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Abstract

Background: Consuming high amounts of foods or beverages with high levels of saturated fats, salt, or sugar (HFSS) can be
harmful for health. Many snacks fall into this category (HFSS snacks). However, the palatability of these snacks means that
people can sometimes struggle to reduce their intake. Machine learning algorithms could help in predicting the likely occurrence
of HFSS snacking so that just-in-time adaptive interventions can be deployed. However, HFSS snacking data have certain
characteristics, such as sparseness and incompleteness, which make snacking prediction a challenge for machine learning
approaches. Previous attempts have employed several potential predictor variables and have achieved considerable success.
Nevertheless, collecting information from several dimensions requires several potentially burdensome user questionnaires, and
thus, this approach may be less acceptable for the general public.

Objective: Our aim was to consider the capacity of standard (unmodified in any way; to tailor to the specific learning problem)
machine learning algorithms to predict HFSS snacking based on the following minimal data that can be collected in a mostly
automated way: day of the week, time of the day (divided into time bins), and location (divided into work, home, and other).

Methods: A total of 111 participants in the United Kingdom were asked to record HFSS snacking occurrences and the location
category over a period of 28 days, and this was considered the UK dataset. Data collection was facilitated by a purpose-specific
app (Snack Tracker). Additionally, a similar dataset from the Netherlands was used (Dutch dataset). Both datasets were analyzed
using machine learning methods, including random forest regressor, Extreme Gradient Boosting regressor, feed forward neural
network, and long short-term memory. We additionally employed 2 baseline statistical models for prediction. In all cases, the
prediction problem was the time to the next HFSS snack from the current one, and the evaluation metric was the mean absolute
error.

Results: The ability of machine learning methods to predict the time of the next HFSS snack was assessed. The quality of the
prediction depended on the dataset, temporal resolution, and machine learning algorithm employed. In some cases, predictions
were accurate to as low as 17 minutes on average. In general, machine learning methods outperformed the baseline models, but
no machine learning method was clearly better than the others. Feed forward neural network showed a very marginal advantage.

JMIR Med Inform 2025 | vol. 13 | e57530 | p. 1https://medinform.jmir.org/2025/1/e57530
(page number not for citation purposes)

Dammas et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:smalghamdi2@kau.edu.sa
http://www.w3.org/Style/XSL
http://www.renderx.com/


Conclusions: The prediction of HFSS snacking using sparse data is possible with reasonable accuracy. Our findings offer a
foundation for further exploring how machine learning methods can be used in health psychology and provide directions for
further research.

(JMIR Med Inform 2025;13:e57530) doi: 10.2196/57530
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Introduction

General Background
Noncommunicable diseases, such as cardiovascular disease,
cancer, and chronic respiratory disease, are currently the biggest
threats to health [1]. These are greatly influenced by behaviors,
such as poor diet, physical inactivity, and smoking (eg, [2,3]).
Modification of the obesogenic environment would be most
effective at bringing about change on a large scale [4]. However,
such an environmental change is unlikely to occur in a short
period. Therefore, most related interventions seek to change
people’s responses to their environments. Approaches to achieve
these changes have ranged from mass media campaigns at the
population level to group-based and individual healthy lifestyle
coaching. Over the last decade, digital technologies for
supporting a healthy lifestyle have been on the rise, but there
is still room for improvement [5-7].

A potential avenue for improving the effectiveness of
technology-assisted interventions is providing just-in-time
adaptive interventions (JITAIs). JITAIs are designed to predict
the points at which a person is likely to be in most need of and
most receptive to reminders or assistance for changing a target
behavior [8]. For example, a person engaged in an effort to quit
smoking could be reminded of their goal at the point at which
they are most likely to lapse [9,10]. This may be effective
because motivation for a particular behavior can vary over time
[11]. Additionally, health-related behaviors may be elicited by
cues in the environment (eg, a certain time of the day or walking
past a bakery store) and be largely habitual [12-15]. This can
make change difficult unless behaviors elicited by these cues
are disrupted. Helping a person identify those cues may reduce
the undesired behavior in a number of ways, for example, by
helping the person avoid the cues, adjust their behavior, or
respond to the cues in a different way [15,16]. JITAIs could
help people achieve such goals.

There is increasing research into the use of JITAIs (eg, [17,18]).
Their development has been greatly boosted by the widespread
adoption of powerful personal smartphones. For example, in
2021, 88% of all adults (aged 16 years or older) possessed a
smartphone in the United Kingdom [19], with similar statistics
throughout Western Europe and North America. Modern
smartphones allow increasingly complex data collection from
their owners, including date, time, ambient temperature, and
location. Furthermore, owing to the high computational
capabilities of modern smartphones, many of the required
computations (eg, for prediction) can be carried out locally,
without the need for distant servers and an active internet
connection.

Snacking on foods and drinks that have high saturated fats, salt,
or sugar (HFSS) is the focus of this research. Snacking can be
defined as “food and beverage intake between meals, including
products, such as potato chips, chocolate, and soft beverages”
[20]. HFSS foods contribute to poor health [21], and many
snacks fall into this category. Indeed, a previous study found
that people who are overweight or obese eat an average of 1.3
snacks per day, with 79% of these snacks being high in either
fat or sugar [12]. However, reducing HFSS snacking poses
many challenges, particularly because it can be triggered by
emotional or environmental factors [22]. It can also occur in an
automatized (reflexive) way, making it less amenable to
conscious control efforts [12-14]. Additionally, snacks that are
high in sugar may make a person crave more sugary foods,
because consumption of these snacks can lead to a spike and
subsequent dip in blood sugar levels [23,24]. Indeed, feelings
of hunger and food preoccupation are key reasons cited for
snacking [12].

Several sophisticated approaches to predict aspects of
maladaptive eating behavior have already been proposed, using
ecological momentary assessments (EMAs). For example, Arend
et al [25] studied binge eating episodes in clinical participants.
The authors reported excellent predictive accuracy based on an
EMA protocol with 36 items, including emotional and
environmental variables. Based on initial testing, they were
subsequently able to identify a smaller subset (n=5-9) of highly
valid individualized predictors (EMA items), thereby reducing
the need for an extensive EMA protocol. Forman et al [26]
similarly investigated the predictive adequacy of a large number
of variables concerning dietary lapses. Some questions, such
as those relating to cravings or affect, were answered as many
as 4 times a day, and others were answered only once. Kaiser
et al [27] used data from 2 weeks of EMAs on stress and
emotion, together with sensor data, to predict (reasonable
accuracy) food cravings. Finally, Spanakis et al [28] tracked
several individual states, such as emotions and cravings, which
might predict “unhealthy eating events,” including unhealthy
snacking and other events, such as consumption of high-calorie
food as part of a meal, in people who were overweight or obese.
Participants were questioned as many as 10 times a day. Based
on the collected data, a bottom-up clustering algorithm was
used to arrive at 6 different subgroups of participants
characterized by a specific pattern of eating behavior (eg, eating
in the evening at home), to enable tailoring the intervention to
a specific profile, which was implemented in a randomized
controlled trial [29].

