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Abstract: Accurate segmentation of the sky region is crucial for various applications,
including object detection, tracking, and recognition, as well as augmented reality (AR)
and virtual reality (VR) applications. However, sky region segmentation poses significant
challenges due to complex backgrounds, varying lighting conditions, and the absence
of clear edges and textures. In this paper, we present a new hybrid fast segmentation
technique for the sky region that learns from object components to achieve rapid and
effective segmentation while preserving precise details of the sky region. We employ
Convolutional Neural Networks (CNNs) to guide the active contour and extract regions
of interest. Our algorithm is implemented by leveraging three types of CNNs, namely
DeepLabV3+, Fully Convolutional Network (FCN), and SegNet. Additionally, we utilize
a local image fitting level-set function to characterize the region-based active contour
model. Finally, the Lattice Boltzmann approach is employed to achieve rapid convergence
of the level-set function. This forms a deep Lattice Boltzmann Level-Set (deep LBLS)
segmentation approach that exploits deep CNN, the level-set method (LS), and the lattice
Boltzmann method (LBM) for sky region separation. The performance of the proposed
method is evaluated on the CamVid dataset, which contains images with a wide range of
object variations due to factors such as illumination changes, shadow presence, occlusion,
scale differences, and cluttered backgrounds. Experiments conducted on this dataset
yield promising results in terms of computation time and the robustness of segmentation
when compared to state-of-the-art methods. Our deep LBLS approach demonstrates better
performance, with an improvement in mean recall value reaching up to 14.45%.

Keywords: deep learning; convolutional neural networks (CNNs); DeepLabV3+; fully
convolutional network (FCN); SegNet; level-set function; lattice Boltzmann method (LBM);
sky object segmentation

1. Introduction
In applications such as object detection, tracking, and recognition, precisely segment-

ing the sky region is essential for understanding the scene’s context and environment [1,2].
Separating the sky region provides a distinctive visual cue that can assist in categorizing
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and organizing images based on their sky characteristics. This enables efficient retrieval of
images containing specific sky types or scenes, which is mainly used for image retrieval
and indexing systems [3,4]. Moreover, in augmented reality (AR) and virtual reality (VR)
applications, accurate sky region segmentation is essential for realistic scene rendering [5,6].
By accurately separating the sky, virtual objects or effects can be seamlessly integrated
into the sky region, enhancing the overall visual quality and realism of the augmented or
virtual environment.

The field of image segmentation has witnessed a significant surge in interest, par-
ticularly in the subclass of sky region segmentation. This particular area of research has
garnered extensive attention, driven by the growing demand for accurate and efficient
detection of objects in the sky, especially in the context of aerial surveillance, drone nav-
igation, satellite imaging, and military applications [7]. The sky region often exhibits
complex and variable background patterns, such as clouds, gradients, and atmospheric
effects. These variations make it difficult to define a consistent boundary for the sky region.
Unlike many other objects or regions in an image, the sky region often lacks clear edges
and distinct texture. This absence of prominent features makes it challenging to identify
the boundaries of the sky region accurately. The color and intensity distribution of the
sky region can overlap with other regions in the image, such as buildings, mountains, or
water bodies. This similarity in color and intensity makes it challenging to differentiate the
sky region from its surroundings. The sky region is highly sensitive to lighting conditions,
resulting in significant variations in illumination throughout the day and under different
weather conditions. Additionally, shadows from objects in the scene can further complicate
the segmentation process by altering the appearance and boundaries of the sky region.
In many outdoor scenes, objects such as trees, buildings, or mountains can partially or fully
occlude the sky region. These occlusions and overlapping objects introduce additional
complexity to the segmentation task as they can interfere with the accurate delineation of
the sky region.

Thus, addressing these challenges requires the development of sophisticated algo-
rithms and techniques that can handle complex backgrounds, handle variations in color and
texture, account for illumination changes and shadows, handle occlusions and overlapping
objects, and adapt to scale and perspective variations. Research has been continuously
conducted to advance image processing methods, overcome challenges, and improve the
accuracy and robustness of region segmentation [8,9].

Machine learning and deep learning have proven to be powerful techniques for image
segmentation and classification applications [10–13]. One widely adopted deep learning
method for image segmentation involves the application of Convolutional Neural Net-
works (CNNs). These networks are particularly effective at capturing spatial information
within images, making them well-suited for segmentation tasks [14]. They are effective in
capturing spatial information through convolutional layers and can learn hierarchical rep-
resentations from input images. Several extension architectures to the CNN are commonly
used for image segmentation, including U-Nets, Fully Convolutional Networks (FCNs) [15],
and SegNet [16]. These architectures typically consist of an encoder part that captures the
features from the input image and a decoder part that upsamples the features to generate
the segmentation map. CNNs can handle complex image structures and capture both
local and global contextual information. They can learn powerful feature representations
through a deep architecture. Moreover, CNNs can be trained end-to-end, allowing for
efficient optimization. Several approaches have been proposed to address the challenges
of region segmentation with deep learning in image processing. Hasenbalg et al. [1] em-
phasized the importance of accurate sky region segmentation in applications like object
detection, tracking, and recognition. They provided a benchmark for evaluating various
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segmentation methods, highlighting the need for robust techniques in the presence of
extreme variations in illumination, shadow, occlusion, scale, and clutter. In image retrieval
and indexing systems, researchers have explored several methods for efficiently categoriz-
ing and organizing images based on their sky characteristics [2–4]. The focus of this paper
is on the precise segmentation of the sky region, crucial for such applications.

Han et al. [17] proposed a deep level-set method that combines deep learning tech-
niques with the level-set method. The deep level-set method aims to improve the accuracy
and efficiency of image segmentation by incorporating learned priors from FCN neural
networks. However, their work cannot achieve the required segmentation output when the
scene is more complex and contains clutter. Additionally, the paper does not address the
execution time.

