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Frequently Used Notations

0 : infinity

E: absolute error

Q: sample space

w: event, outcome

allA: a element of seA

INQE indicator function of evenf
P: probability measure

A: o —algebra

(Q,F,P): probability space

R": n-dimensional Euclidean space
positive real line

F: Field

M(nxmF): algebra ofnx m-matrices with elements ovét

D, ,: space of Dirac distribution having derivativgsto an orden—1
D: space of infinitely differentiable complex-valuadhttions onF
B(D): Borelo-field

c” (0 set of smooth functions

L2 ([)] space of quadratically integrable functions

a.s.: almost surely

[a.b]: closed interval froma to b

(a,b): open interval froma to b

LTI : Linear Time Invariant

x(t): state vector parameter

u(t): input vector parameter

y(t): output vector parameter
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a: input signal

| Euclidean distance

J(t) : Dirac function

M (t): k™ derivative of the Dirad-function
o, (t): nascendelta function

#(t): test function

B _ e xn
A= [qj Li'jsn : constant matrix iR

diag{ : diagonal matrix

detA: determinant of matriXA

J: Jordan canonical form of matri.

O: zero matrix

V,.n =V, (A, 4,,...,4,) : Vandermonde matrix, which is defined in termsadlars

Ay, A OR (wherem # n)

A inverse matrixA

A" Moore-Penrosénverse of a matrixA

A°: Drazin inverseof square matrixA

A3 {1, 2, 3}- generalized inverse of matri.
H,: nilpotent matrix

q: the annihilation index oH,

Ind ( A): the smallest non-negative integer suchank( Al“d(A)) = rank( A“d(A)ﬂ)
[

c.([1): the n-order compound matrix of;]

Re(1): real part of a complex numbdr

Im(A): imaginary part of a complex numbaér

*: conjugate transpose index of the relevant matri
0! action
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| =

LU:

.= Mmax
p] z=1,2,..,

n:

ODE:
NBV:
GDDS:
DDDS:
DDE:
DAS:
SVD:
e.d.:
z.ed.:
nz. f.e.d.:
l.e.d.:
c.m.i.:

r.m.i.;

F[s §:

skF-G:

order left multiplication of matrices

“Lower Upper” factorization

s index of annihilation for the eigenvalyg .

set{1,2,...n}

ordinary differential equation
normalized bounded variation function
generalized differential delay system
differential systems with distributed delay
delay differential equation
differential-algebraic system

singular value decomposition
elementary divisors
zero elementary divisors

nonzero finite elementary divisors
infinite elementary divisors

column minimal indices

row minimal indices

ring of polynomials ins and §=1/ s with coefficients onF
the pencil(F,G)

(1,,1,) identity element of the groufg,[) on the set ofZ},,
a strict equivalence relation

the set omx n regular pencils

to+7

the characteristic matristefined byzl — A [ € du( 9.

t

NBV function|t,,t, +7] - C™"

standard Brownian motion
fructional Brownian motion
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HO(0,):  Hurst parameter

W™ (1): Representation of fBm of Hurst parameter
r(a): Gamma function

Fy: distribution function of random variabé

p(x) = %e_lez: the Gaussian probability density function

j— /2 4y the Gaussian cumulative distribution function

J’_K v @(x)dx: thecumulative distribution functio(cdf) of a random variable

X ~ N(0,1) evaluated at the upper limit of the integka(t, o), denoting the
probability thatX < K(t,o).

K(t,o): t/o
j...dt: (Lebesgue, Riemann) integral
j dw : Ito integral
y+iw
_[ ..dz: so-called principal value integrdim I ...adz
L(y) @ y-iw
W(t): Wiener process at tinte
1T, a transformation which transforms the white adifie derivative of

sBm) to fractional noise (the derivative of fBm)

(&.9) :I¢(s) dW( §: generalized stochastic (random) process

0’58,¢ I¢ JS the linear continuous functionad, on the spacé® of

|nf|n|tely differentiable complex-valued functions F with compact
support
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Chapter 1

Introduction - Contribution

In economic theory, input-output analysis has bad®reloped for the description of
the production of a multi-sector economy. An inputput model is a quantitative eco-
nomic technique that represents the interdependgrogtween different branches of a
national economy or different regional economiesthe region of input-output eco-
nomics, many models were established to describeeidl economics (see for example,
Leontief (1966) and R. O'Connor, E.W. Henry (1975))

The economic traditional Leontief dynamic inputqouitmodel is described by
X = A%+ L %~ %]+ g,

where the vectox =[x, %, - X],J is the total output vector ang, is the
total output from sectot<i<n. The vectorg, is thefinal net productand g, de-

notes thefinal netproductof sectorl<i<n. The matrix A:[a\j ] 1<i,j <n, is the

direct consumption coefficiematrix (also called the Leontief intput-output ndgtand

L :[Iij ] 1<i,j £n, is thecapital coefficientmatrix. Initially, this model has been stud-

ied in discrete-time where the matricAsand L have been assumed to be constant over
time, i.e. that market and technology do not chamgger the considered time period.
The discrete-time version of this input-output molias been used widely because of
the nature of the problem (see for example Luerdremgd Arbel (1977), Szyld (1985)
and references therein). However, as it is true,pfoduction of a nation (or a factory)
in real economic terms is in fact continuous. Tharsanalogous continuous in time dy-

namic input-output model of the form
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x(t)= Ax(t)+ Lx(9+ g( D, t>0,

has been also proposed and studied in the literabfireconomic modelling (see
Fleissner (1990), Jodar and Merello (2010), Zhab Aang (2009) and references there-
in). In this input-output model, the capital coeiéint matrix L is not always invertible,
since the product of some sectors can not be tteste capital product or/and utilized
by others (for example, agriculture, service sectidso do not produce durable goods

etc.). In fact, the elemenf of matrix L represents the amount of stock of commodity

as a capital good, that sectpmust have on hand for each unit of productionc&imot

every sector produces significant capital goods @ommon for some rows of the ma-

trix L to contain only zero elements. System above, wtachbe formally written as

Lx(t) = Mx(t)+ f(t), t>0,

where M =1 - A, j(t) =—g(t) and L is a non-invertible constant matrix, is a linear

time invariant (LTI) singular system and it is oftealled degenerate (or of descriptor

type). It is useful here to emphasize that the mpater f (t), t=0 can be considered

either as just a (regular or irregular) disturbaocas the Leontief dynamic input-output
model's control vector, as long as the quantitgheffinal net product can be affected by

various ways.

However, in Engineering now, very recently, in theey interesting paper by Kar-
canias (2008), we can see that the always chaligrioblem of integrated engineering
design, which is strongly linked to systems andticdrtheory (and their applications),
is revealed as a typical structure evolution prec&sich processes emerge in many ap-
plication domains and in the engineering contextrioblems such as integrated system
design, integrated operations, re-engineeringcyidke design issues, networks etc.
Thus, it has been shown that the formation of ffs¢esn, which is finally used for con-
trol design, evolves during the earlier design esad he process synthesis and the over-
all instrumentation are also critical stages of dvelutionary process that shapes the

final system structure and thus the potential tortol design. Karcanias (2008) aims at
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revealing the control theory context of the evantiry mechanism in overall system

design.

Familiarizing with the proposed results by Karcan(2008), we can also claim that
the characteristics and the nature of the progggbesis and the global instrumentation
depend on the type of available models. Thus, taegemodels where some of the in-
ternal variables are classified into potential ispwutputs, internal variables and re-
ferred to as oriented models, or models where assdication has been made of the
internal variables these are calletplicit models. All such models may be used for se-
lection of effective sets of inputs and outputgytlare referred to as progenitor models
and they may be classified as: (a) Internal ModelsExternal Models and (c) Internal—

External Models.

As we will see later, in this PhD thesis we arestiyointerested innternal models.
These models, see also Lewis (1989), have a veny history and are primarily de-
scribed in terms of first order ordinary nonlinegquations and they are the standard

state-space descriptions of the implicit type
F(x(t), x(t)) =0 (or F (%, %.,) = 0),

where x(t) is the vector of all internal model variables.the linear case, the above

reduces to matrix pencil model can be defined by
Ex(t) = A9 (or Ex, = AX).

When the inputsi(t), outputsy(t) have been defined, then the nonlinear control

model is defined by

(©F F (% %o U) =0, ¥ = G( X Xers U))s

and in the linear case is expressed by the singubaiel

21



Ex(t)= A9+ BU Y, y(t)=Cx(t) (Or Exey = A+ BY, Y =CX).

In the literature, linear internal models are ahl¥escriptor (differential/difference)
systems (or generalized systems or differentiatlaigic systems), and they have a key
role in the modelling and simulation process ofstoained dynamical systems in many
applications Thus, such systems have been intensively stuthiedretically as well as
numerically, in the last decades. For a systenaattt comprehensive exposition of im-
portant aspects regarding the theory, the numetieatment and many applications of
first order descriptor differential/difference systs, see for instance Campbell (1980,
1982), Karcanias and Hayton (1982), Griepentrog Médz (1986), Lewis (1986), Dai
(1989), Hairer, Lubich and Roche (1989), Willem882), Brenan, Campbell and Pet-
zold (1996), Eich-Soellner and Fuhrer (1998), Kurdtel Mehrmann (2006), Karcanias
(2008), Pantelous, Zimbidis and Kalogeropoulos @G@hd the references therein.

The strong motivation behind this PhD thesis isebasn the significant extension
of the continuous in time Leontief model in orderltring it closer to reality and to
make it as general as it is possible covering matsresting cases and phenomena.
Thus, in the present PhD thesis, the study of #reveld equations is being considered
in order to cover differenct very general case thattotal output, the total demand, as
well as the entrances of the coefficient matriceslépend on different economic pa-
rameters such as the individual and cooperativesid&cprocesses, the resource limita-
tions, the environmental and geographical condBaitine institutional and legal re-
quirements and the purely random fluctuations. this purpose, as it will become
clearer with the next paragraphs and sectionsreéifit types of implicit systems will be
proposed, considered and developed, In most cdse®xistence and the solvability
will be investigated. Our task is motivated theimadty, as we are not providing humer-

ical algorithms.

Analytically, this PhD thesis deals with the follimg 5 interesting topics:
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A) Impulsive Control: Change the Initial State in Zero Time

In the 29 Chapter, a solid methodology has been proposedgproximating the
distributional trajectory that transfers the stafte linear differential system in (almost)
zero time by using the impulse-function and itsi\dgives. The motivation behind this
section is related to investigate the change ofsthtus of a economical system almost
instantly, i.e. in zero time (for instance, the mpa of the nominal interest rate from

Central Banks).

The new results are based on the research worlogedpy Gupta and Hasdorff in
1963. As a first step, using some basic elementmadsure theory, we show that the
input vector has to be a linear combination of théunction of Dirac and its deriva-

tives, i.e.

(1= 20" (1)

Our approach is based on the approximation of tinecCiunction using the Gaus-
sian (Normal) function. However, since the methodglis quite general, the present
results can be further modified and extended usthgr different kinds of approxima-
tions of the Dirac function, for instance Airy fuimns. Concluding, the present work

has involved the following three distinct problems:

(i) We have started witthe impulsive trajectory that transfers the origpna point in
the state space and used this as the central poitntating the need to approximate
distributions by smooth functions.

(i) After that,we have examined the family of Gaussian functioviich may be used
to approximate distributions and we have define@apropriate Euclidean metric to
measure how good the approximation is and investigdne link of ther parameter
of Gauss functions to the time and, inevitablythi®e distance from the desired initial

State.
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(i) We have pre-determined the minimal time requiradafthieving a solution to the
above standard controllability problem in termsapproximations to the distribu-
tional solutions, by using Gaussian families fae #pproximation. Finally, the CIZT
algorithm has been proposed for the calculatiothefcoefficients of our input func-

tion.

B) Generalized Inverses: Vandermonde and Special Miax

In the 3% Chapter, three main results have been proposediiandssed: First, we
have provided a (quasi) LU factorization, and se&pme have calculated analytically
the generalized inverses of the rectangular (andre) Vandermonde matrix, which is

defined in terms of scalaty, 1,,....A, R (wherem # n) by the following expression:

1 A o AT

n-1

Vo2V (A ) et e
L

Finally, similar results with the Vandermonde nrathave been presented for a

special structure matrix, i.e.

FR Y iR s .

1 A A2 A% x ooxox At

0O 1 2 3/]2 L S S (n_l)/]n—z

00 1 3 * - ** o (n-1)(n-2)A"3
1 dm—l -

00 0 0 0 ... 1 * ... Anl

i (m-1) oujm-l( )

Both matrices have appeared recently in control system theory’s literature,
where the change of the initial state of a lingestesm in zero time is required, see also
2" Chapter. This is a complementary to th&chapter as it considers the case that the

economical system might be descriptor, see for rdetails Pantelous et al. (2010).
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C) Descriptor Delay Differential Systems: Solution$’roperties

In the 4" Chapter, a special class of generalized reguféerdntial delay systems

with constant coefficients, i.e.

to+7

Ex(t)=AJ At qu( $+ B}

is extensively studied, wherg, ADC™", detE = Cand BOC™ are constant matrices,
gDC([to,oo),C') is a control (column vector function of dimensibh and t>t,

where 7 >0 is constant. Furthermore, there exists a uniguenalized bounded varia-
tion (NBV) function (or distributiony:[t,,t, +7] - C.

In practice, these kinds of systems can model iteef a population or the value
of an investment. By considering the regular MaReacil approach, we finally decom-

pose it into two subsystems, whose solutions atairmdd. Moreover, since the initial

function is given, the corresponding initial valu®blem is uniquely solvable.

Finally, an illustrative application is presentesingdde23MatLab (m-) file based
on the explicit Runge - Kutta method.

D) Generalized Neutral Differential Multi-Delay Sydems: Solutions Properties

In the 8" Chapter, the generalized singular neutral diffésaémulti-delay system

with constant coefficients, i.e.

ExX ()= AX()-3 BX(+7)+3 ¢ 1)+ DY }

i=1 i=1
where,E, A and B,C OC™" for i =1,2,...,0 are constant matrices, withetE = C,

and the input functioru 0 C'[t,») (column vector function of dimensioh) is as-

sumed to consist of all differentiable functionsost derivative is continuousgntinu-

ously differentiabl andt>t,, 0<r, <7, <...<7, are constants, is studied.
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These kinds of systems are inherent in many ecaranphysical and engineering
phenomena. Using the Matrix Pencil theory we deamsapit into five subsystems,
whose solutions are obtained. Moreover, the forrthefinitial function is given, so the

corresponding initial value problem is uniquelyvadile.

E) Generalized Stochastic Differential Delay Systesa Generalized Random Proc-

€SSses

In the last Chapter, we consider the generalizeshli regular stochastic differential
delay system with constant coefficients and twoudiameous external differentiable
and non differentiable perturbations, i.e.

EX(t)= A( 9+ B t-7)+ CY }+ D }+ R}
where w is a (fractional) white noise of dimensien f UC"[t,, ) is a smooth input
(column vector function of dimensiok), anduC[t, ) is a control (column vector
function of dimensiorl ). The E, A BOC™", with detE= 0, cCOC™, DOC™, and
ROC™® are constant matrices.

These kinds of systems are inherent in many agpitdields; among them we
mention fluid dynamics, the modelling of multi bodyechanisms, economics and the
problem of protein folding. Using regular Matrix i@ theory, we decompose it into

two subsystems, whose solutions are obtained ss@ered processes.

Moreover, the form of the initial function is giveso the corresponding initial
value problem is uniquely solvable. Finally, twtugtrative applications are presented

using white noise and fractional white noise, retipely.

Analytically, we use standard Brownian motion (sBl{rW(t),tZ O} , on the prob-

ability space(Q, F,P) . Moreover, ifg 1C” (U) is as a test function, then
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(€)= [0(9 (3

in the sense of equality in law. More precisely Wiener integral is defined as the ex-

tension toLz(]R+) of white noise, see Kuo (1975) and Borodin anan8an (2002) for

more details about the construction of the Wieméegral as the extension of white

noise.

Moreover, we show a way to adapt the traditionaitevhoise calculus to the frac-

tional white noise case. Firstly, we recall tha{W(t),tZ O} is a standard Brownian

motion (sBm) on the probability spa¢®, 7, P), then it is defined
T
W (1) =]z, (t g ¥ t=0
tO

which is the representation of fBm of Hurst paraafné’(D(O,l) on the same probabil-

ity space (see Hu, 2005, for more details) , where

2
z,(tg)={ L~
1t 1
(H—%ijSZHJ.UHZ(u— 92 dy if /2<H<1
ZHF@—HJ @
Also k,, = 1 , T (a) :If'lés ds is the gamma function.
F(H+2jr(2—2H) o

27



28



Chapter 2

Approximating Distributional Behaviour of Linear Systems Using

Gaussian Function and its Derivatives

2.1 Introduction

The use of Diracd —distributions in the study of LTI differential sgsh problems
is a well-established subject going back to Guptd Blasdorff (1963), Zadeh and
Desoer (1963), Verghese (1979), Verghese and Kgil&279), Karcanias and Kouvari-
takis (1979), Campbell (1980, 1982), Willems (198Hffe and Karcanias (1981), Cobb
(1982, 1983), Karcanias and Hayton (1982), Karcarad Kalogeropoulos (1989),
Willems (1991), and references there in. The workas has dealt with the characterisa-
tion of basic system properties such as infinite@and zeros Verghese (1979), Vergh-
ese and Kailath (1979) for regular and singulamp(iait) systems, as well as the study

of fundamental control problems where the solutgoaxpressed in terms of Dirat—

distributions. Typical problems are those dealinghvihe notions of aImos(A B)-

invariance and almost controllability subspacesléftis (1981), Jaffe and Karcanias
(1981).

In particular, the study of distributional solutgplays a key role in many areas in

systems and control such as:
(i) Controllability, Observability.
(i) Infinite zero characteristic behaviour.
(i) Almost invariant subspaces, almost controllab#ipaces.

(iv) Dynamics of singular systems etc.
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The distributional characterization is also linkedsolution of a number of control
problems. The solution of such problems have th@alesignificance, given that distri-
butions cannot be constructed and only smooth immetcan be constructed and im-
plemented. The idea of approximating distributioimpluts with smooth functions that
achieve a similar control objective was first imtoeed by Gupta and Hasdorff (1963),
Gupta (1966).

In the present section, which actually extends pides arigorous reformula-
tion of the early ideas presented in Gupta and bidis(963), we consider the problem
of approximating Dirac distributions with smoothnfitions of infinite support, and
more specifically using the Gaussian density asdiérivatives. Thus, mewmethodol-
ogy is proposed for approximating the distributiaimajectory that transfers the state of
a LTI differential system in (almost-) zero time bging an impulsive input. So, with

the new approach, the following three distinct peats are addressed:

(i) First, we determine the (unique) impulsive inpunsil (and its smooth appro-
ximation) which transfers the state of the systeomfthe origin to an arbitrary
point in state space in (almost-) zero time, subjecappropriate controllability
assumptions.

(i) Then, we calculate the approximation error in tiagestrajectories of the system re-
sulting from substituting impulsive input signalg $mooth signals. Thus, for the
very first time (according to the author's knowledlgthe optimal choice of two
significant parameters of the Gaussian distributod its derivatives, i.e. time
and volatility o, characterising the family of all smooth approximgtfunctions,
is considered and eventually an elegance formutabatng them is derived.

(i) Finally, we solve two state-space maximum-distapeeblems in the context of
(almost) zero-time state-transition. These corredpo two different types of con-
straints on the coefficients of the impulsive ingignal and its smooth approxi-
mation, involving the Euclidian and infinity norm$the vector of coefficients. It is

interested for further consideration that we canverthat both problems are
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tractable and can be solved via an SVD and thetisnluof a quadratic

programming problem with box constraints.

