1 1 1
ˆ ˆ ˆ0 0 i

n n n n j s
i i i j si i j s

r x x b e a aλ λ
++ + + −

− −= = = =
= = =∑ ∑ ∑ ∑          (2.5.6) 

 

 

 

 

 

Again, if the smooth approximation signal ( )u tσ  
is applied, equation (2.4.6) should 

be used; substitution into equation (2.5.6) shows that in this case we seek to maximize:  

( ) ( ) ( )( )
2 2

21
2 2 2 12

1 1
ˆ0 0 0 , .

in n

i i ii i
r x x e K

λ σ
σ λσφ+ + − +

= =

 
= = + 

 
∑ ∑  

Fig. 2.5.2: n-ball with centre ( )0x −
 and radius r  

( )0x −

S  

r  

( )0x +
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Next note that equation (2.4.5) gives: 

( ) 0 1
11

ˆ 0 i
n j

i i i jj
x b e aλ λ+ + −

−=
= ∑ ,  

and hence 

( ) 2 02 2 2
1 11 1

ˆ 0 i
n n j s

i i i j sj s
x b e a aλ λ++ + −

− −= =
= ∑ ∑ ,   i n∈

ɶ
              (2.5.7) 

Substituting, (2.5.7) into (2.5.6), gives  

( ) ( )( )
2 2

212 02 1 22
1 11 1 1

0 0 , .
i in n n j s

i i i j si j s
r x b e K a a

λ λ σ
σ λσ λφ

+ ++ − + + −
− −= = =

 
= = + 

 
∑ ∑ ∑  

(2.5.8) 

Define the symmetric matrix 

( )( )
2 21

02 12( ) ( ) , 0 , .
i iT

i iQ V D V D diag b e K
λ λ σ

σ φσ σ λσ
+ + − + 

= = + 
 

 

Note that due to the assumed controllability of ( , )A b
 
(which implies that 0,ib ≠

 
i n∈
ɶ

) and the assumption that the eigenvalues of A are distinct (which implies that 

det( ) 0V ≠ ), we have that ( ) ( ) 0TQ Qσ σ= > . The two distance maximization problems 

now have the form 

( ) 2
2max 0 ( ) . . ,T

i i ir x a Q a s t c a c i nσ+= = − ≤ ≤ ∈
ɶ

 

and 

( ) 2
2ˆ ˆmax 0 (0) . . , ,T

i i ir x a Q a s t c a c i n+= = − ≤ ≤ ∈
ɶ

 

which are Quadratic Programming optimization problems with “box” constraints. Since 

the cost function ( ( ) ( )Tf a a Q aσ=
 
) which is maximized is convex, the constrained 

maximum is achieved in a vertex of a hyper-cube ,i ia c i n= ∈ . 

Thus, as Gupta and Hasdorff (1963) have mentioned, we can also prove 
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( ){ }2

1 1sgn sgn 0
j s

i j sa aλ + −
− −− >  for all j  and k . 

This can be easily derived if we assume that 

( ) 1

1sgn 1
j

ja
−

− = −  and ( ) 1

1sgn 1
s

sa
−

− = − ,  

so we obtain                  

( ) ( ) ( )1 1 2

1 1sgn sgn 1 1 1 .
j s j s

j sa a
− − + −

− − = − − = −  

So, the maximum distance is given by 

( ) ( )( )
2 2

21
0 ,2 12

1 11 1 1
0 , .

i iKn n n j s

i j s ii j s
r c c e K

λ σ σ λ σ
φλ σ λσ

+ ++ − − +
− −= = =

 
+ 

 
∑ ∑ ∑≜  (2.5.9) 

Finally, again if we assume that ( )* * * *, 0t K t σ σ= → , and ( )* *,K t σ  to be equal or 

greater to 3.90, we obtain   

( ) ( ) 2 2*
1 11 1 1

0 .
n n n j s

i j si j s
r x t x c cλ + −−

− −= = =
− =∑ ∑ ∑≜

       

(2.5.10) 

The following numerical example illustrates some of the results of this section. 

Example 2.5.2 Consider the (almost) zero state transition problem for the system de-

fined in example 2.5.1 with ( )0 0x − = . Suppose that the following constraints are im-

posed on the coefficients of the input signal 

0 0 1a c≤ = , and 1 1 2a c≤ = . 

Subject to these constraints, the maximum distance from the zero state is: 

( ) ( ) ( )
( ) ( )( )

2 2

2 2 2

1

21
0 ,2 2 2 2 12

1 11 1 1

0 0 0

0 , .
i i

ii

Kj s

i j s ii j s

x x x

c c e K
λ σ σ λ σ

λ σ λσφ
+

+ − +
=

++ − − +
− −= = =

− =

 
= + 

 

∑

∑ ∑ ∑
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( ) ( )( )

( ) ( )( )

2 2
1 1

1

2 2
2 2

2

2

1
0 ,2 2 2 12

1 1 1 11 1

2

1
0 ,2 2 2 12

2 1 1 21 1

1

1 0 1

0 ,

                     0 , .

Kj s

j sj s

Kj s

j sj s

s

s

c c e K

c c e K

c c

λ σ σ λ σ

β

λ σ σ λ σ

β

λ σ λ σ

λ σφ

λ

φ

λ σ

+

+

++ − − +
− −= =

++ − − +
− −= =

−
−

 
 = +
 
  

 
 + +
 
  

=

∑ ∑

∑ ∑


��������������


��������������

( ) ( ) ( )
2 2 2 212 2 2 2

1 1 1 1 1 2 0 1 2 2 1 1 21 1 1 1

2 22 2 2 2 2 2
1 2 0 0 1 1 2 2 0 1 1 1 2 1 1 12 2

s s s

s s ss s s s
c c c c c c

c c c c c c

β λ β λ β λ β

β β λ β λ β λ β λ β

−
− − −= = = =

+ + +

= + + + + +

∑ ∑ ∑ ∑

 

In this example, 0 1c = , 1 2c =  and 1 2λ = , 2 3λ = . 

So, the maximum radius is given by  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2
1 2 1 2 1 1 1 20 0 4 4 2 3 2 4 9 20 34r x x β β β β β β β β+ −− = + + + + + = +≜ . 

Now, for the case that ( )* * * *, 0t K t σ σ= → , we have 2 2
1 2, 1β β →  and  

( ) ( ) ( ) ( )* 0 4 4 2 3 2 4 9 54 7.35.r x t x −− = + + + + = ≈≜
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2.6. Conclusions – Further Research 

In this chapter, a novel methodology has been proposed for approximating the distri-

butional trajectory that transfers the state of a LTI differential system in (almost) zero 

time by using an impulsive input. It has been shown that no loss of generality is intro-

duced if the impulsive input signal is chosen as a linear combination of the Dirac δ -

function and its first 1n −  derivatives, where n  is the order of the system. Approxima-

tions of the impulsive input signal were considered using the Gaussian (Normal) func-

tion, and the resulting response of the system was analysed. The work has addressed the 

following three distinct problems:  

(i) We have determined the (unique) impulsive input signal (and its smooth 

approximation) which transfers the state of the system from the origin to an 

arbitrary point in state space in zero (almost-zero) time, subject to appropriate 

controllability assumptions. To simplify our presentation, the simplest set of 

assumptions has been selected (full system controllability, single control input, 

distinct set of eigenvalues in the system matrix); however, extension to the general 

case is straightforward at the expense of possible loss of uniqueness and 

considerable additional complexity in the resulting mathematical expressions. 

(ii)  A Euclidean metric has been defined to quantify the approximation error in the 

state-trajectories of the system resulting from substituting impulsive input signals 

by smooth signals. The optimal choice of two parameters (time and volatility) char-

acterising the family of all smooth approximating functions has been obtained, 

along with an interesting probabilistic interpretation. 

(iii)  The solution of two state-space maximum-distance problems in the context of 

(almost) zero-time state-transition has been presented for the case of system (2.2.1). 

These correspond to two dif-ferent types of constraints on the coefficients of the 

impulsive input signal and its smooth approximation, involving the Euclidian and 

infinity norms of the vector of coefficients. Both problems are tractable and can be 

solved via an SVD and the solution of a quadratic programming problem with box 

constraints, respectively.  
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Future work will attempt to: (i) extend the results of this paper to more general 

classes of systems (e.g. descriptor, singular), (ii) investigate the numerical properties of 

simulating impulsive trajectories and their smooth approximation, and (iii) develop al-

ternative energy-based approximation techniques of impulsive behaviour especially in 

the context of large-scale systems and model reduction. 
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Chapter 3Chapter 3Chapter 3Chapter 3    

 

Generalized Inverses of Structural Matrices (Vandermonde and a 

Special Matrix) Appearing in Control 

 

3.1 Introduction 

The square and rectangular Vandermonde matrices have been appeared several 

times in many distinct areas of numerical analysis, in control and system theory; see for 

instance: Wertz (1965), Klinger (1967), Björck and Pereyra (1970), Tang and Golub 

(1981), Martinez and Peña (1998 a, b), Eisinberg, Franzé and Salerno (2001), Eisinberg 

and Fedele (2006), Karageorgos, Pantelous and Kalogeropoulos (2009) and the 2nd 

Chapter of this PhD thesis. Moreover, different kind of approaches and algorithms for 

the representation of the (generalized) inverse of a square Vandermonde matrix have 

been proposed, see Wertz (1965), Klinger (1967), Kaufman (1969), Bork and Pereira 

(1970), Tang and Glob (1981), Martinez and Pena (1998a, b), Orcus and Phillips 

(2000), Deisenberg and Fidel (2006), and of a rectangular Vandermonde matrix, see De-

isenberg, Franz and Salerno (2001), using different factorization methods and numerical 

functions.      

Recently, in the literature of control and system theory, see characteristically Kara-

georgos, Pantelous and Kalogeropoulos (2009), the transfer of the initial state of an 
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open loop, linear higher-order descriptor (regular) differential system in (almost) zero-

time has been fully investigated, i.e.  

( ) ( ) ( ) ( )rFx t Gx t bu t= + , 

with known initial conditions   

( ) ( ) ( ) ( )1,  ,....,  r
o o ox t x t x t−′ , 

where ( ), ;∈ ×F G n n FM , and ( )1;b n∈ ×M F  (i.e.M  is the algebra of ×n m  matrices 

with elements in the field = ℝF  or ℂ) with det 0F =  (0  is the zero element of 

( )1,n = FM ), ( ) ( )( ), 1;x t n∞∈ ×C MF F  and ( ) 1nu t −′∈D  (where 1n−′D  is the space of 

Dirac distribution having derivatives up to an order 1n− ). For the sake of simplicity, 

we set in the sequel ( );n n n×≜M M F  and ( ), ;n m n m×≜M M F .  

In order to solve this problem, the appropriate input vector has to be made up as a 

linear combination of the Dirac δ -function and its derivatives, for more details see 

Karageorgos, Pantelous and Kalogeropoulos (2009) and references therein, i.e. 

( ) ( ) ( )
1

1

n
k

o k
k

u t a tδ
−

=

=∑ ,                        (3.1.1) 

where ( ) ( )δ k t  or 
( )δk

k

d t

dt
 is the thk -derivative of the Dirac δ -function, and ia  for =i  

0,1, , 1−n…  are the magnitudes of the delta function and its derivatives. Furthermore, 

we assume that the state of the system at time 0−  is  

( ) ( ) ( ) ( ) [ ]10 0 0 0 0 0
trx x x −− − −′= = = =⋯ … , 

and at time 0+ , it achieves 

( ) 0 0 0
1 20+  =  

t

nx x x x… , ( ) 1 1 1
1 20+′  =  

t

nx x x x…  , . . . , 

( ) ( )1 1 1 1
1 20− + − − − =  

tr r r r
nx x x x… . 
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Obviously, such an input which can be expressed by the summation (3.1.1), is very 

hard to imagine physically. However, we can think of it approximately as a combination 

of small pulses of very high magnitude and infinitely small duration. 

In the paper by Karageorgos, Pantelous and Kalogeropoulos (2009), a classical ap-

proximated expression for the controller (3.1.1), which is based on the Gaussian (Nor-

mal) function, is used. Thus, by considering what are the Dirac δ - function and the 

Gaussian (Normal) function we obtain: 

( ) 2 2/2

0 0

1 1
lim lim

2
t t

t e σ

σ σ
δ

σ
φ

σσ π
−

→ →

 = =  
 

, 

where  ( ) 2 /21

2
xx e

π
φ −= .  

So, the approximate expression for the impulsive-input (3.1.1) is given by  

( ) ( )
1

1
0

1n
k

kk
k

t
u t a

σ σ
φ

−

+
=

 =  
 

∑ . 

Then, we can take the limit ( ) ( )
0

lim  ou t u t
σ →

= .  

Thus, in the paper proposed by Karageorgos, Pantelous and Kalogeropoulos (2009), 

the unknown vector-coefficient [ ]0 1 1

t

na a a a−= ⋯ , where ia ∈F  for 0,1, ,i = …  

1n−  has been analytically calculated by solving the system (3.1.2). 

( )

( )

( )
( ) ( )
( ) ( )

( )

1 1

2
2

1 1

2
2

0

0

,0

0

zl zl

zl
z

d
z

ll

l l

l
l

zV
V z

V a z

V zκ
κ

κ
κ

+ +

+

+

+
+ +

+
+ +

+

          =              

⋮ ⋮

            (3.1.2) 
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where the vector ( ) ( ) ( ) ( ) ( ) ( )
21

1 20 0 0 0
zz zl

t
t t t t
l l lz z z z

κκ
+

+ + + +
+ +

 
  

⋯ is constant, ,l s nV ∈M  is 

a rectangular s n× -Vandermonde matrix and ,z zj j
j nV µ∈M , with 1,  2, ,  j l l κ= + + …  

and 1,2, ,j jz d= … , is a special matrix. 

Obviously, the system (3.1.2) can be further transposed to a more convenient sys-

tem. Analytically, if we multiply the 1st row of Vandermonde matrix lV , i.e. 

2 11 nλ λ λ −  …  with the number (-1) and we added it to the 1st row of each of 

( ) ( )
1 2

1 2,  , ,  ,
zz zl l

l lV V V
κκ

+ +
+ + …  then 

zj
jV  is given by 

( )

1

2 2 1 1

2

3

1 1 1

1 1

0

0 1 2 ( 1)

0 0 1 ( 1) 2

1 1
0 0 0 1

( 1)! ( 1)!

zj

j j j

j j

n n
j j j

n
j j

n
j

j

n
j j

j jj j

n

n n
V

d d

d d

ρ ρ ρ

ρ ρ

µ λ µ λ µ λ
µ µ

µ

µ µ
ρ ρµ µ

+

− −

−

−

− − −

− −

 − − −
 − 
 − −
 =
 
 
 …
 − − 

⋯⋯

⋯⋯

⋯⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯

.   (3.1.3) 

(Note that we have shown that the matrices  
zj

jV , for  1,  2, ,  j l l κ= + + … , do not con-

tain zero rows, see also Comment, Karageorgos, Pantelous and Kalogeropoulos, 2009) 

We can easily see that the 1st row of matrix (3.1.3) can be re-written as below, i.e. 

the element 1 2

1 2
2

1

1 1

, 0

.

i
i

k k
j j j j

k k

k

κ
κ κ κ κ

κ

µ µ λ µ λ λ µ λ

=

− −

=

=

+ +…+ + =

∑

∑  

Thus, the first row is presented as 

1 2 1 2 1 2

1 2 1 2 1 2
2 2 2

1 1 1

1 2 2

, 0 , 0 , 0

1 2 2

( ) 0 1    .

i i i
i i i

n
k k k k k k

j j j j
k k k k k k

k k k n

µ λ µ λ µ λ µ λ

= = =

−

= = =

= = = −

 − … 
 

∑ ∑ ∑ 
 

∑ ∑ ∑  
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Since, the element 0jµ λ− ≠ , we can multiply by left the eq. (3.1.3) with a prop-

erly chosen transformation matrix, so as to obtain 

 

1 2 1 2

1 2 1 2
2 2

1 1

1 2

, 0 , 0

1 2

2

1 1 1 1

1 1

0 1

0 1 2 ( 1)

1 1
0 1

( 1)! ( 1)!

i i
i i

zj

j j j

j j

n
k k k k
j j

k k k k

k k n

n
j jj

n
j j

j jj j

nS

d d

d d

ρ ρ ρ

ρ ρ

µ λ µ λ

µ µ

µ µ
ρ ρµ µ

= =

−

= =

= = −

−

− + − −

− −

 
 
 
 ∑ ∑
 

− 
 
 
 
 − − 

∑ ∑⋯ ⋯ ⋯

⋯ ⋯ ⋯≜

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯

.     (3.1.4) 

Finally, the system (3.1.5) is derived, where the matrices 
zj

jS for 1, 2, ,j l l κ= + + …  

are derived by taking into account a properly chosen transformation left-matrix Ζ, as 

follows 

( )

( )

( )
( ) ( )
( ) ( )

( )

( )
( )
( )

( )

1 1

2 2

*

1 1 11

2 2 22

0 0

0 0

00

00

zl zl

zl z

d
z

ll l
l

l l ll

l l ll

zV z
V

V z dS
VZ a Z aS dz

SV dzκ κ

κ
κ κκ

+ +

+

+ +

+ ++ + ++
++

+ + ++

++

    
      
      
       = ⇔ =
      
      

       
      

⋮⋮ ⋮⋮

,                  (3.1.5) 

where ,nl lV ∈M , ,j j nS ∈M , ( ) ,10l lz + ∈M  and ( )2 ,10l jd +
+ ∈M , for 1, 2, ,j l l κ= + + … . 

Note that 
1,2, ,
maxρ µ
=

=
j

i j
j z

z d…
 is the index of annihilation for the eigenvalue 

jzµ . 

Consequently, the system (3.1.5) contains the following sub-systems. 

( )
( )

( )

1 1

0

0

0

l l

l l

V a z

S a d

S a dκ κ

+

+
+ +

+

=

= 


= 

⋯
, 

where lV , jS  for 1, 2, ,j l l κ= + + …  are non-square matrices.  
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Thus, for the analytic solution of the above system, i.e. for the determination of the 

coefficients a  of the input (3.1.1), some elements of the generalized inverse theory are 

needed.   

More analytically, in the sub-section 3.2, we investigate the generalized inverses of 

the rectangular Vandermonde matrix, V . According to the number of rows and col-

umns, different types of generalized inverses derive. In the sub-section 3.3, we investi-

gate the {1, 2, 3}- generalized inverse of a very special rectangular matrix S. For the 

better understanding of the presented results, some numerical examples are considered. 

The 3.4 sub-section concludes the whole chapter. Further directions for research are also 

presented. 

As a last part of this introduction, the following basic definitions for different kind 

of generalized inverses are simply repeated; see for more details Campbell and Meyer, 

Jr (1979).     

Definition 3.1.1 Denote the square matrix nA∈M . We say that the non-negative inte-

ger k  is the index of A, ( )Ind A k= , if k  is the smallest non-negative integer such as 

( ) ( )1k krank A rank A+= .                □  

Definition 3.1.2 The Moore-Penrose inverse of a rectangular matrix ,m nA∈M  is the 

matrix †
,m nA ∈M  such that 

(1) †AA A A= , 

(2) † † †A AA A= , 

(3) ( )*† †AA AA= , 

(4) ( )*† †A A A A= , 

where *  the conjugate transpose index of the relevant matrix.        □  
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Moreover, the Drazin inverse of square matrix nA∈M , ( )Ind A k=  is the matrix DA  

satisfying  

(i) D D DA AA A= , 

(ii) D DAA A A= , 

(iii) 1l D lA A A+ = , 

for ( )l k Ind A≥ = . 

Note that if A is non-singular, then † 1DA A A−≡ ≡ .   
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3.2 The Generalized Inverses of the Vandermonde Matrix  

In this section, we study three different cases of the ( ), 1 2, , ...,m n n mV V λ λ λ≡ , Van-

dermonde matrix. The first two cases, where n m>  and n m< , create the rectangular 

Vandermonde matrix with different number of rows and columns and the third one cre-

ates the more classical square Vandermonde matrix ( )1 2, ,...,n n nV V λ λ λ= . 

For all cases, our wish is to transform the Vandermonde matrix  

( )

1
1 1

1
2 2

, 1 2 ,

1

1

1
, ,..., ,

1

n

n

m n n m m n

n
m m

V V

λ λ
λ λλ λ λ

λ λ

−

−

−

 
 
 ≡ ∈
 
 
  

⋯

⋯
≜
⋮ ⋮ ⋱ ⋮

⋯

M  

into an equivalent matrix of the following form: 

I) For n m>  (rectangular case with more rows than columns), we obtain 

, .m m n mI −    O  

II)  For n m<  (rectangular case with more columns than rows), we obtain 

,

.
n

m n n

I

−

 
 
 O

 

III)  For n m=  (square case, equal number of rows and columns), we obtain  

.nI  

Definition 3.2.1 Consider the following matrices: 

a) Let ( )iP a  be a m m× -matrix which has a non-zero element a  in the thi -row and 

the thj - column, i.e. 
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( )

1

1

1

1

iP a a

 
 
 
 
 =  
 
 
 
 
 

⋱

⋱

O

O

.            (3.2.1) 

Thus, whenever a matrix A is multiplied from the left by ( )iP a  then the thi -row of 

it is multiplied by the non-zero number a .   

b) Let ( ),iP j a  be a m m× -matrix which has a non-zero element a  in the thi -row and 

the thj -column, i.e. 