Zheng et al. [18] introduced a combination of deep learning and the level-set method
for image segmentation. They present a deep learning framework that incorporates level-
set evolution into the loss function, enabling simultaneous learning of image features and
level-set evolution for accurate segmentation.

Moreover, Albalooshi et al. [19] emphasize the significance of utilizing an unsupervised
pre-trained deep neural network to guide the evolution of active contour segmentation
for object segmentation. Their approach capitalizes on the learned representations from
the deep neural network, enabling their algorithm to effectively capture and exploit the
unique features associated with objects of interest. By incorporating these distinctive
features, the accuracy of the segmentation process is greatly enhanced, leading to more
precise and reliable results. Their work highlights the importance of leveraging the power
of deep neural networks. Through unsupervised pre-training, the deep neural network
can autonomously learn relevant features from a large dataset, enabling it to effectively
guide the active contour evolution. This approach addresses the challenge of accurately
identifying and segmenting objects, which often exhibit complex patterns and textures that
require sophisticated analysis.

Liu et al. [20] proposed a hybrid deep learning with a Lattice Boltzmann method (LBM)
framework for rapid image segmentation. However, their method does not adequately
consider noise and artifacts presented in the input images. When the input images contain
significant levels of noise or artifacts, the segmentation accuracy may be adversely affected,
leading to inaccurate boundaries.

In a study carried out by Singh et al. [21], Convolutional Neural Networks (CNNs)
were employed to segment and discriminate cotton boll pixels from sky pixels. Three fully
convolutional neural network models (VGG16 [22], InceptionV3 [23], and ResNet34 [24])
were used as encoders and trained on a dataset. The trained models were evaluated using
evaluation metrics such as intersection-over-union (IoU), F1-score, precision, and recall
deployed in cotton harvesting applications.

The sky view factor (SVF) has gained recognition as an important indicator for evaluat-
ing the openness of streets in urban planning [25]. It quantifies the ratio of visible sky area
to the total sky area at a specific point in space. With the availability of street view images
(SVIs) and the emergence of SVI services providing panoramic data of urban street levels,
Xia et al. [25] developed a method to measure street-level SVF by leveraging semantic
segmentation techniques to extract sky area data from SVIs. This enabled the estimation of
the fisheye photographic-based sky view factor (SVFf).

Accordingly, deep learning and the lattice Boltzmann level-set method are two distinct
approaches that have been used in various image segmentation applications. However,
the combination of these two techniques has not been addressed very well in the context
of sky region segmentation. To the best of our knowledge, there is no specific solution
that combines CNNs with a lattice Boltzmann level-set approach for segmentation in all-
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sky images. Thus, in this paper, we introduce a hybrid approach by integrating CNNs
and the lattice Boltzmann level-set method, highlighting our contributions, challenges,
and applications.

We benchmark our model against leading CNN-based segmentation models, including
DeepLabV3+, FCNs, and SegNet. This selection is based on several key factors, including
their proven effectiveness in semantic segmentation tasks, their architectural advantages,
and their relevance to the challenges associated with sky region segmentation. The ability
of DeepLabV3+ to handle multi-scale features and preserve spatial resolution makes it
particularly suitable for sky region segmentation, where the sky often lacks clear edges and
textures, and its appearance can vary significantly due to lighting conditions, occlusions,
and atmospheric effects. FCNs incorporate skip connections that fuse feature maps from
different layers of the network. This helps preserve fine-grained details by combining low-
level features (e.g., edges) with high-level semantic information, which is particularly useful
for segmenting the sky region, where subtle gradients and color variations are common.
SegNet is computationally efficient and can handle large images, making it suitable for
real-time applications such as drone navigation or aerial surveillance, where sky region
segmentation is often required. SegNet’s ability to handle complex scenes with occlusions
and overlapping objects aligns well with the challenges of sky region segmentation, where
objects like trees, buildings, or mountains may partially occlude the sky. By selecting these
three models, we aimed to provide a comprehensive comparison of different segmentation
approaches. All three models are suited to address the specific challenges of sky region
segmentation, such as complex backgrounds, varying lighting conditions, and the absence
of clear edges. Table 1 summarizes the key differences, advantages, and disadvantages of
our proposed method compared to existing approaches.

Table 1. Summary comparison with existing methods.

Method Advantages Disadvantages Our Contribution (Deep LBLS)

DeepLabV3+ [26]

High accuracy in semantic
segmentation Computationally intensive Combines DeepLabV3+ with LBLS

for improved boundary detection

Multi-scale feature aggregation limited ability to handle
complex boundaries Faster convergence with LBM

FCN [27]
End-to-end training Struggles with fine details

Enhances FCN with LBLS for better
object completeness and boundary
smoothness

Preserves spatial resolution Limited contextual
understanding

SegNet [16]

Simple encoder-decoder
architecture

Limited feature extraction
capabilities

Improves SegNet’s performance with
LBLS, especially in handling
occlusions and complex skies

Easy to train Lower accuracy in complex
scenes

Level-Set Methods
[17,18]

Effective for boundary
evolution Computationally expensive

Integrates level-set with LBM for
faster convergence and reduced
computational cost

Handles topological changes Sensitive to initialization

Lattice Boltzmann
Methods [20]

Efficient for fluid dynamics and
boundary tracking

Limited application in image
segmentation

Combines LBM with deep learning
for accurate and efficient sky region
segmentation

Parallelizable Requires careful parameter
tuning

In the context of aerial surveillance using drones, accurate segmentation of the sky re-
gion is crucial for various tasks such as object detection, scene understanding, and anomaly
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detection. By integrating the Deep LBLS approach into the image processing pipeline of the
aerial surveillance system, the system can focus on identifying objects of interest against the
sky background, enhancing surveillance capabilities. Moreover, the segmented sky region
can serve as a reference point for anomaly detection. Unusual activities or objects in the sky,
such as unauthorized drones or aircraft, can be easily identified against the segmented sky
background, triggering timely alerts. Additionally, segmentation of the sky region can aid
in drone navigation and collision avoidance. By accurately delineating the sky area, drones
can better navigate through complex environments and avoid collisions with obstacles or
other airborne objects.