Research based on EMAs is valuable because the prediction of
a behavior as complex as eating can potentially only be
accomplished by considering a multitude of variables, including
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environmental, psychological, and physiological variables.
Moreover, the assessment of these variables takes place in daily
life, contributing to ecological validity. However, health
interventions based on EMAs typically require long periods to
train the machine learning (ML) algorithms for prediction, as
well as considerable commitment and motivation from
participants. There is therefore interest in exploring whether the
prediction of a particular behavior can proceed based on
information that is both minimal and easily available, without
much effort from participants.

In the domain of mental health, research on so-called digital
phenotyping has recently started to develop. Digital phenotyping
uses a smartphone as a tool for objective and ecologically valid
measurements. This method includes passively obtained data,
without needing input from the user. Digital biomarkers, such
as sensor technology, geolocation, characteristics of voice and
speech, and human-computer interaction, are obtained [30-33].
Through this method, a pattern might be discovered over several
weeks (ie, the user is taking too long to respond to messages,
is browsing online until late at night, and is mostly at home).
This can lead to suspicion that things are not going particularly
well for the user, and the suspicion may be increased by the
tone, timing, and content of the user’s social media posts.
Research has shown that mood states in mood disorders can be
predicted using digital biomarkers based on the circadian rhythm
[34].

Prediction of HFSS Snacking Using ML
This research project takes a step in the direction of digital
phenotyping for the prediction of unhealthy eating behavior.
Specifically, to what extent can HFSS snacking be predicted
only based on prior HFSS snacking combined with information
that can be automatically or easily collected from a smartphone
(date, time, and location)? However, this endeavor might fail
due to temporal resolution requirements. If high precision is
needed, failure will be inevitable owing to the intrinsic
stochasticity of the eating behavior. Another problem is the
degree of accuracy that can be achieved after a modest training
period, because participants may not have the patience for
extended training (eg, Tulu et al [35]), and even with mostly
passively collected data, participants still need to indicate
instances of HFSS snack consumption.

On the positive side, ML has progressed to such an extent that
modern algorithms have many characteristics desirable for the
present application, including the capacity to deal with sparse
data and efficient learning of time series. For example, as an
alternative to recurrent neural networks, which are well suited
to time series data, ensemble methods have a good ability to
deal with sparse data by reducing the impact of noise and
outliers [36]. Therefore, our aim was to compare a selection of
ML algorithms, with a view to identify a good algorithm for
predicting instances of HFSS snacking based on only prior
instances, which were coded in terms of time, day, and location
(the latter was encoded in terms of broad categories). The
algorithms were chosen to reflect complementary characteristics
and be representative of the range of good options currently
available. Random forest regressor (RFreg), Extreme Gradient

Boosting regressor (XGBreg), feed forward neural network
(FFNN), and long short-term memory (LSTM) were considered.

RFreg is a tree-based ensemble method that trains many decision
trees simultaneously with bootstrapping followed by
aggregation, collectively referred to as bagging. Bootstrapping
involves the training of several individual decision trees
(between 100 and 300 in the present case) on several subsets
of the dataset, using various subsets of available features [36].
Aggregation means that the outputs from the distinct decision
trees are combined into a single decision. RFreg is considered
to generalize well and be resistant to overfitting, as well as
produce high prediction accuracy, because of ensemble learning
[37].

XGBreg is another tree-based ensemble method, which uses a
form of gradient boosting, relying on the idea that correcting
the model’s earlier errors and learning from them can help to
improve performance in the future. This is a sequential ensemble
learning method where the model tries to improve performance
with each iteration [38]. Both RFreg and XGBreg are ensemble
learning techniques, but the former builds multiple trees in
parallel and then employs an average for prediction, while the
latter constructs 1 tree at a time, in a way that is informed from
the errors of the previous tree [39].

FFNN is a relatively simple type of artificial neural network,
in which information is processed in 1 direction, from input
units to units in one or more hidden layers to output units, such
that there are no cycles in the connections between the nodes.
Hidden layer units apply nonlinear functions to their input,
enabling an FFNN to learn complex associations between input
and output [40]. An FFNN is trained using gradient descent
methods, specifically error backpropagation [41].

Finally, the LSTM model is a kind of recurrent neural network
with an architecture designed for learning long-term
dependencies in time series [42]. A recurrent neural network
includes cycles that feed network activations from earlier time
steps as inputs to determine predictions at the present time step.
As a result of these recurrent connections, the model creates an
implicit recollection of past occurrences, stored in its hidden
layer [43]. Recurrent models can process contexts of arbitrary
length; the LSTM model has a specific structure designed to
store values for longer compared to standard recurrent neural
networks. The LSTM model is the only recurrent model that
was employed, with the other models operating on a fixed
context.

Summary of the Purpose and Aims
Despite much interest in predicting eating behavior, there has
been less work on prediction involving minimal data. Therefore,
the feasibility of predicting HFSS snacking using only previous
instances of snacking collected across a “practical” length of
time (practical in the sense of participant recruitment and
engagement) is unclear. Additionally, there is a wide range of
ML algorithms. It is of interest to explore the quality of
prediction against the assumed characteristics of HFSS snacking
behavior, such as sparseness and high noise.

With these considerations in mind, this study aimed to (1)
develop an app, which would enable data collection on HFSS
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snacking with minimum effort from participants; (2) define a
sensible problem for characterizing HFSS snacking behavior
(prediction of HFSS snacking using previous instances of
snacking and limited information [time, location, and day of
the week]); (3) apply a range of standard and unmodified ML
algorithms to the problem; (4) compare the performance of these
algorithms to each other and to some baseline statistical models;
and (5) consider whether the task of predicting HFSS snacking
from minimal information is feasible and suggest some
directions for future work.

Methods

Outline of Data Collection
Data on HFSS snacking were collected to examine which ML
algorithm was best able to predict such behavior based on only
previous instances and minimal information (time, location,

and day of the week). We first describe the procedures employed
to collect the data.

Data were collected in 2 parts. First, a survey was created to
explore various assumptions about the target behavior of interest.
Second, we implemented an app to obtain data on HFSS
snacking. Participants who reported having 2 or more HFFS
snacks daily in the first part were invited for the app-based
second part of the study. The second part of the study involved
monitoring participants’ snacking behaviors for 28 days. The
2 parts of the study are outlined in Figure 1. This dataset is
referred to as the “UK dataset.” To increase the ecological
validity of our work, we also employed a cleaned version of a
similar dataset collected in the Netherlands, which has been
described by Spanakis et al [28]. The dataset in the report by
Spanakis et al [28] is referred to as the “Dutch dataset.”

The data collection details below concern the UK dataset;
corresponding details for the Dutch dataset can be found in the
report by Spanakis et al [28].
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Figure 1. Screening and data collection processes for the UK dataset. Initially, demographic and lifestyle (weight/diet) surveys were used to determine
eligibility for the trial. In part 2 (app-based part of the study), participants were asked to record snacking habits for a target period of 4 weeks.