( )

1

1

,

1

1

i

a

P j a

 
 
 
 
 =  
 
 
 
 
 

⋱

⋯

⋱ ⋮

⋱

O

O

.          (3.2.2) 

Thus, whenever a matrixA is multiplied from the left by ( ),iP j a  then the thj -row 

of it is multiplied by the non-zero number a  and it is added to the thj -row of A. 

c) Let ( )iQ a  be a n n× -matrix which has a non-zero element a  in the thj -row and 

the thi -column, i.e. 
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( )

1

1

1

1

iQ a a

 
 
 
 
 =  
 
 
 
 
 

⋱

⋱

O

O

.        (3.2.3) 

Thus, whenever a matrix A is multiplied from the right by ( )iQ a  then the thi -

column of it is multiplied by the non-zero number a .   

d) Let ( ),iQ j a  be a n n× -matrix which has a non-zero element a  in the thj -row and 

the thi -column, i.e. 

( )

1

1

,

1

1

iQ j a

a

 
 
 
 
 =  
 
 
 
 
 

⋱

⋮ ⋱

⋯

⋱

O

O

.                      (3.2.4) 

Thus, whenever a matrix A is multiplied from the right by ( ),iQ j a  then the thi -

column of it is multiplied by the non-zero number a  and it is added to thethj -

column of A.              □   

Definition 3.2.2 Let us define with the ⋅∐  symbol the order left multiplication of ma-

trices as it is given by 
1

1 2 1

j

j m m
m

P P P P P
=

−= ⋯∐ .           □  

Proposition 3.2.1 (Vandermonde parameterization)  

a) For the (I) case, there are invertible matrices 1 m∈P M  and 1 n∈Q M  such that 
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1
1 1

1
2 2

1 , 1 1 1 ,

1

1

1

1

n

n

m n m m n m

n
m m

V I

λ λ
λ λ

λ λ

−

−

−

−

 
 
   = =   
 
  

P Q P Q

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

  O ,        (3.2.5) 

where the permutated matrices are given analytically by the following expressions 

(3.2.6) and (3.2.7), i.e. 

( )
11

1
1

1
, 1 ,

j ss

j j m
m m j s

P P s
λ λ

= +=

−

 
= − ∈  − 

P ∐∐ M                               (3.2.6) 

where ( )iP a
 
and ( ),iP j a  are given by (3.2.1) and (3.2.2) respectively, and 

1

1

1
, , 01 1 1

, l

s

s

m n sr s
k

r l n
k ks r s l
k k r s

Q s λ
−

== = + =
+ + = −

 
 = − ∈ 
 
 

∑∏ ∏ ∏Q
…
…

M  ,                   (3.2.7) 

where ( ),iQ j a  is given by (3.2.4). 

b) For the (II) case, there are invertible matrices 2 m∈P M  and 2 n∈Q M  such that 

1
1 1

1
2 2

2 , 2 2 2
,

1

1

1

1

n

n
n

m n
m n n

n
m m

I
V

λ λ
λ λ

λ λ

−

−

−
−

 
 

  = =     
 
  

P Q P Q

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

O
,          (3.2.8) 

where the permutated matrices are given analytically by the following expressions 

(3.2.9) and (3.2.10), i.e. 

( ) ( )
11

2
1 1

1
, 1 , 1 ,

j ssm

z j j m
z n n m j s

P n P P s
λ λ

= +=

= + −

 
= − − ∈  − 

∏P ∐∐ M           (3.2.9) 

where ( )iP a
 
and ( ),iP j a  are given by (3.2.1) and (3.2.2) respectively, and
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1

1

1

2
, , 01 1 1

, ,l

s

s

n n sr s
k

r l n
k ks r s l
k k r s

Q s λ
− −

== = + =
+ + = −

 
 = − ∈ 
 
 

∑∏ ∏ ∏Q
…
…

M             (3.2.10) 

where ( ),iQ j a  is given by (3.2.4). 

c) For the (III) case, there are invertible matrices 3 n∈P M  and 3 n∈Q M  such that 

1
1 1

1
2 2

3 3 3 3

1

1

1

1

n

n

n n

n
n n

V I

λ λ
λ λ

λ λ

−

−

−

 
 
 = =
 
 
  

P Q P Q

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

,             (3.2.11) 

where the permutated matrices are given analytically by the following expression 

(3.2.12) and (3.2.13), i.e. 

( )
11

3
1

1
, 1 ,

j ss

j j n
n n j s

P P s
λ λ

= +=

−

 
= − ∈  − 

P ∐∐ M                       (3.2.12) 

where ( )iP a
 
and ( ),iP j a  are given by (3.2.1) and (3.2.2) respectively, and

  

1

1

1

3
, , 01 1 1

, l

s

s

n n sr s
k

r l n
k ks r s l
k k r s

Q s λ
− −

== = + =
+ + = −

 
 = − ∈ 
 
 

∑∏ ∏ ∏Q
…
…

M  ,        (3.2.13) 

where ( ),iQ j a  is given by (3.2.4) . 

Proof. (I) For n m> . We start with the rectangular Vandermonde matrix  

( ), 1 2 ,, , ...,m n n m m nV V λ λ λ≡ ∈M  

and we work as follows 

( ) ( ) ( ) ( )

( ) ( )

2 , 2 2 , 3 2 2 ,
2 1 2 1

3 3 2 2 ,
3 1 2 1

1 1
1, 1 1, 1 1, 1 1, 1

1 1
1, 1 1, 1

m n m n m n

m n

P V P P V P P P V

P P P P V

λ λ λ λ

λ λ λ λ

   
− → − → − −   − −   

   
→ − − →   − −  

…
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( ) ( )
1 2

1 1
1, 1 2, 1m m m m

m m m m

P P m P P m
λ λ λ λ− −

   
→ − − − −   − −   

 ( ) ( )

( )

( ) ( )

( ) ( )

1 1
1 2 2

1 1
1 3

2 2 1
2 3 1 1 1

1 2 2 ,
2 1

1 1
2, 1 3, 1

1
3, 1

1 1 1
3, 1 1, 1

1
1, 1 1, 1 .

m m m m
m m m m

m m
m m

m m m m m
m m m m

m m n

P P m P P m

P P m

P P m P P P

P P P V

λ λ λ λ

λ λ

λ λ λ λ λ λ

λ λ

− −
− − −

− −
− −

− − −
− − −

−

   
− − − − ⋅   − −   

 
⋅ − − ⋅ − 

     
⋅ − − − ⋅     − − −     

 
⋅ − − − 

⋯

⋯
 

Then, the matrix mnV  is transformed into 

1 2 1 2

1 2 1 2

1 2 1 2

3 3 31 2 1 2 1 2

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

2 3 4 1
1 1 1 1 1

3 2
2 2

1 2 1 1 2 2 1 2 1 2
, 0 , 0

3 2

1 2

1 2 3 1 2 3 1 2 3
, , 0 , , 0 , , 0

1 2

1 * *

0 1 * *

0 0 1 * *

n

n
k k k k

k k k k
k k k k n

k k kk k k k k k

k k k k k k k k k
k k k k k k k k k

λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ

−

−

= =
+ = + = −

= = =
+ + = + + = + +

+ + + ∑ ∑

∑ ∑

⋯ ⋯

⋯ ⋯

⋯ ⋯

( )

( )

3

1 2 1 2

1 2 1 2

3

3

1 11

, , , 0 , , , 01 1
1 1 1

.

0 0 0 0 0 1 l l

m q

m q

n

n

n mm m
k k
l l

k k k k k kl l
k k k k k k n m

λ λ

−

= −

− − −

= == =
+ + + = + + + = − − −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑

∑ ∑∏ ∏
… …
… …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

(Note that 
( )

( )
1 2

1 2

1 1

, , , 0
1 1 1

l

m

m

m
n m k
k k k l
k k k n m l

λ− − −
=

+ + + = − − − =
∑ ∏…

…

 is a sum from 0  to  ( )1 1n m− − −  such as the 

( )1 1

0

n m

zz
k

− − −

=∑ n m= − ∈ ℕ .) 

Thus, we conclude to the determination of the transformation matrix 1P    

( ) ( ) ( )
11

1 2 2
11 2 1

1 1 1
1, 1 1, 1 , 1

j ss

m m j j
m mm m j s

P P m P P P P s
λ λ λ λ λ λ

= +=

−−

    
= − − − −      − − −    

P ⋯ ≜∐∐  

As we can see the multiplication between matrices counts in reverse order, starting 

from 1m m→ − →…  etc, see also Definition 3.2.2.   
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Now, we want to transfer the 1 ,m nVP  into the desired matrix (3.2.5), so we act as 

follows, 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 2

1

2
1 , 2 1 1 , 2 1 3 1

2 1
1 , 2 1 3 1 1

21
2 1

1 , 2 1 3 1 1 3
, 0 1

1

2
2 1

1 , 2 1 3 1 1 3
, 0 1

1, 1, 1,

1, 1, 1,

1, 1, 1, 2,

1, 1, 1, 2,

l

l

m n m n

n
m n n

kn
m n n l

k k l
k k

kn
m n n l

k k l
k

V Q V Q P

V Q Q Q

V Q Q Q Q

V Q Q Q Q

λ λ λ

λ λ λ

λ λ λ λ

λ λ λ λ

−

−

= =
+ =

−

= =
+

− → − − →

→ − − −

 
 → − − − −
 
 
 

→ − − − −

∑ ∏

∏

P P

P

P

P

⋯

⋯

⋯

⋯
1 2

2 1 2

21 2

4
, 0 1

1 2

2, lk
l

k k l
k k k

Q λ
= =

= + =

   
   −
   
   
   

→ →

∑ ∑ ∏

⋯

 

( ) ( ) ( )
1 2 1 2

1 2 1 2

1 2 3 1 2 3

1 2 3 1 2 3

2 21 2
2 1

1 , 2 1 3 1 1 3
, 0 , 01 1

1 2

3 31

4
, , 0 , , 01 1

1 3

1, 1, 1, 2, 2,

3, 3,

l l

l l

n
k kn

m n n l n l
k k k kl l
k k k k n

k k
l n l

k k k k k kl l
k k k k k k n

V Q Q Q Q Q

Q Q

λ λ λ λ λ

λ λ

−
−

= == =
+ = + = −

= == =
+ + = + + = −

   
   − − − − −
   
   
   

 
 − −
 
 
 

∑ ∑∏ ∏

∑ ∏ ∏

P ⋯ ⋯

⋯

( )

( )

1 2

1 2

1 2

1 2

3 1

1
, , , 0 1

1

1 1

, , , 0 1
1 1

,

2, .

l

m

m

l

m

m

nn
k

m l
k k k l
k k k

n m m
k

n l
k k k l
k k k n m

Q m

Q

λ

λ

−

+
= =

+ + + =

− − −

= =
+ + + = − − −

   
   −
   
   
   

 
 − 
 
 

∑ ∑ ∏

∑ ∏

…
…

…
…

⋯

⋯

 

Thus, now we can define matrix the transformation matrix  

( ) ( ) ( )
1 2 1 2

1 2 1 2

1 2 3 1 2 3

1 2 3 1 2 3

2 21 2
2 1

1 2 1 3 1 1 3
, 0 , 01 1

1 2

3 31 3

4
, , 0 , , 01 1

1 3

1, 1, 1, 2, 2,

3, 3,

l l

l l

n
k kn

n l n l
k k k kl l
k k k k n

n
k k
l n l

k k k k k kl l
k k k k k k n

Q Q Q Q Q

Q Q

λ λ λ λ λ

λ λ

−
−

= == =
+ = + = −

−

= == =
+ + = + + = −

   
   = − − − − −   
   
   

 
 − − 
 
 

∑ ∑∏ ∏

∑ ∏ ∏

Q ⋯ ⋯

⋯
1 2

1 2

1

1
, , , 0 1

1

, l

m

m

n
k

m l
k k k l
k k k

Q m λ+
= =

+ + + =

   
   −   
   
   

∑ ∑ ∏
…
…

⋯

 
( )

( )

1 2 1

11 2

1 1

, , , 0 , , 01 1 1 1
1 1

2, , .l l

m s

sm

n q m m n sr s
k k

n l r l
k k k k kl s r s l

k k r sk k k n m

Q Q sλ λ
− − − −

= == = = + =
+ + = −+ + + = − − −

   
   − −   

  
  

∑ ∑∏ ∏ ∏ ∏
… …

……

⋯ ≜  
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Consequently, we have transposed the Vandermonde matrix into (3.2.5). 

Similarly, we can work for the (II) and (III) cases, where the expression (3.2.8) - 

(3.2.13) derive. 

So, the further details are omitted.            □  

In the next example, we illustrate the results of Proposition 3.2.1. 

Example 3.2.1 Suppose that we have the 3 4× - Vandermonde matrix, i.e. (I) case, 

( )
2 3

2 3
3,4 4 1 2 3 3,4

2 3

1 3 3 3

3, 10, 100 1 10 10 10 ,

1 100 100 100

V V λ λ λ
 
 = = = = = ∈ 
 
 

M  

then by applying (3.2.6), we take 

( ) ( ) ( ) ( )
11

1 3 3 3 3 2 2
2 3

1 1 1 1
, 1 2, 1 1, 1 1, 1

90 97 7

j ss

j j
j s

P P s P P P P P P
λ λ

= +=        = − = − − −        −       
P ∐∐

 
1 0 0

                                                     1/ 7 1/ 7 0 .

1/ 679 1/ 630 1/ 8730

 
 = − 
 − 

 

The matrix 3,4V  is being transformed into the following 

2 3 2 3
1 1 1

2 2 2 2
1 3,4 1 2 1 1 2 2

1 2 3

1 1 3 3 3

0 1 0 1 3 10 3 3 10 10

0 0 1 0 0 1 3 10 100

1 3 9 27

                                                                 0 1 13 139 .

0 0 1 113

V

λ λ λ
λ λ λ λ λ λ

λ λ λ

   
   = + + + = + + ⋅ +   
   + + + +   

 
 =  
  

P

 

Now, we want to transfer the 1 3,4VP  into the matrix 

1 0 0 0

0 1 0 0

0 0 1 0

 
 
 
  

, so we apply (3.2.7), 

i.e. 
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( ) ( ) ( ) ( ) ( ) ( )

1

1

3 4

1
, , 01 1 1

2 3
2 3 4 3 4 4

,

     1, 3 1, 3 1, 3 2, 13 2, 139 3, 113

1 3 30 3000

0 1 13 1330
     .

0 0 1 113

0 0 0 1

l

s

s

sr s
k

r l
k ks r s l
k k r s

Q s

Q Q Q Q Q Q

λ
−

== = + =
+ + = −

 
 = − 
 
 

= − − − − − −

− − 
 − =
 −
 
 

∑∏ ∏ ∏Q
…
…

 

Thus, we take the parameterization  

1 3,4 1

1 0 0 0

0 1 0 0 ,

0 0 1 0

V

 
 =  
  

P Q  

where 

1

1 0 0

1/ 7 1/ 7 0

1/ 679 1/ 630 1/ 8730

 
 = − 
 − 

P  and 1

1 3 30 3000

0 1 13 1330
.

0 0 1 113

0 0 0 1

− − 
 − =
 −
 
 

Q  

Remark 3.2.1 It is not difficult to verify (see also the above numerical example) that an 

explicit (quasi-) LU  factorization of the rectangular Vandermonde matrix is obtained 

using non-singular matrices like (3.2.6), (3.2.7) (or (3.2.9), (3.2.10) or (3.2.12), 

(3.2.13)). Analytically, we have   

(I)   Quasi LU  factorization:  

, 1 , 1m n m m n mV I − =  P Qɶɶ   O , 

where  

( ) ( )
1

1
1 1

1 1

,1
m m

j j j s
s j s

P s P λ λ
−

−

= = +

= −∏ ∏P Pɶ ≜  (Lower Triangular Matrix) 

and  
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1

1

1 1
1

1 1
, , 0 1

, l

s

s

s r s sr s
k

r l
k k lm n
k k r s

Q s λ
= = + −

−

= =
+ + = −

 
 =  
 
 

∑ ∏Q Q
…
…

ɶ ≜ ∐∐  (Upper Triangular Matrix). 

(II)   Quasi LU  factorization:  

, 2 2
,

n
m n

n m m

I
V

−

 
=  

 
P Qɶɶ
O

, 

where  

( ) ( ) ( )
1

1
2 2

1 1 1

,1 ,1
n m m

j j j s z
s j s z n

P s P P nλ λ
−

−

= = + = +

= −∏ ∏ ∏P Pɶ ≜  (Upper Triangular Matrix) 

and   

1

1

1 1
1

2 2
, , 0 11

, l

s

s

s r s sr s
k

r l
k k ln n
k k r s

Q s λ
= = + −

−

= =−
+ + = −

 
 =  
 
 

∑ ∏Q Q
…
…

ɶ ≜ ∐∐  (Lower Triangular Matrix). 

(III)  LU  factorization:  

3 3nV = P Qɶɶ , 

where 

( ) ( )
1

1
3 3

1 1

,1
n n

j j j s
s j s

P s P λ λ
−

−

= = +

= −∏ ∏P Pɶ ≜  (Upper Triangular Matrix) 

and   

1

1

1 1
1

2 2
, , 0 11

, l

s

s

s r s sr s
k

r l
k k ln n
k k r s

Q s λ
= = + −

−

= =−
+ + = −

 
 =  
 
 

∑ ∏Q Q
…
…

ɶ ≜ ∐∐  (Lower Triangular Matrix). 

Thus, for each (I) - (III) case, upper and lower triangular non-singular matrices are 

derived. The proposed results are compared with those derived from Kaufman (1969), 

Martinez and Peña (1998a) and Oruç and Phillips (2000) (see also Remark 3.2.2). 
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Characteristically, we remind that in Oruç and Phillips (2000), the LU  factorization of a 

square Vandermonde matrix is obtained using complete symmetric functions. Our re-

sults are fully comparable to Oruç and Phillips (2000), since we can have also explicit 

formulae for the factorization matrices.            □        

Remark 3.2.2 As a further direction, but it is beyond the scopes of this chapter, it 

would be very interesting to compare the numerical results obtained by the LU factori-

zation, especially for the (III) case –i.e. square Vandermonde matrix, with those derived 

in Björck and Pereyra (1970), Tang and Golub (1981), Oruç and Phillips (2000), Eisin-

berg, Franzé and Salerno (2001).                         □  

In the next lines, we provide the main results of this section. The generalized in-

verses of the rectangular and square Vandermonde matrices are derived. Furthermore, it 

should be pointed out that analytical formulae for the calculation of the generalized in-

verses derive.   

Theorem 3.2.1 For the (I) case, the { }1, 2,3 -inverse of the rectangular Vandermonde 

matrix is given by   

{ }1,2,3
, 1 1 ,

,

m
n m n m

n m m

I
V

−

 
= ∈ 

 
Q P
O

M ,   (3.2.14) 

where the permutated matrices 1P  and 1Q  are given by the expressions (3.2.6) and 

(3.2.7), respectively. 

Proof. Consider the expression (3.2.5), i.e. 

1 1
1 , 1 , , 1 , 1m n m m n m m n m m n mV I V I− −

− −   = ⇔ =   P Q P Q  O   O . 

In order the matrix 1 1
,

m

n m m

I

−

 
 
 

Q P
O

 to be the {1, 2, 3}-inverse of ,m nV , we have to 

prove the following three equalities,  
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(1) , 1 1 , ,
,

m
m n m n m n

n m m

I
V V V

−

 
= 

 
Q P
O

, 

(2) 1 1 , 1 1 1 1
, , ,

m m m
m n

n m m n m m n m m

I I I
V

− − −

     
=     

     
Q P Q P Q P
O O O

 

and  

(3) 

*

, 1 1 , 1 1
, ,

m m
m n m n

n m m n m m

I I
V V

− −

    
=     

    
Q P Q P
O O

. 