Our proposed method combines CNN techniques with the lattice Boltzmann level-set
approach, aiming to enhance accuracy, processing efficiency, and robustness to variations in
sky appearance, lighting conditions, and complex backgrounds. In the subsequent sections,
we provide a detailed description of our proposed deep LBLS method.

Hence, we introduce a new method for segmenting the sky region in images us-
ing a combination of deep learning and the lattice Boltzmann level-set approach. Our
contributions in this research are:

• Improved Accuracy: By integrating deep learning techniques with the lattice Boltz-
mann level-set approach, our goal is to surpass the precision and reliability of conven-
tional segmentation methods, resulting in more accurate delineation of sky regions.

• Efficient Computational Process: We present a method that achieves a balance between
computational efficiency and prediction accuracy in sky region segmentation. Deep
learning algorithms are often computationally intensive, however, the incorporation of
the lattice Boltzmann level-set approach mitigates this, offering an effective solution.

• Robustness to Variations: Our method addresses the challenges posed by diverse sky
appearances, varying lighting conditions, and complex backgrounds. The proposed
framework is capable of learning intricate patterns and features, enabling the system
to adjust to different sky scenarios.

• Integration of Lattice Boltzmann Level-Set: We incorporate the lattice Boltzmann
level-set approach into the deep CNNs framework to provide additional advantages.
The lattice Boltzmann method is adept at tackling dynamic boundaries and evolving
shapes, which aids in achieving more precise and smoother segmentation outcomes
for sky regions.

The rest of the article is organized as follows. Section 2 illustrates the proposed deep
Lattice Boltzmann Level-Set (deep LBLS) model. Results and discussions are discussed in
Section 3. Finally, Section 4 presents our conclusions and future directions.

2. Materials and Methods
This section introduces our fast and robust sky region segmentation approach. We’ll

begin with a general outline of the method, followed by an in-depth exploration of each step.

2.1. Outline of the Key Steps in the Proposed Technique

Our segmentation approach integrates deep CNN within the level-set image fitting
for accurate boundary and region extraction of the sky region. Additionally, the proposed
method incorporates the LBM to reduce computational time. A functional framework of
the proposed segmentation is illustrated in Figure 1, which is based on four algorithmic
steps. The first step involves using dense feature maps to cluster the intensity information
of the sky region by leveraging a supervised CNN model. The input of the deeply learned
neural networks is then employed in the second stage of our segmentation process to map
the intensity levels of an input-testing image. The mapped output values are subsequently
utilized to evolve the energy function of the level-set protocol in the third stage of our
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proposed approach. Finally, the LBM is used to solve the curve evolution problem and
optimize the convergence of the contour to the most optimum sky region boundaries.

Figure 1. Functional framework of the proposed segmentation model.

2.2. Deep Learning Based Sky Region Segmentation

We utilize deep CNNs for semantic segmentation of the sky region as a first step. This
phase involves training a deep neural network to learn the features and patterns in the
image data about the sky region and then performing those features to make predictions
about the location and boundaries of the sky region in our testing imagery. During the
training phase, we utilize the Cambridge-driving Labelled Video Database (CamVid) [28],
because it consists of images containing the sky region along with corresponding ground
truth segmentation masks. These segmentation masks have pixel-level annotations that
indicate which regions belong to the sky area. The dataset encompasses a diverse range of
outdoor images with various lighting conditions, occlusions, and backgrounds.

To enhance the dataset for optimal neural network performance, we standardize the
image dimensions to a uniform resolution and adjust the pixel values for normalization,
aligning with the specifications of the deep learning model utilized. Image augmentation
techniques are employed to enrich the training dataset’s variety, thereby boosting the
model’s performance. This is achieved through the application of random transformations
to the training images throughout the training process.

The dataset is partitioned into three subsets: 421 images for training, 140 images for
validating, and 140 images for testing. In the training phase, the network is supplied with
the input images alongside their respective ground truth segmentation masks, enabling it
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to learn the mapping from input to accurate segmentation outputs. To optimize the model,
adjustments are made to its parameters and weights via the Stochastic Gradient Descent
(SGD) optimization technique. Furthermore, these parameters are iteratively updated to
reduce the loss function, enhancing the model’s performance and accuracy.

Upon completing the training phase, we employ the previously unseen testing image
set to deploy our deep neural network for the initial segmentation of the sky region
during the testing phase. To comprehensively evaluate the performance of our proposed
approach, we benchmark our model against leading CNN-based segmentation models,
such as DeepLabV3+, FCNs, and SegNet. This comparison allows for a more nuanced
understanding of how our model stands in relation to the current state-of-the-art in the field.

2.2.1. DeepLabV3+

DeepLabV3+ is a state-of-the-art method for semantic image segmentation [26]. It
uses both atrous spatial pyramid pooling and decoder modules to enhance segmentation
results. Figure 2 illustrates the structural components of the DeepLabV3+ algorithm.

Figure 2. Structural components of the DeepLabV3+ algorithm.

In the DeepLabV3+ model, Atrous convolution is performed on the input feature
map x for each location i on the output feature map y and a convolution filter w in the
following manner:

y[i] = ∑
k

x[i + r · k]w[k] (1)

where the sampling stride of the input signal is determined by the atrous rate r that is used
in the process.