Ethical Considerations
For the UK dataset, ethics approval was granted by the
Psychology Research Ethics Committee at City, University of
London (reference: PSYETH (S/L) 17/18 87). The informed
consent form for the first study part (survey part) informed
participants that the study was about snacks that are high in
sugar, salt, and fat and that the study would be conducted in 2

parts (a brief first part concerning some general questions about
eating behavior and a 28-day second part, which would involve
participants recording occasions of snacking on their
smartphones via an app). The informed consent form for the
second part (app-based part) explained in detail about HFSS
snacks and informed participants that they would have to record
their HFSS snack consumption on an app for 28 days. The
informed consent form provided some information about the
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next steps, if the individual agreed to participate, and the amount
of compensation.

All data were collected anonymously. To protect participant
anonymity, the Data Protection Office at City, University of
London, which is registered with the Information
Commissioner’s Office (registration number: Z8947127), was
engaged to confirm that any personally identifiable information
(PII) was securely collected. Data collection involved 3
companies external to City, University of London: Dev
Technosys implemented the app, Linode provided virtual private
servers, and Twillo provided programmable messaging services.
It was ensured that these companies were compliant with the
General Data Protection Regulation (GDPR) and used encrypted
communication.

Participants were compensated £2.50 (US $3.13) for their time
for the survey part of the study and £16 (US $20.00) for the
app-based part.

For the Dutch dataset, ethics approval for the study was provided
by the Faculty of Psychology and Neuroscience of Maastricht
University in 2013. While the data were not open access, the
principal investigators of the study stated availability of the data
upon reasonable request [28].

UK Dataset: Survey-Based Part of the Study
Data for the first part of the study were collected using a
self-administered survey designed using Qualtrics [44]. The
survey was run on the crowdsourcing platform Prolific
Academic [45]. The study was made available on Prolific
Academic, and prospective participants decided whether to take
part. The study had a target sample of 200 participants on
December 23, 2019, and recruitment was closed on February
13, 2020, when this participant number had been reached.

There are no established guidelines for the minimum sample
size required for an ML assessment, and a particular ML
algorithm can work effectively up to a certain error threshold
[46] for a promising but still experimental proposal. Based on
previous related research (Spanakis et al [28] recruited 100
participants for an ML study broadly similar to our study), the
expected time to train all 4 ML models for each participant, and
our budget for paying participants to take part for 28 days, we
aimed for approximately 100 participants for the ML assessment.
The target of 200 participants for the survey part of the study
was an estimate of how many participants would be needed to

identify enough participants with a reasonably high intake of
HFSS snacks, who would be willing to take part in the app-based
part of the study across 4 weeks. The survey part had no
inferential value.

Only UK citizens between the ages of 18 and 60 years were
allowed to participate in the study. Participants were excluded
if they did not have a smartphone or stated that they were
unwilling to participate in the follow-up study (ie, the app-based
part). Additionally, we only recruited participants having a
T-Mobile, O2, Vodafone, Three, or EE mobile phone service,
since at the time of running the study, these were the only SIM
card providers in the United Kingdom providing services
compatible with the Twillo messaging service, which we
employed in the second part of the study. After these exclusions,
there were 184 participants for the first part of the study.

The survey consisted of questions concerning basic
demographics and motivation for healthy eating (Tables S1 and
S2 in Multimedia Appendix 1). Specifically, there were 10
questions covering gender, ethnicity, employment status, weight,
height, HFSS snacking habit, whether the person is trying to
lose weight (2 questions), and whether the person is trying to
eat in a healthy way. Participants were not allowed to skip
questions. The duration of the survey was about 15 minutes.

UK Dataset: App-Based Part of the Study – Snack
Tracker App
We developed the Snack Tracker app to record unhealthy
snacking for this project. The app was designed by SD, and the
coding was undertaken by Dev Technosys [47], a company
specializing in app development. We created versions of the
app for both Android and iOS devices. However, the app is no
longer available for use.

Mobile app development is usually divided into 2 main
components: frontend and backend (Figure 2). Regarding the
frontend (the user interface), the app was designed to be easy
to use, with a simple sequence of screens (Figure 3 and Figure
S1 in Multimedia Appendix 1). The current date and day of the
week were automatically captured for each recording to
minimize user effort. The app worked online, allowing users to
log in and record any snacks they had eaten. In the case of
connection loss, the app allowed users to save their records, and
the app transmitted the data to the server once the mobile device
was connected to the internet.
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Figure 2. The frontend (user interface) and backend (data storage) of the Snack Tracker app used for participants in the second part of the study to
record their intake of snacks with high saturated fats, salt, or sugar over a period of 4 weeks.

The app frontend was coded using React Native, which is an
open-source JavaScript framework for writing iOS and Android
apps. All operations performed by app users and project admins
were handled by Rest Application Programming Interfaces
(APIs) created in Node JS, which allows running JavaScript on
the server side. Rest APIs were used to communicate with the
database of participant data (MongoDB) for store and retrieve
operations (ie, these APIs acted as a bridge between the app
frontend and the database where participant data were stored).
The server used in this project was a cloud-based server

(Linode), which controlled all operations and allowed the
management of the app environment.

The backend part of the app concerned storing the data and user
credentials, as well as offering a web-based admin panel to
manage the project. Participants accepting the invitation to the
app-based part of the study were registered manually using the
admin panel to prevent random users from recording data on
the app. The backend also handled initial user login and user
requests to save and record another snack, go back and edit, or
just save an entry (Figure 3).

Figure 3. The frontend of the Snack Tracker app: (A) splash screen, (B) login screen, (C) home screen, (D) new snack screen, (E) time recording screen
(time picker), (F) location recording screen, (G) recording save screen, and (H) review recording summary.

The app development included designing and delivering
messages as SMS text messages and app push notifications to
keep users engaged and remind them to record snacks (Figure
4). Push notifications could be offered even if participants had

no internet access. For automated SMS text messages, Twilio
was used, which is a cloud communication tool. The software
could programmatically send SMS text messages using Twillo’s
web service APIs. For more information, see [48].
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Figure 4. Examples of reminders sent to participants to “nudge” them to record their intake of snacks with high saturated fats, salt, or sugar during the
second part of the study (app-based part).

UK Dataset: App-Based Part of the Study – Data
Collection
Among the 184 participants who completed the survey-based
part of the study, participants were further excluded if they
reported consuming fewer than two HFSS snacks per day,
leaving 170 participants. We initially invited 100 of these
participants to participate in the app-based part of the study,
with the invitations sent in 3 stages between February and March
2020. Initially, only 68 participants accepted the invitation, and
in the second and third invitation stages, 45 and 25 participants,
respectively, were invited, with 27 and 16, respectively,
accepting the invitation, resulting in an overall sample of 111.

Participants were instructed to participate for 28 days. However,
exact start and end dates of the study differed between
participants, as was expected.

During the study, participants were messaged via Prolific if
they made only 1 recording or no recordings on any day and if
they had made multiple recordings (two or more) each day for
a period but then abruptly made a reduced number of recordings.
These messages were sent in part to ensure that there were no
technical problems with the Snack Tracker app. Additionally,
a few Prolific messages were sent to randomly selected
participants to check that the reminders regarding snack
recording (Figure 4) were received as intended. Informal
feedback from participants throughout the study did not indicate
any technical problems.