Thus, the (1) holds since  

1 1 1 1
, 1 1 , 1 , 1 1 1 1 , 1

, ,

1 1
1 , , 1

,

                               

                             

m m
m n m n m m n m m m n m

n m m n m m

m
m m n m m m n m

n m m

I I
V V I I

I
I I

− − − −
− −

− −

− −
− −

−

   
   =      

   

 
   =     

 

Q P P Q Q P P Q

P Q

  O   O
O O

  O   O
O

( )1 1
1 , 1

,

  

                               ,

m m m m n m

m n

I I

V

− −
− = +  

=

P QO   O

 

and the (2) holds since 

1 1
1 1 , 1 1 1 1 1 , 1 1 1

, , , ,

m m m m
m n m m n m

n m m n m m n m m n m m

I I I I
V I− −

−
− − − −

       
 =        

       
Q P Q P Q PP Q Q P  O
O O O O

 

1 , 1
, ,

                                             m m
m m n m

n m m n m m

I I
I −

− −

   
 =     

   
Q P  O
O O

 

,
1 1

, , ,

1 1
,

                                             

                                             ,

m m n m m

n m m n m n m n m m

m

n m m

I I

I

−

− − − −

−

   
=    

   

 
=  

 

Q P

Q P

O

O O O

O

 

and finally, the (3) also holds since 
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( )( )

* *

1 1
, 1 1 1 , 1 1 1

, ,

*

1
1 , 1

,

*1
1 1

                               

                               

m m
m n m m n m

n m m n m m

m
m m n m

n m m

m m

I I
V I

I
I

I

− −
−

− −

−
−

−

−

      
 =          

      

  
 =     

  

= +

Q P P Q Q P

P P

P P

  O
O O

  O
O

O

, 1 1
,

                               .m
m m n

n m m

I
I V

−

 
= =  

 
Q P
O

 

      □  

Theorem 3.2.2 For the (II) case, the { }1, 2, 4 -inverse of the rectangular Vandermonde 

matrix is given by   

{ }1,2,4
, 2 , 2 ,n m n n m n n mV I − = ∈ Q PO M ,        (3.2.15) 

where the permutated matrices 2P  and 2Q  are given by the expressions (3.2.9) and 

(3.2.10), respectively. 

Proof. Consider the expression (3.2.8), i.e. 

1 1
2 , 2 , 2 2

, ,

n n
m n m n

n m m n m m

I I
V V − −

− −

   
= ⇔ =   
   

P Q P Q
O O

. 

In order the matrix 2 , 2n n m nI −  Q PO  to be the {1, 2, 4}-inverse of ,m nV , we have 

to prove the following three equalities,  

(1) , 2 , 2 , ,m n n n m n m n m nV I V V−  = Q PO , 

(2) 2 , 2 , 2 , 2 2 , 2n n m n m n n n m n n n m nI V I I− − −     =     Q P Q P Q PO O O  

and  

(3) ( )*

2 , 2 , 2 , 2 ,n n m n m n n n m n m nI V I V− −   =   Q P Q PO O . 

Thus, the (1) holds since  
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1 1 1 1
, 2 , 2 , 2 2 2 , 2 2 2

, ,

1 1
2 , 2

, ,

2

                               

                               

n n

m n n n m n m n n n m n
m n n m n n

n n

n n m n
m n n m n n

I I
V I V I

I I
I

− − − −
− −

− −

− −
−

− −

−

   
   =       

   

   
 =     

   

=

Q P P Q Q P P Q

P Q

P

O O
O O

O
O O

,1 1
2

, ,

,                               ,

n n m n n

m n n n m n n

m n

I I

V

− −

− −

   
   
   

=

Q
O

O O O

 

and the (2) holds since 

2 , 2 , 2 , 2

1 1
2 , 2 2 2 2 , 2

,

2 ,

                                             

                                             

n n m n m n n n m n

n

n n m n n n m n
n m m

n

n n m n
n

I V I

I
I I

I
I

− −

− −
− −

−

−

      

 
   =     

 

 =  

Q P Q P

Q P P Q Q P

Q

O O

O O
O

O
O

( )

, 2
,

2 , 2

2 , 2

                                             

                                             ,

n n m n
m m

n n n n m n

n n m n

I

I I

I

−
−

−

−

 
    

 

 = +  

 =  

P

Q P

Q P

O

O O

O

 

and finally, the (4) holds since 

( )

( )( )

*
*

1 1
2 , 2 , 2 , 2 2 2

,

*

1
2 , 2

,

*1
2 2

                               

                               

              

n
n n m n m n n n m n

n m m

n
n n m n

n m m

n n

I
I V I

I
I

I

− −
− −

−

−
−

−

−

  
   =       

  

  
 =     

  

= +

Q P Q P P Q

Q Q

Q Q

O O
O

O
O

O

2 , 2 ,                 .n n n m n m nI I V− = =  Q PO

 

□  

The (III) case has a very special interest. Here, the Moore-Penrose inverse (see also 

Remark 3.2.3) is derived. This inverse can be calculated easily, since an analytical for-

mula derives.   
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Theorem 3.2.3 For the (III) case, the Moore-Penrose inverse of the square Vander-

monde matrix is given by 

†
3 3n nV = ∈Q P M ,               (3.2.16) 

where the permutated matrices 3P  and 3Q  are given by the expressions (3.2.12) and 

(3.2.13), respectively. 

Proof. Consider the expression (3.2.11), i.e.  

1 1
3 3 3 3n n nV I V − −= ⇔ =P Q P Q . 

In order the matrix 3 3Q P  to be the Moore-Penrose inverse of nV , we have to prove 

the following four equalities,  

(1) 3 3n n nV V V=Q P ,  (2) 3 3 3 3 3 3nV =Q P Q P Q P , 

(3) ( )*

3 3 3 3n nV V=Q P Q P  and (4) ( )*

3 3 3 3n nV V=Q P Q P . 

Thus, the (1) holds since  

1 1 1 1 1 1
3 3 3 3 3 3 3 3 3 3 ,n n nV V V− − − − − −= = =Q P P Q Q P P Q P Q  

the (2) holds since 

1 1
3 3 3 3 3 3 3 3 3 3 3 3,nV − −= =Q P Q P Q P P Q Q P Q P  

the (3) holds since 

( ) ( )** 1 1
3 3 3 3 3 3 3 3,n n nV I V− −= = =Q P P Q Q P Q P  

and finally the (4) holds since 

( ) ( )** 1 1
3 3 3 3 3 3 3 3 .n n nV I V− −= = =Q P Q P P Q Q P

 

□  
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Remark 3.2.3 Obviously, the More-Penrose inverse (3.2.16) is also the Drazin inverse 

and the regular inverse 1
nV − , see also introduction.           □  

Example 3.2.2 Suppose that we have the 3 4× - Vandermonde matrix of Example 3.2.1, 

then the {1, 2, 3}-inverse of the Vandermonde matrix is given by 

{ }1,2,3 3 3
4,3 1 1

3 3

1 3 30 3000
1 0 0

0 1 13 1330
1/ 7 1/ 7 0

0 00 0 1 113
1/ 679 1/ 630 1/ 8730

0 0 0 1

t t

I I
V

− − 
  −      = = −      −     −   

 

Q P

 
1.4728 0.4762 0.0034

0.1620 0.1635 0.0015
                                 .

0.0015 0.0016 0.0001

0 0 0

− 
 − − =
 −
 
 

 

In the next section, a special matrix is discussed. The results that have been pre-

sented here are extended to that special case. This matrix has been recently appeared in 

an interesting control and system theory problem.    
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3.3 The Generalized Inverse of a Special Matrix 

As we have already discussed extensively in the introduction, in an interesting re-

cent applications of the control and system theory, see Karageorgos, Pantelous and Ka-

logeropoulos (2009), we need to calculate the generalized inverses of a very special 

matrix, like  

( )
( ) ( )

( ) ( )

2 3 1

2 3 1

2 2

3
1,

1
1

1

1 * * *

1 * * *

0 1 2 3 * * * 1

0 0 1 3 * * * 1 2 ,

1
0 0 0 0 0 1 *

1

n

n

n

n
m n

m
n

m
j

n

n n

d

m d

µ µ µ µ
λ λ λ λ

λ λ λ
λ λ

λ
λ

−

−

−

−
+

−
−

−

 
 
 
 −
 

− − ∈ 
 
 
 
 − 

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

M  

where 0.λ µ≠ ≠  

In this section, we investigate the rectangular matrix, where n m> , using the first 

row of the Vandermonde matrix, see also introduction. The other two cases (where 

n m<  and n m= ) can be straightforwardly derived using also the results of 2nd sec-

tion. So, let assume that we want to investigate the following matrix.     

( )
( )( )

( ) ( )

2 2 3 3 1 1

2 2

3

, ,

1
1

1

0 * * *

0 1 2 3 * * * 1

0 0 1 3 * * * 1 2
.

1
0 0 0 0 0 1 *

1

n n

n

n

m n m n

m
n

m
j

n

n n
S

d

m d

λ µ λ µ λ µ λ µ
λ λ λ

λ λ

λ
λ

− −

−

−

−
−

−

 − − − −
 − 
 − −

= ∈ 
 
 
 

−  

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

M  

(3.3.1) 

Consequently, as in the previous section, we transport the rectangular special ma-

trix (3.3.1) into the following form, 

, 10m m m n mI − −  O . 
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Proposition 3.3.1 (Special Matrix parameterization)  

There are invertible matrices m∈P M  and n∈Q M  such that 

, , 10m n m m m n mS I − − =  P Q O ,                    (3.3.2) 

where the permutated matrices are given analytically by the following expressions 

(3.3.3) and (3.3.4), i.e. 

( )
2

2 2

1
1, 1

s

m s m s
m

P P m s
λ µ

=

− + − +
 = − + − − 

P ∐  ,                            (3.3.3) 

where ( )iP a
 
and ( ),iP j a  are given by (3.2.1) and (3.2.2) respectively, and 

( )
1 2

1 2
1 2

21 2

2
, 02 1

2

1
,

2 !

sm n k
k k

k s
k ks k s
k k k

d
Q s

s d
µ λ

λ

−+ −

−
== = +

+ = −

  
  = −  −   

  

∑∏ ∏Q  ,       (3.3.4) 

where ( ),iQ j a  is given by (3.2.4). 

Proof. We start with the matrix (3.3.1) where 0λ µ≠ ≠ .  

In this direction, we work as follows 

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

2 , 2 2 , 3 2 2 , 3 3

2 2 ,

1 1 3 3 2 2 ,

1 1 1
1, 1 1, 1 2, 1 1, 1 2, 1

1
1, 1

1 1 1 1
1, 1 2, 1 2, 1 1, 1 .

m n m n m n

m n

m m m m m n

P S P P S P P P S P P

P P S

P P m P P m P P P P S

λ µ λ µ λ µ

λ µ

λ µ λ µ λ µ λ µ− −

     − → − → − − → −     − − −     

  − → → − 

       − − − − − −       − − − −       

⋯

⋯

 

So, the matrix (3.3.1) is transformed to 
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( )

( )

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

2
2 2

, 0
2

2
2 2

, 0
2

1 2

1
, 0

2

0 1 * * *

0 0 1 * * *

1
0 0 0 0 0 1 *

1 !

n
k k

k k
k k n

n
k k

k k
k k n

m n
k k

m
k k
k k n

d d

d d

d

m d

µ λ µ µλ λ µ λ

µ µλ λ µ λ
λ λ

µ λ
λ

−

=
+ = −

−

=
+ = −

− −

−
=

+ = −

 + + + 
 
 
 + +
 
 
 
 
 
 

− 
 

∑

∑

∑

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

 

Thus, we conclude to the determination of matrix P   

( ) ( )

( )

2 2

2

2 2

1 1
1, 1 1, 1

1
   1, 1 .

m m

s

m s m s
m

P P m P P

P P m s

λ µ λ µ

λ µ

=

− + − +

   − − −   − −   

 = − + − − 

P ≜ ⋯

∐
 

Now we want to transfer the ,m nSP
 
into the desired matrix , 10 .m m m n mI − −  O  

So, we act as follows 

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 2

, 3 4
, 0 , 0 , 0

1 2 2

1 2

, 3 4
, 0 , 0

1 2

2, 2, 2,

2, 2,

n
k k k k k k

m n n
k k k k k k
k k k k k k n

k k k k
m n

k k k k
k k k k

S Q Q Q

S Q Q

µ λ µ λ µ λ

µ λ µ λ

−

= = =
+ = + = + = −

= =
+ = + =

     
     − − − →
     
     
     

   
   − −
   
  
   

∑ ∑ ∑

∑ ∑

P

P

⋯

1 2

1 2

1 2

1 2

1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

2

, 0
2

2

3
, 0

1

1 1 2

, 3 , 3 4
, 0 , 0 , 0

1 1 2

2,

3,

2, 2, 2,

n
k k

n
k k
k k n

k k

k k
k k

k k k k k k
m n m n

k k k k k k
k k k k k k

Q

d
Q

d

S Q S Q Q

µ λ

µ λ
λ

µ λ µ λ µ λ

−

=
+ = −

=
+ =

= = =
+ = + = + =

 
 − ⋅
 

  
 

 
 ⋅ − → →
 
 
 

   
   − → − −
   
   
   

∑

∑

∑ ∑ ∑P P

⋯

⋯

 
 
 
 
 

→ →…
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1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 2

1 2

1 2 2

, 3 4
, 0 , 0 , 0

1 2 1

2

, 0
2

2, 2, 3,

3,

n
k k k k k k

m n n
k k k k k k
k k k k n k k

n
k k

n
k k
k k n

d
S Q Q Q

d

d
Q

d

µ λ µ λ µ λ
λ

µ λ
λ

−

= = =
+ = + = − + =

−

=
+ = −

     
     − − −
     
     
     

 
 −
 
 
 

∑ ∑ ∑

∑

P ⋯

⋯

 

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 2

1 2

1 2

1 2

1 2 2

, 3 4
, 0 , 0 , 0

1 2 1

2

, 0
2

2

5 2
, 0

2, 2, 3,

3,

1
4,

2!

n
k k k k k k

m n n
k k k k k k
k k k k n k k

n
k k

n
k k
k k n

k k

k k
k

d
S Q Q Q

d

d
Q

d

d
Q

d

µ λ µ λ µ λ
λ

µ λ
λ

µ λ
λ

−

= = =
+ = + = − + =

−

=
+ = −

=

→ →

     
     − − −
     
     
     

 
 −
 
 
 

−

∑ ∑ ∑

∑

P

…

⋯

⋯

⋯

( ) ( )

1 2

1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

23 2

2
, 0

1 2

1 1 2

2 1 1
, 0 , 0

1 2

1
2,

2!

1 1
1, 1,

1 !1 !

n
k k

n
k k

k k k n

m mm n
k k k k

m nm m
k k k kj
k k k k n

d
Q

d

d d
Q m Q m

d m d

µ λ
λ

µ λ µ λ
λ λρ

−

=
+ = + = −

− − −

+ − −
= =

+ = + = −

   
   −
   
   
   

   
   + − + −
   −−   
   

∑ ∑

∑ ∑

⋯ ⋯

⋯

 

We also define matrix  

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 2

3 4
, 0 , 0 , 0

1 2 1

22

5 2
, 0 , 0

2 1

2, 2, 3,

1
3, 4,

2!

n
k k k k k k

n
k k k k k k
k k k k n k k

n
k k k k

n
k k k k
k k n k k

d
Q Q Q Q

d

d d
Q Q

d d

µ λ µ λ µ λ
λ

µ λ µ λ
λ λ

−

= = =
+ = + = − + =

−

= =
+ = − + =

     
     − − −     
     
     

 
 − − 
 
 

∑ ∑ ∑

∑

≜ ⋯ ⋯

⋯ 1 2

1 2

1 2

23 2

2
, 0

2

1
2,

2!

n
k k

n
k k
k k n

d
Q

d
µ λ

λ

−

=
+ = −

   
   −   
   
   

∑ ∑⋯ ⋯

 ( ) ( )

( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2

1 2

1 2

1 1 2

2 1 1
, 0 , 0

1 2

21 2

2
, 02 1

2

1 1
1, 1,

1 !1 !

1
,

2 !

m mm n
k k k k

m nm m
k k k kj
k k k k n

sm n k
k k

k s
k ks k s
k k k

d d
Q m Q m

d m d

d
P s

s d

µ λ µ λ
λ λρ

µ λ
λ

− − −

+ − −
= =

+ = + = −

−+ −

−
== = +

+ = −

   
   + − + −   −−   
   

  
  = −  −   

  

∑ ∑

∑∏ ∏

⋯
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Consequently, we have transposed the special matrix (3.3.1) into , 10 .m m m n mI − −  O □  

Example 3.3.1 Suppose that we have the 3 4× - special matrix, 

2 2 3 3

3
3,4 3,4

3

0 10 3 10 3 10 3

0 1 2 10 3 10 ,

0 0 1 3 10

S

 − − −
 = ⋅ ⋅ ∈ 
 ⋅ 

M  

then by applying (3.3.3), we take  

 ( ) ( ) ( )
2

3 2 3 2 3 3 2 2
3

1 1 1
3 1, 1 2, 1 1, 1

7 7 7

1 0 0

                                                         1/ 7 1/ 7 0 .

1/ 49 1/ 49 1/ 7

s

s sP P s P P P P
=

− + − +
     = − + − = − −     
     

 
 = − 
 − 

P ∐

 

The matrix 3,4S  is being transformed into the following 

2 2 2 2

3,4

0 1 0 1 3 10 3 3 10 10 0 1 13 139

0 0 1 2 0 0 1 3 2 10 0 0 1 23 .

0 0 0 1 0 0 0 1 0 0 0 1

S

µ λ µ µλ λ
µ λ

   + + + + + ⋅ +  
     = + = + ⋅ =     
         

P

 

Now, we want to transfer the 3,4SP into the matrix 

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
  

, so we apply (3.3.4), 

i.e. 

( ) ( ) ( ) ( )1 2

1 2

1 2

24 4 2

3 3 42
, 02 1

2

1
, 2, 13 2, 139 3, 23

2 !

1 0 0 0

0 1 13 160
                                                                                    

0

s k
k k

k s
k ks k s
k k k

d
Q s Q Q Q

s d
µ λ

λ

− −

−
== = +

+ = −

  
  = − = − − −  −   

  

−
=

∑∏ ∏Q

.
0 1 23

0 0 0 1

 
 
 
 −
 
 

 

So, we take the parameterization  
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3,4

0 1 0 0

0 0 1 0 ,

0 0 0 1

S

 
 =  
  

P Q  

where 

1 0 0

1/ 7 1/ 7 0

1/ 49 1/ 49 1/ 7

 
 = − 
 − 

P  and 

1 0 0 0

0 1 13 160
.

0 0 1 23

0 0 0 1

 
 − =
 −
 
 

Q

 

In the next lines, the generalized inverse of the rectangular special matrix (3.3.1) is 

derived.   

Theorem 3.3.1 The { }1, 2,3 -inverse of the rectangular special matrix (3.3.1) is given by   

{ }1,2,3
,

1,

0t
m

n m m

n m m

S I

− −

 
 =  
 
 

Q P

O

,              (3.3.5) 

where the permutated matrices P and Q  are given by the expressions (3.3.3) and 

(3.3.4), respectively. 

Proof. Consider the expression (3.3.2), i.e.  

1 1
, , 1 , , 10 0m n m m m n m m n m m m n mS I S I− −

− − − −   = ⇔ =   P Q P QO O . 

In order the matrix 

1,

0t
m

m

n m m

I

− −

 
 
 
 
 

Q P

O  
to be the {1, 2, 3}-inverse of ,m nS , we have to 

prove the following three equalities,  

(1)  , , ,

1,

0t
m

m n m m n m n

n m m

S I S S

− −

 
  = 
 
 

Q P

O

, 
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(2)  ,

1, 1, 1,

0 0 0t t t
m m m

m m n m m

n m m n m m n m m

I S I I

− − − − − −

     
     =     
     
     

Q P Q P Q P

O O O

 

and  

(3) 

*

, ,

1, 1,

0 0t t
m m

m n m m n m

n m m n m m

S I S I

− − − −

    
    =    
    

    

Q P Q P

O O

. 

Thus, the (1) holds since  

1 1 1 1
, , , 1 , 1

1, 1,

1 1
, 1 , 1

1,

0 0

0 0

0

                               0 0

    

t t
m m

m n m m n m m m n m m m m m n m

n m m n m m

t
m

m m m n m m m m m n m

n m m

S I S I I I

I I I

− − − −
− − − −

− − − −

− −
− − − −

− −

   
   

   =       
   
   

 
 

   =     
 
 

Q P P Q Q PP Q

P Q

O O

O O

O O

O

( )1 1
, 1

,

                           0

                               ,

m m m m m m n m

m n

I I

S

− −
− − = + +  

=

P QO O O

 

and the (2) holds since 

1 1
, , 1

1, 1, 1, 1,

,

1,

0 0 0 0

0

0

                                             0

t t t t

m m n m m m m m n m m

n m m n m m n m m n m m

t

m m m m n

n m m

I S I I I I

I I

− −
− −

− − − − − − − −

− −

       
       

 =         
       
       

 
 =  
 
 

Q P Q P Q PP Q Q P

Q

O

O O O O

O

O

1

1,

0t

m m

n m m

I− −

− −

 
 

    
 
 

P

O
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1

, 1

1 1, 1 1,

1 1

1,

0 0 0 0

                                             0

0

0

                                             ,

t t t
m n m m

m m m n m m

n m n m m n m n m m

t
m

m

n m m

I I

I

− −

− −

− − − − − − − −

− −

   
   =    
   
   

 
 =  
 
 

Q P

Q P

O

O O O

O
 

and finally, the (3) also holds since 

* *

1 1
, , 1

1, 1,

*

1
, 1

1,

0 0

0

0

                               0

               

t t
m m

m n m m m m n m m

n m m n m m

t
m

m m m n m m

n m m

S I I I

I I

− −
− −

− − − −

−
− −

− −

      
      

 =       
      

      

  
  

 =     
  

  

Q P P Q Q P

P P

O

O O

O

O

( )( )*1

,

1,

                

0

                               .

m m m

t
m

m m n m

n m m

I

I S I

−

− −

= + +

 
 = =  
 
 

P P

Q P

O O

O
 

□  

Example 3.3.2 Suppose that we have the 3 4× - special matrix of Example 3.3.1, then 

the {1, 2, 3}-inverse of the special matrix is given by 

{ }1,2,3 3 3
4,3

3 3

1 0 0 0
1 0 0

0 1 13 1600 0
1/ 7 1/ 7 0

0 0 1 23
1/ 49 1/ 49 1/ 7

0 0 0 1

t t

S
I I

 
    −     = = −      −     −   

 

Q P  

0 0 0

6.1224 5.1224 22.8571
                                 .