DeepLabV3+ is known to use Atrous Spatial Pyramid Pooling (ASPP) [26], which
prompts the feature representation for each pixel by capturing multi-scale context by sam-
pling the input image at multiple rates. Additionally, DeepLabV3+ incorporates the Xcep-
tion model and atrous separable convolution to make the model faster and more robust.

2.2.2. Fully Convolutional Networks (FCNs)

Fully Convolutional Networks (FCNs) are deep learning models designed for semantic
segmentation tasks [27]. FCNs incorporate skip connections to fuse feature maps from
different stages of the network. These connections help in preserving fine-grained details
by combining low-level features with high-level semantic information. Moreover, FCNs
employ transposed convolutions, also known as deconvolutions or upsampling layers, to
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recover the spatial resolution of the feature maps. Transposed convolutions increase the
size of feature maps, allowing the network to generate a segmentation map with the same
dimensions as the input image. FCNs can be trained in an end-to-end manner, meaning the
entire network is trained jointly. The network learns to perform both feature extraction and
pixel-wise classification simultaneously, optimizing the parameters of the entire model to
minimize a segmentation loss function. FCNs produce dense predictions by generating a
pixel-wise classification map for each input image. This means that every pixel in the input
image is assigned a label or class, enabling accurate and detailed segmentation results.
Figure 3 illustrates the structural components of the FCN algorithm.

Figure 3. Structural components of the FCN algorithm.

Overall, FCNs belong to a powerful class of deep-learning models designed for seman-
tic segmentation. They leverage skip connections, transposed convolutions, and end-to-end
training to generate dense predictions and accurately segment objects within images. FCNs
have found widespread applications in various domains, showcasing their effectiveness in
pixel-level labeling tasks.

2.2.3. SegNet

SegNet [16] is a deep learning-based semantic segmentation method that uses an
encoder-decoder architecture to learn the mapping between the input image and its cor-
responding semantic segmentation. The encoder part of the network extracts features
from the input image, while the decoder part generates the segmentation mask. Figure 4
illustrates the structural components of the SegNet algorithm.

Figure 4. Structural components of the SegNet algorithm.
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The SegNet architecture comprises three key components: the encoder, decoder, and
segmentation module. The encoder extracts features from the input image while the
decoder generates the segmentation mask. The segmentation module upsamples the
decoder’s feature maps to produce the final segmentation mask. Training of the SegNet
model involves end-to-end learning using a dataset of labeled images. During training, the
model minimizes the disparity between predicted and ground truth segmentation masks,
typically employing a combination of cross-entropy loss and dice loss.

Once trained, the model can perform semantic segmentation on new images. The
input image undergoes encoding, generating feature maps that are then processed by
the decoder to yield the segmentation mask. SegNet offers advantages over other deep
learning-based semantic segmentation methods, including its capability to handle large
images and produce high-quality segmentation masks. It is also relatively easy to train and
can be trained with small datasets.

2.3. Evolve the Level-Set Energy Function

The level-set method is a mathematical framework for tracking the evolving inter-
faces and contours. This method represents the interface as the zero contour of a higher-
dimensional level-set function and evolves it over time using partial differential equations.
The evolution of this level-set function adheres to an equation that minimizes a cost func-
tion, typically incorporating terms associated with data fidelity and regularization.

We employ a variational level-set approach, where the contour C is defined by the
zero level-set of an auxiliary functional denoted as φ(x, y, t) or simply φ. The evolution of
φ can be described by the following equation:

δφ

δt
+ F|∇φ| = 0 (2)

where φ represents the level-set function that represents the evolving boundary, (x, y) are
the spatial coordinates within the image, t is the time parameter that signifies the progres-
sion of the level-set function, ∇φ refers to the gradient of φ with respect to (x, y), which
provides the normal direction of the evolving boundary, |∇φ| indicates the magnitude
of the gradient, determining the speed at which the evolution occurs, and F is a speed
function that governs the evolution of the level-set function based on desired character-
istics or constraints. It can be derived from the image features, edge detectors, or other
relevant information.

Thus, the variational level-set formulation utilizes the φ function to represent the
evolving boundary, and its evolution is controlled by the speed function F and the gradient
information provided by ∇φ. This approach enables the contour to adapt and evolve based
on the desired characteristics and constraints defined by the speed function.

In practical applications, several numerical techniques, such as the lattice Boltzmann
method, can be utilized to solve the level-set equation and iteratively evolve the level-set
function over time. These numerical approaches discretize the equation and offer effective
algorithms for updating the level-set function, allowing for the accurate capture of desired
object boundaries.

2.4. Utilize LBM for Convergence Optimization

The lattice Boltzmann method is a numerical technique used to simulate fluid flow
and other physical phenomena [29]. It is based on solving the Boltzmann equation using
discrete velocity distributions on a lattice grid. The method offers advantages in terms of
parallel computing, handling complex geometries, and capturing fluid interfaces. In classi-
cal level-set methods, the cost function minimization is typically addressed using calculus
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of variations. This mathematical framework provides techniques for finding the function
that minimizes a given functional. However, this approach may involve computationally
expensive operations, especially for complex problems or large datasets. To overcome these
computational challenges, the proposed method utilizes the lattice Boltzmann method
(LBM). LBM is a numerical simulation technique commonly used for fluid flow problems.
It operates on a lattice grid and models the fluid behavior based on the distribution of
particle velocities. By leveraging the LBM, our proposed model reduces the computational
time required for solving the cost function minimization problem. In this approach, the LIF
(Level-set Initialization Function) is introduced into the general equation of LBM. LIF pro-
vides an initialization or approximation for the level-set function, aiding in the optimization
process. By incorporating the LIF into the LBM equation, the new model modifies the evo-
lution equation. This modified equation enables efficient and accurate optimization of the
level-set function, leading to improved results in terms of shape evolution, segmentation,
or boundary tracking. Overall, the integration of the lattice Boltzmann method with the
proposed LIF level-set function offers the advantages of reduced computational time and
improved optimization capabilities compared to traditional level-set methods based on
calculus of variations. This approach can be beneficial in applications where real-time or
efficient computations are required, such as medical image analysis, computer graphics, or
scientific simulations.