More specifically, in sub-section 2.2, we preséat problem formulation for a LTI
differential system. In sub-section 2.3, we provédbrief review of the different types
of approximations of distributions by smooth funas and explain their significance in
characterizing system properties. In sub-sectidn\#e assume that the system is con-
trollable, and under this assumption we establishngeresting connection between a
time-parametet and a volatility parameter of the Gaussian density function used in
the approximation. It turns out that the fractioho can be fixed (to a sufficiently large
value) and in this case paramete(or o) parameter controls the state-transition time
and the accuracy of the approximation (which cannberpreted probabilistically). A
new algorithm is proposed for calculating the srhaoput signal that approximates the
distributional input which transfers the origin thfe state-space to an arbitrary target
point (subject to a controllability assumption) ath@é distance (Euclidean norm) be-
tween the actual terminal state and the targeg;sthis distance is subsequently mini-
mized subject to magnitude constraints imposedercoefficients of the control signal.
Finally, in sub-section 2.5 we define the distafroen the origin using the Euclidean
norm. Moreover, we consider the problem of maxingsihe distance from the origin

with constrained input. Sub-section 2.6 concluthespaper.
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2.2 Problem Definition
We consider the linear time invariant (LTI) system
X (t)= Ax(t)+ by (9D, (2.2.1)
where x(t)0C” (IF,M(nX1;IE‘)) (smoothfunction over the fieldr = R or C, whose
elements belong to the algebtd (nxLF)), and u, (t) 0D, (whereD,_, is thespace
of Dirac distribution having derivatives up to aer n—1) are the state vector, and the

impulsive input, respectively and0M (nx n R and b0 M (nx1; R). Following also

Gupta and Hasdorff (1963), we assume that islsimuipd expressed as
A=diag{A,1,,...A.}, (2.2.2)

where A # A, #0 for everyiOn ( ). This assumption can be further re-laxed;feee

more details Remark 2.4.1.

This chapter deals with the followikgyquestion: Can we develop an approxima-
tion to impulsive behaviour with a respective appmmation of the related system and
control properties?”

The answer to this question underpins, the deveboprof a smooth approximation
of impulsive trajectories and thus also of the tedlasystem and control properties. A
number of control problems involving distributiorsallutions relate to the adjustment of
initial conditions with distributional inputs, rdfing to distributional state trajectories;
these imply changing the given state of a lineatesy to a desired state in minimum

time. The important questions that arise are:

(i) How can we approximate distributions and their\ddives by different families of

smooth functions and their derivatives?

(i) What are the different types of approximation?
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(i) What is the impact of the approximation on the praps of the associated control
problem and on the nature of the resulting tramsjtwhen smooth functions are

used?

It is assumed that the input to the LTI idimear combination of the Diradd-

function and its firsth—1 derivatives, i.e.

0, (1) =Y 8% (1). (2.2.3)

k=0
which is a linear combination of Dirag-function and its firsh—1 derivatives, where

k
o or C(ijt"é is the k" derivative of the Diracd-function, anda, for i0n, (n, 2

{0,1,2,...n- 1) are the magnitudes of the delta function andiésvatives. We shall

denote the state of the system at tinse0" asg(O‘) and at timet > 0* asg(o*) :

Now, practically speaking, we assume tlle(()")=[0 0 ... C]T att=0 and

1((0+) =[x1 X ... >§1]T att=>0". Furthermore, we assume that the systecois
trollable and thus we can transfer the state to any degoed of the state space.

Furthermore, we assume that our systergostrollable i.e. we can transfer the

state to any desired point. Let the state of tistesy at timet =0~ be 5(0‘) =0 and at
time t=0", 1((0+). The existence of an input that transfers theestdtthe system

(2.2.1) fromg(O‘) =0to 1((0*) requires that the vecto_r(O*) belongs to the control-

lable subspace of the pair, see Antsaklis and Mi@09). The necessary and suffi-

cient condition for the state of a system (2.201hé¢ transferred frong(O‘) =0 at time

t=0 to some5(0+) D{Alp} att=0" by the action of a control input of type (2.2.3)

n-1
is that the resulting trajectong(t) is expressed az(t) =Y. 4.0 (t) where the coef-
k=0
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ficients g, for kOn, are chosen to be the componentsg()o*) along the subspace
{b Ab Kb..., A" b, respectively according to some projections law.

In the next sub-section, we consider some backgroesults on the approximation
of Dirac delta function are presented.
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2.3 Approximations of Dirac Delta Function

The approximation of distributions by smooth fuoos is a problem which has
been considered in the literature. In this sectvwom review the main results in this area
and suggest a systematic and rigorous procedurapproximating distributions and
their derivatives. If the standard approximatinght@que of the Diracd -function is
followed, (see Gupta and Hasdorff, (1963), Gup1®66), Zemanian, (1987), Cohen
and Kirchner, (1991), Estrada and Kanwal, (200@nwal, (2004) etc) the change of
the state in some minimum practical time dependsisnan the accuracy of the ap-
proximations that have been generated. The reléatween the type of approximation
used and the duration of the resulting state-tt@msis one of the important issues con-

sidered in this section.

The Diracd-function can be viewed as the limit of the seqesiunction

a(t)=limo, (t), (2.3.1)

where &, (t)0C” (F,M(1x LF)) is called anascentdelta function. This limit is in the

sense that

Iai[rg_mda(t)f (t)dt=f(0). (2.3.2)

These properties can often be simulated by usisima@oth, finite approximation of

the Dirac distribution. Such approximations havelitohal advantages. In fact, ap-
proximating the Dirac distribution by a smooth ftian may actually be a better repre-
sentation of the solution sought in the particyleoblem, especially if the width of the
approximation function can be coupled to the ptysit the problem. Following the
ideas of Cohen and Kirschner (1991), a suitablecdmating function, which is con-
venient for computations, should satisfy the follegvimportant properties everywhere

on the domain under consideration:

1. Its limit with some defining parameter is the Didistribution (see eq. (2.3.1)).
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2. It is positive, decreases monotonically from aténinaximum at the source point,

and tends to zero at the domain extremes.
3. Its derivative exists and is a continuous function.
4. It is symmetric about the source point, for ins@fqsee eq. (2.3.1) and (2.3.2)).

5. It can be represented by a simple Fourier inte@ocalinfinite domains) or Fourier
series (for finite domains).

Next, we discuss the appropriate approximation ibh®function based on the fi-

niteness or infiniteness of the time domain.

2.3.1 Infinite Time-Support Approximations

We first point out that the best nascent delta tioncdepends on the particular ap-
plication. Some well known (and very useful in apggifions) nascent delta functions are
the Gaussian and Cauchy distributions, the rectandunction, the derivative of the
sigmoid (or Fermi-Dirac) function, the Airy functieetc; see for instance Gupta (1966),
Zemanian (1987), Estrada and Kanwal (2000), Karf2@04) et al. and recently the use
of a finite difference formula which is convertegtd an appropriate sequence; see

Boykin (2003). A short review of such approximasada given next.
Nascent delta functions very useful in applicatiares

e The Cauchy function,

e The rectangular function,

a,(t) = —rect(at/ ) . %T :sinc(:—g d“ dk,

where
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1, -1<t<1
rect(t) = 0 |t|> i

e The derivative of the sigmoid (or Fermi-Dirac) &tion,

1 1
(1) =0, s = Oy g

e The Airy function

Following Boykin (2003), the finite difference fouta may be easily converted
into a sequence that approaches a derivative obitse delta function in one dimen-

sion. Thus, we obtain

1 a a
—, ——<t<—

5 (1)=12 2 i , (2.3.3)
0, |t|>E

which approache#)(t) as a — 0. An expression for the derivatives oit) is given

by,

k-0 j=0

()= 'm{(i} > a4, (x+h h)} @3.4

where x=t, -t and thea, are appropriate constants defining the finite edléhces

Boykin (2003), and

o)l = (-1 o)L

37



The expression (2.3.4) is exactly what we wouldaobby making the substitution

f(t) - &,(t) in the following finite difference approximatioorfthe k™ derivative of

a smooth test functiori evaluated at, :

d" 1) &
1) sz.(ﬁj >a,1(, +b). (2.35)

Note thata, and b, are suitable chosen constants and (2.3.5) beceras in the

limit h - 0. Furthermore, due to the fact thatis sampled at discrete points, we can

write

S (01 = m{(%jk Zk:ajTé_(t—(to +byh)) £(1) dt} (2.3.6)

2.3.2Finite Time-Support Approximations

Unfortunately, the Gaussian function is not a gapgroximation of the Dirac dis-
tribution on a finite domain, namely that the fidgrivative (which is important in this
paper) can be discontinuous at a special points,Tiacently, a different approximation
has been proposed by Cohen and Kirschner (1991ghvelatisfies all the properties)(
through B). This is the-function of classical probability theory. This fttion has the

expression

(+6)" (m-6)""
B.(0)=1 (27)""B(ab) HenT (2.3.7)

0 otherwise

where 7 is a finite interval and

B(ab)2 | (7+6)7 (m-6)" &=—r—+
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Wherer(x) is the well-known Gamma function. Since, in thatrfew lines of the pre-

sent paper, the infinite time domain is used, titerested reader may consult Cohen
and Kirschner (1991) for further details.

2.3.3 Why a Sum of Dirac Delta Functions?

However, in our approach, our time domairinBnite and the classical Gaussian

function, i.e.
. 1 252 .1 t
J(t) =lim g% =|lim= —j, 2.3.8
( ) -0 g\ 21T o-0g \ O ( )
1 2 .
where g(x) =——e*'? is being used.
N2

Consequently, the approximate expression for tiraler (2.2.3) is given by

u, (t)= kZ; 3 ;ﬂ ¢ Gj (2.3.9)

et ()il o)

Then, we take the limit

u, (t) =limu, (t). (2.3.10)

g-0

Moreover, at the end of this section, we are ansgeanother significant question:

“why a sum of Dirac delta functioPis

Considering the results of%sub-section and the whole discussion till that pér
the 3 section, generally speaking, we should point bat the input for the linear dif-
ferential system (2.2.1) should be given bgimgle-layer distribution;see Zemanian
(1987), Estrada and Kanwal (2000) and Kanwal (2004is kind of distributions has a

huge importance in many applications.
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Lemma 2.3.1If ¢ is a bounded closed set ihand ) is a neighbourhood aff, then

there exists a function such that1 on 7, N=0 outside), andO<n<loverF. o

Definition 2.3.1Let S be a piecewise regular curve ih and ¢ is a locally integrable

function defined onS. The linear continuous functionald, on the spaceD of infi-

nitely differentiable complex-valued functions Brwith compact support is defined as
(00,.0) = | #(¢)o(¢) oS

0 @0D and is called single (or simple) layer ghwith densityo. O

Note thatads (x) = [ o(x-¢)a(£)Is.

Definition 2.3.2Let S be a piecewise regular curve ihand ud. The linear continu-
ous functional-d/ dt(/JJS) on the spaceD of infinitely differentiable complex-valued

functions onF with bounded support is defined as

(=d/dt(ad,).4) = J(E)WJS O0¢0D. o

S

Consequentlyit can be easily shown that every distributigd (x) that has com-

pact support is of finite order, see Zemanian (}®strada and Kanwal (2000). Thus, it

is deduced that every distributiomds (x) whose support is the point=7 has the

form Z[:de(k) (t-7), i.e. a linear independent combination of Dirddunction and

its first n—1 derivatives. Consequently, since we are interesteéthnsfering the state

of system (2.2.1) at time=0" from the initial pointg(O') and at timet>0" to

achieveg(o*) , (2.2.3) is appropriate, when the support poirtt 0.
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2.4. Design of Approximate Input Signal

In this section, we will try to answer to the follmg questions: if we wish to

achieve state_<(0*) at timet > 0" what are the necessary coefficiemts for k[In and

what is the optimal choice af that it takes the state there at time 0" ?” In this di-

rection, the following known results are signifitan

Lemma 2.4.1The solution of system (2.2.1) is given by
g(t):e‘“j e” by(r) d, (2.4.1)

where A is diagonal andu, (7) is given by combining (2.3.9) and (2.3.10). O

Remark 2.4.1 Recall that for simplicity it is assumed that matA is diagonal, i.e.

(2.2.2) ,with distinct eigenvalues; as Gupta and Hasdd®6@) have also assumed in
their work. This reduces the complexity of variauathematical expressions and the
number of technicalities involved, without introdug any real loss of generality. The

general case can be tackled by defining>an non-singular similarity transformation

Q=[%\ V..., ] OM(nxnF) that takesA into the Jordan canonical form.

In the next lines, we present briefly the more e8akpart. Further details are omit-

ted, since they are far beyond the scope of theepteversion of the PhD thesis.

Thus, there exists an invertible mat@OJ M (nx nF) such as] = Q™ AQ, where

JOM(nx nF) is the Jordan canonical form of matéx Analytically,

J =block diad J, 1. dzv-s 3

*» The block diagonal matri¥, = block diag{ ..., ,}} , Where
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J = . . OM(r, x7;F)

is also a diagonal matrix with diagonal elements ¢igenvalued, for i =q. Conse-

quently, the dimension o, is sx § S= Z L0

* Also, each block matrixJ; = block diag{ NETIR P ]de} :

A1
A1
3, = Ao |OM(z % 7:F)
S
L A ]
for j=q+1,q+2,.. k,andz =d . m

However, only for the simplicity of calculationsevihave already assumed that the
matrix A is in diagonal form. Consequently, the solutiod (2) is transposed into

(g =imie [ & bu(r) al

or equivalently,  X(t e‘L\tl'm[J‘e tigakﬂ(ék( j }

As 0 - 0, the energy of the input signal “concentrates’uab7 =0. Hence the
zero-time state-transition problem involves settirg0”™ and selecting the coefficients
a, so that (an arbitraryx(0")OR" is reached (recall that controllability of the mpai
(A b) is assumed).

Remark 2.4.2To reduce the complexity of the solution (due he targe number of

terms involved), see the following Lemma and itscdssion, we exploit the fact that
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p(t/o)= 1 e_%(ér,

and its derivatives tend to zero vestyonglywith t/o — o, see similar statements by

Gupta and Hasdorff (1963). Defind o = K (t,0) and assume thats fixed to a posi-

tive value, so thak (t,a) ~ o asg - 0. Then,

K(t,o)-w

p(tlio)2g(K(to)) - 0

K(t,o’)ﬂoo

and its derivatives ¢/ (t/0)2 ¢ (K (t,0)) - 0, kOn,.

whered” (t/ o) 2 ¢(t/ o). O

A suitable choice oK (t,0) depends on the choice of the transition time-égia

t and the volatility-parametes. In practice,t can be fixed, since we can pre-define
the duration of the (almost) zero- transition betwéhe initial and final (target) state of

the system when solving the (almost-) zero- tinaestransition problem (e.g., we can

selectt to be of the order of J10° seconds, say). This is the approximate version of

the exact problem and can be formulated as follows:

For a fixed value of the time parametert” and a fixede >0 determine

g =sup{JD R, :

A{t)-x(t)|<e}, (2.4.3)

Whereg(t*) is the target state angi(t*) is the actual terminal state resulting from the
approximation of the input signal, see equatiod.(.

This is in the form of a distance-approximationkpemn. Roughly, for a fixed state-
transition time-duration, we seek the “smoothesput signal for which the error toler-
ance of the distance between the target and atralnal state is kept within a pre-
defined levels. Note, that since this distance tends to zeraras O and the only

source of error arises from the approximation efEhrac delta function and its deriva-
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tives, an alternative equivalent formulation of fveblem is to determine (for a fixed

valuet =t"),

o =SUp{0’D R,

149 ( K(t ,0))‘ <g kO g} .

where thes, are suitable positive constants.

The following lemma is required for subsequent ttgwements. The objective is to
develop approximation bounds for the terminal stdten the impulsive inputs in equa-
tion (2.4.1) are substituted by their smooth appnations.

Lemma 2.4.2Consideru,(t) defined in equations (3.8). Then

j )or = nZ@{‘“Z[ :::cé”( DM &’y (;uiaj},

—00

(2.4.4)

where ¢ (x) 2 ¢(x), ¢ I @ y) dy=+2 erf*(2x-3, x0(0,).

t
Proof. Substituting the expression (2.3.9) into the irHéq ey, (r) &r, and we ob-

tain

k+1
k=0 O

t n- t k)
e 5 ¢ (r/o)dr = jqj ‘A'Md.

Consider first the term correspondingke 0,

t

- AT (0(7'/0') 1 *AzUzt 2 g”‘iaz _ }/1,20'2 t
__!;eﬂ - dr = U\/_ :!; eZ( ) a=é ¢1(E+Aiaj_

Consider first the term correspondingke 0,
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T

witd ¢(T/0-) 1 /]2 2t ;+/]i02 _ 1'/1,202 _ t
:!;eﬂ p dr = 0_\/— :!;ez( ) ad= e ¢1(E+/]ia'j_

Consider next the term correspondingkts 1. Integration by parts and using the equa-

tion above gives

j L P(110)

e
o>

—00

dr = e‘“lgo(rla +A j e ?
o

1,252
=gl o(t d)+Ae’ gt (i +A 0')
o o
Similarly,
t r
J'e‘“(d(rgla) dr=ev L (d(r/a +/1j 4 ¢(ria) ry
o o’ o

—00

1 2,2
-“{/1 Lot a)+L ot d)}mfe’-”’ qfl(lhtaj
o’ o
A recursive application of this procedure gives

t 1,252
J.e‘/‘if {J a(.li——/a-) = _MZ/‘m kel k o) (Jk m( j é/‘l ¢_1(%+/1i0j’

—00

from which the result follows. o
Choose0* /g2 K (0+ ,a) sufficiently large so that" (O+ /a)éqék) (K(O+ ,a))

=0, kIn,. Then the following approximation is valid

Of e #(r10) i

o~ dl'z/}ike? ¢_1( K(0+,0')+/]i0').

—00

Combining expressions (2.4.2) and (2.4.4) thengjive

x(k(0".0)o)=he a '”)‘”2’“2”240'1( K(0" o)+ Aia)nz_l al*, (2.4.5)
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fori=1,2,...n.

The approximate almost zero-time state-transfer probltan now be defined as

follows: Suppose that paramete(6,0) have been chosen so thdf‘)(OWa)é
d")(K(OﬂU)) = 0, k[In,. Then, given 1((O+)DR“ determine real scala@,, k(n
such that (2.4.5) are satisfied with equality fibrial{1, 2,...,n}.

Note that the impulsive response is recoveredras O in which case the approx-

imation in the above equation becomes exact; s #tase we also have that

X(0') - %(0'), ¢*(K(0".0) +Ac) - 1, and

%(07)= b€i°+§ aA, i=L,2,..n
k=0

so that

1 2202

5(O+)=e2' qo‘l(K(O+ ,J)+)lia)j((0*), i=12,..n
Theorem 2.4.1 now follows.
Theorem 2.4.1Let A=diag{A,A,,...A)} with A #A fori#j b=(h b .. R)

and assume that the paf\ b) is controllable. Let alsoB = diag{1/h,1/1,..,1/k}

and denote by £V (A,,4,,....A,) the Vandermonde matrix

1 /]1 /]12 /]l“‘l
2 n-1
VéV(Al'AZ"",An)Z 1 /12 /12‘ /12 '
1 An /1,? A:_l
Then the coefficient vecttzf:[au a - q_l]T of the input signal defined in (2.3.9)

which solves the almost zero-time state-transfeblam is given by
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a=Vv7'e" BY0'), (2.4.6)

where

%(0)2—— k(o)) i On. (2.4.7)

82/1. o ¢_1( K(o+ ,0-) +/1i0—)
Proof. Expression (2.4.4) can be re-written as

5(0)=he"S arn_ %O
%(0)=h kZ:;a Ty

for in.

Thus we can writeﬁ((0+) = B Ve or equivalently (2.4.6). Note that the indicatad i

versesV ™" and B™ exist due the assumption that the eigenvalugs are distinct, and

the assumed controllability ¢fA b), respectively. O

Ideally the parameters =0 and ¢ should be chosen so that the distance

Ix(t)-%(1)], =Sl 5(K(10)0) - X( K(10) )]

2

is “small”. Clearly the distance is zero providédttK (t,a) is selected so that

L2,

g (K(to)+Ao)-e?" =0 (2.4.8)
for all i which requireso — 0, in which case (2.4.8) implies that

im, ¢ (K(t.0))=1 - im,_, [ g(x)dx=1~ K(10) -~ w. (249)

In probability theory and statistics, the normalGaussian functiorzp(x) is widely

used. The graph o@(x) is bell-shaped and is known as the Gaussian famair bell

curve. Actually, in this case we are interested in
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I_K(t'a)w(x)dx,
which is thecumulative distribution functioficdf) of a random variableX ~ N(0,1)
evaluated at the upper limit of the integrb(l(t,a), denoting the probability that
X < K(t,0). In practice, if| Ao k<1 for all i, we can assume that equation (2.4.8) is
approximately satisfied iK, £ K (t,0) = 3.9 (in which caseg™*(K,) >1-10", see rel-

evant table value for the Standard Normal Distrdoutvhich represents area to the left
of Z score). Thus, a reasonable choice for the tMitya parameter is

o =Kt =0.258 .

The results of the section are summarized in thewiing algorithm.

Algorithm TIAZT (Transferln AlmostZeroTime)

1° Step Define the terminal (target) state of the tranaig(0+).