For the purpose of the study, an HFSS snack was defined as
any food eaten between the main meals, which was high in
either saturated fat, salt, or sugar. Specifically, participants were
informed that we are interested in “snacks high in sugar, salt,
or fat, which includes… sugary snacks… salty and fatty snacks.”
For each of these categories, several examples common in the
United Kingdom were provided (eg, biscuits, cake, chocolate,

crisps, salted nuts, and salted popcorn). Multimedia Appendix
1 shows exactly how HFSS snacks were explained to the
participants. Considering the instructions and several examples
of typical items provided, it is likely that participants did not
have difficulty with the definition of HFSS snacks. There was
no poststudy feedback of any such difficulties. In addition, in
keeping with the broad aim of the study (to help people manage
their own behavior), there were no strict criteria on what
participants should or should not define as an HFSS snack. It
was not considered that the app needed to be independently
validated, which is in line with similar work, including the study
by Spanakis et al [28].

Whenever participants had an HFSS snack, they were asked to
record it in the Snack Tracker app. In this mode, they only had
to mention the location (coded as home, place of work, and
other; although a GPS-based method would aid in this process,
this method was not possible in our app) as the time and day of
the week were saved automatically. If participants had 2 HFSS
snacks at the same time, this would be recorded as a single
snacking instance. Throughout the study, participants received
3 kinds of notifications (Figure 4). Daily reminders were sent
at 7 PM, asking participants to record any instances of HFSS
snacking that they missed. In this mode of the Snack Tracker
app, participants had to manually indicate the time and day of
the week as well as the location. Additionally, at the end of each
week, participants were sent a notification (instead of the daily
notification) to keep them engaged and provide information or
ask questions (eg, to ask about any technical problems;
Multimedia Appendix 1). The final notification was sent at the
end of the 28-day period (from the first app recording) to instruct
the participants that the study had ended, thank them for their
participation, and offer them a completion code for Prolific
Academic.

JMIR Med Inform 2025 | vol. 13 | e57530 | p. 8https://medinform.jmir.org/2025/1/e57530
(page number not for citation purposes)

Dammas et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Dutch Dataset: Brief Notes
The Dutch dataset was collected by a research group at the
Faculty of Psychology and Neuroscience at Maastricht
University (Study I in the report by Spanakis et al [28]). The
dataset was collected with an app called Think Slim. The sample
consisted of 57 participants who were overweight and 43
participants with a healthy weight in the Netherlands. This study
employed EMAs. Data on 15 variables were collected (eg,
mood, activity, and location), and the variables were monitored
across 8 to 10 measurements per day depending on the
participants’ waking and sleeping times. Spanakis et al [28]
aimed to study eating behavior in general (including main meals
and snacks, both unhealthy and otherwise), with a view to
identify participant clusters and provide adaptive feedback for
improving eating behavior. Accordingly, we extracted
measurements corresponding to HFSS snacks from the general
eating behavior data [28] to create the Dutch dataset. Only
“eating moments” were used from the original dataset [28].
Eating moments were event contingent (ie, they were initiated
by users whenever they were about to eat something). Therefore,
users were not prompted or reminded to record their eating
behavior.

The Dutch dataset was already present when the data collection
for the UK dataset was planned, and there is a reasonable
question as to why we did not adopt a sampling approach similar
to that used for the Dutch dataset. In brief, the purpose of the
UK dataset was different from that of the Dutch dataset. For
the UK dataset, the priority was to collect snacking information
in a way that was as nonintrusive as possible. Moreover, we
wanted to focus on individuals with some snacking behavior in
the first place, since sparsity of data would complicate the
application of ML. On the other hand, the purpose of the Dutch
dataset was to explore prediction using a range of variables,
with a focus on eating behavior in general and not just snacking,
and it aimed to understand differences in daily lifestyle between
people with a healthy weight and people who are overweight.
Accordingly, the extent of snacking behavior was less relevant.

Data Preprocessing
Regarding the UK dataset, it was decided to exclude participants
who did not remain in the study for its intended duration.

Some basic operations were carried out to remove erroneous
entries and ensure consistency between the UK and Dutch
datasets. In the UK dataset, we removed missing and duplicate
entries and ensured that measurement units for height and weight
were the same across participants. In the Dutch dataset, we
translated data from Dutch to English and manually reclassified
950 locations, originally in free text, into the 3 categories
employed in the UK dataset. Finally, HFSS snacks were
extracted from the general information about meals or snacks.
This involved focusing on data concerning food items, such as
burgers, chocolate bars, strawberries, and pasta, and identifying
the items considered as snacks. Each snack was manually
categorized as healthy or unhealthy (HFSS).

Data were coded in terms of the following 3 features: location
(home, place of work, and other), day of the week (Monday to
Sunday), and time. A time bin feature was constructed, and

there were 4 large and 12 small time bins. A regular day was
divided into 4 or 12 time bins. In the former case, the time bins
were early morning (midnight to 05:59 AM), morning (6:00
AM to 11:59 AM), afternoon (noon to 4:59 PM), and evening
(5:00 PM to 11:59 PM). In the latter case, the first time bin
started at midnight and had a 2-hour duration, and every
subsequent time bin had a 2-hour duration, resulting in a total
of 12 time bins. Models were trained and evaluated for these 2
encodings of the time variable.

As is common in ML, for the 2 nominal variables in the datasets
(location and day of the week), one-hot encoding was used,
converting each variable to separate variables that take the value
1 or 0 to indicate the presence or absence of different levels of
the variable [49]. The time bin variable was kept in its numerical
format.

Finally, although additional data were collected from
participants in the United Kingdom, including motivation for
healthy eating, these additional variables were not considered
in this study for practical reasons and for meeting the focus of
snacking prediction using minimal information.

Computational Methods
We employed 3 fixed context models (RFreg, XGBreg, and
FFNN) and 1 recurrent model (LSTM). Fixed context models
require a fixed input size, which can be achieved by windowing
a longer sequence. Windowing is a technique used to divide a
longer sequence into smaller, fixed-length sequences. Due to
the sparseness of our data, we decided to treat each individual
data point as a separate window for prediction, rather than
grouping them into larger sequences. This approach is often
used when the data are not abundant enough to create longer
sequences, and it can simplify the modeling process for the
algorithms. Recurrent models can process an input sequence of
arbitrary length. They function in cycles, during which the
activation from the previous time step is used as input (together
with other information) for the current time step. For the single
recurrent model in the study, we used the observation sequences
of 4 time steps. In our study, the day was divided into different
time bins, including a case of 4 time bins (early morning,
morning, afternoon, and evening). While the 4 time steps in this
model do not directly correspond to the day time divisions, they
broadly align with it, and this was sufficient for our analysis.

Some models can benefit from standardization, normalization,
and dropout regularization more than others, and these
techniques were explored accordingly. Feature scaling (such as
standardization or normalization) was considered for the FFNN
and LSTM models. Neural networks often benefit from having
consistent scales across features. This is because neural networks
learn complex relationships and patterns among features, which
can be influenced by the differing scales of features, if not
appropriately managed [50,51]. On the other hand, tree-based
models, such as RFreg and XGBreg, operate by splitting nodes
based on feature thresholds and thus are less sensitive to feature
scaling. For the FFNN model, we standardized features using
the formula zi = (xi – µ) / σ, where µ and σ are the mean and SD
values of the variable, respectively; zi indicates the standardized
value; and xi is the original value. For the LSTM model, we
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employed the normalization yi = xi – min (X) / (max (X)∙min
(X)).