2.5. Experimental Setup

We conducted our experiments using the CamVid outdoor imagery dataset [28] to
evaluate the effectiveness of our proposed method. This dataset comprises 421 images for
training, 140 for validation, and another 140 for testing, with a particular focus on the sky
class within this dataset. The experiments were executed using the Deep Learning Toolbox™
in MATLAB R2024a. The experimental setup included an AMD CPU, Intel processors, and
Nvidia Tesla T4 GPUs, featuring a total of 24 cores and 384 GB of combined memory.

During the deep learning process, we employ the stochastic gradient descent with
momentum. The momentum value provides a metrical indication of the contribution of the
parameter update step of the previous iteration to the current iteration of stochastic gradient
descent. In our deep learning stage, we utilize a value of 0.9 of momentum. We start with
a learning rate of 0.0001, and then we reduce it by a factor of 0.3 every 10 epochs. The
maximum number of epochs for training is 100. Mini batch size is set to 8 observations at
each iteration. The training data are shuffled before each training epoch, and the validation
data are shuffled before each neural network validation. The shuffling is performed to
avoid discarding the same data every epoch.

2.6. Evaluation Metrics

The following evaluation metrics are used to assess the performance and accuracy of
our segmentation algorithm:

• Recall (RE) measures how well the proposed model computes all positive instances
in the dataset. Recall ranges between [0, 1]. The higher the recall value, the better is
segmentation performance.

RE =
TP

(TP + FN)
(3)

where TP, and FN account for true positive, and false negative, respectively.
• BF score, also known as the Berkeley Segmentation Benchmark score, is a common

metric used to evaluate the accuracy of segmentation algorithms. This metric focuses
on how well boundaries between different regions in an image are detected and
defined, in which the BF score ranges from 0 to 1. When the value of the BF score is
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closer to “1”, this indicates faultless segmentation and that the contours of objects in
the prediction stage perfectly match the ground truth. On the other hand, a value
of BF score that is closer to “0” indicates segmentation weakness. The BF score is
calculated as the harmonic mean of precision and recall, which balances the ability of
an algorithm to correctly identify true boundaries (precision) with its ability to find all
the actual boundaries (recall). BF score is calculated as:

BF score =
2 × precision × RE
(RE + precision)

(4)

where precision = TP/(TP + FP), with FP indicating False positive, and RE is recall.
• Jaccard similarity index for image segmentation is a measurement that ranges between

0 and 1, representing 0 to 100%. It quantifies the similarity between the predicted
mask and the ground truth mask by comparing the members of each set to determine
shared and unique elements. The higher the coefficient, the more similar the two
sets are considered to be. This measurement is a commonly used proximity metric
for computing the similarity between two objects. It is widely employed to measure
segmentation accuracy.

jaccard(m1, m2) =
|m1 ∩ m2|
|m1 ∪ m2|

(5)

where m1 and m2 are the two sets of data being compared.
• Dice similarity coefficient is the ratio of the intersection of two sets of data to their

union. It is particularly useful for imbalanced datasets, where one set may be much
larger than the other. It is a great choice for image segmentation tasks, as it is more
sensitive to overlap between the predicted and ground truth masks. Just like the
Jaccard similarity index measurement, it varies between 0 and 1, representing 0
to 100%.

Dice =
2 × |m1 ∩ m2|
|m1|+ |m2|

(6)

where |m1| and |m2| represent the number of elements in each set.

2.7. Model Training

The training process involves feeding the network with labeled training data, where
the input images are paired with their corresponding ground truth segmentation masks.
The network learns to map the input images to the desired output augmentations through
an optimization process, such as Stochastic Gradient Descent (SGD) [30], which we used
in our experiments. During training, the network’s weights are adjusted to minimize the
discrepancy between the predicted augmentations and the ground truth augmentations.

Figure 5 shows the training progress of the DeepLabV3+ network to prepare it for the
LBLS model. The graph reveals the classification accuracy achieved on each mini-batch,
reaching a value of 90%. This high accuracy suggests that the network is performing well
and making accurate predictions during the training process. Furthermore, the training
loss graph indicates the loss on each mini-batch, with a value of 0.4. This low training loss
demonstrates that the model is effectively reducing the discrepancy between its predicted
outputs and the true labels. By minimizing the loss function, the model is optimizing its
parameters to improve its predictive capabilities.
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Figure 5. Training progress of the DeepLabV3+ network, where the upper graph shows the accuracy
rate and the lower graph shows the loss rate.

Figure 6 illustrates the training progress of the FCN network to prepare it to be
used in the LBLS model. The graph displays the classification accuracy achieved on each
mini-batch, reaching a value of 70%. This accuracy value suggests that the network is
making reasonably accurate predictions during the training process. The training loss graph
provides information about the loss on each mini-batch, with a value of 0.1. This indicates
that the model is effectively reducing the discrepancy between its predicted outputs and the
true labels, as a lower training loss corresponds to a better alignment between predictions
and ground truth.