2" Step Using the required transition tirrté(E 0*) define the optimal volatility pa-

ramete’ =0.256 .
3" Step Finally, the coefficients of the input signz_ilz[q, a - q_l]T defined in

equation (2.3.9) are obtained by (2.4.6), =V e’® TES(O*) where all variables

are defined in Theorem 2.4.1.

Remark 2.4.4 From the control viewpoint it is important to clseoappropriate time
duration for the state transition. This ultimatdlpends on the type of application, e.qg.

due to control signal magnitude or “slew-ratigfitations. It is clear from the imposed
proportionality ™ =K't that increasing the duration of the state-tramsitiesults is

“smoother” input signals, which is often desiraliter example, if the system operates
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in a feedback loop (in which case the input sigagenerated by a feedback controller),
highly discontinuous signals typically correspondsystem overdesign (e.g. excessive
closed-loop bandwidth) and may have detrimentaoi$f on the stability and perfor-

mance characteristics, e.g. in terms of reducedstoftability margins and sensor noise
amplification. !

Example 2.4.1(See Gupta, 1966) Consider the system

0 o

where x(t) and u,(t) are the state and the input signals, respectiv@ilypose we
wish to transfer the state of the system fra©) = (0 0)T to 1((0+) =(3 4)T at time
0" =1us (1 microsecond). Application of the TIAZT algonithgives

1° Stept Here the desired state i§0°) =(3 4)".

2" Step The transition duration has been pre-determirse@ & 10°s, so the opti-

mal volatility parameter iz’ =2.56[110" (takingK, =3.9).

3 Step Here,&(lO‘ﬁ):lq_(l(Te): g and 22(10‘6)=l<2(106) = 4. The inverse of

the Vandermonde matrix is:

V‘1:V‘1(—2,—3):E :ﬂl:ﬁ’ :J

Thus, the coefficient vecta=[a, a]" is calculated as:

o3 I el TS
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2.5 Distance Problems

2.5.1. Distance from the origin in state-space

In this section, we define the distance from thginrcorresponding to a state tran-
sition of the system (2.2.1) from the zero (or gmb)Jstate,g((O')=[O 0o-- (.

Using the Euclidean norm this is defined as

«(07)-x(0)f = (0)x(0) =5, #(0). @5

(see Fig 2.5.1). The time interval of the transithas been defined in previous sections

as0" (t) and the target state £G(O+) :

()

1<

Fig. 2.5.1:2-ball with centrel((O‘) and radius’

However, if the Dirac delta function and its detivas are replaced by smooth sig-

nals (Gaussian function and its derivatives), target state will not be reached exactly,

in general. The distance in terms of the targees_iéo*) is defined as

X? ( K (O+ ,0’) a)
et [m‘l ( K(O+ ,a) +A 0)}

F* = Zinﬂf(iz (O+) = Zinzl

2

where (2.4.7) has been used. Note that fixing, o) and takingo - 0, we getf —r.

Example 2.5.1Consider the system:

S0 e o
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where g(t)DC""(R,M(Zx 1; R)) and u, (t) are the state vector and the input, respec-

tively. Let 1((0‘) =0 andg((O*) =[3 4. Then

(o) x(o)- gD o e

As BB, -1, f -1 =5,

2.5.2 Maximum distance from the origin with constraned input

Here we assume that the system (2.2.1) starts tlheraero state at time=0" and
consider the problem of maximizing the distancéhtterminal state in an (almost) ze-
ro-time state transition. This problem of coursekesasense if the input signal is con-

strained in some sense, see Gupta (1964). Thuswenlso impose constraints on the
coefficient vector of the input sign@l:[a0 a - a,_l]T in terms of the Euclidian

and the infinity norms (alternatively, you can cdes bounded energy, instead of
bounded gain). Again, our approach reformulateterels and supports the preliminary
ideas proposed by Gupta (1964), as we can provebtih problems are tractable and
can be solved via an SVD and the solution of a atadprogramming problem with
box constraints, respectively. Especially, the @mtion of our problem with the litera-

ture of quadratic programming is very fruitful fiarther future consideration.
Lemma 2.5.1Let A #0, i=12,..n. Then zi”:l|/li|p_1s max{n,zin:1|/1i|n_1} for all
p=12,...,n.

Proof. Define function f () :Zin:1|/li|x_1 which can be written a§(x) =Y " by

setting m =In|A|. Since f"(x)=Y_" nf &Y >0 for all xOR, function is convex
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for all x(OR and specifically in the intervdl< x< n. Thus f(X) attains its maximum

at an edge of the intervdk x<n, i.e.

ST e max,., f )= ma{ f (f 6)= ma{m ZLI/LIM}

for every p=1,2....,n as required. O

Under this framework, the following Theorem can dfearacterized as a useful
complementary result of Theorem 2.4.1, where agrésting upper bound is given for
the maximum distance of the zero-time state-trammsgproblemwhen we have imposed

constraints on the coefficient vector of the inpighal a.

Theorem 2.5.1Let A=diag{/,4,,...4}, b=(h b ... h)" and assume that the
pair (A b) is controllable. Defineé:diag{llq,llt;,... 1/h} and denote by =

V (A, A,,...A,) the Vandermonde matrix

14 A2 oA
14, A2 ..oAt

1A, A2 oA

Let a=[a, & - a.,| be the coefficient vector of the input signa(t) =
Z. Oa,é( ( ) defined in (2.3.9). Then, ﬁ(0+) denotes the terminal state of the zero-

time state-transition problem witﬁ(O‘) =0,

=|Be V< Lo (A)I\l/qﬁl ma>{ nzi”=1|)|i|"_l} (2.5.2)

min,,,

max,,, [x¢")

where the indicated matrix norm denotes the largasjular value (spectral norm) and

P(A) denotes the spectral radius of A.
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Proof. In the notation of Theorem 2.4.1 the terminalestat the transition isX(O*)
= Be'” Va. Thus, maﬁ‘a“ﬂug( O*)H = H B V” while the maximizing coefficient vector

a is the (normalized) singular vector éeAWVcorresponding to the largest singular
value. (If the largest singular value is repeatedcan choose any linear combination of
unit length of the singular vectors correspondimdghie repeated largest singular value).

Note also that

el I e e

Now,
V<A, =VAV ] =V max,., S =V maf i) @54

see Lemma 2.5.1 and Gupta and Hasdorff (1963), avh@ and ||, denote the in-

duced 1 ando-matrix norms, respectively. Equation (2.5.2) falfoby combining (2.5.3)
and (2.5.4). O

Remark 2.5.1Consider the almost zero-time state transition leralin which K (t*,a)

=t"/ o has been fixed and has been chosen sufficiently small so fHat] <<1 for all

| and approximation Gautshi (1975) is valid.

Then we have
x(0") =rBe“ Va,
wherel = dlag{/}z (K", 0)+A0) 2}
It follows that in this case
max,,[x(© || =|rBe* \/”<¢/(n)ma>§jn{| A2 &% (K0 g Ma)}

where
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Jno?

pn == max{n,zin:1|/1i|n_l},

while the maximizing coefficient vectaris the (normalized) singular vector 6B V

corresponding to the largest singular value.

Next, we impose magnitude constraints on the cmefits defining the distribu-

tional input signal. Again we assume th:&(O‘) = x(0")=0 and seek to maximize

HX(O*) using the impulsive inputy(t) in equation (2.3.10) (0«5(@) using its
smooth approximatiom_(t) in (2.3.9)) subject to the constraint:
la|< g, ¢ >0, foriln (2.5.5)

(see also Gupta and Hasdorff (1963)). Geometricalty seek constan for 1IN in
the ranges defined by (2.5.5) such as the radiukepicted in fig. 2.5.2 is maximized,
(starting fromX(O‘) = 0) where

%(0')

r

=YL R(0)=X L YL A ., (25.6)

x(0")

Fig. 2.5.2:n-ball with centreg(O‘) and radiusr

Again, if the smooth approximation signaj(t) is applied, equation (2.4.6) should

be used; substitution into equation (2.5.6) shdwas in this case we seek to maximize:

=) =X 5 (0] ¢ (Ko o) ”‘”)T |
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Next note that equation (2.4.5) gives:
%(07)=he "X A a,,
and hence
R(07) ="y > A g,y 100 (25.7)
Substituting, (2.5.7) into (2.5.6), gives

2

=l

N0 ? n n ;
i Ziﬂﬂ{heﬁio 24 (0_1( K(0+ ,0') +Ai0‘)i| Zj=12s=1/1il+s_2 Q‘l Q—l'

(2.5.8)

Define the symmetric matrix
) A0t+iag?
Q(o) =V' D*(0)V, D= dlat{ be 2 qol( l<(0+,0)+/lia)].

Note that due to the assumed controllability(éfb) (which implies thath # 0,
10n) and the assumption that the eigenvalued\ @fre distinct (which implies that

det{/ )# 0), we have thaQ(o) = Q" () >0. The two distance maximization problems

now have the form

maxr2=H5(O*)H2=aTQb)a st.-¢<as ¢, O

and

max f2=“X(O*)HZ=aTQ(O)a st.-¢< as< ¢, On

which areQuadratic Programmingpptimization problems with “box” constraints. Sénc

the cost function ¢ (a) =a Qo)a ) which is maximized is convex, the constrained

maximum is achieved in a vertex of a hyper-cLHp|e: G, i0n.

Thus, as Gupta and Hasdorff (1963) have mentiomned;an also prove
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{(—/li)m_2 sgna,_, sgras_l} > (forall j andk.
This can be easily derived if we assume that

sgna,, =(-9'" andsgna,_, =(-1°",

SO we obtain

sona, , sora,, = (- ¥4 (- (-

So, the maximum distance is given by

r zillZ?:lzle/‘i

2
j+5—2Cj_1CS_1|: eﬁiK(O*ﬂ)ﬂif"zg,,—i( K(0",o)+ /]ia)} . (25.9)

Finally, again if we assume that= K (t* Nod )d - 0,andK (t*,a*) to beequal or

greater to 3.90, we obtain

r2x(0)-x(o )] =ZL LA

The following numerical example illustrates somehaf results of this section.

j+s-2
ey (2.5.10)

Example 2.5.2Consider the (almost) zero state transition probfer the system de-

fined in example 2.5.1 witrl((O‘) = 0. Suppose that the following constraints are im-

posed on the coefficients of the input signal

|ag|< =1, and|a|< ¢ =2.

Subject to these constraints, the maximum disténoce the zero state is:
[x(0)-x(e ) = XL % (o)
2 2 2 j+s-2 AK(07 0)o+iia? 2
ZZizlzjqzs:lM l Cj—le—1|:e 2 (01( K(0+,U)+/1i0)} .
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2
i ¢ o)o+iiza?
=Y A C,-lcs{glK(o P g (K(0' o) +)I10)]

B

2
zK(O* 'U)miﬁgzqﬁ( K(O+ ,0_) + /]20_) .
B>

= z::1|/11|3_1 CoGorB, + Z;MJS CBr+) 2;1|)| 215_1 Col B85+, 2;1|/1 }"cg B%
=2(2 + ) oot 2| M B2 414 ) B2) cort (| B3+ L BY) ek,

* z?=lz::1|/]2| e legl{ e/]

In this exampleg, =1, ¢ =2 and|A| =2, |4,| =3.
So, the maximum radius is given by
r2x(0)-x(0)] =45+ B2)+ A 2+ BE)+ 4 i+ B) = 287+ L

Now, for the case that =K (', )d - 0, we have?, 3; - 1 and

réul(t*)_z(o—)uz\/4+ 4( 2+ E)+ 2( 4 9:\/_54‘- 7.3
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2.6. Conclusions — Further Research

In this chapter, a novel methodology has been medor approximating the distri-
butional trajectory that transfers the state ofTa differential system in (almost) zero
time by using an impulsive input. It has been shakat no loss of generality is intro-
duced if the impulsive input signal is chosen dmear combination of the Dira@-
function and its firstn—1 derivatives, wheren is the order of the system. Approxima-
tions of the impulsive input signal were consideusthg the Gaussian (Normal) func-
tion, and the resulting response of the systemamatysed. The work has addressed the

following three distinct problems:

() We have determined the (unique) impulsive inputnaig(and its smooth
approximation) which transfers the state of thetesysfrom the origin to an
arbitrary point in state space in zero (almost-geimme, subject to appropriate
controllability assumptions. To simplify our pression, the simplest set of
assumptions has been selected (full system coaiitity, single control input,
distinct set of eigenvalues in the system matthw)ever, extension to the general
case is straightforward at the expense of possibgs of uniqueness and
considerable additional complexity in the resultmgthematical expressions.

(i) A Euclidean metric has been defined to quantify alpproximation error in the
state-trajectories of the system resulting fromssitdtting impulsive input signals
by smooth signals. The optimal choice of two parnanse(time and volatility) char-
acterising the family of all smooth approximatingnétions has been obtained,
along with an interesting probabilistic interpredat

(i) The solution of two state-space maximum-distanagblpms in the context of
(almost) zero-time state-transition has been ptedeior the case of system (2.2.1).
These correspond to two dif-ferent types of comsisaon the coefficients of the
impulsive input signal and its smooth approximatimvolving the Euclidian and
infinity norms of the vector of coefficients. Boginoblems are tractable and can be
solved via an SVD and the solution of a quadratagmmming problem with box

constraints, respectively.
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Future work will attempt to: (i) extend the resudis this paper to more general
classes of systems (e.g. descriptor, singulaj)infiestigate the numerical properties of
simulating impulsive trajectories and their smoafiproximation, and (iii) develop al-
ternative energy-based approximation techniquesnplilsive behaviour especially in

the context of large-scale systems and model remuct
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Chapter 3

Generalized Inverses of Structural Matrices (Vandermonde and a

Special Matrix) Appearing in Control

3.1 Introduction

The square and rectangular Vandermonde matricee haen appeared several
times in many distinct areas of numerical analyisigontrol and system theory; see for
instance: Wertz (1965), Klinger (1967), Bjorck aRdreyra (1970), Tang and Golub
(1981), Martinez and Pefa (1998 a, b), EisinbergnZ and Salerno (2001), Eisinberg
and Fedele (2006), Karageorgos, Pantelous and &apgulos (2009) and the'®2
Chapter of this PhD thesis. Moreover, differentckof approaches and algorithms for
the representation of the (generalized) inversa sfjuare Vandermonde matrix have
been proposed, see Wertz (1965), Klinger (1967)fikan (1969), Bork and Pereira
(1970), Tang and Glob (1981), Martinez and Pen&@8&&9 b), Orcus and Phillips
(2000), Deisenberg and Fidel (2006), and of a regtar Vandermonde matrix, see De-
isenberg, Franz and Salerno (2001), using diffef@torization methods and numerical

functions.

Recently, in the literature of control and systémoary, see characteristically Kara-

georgos, Pantelous and Kalogeropoulos (2009), rdnesfer of the initial state of an

61



open loop, linear higher-order descriptor (regutifferential system in (almost) zero-
time has been fully investigated, i.e.

Fx" (t) = Gx(1)+ bu( 9,

with known initial conditions

(1), X () s X7 (),

whereF,GOM (nxnF), andbOM (nxLF) (i.e.M is the algebra ofix m matrices
with elements in the fieldf =R or C) with detF = 0 (0 is the zero element of
M(n=1F)), x(t)oc” (F, M(nxLF)) and u(t)0D,, (where D, is thespaceof
Dirac distribution having derivatives up to an arde-1). For the sake of simplicity,

we set in the sequelt, 2 M (nxnF) and M, £ M (nxmF).

In order to solve this problem, the appropriateuingector has to be made up as a
linear combination of the Dira@-function and its derivatives, for more details see

Karageorgos, Pantelous and Kalogeropoulos (20G9)eferences therein, i.e.
u, (1) => ad" (1), (3.1.1)

d“s(1)

where 5 (t) or is the k" -derivative of the Diraas -function, anda for i =

0,1... ,n—1 are the magnitudes of the delta function and étsvdtives. Furthermore,

we assume that the state of the system at @ime

x(0)=x(0)=-=xX"(0)=[0 0 ... (¢,

and at timeQ', it achieves

x(0)=[% % .. £].x(0)=[x % .. %]....,

t

A o)=[x* %t .. %7
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Obviously, such an input which can be expressethéysummation (3.1.1), is very
hard to imaginghysically However, we can think of it approximately as enbmation

of small pulses of very high magnitude and infilyitemall duration.

In the paper by Karageorgos, Pantelous and Kalpgetos (2009), a classical ap-
proximated expression for the controller (3.1.1hick is based on the Gaussian (Nor-
mal) function, is used. Thus, by considering what the DiracJ- function and the

Gaussian (Normal) function we obtain:

. 1 P | t
o(t) =lim e =lim=¢g| — |,
() 0’—»00‘,/277' G’~00' Uj

1 ~x%/2

——¢
N2

So, the approximate expression for the impulsiyeAr{3.1.1) is given by

where ¢(x) =

Thus, in the paper proposed by Karageorgos, Parstallod Kalogeropoulos (2009),
the unknown vector-coefﬁciena_i:[aO q - q_l]t, where a OF for i =0,1,..,

n-1 has been analytically calculated by solving th&teay (3.1.2).
v ]| &)
V(I+ )Z|+1 —Z(I +1)Zl+1 (0+)

Via,, (2] z.y_(07) (3.1.2)

Ve || 2, (0)
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t
where the vecto{_z,t (0+) Z) (O+) 2. (U) s (0)} is constantV, DM, , is
a rectangular sx n-Vandermondematrix andV, DMuz,. aowith J=1+1L1+2,..,k

andz =1,2,..,d , is aspecialmatrix.

Obviously, the system (3.1.2) can be further trased to a more convenient sys-

tem. Analytically, if we multiply the 3% row of Vandermondematrix V, i.e.

(14 A% .. A™] with the number (-1) and we added it to tHéraw of each of

V(HI)M, V(|+2)m veer Ve thenvjzl is given by

Oy -4 ,ujz—/]2 ...... ,U?_l—/]n_l

O 1 2;{]_ ...... (n_ 1)ujn—2

0 0 o (n—l n- ﬂp—s

Vi, =l : Do ! : 2 ] (3.1.3)

dpj_l Pia dpj—l n-1

o0 .. 01+ R L

_ (0D ™ (D! i |

(Note that we have shown that the matricés , for j=I+1,1+2,.., «, do not con-
tain zero rows, see al€€ommentKarageorgos, Pantelous and Kalogeropoulos, 2009)

We can easily see that th& tow of matrix (3.1.3) can be re-written as below,

the elemeniy + A+ + L A+ 2= > oAk,
k ,k,=0
2k=x

i=1

Thus, the first row is presented as

1

2
(U, =A)|0 1 D peae > pfak HA
k%,k2=0 k%,k2=O k%,ka
k=l Zkzz Zk=n—2
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Since, the element; -1 # 0, we can multiply by left the eq. (3.1.3) with aop¥

erly chosen transformation matrix, so as to obtain

01 i Iujkl/]kz

n-2
5
k=0 klg=0
Z::k,:l Z::k,:n—z
s, 201 2 (- 1
S SN A S i
i (pj -1)! d,ujpj_l (pj -1)! d/«/iol_l i

(3.1.4)

Finally, the system (3.1.5) is derived, where trarioes S, for j=I+1] +2,.. x

are derived by taking into account a properly chosansformation left-matrix, as

follows

v _Zf (0+) ] v

V(|+1)M _Z(|+1)M (0+) SIHL
2Miea,, |85 2] 2.y (07) | = | S |27

v ] a0 ) S

(3.1.5)

whereV,OM ., S 0OM,,, Z (O*)D/\/(’l andg,+2(0+)DMj'1, for j=1+1] +2,.. .

Note thatp; = rlnzaxd K, is the index of annihilation for the eigenvalue .
3=12,..4 )

Consequently, the system (3.1.5) contains theviatig sub-systems.

va=2(0)
Saa=4, (O+)

S.a=4(0")

whereV|, S for j =l +1] +2,... k¥ are non-square matrices.
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Thus, for the analytic solution of the above systeen for the determination of the

coefficientsa of the input (3.1.1), some elements of the germdlinverse theory are

needed.

More analytically, in the sub-section 3.2, we intigegte the generalized inverses of
the rectangular Vandermonde matnx, According to the number of rows and col-
umns, different types of generalized inverses @erin the sub-section 3.3, we investi-
gate the {1, 2, 3}- generalized inverse of a vgrga@al rectangular matris. For the
better understanding of the presented results, sameerical examples are considered.
The 3.4 sub-section concludes the whole chapteth&udirections for research are also

presented.

As a last part of this introduction, the followibgsic definitions for different kind
of generalized inverses are simply repeated; semféoe details Campbell and Meyer,
Jr (1979).