Dropout was also explored. It is a regularization technique that
randomly sets to zero (drops out) a percentage of the features
during training [52]. Dropout regularization introduces
randomness during training and prevents overspecialization of
units, which can improve generalization. This is important for
neural networks, as they can overfit the training data.
Accordingly, we evaluated and ended up retaining dropout

regularization for the FFNN and LSTM models. Tree-based
models use other (inherently incorporated) mechanisms, such
as feature selection, bootstrapping, and ensemble aggregation,
to manage overfitting.

We executed a total of 5 experiments for each model (5-fold
cross-validation) to evaluate their performance. In each
experiment, the models were evaluated based on their predefined
configurations (Table 1). Both random forest and XGBoost are
based on decision trees, and Figure 5 illustrates their differences
as well as some of the main parameters.
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Table 1. Hyperparameters for each of the machine learning algorithms used to analyze the data collected about consumption of snacks with high
saturated fats, salt, or sugar during the app-based part of the study.

Value or rangeModel and hyperparameter

RFrega

150nE, number of estimators (trees in the forest)

2Minss, minimum number of samples an internal node must cover to consider splitting
(when a node has fewer samples than this value, it is regarded as final and called a
terminal node or leaf)

Not user specified (nodes are expanded until leaves are
pure or contain less than Minss)

Maxdepth, maximum number of splits that each tree is permitted to execute

XGBregb

100nE, number of boosting rounds (estimators)

2MinSS

6Maxdepth

0.3LR, learning rate (step size for each boosting iteration)

0.05Gammac (how much the loss must be decreased by a split in order for that split to
occur)

FFNNd

4Number of hidden layers

0.5, after the 2nd and 4th hidden layersDropout regularizatione

1st hidden layer: 32; 2nd hidden layer: 32; 3rd hidden layer:
8; 4th hidden layer: 8

Number of neurons at the hidden layer (NHL)

ReLUf, in the dense and output layersActivation function

LSTMg

128Number of neurons in the LSTM layer (NLL)

3Number of hidden layers

0.5, after the 3rd hidden layerDropout regularizatione

64NHL

ReLU, in the dense and output layersActivation function

aRFreg: random forest regressor.
bXGBreg: Extreme Gradient Boosting regressor.
cIn relation to gamma, loss is the function minimized during model training. It is based on the difference between the current output of the machine
learning model and the target (ie, the true value).
dFFNN: feed forward neural network.
eDropout regularization is a technique that randomly switches off neurons in a neural network during training to avoid overfitting. The number given
refers to the fraction of neurons switched off.
fReLU: rectified linear unit.
gLSTM: long short-term memory.
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Figure 5. The 2 panels of the figure illustrate the differences between the 2 random forest machine learning algorithms in the study. (A) Both random
forest regressor (RFreg) and Extreme Gradient Boosting regressor (XGBreg) are based on the same building block, a decision tree, which is a set of
rules built from the dataset. In our case, the aim is to predict the time until the next snack having high saturated fats, salt, or sugar in minutes. n is the
number of trees in the model, selected based on cross-validation performance. Time k is the expected time until the final unhealthy snack is predicted
using Tree k. (B) For RFreg (on the left), the model creates several different trees and then averages predictions. For XGRreg (on the right), there is a
sequence of trees, which progressively refine the prediction. Splits in a decision tree correspond to the data points associated with a node being divided
and the parts assigned to child nodes. RF: random forest; XGBoost: Extreme Gradient Boosting.

All algorithms had the same objective, which was to predict the
time until the next HFSS snack (in minutes), given the current
time bin, location (work, home, and other), and day of the week.
Specifically, given the presence of an HFSS snack in a time

bin, the ML algorithms attempted to predict the number of
minutes to the next HFSS snack (snack to snack interval). ML
algorithms were applied separately to the snacking data from
each participant to take into account individual differences in
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how the available predictors can be related to snacking behavior.
In ML terms, the question is whether there is structure in the
data to predict the density of snacking instances, based on the
available predictors, location, time bin, and day of the week.
To summarize the main approach, we used an input of fixed
size, comprising current location, current day of the week, and
current time bin, for RFreg, XGBreg, and FFNN. The LSTM
model processed data as a sequence of inputs.

To appreciate the capacity of the ML models to extract
regularities from the data, 2 baseline models were explored.
The first was a simple linear regression model, which attempted
to predict snacking instances based on a linear combination of
available features, which were suitably weighted. The second
was a basic baseline model corresponding to prediction based
on the grand mean of snacking (computed separately for each
participant) across the time bins.

Five-fold cross-validation was applied on all fixed-context
models. In each data split, the datasets were divided into 2 parts
(80% for training and 20% for testing). That is, 20% of the data
reserved for testing constitutes out-of-sample validation of the
models. The error (mean absolute error [MAE]) values were
computed on the part of the dataset left for testing (20%). This
procedure was repeated 5 times, with each iteration
corresponding to a different, randomly determined partition of
the data into training and test parts. Reported MAE values were
averaged across these 5 iterations. We ensured that data
distributions in the training and testing data subsets were similar
to those in the whole dataset, using stratified data sampling [53].
Regarding the choice of using 5-fold cross-validation, there is
a question of whether it would make sense to have more “folds.”
However, each different “fold” increases the number of
simulations that must be run and leads to more unbalanced
training and testing subsets. Five-fold cross-validation is a fairly
standard approach.

For the LSTM, a time series cross-validation was employed.
Time series cross-validation is more suitable for temporal data
modeling, because the training set only includes the observations
occurring before those in the testing set. It begins with a small
subset of data for training that is successively extended to
generate new predictions [54]. Because of the sparseness of the
data, it was decided to use time series cross-validation with only
2 splits.

MAE is the main evaluation metric for the models. MAEs were
computed as differences in minutes between the time of the
current snack and the predicted time for the next snack. This is
because our research focus was the time difference between the
prediction and the actual time until the next HFSS snack
occurrence. Additionally, residuals allow quantification of
positive and negative errors, which were employed in a further
analysis (related to the creation of hypothetical interventions).
Residuals were calculated as true values minus predicted values.
Thus, positive residuals indicate that the predicted time is earlier
than the observed time, and negative residuals indicate that the
predicted time is later than the observed time. It is important to
note that the MAE is computed as the average of the absolute
values of the residuals. Residuals were examined as standard,

and corresponding plots are provided in Multimedia Appendix
2.

Results

Preliminary Notes
Regarding the UK dataset, as expected, some participants did
not stay in the study for its intended duration (4 participants).
Majority of the participants (107/111) recorded their HFSS
snacks for the full 28 days or more. Among these participants,
there were 34 female and 73 male participants, with an average
age of 32.85 (SD 10.10) years. Some participants continued
recording snacking for an additional 6 to 11 days after reaching
the 28-day target and after receiving the completion message.
These additional data were used in the analyses. Overall, the
total number of recordings across all participants was 5391,
which reduced to 4978 data points after data cleaning. There
were some positive comments about the study in general. For
example, participants mentioned that recording their snacks
made them aware of the amount consumed daily and helped
them reduce food intake.