Figure 6. Training progress of the FCN network, where the upper graph shows the accuracy rate and
the lower graph shows the loss rate.
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Moreover, Figure 7 depicts the training progress of the SegNet network to prepare it
to be used in the LBLS model. The graph shows classification accuracy on each mini-batch,
in which it reaches 40%. The training loss graph provides information about the loss on
each mini-batch, in which it reaches a value of 2.

Figure 7. Training progress of the SegNet network, where the upper graph shows the accuracy rate
and the lower graph shows the loss rate.

Furthermore, Figure 7 illustrates the training progress of the SegNet network to
prepare it to be used in the LBLS model. The graph represents the classification accuracy
achieved on each mini-batch, reaching a value of 40%. The training loss graph provides
information about the loss on each mini-batch, with a value of 2.

The lower accuracy and higher training loss of the SegNet model compared to
DeepLabV3+ and FCN are primarily due to the inherent architecture of SegNet, which,
while effective for many segmentation tasks, may struggle with complex sky region segmen-
tation due to its relatively simpler encoder-decoder structure. SegNet does not incorporate
advanced techniques like atrous convolutions or multi-scale feature aggregation, which are
present in DeepLabV3+ and FCN. These limitations can lead to reduced performance, espe-
cially in scenarios with complex backgrounds, varying lighting conditions, and occlusions,
as observed in the CamVid dataset.

Despite the lower baseline performance of SegNet, the integration of the LBLS model
significantly improved its segmentation results, as will be seen in the next section. The low
accuracy and high loss during SegNet training can be attributed to the fact that the CamVid
dataset contains a wide range of outdoor scenes with significant variations in lighting, shad-
ows, and occlusions, which can challenge simpler models like SegNet. In addition, SegNet’s
architecture lacks the multi-scale feature extraction capabilities of DeepLabV3+ and FCN,
making it less effective at capturing fine details and contextual information. Moreover, the
training process for SegNet may require more extensive hyperparameter tuning or data
augmentation to achieve better convergence. However, even with these limitations, the
addition of LBLS provided a noticeable improvement in segmentation quality.
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3. Results and Discussion
3.1. Visual Evaluation

In this section, we conduct a visual evaluation of the results obtained from our pro-
posed algorithm. Figure 8 presents the visual comparison of the outputs when applying
DeepLabV3+ with and without LBLS (Lattice Boltzmann Level Set) on randomly selected
testing images. The purpose was to assess the performance of our algorithm by comparing
the results to the ground truth imagery.

Figure 8. Visual results with DeepLabV3+. (a) input image, (b) ground truth, (c) DeepLabV3+ without
LBLS, (d) DeepLabV3+ with LBLS.

Upon examining Figure 8, it is evident that the results achieved using DeepLabV3+
with LBLS exhibit a closer resemblance to the ground truth imagery. The visual comparison
highlights the effectiveness of incorporating LBLS into the DeepLabV3+ algorithm, as it
leads to improved segmentation results.

By utilizing DeepLabV3+ with LBLS, the algorithm demonstrates a higher level of
accuracy in delineating object boundaries and preserving fine details. The segmentation
outputs show smoother and more coherent contours, resulting in a visually appealing and
closer representation of the true objects in the images.
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This visual evaluation provides qualitative evidence supporting the superiority of
DeepLabV3+ with LBLS over the version without LBLS. The enhanced performance of the
algorithm is evident in terms of its ability to produce segmentation results that are visually
closer to the ground truth imagery. Moreover, we further evaluated the performance of our
proposed algorithm by applying FCN (Fully Convolutional Network) with and without
LBLS on randomly selected testing images. The results of this evaluation are presented in
Figure 9, which showcases the comparison between the outputs obtained using FCN with
and without LBLS, as well as their proximity to the ground truth imagery.

Figure 9. Visual results with FCN. (a) input image, (b) ground truth, (c) FCN without LBLS, (d) FCN
with LBLS.

Upon analyzing Figure 9, it becomes apparent that the results achieved with FCN
utilizing LBLS exhibit a higher degree of similarity to the ground truth imagery. The visual
comparison clearly illustrates that incorporating LBLS into the FCN algorithm leads to
improved segmentation results.

Incorporating LBLS into FCN shows better object completeness and better preserva-
tion of fine details and textures. The segmentation outputs showcase smoother contour
delineation and a more cohesive representation of the true objects in the images.
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This visual evaluation provides compelling evidence supporting the effectiveness of
FCN with LBLS over the version without LBLS. The inclusion of LBLS enhances the
algorithm’s ability to produce segmentation results that closely resemble the ground
truth imagery. In addition to the evaluations conducted on DeepLabV3+ and FCN, we also
assessed the performance of SegNet, both with and without LBLS, on randomly selected
testing images. Figure 10 provides a visual representation of the obtained results, highlight-
ing the comparison between the outputs achieved using SegNet with and without LBLS,
as well as their proximity to the ground truth imagery.

Figure 10. Visual results with SegNet. (a) input image, (b) ground truth, (c) SegNet without LBLS,
(d) SegNet with LBLS.

Upon careful examination of Figure 10, it is evident that the results obtained with
SegNet incorporating LBLS exhibit a closer resemblance to the ground truth imagery. The
visual comparison clearly demonstrates the effectiveness of integrating LBLS into the
SegNet algorithm, as it leads to improved segmentation results.

By utilizing SegNet with LBLS, the algorithm excels in accurately delineating object
boundaries, ensuring object completeness, and preserving fine details and textures. The
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segmentation outputs showcase smoother contours and a higher level of visual coherence,
resulting in a more accurate representation of the true objects in the images.

This visual evaluation provides strong evidence supporting the superiority of SegNet
with LBLS over the version without LBLS. The incorporation of LBLS significantly enhances
the algorithm’s segmentation performance, leading to results that closely align with the
ground truth imagery.