Definition 3.1.1 Denote the square matriA M, . We say that the non-negative inte-

ger k is the index ofA, Ind (A) = k, if k is the smallest non-negative integer such as
rank( Ak) = rank( Aﬁ*l). O

Definition 3.1.2 The Moore-Penrose inverse of a rectangular mathixI M, is the

matrix A" O M, , such that

(1) AATA= A,
(2) ATAA = A,
(3) (AA) = AR,

@) (ATA) = A'A,

where* the conjugate transpose index of the relevantimatr O
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Moreover, theDrazin inverseof square matrixACJM, , Ind (A) = k is the matrix A°

satisfying
(i) APAR° = A,
(i) AA° = A’ A,
(i) ATA° = A,

for |2k = Ind (A).

Note that if A is non-singular, therh = A° = A,
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3.2The Generalized Inverses of the Vandermonde Matrix

In this section, we study three different caseshefv,, =V, (A,4,,...1,), Van-

dermonde matrix. The first two cases, whare m and n < m, create the rectangular
Vandermonde matrix with different number of rowsl @olumns and the third one cre-

ates the more classical square Vandermonde maten, (A,,4,,...1,).

For all cases, our wish is to transform the Vanderde matrix

1A - A
n-1

Vm,nEvn(Al!/‘z'---uAm)é 1 /1.2 . Az DMm’n;
1A, - A

into an equivalent matrix of the following form:

[) For n>m (rectangular case with more rows than columns)phtain

[ Ol

II) For n< m (rectangular case with more columns than rows)phtain

o)

[l) For n=m (square case, equal number of rows and colummspbiain
I
Definition 3.2.1 Consider the following matrices:

a) Let P(a) be amx m-matrix which has a non-zero elementin the i”-row and

thej" - column, i.e.
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1

(3.2.1)

Thus, whenever a matri is multiplied from the left by (a) then thei® -row of

it is multiplied by the non-zero numbet

b) Let P (j,a) be amx m-matrix which has a non-zero elementn thei”-row and

the j" -column, i.e.

1

(3.2.2)

Thus, whenever a matrixis multiplied from the left by ( j,a) then the j*" -row

of it is multiplied by the non-zero numberand it is added to thg" -row of A.

c) Let Q(a) be anxn-matrix which has a non-zero elementin the j"-row and

the i"-column, i.e.
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Q(a)= a . (3.2.3)

1

Thus, whenever a matriA is multiplied from the right byQ (a) then thei™-

column of it is multiplied by the non-zero number
d) LetQ (j,a) be anxn-matrix which has a non-zero elementn the j" -row and

the i™-column, i.e.

Q(j.a) (3.2.4)

1

Thus, whenever a matriA is multiplied from the right by (j,a) then thei” -

column of it is multiplied by the non-zero numkerand it is added to thg"-

column of A. o

Definition 3.2.2 Let us define with th¢ | C symbol the order left multiplication of ma-
j=1
trices as itis given b [P, =P, R, ;- BR. a

Proposition 3.2.1 {andermonde parameterization)

a) For the (I) case, there are invertible matricBsJ M,, and Q, M, such that
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1 A - AT
1 A, - A

PV Q=P Q=[ln Oppmls (3.2.5)

1 A, = A

m

where the permutated matrices are given analytjcély the following expressions
(3.2.6) and (3.2.7), i.e.

F’fHHHbfA JF?(S-l)DMm, (3.2.6)

-Mr | s— S M |o : 3.2.7
a=[][]e “strl M (327)

whereQ, (j,a) is given by (3.2.4).

b) For the () case, there are invertible matricBsJ M and Q, 0 M, such that

1 A - A
1 A, - At |

I:)ZVm,nQZZF)Z : :2 .. 2 Q2=|:® j|| (328)
1 A - AT

where the permutated matrices are given analytjcély the following expressions
(3.2.9) and (3.2.10), i.e.

z=n+l n-1 m

P, = ﬁ Pz(n’_l)ﬁj]jlpi(/]_ i/‘ ]FJ)(S_])DMFH’ (3.2.9)

where P (a) and P ( j,a) are given by (3.2.1) and (3.2.2) respectively, and
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n-1 n s S
o - ols- A lom (3.2.10)
? 5= r|::Ir1 k,....k =0 |I:l | M

ki+...tk=r-s
whereQ, (j,a) is given by (3.2.4).

c) For the (lll) case, there are invertible matric®&U M, and Q, 0. M, such that

1 A4 - AT
n-1

PsVnQ3=P3::L )!2 N Af Q;=1,, (3.2.11)
1 A - AT

where the permutated matrices are given analytcély the following expression
(3.2.12) and (3.2.13), i.e.

n

where P (a) and P ( j,a) are given by (3.2.1) and (3.2.2) respectively, and

n-1 n r-s s
QG=[]]12|s- X A 0M, , (3.2.13)
s=1 r=s+l1 Ky,....ks=0 I=
ki+...+ks=r-s

whereQ, ( j,a) is given by (3.2.4) .

Proof. (I) For n > m. We start with the rectangular Vandermonde matrix

and we work as follows

1 1
P L AT E L PN L e
R
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Then, the matrix/,,, is transformed into

—1 /]l /]12 /]f Al‘l R * e All'lfl
3 n-2
0 1 A+A,  A2+Ad,+A2 3N * Z Mo pfe
ki, k, =0 ki, ks
k +k,=3 K+ k2 n—2
1 2 n-3
00 1 3 A Y akakas o * PRYII
ki ko, k=0 K.k, k=0 ky ko, ky=0
Ky +ky + kg =1 o+ kot k=2 K +ky+lg=n-3
1 m n-1-(m-1) m
00 O 0 0 ST I—J/]lh 3 pr
KKy ky=0 1= Ko, k=0 =
L kKt *. +ky=1 K +ko+...+ k= n-1-( ) ]
m
(Note thatzk1k ,,,,, Kn 0 H/ll'“ is a sum frond to n-1-(m-1) such as the
ky+ko+.. k=1 D) =

an k-n mON .)

z=0

Thus, we conclude to the determination of the tiamshtion matrixP,

P = P(ﬁJPm(m—l,—l)---P(Az j (1- J)Aﬁﬁl (

m-1 m

)R

As we can see the multiplication between matriaesnts in reverse order, starting

fromm - m-1- ... etc, see also Definition 3.2.2.
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Now, we want to transfer thBV, , into the desired matrix (3.2.5), so we act as

,n

follows,

PVinaQs(L=Ay) = PN Q(L-4,) B{1-43) - -
- I:)1\/m,nQ2 (11_/11) Qg(l,—/]f) .. Q ( 1,_A rl1—1)

- Plvm,an (11_/11) Qs(li_/‘f)"' Q1 (1'_/]2_1) Q{ 2 Zl: : AIKJ

- Plvm,an(l'_/]l) Qs(li_/]f)"' Q(l,—/‘ﬁ'l) Qs{ 2 i : /1|k1 JQ4[2’_ i : Ath
Ky,
k

Ple,nQZ (1!_/11) Q3(1’_/1§)"' Q (11_/]2_1) Q{ 27 Zl: - Alk{ J

3,- ;|I'ﬁ Qo - Y - ;||'ﬁ
: {mﬁ 1 J

1 3
3,- A
Q4{ kl,k§=0 D |

K+ + =1 Ekl&kz’fs Qi’ " to+ =1
n=1~(m-1) m
K
Q.| 2,- > H Al
Ky Ky ..., k=0 =

k+ko+. .+ k= -1 )

Thus, now we can define matrix the transformatiairin

Ql=oz<1,—mog(1,—Af>---q(wz1>Q{2ri ”JQ( ) Z”J

1 3 n-3 3 1 n
Q4£3’_ Z H/"k{ Q| 3- /]lki ...Qmﬂ[m— Z H/]KJ
ki ko, k=0 1= K.k, k=0 = kKoo by =0 1=
Ky +ky+ k=1 K+ k+ k= 3 Kp+ko+.. .+ k=1
n-1-(qg-1) m | a m n r-s s §
Q. 2,- Z PANE HQ’ S- Z rl/]'l )
ki, Ko ..., ky=0 = s=1r=s+1 Ky ,....ks=0 1=
ky+ko+... k= n=1-( m-1) k+...+k=r-s
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Consequently, we have transposed the Vandermontiexnméo (3.2.5).

Similarly, we can work for the (lI) and (lll) caseshere the expression (3.2.8) -
(3.2.13) derive.

So, the further details are omitted.
In the next example, we illustrate the results mip@sition 3.2.1.

Example 3.2.1Suppose that we have tBe 4- Vandermonde matrix, i.e. (I) case,

1 3 3 3
V,,=V,(4,=34,=104,=100=| 1 10 10 10|0M,,
1 100 1086 10d

then by applying (3.2.6), we take

F’1=]jj]:;fﬂbjf)ljﬂ(s-l)= 2l o) 20 B o) 13 {3 3 )

1 0 0
= -1/7 1/7 0
1/679 -1/630 1/873

The matrixV,, is being transformed into the following

1 A A2 A 13 @ 3

PV;,=|0 1 A+A, A2+AA,+15|=/0 1 3+10 3+ 316 10

0 0 1 A+A,+A, 00 1 3+ 16- 100
1 3 9 27
= 0 1 13 13
10 0 1 113
1 000

Now, we want to transfer théV, , into the matrix 0 1 0 0|, so we apply (3.2.7),

0 010
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3 4 r—

_ S s Alﬁ
[19]s7, & T

L=
s=1 r=s+l

Q

ki+...tk=r-s

Q(1-3Q(1-3)Q( + Yo = Q( 2 13%( 3 U
1 -3 30 -300

0O 1 -13 1330

0 0 1 -113

0O 0 O 1

Thus, we take the parameterization

1 00O

PV,,Q,=|0 1 0 0],

0O 010

where
1 -3 30 -300
1 0 0

0O 1 -13 1330

P=|-1/7 1/7 0 and Q,=

0O 0 1 -113|
0 0 O 1

1/679 -1/630 1/873

Remark 3.2.11t is not difficult to verify (see also the aboramerical example) that an
explicit (quasi-)LU factorization of the rectangular Vandermonde masiobtained
using non-singular matrices like (3.2.6), (3.2.0r (3.2.9), (3.2.10) or (3.2.12),
(3.2.13)). Analytically, we have

() QuasiLU factorization:

Vm,n=|51|:|m ©mﬁ-m:|éll

where
- m-1 m
P2p’= ” [P (s1) I?(/L- —ﬂs) (Lower Triangular Matrix)
s=1 j=st1
and
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s=1 r=s+l r-s S

Q2Q"= H H Q Sk ;0 D A" | (Upper Triangular Matrix).

n
ki+...+ks=r-s

(1 QuasiLU factorization:

where
L. n-1 m m
P,2P" = ” [1P (s1) Fj)(Aj ‘)L) [ R( n1) (UpperTriangular Matrix)
s=1 j=s+l z=nl
and

s=1 r=s+l r-s

Q.20 =[I1IQ|s

A’ (Lower Triangular Matrix).

ky,....ks=0 =
K +...+ks=r-s

(Il LU factorization:

where

n-1 n

PER'= ” [1PR(s2) R(A =A) (UpperTriangular Matrix)
s=1 j=st+l
and

s=1 r=s+l r-s S

Q.2 =[]IIQ|s > ” A | (Lower Triangular Matrix).
1 Ko.ok=0 1=

n
ki+...+ks=r-s

Thus, for each (1) - (1) caseypperandlower triangular non-singular matrices are

derived. The proposed results are compared witbetiierived fronKaufman (1969),
Martinez and Pefia (1998ahd Oru¢ and Phillips (2000)see also Remark 3.2.2).
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Characteristically, we remind that @u¢ and Phillips (2000thelU factorization of a

square Vandermonde matrix is obtained using commgmmetric functions. Our re-

sults are fully comparable f@ru¢ and Phillips (2000kince we can have also explicit

formulae for the factorization matrices. m|

Remark 3.2.2 As a further direction, but it is beyond the scomé this chapter, it
would be very interesting to compare the numernieallts obtained by the LU factori-
zation, especially for the (lll) case —i.e. squdeadermonde matrix, with those derived
in Bjorck and Pereyra (1970), Tang and Golub (198tuc¢ and Phillips (2000), Eisin-
berg, Franzé and Salerno (2001). O

In the next lines, we provide the main resultsio$ section. The generalized in-
verses of the rectangular and square Vandermontie&casaare derived. Furthermore, it
should be pointed out that analytical formulaetfa calculation of the generalized in-

verses derive.

Theorem 3.2.1For the (1) case, thd1,2,3 -inverse of the rectangular Vandermonde

matrix is given by

vit23 = ' P. [ 3.2.14
n,m _Ql o) 1 Mn,m’ ( e )

where the permutated matricd3 and Q, are given by the expressions (3.2.6) and
(3.2.7), respectively.

Proof. Consider the expression (3.2.5), i.e.

Plvm,anzl:Im @mﬁm van: P:Illil m@ m-n ;I\Q_ll

we have to

m,n?

I
In order the matrixQ{@ " }Pl to be the {1, 2, 3}-inverse oV

n-m,m

prove the following three equalities,
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lm
(1) vm,an{@ }Plvm,r,:er,

Im I m _ I m
(2) Ql |:@ :|P1\/m,nQ1|:© ' m:| I:)l_ Ql|:@ mr;| Pl

and

. o |
(3) (Vm nQ1|:@n_m‘ m:| PlJ - Vm, an|:@ - m:| I:’1'

Thus, the (1) holds since

I
vm,an[@_m }Plvm,f PP 10 O wn o Q'Qy () " }Pﬂl[lm Onm) Q1

I
=81 O] 5" (1000 Je2

=P (1,+0,)[1 @mﬁ_m]Q;l
=Vm,n 1

and the (2) holds since

Im I m _ l m 1 1 m
Q1|:@ n} Pl\/m,nQ1|:© m:| Pl_ Q1|:© J Plpi [Im (O)mrrm] Q_l Q{@ m:| P

n-m, nm R M

and finally, the (3) also holds since
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Im * -1 1 lm *
(Vm,an {@ :|P1J :(Pl I:Im O m] Q, Ql|:@ } Plj

[m}
Theorem 3.2.2For the (ll) case, thg1,2,4 -inverse of the rectangular Vandermonde
matrix is given by

VIR =Q,[1, O, JP.OM,,, (3.2.15)

m

where the permutated matricdy and Q, are given by the expressions (3.2.9) and

(3.2.10), respectively.

Proof. Consider the expression (3.2.8), i.e.

I, ~ I, ~
I:)va,n(QZ :|:@ m:| < Vm,n: P21|:@ - mj| Q21'

n—-m, - m

In order the matrivQ,[ I, O, ,|P, to be the {1, 2, 4}-inverse of, ,, we have
to prove the following three equalities,
(1) Vo Qo[ 1y O o] PV 1=V,
2 Q.[l, 0,nn]PV.Q,[l, O,,.]P.=QI , O, ]P
and

(3) (Qu[ln Opmn]PV ) =Qu[10 O 0 JPY -

Thus, the (1) holds since
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m-n,n

o I
:Pz_l @ T :||:In @n,m—n]|:© " :| ;1

m-n
- I ln @n,m—n I n -

and the (2) holds since

m-n,n

| |
va”QZI:IH @ﬂmn}szmn:Pgl[@n j|Q_21Q2[|n @nm—n:lpzp_Zl|:@n j| 21

QZI:In @n,m—n}PZan 2[|n @nmrllpz

|
=Q,[I, @nmjpngl{@“ }Q';Qz[ln Oppn] P

n—-m,

“ }[ln Ouma]P,

n-m,m

=Q,[1, @mn]{@I

=Q2(In+@n)[ln @n,m—n I:)2
=Q2|:In ©n,m—n]P2 '

and finally, the (4) holds since

(L1 Crm PV :(Qz['n 0, JPZF’?{@I” }Qj

{or ond Jo)

(QZ(ln +®n)Q;l)*
In :QZ[In @n,m—n:lpzvmn .

O

The (Ill) case has a very special interest. Hére Moore-Penrose inverse (see also

Remark 3.2.3) is derived. This inverse can be ¢ailled easily, since an analytical for-
mula derives.
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Theorem 3.2.3For the (lll) case, the Moore-Penrose inverse @& f#yuare Vander-

monde matrix is given by
VI=Q,P,0M,, (3.2.16)

where the permutated matricéy and Q, are given by the expressions (3.2.12) and

(3.2.13), respectively.

Proof. Consider the expression (3.2.11), i.e.
P3VnQ3 = In = Vn = Ps:leil

In order the matrixQ,P, to be the Moore-Penrose inverse\Qf we have to prove

the following four equalities,

(1) V.Q,PV, =V,, (2) Q,PV.Q,P,= Q.P,,

3) (Q,PV,) =Q.PV, and (4)(V,Q,P;) =V,Q,P,.

Thus, the (1) holds since

V.Q:PV, = P'Q QPP Q5 = P Q5 =V,
the (2) holds since

QPN Q3P = Q;P,P; Q3 Q;P= QP
the (3) holds since
(ViQsP,) =(PrQyQPy) =1, =V, QP

and finally the (4) holds since

(Q.PV,) =(QPPQE) =1,= QPY,
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Remark 3.2.30bviously, the More-Penrose inverse (3.2.16) is #t& Drazin inverse

and the regular inversé*, see also introduction. O

Example 3.2.2Suppose that we have tBe 4- Vandermonde matrix of Example 3.2.1,

then the {1, 2, 3}-inverse of the Vandermonde mxagigiven by

1 -3 30 -300
| 0 1 -13 1330][1 ! 0 0
vizd =g | 2 |p = S -1/7 /7 0
3 ot o o 1 -113||0
1/679 -1/630 1/873
0 0 O 1

1.4728 -0.4762 0.003
-0.1620 0.1635 - 0.0015
| 0.0015 -0.0016 0.000
0 0 0

In the next section, a special matrix is discus3dek results that have been pre-
sented here are extended to that special casentisx has been recently appeared in

an interesting control and system theory problem.
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3.3The Generalized Inverse of a Special Matrix

As we have already discussed extensively in thednuiction, in an interesting re-

cent applications of the control and system theseg, Karageorgos, Pantelous and Ka-
logeropoulos (2009), we need to calculate the gdimed inverses of a very special

matrix, like

_1 /,[ /jZ /,[3 * * % ﬂn—l ]

1 A A2 Q3 = *o* ATt

01 20 3% = x* (n-1)A"2

00 1 3% * x o (n-1)(n-2)A"* |O
1 d™

Oo0 0 O 0-- 1°* — (A

_ g *)]

where A # u 0.

Mm+1, n?

In this section, we investigate the rectangularrixaivhere n > m, using the first

row of the Vandermonde matrix, see also introductibhe other two cases (where

n<m and n=m) can be straightforwardly derived using also tesufts of 2° sec-

tion. So, let assume that we want to investigatefdhowing matrix.

_O /1_/1 /12—/12 /]3—/,13 *

R An—l_lun—l
0 1 21 A2k xow (n-1)A"?
0 O 1 3 * oL k% n-1)(n-2)A"3
s <0 0 1 3 (r-1)(n-2)
1 damt _
e 1 * . & A1
_O 0 0 0 0 (m—l) dAjm—l( )_

(3.3.1)

Consequently, as in the previous section, we ti@mspe rectangular special ma-

trix (3.3.1) into the following form,

I:Qm Im @mn—nﬂ]'
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Proposition 3.3.1 Special Matrix parameterization)

There are invertible matriceB M, and Q UM, such that

PSan = I:Qm Im @ maA ml] ’ (332)

where the permutated matrices are given analytcély the following expressions
(3.3.3) and (3.3.4), i.e.

s=2
P:]_‘[Pm—s+2[i} Pm— gz(m_ S+l’_l) ) (333)
A=
where P (a) and P ( j,a) are given by (3.2.1) and (3.2.2) respectively, and

m+l n 1 d s-2 k-2

= -—— “ale ||, 334
Q L kl;L[Qk S! (S— 2) | dA s-2 kl!kzZ:(:) /'I ( )
I +ky=k-2

whereQ, (j,a) is given by (3.2.4).
Proof. We start with the matrix (3.3.1) wherez ¢/ £0.

In this direction, we work as follows

L LIS O N PR S R L

A-u

1
Pz(mj R(L-9S,, -~

So, the matrix (3.3.1) is transformed to
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0 1 p+d  [P+pA+AT % ok ox ST pean ]
E+kk20n—2
d d n-2
00 1 —(P+uA+A2) * ... * = .. -~ k ke
i K+ ) a1,z

Ky +ky=n-2

00 0 0 0. 1 %.. L d™ ZZ pyC
(m-2)t A 4

L k1+k2 n—2 J

Gt L Pl IR

-u

s=2 l
= ]%[ I:)m—s+2 (ﬂj Pm— g2 ( m- st1,- ]) .