0.6122 0.6122 3.2857

0.0204 0.0204 0.1429

 
 − =
 − −
 − 
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3.4 Conclusions – Further Research 

In the present section, three main results have been proposed: First, we have pro-

vided a (quasi) LU factorization, and secondly we have calculated analytically the gen-

eralized inverses of the rectangular (and square) Vandermonde matrix, which is defined  

in terms of scalars 1 2, ,..., mλ λ λ ∈ℝ   (where m n≠ ) by the following expression: 

( )

1
1 1

1
2 2

, 1 2

1

1

1
, ,...,

1

n

n

m n n m

n
m m

V V

λ λ
λ λλ λ λ

λ λ

−

−

−

 
 
 ≡
 
 
  

⋯

⋯
≜
⋮ ⋮ ⋱ ⋮

⋯

. 

Finally, similar results with the Vandermonde matrix have been presented for a 

special structure matrix. Both matrices have been appeared recently in the control and 

system theory’s literature, where the change of the initial state of a linear system in zero 

time is required. 

As a further extension of this chapter,  

• we are interested in extending the presenting results to the complex case, where 

1 2, ,..., mλ λ λ .∈ℂ   

• Moreover, based on our approach, we want to extend Martinez and Peña (1998b) 

and Eisinberg, Franzé and Salerno (2001) research works. In the first case, i.e. Eis-

inberg, Franzé and Salerno (2001), we have a special type of 
2 1

cos
2i

i

n
λ π− =   

 for 

1,2,...,i n=  (Chebychev nodes) and  

• in the next case, i.e. Martinez and Peña (1998b), we want to calculate the appropri-

ate complete symmetric function, in order to determine the LU factorization of the 

rectangular Vandermonde matrix. 
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Chapter 4Chapter 4Chapter 4Chapter 4    

Generalized Regular Differential Systems with Distributed Delay  

 

4.1 Introduction  

Now days, it is assumed that Generalized Differential Delay Systems (GDDSs) pro-

vide an excellent mathematical modelling framework for many applications in eco-

nomical, physical and biological aspects, as well. In many differential models, for in-

stance models for biological population composed of adult and juvenile individuals; it is 

sometimes meaningless not only have time dependence on the past but also some 

weighted (distributed) average of previous values on the growth at time t . This has been 

known for some time, but the theory of such systems with piecewise constant or con-

tinuous lagging arguments has been extensively developed only recently. 

Our long-term purpose is to study GDDSs within the mainstream of matrix pencil 

theory. This approach has been extensively used in control theory for the study of gen-

eralized linear time invariant dynamical systems without delay, see Gantmacher (1959), 

Campbell (1980, 1982), Karcanias (1979), Karcanias and Hayton (1981), Van Dooren 

(1983) and Kalogeropoulos (1985). However, quite recently, in Kalogeropoulos and 

Stratis (1999) and Wei (2004) a first discussion of generalized differential systems with 

delay is offered by the matrix pencil and the Drazin inverse matrix theory approach, re-

spectively. 

This section is organized as follows: In sub-section 4.2 the necessary preliminary 

concepts from matrix pencil theory are presented. Sub-section 4.3 contains a brief ac-
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count of the required elements of the theory of Differential Systems with Distributed 

Delay (DDDSs). In Sub-section 4.4 the main results of this work are developed. Thus, 

we investigate the solution of GDDSs with constant coefficients, that means 

( ) ( ) ( ) ( )
o

o

t

t

Ex t A x t s d s Bu t
τ

µ
+

′ = − +∫ ,            (4.1.1) 

where ,  n nE A ×∈ℂ , where det 0E =  and n lB ×∈ℂ  are constant matrices, u∈ 

( )[ , ), l
oC t ∞ ℂ  is a control (column vector function of dimension l ), and ot t≥ , where 

0τ >  is constant. Furthermore, there exists a unique normalized bounded variation 

(NBV) function (or distribution) [ ]: ,o ot tµ τ+ →ℂ . Moreover, the system (4.1.1) may 

be reduced to studying a GDDS of the form:  

 ( ) ( ) ( )
o

o

t

t

Fx t G x t s d s
τ

µ
+

′ = −∫ ,         (4.1.2) 

under the common control theory assumption that a state-derivative and continuous de-

lay controller of the following form is obtained: 

( ) ( ) ( ) ( )
o

o

t

t

u t Ex t A x t s d s
τ

µ
+

′= − −∫ɶɶ , 

when sF G−  is a regular pencil the system (4.1.2) is transformed using the Weierstrass 

canonical decomposition form of the pencil sF G− , in two subsystems. One of them is 

in standard DDS form, while the other is a nilpotent system. This procedure also sug-

gests the form that the initial function should have, such that the corresponding (4.1.1) 

initial value problem admits a unique solution. Finally, in sub-section 4.5 an illustrative 

application is presented using MatLab DDE initial value problem solver. Sub-section 

4.6 concludes this chapter. 
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4.2 Mathematical Background from Matrix Pencil Theory  

We begin this section by introducing some preliminary concepts and definitions 

from matrix pencil theory which are used throughout the chapter. Firstly, let there be 

given the constant matrices F  and G m n×∈ℂ , which uniquely determine the underlying 

matrix pencil sF G−  of system (4.1.2).  

Definition 4.2.1 Given , m nF G ×∈ℂ and an indeterminates , the matrix pencil sF G−  is 

called regular when m n=  and ( )det sF G− ≠O , where O  is the zero polynomial. In 

any other case, the pencil will be called singular.            □  

In the present section, we focus on regular pencils. Now, let ,
r
n nL  be the set on 

n n×  regular pencils, i.e. 

{ }, : ,   r n n
n n sF G F G and sF G regular×− ∈ −≜ ℂL              (4.2.1) 

Definition 4.2.2 The pencil ,
r
n nsF G− ∈L  is said to be strictly equivalent to the pencil 

1 1 ,
r
n nsF G− ∈L  if and only if ( ) 1 1P sF G Q sF G− = − , where ,  n nP Q ×∈ℂ , and detP , 

det 0Q ≠ .                □  

The strict equivalence relation can be defined rigorously on the set of regular pen-

cils as follows: Consider the set 

( ){ }, : ,  ,  det ,  det 0n ng P Q P Q P Q×∈ ≠≜ ℂ  

and a composition rule *  defined on g  as follows: 

: g g g∗ × →  such that ( ) ( ) ( )1 1 2 2 1 2 2 1, * , ,P Q P Q P P Q Q⋅ ⋅≜  

It may readily be verified that ( ),g ∗  forms a non-abelian group.  

Furthermore, an action �  of the group ( ),g ∗  on the set of regular matrix pencils (4.2.1) 

is defined by 
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, ,: r r
n n n ng× →� L L  

such that  ( )( ) ( ) ( ) ( ), , ,P Q sF G P Q sF G P sF G Q− → − −� ≜  

This group has the following properties: 

(a) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2, , , ,P Q P Q sF G P Q P Q sF G− = ∗ −  � � �   

for every 1 2, n nP P ×∈ℂ , 1 2, n nQ Q ×∈ℂ , 1 2 1det ,  det ,  detP P Q , and 2det 0Q ≠ . 

(b) ( )ge sF G sF G− = −� , ,
r
n nsF G− ∈L , where ( ),g n ne I I=  is the identity ele-

ment of the group ( ),g ∗  on the set of ,
r
n nL  defines a transformation group denoted by 

M , see Kalogeropoulos (1985).  

Definition 4.2.3 For ,
r
n nsF G− ∈L , the subset  

( ) ( ) ( ) ( ){ } ,, : , r
n ng sF G P Q sF G P Q g− − ∈ ⊆� ≜ � L  

will be called the orbit of sF G−  at g .             □  

Also M  defines an equivalence relation on ,
r
n nL  which is called a strict equiva-

lence relation and is denoted by sE . So, ( ) ( )1 1ssF G sF G− −E  if and only if 

( )P sF G Q− 1 1sF G= − , where P , n nQ ×∈ℂ  and detP, det 0Q ≠ . 

The class of ( )s sF G−E  is characterized by a uniquely defined element, known as 

a complex Weierstrass canonical form, w wsF Q− ; see Kalogeropoulos (1985), specified 

by the complete set of invariants of ( )s sF G−E . 

This is the set of  (e.d.) obtained by factorizing the invariant polynomials ( )ˆ,if s s  

into powers of homogeneous polynomials irreducible over ℂ . 

In the case where ,
r
n nsF G− ∈L  and det 0F = , we have elementary divisors of the 

following type: 
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• zero elementary divisors (z.e.d.) are those of type ps ;  

• nonzero finite elementary divisors (nz. f.e.d.) are those of type ( )s a
π− , with 

0a ≠ ;  

• infinite elementary divisors (i.e.d) are those of type ˆqs . 

Then, the complex Weierstrass form w wsF Q−  of the regular pencil sF G− , 

det 0F =  is defined by w wsF Q− ≜  { , }p p q qblock diag sI J sH I− − , where the first nor-

mal Jordan type block  p psI J−   is uniquely defined by the set of f.e.d.  

( ) ( )1

1 , ,
p p

s a s a ν
ν− −… , 

1
j

j

p p
ν

=

=∑  

of sF G−  and has the form 

( ) ( ){ }
1 1 1 , , ,p p p p p psI J block diag sI J a sI J a

ν ν ν− − −≜ …  

and also the q  blocks of the second uniquely defined block q qsH I−  correspond to the 

i.e.d.  

( ) ( )1ˆ ˆ, ,
q q

s s σ… , 
1

j
j

q q
σ

=

=∑  

of sF G−  and it has the form 

{ }
1 1

 , , .q q q q q qsH I block diag sH I sH I
σ σ

− − −≜ …  

Thus the qH  is a nilpotent matrix of index { }* max : 1,2, ,jq q j σ= = … ,  

where      
*q

qH = O  

( )
j j jp p qI ,J a ,H  are the matrices: 
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1 0 0

0 1 0

0 0 1

j j

j

p p

pI
×

 
 
 = ∈
 
 
 

⋯

⋯
ℝ

⋮ ⋮ ⋱ ⋮

⋯

, ( )

1 0 0

0 1 0

0 0 0 1

0 0 0 0

j j

j

p p

p

a

a

J a

a

a

×

 
 
 
 = ∈
 
 
  

⋯

⋯

ℂ⋮ ⋮ ⋱ ⋮ ⋮  

0 1 0 0

0 0 1 0

0 0 0 0 1

0 0 0 0 0

j j

j

q q

qH ×

 
 
 
 = ∈
 
 
  

⋯

⋯

ℝ⋮ ⋮ ⋱ ⋮ ⋮          (4.2.2) 
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4.3 Delay Differential Equations and Renewal Equations 

In this section, we describe briefly the necessary theory of Delay Differential Equa-

tions (DDEs). For DDEs we must provide not just the value of the solution at the initial 

point, but also the “history”, i.e. the solution at time prior to the initial point. Thus, the 

main result is 

Theorem 4.3.1 Consider the system  

( ) ( ) ( )
o

o

t

t

x t A d s x t s
τ

µ
+

′ = −∫ ot t≥ , 0τ >        (4.3.1) 

and the initial condition    ( ) ( )x t tϕ= ,              (4.3.2) 

for n nA ×∈ℂ  constant matrix, with NBV function [ ]: , n n
o ot tµ τ ×+ →ℂ  be given, and 

[ ]( )[ , ) , n
o oC t tϕ τ∈ − ℂ . Then there exists a unique function  

( )1[ , ) ,o ox C t C tτ∈ − ∞ ∞∩  

that satisfies (4.3.1) and (4.3.2).              □    

The existence and uniqueness may be found in Bellmann and Cooke (1963), Hale 

(1977), Hale and Verduyn Lunel (1993) and Diekmann et al. (1995).  

Definition 4.3.1 Denote the convolution product by ∗ , such as 1f g L∗ ∈  is defined by 

( ) ( )
o

t

t

f g f t g dτ τ τ∗ −∫≜  

where f  is a (possibly n n×  matrix - valued) 1L -function.         □  

Definition 4.3.2 Equations of the form  

( )y A y hµ= ∗ + , 
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where the kernel µ , the forcing function h  are given and y  is the unknown parameter, 

are called (linear) renewal matrix-valued equations or, alternatively, Volterra convolu-

tion integral matrix-valued equations (of second kind).                      □  

Now, we reformulate Theorem 4.3.1 taking into consideration the two definitions 

above. Our strategy is to rewrite the initial-value problem for a linear autonomous delay 

differential equation as a renewal equation and then to use the resolvent to obtain a rep-

resentation of the solution.   

Theorem 4.3.2 Let is µ  NBV function and [ ]( )[ , ) , n
o oC t tϕ τ∈ − ℂ  be given. Define g 

and f  in terms of µ  and ϕ  by, respectively 

( ) ( ) ( ) ( )
ot

o

t

g A t t d s t s
τ

µ ϕ µ ϕ
+ 

= + − 
  

∫  

and   ( ) ( ) ( ) ( )
o

o

t

o o

t

f t A t s s t s ds
τ

ϕ µ µ ϕ
+

= + + − −  ∫  

the delay differential system (4.3.1) provided with the initial condition (4.3.2) admits a 

unique solution on [ , )ot τ− ∞ . For ot t≥  this solution coincides with 

 ( )x A x fµ= ∗ +                  (4.3.3) 

whereas the derivative x′  coincides with the unique solution of the renewal equation  

( )x A x gµ′ ′= ∗ + .              □  

The proof may be found in Diekmann et al. (1995).  

Definition 4.3.3 The characteristic matrix ( )z∆  is defined by the expression 

( ) ( )
o

o

t
zt

t

z zI A e d t
τ

µ
+

−∆ − ∫≜ .              □  

In the next theorem, we obtain a representation formula using Laplace transformation.  
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Theorem 4.3.3 For µ  NBV function and [ ]( )[ , ) , n
of C t∈ ∞ ℂ  of bounded variation and 

constant for t τ≥  the solution x  of the renewal equation (4.3.3) admits for ot t>  the 

representation 

( ) ( ) ( )
( )

11

2
o

zt zs
o

L t

x e z f t e df s dz
i

τ

γπ
− −
 

= ∆ + 
 
 

∫ ∫            (4.3.4) 

for ( ){ }sup Re : det 0z zγ > ∆ = , and ( )L γ  denotes the line { }| Rez z γ=  parallel to the 

imaginary axis in the complex plane. Moreover, by 
( )

... 
L

dz
γ
∫  we denote the so-called 

principal value integral lim  
i

i

dz
γ ω

ω
γ ω

+

→∞
−
∫ … .            □  

The proof may be also found in Diekmann et al. (1995).  

Remark 4.3.1  

4.3.1.1 There are several numerical computation methods for the characteristic roots, 

( )det 0z∆ = , of linear delay differential equations (4.3.1); see Shampine and Thompson 

(2001). 

4.3.1.2 A detailed study of the asymptotic behaviour of the solution (4.3.4) is also 

available on Diekmann et al. (1995).             □  
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4.4  Systems of Generalized Linear Differential Equations with 

Distributed Delay   

In this section, we deal with the initial value problem for generalized regular DDSs. 

These systems of the form 

( ) ( ) ( ) ( )
o

o

t

t

Ex t A x t s d s Bu t
τ

µ
+

′ = − +∫    ot t≥ , 0τ >     (4.4.1) 

          ( ) ( )x t tϕ= ,                      o ot t tτ− ≤ ≤            (4.4.2) 

where ,  n nE A ×∈ℂ , with det 0E = , and n lB ×∈ℂ  are constant matrices; the matrix pen-

cil sE A−  is supposed to be regular, ( )[ , ), l
ou C t∈ ∞ ℂ  is a control (column vector 

function of dimension l ), and ot t≥ , where 0τ >  is constant. Furthermore, there exists 

a unique normalized bounded variation (NBV) function (distribution) [ ]: ,o ot tµ τ+  

→ℂ .  

Additionally, let suppose that 1[ , )o r oC t tϕ τ∈ −  is 1C -differentiable. 

Lemma 4.4.1 The system (4.4.1) may be reduced to studying a generalized linear DDS 

of the form 

( ) ( ) ( )
o

o

t

t

Fx t G x t s d s
τ

µ
+

′ = −∫ .             (4.4.3) 

Proof. Assume that the state-derivative and delay feedback controller has the following 

form 

( ) ( ) ( ) ( )
o

o

t

t

u t Ex t A x t s d s
τ

µ
+

′= − −∫ɶɶ ,            (4.4.4) 

where ,  l nE A ×∈ɶɶ ℂ  are constant matrices. Then by substituting the above expression into 

(4.4.1), it is obtained (4.4.3) where  
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n nF E BE ×= − ∈ɶ ℂ  and  n nG A BA ×= − ∈ɶ ℂ .   □  

Definition 4.4.1 System (4.4.1) is being called normalized if a feedback controller 

(4.4.4) may be chosen such that its closed-loop (4.4.3) is normal, i.e.  

( )det det 0F E BE= − ≠ɶ .    □  

Moreover, as long as the normalized condition is satisfied, the closed-loop system 

(4.4.3) would become 

( ) ( ) ( )1
o

o

t

t

x t F G x t s d s
τ

µ
+

−′ = −∫                           (4.4.5) 

and its plain feature is its finite poles, i.e. there is not any infinite pole. The solution of 

the above equation is discussed in Section 4.3 (see also remark 4.4.1).  

Lemma 4.4.2 The system (4.4.1) may be reduced to studying a normalizable linear 

DDS (4.4.5) if and only if the compound matrix [ ]( ) 0t
nC E B ≠⋮ , where [ ]( )nC E B ∈⋮  

2
1

n

n

 
× 
 ℂ  is the n -order compound matrix of  [ ]E B⋮ .           □  

The proof may be found in Kytagias (1993), Dai(1989), Kalogeropoulos, Pantelous and 

Papachristopoulos (2008) research work.  

Lemma 4.4.3 If detE r n= < , there exists , n nP Q ×∈ℂ , det ,  det 0P Q≠  such as  

,

, ,

r r n r

n r r n r n r

I
PEQ −

− − −

 
=  
 

O

O O
      and   ,

,

r l

n r l

B
PB

B −

 
 
  

ɶ
≜ɶ  

with ,det n r lB n r− = −ɶ , then the matrix 1
, ,

t
l r l n rE B Q−

− = −  
ɶ ɶ⋮O  normalizes system (4.4.1). 

Proof. The proof is a direct consequence of lemma 4.4.2. Thus, 

suppose that [ ]( ) 0t
nC E B ≠⋮ , then it should be proved that there exists a matrix 

1
, ,

t
l r l n rE B Q−

− = −  
ɶ ɶ⋮O  such that ( )det 0E BE− ≠ɶ .  
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Analytically, since the [ ]( ) 0t
nC E B ≠⋮  it is derived that [ ]rank E B n=⋮ .  

Now, since also the detE r n= <  then there exists , n nP Q ×∈ℂ , det ,  det 0P Q≠  such 

as  

,

, ,

,r r n r

n r r n r n r

I
PEQ −

− − −

 
=  
 

O

O O
 

and [ ] [ ] , ,
,

, , ,

 r r n r r l
n r l

n r r n r n r n r l

I B
n rank E B rank PEQ PB rank r rank B

B
−

−
− − − −

 
= = = = + 

  

ɶ
ɶ⋮ ⋮ ɶ

O

O O
,  

Moreover, it is defined ,

,

r l

n r l

B
PB

B −

 
 
  

ɶ
≜ ɶ  and it is clear that the , n r lrank B n r− = −ɶ  .  

Consequently, the matrix ,n r lB −
ɶ  is full row rank. 