3.2. Quantitative Evaluation

Figure 11 illustrates the evaluation metrics applied with the DeepLabV3+ NN before
and after applying the LBLS segmentation. Figure 11a shows the recall value of the sky
region segmentation before and after applying lattice Boltzmann level-set (LBLS) segmen-
tation. The output of the deep learning semantic segmentation using the DeepLabV3+
neural network is compared with the ground truth before and after applying the LBLS
segmentation. It is observed that the recall value is significantly improved when utilizing
LBLS segmentation.

Figure 11. Results of DeepLabV3+ network with and without LBLS.

Additionally, Figure 11b illustrates the BF score for testing images of the sky region
segmentation before and after the application of LBLS segmentation. The BF score is a
widely used metric for assessing the accuracy of boundary detection or segmentation
algorithms. It quantifies the similarity between the detected boundaries and the ground
truth boundaries.

Figure 11 also demonstrates higher values of the BF score after the LBLS segmentation
is applied. This indicates that the boundaries of the sky region are more accurately detected
and aligned with the ground truth boundaries. Consequently, the LBLS segmentation
technique has effectively improved the boundary detection in the sky region, resulting
in enhanced segmentation quality. Furthermore, Figure 11c illustrates the Dice similarity
coefficient for testing images of the sky region segmentation before and after the application
of LBLS segmentation.

The Dice similarity coefficient is a widely used metric for evaluating the similarity or
overlap between two sets, such as the predicted and ground truth segmentation masks in
image segmentation tasks. It is calculated by taking twice the intersection of the predicted
and ground truth regions and dividing it by the sum of the sizes of both regions. The co-
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efficient ranges from 0 to 1, where 1 indicates a perfect overlap or similarity between the
predicted and ground truth regions, and 0 indicates no overlap.

The graph demonstrates an increase in the Dice similarity coefficient after the applica-
tion of LBLS segmentation. This indicates an improvement in the accuracy and alignment
of the segmented sky regions with the ground truth regions. The boundaries and overall
segmentation of the sky region are more closely aligned with the true regions. A higher
Dice coefficient signifies a greater degree of overlap between the predicted and ground
truth regions, which suggests enhanced segmentation accuracy.

Based on the results mentioned above, the LBLS segmentation technique can effectively
improve the segmentation quality of the sky region, leading to a higher level of similarity
between the segmented regions and the ground truth. The increase in the Dice similarity
coefficient demonstrates the success of LBLS in accurately aligning the segmented sky
regions with the true regions, resulting in improved segmentation accuracy. Moreover,
Figure 11d illustrates the Jaccard similarity index of testing images of the sky region
segmentation before and after applying LBLS segmentation.

The Jaccard similarity index, also known as the Jaccard coefficient or Intersection over
Union (IoU), is a metric commonly used to evaluate the similarity or overlap between two
sets, such as the predicted and ground truth segmentation masks in image segmentation
tasks. The Jaccard similarity index is calculated as the ratio of the intersection of the
predicted and ground truth regions to the union of the predicted and ground truth regions.
It ranges from 0 to 1, where a value of 1 indicates a perfect overlap or similarity between
the predicted and ground truth regions, and a value of 0 indicates no overlap.

Figure 11 shows that the Jaccard similarity index increases after applying LBLS seg-
mentation; it indicates an improvement in the accuracy and alignment of the segmented
sky regions with the ground truth regions. This means that the boundaries and overall
segmentation of the sky region are more closely aligned with the true regions. It also implies
that the LBLS segmentation technique has successfully enhanced the segmentation quality
of the sky region, resulting in a higher level of similarity with the ground truth. Similarly,
Figures 12 and 13 illustrate the segmentation metrics of recall, BF score, dice similarity
coefficient, and Jaccard similarity index values for the testing images of the sky region
segmentation before and after applying LBLS segmentation for both FCN and SegNet,
respectively. The figures provide an indication of the improvement in segmentation results
after the application of LBLS. Therefore, our proposed deep LBLS methodology enhances
robustness and improves the accuracy of the segmentation results. Thus, the proposed
deep LBLS technique improves boundary detection of the sky region through its inherent
characteristics and capabilities. This is because deep LBLS segmentation leverages spatial
information to capture the boundaries accurately. The level-set framework allows for the
representation of complex boundary shapes and topological changes over time. By utilizing
this representation, LBLS can effectively model the intricate boundaries often present in
the sky region. Additionally, the level-set equation in LBLS segmentation involves a cost
function that guides the evolution of the level-set function. This cost function typically
includes terms related to data fidelity and regularization. The data fidelity term ensures
that the evolving boundary aligns with the observed image data, while the regularization
term promotes smoothness and regularity. By optimizing this cost function, LBLS aims to
minimize the discrepancy between the detected boundaries and the ground truth bound-
aries. Moreover, the use of atrous convolution and feature extraction techniques helps
to capture relevant information for boundary detection. Atrous convolution allows for
larger receptive fields, enabling the model to capture contextual information and improve
boundary localization. Feature extraction techniques help extract meaningful features
from the input images, which can aid in accurately detecting boundaries in the sky region.
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Finally, the iterative nature of LBLS segmentation allows for ongoing refinement of the
boundary detection process. The level-set function evolves over multiple iterations, gradu-
ally aligning with the ground truth boundaries. This iterative refinement helps improve
the accuracy and alignment of the detected boundaries with the true boundaries in the
sky region.

Figure 12. Results of FCN network with and without LBLS.

Figure 13. Results of SegNet network with and without LBLS.

By combining these elements, the LBLS segmentation technique enhances boundary
detection in the sky region. It leverages spatial information, optimizes the cost function,
incorporates advanced techniques like atrous convolution and feature extraction, and iter-
atively refines the detected boundaries. This comprehensive approach yields improved
segmentation quality by accurately detecting and aligning boundaries with the ground
truth, resulting in enhanced boundary detection in the sky region.