Now we want to transfer theS, , into the desired matri%Qm " @mﬁm].
So, we act as follows
1 2 n-2
PS,.Q| 2~ > #A% | Q| 2~ > uiA%|-Ql2- > urt|-
' k. kz=0 K =0 k k=0
k+ky=1 k+k=2 k+k=n2
1 2 n-2
PS,,Q| 2~ Y whA% Q| 2~ > uhAk|Ql2- Y 4% |0
ki, k=0 k. k=0 k,=0
ki +ko=1 kt+k=2 ki +ky=n-2
@, 3 i 22: ,uk1/1k2
| dA K
kg tho=1

1 1 2
PS,,Q| 2. 3 4" | P%n@{z" > pat | Q2 Y piAk
by kp= o=

K+ 2
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PSm'an 2.— i kl/]kz 2, nz_%‘ ,uki/lkz Q 3’_d%kli ’uls/]'&
k

ki, k=0 k. k=0
K

1+k2 =1

d n-2 k y
Qn 3,— AT
dA kl,k;)
ki +ky=n-2
Sk Sk gk d < kg
PS,.Q| 2~ Y #A%|-Ql2- D wA*| Q| 3-— D wukA
Ky, k=0 K,k=0 dA Ky kp=0
k1+k2:1 Ii+ kZ: n2 lf+ l§=1

21dA?% 4, Zd/]z k; kp=0
kK +k,=1 ki +Kko=n-2
1 dm—l m 1k 1 dm—l n-2
.| M+1,- ok m+1, ok
B B O 7t el e B R

We also define matrix

1

Qé(% 2’_2 ’ukl/1k2 Q1 2,- Z ﬂli/]kz 3,_% ZZ: 'uli/]'&

Ky, k,=0 k k=0 Ko =
Ky + ko =1 K+ k=12 K+ =1
1d g 1d2 &
3,- Kk ... 4-= kyke |... , kjke |...
N dAklz “ 207, 2 [ 2 e, & H
ktkp=n-2 ky+hp=1 ki +o=n-2

m-1 m m-1 n
Qm+2 m+1’—(; d Z ,Ukl/ikz Q wl,—# d ZZ 'ukl/ikz
P

m-1 m-1
l)' dA t1+k|§2—1 ( )I 7 ti”%z Y
m+l n 1 ds— k-2 o1k
= P S - 1 )%
IR s egiw| &
K +ky=k-2

87



Consequently, we have transposed the special n{8t8x1) into[gm I O 0 ml]. O

Example 3.3.1Suppose that we have tBe 4- special matrix,

0 10-3 16-3 16- 3
S,=|0 1 2010 316 |[OM,,
0O O 1 316

then by applying (3.3.3), we take

P 3 Pala-s1-9= B 2] B2 ) 3] (10 )

1 0 0
-1/7 117 0
1/49 -1/49 1/

P=

s=2
3

The matrixs, , is being transformed into the following

0 1 u+A [P+ pur+A2 0 1 310 3+ 310 19 0 1 13 13¢
PS,=|0 0 1 u+24 =0 0 1 3 2110 |=| 0 0 1 2
00 0 1 00 0 1 0 0 0 1
0100
Now, we want to transfer thBS, ,into the matrix 0 0 1 0|, so we apply (3.3.4),
0 001
le.
il a5 wanl|=q(2-19Q(2- 139Q( 3 2
Q= QU sS—T—— WAk |1=qQ(2,-1 2-13 3 2
= kI:_s|+1 ‘ (5_2)!d/] ? kl,kZZ:(:) Q Q Q
ko +ko=k=2
10 O 0
|0 1 -13 160
oo 1 -23f
0 0 O 1

So, we take the parameterization
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0100

PS,,Q=|0 0 1 0,

0 00 1

where

1 0 0 10 0 0
P=|-1/7 1/7 0 d Q=0 1 -13 160
4o 1129 1) an 00 1 -23
1/49 -1/49 1 o0 o0 1

In the next lines, the generalized inverse of #aangular special matrix (3.3.1) is

derived.

Theorem 3.3.1The{1, 2,3 -inverse of the rectangular special matrix (3.3slgyiven by

Ot
s2¥=ql 1, [P, (3.3.5)
0

n-m-1,m

where the permutated matricés and Q are given by the expressions (3.3.3) and

(3.3.4), respectively.

Proof. Consider the expression (3.3.2), i.e.
PS,:Q=[0n ln Opnm|= SpeP (04 1,0 ,,,]Q"

Ot

In order the matrixQ| |, [P to be the {1, 2, 3}-inverse 0§

s WE have to
O

n-m-1,m

prove the following three equalities,

(1) San Im PSmn: Snn
O

n-m-1,m
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2 Q I PS, Q [, P=Q I, |P
@n—m—l,m @ rml m @ R ml, m
and
0 0
3)|S.Q I, |[P|=S,Q l, [P.
@n—m—l,m O - ml, m
Thus, the (1) holds since
Ot Ot

:P_l[—mo Im @mn—ml:l I m [—VQI m 0 m’n‘m}Q_l

@)

n-m-1,m
=P (0,+1,+0)[_Q !, O, . .]Q"
:Sm,n

and the (2) holds since

[0} [ g
Q In [PS.Q I, |P=Q I, [PPO, 1,0, ,]Q"
©n—m—l,m ©n—m-1, m @ A ml
Ot
:Q Im mOIm (O)mﬁm—l:l
@n—m—l,m @
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0 9 G. | G
= Q —m O I m @ m - ml l m P
Qn—m—l @n—m—l,m @ r ml @ A mi,
Ot
= Ql Im Pl !
@n—m—l,m
and finally, the (3) also holds since
0; 0;
Sm,nQ lm P = P_ll:gm | m @ ma ﬁ‘\l:l Q_lQ I m P
©n—m-l,m @n—m-l,m

O

Example 3.3.2Suppose that we have tBe 4- special matrix of Example 3.3.1, then

the {1, 2, 3}-inverse of the special matrix is givey

10 0 0
0! 0 1 -13 160[C 1 o0
Sﬁ?‘f’“Q{ﬂP: 0o 1 23L } 1/7 1/7 0
3 sll1/49 —1/49 1/
00 0

0 0 0
6.1224 -5.1224 22.8571
-0.6122 0.6122 - 3.285
0.0204 -0.0204 0.142
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3.4 Conclusions — Further Research

In the present section, three main results have pegposed: First, we have pro-
vided a (quasi) LU factorization, and secondly vaeéhcalculated analytically the gen-
eralized inverses of the rectangular (and squaagdermonde matrix, which is defined

in terms of scalard, A,,...,A, R (wherem # n) by the following expression:

1A o AT
n-1

Vo2V (A ) et e
1A - AT

Finally, similar results with the Vandermonde mathave been presented for a
special structure matrix. Both matrices have bggreared recently in the control and
system theory’s literature, where the change ofritimal state of a linear system in zero

time is required.
As a further extension of this chapter,
* we are interested in extending the presenting t®salthe complex case, where

A Ay, .0A OC.

* Moreover, based on our approach, we want to exidadinez and Pefia (1998b)

and Eisinberg, Franzé and Salerno (2001) reseanckswin the first case, i.e. Eis-

inberg, Franzé and Salerno (2001), we have a dpggp@of A = 00{2'2—_1 } for
n

i =1,2,...n (Chebychev nodes) and

* in the next case, i.e. Martinez and Pefa (1998b)want to calculate the appropri-
ate complete symmetric function, in order to deteenthe LU factorization of the

rectangular Vandermonde matrix.
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Chapter 4

Generalized Regular Differential Systems with Distributed Delay

4.1 Introduction

Now days, it is assumed th@eneralized Differential Delay Systef@&DDSs) pro-
vide an excellent mathematical modelling framewéok many applications in eco-
nomical, physical and biological aspects, as wellmany differential models, for in-
stance models for biological population composeddfit and juvenile individuals; it is
sometimes meaningless not only have time dependencthe past but also some
weighted (distributed) average of previous valueshe growth at time. This has been
known for some time, but the theory of such systeritls piecewise constant or con-

tinuous lagging arguments has been extensivelyloleeée only recently.

Our long-term purpose is to study GDDSs within th@nstream of matrix pencil
theory. This approach has been extensively usedntrol theory for the study of gen-
eralized linear time invariant dynamical systemthaiit delay, see Gantmacher (1959),
Campbell (1980, 1982), Karcanias (1979), Karcaaiad Hayton (1981), Van Dooren
(1983) and Kalogeropoulos (1985). However, quiteendly, in Kalogeropoulos and
Stratis (1999) and Wei (2004) a first discussiom@feralized differential systems with
delay is offered by the matrix pencil and the Dnamverse matrix theory approach, re-

spectively.

This section is organized as follows: In sub-secdo2 the necessary preliminary

concepts from matrix pencil theory are presenteth-&ction 4.3 contains a brief ac-
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count of the required elements of the theoryDdferential Systems with Distributed
Delay (DDDSSs). In Sub-section 4.4 the main results of tork are developed. Thus,

we investigate the solution of GDDSs with constafficients, that means

to+7

EX(t)= Af X(t= 9 qu( $+ BG ), (4.1.1)

where E, AOC™, where detE=C and BOC™ are constant matricesyl]
C([to,oo),C') is a control (column vector function of dimensiby andt>t , where

r >0 is constant. Furthermore, there exists a unigoemalized bounded variation

(NBV) function (or distribution),u:[to,t0+r] - C. Moreover, the system (4.1.1) may
be reduced to studying a GDDS of the form:

to+7

FX(1)=G [ x(t-9 du( 3, (4.1.2)

t

0

under the common control theory assumption thahi@-glerivative and continuous de-

lay controller of the following form is obtained:

to+r

u(t)=Ex(9- AJ A9,

when sk - G is a regular pencil the system (4.1.2) is tramstat using the Weierstrass

canonical decomposition form of the pensif — G, in two subsystems. One of them is
in standard DDS form, while the other is a nilpoteystem. This procedure also sug-
gests the form that the initial function should édasuch that the corresponding (4.1.1)
initial value problem admits a unique solution. &y, in sub-section 4.5 an illustrative

application is presented using MatLab DDE initialue problem solver. Sub-section
4.6 concludes this chapter.
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4.2 Mathematical Background from Matrix Pencil Theay

We begin this section by introducing some prelimyjeoncepts and definitions

from matrix pencil theory which are used throughthé chapter. Firstly, let there be
given the constant matric#s and G OC™", which uniquely determine the underlying

matrix pencilsF— G of system (4.1.2).

Definition 4.2.1 Given F,GOC™"and an indeterminate, the matrix pencilsF - G is
called regular whenm = n and det(sF-G) # O, where© is the zero polynomial. In

any other case, the pencil will be called singular o

In the present section, we focus on regular penbitsv, let £ =~ be the set on

nx n regular pencils, i.e.
s é{sF— G: F,GOC™and sF G regule}r (4.2.1)
Definition 4.2.2 The pencilsF - GOL, , is said to be strictly equivalent to the pencil

skE-GUOL,, if and only if P(sF- G) Q= sk~ G, where P, QOC™", and detP,
detQ# Q. O

The strict equivalence relation can be definedrogsly on the set of regular pen-
cils as follows: Consider the set

g2{(P.Q): P, QIC™, detP, detQ# p
and a composition rule defined ong as follows:
(gxg - gsuchtha(R,Q)*(R Q)£ (RIR QIQ)
It may readily be verified thetg,[) forms a non-abelian group.

Furthermore, an action of the group(g,D) on the set of regular matrix pencils (4.2.1)

is defined by
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ol gxL - L,

such that((P,Q),sF- G) - (P, Qo( sF- G2 B sF & 1

This group has the following properties:

@ (R.Q)[(R.Q)(sF- G]=( R QU B Q-( sF §
for everyR,R,OC™", Q,Q,0C™", detR,, det?, , deQ, anddetQ, # 0.

(b) e (sF-G= sk C sF-GOL

n,n?

where g, =(1,,1,) is the identity ele-

ment of the grou{g,0) on the set of(,

r
n,n

defines a transformation group denoted by

M, see Kalogeropoulos (1985).

Definition 4.2.3For sF- GO/, ,, the subset

go(sF-G)2{(R Qe( sk G:( P QU 0L,
will be called the orbit oBF -G at g. m

Also M defines an equivalence relation dh, which is called a strict equiva-
lence relation and is denoted bg,. So, (SF-G)&(sk- G) if and only if

P(sF-G) Q=sE -G, whereP, QOC™" anddetP, detQ# 0.

The class ofé’s(sF— G) is characterized by a uniquely defined elemendykmas
acomplexWeierstrass canonical fornsf, — Q,; see Kalogeropoulos (1985), specified

by the complete set of invariants &f(sF - G).

This is the set of (e.d.) obtained by factorizthg invariant polynomialsf, (s, é)

into powers of homogeneous polynomials irreductsler C .

In the case whersF - GO/Z, , and detF = 0, we have elementary divisors of the

following type:
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» zero elementary divisolg.e.d) are those of typs”;

* nonzero finite elementary diviso(az. f.e.d) are those of type{s— a)”, with

az0;
« infinite elementary divisor§.e.d) are those of typ&’.

Then, the complex Weierstrass forsf, — Q, of the regular pencilskF-G,
detF = O is defined bysF, - Q, £ block diad s, - J, sH- [, where the first nor-

mal Jordan type blocksl, - J_ is uniquely defined by the set of f.e.d.

of sF—G and has the form

slp—JpébIockdiag{ sh=3(4... s| - 1g(,a)}

and also they blocks of the second uniquely defined blas, - I, correspond to the

i.e.d.

of sFk— G and it has the form

sH, - 1,2 block diag{ SH = L,..., SH - !}}
Thus theH,, is a nilpotent matrix of indeg = max{ q =12, a} :
where Hg* =0

Lo, J0 (a) H, are the matrices:
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10 -0

01 <p:

I, =|. . . . |OR"™,
O 0 -1

0

0

H, =|

0

0
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4.3 Delay Differential Equations and Renewal Equatins

In this section, we describe briefly the necessiaepry of Delay Differential Equa-
tions (DDEs). For DDEs we must provide not just ¥h&e of the solution at the initial
point, but also the “history”, i.e. the solutiontahe prior to the initial point. Thus, the

main result is

Theorem 4.3.1Consider the system

to+7

X()=Af du(9x t $t=t,,7>0 (4.3.1)

0

and the initial condition x(t)=g(t), (4.3.2)

for AOC™ constant matrix, with NBV functiop:[t,,t, +7] -~ C™" be given, and

¢ DC([[tO -1,1,)], C”) . Then there exists a unique function

x0OC[t, ~7,0) N C(t,,)
that satisfies (4.3.1) and (4.3.2). O

The existence and uniqueness may be found in Befinaad Cooke (1963), Hale
(1977), Hale and Verduyn Lunel (1993) and Diekmanal. (1995).

Definition 4.3.1 Denote the convolution product lay such asf Og O L' is defined by

f Dgéj f(t-7)g(r)dr

t

0

where f is a (possiblyn x n matrix - valued)L*-function. O

Definition 4.3.2 Equations of the form

y=A(u0y)+h,
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where the kernels, the forcing functiorh are given andy is the unknown parameter,

are called (linear) renewal matrix-valued equatiams alternatively, Volterra convolu-

tion integral matrix-valued equations (of seconaldgi O

Now, we reformulate Theorem 4.3.1 taking into cdesation the two definitions
above. Our strategy is to rewrite the initial-vapreblem for a linear autonomous delay
differential equation as a renewal equation and tbeuse the resolvent to obtain a rep-

resentation of the solution.

Theorem 4.3.2Let is # NBV function andQDC([[tO -1, to)],(C“) be given. Definey

and f in terms ofy and ¢ by, respectively

to+r

9= A u()(t)+ | du(99(t 3

and f=g(t)+A [ [p(trs)-n(9]g(1-9d

the delay differential system (4.3.1) provided wité initial condition (4.3.2) admits a

unique solution orfit, -7, ) . For t >t this solution coincides with

x=A(p0x)+ f (4.3.3)
whereas the derivative' coincides with the unigue solution of the reneggation

X' = A(pOX)+ g. O
The proof may be found in Diekmann et al. (1995).

Definition 4.3.3The characteristic matri)A(z) is defined by the expression

A(z) = zI- Atj e” qu( }. o

0

In the next theorem, we obtain a representatiomddet using Laplace transformation.
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Theorem 4.3.3For x NBV function andf DC([[tO, oo)],C”) of bounded variation and

constant fort > 7 the solutionx of the renewal equation (4.3.3) admits fo¥t, the

representation
Xzt [ en(2 j (4.3.4)
for y> sup{ Rez :def\(Z }J and L(y) denotes the lingz| Rez=y} parallel to the
imaginary axis in the complex plane. Moreover, @y...dz we denote the so-called
L(»)

yHiw
principal value integralﬁljm I ... dz. O

y-iw

The proof may be also found in Diekmann et al. G)99
Remark 4.3.1

4.3.1.1 There are several numerical computation methodshi®rcharacteristic roots,

detA(z) = (, of linear delay differential equations (4.3.19esShampine and Thompson
(2001).

4.3.1.2 A detailed study of the asymptotic behaviour of Huution (4.3.4) is also

available on Diekmann et al. (1995). O
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4.4 Systems of Generalized Linear Differential Equatias with
Distributed Delay

In this section, we deal with the initial value plem for generalized regular DDSs.

These systems of the form

to+7

EX()= Af X(t=9 du( $+ B} t=2t,, 7>0 (4.4.2)

x(t)=¢(t), t,-r<tst, (4.4.2)

where E, AOC™", with detE = 0, and BOC™ are constant matrices; the matrix pen-
cil se- A is supposed to be regulan,] C([I;),oo),C') is a control (column vector
function of dimensiorl ), andt =t , wherer >0 is constant. Furthermore, there exists
a unique normalized bounded variation (NBV) funatifdistribution) ,u:[to,t0+r]

- C.
Additionally, let suppose that 0C'[t, - 7,,1,) is C'-differentiable.

Lemma 4.4.1The system (4.4.1) may be reduced to studying ergkzed linear DDS

of the form

to+7

FX(1)=G [ x(t-9 du( 3. (4.4.3)

t

0

Proof. Assume that the state-derivative and delay feddbawtroller has the following

form

to+7

u(t)=Ex()- Al Xt 9 do( ¥, (4.4.4)

where E, AOC"™ are constant matrices. Then by substituting tleelexpression into

(4.4.1), itis obtained (4.4.3) where
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F=E-BEOC™ and G= A- BAOC™. 0

Definition 4.4.1 System (4.4.1) is being called normalized if a lbaed controller

(4.4.4) may be chosen such that its closed-loegp3}is normal, i.e.
detF = de(E-BE)# C. o

Moreover, as long as the normalized condition igsfed, the closed-loop system

(4.4.3) would become

to+r

X()=F'G [ x(t-9 du( $ (4.4.5)

and its plain feature is its finite poles, i.e.rthés not any infinite pole. The solution of

the above equation is discussed in Section 4.3alseaemark 4.4.1).

Lemma 4.4.2The system (4.4.1) may be reduced to studying malmable linear

DDS (4.4.5) if and only if the compound mat@x([ E: B]) # 0', where C, ([ E: B])O

2n
c ( ”] is the n -order compound maitrix of E: B]. O

The proof may be found in Kytagias (1993), Dai(198@logeropoulos, Pantelous and

Papachristopoulos (2008) research work.

Lemma 4.4.3If detE =r <n, there exist,QLIC™", detP, deQ# (such as

PEQ= g Orer d B, £ PB
o o an B |

with detB,_,, = n—r, then the matrixE = —[@” ‘B, ] Q" normalizes system (4.4.1).
Proof. The proof is a direct consequence of lemma 4¥his,

suppose thatC, ([E: B])#0', then it should be proved that there exists a imatr

E=-[0,,i8,, |Q" such thadet(E - BE) # 0.
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Analytically, since theC, ([ E: B]) # 0' it is derived tharank| E: B = n.

Now, since also thaletE =r <n then there exist®, QOC™", detP, deQ# ( such

as

PEO= Ir ©r,n—r
“lo,., o.,.|

n-r,r

I 3 -
andn=rank[ E § = ranf PEQ PB= ra k@ ' g)r’”_r NB"' }: + rank B,
n-r,n-r “n-r|

B -

Moreover, it is definedDBé[é " } and it is clear that theank B_,, = n—r.
n-r,l

Consequently, the matri®, _, , is full row rank.