There were 413 missing and duplicate entries in the UK dataset.
Regarding duplicates in the UK dataset, when participants
recorded their snacking instances, they might have pressed the
submit button twice, which resulted in 2 instances of the same
event. However, such duplicate instances were few
(approximately 7.7%). In each participant, the total number of
recorded snack instances ranged from 7 to 157.

The Dutch dataset included 3705 data points. In each participant,
the number of recorded snack instances ranged from 6 to 348.
Demographic and other characteristics of the Dutch dataset can
be found in the original publication [28].

The sizes of the training and testing sets were 3982 and 996,
respectively, in the UK dataset and 2778 and 927, respectively,
in the Dutch dataset.

We noted that normalization slightly enhanced the results from
the LSTM model but not the FFNN model.

Model Results
Table 2 and Figure 6 show the MAEs for the 4 models using
all input features. In brief, the RFreg model performed very
poorly with the UK dataset using 4 time bins. In contrast, the
XGBreg, FFNN, and LSTM models all demonstrated reasonable
performance with the UK dataset using 4 time bins, achieving
lower MAE values and indicating better predictive ability
compared to the RFreg and baseline (grand mean) models. When
using 12 time bins for the UK dataset, all 4 models performed
relatively similarly and demonstrated satisfactory performance.
It is not possible to compute significance values from MAE
differences in such an ML analysis. This is because to compute
statistical significance, some knowledge of the sampling
distribution of MAE differences is needed if the null hypothesis
(there is no structure in the time series) is true, which is not
possible. The best guide for the interpretation of MAE values
is the MAE of the baseline (grand mean) model.
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Table 2. Performance of the machine learning algorithms for predicting consumption of snacks with high saturated fats, salt, or sugar in the UK and
Dutch datasets.

Testing set with 12 time

bins (MAEb)

Training set with 12

time bins (MAEb)

Testing set with 4 time

bins (MAEb)

Training set with 4 time

bins (MAEa,b)

Dataset and model

UK dataset

47.129.247.329.2Grand mean

60.36.856.39.3LRc

16.26.252.314.7RFregd

17.52.317.84.8XGBrege

16.315.315.815.3FFNNf

16.514.815.914.7LSTMg

Dutch dataset

1400.11049.01397.31049.0Grand mean

914.699.2816.1116.1LR

239.1311.5309.9306.9RFreg

229.94.1238.93.2XGBreg

154.0 (129.8h)723.3 (133.7h)151.5 (130.0h)690.3 (133.8h)FFNN

174.21330.0171.01271.5LSTM

aMAE: mean absolute error.
bMAEs for predicting the time of the next snack having high saturated fats, salt, or sugar in minutes using all features (fractional part of a minute is
indicated as decimals). A lower MAE is better. The average across participants is provided.
cLR: linear regression.
dRFreg: random forest regressor.
eXGBreg: Extreme Gradient Boosting regressor.
fFFNN: feed forward neural network.
gLSTM: long short-term memory.
hThe numbers in parentheses refer to model performance after applying regularization and early stopping.
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Figure 6. A graphical illustration of the relative performance of the machine learning algorithms (random forest regressor [RFreg], Extreme Gradient
Boosting regressor [XGBreg], feed forward neural network [FFNN], and long short-term memory [LSTM]) for predicting consumption of snacks with
high saturated fats, salt, or sugar in the UK and Dutch datasets and using 2 different approaches for partitioning time. Performance is quantified using
the average mean absolute error (MAE) values from Table 2 (lower values are better). The error bars indicate the IQR. LR: logistic regression; RF:
random forest; XGBoost: Extreme Gradient Boosting.

For the Dutch dataset, errors were high. The FFNN model was
the best performing model when using both 4 and 12 time bins.
The training MAE for the FFNN model was much higher than
the testing MAE, suggesting underfitting of data but good
generalization. To assess whether the training MAE can be
reduced, regularization and early stopping with the FFNN model
were employed for the Dutch dataset.

The results can be explored in 2 ways. First, the scatter plots of
residuals can be considered for the best performing version of
each model. For most noisy processes, the default expectation
is that residuals should be evenly distributed around zero, with
the spread of the residuals dependent on the amount of noise
and the quality of the model. A narrow spread of residuals
around zero is generally indicative of good quality predictions
[55]. Model residuals with scatter plots are presented in

Multimedia Appendix 2. Overall, nonlinear models, particularly
random forest, XGBoost, and FFNN, show the most potential
for accurately predicting the time until the next HFSS snack,
with the predominance of positive residuals being advantageous
for just-in-time interventions (since positive residuals indicate
that the prediction is earlier than the actual event).

Second, feature importance can be examined in the prediction
task. Although there were only 3 features for prediction (time
bin, location, and day of the week) and all of them appeared
important, there might be enough information for prediction
after eliminating day of the week or location. Feature importance
analysis is one way to proceed in this case, but because of the
approach used for model fit (individually for each participant),
this was deemed impractical. Therefore, instead, we carried out
2 feature ablation analyses, one for location and another for day
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of the week. For the UK dataset, both these features appeared
essential for the prediction task, since eliminating either one of
them reduced model performance quite substantially (without
either of the features, model performance became equivalent to

that of the grand mean model) (Tables 3 and 4). On the other
hand, for the Dutch dataset, the reduction in model performance
in the ablation analyses was milder, indicating that prediction
could be based on a subset of the available features.

Table 3. Location ablation analysis of the machine learning algorithms for predicting consumption of snacks with high saturated fats, salt, or sugar in
the UK and Dutch datasets.

Testing set with 12 time

bins (MAEb)

Training set with 12

time bins (MAEb)

Testing set with 4 time

bins (MAEb)

Training set with 4 time

bins (MAEa,b)

Dataset and model

UK dataset

47.129.247.329.2Grand mean

>10,000d13.8>10,000d17.1LRc

42.512.152.215.3RFrege

46.64.249.910.2XGBregf

45.926.045.926.0FFNNg

55.423.555.423.4LSTMh

Dutch dataset

1398.01049.01397.31049.0Grand mean

>10,000d76.1>10,000d132.4LR

276.3341.6267.6370.4RFreg

258.823.1222.573.4XGBreg

151.5690.3151.5690.3FFNN

171.01271.5171.01271.5LSTM

aMAE: mean absolute error.
bMAEs for predicting the time of the next snack having high saturated fats, salt, or sugar in minutes using all features (fractional part of a minute is
indicated as decimals). A lower MAE is better. The average across participants is provided. Values are based on time bin and day of the week only.
cLR: linear regression.
dExtremely poor performance with a very high error.
eRFreg: random forest regressor.
fXGBreg: Extreme Gradient Boosting regressor.
gFFNN: feed forward neural network.
hLSTM: long short-term memory.
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Table 4. Day of the week ablation analysis of the machine learning algorithms for predicting consumption of snacks with high saturated fats, salt, or
sugar in the UK and Dutch datasets.