Now, assume that the matrix ( )
,

l n rt
l n rB × −

− ∈ɶ ℂ  and define also ( ) ( )
, ,

n r n rt
n r l l n rX B B − × −

− −= ∈ɶ ɶ ℂ

such as   

( ) ( ) ( ) ( ) ( ) 2

, , , , ,
2

det 0.t t
n r n r l n r l n r n r n r l n r n r l n r n r lX C B C B C B C B C B− − − − − − − − − −= = = >ɶ ɶ ɶ ɶ ɶ  

Denote the matrix 1
, ,

t
l r l n rE B Q−

− = −  
ɶ ɶ⋮O , then 

, ,1 1 1 1
, ,

, , ,

, , ,1 1 1 1

, , , , ,

1

            

            

r r n r r l t
l r l n r

n r r n r n r n r l

t
r r n r r r l l n r

t
n r r n r n r n r r n r l l n r

r

I B
E BE P Q P B Q

B

I I B B
P Q P Q

B B

I
P

−− − − −
−

− − − −

− −− − − −

− − − − − −

−

  
 − = +     

    

  
= +   

    

=

ɶ
ɶ ɶ⋮ɶ

ɶ ɶ

ɶ ɶ

O
O

O O

O

O O O

, , 1

, , ,

.
t

r l l n r

t
n r r n r l l n r

B B
Q

B B
− −

− − −

 
 
  

ɶ ɶ

ɶ ɶO

 

Finally, it is easily derived that  

( ) , ,1 1

, , ,

det det det det 0
t

r r l l n r

t
n r r n r l l n r

I B B
E BE P Q

B B
−− −

− − −

 
− = ≠ 

  

ɶ ɶ
ɶ

ɶ ɶO
.                     □  
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In view of Lemmas 4.4.2 and 4.4.3 it is considered, in what follows, systems of 

the form (4.4.3) where the corresponding matrix pencil sF G−  is regular, i.e. 

[ ]( ) 0t
nC E B =⋮  and ( )det det 0F E BE= − =ɶ . 

From the regularity of sF G− , there exist non-singular n n×ℂ  matrices P  and Q such 

that (see also section 4.2) 

,

,

,p p q

w
q p q

I
PFQ F

H

 
= =  

 

O

O
      (4.4.6) 

,

,

,p p q

w
q p q

J
PGQ G

I

 
= =  

 

O

O
    (4.4.7) 

where , ,p p qI J H  are given by (4.2.2). 

Proposition 4.4.1 The system (4.4.3) may be written in the form 

( ) ( ) ( ),
o

o

t

p p p

t

y t J y t s d s
τ

µ
+

′ = −∫     (4.4.8)  

( ) ( ) ( ).
o

o

t

q q q

t

H y t y t s d s
τ

µ
+

′ = −∫    (4.4.9) 

Proof. Consider the transformation             

 ( ) ( )x t Qy t= .                                                    (4.4.10) 

Substituting the previous expression into (4.4.3), we obtain  

( ) ( ) ( ).
o

o

t

t

FQy t GQ y t s d s
τ

µ
+

′ = −∫  

Whereby, multiplying by P , we arrive at    

( ) ( ) ( )
o

o

t

w w

t

F y t G y t s d s
τ

µ
+

′ = −∫  
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Moreover, we can write ( )y t  as ( ) ( )p

q

y
y t t

y

 
=  
  

.  

And taking into account the above expressions, we arrive easily at (4.4.7) and (4.4.8). 

□  

Remark 4.4.1 The system (4.4.7) is in the standard form of systems of linear delay dif-

ferential equations, and the corresponding initial value problem 

 ( ) ( ) ( )
o

o

t

p p p

t

y t J y t s d s
τ

µ
+

′ = −∫ ,    ot t≥ , 0τ >          (4.4.11) 

          ( ) ( )p py t tϕ= ɶ ,           o ot t tτ− ≤ ≤      (4.4.12) 

may be treated by classical methods (see, section 4.2). Additionally, as it is derived 

from expression (4.4.12), the initial state function (4.4.2) obtains the following general 

format: 

( )
( )
( ) ( )

( )
( )

1 1p p

q q

t t
t Q t Q

t t

ϕ ϕ
ϕ ϕ

ϕ ϕ
− −

   
= = =   
      

ɶ
ɶ

ɶ
, as det 0Q ≠ .         □  

Proposition 4.4.2 The system (4.4.9) has the following solution 

( ) 0q qy t = , where, ( ) ( )q qy t tϕ= ɶ , for .o ot t tτ− ≤ ≤  

Proof. We start by observing that - as it is well known - there exists a q∗ ∈ℕ  such that 

*q
qH =O                      (4.4.13) 

i.e. the *q  is the annihilation index of qH . We obtain 

 ( ) ( ) ( )1 1

o

o

t

q q q

t

H y t y t s d s
τ

µ
+

′ = −∫         (4.4.14) 

 whereby differentiating, and multiplying by qH , we get  
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( ) ( ) ( )2
1 1

o

o

t

q q q q

t

H y t H y t s d s
τ

µ
+

′′ ′= −∫          (4.4.15) 

and substituting (4.4.14) into (4.4.15)  

( ) ( ) ( ) ( )2
1 2 2 1

o o

o o

t t

q q q

t t

H y t y t s s d s d s
τ τ

µ µ
+ +

′′ = − −∫ ∫ .        (4.4.16) 

By differentiating and multiplying again by qH  the expression (4.4.16) it is obtained 

( ) ( ) ( ) ( ) ( ) ( )33
1 2 3 3 2 1

o o o

o o o

t t t

q q q

t t t

H y t y t s s s d s d s d s
τ τ τ

µ µ µ
+ + +

= − − −∫ ∫ ∫  

Repeating this argument a sufficient number of times, we end up with 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 3 2 1

o o o

o o o

t t t
qq

q q q q q
t t t

H y t y t s s s s d s d s d s d s
τ τ τ

µ µ µ µ
∗∗

∗ ∗

+ + +

= − − − −∫ ∫ ∫⋯ … … . 

(4.4.17) 

Taking into consideration the expression (4.4.13), and all the other similar relations 

up to and including (4.4.17) as well, we arrive at 

( ) ( ) ( ) ( ) ( )1 2 3 3 2 1 0
o o o

o o o

t t t

q qq q
t t t

y t s s s s d s d s d s d s
τ τ τ

µ µ µ µ∗ ∗

+ + +

− − − − − =∫ ∫ ∫⋯ … …  

which  gives  ( ) 0q qy t =  with history, ( ) ( ) [ , )q q o oy t t C t tϕ τ= ∈ −ɶ .                  □  

We conclude this section with the following theorem; its proof follows the proceed-

ing discussion. 

Theorem 4.4.1 The initial value problem for the homogeneous generalized linear regu-

lar DDS of the form:  

( ) ( ) ( )
o

o

t

t

Fx t G x t s d s
τ

µ
+

′ = −∫    ot t≥ , 0,τ >  
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and the initial condition                               ( ) ( )x t tϕ= ,     o ot t tτ− ≤ ≤  

has a unique solution that ( ) ( )
[ , )p

o o
q

t
t C t t

ϕ
ϕ τ

 
= ∈ − 
 O

, and 
1

j
j

p p
ν

=

=∑  (i.e. the sum of 

the degrees of the f.e.d.p q n+ = ).                                   □  
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4.5 A Numerical Application  

In this section, we illustrate the straightforward solution of a GDDS (4.5.1) by 

computing and plotting the solution. A detailed discussion of the method used by dde23 

(Matlab; m -file) can be found in Shampine and Thompson (2001). Now, suppose that 

we obtain the following GDDS 

( ) ( )
1

0

,sEx t A x t s e ds−′ = −∫            (4.5.1) 

where 4 4,E A ×∈ℂ , are constant matrices with det 0E = , and delay period of 1 0s− < < . 

By the associated matrix pencil, sE A− , and the results of the 4th subsection, it is sup-

posed that the following two subsystems are obtained  

( )
( )

( )

( )

1

1
1 0

1
2

2

0

1 1
,

0 1

s

s

y t s e ds
y t

y t
y t s e ds

−

−

 
− ′     =     ′      −

  

∫

∫

      (4.5.2) 

( )
( )

( )

( )

1

3
3 0

1
4

4

0

0 1

0 0

s

s

y t s e ds
y t

y t
y t s e ds

−

−

 
− ′    =    ′      −

  

∫

∫

,       (4.5.3) 

which are solved on [ ]0,10t ∈  with history; ( ) 0.1iy s =  for 1,2i =  and 1 0s− ≤ ≤ ,  re-

spectively.  

Firstly, according to the Proposition 4.4.2 the subsystems (4.5.3) has the zero solu-

tion 

( )
( )

3

4

0
.

0

y t

y t

   
=   
   

 

Additionally, the system (4.5.2) is reformed to (4.5.4) 



 
 

 

So, we take advantag

plotting (figure 4.5.1) the solution of the (4.5.4

 

Figure 4.5.
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( ) ( ) (

( ) ( )

1 1

1 1 2

0 0

1

2 2

0

.

s s

s

y t e y t s ds e y t s ds

y t e y t s ds

− −

−


′ = − + −





 ′ = −


∫ ∫

∫

So, we take advantage of the specified history of ( )iy t , 1,2i =

5.1) the solution of the (4.5.4) system.  

5.1: The plot of the solution of (4.5.4) system into 

 

 

)y t e y t s ds e y t s ds= − + −

     (4.5.4) 

1,2=  for computing and 

 

) system into [ ]0,10  
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4.6 Conclusions - Further Research  

In this section, a special class of generalized regular differential delay systems with 

constant coefficients is extensively studied. In practice, these kinds of systems can 

model the size of a population or the value of an investment. By considering the regular 

Matrix Pencil approach, we finally decompose it into two subsystems, whose solutions 

are obtained. Moreover, since the initial function is given, the corresponding initial 

value problem is uniquely solvable. Finally, an illustrative application is presented using 

dde23 MatLab (m –) file based on the explicit Runge - Kutta method. 

As a further extension of the present chapter,  

• we want to investigate the special properties of the control input. Thus, several 

known controllability and stability criteria (see Wei, 2004) can be further extended.  

• The introduction of special normalized bounded variation (NBV) functions (or dis-

tributions) [ ]: ,o ot tµ τ+ →ℂ  is also of a great mathematical interest and impor-

tance. In order to be able to investigate the existence and the uniqueness of the solu-

tion, some elements of the Functional Analysis are required, see for instance Yosida 

(1966), Hirch and Lacombe (1999), and Pedersen (2000).  

• Additionally, the results of the 2nd chapter can be applied and further extended into 

such kind of differential systems. Thus, the change of the state in zero time, and the 

related impulsive behaviour can be combined with the special normalized bounded 

variation (NBV) functions (or distributions) [ ]: ,o ot tµ τ+ →ℂ .  

Moreover,    

• we want to consider a more general system, see (4.1.2), i.e. 

( ) ( ) ( ) ( )
o

o

t

t

Ex t A x t s d s Bu t
τ

µ
+

′ = − +∫ , 

where the matrices E  and A are rectangular time-invariant coefficients or with a spe-

cial structure (symmetric, skew symmetric, Toeplitz, non-negative etc). Then some 
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more special canonical forms, like Kronecker or Tompson etc should be applied. In sev-

eral applications, see Kalogeropoulos, Karageorgos and Pantelous (2009) and references 

therein, analytical solutions are also required, where some elements of ODEs and Op-

erator Theory have to be applied.   

• secondly, we want to consider the stochastic version of the system (4.1.2), see also 

6th section of the present thesis. Under the introduction of irregular inputs, several 

other aspects can be further discussed.      
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Chapter 5Chapter 5Chapter 5Chapter 5    

On Linear Generalized Neutral Differential Delay Systems  

 

5.1 Introduction  

Nowadays, it has been assumed that the class of generalized neutral differential de-

lay systems (neutral dds) provides an excellent mathematical modelling framework for 

numerous applications in natural science and technology. For instance, they are fre-

quently used for the study of distributed networks containing lossless transmission lines; 

see for instance the comments in Hale (1977). This has been known for some time, but 

the theory of such systems, with piecewise constant or continuous lagging arguments, 

has been extensively developed only recently. 

In this section, our long-term purpose is to bring the solution’s properties for linear 

generalized neutral dds into the mainstream of matrix pencil theory. This approach has 

been extensively used in control theory for the study of linear generalized time-invariant 

dynamical systems without delay; see for more details previous chapter. 

The present section is organized as follows: In sub-section 5.2, the necessary pre-

liminary concepts from matrix pencil theory are presented. In sub-section 5.3, the main 

results of this work are developed. Thus, we investigate the solution of linear general-

ized neutral dds with constant coefficients, that means 

( ) ( ) ( ) ( ) ( )
1 1

i i i i
i i

Ex t Ax t B x t C x t Du t
ρ ρ

τ τ
= =

′ ′= − − + − +∑ ∑             (5.1.1) 
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where, E , A and , ×∈ℂ n n
i iB C  for 1,2, ,i ρ= …   are constant matrices, with det 0E = , 

and the input function 1[ , )ou C t∈ ∞  (column vector function of dimension l ) is as-

sumed to consist of all differentiable functions whose derivative is continuous (continu-

ously differentiable), and ot t≥ , 1 20 ρτ τ τ< < < <…  are constants. This kind of delay 

system is very comon, as Baker, Paul and Willé (1998) claim, due to the fact that con-

stant delay (lag) functions arise frequently in the literature of applications. Furthermore, 

the system (5.1.1) may be reduced to studying a generalized singular differential system 

of the form:  

 ( ) ( ); , 1,2, , ; , 1,2, ,i iFz t i Gz t iτ ρ τ ρ′ = = =… … ,     (5.1.2) 

where , ρ×∈ℂn nF G , 1
ρ

ρ
× ∈ 

ɶ≜ ⋮⋯⋮ ⋮ ℂn nF M M F , 1
ρ

ρ
× ∈ 

ɶ≜ ⋮⋯⋮ ⋮ ℂn nG N N G , 

( )

( )
( )

( )
( )

1

1

; , 1,2, ,i

x t

x t
z t i

x t

x t

ρ

ρ

τ

τ
τ ρ

τ

−

 −
 
 −
 =  
 − 
  

… ≜ ⋮ . 

Under the, usual in control theory, assumption that  

( ) ( ) ( ) ( ) ( )
1 1

i i i i
i i

u t Ex t Ax t B x t C x t
ρ ρ

τ τ
= =

′ ′= − + − − −∑ ∑ɶ ɶɶ ɶ ,       (5.1.3) 

when sF G−  is a singular pencil the system (5.1.2) is transformed using the complex 

Kronecker canonical decomposition form of the pencil sF G−  into five subsystems. 

Finally, in sub-section 5.4 an illustrative application is presented. 
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5.2 Matrix Pencil Theory Background 

This section introduces some preliminary concepts and definitions from Matrix 

Pencil theory that are been used throughout the chapter. Our result will be restricted to 

linear generalized neutral dds of the form (5.1.1) where , , n nE A D ×∈ℂ  and , n n
i iB C ×∈ℂ  

for 1,2, ,i ρ= …  are time-invariant matrices, with det 0E = , and the input function 

( )u t  is assumed to be continuously differentiable. Through this paper we shall adopt 

the following notation: ,ℝ ℂ  denote the field of real numbers and complex numbers, 

respectively. ℕ  is the set of natural numbers. If F  is a field, ×m n
F  denotes the set of 

×m n matrices with elements from F . 

Now, if we have sF G− , 1 1 ,− ∈ r
m nsF G L , then ( ) ( )1 1− −ssF G sF GE  if and only if 

( ) 1 1− = −P sF G Q sF G, where ×∈ m mP F , ×∈ n nQ F  and detP , det 0≠Q .  

The class of ( )−s sF GE  is characterized by a uniquely defined element, known as 

a complex Kronecker canonical form, −k ksF Q , see Gantmacher (1959), specified by 

the complete set of invariants of ( )−s sF GE . Unlike the case of regular pencils, how-

ever, the characterization of the ( )−s sF GE , ,− ∈ r
m nsF G L  apart from the set of ele-

mentary divisors requires the definition of additional sets of invariants, the minimal in-

dices. 

The sets of the minimal degrees { },  1≤ ≤ −iv i n r and { },  1≤ ≤ −ju j m r  are known 

by Gantmacher (1959) as column minimal indices (c.m.i.) and row minimal indices 

(r.m.i.) of sF G− , respectively. Furthermore, If ( ) { }min ,= − <r rank sF G m n  it is 

evident that 

( )
1 1

,
n r m r

i j w w
i g j h

r v u rank sF G
− −

= + = +

= + + −∑ ∑       (5.2.1) 
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where w wsF G−  is the complex Weierstrass canonical form specified by the set of ele-

mentary divisors (e.d.) obtained by factorizing the invariant polynomials ( )ˆ,f s s  over 

[ ]ˆ,s sF  (the ring of polynomials in s  and ˆ 1/s s=  with coefficients on F), which are the 

nonzero elements of the diagonal of Smith canonical form of the homogeneous pencil 

ˆsF sG− , into powers of homogeneous polynomials irreducible over F . In the case 

where −sF G is a singular pencil, we have elementary divisors of the following type: 

• e.d. of the type ds , d ∈ℕ , are called zero elementary divisors (z.e.d.). 

• e.d. of the type ( )c
s a− , 0a ≠ , c∈ℕ  are called non-zero finite elementary divisors 

(nz. f.e.d.). 

• e.d. of the type ̂ qs  are called infinite elementary divisors (i.e.d). 

• c.m.i of the type { }0ν ∈ ∪ℕ  are called column minimal indices (c.m.i.) deduced 

from the column degrees of minimal polynomial bases of the maximal sub module 

NM  embedded in ( ) ( ) ( ) ( ) ( ){ }: 0= ∈ − =n
right s x s s sF G x sFN  with a free ( )sF -

module structure. 

• r.m.i  of the type { }0u∈ ∪ℕ  are called row minimal indices (r.m.i .) deduced from 

the row degrees of minimal polynomial bases of the maximal sub module NM  em-

bedded in ( ) ( ) ( ) ( ){ }: 0ψ ψ= ∈ − =m t t
left s s s sF GFN  with a free ( )sF -module 

structure.  

See for more details Gantmacher (1959), Forney (1975), Karcanias (1979), Kar-

canias and Hayton (1981), Kalogeropoulos (1985) et al. The complex Kronecker form 

k ksF Q−  of the singular pencil sF G−  is defined. 

{ }, , , , ,λ λ− Λ − Λ − − −≜ t t
k k h g v v u u p p q qsF Q block diag s s sI J sH IO       (5.2.2) 

Analytically, we present the following definition.  
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Definition 5.2.1 a) The ,h gO  is uniquely defined by the sets { }0,0, ,0
g

…

����

 and { }0,0, ,0
h

…

����

 

of zero, column, and row minimal indices, respectively. 

b) The second normal block v vs λΛ −  of (5.2.2) is uniquely defined by the set of non-

zero column minimal indices (a new arrangement of the indices of v  must be noted in 

order to simplify the notation) { }1 2 n r gv v v − −≤ ≤ ≤⋯ of sF Q−  and has the form 

{ }1 1 2 2
 , , , , ,

i i n r g n r gv v v v v v v v v vs block diag s s s sλ λ λ λ λ
− − − −

Λ − Λ − Λ − Λ − Λ −≜ … … ,   (5.2.3) 

where 0 Λ =  ⋮i iv vI , 0λ  =  ⋮
i iv vI  for every 1,2, ,i n r g= − −… , and 

ivI  and 0  denote 

the i iv v×  identity matrix and the zero column vector, respectively. 

c) The third also normal block t t
u us λΛ −  of (5.2.2) is uniquely determined by the set of 

non-zero row minimal indices (a new arrangement of the indices of u  must be noted in 

order to simplify the notation) { }1 2 m r hu u u − −≤ ≤ ≤⋯ of sF G−  and has the form 

{ }1 1 2 2
 , , , , ,

j j m r h m r h

t t t t t t t t t t
u u u u u u u u u us block diag s s s sλ λ λ λ λ

− − − −
Λ − Λ − Λ − Λ − Λ −≜ … … , (5.2.4) 

where 

0

 
 

Λ =  
 
 

⋯

j

j

u

t
u

t

I

, 

0

λ
 
 

=  
 
 

⋯
j

j

t

t
u

uI

 for every 1,2, ,j m r h= − −… , and 
juI  and 0  denote 

the j ju u×  identity matrix and the zero column matrix, respectively. 

d) The forth and the fifth normal matrix block of expression (5.2.2) is the complex 

Weierstrass form w wsF Q−  of the regular pencil sF G− , (i.e. det 0F = , if =n m ) is 

defined by  

{ } ,w w p p q qsF Q block diag sI J sH I− − −≜ ,   (5.2.4) 

where the first normal Jordan type block p psI J−  is uniquely defined by the set of f.e.d.  
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( ) ( )1

1 , , ν
ν− −…

p p
s a s a , 

1
j

j

p p
ν

=

=∑  

of sF G−  and has the form 

( ) ( ){ }
1 1 1 , ,p p p p p psI J block diag sI J a sI J a

ν ν ν− − −≜ … .         (5.2.5) 

And also the q  blocks of the second uniquely defined block q qsH I−  correspond to the 

i.e.d.  