Now, assume that the matr . 0C""™) and define alsx = 8,_, | §,_, 0ct7 )

such as
detx = Gy (B) G (B )= G (Br) € (B )= £ (B[ >0

Denote the matrixE = ‘[@u ‘B, ] Q*, then

i | O, - B -
E-BE=P?| ' Qe P T O '
|:@n—r,r @n—r,n—r} Q |:Bn—r,l:|[ " Bh—r:I Q
[ O, .- | B, B
= P—l r rn-=r -1 P—l r N r) 'n 1
@n—r,r @n—r,n—r :| Q l:@)n—r,r n-r| Btn - j| Q
L B,B,.
=P 1 r ~ Tl = Q_l-
_(O)n—r,r n-r| tn - i|
Finally, it is easily derived that
- | B, B
det(E - BE) = detP” delQ’ d{t f J’BJ;* }: . O
@n—r,r n-r) n-r
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In view of Lemmas 4.4.2 and 4.4.3 it is considefadyhat follows, systems of

the form (4.4.3) where the corresponding matrix gdersk— G is regular, i.e.

C,([EiE])=0" anddetF = de{E-BE)= C

From the regularity ofsF— G, there exist non-singula€™" matricesP and Q such

that (see also section 4.2)

J 0
PGQ=G, = {@ P l"'q] (4.4.7)

wherel ,J ,H, are given by (4.2.2).

Proposition 4.4.1The system (4.4.3) may be written in the form

Yo (=3, [ %(t-9 du( 3, (4.4.8)

Hoya ()= [ yo(t=9 du( 8 (4.4.9)

x(t)=Qy(1). (4.4.10)

Substituting the previous expression into (4.4a8),0btain

to+7

FQY()=6Qf ¥t 9 d(

Whereby, multiplying byP, we arrive at
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Moreover, we can writg/(t) as y(t) = {— }(t) :

And taking into account the above expressions, mweeaeasily at (4.4.7) and (4.4.8).

O

Remark 4.4.1The system (4.4.7) is in the standard form of sgystef linear delay dif-

ferential equations, and the corresponding initeiie problem

Y, (t)=3, j Yo(t=9 au( $, t=t, 7>0 (4.4.11)

t

0

Y, () =8,(1), t,~T<t<t, (4.4.12)

may be treated by classical methods (see, sect®)n Additionally, as it is derived
from expression (4.4.12), the initial state funeti@d.4.2) obtains the following general

format:

#(t) :E: ((tt))} =Qp(t)= QE:((:))} asdetQ# 0. .

Proposition 4.4.2The system (4.4.9) has the following solution
¥, (1) =0,, where,y, (t) =¢,(t), for t, -7 <t<t,.
Proof. We start by observing that - as it is well knowthere exists &N such that
Hy =0 (4.4.13)

i.e. theq is the annihilation index of, . We obtain

to+7

HoYa(8)= | Ya(t-3) du('9) (4.4.14)

t

0

whereby differentiating, and multiplying by, we get
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t,+7

Haya(t) = OJ HYa(t=s) du( s) (4.4.15)

and substituting (4.4.14) into (4.4.15)

to+T tg+T

H2Y, (D)= | ya(t-5-5) de( s) a( 3. (4.4.16)

b 1

By differentiating and multiplying again b, the expression (4.4.16) it is obtained

to+T ty+T to+T

Hy@ ()= [ [ [ ya(t-s-s-) d( 9 o 3 a( F

b b I

Repeating this argument a sufficient number of $invee end up with
to+Tto+T  to+T

Hf?uygqU)(t): I ,[ I Xq(t_g_ ST %~ (4%) w( q§)"- ,d( 3%"“( 2)5'“( 1)'

t, to t,
(4.4.17)
Taking into consideration the expression (4.4.48Y all the other similar relations

up to and including (4.4.17) as well, we arrive at

AT to+T  to+T

[ [ ] Y(t-s-s-s——5) a8 (3 m pul)s0,

ty o t,
which gives y, (t) =0, with history, y, (t) =, (t)0Clt,~ 7, ). O
We conclude this section with the following theorets proof follows the proceed-
ing discussion.

Theorem 4.4.1The initial value problem for the homogeneous geliwzd linear regu-
lar DDS of the form:

to+7

Fl(’(t):Gj x(t-9 g3 t=t, >0,

t
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and the initial condition x(t)=g(t), t —rT<t<t,

t
has a unigue solution thazt(t) {Q(p)( )

=q

}DC[t0 -1,t),and p=>_ p, (i.e. the sum of
=1

the degrees of the f.el+ = n). O
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4.5 A Numerical Application

In this section, we illustrate the straightforwasdlution of a GDDS (4.5.1) by
computing and plotting the solution. A detailedadission of the method used tige23

(Matlab; m -file) can be found in Shampine and Tpson (2001). Now, suppose that
we obtain the following GDDS

EX(t)= Aj_x(t— 9 € ds (4.5.1)

where E, ADC**, are constant matrices wittetE = C, and delay period of1<s<0.

By the associated matrix penc8E— A, and the results of thé"4ubsection, it is sup-
posed that the following two subsystems are obthine

y,(t—s) €°ds

, i
I s
/ _jys(t—s) e* ds_
{8 cﬂbjm ) i g (4.5.3)

which are solved o J[0,10 with history; y (s)=0.1 for i=12 and -1<s<0, re-

spectively.

Firstly, according to the Proposition 4.4.2 thesidbems (4.5.3) has the zero solu-

tion
o)

Additionally, the system (4.5.2) is reformed to5(4)
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1

V(=] y(t-9 dsf & y + ) ds

0

(4.5.4)

V()= [e*y(t- 4 ds

So, we take advante of the specified history of; (t), i =1,2 for computing and

plotting (figure 45.1) the solution of the (4.5) system.

Feriodic solution of y'=A['1] yit-s1"e = ds;
25 T T T T T T T T T

18+

04a

Initi:’:ll n:u:unu:liltiun is 3:1(t]|=[l.1|, 3,f2|:t]|=ll].1 te [-1 0] |

1
1] 1 2 3 4 5 B 7 a g 10
time t

Figure 45.1: The plot of the solution of (4.5.4ystem int¢[0,19
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4.6 Conclusions - Further Research

In this section, a special class of generalizedlegglifferential delay systems with
constant coefficients is extensively studied. lagice, these kinds of systems can
model the size of a population or the value ofrarestment. By considering the regular
Matrix Pencil approach, we finally decompose ibittvo subsystems, whose solutions
are obtained. Moreover, since the initial functigngiven, the corresponding initial
value problem is uniquely solvable. Finally, ansfirative application is presented using
dde23MatLab (m -) file based on the explicit Runge ttdumethod.

As a further extension of the present chapter,

* we want to investigate the special properties @f ¢bntrol input. Thus, several

known controllability and stability criteria (seediy2004) can be further extended.

e The introduction of speciadormalized bounded variatioMNBYV) functions (or dis-

tributions),u:[to,t0+r] - C is also of a great mathematical interest and impor

tance. In order to be able to investigate the erist and the uniqueness of the solu-
tion, some elements of the Functional Analysisraggiired, see for instance Yosida
(1966), Hirch and Lacombe (1999), and Pedersend)200

« Additionally, the results of the"2chapter can be applied and further extended into
such kind of differential systems. Thus, the chaoigihe state in zero time, and the

related impulsive behaviour can be combined withdpeciahormalized bounded
variation (NBV) functions (or distributionsy:[t,.t, +7] - C.
Moreover,

e we want to consider a more general system, seej4ik.

to+r

Ex(t)=AtI_X(t-S)¢1( 3+ BON

where the matriceE and A are rectangular time-invariant coefficients orhwé spe-

cial structure (symmetric, skew symmetric, Toepliton-negative etc). Then some
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more special canonical forms, like Kronecker or Ppgon etc should be applied. In sev-
eral applications, see Kalogeropoulos, KarageoagalsPantelous (2009) and references
therein, analytical solutions are also requirederghsome elements of ODEs and Op-

erator Theory have to be applied.

« secondly, we want to consider the stochastic versiadhe system (4.1.2), see also
6™ section of the present thesis. Under the intradnoof irregular inputs, several

other aspects can be further discussed.

112



Chapter 5

On Linear Generalized Neutral Differential Delay Systems

5.1 Introduction

Nowadays, it has been assumed that the class efajmedneutraldifferential de-
lay systems feutral dds) provides an excellent mathematical modelling ®arark for
numerous applications in natural science and tdolggo For instance, they are fre-
quently used for the study of distributed netwarkataining lossless transmission lines;
see for instance the comments in Hale (1977). masbeen known for some time, but
the theory of such systems, with piecewise constammontinuous lagging arguments,
has been extensively developed only recently.

In this section, our long-term purpose is to brihg solution’s properties for linear
generalized neutral dds into the mainstream of imp&ncil theory. This approach has
been extensively used in control theory for thelgtof linear generalized time-invariant
dynamical systems without delay; see for more tepaievious chapter.

The present section is organized as follows: Insediion 5.2, the necessary pre-
liminary concepts from matrix pencil theory aregqaeted. In sub-section 5.3, the main
results of this work are developed. Thus, we ingagt the solution of linear general-
ized neutral dds with constant coefficients, thatirs

EX (1) = AX()- 3 BX( t—ri)+é cof tz)+ DY ) (5.1.1)

i=1
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where,E, A andB,C OC™ for i =1,2,...,0 are constant matrices, withetE = C,
and the input functioru 0 C'[t,») (column vector function of dimensioh) is as-

sumed to consist of all differentiable functionsosi derivative is continuousgntinu-

ously differentiably andt>t,, 0<7, <7,<...<r, are constants. This kind of delay

system is very comon, as Baker, Paul and Willé 8)2%aim, due to the fact that con-
stant delay (lag) functions arise frequently in literature of applications. Furthermore,
the system (5.1.1) may be reduced to studying argéred singular differential system

of the form:

FZ(t7,i=12,..p0)=Gz(t7, ,i= 1,2,.. p), (5.1.2)

where F,GOC™", F £[Mi--iM,iF |OC™", G2[ N, i NiG]OC™",

z(tr,i=12,.. p)2

Under the, usual in control theory, assumption that

u()=Ex()- A)+3 Bx(£7)-> G er), (613

i=1 i=1

when sF- G is a singular pencil the system (5.1.2) is tramsd using the complex
Kronecker canonical decomposition form of the perstt— G into five subsystems.

Finally, in sub-section 5.4 an illustrative apptioa is presented.
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5.2 Matrix Pencil Theory Background

This section introduces some preliminary concepis definitions from Matrix

Pencil theory that are been used throughout thptehaOur result will be restricted to
linear generalized neutral dds of the form (5.Wwihgre E, A DOC™ andB,C OC™"
for i =1,2,..,0 are time-invariant matrices, witdetE = C, and the input function
g(t) is assumed to be continuously differentiable. Tigifothis paper we shall adopt
the following notation:R,C denote the field of real numbers and complex nusbe
respectively.N is the set of natural numbers.Tif is a field, F™" denotes the set of

mx n matrices with elements froif.

Now, if we havesF-G, sk -GUOL,,, then(sF-G)& ( sk~ G) if and only if

n?

P(sF- G) Q= sF- G, wherePOF™", QOF™" anddetP, detQ # 0.

The class oft, (sF - G) is characterized by a uniquely defined elemenowimas
a complex Kronecker canonical forrsF, — Q,, see Gantmacher (1959), specified by
the complete set of invariants 6§(SF— G). Unlike the case of regular pencils, how-
ever, the characterization of trfg(sF— G), sF-GOL, , apart from the set of ele-
mentary divisors requires the definition of additib sets of invariants, the minimal in-

dices.

The sets of the minimal degreps, 1<i<n-r} and{uj, 1< jsm- r} are known
by Gantmacher (1959) as column minimal indices (g mand row minimal indices

(rm.i.) of sSF-G, respectively. Furthermore, If =rank(sF-G <min{ m h it is

evident that

r= nivi + mz_r u, +rank( sk - G), (5.2.1)

i=g+1 j=h+1
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where sF, — G, is the complex Weierstrass canonical form spetifig the set of ele-
mentary divisors (e.d.) obtained by factorizing iheariant polynomialsf (S, %) over

IF[S%] (the ring of polynomials irs and §=1/ s with coefficients onF), which are the

nonzero elements of the diagonal of Smith canorfmah of the homogeneous pencil
sF-SG, into powers of homogeneous polynomials irredcibler F. In the case

where sF— G is a singular pencil, we have elementary divigdrhe following type:

e.d.of the typesd , dN, are called zero elementary divisarse(d).

e.d. of the type(s— a)c, az0, cON are called non-zero finite elementary divisors

(nz. f.e.d).

e.d. of the typeS® are called infinite elementary divisoise(d).

c.m.i of the typeVDND{O} are called column minimal indices.ifn.i.) deduced
from the column degrees of minimal polynomial bagethe maximal sub module
M, embedded iV, (s) :{_X(S)DIF”( 9:( s G_k )5=Q} with a freeF(s)-

module structure.

r.m.i of the typeuOND{0} are called row minimal indices.in.i.) deduced from
the row degrees of minimal polynomial bases ofrtteximal sub module\,, em-
bedded in /\f,eﬂ(s):{té/(s)DFm(Q:zgt( sF- C):Q‘} with a free F(s)-module
structure.

See for more details Gantmacher (1959), Forney5jl®arcanias (1979), Kar-
canias and Hayton (1981), Kalogeropoulos (198%l.eThe complex Kronecker form

sk — Q, of the singular pencisF — G is defined.

q

sk, —Q 2 block diad 0, ,, &,-4,, &',-A, si- J s | (5.2.2)

Analytically, we present the following definition.
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Definition 5.2.1a) TheQ, , is uniquely defined by the s€s,0,...,¢ and{0,0....,¢

| |
g h

h.g

of zero, column, and row minimal indices, respetyiv

b) The second normal blocd)\, - A, of (5.2.2) is uniquely defined by the set of non-
zero column minimal indices (a new arrangementefindices ofv must be noted in

order to simplify the notatior{)v1 <V, << vn_,_g} of sk — Q and has the form

sA, - A, £ block diad &, ~A,, &, -A,.... &,~4,.... 5, -4, } (523

where A, :[Iw 39], A, :[QSIJ for everyi =1,2,..n-r-g, and I, and 0 denote

the v, x v identity matrix and the zero column vector, respety.

c) The third also normal blockA! - A, of (5.2.2) is uniquely determined by the set of
non-zero row minimal indices (a new arrangemerthefindices ofu must be noted in

order to simplify the notationju, <u,<---<u,_,_.} of SF=G and has the form

S\, - A\ 2 block diad &% -, &', A\, &, -4, .., 8, -4 1 (524

Y b

I, 0!

J =

where A, =|-- |, A, =|- | for every j=1,2,..m-r—h, and I, and O denote

J
t
Q IU]

the u; xu; identity matrix and the zero column matrix, resjwety.

d) The forth and the fifth normal matrix block ofpesssion (5.2.2) is the complex

Weierstrass formsF, — Q, of the regular pencilsF-G, (i.e. detF =0, if n=m) is

defined by
sk, - Q,2 block diad sj- J, sH- }. (5.2.4)

where the first normal Jordan type blosk, - J_ is uniquely defined by the set of f.e.d.
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(s-a)”.....(s=3)" .2 p=p
i=1
of SF— G and has the form

sl,—J,2 block diad s, - ,( 8..... si- J( A} (5.2.5)

And also theg blocks of the second uniquely defined bleek - |, correspond to the

i.e.d.

of sF— G and has the form

sH, - 1, 2 block diag sH = |..... sH - |}. (5.2.6)
Thus theH , is a nilpotent matrix of indey’ = max{ g =12, a} ,
where HY=0,, (5.2.7)

) Jp(a), H, are the matrices:

a 0 0
10 - 0
01 0 1 0
=0, . . C|ORPP 3 (a)=|¢ & b LOF™P,
00 0 a 1
00 - 1
0 0 0 0 af
0 1 0 0
00 1 0
and Ho=|: & "~ 1 1|OR%™. (5.2.8)
00 0 0 1
00 0 0 0
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5.3Systems of Linear Generalized Neutral Differential Delay

Equations

In this sub-section, we deal with the initial vaju@blem for linear generalized neu-

tral dds. These systems of the form

Ex (1) = A(9-3 BX(+n)+3 ¢ £1)+ DU ), t>t,

i=1

O<r<r,<..<r, (53.1)
x(t)= f(t), t,-7,<t<t, (5.3.2)

where E, AOC™", B,C OC™ for i =1,2,..,0 and DOC™ are constant matrices,
ulCt, ) is a control (column vector function of dimensiop andt >t , 0<7, <7,
<...<r,. Additionally, let suppose that OC't, -7,1,) is continuously differenti-

able.

Lemma 5.3.1The system (5.3.1) may be reduced to studyingearligeneralized neu-

tral dds of the form:
P (1) = Gx( -3 MX(t-7)+ 3 N 7). (5.3.3)

Proof. Assume that the state-derivative and delay feddbantroller has the following

type

u(t)=ExX()- A+ BX(t7)-3 TH t1). (5.3.4)

i=1 i=1

where E, ADC™", and B,G OC™" for i =1,2,...,0 are time invariant matrices. Then

by substituting the above expression into (5.3vE) pbtain (5.3.3), where
F=E-DEOC™, G=A-DAIC™, M, =B - DB OC™

andN. =C -DGOC™,i=12,...,p0. O
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In the theory of control science, see analogously (2989), the proportional and
the derivative feedback may be viewed as the “spésstiback. In our case, see eq.
(5.3.4), we provide to our accelerate feedbackrotlat a memory. In the literature, lit-
tle is known about (5.3.4). Thus, it should be cedi here that it is planned to investi-
gate this kind of controller more in the near fetusince the applications are numerous

and very interesting.

Definition 5.3.1 (Kytagias, 1993, Kalogeropoulos, Pantelous and ¢&ajsopoulos,
2008)System (5.3.1) is called normalized if a feedbackroller (5.3.4) may be chosen
such that its closed-loop (5.3.3) is normal, i.e.

detF = de(E-DE) # ( (5.3.5)

O

Moreover, as long as the normalized condition tsied, the closed-loop system

(5.3.3) would become
X(1)= F6x() -3 F*MX(t-7)+ Y FENXY t1), (5.3.6)

and its plain feature is its finite poles, i.asitransformed to a delay system without any
infinite pole. The following results present thecessary and sufficient conditions to

succeed in transferring our system (3.1) into anmabdizable neutral DDS.

Now, we present an alternative approach for trgafil). In order to find a solu-

tion of the corresponding neutral DDS, some add#igesults are required.

Lemma 5.3.2The system (5.3.3) may be reduced to studyingearigeneralized sys-
tem of the type

FZ(tr,i=12...,0)=Gz(tr, ,i= 12,.. p), (5.3.7)
where F,GOC™".

Proof. The expression (5.3.3) can be transposed into
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or equivalently into

_l('(t—Tp)_ I x(t—z'p)_
(MM, iF ] X grp_l) =[N, N G] A grp_l) : (5.3.8)
X(t-1) x(t-1,)
L x(0) L X9

Then, if we set

F2[M,IMIF|OC™", G2[N,-iNiG]OC™,

and
I l((t_rﬂ) ]
l((t_rp—l)
z(t7,i=1,2,..,0)2 : :
l((t_rl)
L x(8)
and substitute the above expressions into (5.@8&}btain (5.3.7). O

In view of Lemma 5.3.2, we consider, in what follveystems of the form (5.3.7)

where the corresponding matrix pensH — G is singular, ash # pn (while p>1).

From the singularity ofsF—G, there exist non singular matriceBOC™" and
QO C*”™" such that:

PFQ= F, 2 block diad 0, ;,A,, A}, |, H} (5.3.10)

PGQ= G 2 block diag0, ,4,.4%, 3.}, (5.3.11)

121



where the elements of (5.3.10) and (5.3.11) aré @etermined in Section 5.2. Addi-

tionally, it is profound thatr =rank(sF- G)< n, and the expression (5.2.1) can be

transposed to
pn—=r n-r

rank(sk, - G)<n > y-> u< (5.3.12)

i=g+1 j=h+1

Theorem 5.3.1The system (5.3.7) may be decomposed into theadeptiset of subsys-

tems
0% (67) =0, i (t7), (5.3.13)
AYo (1) =AY, (1), (5.3.14)
ALY (1) = Ayu(Y), (5.3.15)
Yo (1) = 3,¥,(1). (5.3.16)
Ho¥a (1) = yo(1). (5.3.17)
where

yi(tr)= :X(t_rp‘l) DCl([g —rp,to}), while we definey, (t) as theg" first rows

¥ (1)

of the y(t) vector, under a suitable transformation oft).