Testing set with 12 time

bins (MAEb)

Training set with 12

time bins (MAEb)

Testing set with 4 time

bins (MAEb)

Training set with 4 time

bins (MAEa,b)

Dataset and model

UK dataset

47.129.247.329.2Grand mean

>10,000d15.2>10,000d21.1LRc

39.916.945.921.1RFrege

46.413.846.220.2XGBregf

45.926.045.826.0FFNNg

55.523.555.423.5LSTMh

Dutch dataset

1398.01049.01397.31049.0Grand mean

>10,000d96.2>10,000d152.7LR

229.3360.9284.4416.0RFreg

197.673.5212.2135.3XGBreg

151.5690.3151.5690.3FFNN

171.01271.5171.01271.5LSTM

aMAE: mean absolute error.
bMAEs for predicting the time of the next snack having high saturated fats, salt, or sugar in minutes using all features (fractional part of a minute is
indicated as decimals). A lower MAE is better. The average across participants is provided. Values are based on time bin and location only.
cLR: linear regression.
dExtremely poor performance with a very high error.
eRFreg: random forest regressor.
fXGBreg: Extreme Gradient Boosting regressor.
gFFNN: feed forward neural network.
hLSTM: long short-term memory.

An alternative, exploratory analysis is presented in Multimedia
Appendix 3, which illustrates a different way to use the present
data. This involved a sensitivity/specificity analysis, and the
focus was to predict unhealthy snacks within windows of a
certain size. This analysis was arguably better suited to the
specific goal of building JITAIs. It was framed as a timing
analysis for the delivery of a hypothetical intervention, which
involved testing whether predicted snacking times fell within
time windows of 120, 60, and 30 minutes before the actual
HFSS snack time. This analysis was carried out only for the
FFNN model, because FFNN residuals were notably positive
and thus indicated early predictions, which is a desirable
property for JITAIs. We briefly summarize the results from this
analysis on individual behavior. Assuming the delivery of an
intervention 45 minutes before a predicted snack, 90% of
predictions would occur within a 1-hour window before the
actual snack for the UK dataset and the Dutch dataset. If the
acceptable window between the intervention and snack is
reduced to 30 minutes (and the intervention is delivered 20
minutes before the prediction), the accuracy would be 75% and
74% for the UK dataset and the Dutch dataset, respectively.

Discussion

Principal Findings
Interventions can be made more effective by delivering
messages at the right time before the target behavior is
performed, as is the case with JITAIs (eg, [17,18]). ML can in
principle help. The goal of this study was to design an app to
collect data on HFSS snacking behavior in order to explore the
capacity of well-known ML methods to capture the underlying
statistical structure.

Over a period of 4 weeks, 111 participants provided data on
HFSS snacking, using our Snack Tracker app, and this was
considered the UK dataset. In addition, we analyzed an
analogous dataset from the Netherlands (100 participants with
a varying weight status), which was considered the Dutch
dataset. In both cases, a number of preprocessing steps were
carried out. We considered dividing a regular day into 4 and 12
time bins. We explored 4 established ML models, namely RFreg,
XGBreg, FFNN, and LSTM, in the 2 datasets for predicting the
number of minutes to the next HFSS snack (given the time bin
in which HFSS snacking occurred) in each participant
separately. The models were able to predict the time until the
next HFSS snack with reasonable accuracy (the MAE was low
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at about 17 minutes in the UK dataset and was 130 minutes in
the Dutch dataset). Although errors of 130 minutes (more than
2 hours) may appear large, this finding should be evaluated in
the context of behaviors that themselves might occur only once
every several hours. In many cases, prediction on the basis of
the grand mean was inferior, demonstrating that the models
were able to extract some regularity from the data. The residual
analysis revealed reasonably narrow distributions, with desirable
(in most cases) properties, such as positive residuals. Positive
residuals mean that the prediction of the next HFSS snack is
before the actual event, making them preferable (compared to
negative residuals) for JITAIs. It would have been nice to offer
a simple summary conclusion regarding which model performed
better. Although there was some evidence that the FFNN model
was overall superior, this was based mostly on the Dutch dataset.
It makes sense to be cautious about overall model adequacy,
and more analyses like the present ones are needed.

Strengths
A strength of the study is the use of 2 datasets involving
different populations, sampling approaches, and data collection
methods. However, there is concern regarding the difference in
MAE values between the UK and Dutch datasets. This may be
attributed to differences in participant selection criteria between
the 2 datasets. In the UK dataset, participants were selected
based on their reported frequency of unhealthy snacking, and
specifically, those who consumed two or more unhealthy snacks
daily were considered. This likely led to a more homogeneous
group in terms of snacking behavior, contributing to the lower
MAE values. On the other hand, the Dutch dataset had a broader
participant base without prior assessment of the snacking habit.
The Dutch dataset included both people with a healthy weight
and those who were overweight, but the UK dataset did not
select participants based on BMI and instead included
participants who consumed two or more unhealthy snacks daily.
There were also differences in methodology and sampling
techniques, which might have led to differences in the variability
of snacking behavior and thus the capacity of the ML algorithms
to perform well. Another point concerns the difference in the
cultural context and how this might impact snacking behavior.
For example, people in the United Kingdom (vs those in the
Netherlands) eat less fruit (295 g vs 461 g per day; Food and
Agriculture Organization of the United Nations, 2023) and are
more likely to experience obesity (30% vs 23% of adults) [56].

Overall, there were several potential differences between the
Dutch and UK datasets, and examining the performance of the
ML algorithms separately for each dataset was an interesting
exercise. Conversely, considering the range of differences
mentioned above, there was little justification for combining
the 2 datasets into a single analysis.

A major difference between the UK and Dutch datasets was
related to the dependence on the additional features of location
and day of the week over and above the main prediction feature
of time bin. While prediction dropped substantially after
eliminating either of these 2 additional features in the UK
dataset, this was not the case in the Dutch dataset (prediction
was equivalent with and without the 2 features). It is possible
that location coding in the Dutch dataset was less accurate than

that in the UK dataset. In the UK dataset, we specifically asked
for location in terms of home, work, or other, which
corresponded exactly to the feature coding in the analyses, but
in the Dutch dataset, the location variable had to be derived
from other data. However, this is a fairly weak reason (there is
reasonable confidence in how the location variable was coded
in the Dutch dataset), and in any case, this argument does not
apply to the day of the week feature. More generally, there might
have been more variation in the contextual cues that drive HFSS
behavior between the 2 countries. At a preliminary level, it
could be argued that the food environments between the 2
countries are broadly similar, but clearly, this is a possibility
that cannot be addressed without further work.

From a technical point of view, a feature of the present approach
is that the choice of methods represents relevant ML models
for this type and size of dataset, without an attempt to develop
a customized approach. Our emphasis was on how good
prediction can be with standard ML algorithms. It is therefore
interesting that the selected models mostly outperformed the
baseline grand mean model. Models based on decision trees
(XGBoost and random forest) performed competitively in
predicting the next HFSS snack, but overall, neural networks
(FFNN and LSTM) performed somewhat better. This finding
may change with an increase in the number of data points, as
neural networks, particularly deep ones, benefit greatly from
large datasets. Moreover, there are alternative neural network
models that merit examination, such as the Gated Recurrent
Unit network, which is fast, requires little memory, and
sometimes has better performance than LSTM [57]. One
direction for future work is to determine how to use the
characteristics of the present modeling challenge (such as
sparsity) to fine-tune learning algorithms.