( ) ( )1ˆ ˆ, ,
q q

s s σ… , 
1

j
j

q q
σ

=

=∑  

of sF G−  and has the form 

{ }
1 1

 , ,q q q q q qsH I block diag sH I sH I
σ σ

− − −≜ … .  (5.2.6) 

Thus the qH  is a nilpotent matrix of index { }* max : 1,2, ,σ= = …jq q j ,  

where            *q
q qH = O ,               (5.2.7) 

( )  p p qI , J a , H  are the matrices: 

1 0 0

0 1 0

0 0 1

p p
pI ×

 
 
 = ∈
 
 
 

⋯

⋯
ℝ

⋮ ⋮ ⋱ ⋮

⋯

, ( )

1 0 0

0 1 0

0 0 0 1

0 0 0 0

×

 
 
 
 = ∈
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮ p p
p

a

a

J a

a

a

F , 

and            

0 1 0 0

0 0 1 0

0 0 0 0 1

0 0 0 0 0

q q
qH ×

 
 
 
 = ∈
 
 
  

⋯

⋯

ℝ⋮ ⋮ ⋱ ⋮ ⋮ .             (5.2.8) 
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5.3 Systems of Linear Generalized Neutral Differential Delay 

Equations 

In this sub-section, we deal with the initial value problem for linear generalized neu-

tral dds. These systems of the form 

( ) ( ) ( ) ( ) ( )
1 1

i i i i
i i

Ex t Ax t B x t C x t Du t
ρ ρ

τ τ
= =

′ ′= − − + − +∑ ∑ ,    ot t> , 

1 20 ρτ τ τ< < < <…  
(5.3.1) 

          ( ) ( )x t f t= ,      o ot t tρτ− ≤ ≤    (5.3.2) 

where , ×∈ℂn nE A , , ×∈ℂ n n
i iB C  for 1,2, ,i ρ= …  and ×∈ℂl nD  are constant matrices, 

[ , )ou C t∈ ∞  is a control (column vector function of dimension l ), and ot t> , 1 20 τ τ< <  

ρτ< <… . Additionally, let suppose that 1[ , )ρτ∈ −o of C t t  is continuously differenti-

able. 

Lemma 5.3.1 The system (5.3.1) may be reduced to studying a linear generalized neu-

tral dds of the form:  

( ) ( ) ( ) ( )
1 1

i i i i
i i

Fx t Gx t M x t N x t
ρ ρ

τ τ
= =

′ ′= − − + −∑ ∑ɶɶ .      (5.3.3) 

Proof. Assume that the state-derivative and delay feedback controller has the following 

type 

( ) ( ) ( ) ( ) ( )
1 1

i i i i
i i

u t Ex t Ax t B x t C x t
ρ ρ

τ τ
= =

′ ′= − + − − −∑ ∑ɶ ɶɶ ɶ .             (5.3.4) 

where , ×∈ɶɶ ℂ l nE A , and , ×∈ɶɶ ℂl n
i iB C  for 1,2, ,i ρ= …  are time invariant matrices. Then 

by substituting the above expression into (5.3.1), we obtain (5.3.3), where  

×= − ∈ɶ ɶ ℂn nF E DE ,  ×= − ∈ɶ ɶ ℂn nG A DA , ×= − ∈ɶ ℂn n
i i iM B DB  

and ×= − ∈ɶ ℂn n
i i iN C DC , 1,2, ,i ρ= … .       □  
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In the theory of control science, see analogously Dai (1989), the proportional and 

the derivative feedback may be viewed as the “speed” feedback. In our case, see eq. 

(5.3.4), we provide to our accelerate feedback controller a memory. In the literature, lit-

tle is known about (5.3.4). Thus, it should be noticed here that it is planned to investi-

gate this kind of controller more in the near future, since the applications are numerous 

and very interesting.      

Definition 5.3.1 (Kytagias, 1993, Kalogeropoulos, Pantelous and Papachristopoulos, 

2008) System (5.3.1) is called normalized if a feedback controller (5.3.4) may be chosen 

such that its closed-loop (5.3.3) is normal, i.e.  

( )det det 0F E DE= − ≠ɶ ɶ    (5.3.5) 

□  

Moreover, as long as the normalized condition is satisfied, the closed-loop system 

(5.3.3) would become 

( ) ( ) ( ) ( )1 1 1

1 1
i i i i

i i

x t F Gx t F M x t F N x t
ρ ρ

τ τ− − −

= =

′ ′= − − + −∑ ∑ɶɶ ɶ ɶ ,            (5.3.6) 

and its plain feature is its finite poles, i.e. it is transformed to a delay system without any 

infinite pole. The following results present the necessary and sufficient conditions to 

succeed in transferring our system (3.1) into a normalizable neutral DDS. 

Now, we present an alternative approach for treating (3.1). In order to find a solu-

tion of the corresponding neutral DDS, some additional results are required.  

Lemma 5.3.2 The system (5.3.3) may be reduced to studying a linear generalized sys-

tem of the type 

( ) ( ); , 1,2, , ; , 1,2, ,i iFz t i Gz t iτ ρ τ ρ′ = = =… … ,   (5.3.7) 

where , ρ×∈ℂn nF G . 

Proof. The expression (5.3.3) can be transposed into 



 
 

121 
 

 

( ) ( ) ( ) ( )
1 1

i i i i
i i

Fx t M x t Gx t N x t
ρ ρ

τ τ
= =

′ ′+ − = + −∑ ∑ɶɶ , 

or equivalently into 

( )
( )

( )
( )

( )
( )

( )
( )

1 1

1 1

1 1

x t x t

x t x t
M M F N N G

x t x t

x t x t

ρ ρ

ρ ρ

ρ ρ

τ τ

τ τ

τ τ

− −

   ′ − −
   
   ′ − −
      =      
   ′ − −   
   ′   

ɶɶ⋮⋯⋮ ⋮ ⋮⋯⋮ ⋮⋮ ⋮ .        (5.3.8) 

Then, if we set 

1
ρ

ρ
× ∈ 

ɶ≜ ⋮⋯⋮ ⋮ ℂn nF M M F ,  1
ρ

ρ
× ∈ 

ɶ≜ ⋮⋯⋮ ⋮ ℂn nG N N G , 

and  

( )

( )
( )

( )
( )

1

1

; , 1,2, ,i

x t

x t
z t i

x t

x t

ρ

ρ

τ

τ
τ ρ

τ

−

 −
 
 −
 =  
 − 
  

… ≜ ⋮ , 

and substitute the above expressions into (5.3.8), we obtain (5.3.7).         □  

In view of Lemma 5.3.2, we consider, in what follows, systems of the form (5.3.7) 

where the corresponding matrix pencil sF G−  is singular, as n nρ≠  (while 1ρ > ).  

From the singularity of sF G− , there exist non singular matrices ×∈ℂn nP  and 

ρ ρ×∈ℂ n nQ  such that: 

{ }, , , , ,= Λ Λ≜ t
k h g v u p qPFQ F block diag I HO         (5.3.10) 

{ }, , , , ,λ λ= ≜ t
k h g v u p qPGQ G block diag J IO ,       (5.3.11) 
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where the elements of (5.3.10) and (5.3.11) are well determined in Section 5.2. Addi-

tionally, it is profound that ( )= − <r rank sF G n, and the expression (5.2.1) can be 

transposed to  

( )
1 1

ρ − −

= + = +

− < − − <∑ ∑
n r n r

w w i j
i g j h

rank sF G n v u n.                          (5.3.12) 

Theorem 5.3.1 The system (5.3.7) may be decomposed into the equivalent set of subsys-

tems  

( ) ( ), 1 , 1; ;τ τ′ =h g h gy t y tO O ,    (5.3.13) 

( ) ( )v v vy t y tν λ′Λ = ,                     (5.3.14) 

( ) ( )t t
u u u uy t y tλ′Λ = ,                  (5.3.15) 

( ) ( )p p py t J y t′ = ,                    (5.3.16) 

( ) ( )q q qH y t y t′ = .                   (5.3.17) 

where  

( )

( )
( )

( )

( )11
1 ; ,o o

g

y t

y t
y t C t t

y t

ρ

ρ
ρ

τ

ττ τ−

 −
 
 −

 = ∈ −   
 
 
 

⋮
, while we define ( )gy t  as the thg  first rows 

of the ( )y t  vector, under a suitable transformation of ( )z t . 

Proof. Consider the transformation 

( ) ( ); ;x t Qy tτ τ= .           (5.3.18) 

Substituting the previous expression into (5.3.7), we obtain  

( ) ( ); ;FQy t GQy tτ τ′ = . 
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Whereby, multiplying by P , we arrive at   

( ) ( ); ;k kF y t G y tτ τ′ = . 

By writing ( ) ( ) ( ) ( ) ( ) ( )1; ;t t t t t
v u p qy t y t y t y t y t y tτ τ =  ⋮ ⋮ ⋮ ⋮ and taking into account the 

above expressions, we arrive easily at (5.3.13) - (5.3.17).           □  

In the sequel, the initial value problem is studied corresponding to the subsystems 

(5.3.13) - (5.3.17) taking into account that 

( ) ( ) ( ) ( ) ( ) ( ) ( )φ   φ   φ   φ   φ  ,
tt t t t t

g v u p q o ot t t t t t C t tρϕ τ   = ∈ −  ⋮ ⋮ ⋮ ⋮ .     (5.3.19) 

Additionally, according to expression (3.12), we should always keep in mind that 

v u p q n+ + + < . 

Proposition 5.3.1 The initial value problem 

( ) ( ), 1 , 1; ;τ τ′ =h g h gy t y tO O , ot t> , 1 0kρ ρ ρτ τ τ− −> > > >…       (5.3.20) 

          ( ) ( )1 ; gy t tτ ϕ= ,         o ot t tρτ− < <          (5.3.21) 

where ( )

( )
( )

( )

( )11
1 ; ,o o

g

y t

y t
y t C t t

y t

ρ

ρ
ρ

τ

ττ τ−

 −
 
 −

 = ∈ −   
 
 
 

⋮
, is satisfied for any initial column vec-

tor function ( ) ( )1 ,g ot C t ρϕ τ ∈ − ∞   of ( )1n gρ − + coordinates.  

Proof. The proof is obvious from the fact that the left factors of ( )1 ;y t τ′  and ( )1 ;y t τ  

are the ( )1h n gρ× − +    zero matrices.             □   

Proposition 5.3.2 Let iv ∈ℕ  be a non-zero column minimal index of the pencil 

,ρ− ∈ s
n nsF G L . Moreover, let the corresponding typical initial value problem from 

(5.3.14) be  
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( ) ( )1 1i i i iv v vy t y tν λ+ +′Λ = , ot t>     (5.3.22) 

                                        ( ) ( )1 1i iv vy t tϕ+ += ,                       (5.3.23) 

with index i  taking values between 1 and ( )1n r n gρ ρ− − − − . 

By taking an initial function 1 : [ , )
iv oy t+ ∞ → ℝ  to be an arbitrary iv -times integrable 

function over [ , )ot ∞ , the solution is given by 

( ) ( ) ( ) ( )1 1 1 1i i i i

o o o o

i

t

t t t t

v v v v

t t t t

v

y t y s ds y s ds y t+ + + +

 
 
 =
 
 
 

∫ ∫ ∫ ∫⋯ ⋯


������

. 

Proof. By the definition of 
ivΛ  and 

ivλ  it follows that the first of the system (5.3.22) - 

(5.3.23) can be written as  

( )
( )

( )

( )
( )

( )

1 1

2 2

1 1

  0 0  

+ +

   
   
      =      
   
      

ɺ

ɺ
⋮ ⋮

⋮ ⋮

ɺ

i i

i i

v v

v v

y t y t

y t y t
I I

y t y t

, 

which is equivalent to 

( )
( )

( )

( )
( )

( )

1 2

2 3

1i iv v

y t y t

y t y t

y t y t+

   
   
   =
   
   
      

ɺ

ɺ

⋮ ⋮

ɺ

.             (5.3.24) 

Such a system is always consistent. If we take ( )1ivy t+  to be an arbitrary iv -times in-

tegrable function, then all jy , 1,2, , ij v= …  may be determined by successive integra-

tions of ( )1ivy t+  from (5.3.24). It is also clear that ( )1ivy t+  satisfies the initial value 

problem.                □  
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Remark 5.3.1 The system (5.3.24) can be written as below 

( )
( )

( )

( )
( )

( )
�

( )
1 1

2 2
1

0 1 0 0 0 0

0 0 1 0 0 0

0

0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

i

i i

vv ii

v

v v

eH

y t y t

y t y t
y t

y t y t

+

   
      
      
      = +      
      
            
   

⋯

ɺ ⋯

ɺ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋮ ⋮⋯ ⋮

ɺ ⋯

⋯

����������

,       (5.3.25) 

where 
ivH  is a nilpotent matrix of index i n r gv v − −≤ , while  1 2 n r gv v v − −≤ ≤ <… . 

Furthermore, the unique solution of (5.3.27) is given by the expressions 

( )
( )

( )

( )

( )
( )

( )

( ) ( )
1 1

2 2
1

v o vi i

i i

o

i i

o

t
H t t H t so

v v

t

v v o

y t y t

y t y t
e e e y s ds

y t y t

− −
+

   
   
   = +
   
   
      

∫⋮ ⋮
 

while   

( )
( )

( )

( ) ( ) ( ) ( )

( )

1

12

1
1

v o vi i

i i i

o

i

i

t
H t t H t s

v o v v

t

v
v

y t
e t e e s dsy t

t
y t

ϕ ϕ

ϕ

− −
+

+
+

 
   +   =   
      

∫
⋮

, 

taking into consideration that ( )1ivy t+  to be an arbitrary iv -times integrable function, 

ot t∀ ≥ , which satisfies the initial value problem (5.3.22) - (5.3.23).         □  

Proposition 5.3.3 Let iu ∈ℕ  be a non-zero column minimal index of the pencil 

,ρ− ∈ s
n nsF G L . Moreover, let the corresponding typical initial value problem from 

(5.3.15) be  

( ) ( )
i i i i

t t
u u u uy t y tλΛ =ɺ ɺ  , ot t≥            (5.3.26) 

     ( ) ( )
i iu uy t tϕ= ,                              (5.3.27) 
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with index i  taking values between 1 and n r g− − , has only the trivial solution. 

Proof. By the definition of 
i

t
uΛ  and 

i

t
uλ  it follows that the first of the system (5.3.26) -

(5.3.27) can be written as  

( )
( )

( )

( )
( )

( )

1 1

2 2

0

0

   
      
      =      
               

ɺ

ɺ
⋯ ⋯

⋮ ⋮

ɺ

i

i

i i

t
u

t
u

u u

y t y t
I

y t y t

I
y t y t

, 

which is equivalent to 

( )
( ) ( )

( )

1

32

0

0
iu

y t
y ty t

y t

  
  
   =
  
  
    

ɺ

ɺ

⋮⋮
.          (5.3.28) 

whereby we have that ( ) 0
iuy t = , ot t≥ . The result follows by the assumption on the 

initial value function ( )
iu tϕ .              □  

Proposition 5.3.4 The initial value problem 

( ) ( )p p py t J y t′ = ,   ot t>                (5.3.29) 

with                      ( ) ( )pφ= ∈ℂ p
p o oy t t  

has a unique solution  

( ) ( ) ( )pφ
−= p oJ t t

p oy t e t ,               (5.3.30) 

where       

( ) ( )( ) ( )( ) ( )( ){ }1 21 2 , , , p op o p op o J a t tJ a t t J a t tJ t te block diag e e e νν −− −− = …  ot t∀ ≥ , 
1

v

i
i

p p
=

=∑  

and  
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( )( )

( ) ( )

( )
( )

( )

( )
( )

( )

1

2

1! 1 !

0
2 !

0 0

−
− − −

−
− −− ×

−

 
 − 
 
 = ∈

− 
 
 
 
 

⋯

⋯ ℂ

⋮ ⋮ ⋮ ⋮

⋯

i

i o i o i o

i

i o i op i oi i i

i o

p
a t t a t t a t t

i

p
a t t a t tJ a t t p p

i

a t t

t t
e e e

p

t
e ee

p

e

, 1,2, ,i v= … .   □  

The proof may be treated by the known classical methods, see Kalogeropoulos (1985), 

Dai (1989), Grispos (1992) etc.  

 Preposition 5.3.5 The initial value problem 

( ) ( )q q qH y t y t′ = , ot t>             (5.3.31) 

with     ( ) ( )qφ= ∈ℂq
q o oy t t  

has a unique solution  

( ) 0q qy t = .         (5.3.32) 

□  

The proof may be also found in Kalogeropoulos (1985), Dai (1989), Grispos (1992) etc. 

As a normal consequence of the above propositions, we can state the following theorem. 

Theorem 5.3.3 The initial value problem for the linear generalized neutral dds of the 

type  

( ) ( ) ( ) ( )
1 1

i i i i
i i

Fx t Gx t M x t N x t
ρ ρ

τ τ
= =

′ ′= − − + −∑ ∑ɶɶ , ot t> , 1 20 rτ τ τ< < < <…  

and the initial condition               

( ) ( )x t f t= ,  o r ot t tτ− ≤ ≤  

or equivalently  

( ) ( ); , 1,2, , ; , 1,2, ,i iFz t i Gz t iτ ρ τ ρ′ = = =… …  
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if we set 

1
ρ

ρ
× ∈ 

ɶ≜ ⋮⋯⋮ ⋮ ℂn nF M M F , 1
ρ

ρ
× ∈ 

ɶ≜ ⋮⋯⋮ ⋮ ℂn nG N N G , 

and 

( )

( )
( )

( )
( )

1

1

; , 1,2, ,i

x t

x t
z t i

x t

x t

ρ

ρ

τ

τ
τ ρ

τ

−

 −
 
 −
 =  
 − 
  

… ≜ ⋮  

has solution (given by Proposition 5.3.1 – 5.3.5) provided that the initial conditions are   

( ) ( ) ( ) ( ) ( ) ( ) ( )φ   φ   φ   φ   φ  ,
tt t t t t

g v u p q o ot t t t t t C t tρϕ τ   = ∈ −  ⋮ ⋮ ⋮ ⋮ .   □  
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5.4 An Illustrative Example 

Suppose that the matrix pencil 10,20− ∈ ssF G L  has the following set of invariants: 

• f.e.d. : ( )2
1s−  

• i.e.d. : ( )2
ŝ  

• c.m.i. : 
11

0,0, ,0,2…
����   

• r. m. i. : 0, 2 

To each of these invariants, the corresponding block of the Kronecker canonical form is 

( ) ( )2

2 21 1s sI J− → − ,  ( )2

2 2ŝ sH I→ −  

11

0,0, ,0…
����   c.m.i.   and   0   r.m.i. [ ]1,11 0 0 0→ = ⋯O  

2 c.m.i     2 2

1 0 0 0 1 0 1 0

0 1 0 0 0 1 0 1
λ

−     
→ Λ − = − =     −     

⋮ ⋮ ⋮

⋮ ⋮ ⋮

s
s s

s
 

2 r.m.i.  2 2

1 0 0 0 0

0 1 1

1 0

0 0 0 1 0 1

λ

     
     −     → Λ − = − =
     
     −     

⋯ ⋯

⋯ ⋯ ⋯ ⋯
t t

s

s
s s . 

Therefore we obtain 

{ } { }1,11 2 2 2 2 1,11 2 2 2 2 , , , ,  , , , ,λ λ− = Λ Λ −t t
k ksF G block diag s s sI sH block diag J IO O  

and for ( ) ( ) ( ) ( ) ( )1 10 1 10;1 1 1
t

y t y t y t y t y t= − −  … … . 

By equation (5.3.16) we obtain the following system   
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( ) ( )
( )
( )
( )

( )
( )
( )

( )
( )

( )
( )

2 2
2 3

2 2 2 2 3 3
3 4

4 4

1 0 0 0 1 0

0 1 0 0 0 1

y t y t
y t y t

y t y t y t y t
y t y t

y t y t

λ
   

         ′Λ = ⇒ = ⇒ =         
             

ɺ
ɺ⋮ ⋮

ɺ
ɺ⋮ ⋮

ɺ

 

According to Proposition 5.3.2, if we obtain that ( ) ( )4y t f t= , which is an arbi-

trary 2-times integrable function, then ( ) ( )3

o

t

t

y t f s ds= ∫  and ( ) ( )2

o o

t t

t t

y t f s ds= ∫ ∫ , re-

spectively. Additionally, equation (5.3.17) gives  

( ) ( ) ( )
( )

( )
( )

( )
( ) ( )

( )

5
5 5

2 2 2 2 6 5
6 6

6

1 0 0 0
0

0 1

1 0
0

0 0 0 1

t t

y t
y t y t

y t y t y t y t
y t y t

y t

λ

   
                ′Λ = ⇒ = ⇒ =                        

   

ɺ
ɺ ⋯ ⋯

ɺ
ɺ⋯ ⋯

, 

where the solution is ( ) ( )5 6 0y t y t= =  ot t∀ ≥ . 