3.3. Performance Comparison Between the Three CNNs with and Without LBLS

From Table 2, it can be observed that in all three cases, our deep Lattice Boltz-
mann Level Set (deep LBLS) approach demonstrates better performance. For example:
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(1) DeepLabV3+ shows improvements of 14.45% in mean recall, 1.65% in mean BF score,
0.136% in mean dice similarity coefficient, and 0.134% in mean Jaccard similarity index.
(2) FCN exhibits improvements of 4.96% in mean recall, 2.82% in mean BF score, 0.29% in
mean dice similarity coefficient, and 0.24% in mean Jaccard similarity index. (3) SegNet
displays improvements of 13.01% in mean recall, 4.88% in mean BF score, 0.17% in mean
dice similarity coefficient, and 0.26% in mean Jaccard similarity index. When comparing
the three CNNs, DeepLabV3+ yields the best results for our object of interest segmentation.

Table 2. Performance comparison between the three used NNs.

Method Mean Recall Mean BF Score Mean Dice Similarity Mean Jaccard Index

DeepLabV3+ (without LBLS) 0.82464294 0.857826 0.938691 0.892261

DeepLabV3+ (with LBLS) 0.969233 0.874401 0.940048 0.893606

FCN (without LBLS) 0.649962 0.729197 0.906361 0.838899

FCN (with LBLS) 0.699643 0.757435 0.909279 0.841364

SegNet (without LBLS) 0.755992 0.825062 0.926336 0.871246

SegNet (with LBLS) 0.886145 0.873888 0.928046 0.873867

The superiority of DeepLabV3+ over FCN and SegNet for the sky region segmen-
tation can be attributed to the fact that DeepLabV3+ utilizes an advanced architecture
specifically designed for semantic segmentation tasks. It incorporates atrous spatial pyra-
mid pooling (ASPP), enabling multi-scale feature aggregation and effectively capturing
contextual information. This architecture allows DeepLabV3+ to capture fine-grained
details and maintain spatial resolution, resulting in better object segmentation. Moreover,
because DeepLabV3+ employs dilated convolutions, also known as atrous convolutions, it
expands the receptive field of the network without downsampling the feature maps. By
incorporating dilated convolutions, DeepLabV3+ can capture information from a wider
context while preserving fine details. This is particularly beneficial for objects with intricate
structures or detailed textures.

3.4. Computation Speed

The time consumption was measured before and after implementing the lattice Boltz-
mann approach. Specifically, we compare the processing time of the deep lattice Boltzmann
level-set (LBLS) with the three CNN models mentioned above to assess computation
speed. Table 3 presents the average time consumption comparison for all methods on the
test set images. These results demonstrate that utilizing the LBLS significantly reduces
computational time consumption.

Table 3. Average computational time of sky region segmentation.

Method Time (s)

DeepLabV3+ LS 4.7776

DeepLabV3+ LBLS 1.1536

FCN LS 1.2795

FCN LBLS 1.1817

SegNet LS 1.7932

SegNet LBLS 1.1487
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It is important to notice that our deep Lattice Boltzmann Level set (deep LBLS) ap-
proach can reduce computational time due to several factors. One factor is that the lattice
Boltzmann method (LBM), which is utilized in the LBLS approach, is known for its com-
putational efficiency. LBM employs a simplified lattice-based grid structure and efficient
numerical schemes to simulate fluid flow or interface evolution. This efficiency translates
into reduced computational time compared to other methods. Moreover, our deep LBLS
focuses on local computations within each lattice cell, which reduces the overall compu-
tational complexity. Instead of solving complex equations for the entire domain, deep
LBLS performs calculations locally, simplifying the processing required and leading to
faster execution. These factors enable deep LBLS to streamline computations and enhance
computational efficiency compared to other methods, leading to faster processing times.

4. Conclusions
Sky region segmentation plays a significant role in various areas of image processing,

contributing to scene understanding, image enhancement, retrieval systems, AR/VR ap-
plications, environmental monitoring, and video production. In this paper, we present a
fast and robust approach for sky region extraction called deep learning lattice Boltzmann
level-set segmentation (deep LBLS). Our method combines deep learning, the level-set
method (LS), and the lattice Boltzmann method (LBM) to achieve accurate and efficient
sky region segmentation while preserving fine details crucial for object identification and
scene understanding. We introduce a newly formulated level-set function based on deep
learning, enabling precise segmentation. The learning criteria of the level-set are achieved
through deep neural networks. To accelerate the curve evolution process, we utilize LBM,
ensuring faster convergence of the level-set function. Experimental results demonstrate that
our proposed deep LBLS approach outperforms state-of-the-art learning-based methods
in segmenting the sky region in natural visible images, achieving both superior accuracy
and speed.

Moving forward, our future research will focus on exploring the application of the deep
LBLS approach in satellite imagery for cloud detection and atmospheric analysis. Moreover,
we will investigate the adaptability of the proposed method for real-time sky segmentation
in drone imagery and aerial surveillance. Beyond sky region segmentation, the proposed
deep LBLS approach has the potential to be adapted to other image segmentation tasks,
such as medical imaging, where precise boundary detection and rapid convergence are
critical. For instance, the method could be applied to segment tumors in medical scans or
to delineate anatomical structures in MRI and CT images. Additionally, the approach could
be extended to other domains, such as autonomous driving, where accurate segmentation
of road scenes, including sky, road, and obstacles, is essential for navigation and safety.
The versatility of the deep LBLS framework makes it a promising candidate for a wide
range of segmentation challenges across different fields.
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