Proof. Consider the transformation
x(t7)=Qy(t7). (5.3.18)
Substituting the previous expression into (5.3w8,0obtain

FQY (t7)=GQy(tr).
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Whereby, multiplying byP, we arrive at

Ry (t7)=Gy(t7).
By writing X(t;r):[_y;(t; 7)Y (0 (05w (D3 %i( 9] and taking into account the
above expressions, we arrive easily at (5.3.18)3.17). O

In the sequel, the initial value problem is studesdresponding to the subsystems
(5.3.13) - (5.3.17) taking into account that

2(t)=[ 0, (t) f0u(t) 1 0i(t) F0(t) f oi(t) JOC([tmr,t]).  (5:3.19)

Additionally, according to expression (3.12), weugll always keep in mind that
v+u+ p+g< n.

Proposition 5.3.1The initial value problem

0, Mi(t7)=0, yi(t7), t>t, 7,>7,,>...>7,,, >0  (5.3.20)

p-1 P
%(t7)=¢, (1), t, =7, <t<t, (5.3.21)
where y, (t;7) = ¥(t_rp‘1) DCl([g —rp,to}), is satisfied for any initial column vec-

¥ (1)

tor functiong, (t)OC* ([t0 -7, oo]) of n(p-1) + gcoordinates.

Proof. The proof is obvious from the fact that the lefttas of y; (t;7) and y, (t;7)

are thehx[ (p~1) n+ g| zero matrices. O

Proposition 5.3.2 Let v ON be a non-zero column minimal index of the pencil

SF—GDESW“. Moreover, let the corresponding typical initiahlue problem from
(5.3.14) be
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AViX‘"ﬁfl(t) :Avy\ﬁl(t)l t>t0 (5322)
Yo (1) =8, (1), (5.3.23)
with indexi taking values between 1 amh-r-(0-1)n-g.

By taking an initial functiony, ,, :[t, ) — R to be an arbitraryyv -times integrable

function over(t , «), the solution is given by

t

gviﬂ(t)=j jjym I val 3 ds ()t

t

Vi

Proof. By the definition ofA, and 4, it follows that the first of the system (5.3.22) -

(5.3.23) can be written as

which is equivalent to

= : : (5.3.24)
Yo (0] | W (1)
Such a system is always consistent. If we tgkg (t) to be an arbitrary, -times in-
tegrable function, then aly,, j=1,2,.. v, may be determined by successive integra-

tions of y, ., (t) from (5.3.24). It is also clear that, , (t) satisfies the initial value

problem. O
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Remark 5.3.1The system (5.3.24) can be written as below

010 000 0
vi(t)] jo 0o 1 - 0 ofw(t)] |oO
(0 |+t ot ] y(Y)] |0
= . t), 5.3.25
7o 0 0 1o ]|t (5.3.25)
v, ()] [0 0 0 0 1y (9] |0
0 00 00 1
e
H &

i

whereH, is a nilpotent matrix of indey, < v, while v, v, <...<vy,_

_r_g 1

Furthermore, the unique solution of (5.3.27) isegiy the expressions

% (1) yl(to)
yzg(t) = Ie“s € Y
Y, (1) yv,(to)
AL :
hile (1) || €0 (1) +] € a0, (9
yvi:l(t) )

taking into consideration thayviﬂ(t) to be an arbitrary -times integrable function,

Ot >t,, which satisfies the initial value problem (5.3.225.3.23). i
Proposition 5.3.3 Let u [ON be a non-zero column minimal index of the pencil

sk - GDESWn Moreover, let the corresponding typical initiablue problem from

(5.3.15) be
ALYy (D) =40, (1) L t2t (5.3.26)

¥y (1) =4, (1), (5.3.27)
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with indexi taking values between 1 amd-r — g, has only the trivial solution.

Proof. By the definition of A, and 4, it follows that the first of the system (5.3.26) -

(5.3.27) can be written as

| (1) _| Y, (1)
0 l,
e AUIEERE AU
which is equivalent to
w(t)| | ©

= 2 (5.3.28)

whereby we have thay, (t) =0, t=t,. The result follows by the assumption on the

initial value functiong, (t). O

Proposition 5.3.4The initial value problem

Yo (1) =3,%,(0, t>t, (5.3.29)
with ¥ (t) =9, (t)OC?
has a unique solution
¥, (1)=e""g (1), (5.3.30)

where

er(t—tD) = block dla(‘?{ ém(ai)(t_to), Je>z(32)(t_to) . Jé,(f’\/)(t‘to)} >t p :Z ¢

=L

and
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@le) Lalen) " gy
1! (p -1)!
-2
gh@ltel | g galts) et |gean =12, v, o
(n-2)!
0 0 eai(t_to)

The proof may be treated by the known classicahoud, see Kalogeropoulos (1985),
Dai (1989), Grispos (1992) etc.

Preposition 5.3.5The initial value problem

HoYa (1) = ¥ (1). t>1, (5.3.31)
with Ya(t,) =04 (1) OC
has a unique solution
Yq (1) =0, (5.3.32)
o

The proof may be also found in Kalogeropoulos (398%i (1989), Grispos (1992) etc.
As a normal consequence of the above propositiwagan state the following theorem.

Theorem 5.3.3The initial value problem for the linear generalizeeutral dds of the

type
Fx(t) = Q((t)—zp: Mi_><(t—ri)+zp: NX trz),t>t, 0<7,<7,<..<T,
i=1 i=1

and the initial condition

or equivalently

FZ(t7,,i=12,..,0)=Gz(tz, ,i= 1,2,.. p)
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if we set

F2[M,iMIF |OC™", GE[N, i NiG|OC™",
and
| l((t_rp) |
l((t_rp—l)
z(t7,i=12,.. p) = :
l((t_r1)
ox(Y)

has solution (given by Proposition 5.3.1 — 5.3.Mled that the initial conditions are

p(1)=[0} (1) 0l (1)  L(0) £ 0(0) F 04(t) OC([t-7,0t]). @
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5.4 An lllustrative Example
Suppose that the matrix pensiF — GO £}, ,, has the following set of invariants:
.« fed. :(s-1)°
.« ied. : (8’

e c.m.i.:0,0,..,0,z
11

e rrm.i.:0,2
To each of these invariants, the correspondingkddehe Kronecker canonical form is

(-0 - s-3(), (8 - st

0,0;.l..,O cmi. and 0 rmi~»Q,,=[0 0 - (
. 1 0: 0 (0: 10 (s -1: 0
2cmi S\, -A, = . - ) = )
O1: 0 |0: 01 0s : -
1 O 0O O s O
0O 1 -1 s
2rmi. - s\, -A) = - =
e 11 o0

Therefore we obtain
sF, - G, = block diadQ,,,, A, A%, sl sfi— block di§@,,,1 ', J

and fory(t1) = v, (t-1) ... yw(t-0 w() ... wl(d]-

By equation (5.3.16) we obtain the following system
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According to Proposition 5.3.2, if we obtain thgt(t) = f (t), which is an arbi-
t tt
trary 2-times integrable function, theyg(t):I f(s)ds and vy, (t ”f s) ds, re-
t tt

spectively. Additionally, equation (5.3.17) gives

o 2 [sd]_|- - u] [H] ]
SRACREACE B 1o o RN (o {yfs(t)HyS(t)}
0 0 [Ye(t)} 2 (iL/e(tJ 0 ye(t)

where the solution iy (t) = ys(t) =0 Ot=>t,.

Furthermore by expressions (5.3.16) and (5.3.1&)pbtain
R S’7(t) |11 Y7(t)
u9=2010={ 70l 1o
where S/s(t) = ys(t): ys(t) =é Bé( 5)’
and ¥, (1) = v; (9 + %(9= %()= w()+ ey(§)= A }= A ‘é+% B

while Y, (t) = y,o(t) =0 DOt =t,.

So, the solution of the linear generalized newtd is given by
5(t—1)}
X(t1) = =Qy(t1 =
(=3 {5() ()
[6(0-0) - falt =D 1) [T () [ (4 asi(} 00 ¥ ¥} BrF 4ox'e00
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5.5 Conclusions — Further Research

In this sub-section, the generalized singular radifferential delay system with
constant coefficients is studied. These kinds stesys are inherent in many physical
and engineering phenomena. Using the Matrix Pehebry we decompose it into five
subsystems, whose solutions are obtained. Moretiverform of the initial function is

given, so the corresponding initial value problenumiquely solvable.

As a further extension of this chapter,

* the (asymptotic) stability testing problem for lamedescriptor neutral delay-
differential systems of type (5.1.1) will be addred. By means of the concept of
spectral radius, both delay-independent and -degperstability criteria will be de-
rived, see for further details Yang and Liu (2002).

e These criteria can also be extended to the nesysadéms with multiple time delays.

* Finally, we will compare the derived results wittetseveral existing stability crite-
ria, since the stability robustness bounds are @rgeo get significantly improved,
see Yang and Liu (2002). Some examples will be esexhow the significance of

our results.
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Chapter 6

On Generalized Regular Stochastic Differential Delay Systems

with Time Invariant Coefficients

6.1 Introduction

In many applications, the systems are considerethéyausality that their future
states are depende on their past states. Althdhbighgonsideration has been known for
some time, the relative theory has extensively kgeal only recently. Additionally,
since in many applications it is meaningless ndtawe any kind and type of perturba-
tion, the introduction of that in delay different&ystems increases dramatically the dif-

ficulties.

To the best of our knowledge, generalized stochakdiay systems have not been
study by the matrix pencil theory approach. Althloutipe matrix pencil theory has been
extensively used in control theory for the studygeheralized deterministic dynamical
systems without delay, see for instance Gantmatt@s9), Campbell (1980, 1982),
Karcanias (1979), Karcanias and Hayton (1981), Baoren (1983), Kalogeropoulos
(1985) et al.. Moreover, quite recently in Kalogavalos and Stratis (1999) and Wei
(2004) research works a first discussion of gemezdldifferential systems with delay is
offered by matrix pencil and Drazin inverse mattirory approach, respectively. Addi-
tionally, Alabert and Ferrante (2004) consider dinstochastic differential-algebraic

systems with additive white noise.

Our long-term purpose is to put generalized limegular stochastic delay differen-

tial systems (SDDSs) into the mainstream of staaha&slculus, developing as far as
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possible a theory similar to that of stochastidedéntial equations. In this chapter, our
aim is to investigate the solution of linear SDD&th constant coefficients and an ad-

ditive (fractional) white noise, that means
EX(1)= Ax()+ BY +7)+ C }+ DI }+ Rk 6.1.1)

where w is a (fractional) white noise of dimensien f LC"[t,, «) is a smooth input
(column vector function of dimensiok), anduOC[t, ) is a control (column vector

function of dimensionl). The E, A BOC™", with detE=0,COC™, DOC™, and

ROC™® are constant matrices. The system (6.1.1) madtheced to studying a gener-

alized linear regular SDDS of the form:
FX (t) =Gx(t)+ Kx(t-7)+ Df( )+ Rw( }, (6.1.2)

under the, usual in control theory, assumption tfzetk C=1 and suppose that also
detF = 0. When sF— G is a regular pencil the system (6.1.2) is tramsfat using the
Weierstrass form canonical decomposition of thecppeaF— G, in two subsystems.
The irregularity of such noises as are used agsnmakes the solution processes not to
be usual, but instead more generalized processatefined, as the stochastic analogous

of Schwartz generalized function.

The present section is organized as follows: Suhiese6.2 and 6.3 contain a brief
account of the required elements of the theoryystesns of linear delay differential
equations (DDESs), and generalized stochastic psesesespectively. Sub-section 6.3
provides the main results of this work. Finallytire sub-section 6.4 two particular ap-
plications are discussed using Brownian motionsiteuoise) and fractional Brownian
motions (fractional white noise), as the irregulgsuts. Sub-section 6.5 concludes the

whole discussion.
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6.2 Preliminaries on Linear Stochastic Delay Differental Equa-
tions
In this sub-section, we briefly describe three ¢spithe (deterministic) differen-

tial-algebraic systems, the main elements of thebrgystems of linear delay differen-

tial equations (DDESs) and the generalized stochasticesses.

6.2.1 Differential-Algebraic Systems (DASS)

Differential systems are usually used for modellthg dynamical behaviour of
many physical and economical phenomena. For exanm@eonservation laws -such as
Kirchhoff- in electrical networks, and the contirusoform of the famous in multi sector
economy Leontief's model are few of the most kndhet are consisting both differen-

tial and algebraic equations.

The most general form of differential-algebraicteyss is

F(t,x,X)=0 (6.2.1)

with F =1xD,xD, - C", wherel OC is a (compact) interval anB,,D, OJC" are
open, m, nON. The meaning of the quantity is ambiguous as in the case of ordinary

differential systems. The reason for this ambigustyhat we wantF to determine a

differentiable functionx that solves (6.2.1) in the sense that
F(t.x(t),X(t)) =0 for all tOI.

Particularly, for the linear differential-algebragstems with time invariant coeffi-
cients, and withdetE = O (see for more details Kunkel and Mehrmann, 2006} i

named generalized differential system

EX(t)= Ax(§)+ f(1) (6.2.2)
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where E, AOC™™, and i(t):l - C" is sufficiently differentiable. The basic theory

has already been established in the nineteenthirgelny Weierstrass, and Kronecker on
matrix pencils (the relevant theory about matrixg@kehas already been presented in
chapter 3 and 4).

6.2.2 Linear Delay Differential Systems (DDSSs)

For linear DDSs, we must provide not just the vabfieghe solution at the initial
point, but also the “history”, i.e. the solutiontahes prior to the initial point. Thus, the

main result is
Theorem 6.2.1Consider the system

X(t)=Ax(9)+ B t-7)+ H 1, t>t, 7>0 (6.2.3)
and the initial condition

x(t)=¢(1), t,-rstst,, (6.2.4)

for A/BOC™", constant matriceshJC[t —7,t) (i.e. n-vector valued function) and
@0C[t, -7,,t,) . Then there exists a unique function

x0dt, ©) N C(t, ) (6.2.5)
that satisfies (6.2.3) and (6.2.4). O

The proof may be found in Bellman and Cooke (19&Bgolts (1966), Driver (1977),
Hale (1977), and Wiener (1993).

Remark 6.2.1

* The functiondet()ll -A- Be‘“) is called the characteristic quasi polynomial of

(6.2.3), while the equation

det{A1 -A-Be™") =0, (6.2.6)
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is called the characteristic equation of (6.2.8).general (6.2.6) has infinitely many

complex solutionsi.

» The superposition principle is valid; it extendgshe case of a series of solutions

provided it converges and admits term-by-term déffitiation
» Let (6.2.3) be written in the form

Lx=g¢ (6.2.7)

and letx be a solution. ThefiRex and Im X are solutions of the equatiorix = Reg

and Lx =1Im g, respectively.

To every rootd, of (6.2.5) corresponds a particular solution &f tbrm

. Ait
A, : simple real root- €

A, : complex root(Aj =p, +iq) - e”'sinqgt, e cosq t;

A, : real root of multiplicitya, — e, te",..., # é".

* For a detailed study of the characteristic quagyrmmial and the form of the
solutions of (6.2.3), we refer to Elsgolts (1966). O
Remark 6.2.2In our case, all rootd,; of (6.2.5) have negative real part. Therefore, by
Theorem B, section 28 of Driver (1977),gf.1C”[t, - 7,t,) is bounded, then the solu-

tion of (6.2.3) and (6.2.4) is also bounded. m

Remark 6.2.3 In the variation of parameters method, the soﬂuti_c(t; to,g) IS ex-

pressed in terms of solutions of the homogeneouatem:
y(t)= Ay(9+ B t-7) (6.2.8)

However, firstly we must considar being the unit step function o[n-r,O] (remind

that r is the delay time):
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Moreover, Ietl/(t;to,io) be the (unique) solution of the homogeneous prol(é.2.6)
and the initial condition
x(t)=g¢(t), t,-r<t<t, (6.2.7)
Then, forhOC[t -7, t), the non-homogeneous system (6.2.1) and (6.222a haique
solution x(t) given by
t

x()=y(ttg+[y(tsH 3 d t>t -7 (6.2.8)

t

Remark 6.2.4

* As far as the form of solution is concerned, weréd Theorems 6.3-6.6 of Bellman
and Cooke (1963).

* The asymptotic behaviour of solutions is studiemhfrBellman and Cooke (1963)
and Hale (1977). i
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6.3 Generalized Stochastic (Random) Processes

In this sub-section, the relation between stocbgsticesses and Schwartz distribu-

tion is discussed. It is well known that a randoistribution on| O R that is defined
on the probability spacfQ, F,P) is a measurable mapping:(Q,F) - (D,B(D)) ,
where D is the space of distributions (generalized fumgjoon open set 00 R, which

is the dual of the spadg” (I) (i.e. that is the smooth real functions with cootpsup-

port defined onl O R) and B(D) is the Boreb-field, relative to the strong dual topol-

ogy (equivalently, the weak topology).

Moreover, we denote

+00

®(4)2(X(w).9)= | X(w)¢(w) dov, (6.3.1)

—00

to be the action of the distributioX (w) 0D on the test functiogp 1C* (1), which it
holds that the mappingo (X (w),#) is measurable fron{Q,7) - (D,B(D)),

hence a real random varialiiX («),#) is on(Q,F,P).
The product of a real random varialdeand a random distribution is defined as
(aX,¢)= a( X, ¢) (6.3.2)

is also a random distribution. Moreover, the ddnsaof a random distribution is also
defined by the expression (6.3.3)

<x(k),¢>é(—1)k<x,¢<k)> (6.3.3)

is again a random distribution. Given a random riflistion X, the mapping

C” (1) - L°(Q) defined byg — (X,¢) is called generalized stochastic process. This

mapping is linear and continuous with the usuabtogy in C* (I)
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In this section, we will use as the basedet [to,T], 0<T <. Further results on

random distribution and generalized stochastic ggses can be found to the classical
papers of Urbanik (1957), Urbanik K. (1958), Gelfaand Vilenkin (1961), Schwartz
(1966), Fernique (1967), Dawson (1970), Kanwal @G al.
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6.4 Systems of Generalized Linear Regular Stochasticdlay Dif-
ferential Equations

In this section, we deal with the initial value plem for generalized linear regular

SDD systems. These systems of the form

EX(t)= AX(t)+ B{ t-7)+ CU }+ Df }+ Ry}, t>t,7>0 (6.4.1)

x(t) = g(t), t —r<t<t

(0] (o]

(6.4.2)

where w is a (fractional) white noise of dimensian f C”[t, ) is a differentiable
input (column vector function of dimension k), and]C[t, ) is a control (column
vector function of dimension ). ThE, A BOC™", with detE= 0, COC™, DOC™*

and ROC™® are constant matrices.

Lemma 6.4.1The system (6.4.1) may be reduced to studying ergkezed linear SDDS

of the form:
FX (t) =Gx(t)+ Kx(t-7)+ Lf( )+ Rw } (6.4.3)

Proof. Assume that the state-derivative and delay feddbantroller has the following

format:
u(t)=EX(t)- AX()- BY t-1) (6.4.4)

where E, A, BOC"™ are constant matrices. Then by substituting thevakexpression

into (6.4.1), we obtain (6.4.3), where
F=E-CEOC™, G=A-CAIC™,
and K =B-CBOC™ O

As long as the normalized condition is satisfidig tlosed-loop system (6.4.3)

would become

X(t)=F'Gx(t)+ F'Kx(t-7)+ F'Lf()+ F'RW }  (6.4.5)
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and its plain feature is its finite poles, i.e.rthés not any infinite pole. The solution of
the above equation is partially discussed in SeQ@i¢see also Remark 6.4.1).

Lemma 6.4.2Without the hypothesis of regularity of matrix pérgF— G, the linear
stochastic DDSs possess no solution at all.

Proof. For simplicity, consider the following system wotlt lag
FX (t) =Gx(t)+ f(t)+w( ) (6.4.6)
The complex Kronecker forrsF, — Q. of the singular pencisF — Q is defined
sF, - Q 2 block diad 0, ,, &,-4, A=A, sl- J s § (6.47)
see Forney (1975), Kalogeropoulos (1985) et al.,
or equivalently, there exist non singular matri@e"™" and Q 0 C”™*" such that:
AN

PFQ= F, 2 block diad O Iy HY (6.4.8)

h'gl ur 'p?