Limitations
There are several technical challenges that need to be mentioned.
First, behaviorally, for many users, it is difficult to commit to
providing data for a long time, before interesting predictions
are made. Even if most information is passively obtained, there
would still be a small burden to record snacks. Therefore, it is
worth exploring online ML, whereby data streams are used to
continuously update a model. Another approach is to entirely
obviate the need for user input through the use of sensor data
combined with ML (digital phenotyping work mentioned earlier,
eg, [30,31]). For example, Bangamuarachchi et al [58] reported
some promising results concerning the identification of eating
and noneating events, using only passive smartphone data (also
see the study by Chen et al [59]). An important future direction
would be to compare the quality of prediction from data
collected actively versus passively, though the 2 approaches
should not necessarily be seen in competition (eg, sensor data
could be employed to validate active data entry).

The issue of recording snacks has another facet in terms of the
change potential stemming from awareness of a behavior [11].
While this is a desirable effect of data collection (and indeed
consistent with other research, eg, research in alcohol abuse;
see the study by Pimpini et al [11]), it is a complicating factor
regarding the validity of the dataset in that observation of the
behavior impacts the behavior itself. However, it is very
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difficult, if not impossible, to disentangle such factors from the
general variability in behaviors, such as HFSS snacking, which
are inherently stochastic and subject to change from random
environmental changes (eg, periods of stress or going on
holiday). There is a profound challenge here, which goes beyond
current standard practice in ML.

Second, a related challenge is that of data sparseness. ML
models work better with more data. With a larger sample, it
might be possible to examine whether there are natural
groupings in HFSS snacking behavior, defined by, for example,
demographic characteristics, personality traits, physiological
differences, or eating behavior traits (eg, [60-63]). Different
groups of this kind might display higher regularity in the HFSS
eating behavior. Thus, categorizing a new participant against a
pre-existing classification of individuals might inform our
confidence of how well one can predict the behavior of that
participant (eg, see Study II in the report by Spanakis et al [28]).
Currently, the form of such a classification is unclear.
Researchers could rely on ML to identify appropriate aspects
and then attempt to interpret them against eating behavior
characteristics.

Third, there is a question of whether the sample size was
adequate. We have already mentioned the lack of established
guidelines on sample size to achieve particular levels of
sensitivity in ML work [46], as well as noted research similar
to ours with similar sample sizes (eg, Spanakis et al [28]).
Nonetheless, given the limitations in sampling, it can be
questioned whether the present sample is sufficiently
representative of the general population. Participants were
recruited through Prolific Academic, which is one of the most
widely employed crowd-sourcing platforms for behavioral
experiments. Their age characteristics and gender balance
revealed no peculiarities. The recruited participants were biased
toward those who consume more HFSS snacks and those with
enough technology familiarity to use our app. Nonetheless, they
represent participants who would take part in future
interventions, based on the kind of HFSS snacking prediction
considered here.

Fourth, in this work, we only employed day of the week, time,
and location (coarsely coded). In contrast, the studies by Arend
et al [25], Forman et al [26], and Spanakis et al [28] are all
sophisticated examples of similar predictive modeling but based
on more information. The use of a greater number of features
has the potential for more accurate prediction. Regarding HFSS
snacks, the times of meals and drinks are particularly pertinent.
However, we wanted to explore the predictive potential based
on information that would be as straightforward as possible for
participants to provide. The motivation for such an approach is
that any scheme suitable for roll-out to the general population
would benefit from being as unobtrusive as possible in terms
of requests for information. In our app, location required
participant input, but in future iterations, this feature could be
automated through simple look-up tables involving geolocation
data and the prerecorded locations of particular users for work,
home, etc. Additional information that could be recorded
automatically include sensor data from sophisticated
smartwatches, such as heart rate, blood pressure, and possibly
blood sugar, or whether the individual is alone or with company.

There could be a tradeoff here among predictive power,
usability, and participant fatigue, which will require more work
before clarification.

A related point is whether an autoregressive approach might be
more fruitful. Our analyses were based on taking all time bins
in which there were snacks and trying to predict the time
(minutes) to the next snack (given the time bin, location, and
day of the week). What if all time bins are considered as input
for the models, regardless of whether there is a snack, and the
presence of a snack is used as an additional feature? In brief,
such an approach does not work with the present data. The likely
problem is the sparseness of snacking bins relative to
no-snacking bins, and thus, the dataset is skewed toward the
latter. This kind of data skew is a recognized problem in ML,
leading to poor performance of ML models [64]. Such problems
from undersampling of snacking instances might be mitigated
in larger datasets.

Fifth, the possibility of using more extensive sensor data goes
hand in hand with the intriguing suggestion to individualize the
ML approach [65]. There are merits and demerits for both
collecting more data per participant (to allow, for example,
individualization) and adopting a more general approach with
minimal data collection per participant (Spanakis et al [28]
provide a discussion of the tradeoff between individualization
and generality). It is worth noting, however, that even with the
present minimal data collection and a general approach to ML,
it was possible to achieve reasonably low prediction errors.

Sixth, HFSS snacking behavior is not necessarily stable and
might vary depending on factors such as the time of the year.
Accordingly, an ML approach would need to be able to adapt
to any changes in behavior. The difficulty then is how to
distinguish between routine deviations in baseline behavior and
changes in the behavior itself. Online ML might again offer
promise in addressing such a challenge [66]. These
considerations also challenge a perception that perhaps it would
be more appropriate to base predictions on stationary data.

Challenges like those mentioned above are not independent of
the goal of the prediction. Arguably, if the purpose of prediction
is to carry out an intervention, it may be valuable to know not
only the time of an HFSS snacking event, but also additional
variables, such as whether particular emotions preceded a
snacking event. Currently, for the reasons outlined above, it
seems unlikely that a practical method (ie, beyond research)
based on multiple variables or EMAs can be developed, but
future personal electronic devices may make the collection of
the data possible. Participants are likely to engage with intensive
data-collection procedures if they are sufficiently motivated to
accomplish goals related to dietary change, weight reduction,
etc.

Conclusions
The examination of standard ML algorithms produced promising
findings concerning the prediction of HFSS snacking based on
sparse data involving only previous occasions of such snacking
behavior. There are promising behavioral implications given
that a reasonable degree of predictive accuracy was possible
even with limited data (in terms of both features and the window
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for data collection). One direction for application concerns using
prediction data to deliver behavior change techniques for HFSS
snacking behavior (eg, [16,67]). These behavior change
techniques could be delivered in several different ways (eg, by
text or audio messages) to increase engagement and could also
be selected and personalized for the individual. Additionally,
the ML work by itself could be applied to other behaviors

targeted for reduction, such as smoking and alcohol
consumption.

The present results offer a foundation for further exploring how
ML methods can be used in health psychology and provide
directions for further research, which can be both more
technically oriented and focused on behavioral applications and
extensions.
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