Furthermore by expressions (5.3.16) and (5.3.17), we obtain  

( ) ( ) ( ) ( )
( )

( )
( )

7 7
2 2 2

8 8

1 1
1

0 1

y t y t
y t J y t

y t y t

    ′ = ⇒ =    
    

ɺ

ɺ
 

where ( ) ( ) ( ) ( )8 8 8 8
t

oy t y t y t e y t= ⇒ =ɺ , 

and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )7 7 8 7 7 8 7 7 8

1

2
t t t

o o oy t y t y t y t y t e y t y t y t e y t e−= + ⇒ = + ⇒ = +ɺ ɺ , 

while  ( ) ( )9 10 0y t y t= =  ot t∀ ≥ . 

So, the solution of the linear generalized neutral dds is given by 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 1 4 4 4 8 7 8

1
;1 ;1

1
[ 1   1      0 0   0 0]

2
−

− 
= = = 
 

− − +∫ ∫ ∫…
o o o

t t t
t t t t

o o o

t t t

x t
x t Qy t

x t

f t f t f t f s ds f s ds f t y t e y t e y t e
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5.5 Conclusions – Further Research  

In this sub-section, the generalized singular neutral differential delay system with 

constant coefficients is studied. These kinds of systems are inherent in many physical 

and engineering phenomena. Using the Matrix Pencil theory we decompose it into five 

subsystems, whose solutions are obtained. Moreover, the form of the initial function is 

given, so the corresponding initial value problem is uniquely solvable. 

As a further extension of this chapter,  

• the (asymptotic) stability testing problem for linear descriptor neutral delay-

differential systems of type (5.1.1) will be addressed. By means of the concept of 

spectral radius, both delay-independent and -dependent stability criteria will be de-

rived, see for further details Yang and Liu (2002).  

• These criteria can also be extended to the neutral systems with multiple time delays. 

• Finally, we will compare the derived results with the several existing stability crite-

ria, since the stability robustness bounds are expected to get significantly improved, 

see Yang and Liu (2002). Some examples will be used to show the significance of 

our results. 
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Chapter 6Chapter 6Chapter 6Chapter 6    

On Generalized Regular Stochastic Differential Delay Systems 

with Time Invariant Coefficients 

 

6.1 Introduction  

In many applications, the systems are considered by the causality that their future 

states are depende on their past states. Although, this consideration has been known for 

some time, the relative theory has extensively developed only recently. Additionally, 

since in many applications it is meaningless not to have any kind and type of perturba-

tion, the introduction of that in delay differential systems increases dramatically the dif-

ficulties.  

To the best of our knowledge, generalized stochastic delay systems have not been 

study by the matrix pencil theory approach. Although, the matrix pencil theory has been 

extensively used in control theory for the study of generalized deterministic dynamical 

systems without delay, see for instance Gantmacher (1959), Campbell (1980, 1982), 

Karcanias (1979), Karcanias and Hayton (1981), Van Dooren (1983), Kalogeropoulos 

(1985) et al.. Moreover, quite recently in Kalogeropoulos and Stratis (1999) and Wei 

(2004) research works a first discussion of generalized differential systems with delay is 

offered by matrix pencil and Drazin inverse matrix theory approach, respectively. Addi-

tionally, Alabert and Ferrante (2004) consider linear stochastic differential-algebraic 

systems with additive white noise.  

Our long-term purpose is to put generalized linear regular stochastic delay differen-

tial systems (SDDSs) into the mainstream of stochastic calculus, developing as far as 
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possible a theory similar to that of stochastic differential equations. In this chapter, our 

aim is to investigate the solution of linear SDDEs with constant coefficients and an ad-

ditive (fractional) white noise, that means 

( ) ( ) ( ) ( ) ( ) ( ) ,Ex t Ax t Bx t Cu t Df t Rw tτ′ = + − + + +     (6.1.1) 

where w is a (fractional) white noise of dimension s , [ , )of C t∞∈ ∞  is a smooth input 

(column vector function of dimension k ), and [ , )ou C t∈ ∞  is a control (column vector 

function of dimension l ). The , , n nE A B ×∈ℂ , with det 0E = , n lC ×∈ℂ , n kD ×∈ℂ , and 

n sR ×∈ℂ  are constant matrices. The system (6.1.1) may be reduced to studying a gener-

alized linear regular SDDS of the form:  

 ( ) ( ) ( ) ( ) ( ) ,Fx t Gx t Kx t Df t Rw tτ′ = + − + +           (6.1.2) 

under the, usual in control theory, assumption that  rank C l=  and suppose that also 

det 0F = . When sF G−  is a regular pencil the system (6.1.2) is transformed using the 

Weierstrass form canonical decomposition of the pencil sF G− , in two subsystems. 

The irregularity of such noises as are used as inputs makes the solution processes not to 

be usual, but instead more generalized processes are defined, as the stochastic analogous 

of Schwartz generalized function.     

The present section is organized as follows: Sub-section 6.2 and 6.3 contain a brief 

account of the required elements of the theory of systems of linear delay differential 

equations (DDEs), and generalized stochastic processes, respectively. Sub-section 6.3 

provides the main results of this work. Finally, in the sub-section 6.4 two particular ap-

plications are discussed using Brownian motions (white noise) and fractional Brownian 

motions (fractional white noise), as the irregular inputs. Sub-section 6.5 concludes the 

whole discussion.  
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6.2 Preliminaries on Linear Stochastic Delay Differential Equa-

tions 

In this sub-section, we briefly describe three topics: the (deterministic) differen-

tial-algebraic systems, the main elements of theory of systems of linear delay differen-

tial equations (DDEs) and the generalized stochastic processes.  

 

6.2.1 Differential-Algebraic Systems (DASs) 

Differential systems are usually used for modelling the dynamical behaviour of 

many physical and economical phenomena. For example, the conservation laws -such as 

Kirchhoff- in electrical networks, and the continuous form of the famous in multi sector 

economy Leontief’s model are few of the most known that are consisting both differen-

tial and algebraic equations. 

The most general form of differential-algebraic systems is 

( ), , 0F t x x′ =      (6.2.1) 

with m
x xF I D D ′= × × →ℂ , where I ⊆ ℂ  is a (compact) interval and , n

x xD D ′ ∈ℂ  are 

open, ,m n∈ℕ . The meaning of the quantity x′  is ambiguous as in the case of ordinary 

differential systems. The reason for this ambiguity is that we want F  to determine a 

differentiable function x  that solves (6.2.1) in the sense that  

( ) ( )( ), , 0F t x t x t′ =  for all .t I∈  

Particularly, for the linear differential-algebraic systems with time invariant coeffi-

cients, and with det 0E =  (see for more details Kunkel and Mehrmann, 2006) it is 

named generalized differential system 

( ) ( ) ( )Ex t Ax t f t′ = +        (6.2.2) 
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 where , n mE A ×∈ℂ , and ( ) : nf t I →ℂ  is sufficiently differentiable. The basic theory 

has already been established in the nineteenth century by Weierstrass, and Kronecker on 

matrix pencils (the relevant theory about matrix pencil has already been presented in 

chapter 3 and 4). 

  

6.2.2 Linear Delay Differential Systems (DDSs) 

For linear DDSs, we must provide not just the value of the solution at the initial 

point, but also the “history”, i.e. the solution at times prior to the initial point. Thus, the 

main result is 

Theorem 6.2.1 Consider the system 

( ) ( ) ( ) ( ) ,x t Ax t Bx t h tτ′ = + − +       ot t> , 0τ >   (6.2.3) 

and the initial condition 

( ) ( )x t tφ= ,     o ot t tτ− ≤ ≤  ,  (6.2.4) 

for , n nA B ×∈ℂ , constant matrices, [ , )o oh C t tτ∈ −  (i.e. n-vector valued function) and 

[ , )o r oC t tφ τ∈ − . Then there exists a unique function  

( )1[ , ) ,o ox C t C t∈ ∞ ∞∩    (6.2.5) 

that satisfies (6.2.3) and (6.2.4).              □  

The proof may be found in Bellman and Cooke (1963), Elsgolts (1966), Driver (1977), 

Hale (1977), and Wiener (1993).   

Remark 6.2.1  

• The function ( )det I A Be λτλ −− −  is called the characteristic quasi polynomial of 

(6.2.3), while the equation     

( )det 0,I A Be λτλ −− − =          (6.2.6)  
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is called the characteristic equation of (6.2.3). In general (6.2.6) has infinitely many 

complex solutions λ . 

• The superposition principle is valid; it extends to the case of a series of solutions 

provided it converges and admits term-by-term differentiation 

• Let (6.2.3) be written in the form 

Lx g=          (6.2.7) 

and let x  be a solution. Then Rex  and Im x  are solutions of the equations ReLx g=  

and ImLx g= , respectively. 

• To every root jλ  of (6.2.5) corresponds a particular solution of the form 

• jλ : simple real root j te
λ→ ; 

• jλ : complex root ( )j j ip iqλ = + sin , cosj jp t p t

j je q t e q t→ ; 

• jλ : real root of multiplicity 1, , ,j j j jt t a t

ja e te t eλ λ λ−→ … . 

• For a detailed study of the characteristic quasi polynomial and the form of the 

solutions of (6.2.3), we refer to Elsgolts (1966).            □  

Remark 6.2.2 In our case, all roots jλ  of (6.2.5) have negative real part. Therefore, by 

Theorem B, section 28 of Driver (1977), if [ , )o oC t tφ τ∞∈ −  is bounded, then the solu-

tion of (6.2.3) and (6.2.4) is also bounded.                        □  

Remark 6.2.3 In the variation of parameters method, the solution ( ); ,ox t t φ  is ex-

pressed in terms of solutions of the homogeneous equation: 

( ) ( ) ( )y t Ay t By t τ′ = + −     (6.2.8) 

However, firstly we must consider u  being the unit step function on [ ],0τ−  (remind 

that τ  is the delay time): 
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( ) 0,    0

1,             0
ru

τ θ
θ

θ
− ≤ <

 =
≜  

Moreover, let ( ); ,oy t t φ  be the (unique) solution of the homogeneous problem (6.2.6) 

and the initial condition 

( ) ( )x t tφ= ,       o ot t tτ− ≤ ≤     (6.2.7) 

Then, for [ , )o oh C t tτ∈ − , the non-homogeneous system (6.2.1) and (6.2.2) has a unique 

solution ( )x t  given by 

( ) ( ) ( )( ); , ; ,
o

t

o

t

x t y t t y t s h s u dsφ= + ∫ ,  ot t τ≥ −    (6.2.8) 

□  

Remark 6.2.4 

• As far as the form of solution is concerned, we refer to Theorems 6.3-6.6 of Bellman 

and Cooke (1963). 

• The asymptotic behaviour of solutions is studied from Bellman and Cooke (1963) 

and Hale (1977).                     □  
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6.3 Generalized Stochastic (Random) Processes  

In this sub-section, the relation between stochastic processes and Schwartz distribu-

tion is discussed. It is well known that a random distribution on I ⊂ ℝ  that is defined 

on the probability space ( ), ,Ω F P  is a measurable mapping ( ): ,X Ω →F  ( )( ),D B D , 

where D  is the space of distributions (generalized functions) on open set I ⊂ ℝ , which 

is the dual of the space ( )C I∞  (i.e. that is the smooth real functions with compact sup-

port defined on I ⊂ ℝ ) and ( )B D  is the Borel σ-field, relative to the strong dual topol-

ogy (equivalently, the weak topology).  

Moreover, we denote  

( ) ( ) ( ) ( ),X X dϕ ω ϕ ω ϕ ω ω
+∞

−∞

Φ = ∫≜ ,           (6.3.1) 

to be the action of the distribution ( )X ω ∈D  on the test function ( )C Iϕ ∞∈ , which it 

holds that the mapping ( ) ,Xω ω ϕ→  is measurable from ( ),Ω →F  ( )( ),D B D , 

hence a real random variable ( ) ,X ω ϕ  is on ( ), ,Ω F P .  

The product of a real random variable a  and a random distribution is defined as 

, ,aX a Xϕ ϕ≜      (6.3.2) 

is also a random distribution. Moreover, the derivative of a random distribution is also 

defined by the expression (6.3.3) 

( ) ( ) ( ), 1 ,
kk kX Xϕ ϕ−≜            (6.3.3) 

is again a random distribution. Given a random distribution X , the mapping 

( ) ( )oC I L∞ → Ω  defined by ,Xϕ ϕ→  is called generalized stochastic process. This 

mapping is linear and continuous with the usual topology in ( )C I∞ . 
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In this section, we will use as the base set [ ],oU t T= , 0 T< < ∞ . Further results on 

random distribution and generalized stochastic processes can be found to the classical 

papers of Urbanik (1957), Urbanik K. (1958), Gel’fand and Vilenkin (1961), Schwartz 

(1966), Fernique (1967), Dawson (1970), Kanwal (2004) et al. 
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6.4  Systems of Generalized Linear Regular Stochastic Delay Dif-

ferential Equations 

In this section, we deal with the initial value problem for generalized linear regular 

SDD systems. These systems of the form 

( ) ( ) ( ) ( ) ( ) ( )Ex t Ax t Bx t Cu t Df t Rw tτ′ = + − + + + ,  , 0ot t τ> >  (6.4.1) 

          ( ) ( )x t tφ= ,           o ot t tτ− ≤ ≤    (6.4.2) 

where w is a (fractional) white noise of dimension s , [ , )of C t∞∈ ∞  is a differentiable 

input (column vector function of dimension k), and [ , )ou C t∈ ∞  is a control (column 

vector function of dimension l). The , , n nE A B ×∈ℂ , with det 0E = , n lC ×∈ℂ , n kD ×∈ℂ

and n sR ×∈ℂ  are constant matrices.  

Lemma 6.4.1 The system (6.4.1) may be reduced to studying a generalized linear SDDS 

of the form:  

 ( ) ( ) ( ) ( ) ( )Fx t Gx t Kx t Lf t Rw tτ′ = + − + +      (6.4.3) 

Proof. Assume that the state-derivative and delay feedback controller has the following 

format: 

( ) ( ) ( ) ( )u t Ex t Ax t Bx t τ′= − − −ɶɶ ɶ      (6.4.4) 

where , , l nE A B ×∈ɶɶ ɶ ℂ  are constant matrices. Then by substituting the above expression 

into (6.4.1), we obtain (6.4.3), where  

n nF E CE ×= − ∈ɶ ℂ ,  n nG A CA ×= − ∈ɶ ℂ , 

and n nK B CB ×= − ∈ɶ ℂ     □ 

As long as the normalized condition is satisfied, the closed-loop system (6.4.3) 

would become 

( ) ( ) ( ) ( ) ( )1 1 1 1x t F Gx t F Kx t F Lf t F Rw tτ− − − −′ = + − + +   (6.4.5) 
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and its plain feature is its finite poles, i.e. there is not any infinite pole. The solution of 

the above equation is partially discussed in Section 3 (see also Remark 6.4.1). 

Lemma 6.4.2 Without the hypothesis of regularity of matrix pencil sF G− , the linear 

stochastic DDSs possess no solution at all. 

Proof. For simplicity, consider the following system without lag 

( ) ( ) ( ) ( )Fx t Gx t f t w t′ = + +     (6.4.6) 

 The complex Kronecker form k ksF Q−  of the singular pencil sF Q−  is defined 

{ }, , , , ,t t
k k h g v v u u p p q qsF Q block diag s s sI J sH Iλ λ− Λ − Λ − − −≜ O   (6.4.7) 

see Forney (1975), Kalogeropoulos (1985) et al., 

 or equivalently, there exist non singular matrices n nP ×∈ℂ  and n nQ ρ ρ×∈ℂ  such that: 

{ }, , , , ,t
k h g v u p qPFQ F block diag I H= Λ Λ≜ O   (6.4.8) 

{ }, , , , ,t
k h g v u p qPGQ G block diag J Iλ λ= ≜ O    (6.4.9) 

Now, consider the transformation ( ) ( )x t Qy t= . Under that expression, the system 

(6.4.6) becomes 

( ) ( ) ( ) ( )FQy t GQy t f t w t′ = + +  

whereby, multiplying by P , we arrive at  

( ) ( ) ( ) ( )PFQy t PGQy t Pf t Pw t′ = + +  

So, taking into consideration the expressions (6.4.7) - (6.4.9), the differential-algebraic 

system (6.4.6) may be decomposed in the equivalent set of subsystems  

( ) ( ) ( ) ( ), ,h g g h g g g gy t y t P f t P w t′ = + +O O ,        (6.4.10) 

( ) ( ) ( ) ( )v v v v vy t y t P f t P w tν λ′Λ = + + ,      (6.4.11) 
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( ) ( ) ( ) ( )t t
u u u u u uy t y t P f t P w tλ′Λ = + + ,        (6.4.12) 

( ) ( ) ( ) ( )p p p p py t J y t P f t P w t′ = + +  ,        (6.4.13) 

( ) ( ) ( ) ( )q q q q qH y t y t P f t P w t′ = + + .           (6.4.14) 

Profoundly, the system (6.4.10) has no solution. Consequently, the system (6.4.6) is not 

solvable.                 □ 

For the above result, see also Remark 2.3 in Alabert and Ferrante (2004). 

Now, from the regularity of sF G− , there exist non-singular n n×ℂ  matrices P  and 

Q such that (see also Chapter 3). 

,

,

,p p q

w
q p q

I
PFQ F

H

 
= =  

 

O

O
       (6.4.15) 

,

,

,p p q

w
q p q

J
PGQ G

I

 
= =  

 

O

O
        (6.4.16) 

where , ,p p qI J H  are known matrices. 

Theorem 6.4.1 The system (6.4.3) may be written in the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,
,p p p p n p k p m

y t J y t PKQ y t PL f t PR w tτ′ = + − + +         (6.4.17) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,
.q q q q n q k q m

H y t y t PKQ y t PL f t PR w tτ′ = + − + +        (6.4.18) 

Proof. Consider the transformation 

( ) ( ).x t Qy t=               (6.4.19) 

Substituting the previous expression into (6.4.3) we obtain  

( ) ( ) ( ) ( ) ( )FQy t GQy t KQy t Lf t Rw tτ′ = + − + + . 

Whereby, multiplying by P , we arrive at   
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( ) ( ) ( ) ( ) ( ).w wF y t G Qy t PKQy t PLf t PRw tτ′ = + − + +  

By writing ( )y t  as    

( ) ( ).p

q

y
y t t

y

 
=  
  

 

And taking into account the above expressions, we arrive easily at (6.4.17) and (6.4.18).       

□ 

Remark 6.4.1 The system (6.4.17) is in the standard form of systems of linear stochastic 

delay differential equations, and the corresponding initial value problem 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,p p p p n p k p m
y t J y t PKQ y t PL f t PR w tτ′ = + − + +    ,  0ot t τ> >

(6.4.20) 

          ( ) ( )p py t tφ= ɶ ,          o ot t tτ− ≤ ≤    (6.4.21) 

which may be treated by classical methods. To find the solution, we shall first solve the 

equation within the [ ]0,τ  interval; then, we use this solution process as the initial data 

to solve the equation within the next [ ],2τ τ  interval, and so on. Obviously, this proce-

dure allows us to construct a solution step by step, providing at any stage its uniqueness 

and its regularity, see Mohammed (1984, 1998) et al.          □   

As a solution to this problem, we shall define a process ( ) [ ]{ }, ,p o oy t t t tτ∈ −  and 

for given smooth test function ( )Cϕ ∞∈ U , 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,

,

0 ,
o o o

p

t t t

p p p p n p k p m
t t t

y t t

J y s ds PKQ y s ds PL f s PR w s ds

ϕ

φ τ ϕ

=

 + + − + + ∫ ∫ ∫

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,
0

o o o o

T t t t

p p p p n p k p m
t t t t

J y s ds PKQ y s ds PL f s PR w s ds t dtφ τ ϕ
   = + + − + +  
  
∫ ∫ ∫ ∫

(6.4.22)
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Additionally, as it is derived from expression (6.4.21), the initial state function (6.4.2) 

obtains the following general format: 

( )
( )
( )

( )
( )
( )

1 1p p

qq

t t
t Q t Q

tt

φ φ
φ φ

φφ
− −

   
 = = =  
     

ɶ
ɶ

ɶ
, as det 0Q ≠ . 

Theorem 6.4.2 The solution of system (6.4.6) has the following format 

 

, 0ot t τ> >  (6.4.23) 

where ( ) ( ) [ , )o oy t t C t tφ τ= ∈ −ɶ , and test function ( )Cϕ ∞∈ U . 

Proof. We start by observing that -as is well known- there exists a q∗ ∈ℕ  such that 

*q
qH =O              (6.4.24)  

i.e. the *q  is the annihilation index of qH . 