PGQ= G 2 block diag D, ,,4,.A%, 1. | (6.4.9)

Now, consider the transformatiax(t) = Qy( t). Under that expression, the system

(6.4.6) becomes

FQy (t) =G §+ f(§+v(}

whereby, multiplying byP, we arrive at
PFQY(1)=PGQY }+ P }+ P )

So, taking into consideration the expressions 18$.4(6.4.9), the differential-algebraic
system (6.4.6) may be decomposed in the equivatdrdf subsystems

O01,Y, (1) =04 oY o( 1) + P f (1) + Pw( D), (6.4.10)

AY, (=AY, () + P F(1)+ Rw( 1, (6.4.11)
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ALY (1) = ALy, () + R F()+ P9, (6.4.12)
Yo ()=3,%(9+ RA()+ Rv(} , (6.4.13)

HoYa (1) = Yo () + RA()+ Rw( 9. (6.4.14)

Profoundly, the system (6.4.10) has no solutiomsequently, the system (6.4.6) is not

solvable. O

For the above result, see also Remark 2.3 in Atabet Ferrante (2004).

Now, from the regularity o6F — G, there exist non-singula™" matricesP and

Q such that (see also Chapter 3).

O

a.p

I, O
PFQ=F, = { P H"'q}, (6.4.15)
q

PGQ=G, :L{;” (in'q] (6.4.16)

a,

wherel ,J ,H, are known matrices.

Theorem 6.4.1The system (6.4.3) may be written in the form

Yo ()= 3%, (9+(PKQ, A t=2)+(PY,, f(I+( PR, W)k  (64.17)
HoYa (1) = ¥o () +(PKQ), M =1)+(PL),, f(d+( PR, W)  (64.18)
Proof. Consider the transformation
x(t) =Qy(1). (6.4.19)
Substituting the previous expression into (6.4.8)aktain

FQY(f)=GQY §+ KQ[ t7)+ L)+ R{ L

Whereby, multiplying byP, we arrive at
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FY (1) =G,Qy( )+ PKQY t7)+ PL{ }+ PRt

By writing y(t) as
Yo
y(t)=| =" |(t).
9= |0
And taking into account the above expressions, weeaeasily at (6.4.17) and (6.4.18).
O

Remark 6.4.1The system (6.4.17) is in the standard form ofesyist of linear stochastic

delay differential equations, and the correspondiitgal value problem

Yo ()= 3,5, (9+(PKQ, , M t2)+( P, (Y +( PR, X t>t, 7>0
(6.4.20)
y,(t)=a,(1), t,-rT<t<t, (6.4.21)
which may be treated by classical methods. To tiredsolution, we shall first solve the
equation within thg0,7] interval; then, we use this solution process asittitial data

to solve the equation within the ne[xt, 2r] interval, and so on. Obviously, this proce-
dure allows us to construct a solution step by,gtepviding at any stage its uniqueness
and its regularity, see Mohammed (1984, 1998).et al o

As a solution to this problem, we shall define aqmss{l/p(t),tD[to—r,to]} and

for given smooth test functiog JC” (Z/{) ,

t t

[3,9,(9 dsr[( PKQ,, { 57) asf[( AL, ()s( BR, (W]s ,¢§

to [

:H%(")ﬂj"p—yp(s) dor [ PKQ,,_{ s7) osf[( B, _()s( BR,_()F }C”S() :

t, to

—
IS
=

+

(6.4.22)
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Additionally, as it is derived from expression (&%), the initial state function (6.4.2)
obtains the following general format:

V 2(t)
@ (t)

Theorem 6.4.2The solution of system (6.4.6) has the followimghéd

] O o(t) = Q{% (t)

4(t)

9(t)=

} , asdetQ # 0.

g-1

(%(0-2(0) = 5 (-0 (PO, t-7)+( P, 1) +(PH,, .0 ()
t>t,,7>0 (6.4.23)
where y(t) = ¢(t)0C[t, -7, ), and test functiog C” (2/) .
Proof. We start by observing that -as is well known- ¢hexists ag” 0N such that
HI =0 (6.4.24)
i.e. theq is the annihilation index o, .
Setting the test functiog JC” (/) , and obtaining the generalized process
(H, (0.9 )> < (9+(Px )qn A0+ (PO, 1)+ PR, k()
=¥, (1) ¢(1))+((PKQ),, M t=1)+(PL), f(+( PR, }.o(})
(6.4.25)

whereby differentiating (in the sense of distribos), and multiplying byH,, , we get

=(Ha¥(1).0(0) - H{ (PKQ),, X t-7)+(PY,, F()+( PH,, Wt }.0'( })}
(6.4.26)

and, substituting (6.4.25) into (6.4.26)
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(MY, (0).2(8) =y, (). 8()) +{(PKQ), , Y t-1)+( PU,, () +( PR, ¢ Xo( )
-H {((PKQ),, Y(t-7)+(PY,, () +(PR,, o }.¢'(})

(6.4.27)

and repeating this argument a sufficient numbeinoés we end up with
(R (.00 =(HE e (9.0(9) ¢
()51 (@), y(t=7)+ (P, 10 +(PR 3 10 ()

(6.4.28)

Adding (6.4.18), (6.4.27), and all the other simitalations up to and including

(6.4.28), we arrive at

(H3 s (9.0(0)

*

LN

q

=(% (1) #(0) =X (-3 ((PKQ),, A t=1) +(PY, 1()+( PB4 1.0 ())
(6.4.29)
which, by (6.4.24), gives
(30 (0:0(0) = S (-0 ((PKQ),, A 1=7)+( P, K+ PR, 10 ().
t>t,r>0 (6.4.30)
with history, y(t) = ¢(t)0C[t, -7, 1,) . O

We conclude this section with the following theorets proof follows the proceed-

ing discussion.

Theorem 6.4.3The initial value problem for the homogeneous galiwzd linear regu-
lar SDDS of the form:

FX ()= Gx(t)+ Kx(t-7)+ Lf(§+ RW § t>t,7>0
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and the initial condition

x(t)=¢(t), t —T<t<t,

% (t)
%(t)

¢0C”(U),and p=>_ p; (i.e. the sum of the degrees of the fpHg= n). O

j=1

has a unique solution provided thag)(t)z{ }DC[to—Tr,to), test function
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6.5 The Main Results with Respect to Certain Type of Nses
6.5.1 Brownian Motion (or White Noise)

In this sub-section we will use white noise Bn coincides with the Wiener inte-
gral with respect to the standard Brownian motisBng), {W(t),tz O}, on the prob-

ability space(Q, F,P) . Moreover, if¢ 1C” (U) is as a test function, then

(&.0) :}qﬁ(s) dw( 9 (6.5.1.1)

in the sense of equality in law. More precisely Wiener integral is defined as the ex-
tension toLz(]R+) of white noise, see Kuo (1975) and Borodin anan8an (2002) for

more details about the construction of the Wieméegral as the extension of white

noise. Now, integrating by parts in (6.5.1.1), va& evrite

(&,9)= —}W(s) ¢'(9 ds=—( wg'). (6.5.1.2)

0

Thus, theé is the derivative of the Brownian moti®id as random distributions. A

random distribution is Gaussian if every finite-éinsional projection is a Gaussian

random vector. This is the case of white noiseBmdvnian motion.

In that particular case, since tmé(t) is a s-dimensional standard Wiener process,

the expressions (6.4.22) and (6.4.30) can be exgdess follows:

(v (1).6(1) =

fle@wfn(do(me, 42 ol A (0o FR] W11e0)
o O o 0 0 (6.5.1.3)
and
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(| (PROL, ] y(1-r)o () s (PO, [ 1963 a (P[0} v

(6.5.1.4)

6.5.2 Fractional Brownian Motion (or Fractional White Noise)

Due to their important applications, the fBm haeet studied by many authors in
recent years, as a consequence several kindsobfastic calculus have been developed,
see Descreusefond and Ustiinel (1995), Duncan, HiPasik — Duncan (2000), Alos,
Mazet and Nualart (2001), Hu and @ksendal (20038)y ahd Mohammed (2005) etc.

In this subsection, we show a way to adapt thetiomal white noise calculus to

the fractional white noise case. Firstly, we rechht if {W(t),tz O} is a standard

Brownian motion (sBm) on the probability spa(@,]—",P) , then it is defined

W () =]2,(t 9dW $ t=0 (6.5.2.1)

—

—

0

which is the representation of fBm of Hurst paraméﬁD(O,l) on the same probabil-

ity space (see Hu, 2005, for more details) , where

H—1 1 t 3
Ky (Lj (-9 [ ( jsij T(w ¥ dy, ifo<H<1/2

s
Z,(ts)= 1
3
(H %)k & ju 2(u- 92 dy if /12<H<1
ZHr(S—Hj o
alsok,, = 1 2 , T (a) :jsa‘le‘sds is the gamma function (6.5.2.2)
F(H+2jr(2—2H)
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Now, if we formally differentiate (6.5.2.1) withgpect tot, then we obtain the fol-
lowing heuristic equality

t

WH(t):%j;(tgdvx( :dﬂtj Z(BW)s (6529

Thus, the above equation (6.5.2.3) suggests thataity IT,, is a transformation

which transforms the white noise (the derivativesBin) to fractional noise (the deriva-

tive of fBm), where

Ir,{g(t)} :%sz (t99 9 d,t=0 (6.5.2.4)

and

Ir, W =WwW" (6.5.2.5)

if p00C”(U) is as test function, then

(E0)=[8(5)9 (3 d o yr, (W as

" ] (6.5.2.6)
(r ) (9§ s (1m0 b o)
t, t,
in the sense of equality in law, where fof1C” (/)
1a0d F ow-d
I, £ ( Esi (92 {§d s20. (6527)

More details about the construction of the fractiowhite noise see Hu (2005). Now,

integrating by parts in (6.5.2.6), we can write
jw |rH¢ (9 ds- < WIr,4) > (6.5.2.8)

Now, the £ is the derivative of the fBrilv"* as random distributions.
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In that particular case, WheiW(t) is a s-dimensional standard Wiener process.

The expressions (6.4.22) and (6.4.30) can be esguess follows:

(v, (1).8(1)=
ng(o)upj_yp(s) dor( PKQ,, [ { 57) os( B[ (1)s & R, M}erm)() t
(6.5.1.3)
and
PRl o en(re) ()
ACRICIES Y N k L
(P, [ £ ()(1r0)" (9t (PR, [(1T50)" () aw( )

(6.5.1.4)

A very good reference for Malliavin calculus andcstastic delay equations is Bell and
Mohammed (1991).

Remark 6.5.1As we observe from the subsections 6.5.1 and Bi&Zan also consider
other stochastic noises, since the only requireneetd can define a Wiener integral
with respect to such noise. O
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6.6 Conclusion — Further Research

In this chapter, we consider the generalized limegular stochastic differential de-
lay system with constant coefficients and two stamtous external differentiable and
non differentiable perturbations. These kinds aftems are inherent in many applica-
tion fields; among them we mention fluid dynamitse modelling of multi body
mechanisms, finance and the problem of proteinirigldUsing regular Matrix Pencil
theory, we decompose it into two subsystems, wisosgions are obtained as general-
ized processes (in the sense of distributions).eldeer, the form of the initial function
is given, so the corresponding initial value praobles uniquely solvable. Finally, two
illustrative applications are presented using whibése and fractional white noise, re-

spectively.

The results of the"8section can be further extended into several ésterg direc-

tions.

« First, as it has already been discussed in theh&pter, we want to investigate the
special properties of the control input. Thus, savknown controllability and sta-
bility criteria (see for instance Klamka and Soch@77, Zabczyk, 1981, Ehrhard
and Kliemann, 1982, Mahmudov, 2001 etc) can bénéurextended. Furthermore,
the derived results can be transferred into theiapeases of standard and frac-

tional Brownian motions.

«  These criteria can also be extended to the sttctdifferential systems with mul-
tiple time delays and different kind of irregulavises-processes (for instance, we
can use some special Lévy and Jump processes, whigh several applications

into Actuarial/Financial science).

« Additionally, as it has been already proposed é4hchapter, the results of th&%2
chapter can be applied and further extended inth kind of differential stochastic
systems. Thus, the change of the state in zerq tame the related impulsive be-

haviour can be also combined with the introductéspecialnormalized bounded

variation (NBV) functions (or distributionsy:[t,.,t, +7] - C, i.e.
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to+r

ex(9= )+ B] At $d( br Ch)er Of)r Ri:

Finally,

e we want to consider a more general system, seej4ik.

X (1)= A )+ BY 1)+ Cif }+ D }+ R{ )

where the matrice€ and A are time-invariant coefficients with a specialusture

(symmetric, skew symmetric, Toeplitz, non-negaee). Then some more special ca-
nonical forms, like Tompson etc should be appliedseveral applications, see Ka-
logeropoulos, Karageorgos and Pantelous (2009)efedences therein, analytical solu-
tions are also required, where some elements of il Operator Theory have to be

applied.

« secondly, we want to investigate the approximatbrthe solutions, see (6.4.22)
and (6.4.23). Consequently, the derived -practicadful- results will be used in

several significant applications in Actuarial ariddncial science.
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Chapter 7

Conclusions - Further Research

In this chapter, we want to conclude and presemntimerous, basic extensions of

the present PhD thesis. Analytically,

A) distributional solutions and behaviour enter thedgtof many areas in systems

and control such as:
() Controllability, Observability,
(ii) Infinite zero characteristic behaviour,
(i) Almost invariant subspaces, almost controllabgipaces,
(iv) Dynamics of singular systems, etc.

The distributional characterization is also linkedsolution of a number of control
problems. Although such solutions have theoretsigihificance, their value is limited
from the practical (implementation of solutionsewpoint, since impulses represent

distributions and cannot be constructed. Only fiomst can.
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Thus, wewant to develop a theory for approximating disttibns with different
families of smooth functions. This should involvefiding also a ‘metric’ to measure
how good the approximation is and ways to parariset¢hese families. For instance, if
we use the Gauss function and its derivatives, Wiemay parameterise the families in
terns ofs. Can we links to the distance from the distribution? Can we aissec to the
corresponding energy? 2-norm (Euclidean norm)? Velatadvantages / disadvantages

of the different approximations?

Now, consider the problem of transferring the arigf a controllable system to any
point within a hyper sphere of radilis. We know that this can be done in 0 — time with
impulses. What is the minimal time required foriagng this if we use an approxima-
tion to the distributional solution, by using a siing families? If these are restrictions
on the energy of the input signal, can we achiéie ttansfer within theR -sphere? If

yes, what is the required time?
Clearly similar problems can be defined for thelguwablem of reconstructibility.
Impulsive solution of implicit system descriptioofthe:
Pencil type:Fx = Gx,
Autoregressive typeT ( p) x=0.

Here we have to clarify the fundamental system omotf the significance of the

approximation.
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One way of handling this may be to pose the questis there another system for
which the approximation of the distribution is am@omous smooth solution?’ Diffi-
cult question that needs a lot of thinking. Essaiyti we ask for ‘system deformations’

that express natural correspondence between swdutio

Given that autonomous solutions are expressed @@nenrtials, the link between
exponentials and distributions is worth examining.
Consider the problems of almo(sﬁ, B)- invariance and almost Controllability sub-

spaces. In the first case we use distributionsetp trajectories in the subspace. If we
use approximations, how close can we keep thectmjes to the subspace? If we use
Gauss approximations, what is the linkcoand the distance from the subspace? What
happens if we impose conditions on the energy efsignal? What is the effect on the

distance? Repeat the same for the almost contildjadase.
Moreover, if YV is an aImosI(A, B)- invariant, or almost Controllability subspace,

can we define spaces for the same syslémvhich are(A, B)- invariant, controllabil-

ity subspaces? Which are those which are closettetm? Can we relate this to ap-

proximation of distributions?

Infinite zero solutions. Output zeroing problem flistributions, characterize the

infinite zero structure. Define approximate smoatitput willing solutions.
In the next lines, we will present some relatedstjoas

PROBLEM (Al): Distance between differential systems descrigtion
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Consider two pencil modelsFx = Gx and F'X' = G'X where(F,G), (F',G') are pairs

of the same dimension.
(i) Define distance functions betwe¢r,G), (F',G') pairs

(i) Investigate relations between kronecker structofesF-G, sF -G as a

function of the distance.
(iif) Topology of(F,G) pairs and spectra, indices, Plucker invariantp@mies.
Extension from pencils to polynomial models

A(p) x=0,

where A(p)=pP"A+ P AL+t A

PROBLEM (A2): Define distance functions between distributiomsl alifferential

families of functions.

B) As a further extension of thé°Zhapter, we are interested in extending the pre-

senting results to the complex case, whgrd,,.... A, OC.

Moreover, based on our approach, we want to exikéadinez and Pefia (1998b)
and Eisinberg, Franzé and Salerno (2001) reseaackswin the first case, i.e. Eisin-
o

berg, Franzé and Salerno (2001), we have a sptgal of A :cos{lz—_ln} for
n

i =1,2,...n (Chebychev nodes) and in the next case, i.e. Mezrtand Pefia (1998b), we
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want to calculate the appropriate complete symméiriction, in order to determine the

LU factorization of the rectangular Vandermonde nirat

C) As a further extension of thd'4hapter, we want to investigate the special prop-
erties of the control input. Thus, several knowntoallability and stability criteria (see

Wei, 2004) can be further extended.

The introduction of speciadormalized bounded variatioiNBV) functions (or dis-
tributions),u:[to,t0+r] - C is also of a great mathematical interest and inapae. In
order to be able to investigate the existence aerduniqueness of the solution, some

elements of the Functional Analysis are requireg, for instance Yosida (1966), Hirch

and Lacombe (1999), and Pedersen (2000).

Additionally, the results of the"2chapter can be applied and further extended into
such kind of differential systems. Thus, the chaofthe state in zero time, and the re-

lated impulsive behaviour can be combined withgpecialnormalized bounded varia-

tion (NBV) functions (or distributionsy: [t,,t, +7] - C.

Moreover, we want to consider a more general syssem (4.1.2), i.e.

to+7

Ex(t)=AtI_><(t-$d1( 3+ BU),

where the matriceE and A are rectangular time-invariant coefficients orhwé spe-

cial structure (symmetric, skew symmetric, Toepliton-negative etc). Then some
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more special canonical forms, like Kronecker or Ppson etc should be applied. In sev-
eral applications, see Kalogeropoulos, KarageoagasPantelous (2009) and references
therein, analytical solutions are also requirederghsome elements of ODEs and Op-

erator Theory have to be applied.

Finally, we want to consider the stochastic versibthe system (4.1.2), see aldd 6
section of the present thesis. Under the introduactf irregular inputs, several other

aspects can be further discussed.

D) As a further extension of thé"Ehapter, the (asymptotic) stability testing prob-
lem for linear descriptor neutral delay-differehtsystems of type (5.1.1) will be ad-
dressed. By means of the concept of spectral radiogh delay-independent and -

dependent stability criteria will be derived, seefurther details Yang and Liu (2002).
These criteria can also be extended to the nesjtsdéms with multiple time delays.

Finally, we will compare the derived results wittetseveral existing stability crite-
ria, since the stability robustness bounds are @rpeo get significantly improved, see
Yang and Liu (2002). Some examples will be usedhow the significance of our re-

sults.

E) The results of the"8section can be further extended into severalésterg di-

rections.

160



First, as it has already been discussed in theh&pter, we want to investigate the
special properties of the control input. Thus, savknown controllability and stability
criteria (see for instance Klamka and Socha, 1Zabczyk, 1981, Ehrhard and Klie-
mann, 1982, Mahmudov, 2001 etc) can be furthernebet@. Furthermore, the derived
results can be transferred into the special cassmodard and fractional Brownian mo-

tions.

These criteria can also be extended to the stdcldifferential systems with mul-
tiple time delays and different kind of irregulamises-processes (for instance, we can
use some special Lévy and Jump processes, whiah deseral applications into Actu-

arial/Financial science).

Additionally, as it has been already proposed é4hchapter, the results of th&%2
chapter can be applied and further extended inth kind of differential stochastic sys-
tems. Thus, the change of the state in zero timettze related impulsive behaviour can

be also combined with the introduction of speai@atmalized bounded variatiotNBV)

functions (or distributionsy:[t,,t, +7] = C, i.e.

to+7

EX(t)= A9+ B[ Xt $( b+ Cl)w Df)t- Riy)
Finally, we want to consider a more general systas,(4.1.2), i.e.

EX(1)= A+ B 1)+ Cu J+ D J+ R ),

where the matrice€ and A are time-invariant coefficients with a specialusture

(symmetric, skew symmetric, Toeplitz, non-negaee). Then some more special ca-
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nonical forms, like Tompson etc should be appliedseveral applications, see Ka-
logeropoulos, Karageorgos and Pantelous (2009)efedences therein, analytical solu-
tions are also required, where some elements of il Operator Theory have to be

applied.

Finally, we want to investigate the approximatidritee solutions, see (6.4.22) and
(6.4.23). Consequently, the derived -practical wiseesults will be used in several sig-

nificant applications in Actuarial and Financialese.

In this part of the PhD thesis, we want to emplea#iat many very interesting and
significant issues are still open. Some preliminaprk has been done, but much more

is needed.
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