Setting the test function ( )Cϕ ∞∈ U , and obtaining the generalized process 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , ,

, , ,

, ,

             , ,

q q q q n q k q m

q q n q k q m

H y t t y t PKQ y t PL f t PR w t t

y t t PKQ y t PL f t PR w t t

ϕ τ ϕ

ϕ τ ϕ

′ = + − + +

= + − + +
 

(6.4.25) 

 whereby differentiating (in the sense of distributions), and multiplying by qH , we get 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
2

, , ,

,

, ,

q q

q q q q n q k q m

H y t t

H y t t H PKQ y t PL f t PR w t t

ϕ

ϕ τ ϕ

′′

′ ′= − − + +
 

(6.4.26) 

and, substituting (6.4.25) into (6.4.26)  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
* 1

, , ,
1

, 1 ,
q

k k
q q n q k q m

k

y t t PKQ y t PL f t PR w t tϕ τ ϕ
−

=

= − − + +∑
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
2

, , ,

, , ,

, , ,

                              ,

q q q q n q k q m

q q n q k q m

H y t t y t t PKQ y t PL f t PR w t t

H PKQ y t PL f t PR w t t

ϕ ϕ τ ϕ

τ ϕ

′′ = + − + +

′− − + +
 

(6.4.27) 

and repeating this argument a sufficient number of times we end up with 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
* ** *

** *

11

11 1

, , ,

, ,

                              1 ,

q qq q
q q q q

qq q
q q n q k q m

H y t t H y t t

H PKQ y t PL f t PR w t t

ϕ ϕ

τ ϕ

−−

−− −

= +

− − + +

 

(6.4.28) 

Adding (6.4.18), (6.4.27), and all the other similar relations up to and including 

(6.4.28), we arrive at 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

**

* 1

, , ,
1

,

         , 1 ,

qq
q q

q
k k

q q n q k q m
k

H y t t

y t t PKQ y t PL f t PR w t t

ϕ

ϕ τ ϕ
−

=
= − − − + +∑

     

(6.4.29) 

which, by (6.4.24), gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
* 1

, , ,
1

, 1 ,
q

k k
q q n q k q m

k

y t t PKQ y t PL f t PR w t tϕ τ ϕ
−

=

= − − + +∑ , 

, 0ot t τ> >   (6.4.30) 

with history, ( ) ( ) [ , )o oy t t C t tφ τ= ∈ −ɶ .             □ 

We conclude this section with the following theorem; its proof follows the proceed-

ing discussion. 

Theorem 6.4.3 The initial value problem for the homogeneous generalized linear regu-

lar SDDS of the form:  

( ) ( ) ( ) ( ) ( )Fx t Gx t Kx t Lf t Rw tτ′ = + − + +    ot t> , 0τ >  
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and the initial condition               

( ) ( )x t tφ= ,      o ot t tτ− ≤ ≤  

has a unique solution provided that ( )
( )
( )

[ , )
p

o r o

q

t
t C t t

t

φ
φ τ

φ

 
= ∈ − 
  

, test function 

( )Cϕ ∞∈ U , and 
1

j
j

p p
ν

=

=∑  (i.e. the sum of the degrees of the f.e.d.p q n+ = ).            □  
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6.5 The Main Results with Respect to Certain Type of Noises  

6.5.1 Brownian Motion (or White Noise) 

In this sub-section we will use white noise on +ℝ  coincides with the Wiener inte-

gral with respect to the standard Brownian motion (sBm), ( ){ }, 0W t t ≥ , on the prob-

ability space ( ), ,Ω F P . Moreover, if ( )C Uϕ ∞∈  is as a test function, then 

( ) ( ),
o

T

t

s dW sξ ϕ ϕ= ∫     (6.5.1.1) 

in the sense of equality in law. More precisely, the Wiener integral is defined as the ex-

tension to ( )2L +ℝ  of white noise, see Kuo (1975) and Borodin and Salminen (2002) for 

more details about the construction of the Wiener integral as the extension of white 

noise. Now, integrating by parts in (6.5.1.1), we can write 

 ( ) ( ), , .
o

T

t

W s s ds Wξ ϕ ϕ ϕ′ ′ ′= − = −∫   (6.5.1.2) 

Thus, the ξ  is the derivative of the Brownian motion W  as random distributions. A 

random distribution is Gaussian if every finite-dimensional projection is a Gaussian 

random vector. This is the case of white noise and Brownian motion. 

In that particular case, since the ( )W t  is a s-dimensional standard Wiener process, 

the expressions (6.4.22) and (6.4.30) can be expressed as follows: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,

,

0 ,
o o o o o

p

T t t t t

p p p p n p k p m
t t t t t

y t t

J y s ds PKQ y s ds PL f s ds PR dW s t dt

ϕ

φ τ ϕ

=

  + + − + + 
  
∫ ∫ ∫ ∫ ∫

(6.5.1.3) 

and 
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
* 1

, , ,
1 0 0 0

,

1 .

q

q
k k k k

q n q k q m
k

y t t

PKQ y t t dt PL f t t dt PR t dW s

ϕ

τ ϕ ϕ ϕ
∞ ∞ ∞−

=

=

 
− − + + 

 
∑ ∫ ∫ ∫

(6.5.1.4) 

 

6.5.2 Fractional Brownian Motion (or Fractional White Noise) 

Due to their important applications, the fBm have been studied by many authors in 

recent years, as a consequence several kinds of stochastic calculus have been developed, 

see Descreusefond and Üstünel (1995), Duncan, Hu and Pasik – Duncan (2000), Alòs, 

Mazet and Nualart (2001), Hu and Øksendal (2003), Yan and Mohammed (2005) etc.  

In this subsection, we show a way to adapt the traditional white noise calculus to 

the fractional white noise case. Firstly, we recall that if ( ){ }, 0W t t ≥  is a standard 

Brownian motion (sBm) on the probability space ( ), ,Ω F P , then it is defined 

( ) ( ) ( ),
o

T

t

W t Z t s dW s= ∫
H

H , 0t ≥     (6.5.2.1) 

which is the representation of fBm of Hurst parameter ( )0,1∈H  on the same probabil-

ity space (see Hu, 2005, for more details) , where  

( )
( ) ( )

( )

1
1 31 12
2 22 2

1 1 3
2 2 2

1
,    0 1/ 2

2
,

1
,                                       1/ 2 1

2

t

s

t

H

s

t
k t s s u u s du if

s
Z t s

k s u u s du if

−
− −− −

− − −

  
     − − − − < <        
 = 

 
 − − < < 
 

∫

∫

H
H HH H

H

H

H H H

H H

H H

 

also 

( )

3
2

2
1

2 2
2

k

 Γ − 
 =

 Γ + Γ − 
 

H

H H

H H

, ( ) 1a s

o

a s e ds
∞

− −Γ = ∫  is the gamma function (6.5.2.2) 
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Now, if we formally differentiate (6.5.2.1) with respect to t , then we obtain the fol-

lowing heuristic equality 

( ) ( ) ( ) ( ) ( ), ,
o o

t t

t t

d d
W t Z t s dW s Z t s W s ds

dt dt
= =∫ ∫ɺ ɺH

H H   (6.5.2.3) 

Thus, the above equation (6.5.2.3) suggests that formally ΙΓH  is a transformation 

which transforms the white noise (the derivative of sBm) to fractional noise (the deriva-

tive of fBm), where 

( ){ } ( ) ( ),
o

t

H

t

d
g t Z t s g s ds

dt
ΙΓ = ∫H , 0t ≥    (6.5.2.4) 

and  

W WΙΓ =ɺ ɺ H
H

          (6.5.2.5) 

if ( )Cϕ ∞∈ U  is as test function, then 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( ) ( )* *

,

         

o o

o o

T T
H

t t

T T

t t

s W s ds s W s ds

s W s ds s dW s

ξ ϕ ϕ ϕ

ϕ ϕ

= = ΙΓ

= ΙΓ = ΙΓ

∫ ∫

∫ ∫

ɺ ɺ

ɺ

H

H H

  (6.5.2.6) 

in the sense of equality in law, where for ( )f C∞∈ U  

( ) ( ) ( )
1 1 1

* 2 2 2

T

s

d
f s k s t t s f s dt

ds

− − −ΙΓ = − −∫
H H H

H H , 0.s≥  (6.5.2.7) 

More details about the construction of the fractional white noise see Hu (2005). Now, 

integrating by parts in (6.5.2.6), we can write 

 ( ) ( ) ( ) ( )* *, , .
o

T

t

W s s ds Wξ ϕ ϕ ϕ′ ′′ = − ΙΓ = − ΙΓ∫ H H    (6.5.2.8) 

Now, the ξ  is the derivative of the fBm WH  as random distributions.  
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In that particular case, where ( )W t  is a s-dimensional standard Wiener process. 

The expressions (6.4.22) and (6.4.30) can be expressed as follows: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )*

, , ,

,

0
o o o o o

p

T t t t t

p p p p n p k p m
t t t t t

y t t

J y s ds PKQ y s ds PL f s ds PR dW s t dt

ϕ

φ τ ϕ

=

  + + − + + ΙΓ 
  
∫ ∫ ∫ ∫ ∫ H

(6.5.1.3) 

and 

( ) ( ) ( )
( ) ( )( )( ) ( )

( ) ( )( )( ) ( ) ( ) ( )( ) ( ) ( )

*

*

,1

1 * *

, ,

, 1 o

o o

T
k

q nq
tk

q T T
k kk

q k q m
t t

PKQ y t t dt

y t t

PL f t t dt PR t dW t

τ ϕ

ϕ
ϕ ϕ

−

=

 
− ΙΓ 

 = −  
 + ΙΓ + ΙΓ
  

∫
∑

∫ ∫

H

H H

 

(6.5.1.4) 

A very good reference for Malliavin calculus and stochastic delay equations is Bell and 

Mohammed (1991). 

Remark 6.5.1 As we observe from the subsections 6.5.1 and 6.5.2, we can also consider 

other stochastic noises, since the only requirement is to can define a Wiener integral 

with respect to such noise.              □     
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6.6 Conclusion – Further Research 

In this chapter, we consider the generalized linear regular stochastic differential de-

lay system with constant coefficients and two simultaneous external differentiable and 

non differentiable perturbations. These kinds of systems are inherent in many applica-

tion fields; among them we mention fluid dynamics, the modelling of multi body 

mechanisms, finance and the problem of protein folding. Using regular Matrix Pencil 

theory, we decompose it into two subsystems, whose solutions are obtained as general-

ized processes (in the sense of distributions). Moreover, the form of the initial function 

is given, so the corresponding initial value problem is uniquely solvable. Finally, two 

illustrative applications are presented using white noise and fractional white noise, re-

spectively. 

The results of the 6th section can be further extended into several interesting direc-

tions.  

• First, as it has already been discussed in the 4th chapter, we want to investigate the 

special properties of the control input. Thus, several known controllability and sta-

bility criteria (see for instance Klamka and Socha, 1977, Zabczyk, 1981, Ehrhard 

and Kliemann, 1982, Mahmudov, 2001 etc) can be further extended. Furthermore, 

the derived results can be transferred into the special cases of standard and frac-

tional Brownian motions. 

•  These criteria can also be extended to the stochastic differential systems with mul-

tiple time delays and different kind of irregular noises-processes (for instance, we 

can use some special Lévy and Jump processes, which have several applications 

into Actuarial/Financial science). 

• Additionally, as it has been already proposed in the 4th chapter, the results of the 2nd 

chapter can be applied and further extended into such kind of differential stochastic 

systems. Thus, the change of the state in zero time, and the related impulsive be-

haviour can be also combined with the introduction of special normalized bounded 

variation (NBV) functions (or distributions) [ ]: ,o ot tµ τ+ →ℂ , i.e.  
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( ) ( ) ( ) ( ) ( ) ( ) ( ).
o

o

t

t

Ex t Ax t B x t s d s Cu t Df t Rw t
τ

µ
+

′ = + − + + +∫  

Finally,    

• we want to consider a more general system, see (4.1.2), i.e. 

( ) ( ) ( ) ( ) ( ) ( )Ex t Ax t Bx t Cu t Df t Rw tτ′ = + − + + + , 

where the matrices E  and A are time-invariant coefficients with a special structure 

(symmetric, skew symmetric, Toeplitz, non-negative etc). Then some more special ca-

nonical forms, like Tompson etc should be applied. In several applications, see Ka-

logeropoulos, Karageorgos and Pantelous (2009) and references therein, analytical solu-

tions are also required, where some elements of ODEs and Operator Theory have to be 

applied.   

• secondly, we want to investigate the approximation of the solutions, see (6.4.22) 

and (6.4.23). Consequently, the derived -practical useful- results will be used in 

several significant applications in Actuarial and Financial science.       
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Chapter 7Chapter 7Chapter 7Chapter 7    

    

Conclusions – Further Research 

 

In this chapter, we want to conclude and present the numerous, basic extensions of 

the present PhD thesis. Analytically,  

A) distributional solutions and behaviour enter the study of many areas in systems 

and control such as: 

(i) Controllability, Observability, 

(ii)  Infinite zero characteristic behaviour, 

(iii)   Almost invariant subspaces, almost controllability spaces, 

(iv)  Dynamics of singular systems, etc. 

The distributional characterization is also linked to solution of a number of control 

problems. Although such solutions have theoretical significance, their value is limited 

from the practical (implementation of solutions) viewpoint, since impulses represent 

distributions and cannot be constructed. Only functions can. 
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Thus, we want to develop a theory for approximating distributions with different 

families of smooth functions. This should involve defining also a ‘metric’ to measure 

how good the approximation is and ways to parameterise these families. For instance, if 

we use the Gauss function and its derivatives, then we may parameterise the families in 

terns of σ. Can we link σ to the distance from the distribution? Can we associate σ to the 

corresponding energy? 2-norm (Euclidean norm)? What are advantages / disadvantages 

of the different approximations? 

Now, consider the problem of transferring the origin of a controllable system to any 

point within a hyper sphere of radius ℝ . We know that this can be done in 0 – time with 

impulses. What is the minimal time required for achieving this if we use an approxima-

tion to the distributional solution, by using a specifying families? If these are restrictions 

on the energy of the input signal, can we achieve this transfer within the ℝ -sphere? If 

yes, what is the required time? 

Clearly similar problems can be defined for the dual problem of reconstructibility.  

Impulsive solution of implicit system descriptions of the: 

Pencil type: ,Fx Gx=ɺ  

Autoregressive type: ( ) 0.T p x=  

Here we have to clarify the fundamental system motion of the significance of the 

approximation. 
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One way of handling this may be to pose the question: ‘is there another system for 

which the approximation of the distribution is an autonomous smooth solution?’ Diffi-

cult question that needs a lot of thinking. Essentially, we ask for ‘system deformations’ 

that express natural correspondence between solutions. 

Given that autonomous solutions are expressed as exponentials, the link between 

exponentials and distributions is worth examining.  

Consider the problems of almost ( ),A B - invariance and almost Controllability sub-

spaces. In the first case we use distributions to help trajectories in the subspace. If we 

use approximations, how close can we keep the trajectories to the subspace? If we use 

Gauss approximations, what is the link of σ and the distance from the subspace? What 

happens if we impose conditions on the energy of the signal? What is the effect on the 

distance? Repeat the same for the almost controllability case. 

Moreover, if V  is an almost ( ),A B - invariant, or almost Controllability subspace, 

can we define spaces for the same system ɶV  which are ( ),A B - invariant, controllabil-

ity subspaces? Which are those which are closest to them? Can we relate this to ap-

proximation of distributions?  

Infinite zero solutions. Output zeroing problem for distributions, characterize the 

infinite zero structure. Define approximate smooth output willing solutions. 

In the next lines, we will present some related questions  

PROBLEM (A1) : Distance between differential systems descriptions. 
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Consider two pencil models:  Fx Gx=ɺ  and F x G x′ ′ ′ ′=ɺ where ( ),F G , ( ),F G′ ′  are pairs 

of the same dimension. 

(i) Define distance functions between ( ),F G , ( ),F G′ ′  pairs 

(ii)  Investigate relations between kronecker structures of sF G− ,  sF G′ ′−  as a 

function of the distance. 

(iii) Topology of ( ),F G  pairs and spectra, indices, Plücker invariants properties. 

Extension from pencils to polynomial models 

( ) 0,A p x=  

where              ( ) 1
1 .m m

m m oA p p A p A A−
−= + + +…  

PROBLEM (A2) : Define distance functions between distributions and differential 

families of functions. 

 

B) As a further extension of the 3rd chapter, we are interested in extending the pre-

senting results to the complex case, where 1 2, ,..., mλ λ λ .∈ℂ   

Moreover, based on our approach, we want to extend Martinez and Peña (1998b) 

and Eisinberg, Franzé and Salerno (2001) research works. In the first case, i.e. Eisin-

berg, Franzé and Salerno (2001), we have a special type of 
2 1

cos
2i

i

n
λ π− =   

 for 

1,2,...,i n=  (Chebychev nodes) and in the next case, i.e. Martinez and Peña (1998b), we 
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want to calculate the appropriate complete symmetric function, in order to determine the 

LU factorization of the rectangular Vandermonde matrix. 

 

C) As a further extension of the 4th chapter, we want to investigate the special prop-

erties of the control input. Thus, several known controllability and stability criteria (see 

Wei, 2004) can be further extended.  

The introduction of special normalized bounded variation (NBV) functions (or dis-

tributions) [ ]: ,o ot tµ τ+ →ℂ  is also of a great mathematical interest and importance. In 

order to be able to investigate the existence and the uniqueness of the solution, some 

elements of the Functional Analysis are required, see for instance Yosida (1966), Hirch 

and Lacombe (1999), and Pedersen (2000).  

Additionally, the results of the 2nd chapter can be applied and further extended into 

such kind of differential systems. Thus, the change of the state in zero time, and the re-

lated impulsive behaviour can be combined with the special normalized bounded varia-

tion (NBV) functions (or distributions) [ ]: ,o ot tµ τ+ →ℂ .  

Moreover, we want to consider a more general system, see (4.1.2), i.e. 

( ) ( ) ( ) ( )
o

o

t

t

Ex t A x t s d s Bu t
τ

µ
+

′ = − +∫ , 

where the matrices E  and A are rectangular time-invariant coefficients or with a spe-

cial structure (symmetric, skew symmetric, Toeplitz, non-negative etc). Then some 
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more special canonical forms, like Kronecker or Tompson etc should be applied. In sev-

eral applications, see Kalogeropoulos, Karageorgos and Pantelous (2009) and references 

therein, analytical solutions are also required, where some elements of ODEs and Op-

erator Theory have to be applied. 

Finally, we want to consider the stochastic version of the system (4.1.2), see also 6th 

section of the present thesis. Under the introduction of irregular inputs, several other 

aspects can be further discussed. 

 

D) As a further extension of the 5th chapter, the (asymptotic) stability testing prob-

lem for linear descriptor neutral delay-differential systems of type (5.1.1) will be ad-

dressed. By means of the concept of spectral radius, both delay-independent and -

dependent stability criteria will be derived, see for further details Yang and Liu (2002).  

These criteria can also be extended to the neutral systems with multiple time delays. 

Finally, we will compare the derived results with the several existing stability crite-

ria, since the stability robustness bounds are expected to get significantly improved, see 

Yang and Liu (2002). Some examples will be used to show the significance of our re-

sults. 

 

E) The results of the 6th section can be further extended into several interesting di-

rections.  
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First, as it has already been discussed in the 4th chapter, we want to investigate the 

special properties of the control input. Thus, several known controllability and stability 

criteria (see for instance Klamka and Socha, 1977, Zabczyk, 1981, Ehrhard and Klie-

mann, 1982, Mahmudov, 2001 etc) can be further extended. Furthermore, the derived 

results can be transferred into the special cases of standard and fractional Brownian mo-

tions. 

These criteria can also be extended to the stochastic differential systems with mul-

tiple time delays and different kind of irregular noises-processes (for instance, we can 

use some special Lévy and Jump processes, which have several applications into Actu-

arial/Financial science). 

Additionally, as it has been already proposed in the 4th chapter, the results of the 2nd 

chapter can be applied and further extended into such kind of differential stochastic sys-

tems. Thus, the change of the state in zero time, and the related impulsive behaviour can 

be also combined with the introduction of special normalized bounded variation (NBV) 

functions (or distributions) [ ]: ,o ot tµ τ+ →ℂ , i.e.  

( ) ( ) ( ) ( ) ( ) ( ) ( )
o

o

t

t

Ex t Ax t B x t s d s Cu t Df t Rw t
τ

µ
+

′ = + − + + +∫  

Finally, we want to consider a more general system, see (4.1.2), i.e. 

( ) ( ) ( ) ( ) ( ) ( )Ex t Ax t Bx t Cu t Df t Rw tτ′ = + − + + + , 

where the matrices E  and A are time-invariant coefficients with a special structure 

(symmetric, skew symmetric, Toeplitz, non-negative etc). Then some more special ca-
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nonical forms, like Tompson etc should be applied. In several applications, see Ka-

logeropoulos, Karageorgos and Pantelous (2009) and references therein, analytical solu-

tions are also required, where some elements of ODEs and Operator Theory have to be 

applied. 

Finally, we want to investigate the approximation of the solutions, see (6.4.22) and 

(6.4.23). Consequently, the derived -practical useful- results will be used in several sig-

nificant applications in Actuarial and Financial science. 

In this part of the PhD thesis, we want to emphasize that many very interesting and 

significant issues are still open. Some preliminary work has been done, but much more 

is needed.        
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