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A�������: We study several classes of non-Hermitian Hamiltonian systems, which can

be expressed in terms of bilinear combinations of Euclidean Lie algebraic generators. The

classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting var-

ious types of qualitative behaviour. On the basis of explicitly computed non-perturbative

Dyson maps we construct metric operators, isospectral Hermitian counterparts for which

we solve the corresponding time-independent Schrödinger equation for specific choices of

the coupling constants. In these cases general analytical expressions for the solutions

are obtained in the form of Mathieu functions, which we analyze numerically to obtain

the corresponding energy spectra. We identify regions in the parameter space for which

the corresponding spectra are entirely real and also domains where the PT symmetry is

spontaneously broken and sometimes also regained at exceptional points. In some cases it

is shown explicitly how the threshold region from real to complex spectra is characterized

by the breakdown of the Dyson maps or the metric operator. We establish the explicit

relationship to models currently under investigation in the context of beam dynamics in

optical lattices.

1. Introduction

Quasi-exactly solvable models [1] of Lie algebraic type are believed to be almost all related

to sl2(C) with their compact and non-compact real forms su(2) and su(1, 1), respectively

[2]. The nature of those models dictates that essentially all the wavefunctions related to

solutions for the time-independent Schrödinger equation of these type of models may be

expressed in terms of hypergeometric functions. Non-Hermitian variants of these models

expressed generically in terms of su(2) or su(1, 1) generators have been investigated system-

atically in [3, 4] and large classes of models were found to possess real or partially spectra

despite their non-Hermitian nature. Under certain constraints on the coupling constants
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the models could be mapped to Hermitian isospectral counterparts. Positive Hermitian

metric operators were shown to exist, such that a consistent quantum mechanical descrip-

tion of these models is possible when following the general techniques developed over the

last years [5, 6, 7] in the context of PT -symmetric non-Hermitian quantum mechanics.

It is, however, also well known that there exists an interesting subclass of solvable

models related to Mathieu functions which are known to possess solutions, which are not

expressible in terms of hypergeometric functions. In a more generic setting these type of

models are known to be related to specific representations of the Euclidean algebra rather

than to its subalgebra sl2(C). This feature makes models based on them interesting objects

of investigation from a mathematical point of view. In a more applied setting it is also

well known that the Mathieu equation arises in optics as a reduction from the Helmholtz

equation. This analogue setting of complex quantum mechanics is currently under intense

investigation. Concrete versions of complex potentials leading to real Mathieu potentials

have recently been studied from a theoretical as well as experimental point of view in

[8, 9, 10, 11, 12, 13]. Further applications are found for instance in the investigation of

complex crystals [14].

It was recently shown that for E2 [15] and E3 [16] some simple non-Hermitian versions

also possess real spectra. Here we will follow the line of thought of [3] and investigate

systematically the analogues of quasi-exactly solvable models of Lie algebraic type, that

is those models which can be written as bilinear combinations in terms of the Euclidean

algebra generators.

Our manuscript is organized as follows: At the beginning of section 2 we discuss five

different types of PT -symmetries for the E2-algebra and present the computation of the

adjoint action on their generators. In the following five subsection we derive Dyson maps

and isospectral counterparts for generic non-Hermitian Hamiltonians invariant under these

different types of symmetries. For the last symmetry we present a more detailed analysis of

the time-independent Schrödinger equation. We derive some explicit analytical solutions,

which we analyze numerically to compute the corresponding energy spectra leading to three

qualitatively different scenarios: entirely real energies, spectra with spontaneously broken

PT -symmetry at exceptional points characterized by two or three disconnected regions in

the parameter space. We propose a measurable quantity that can be used as a criterium

to identify the spontaneously broken PT -symmetric regime. In section 3 we discuss the

PT -symmetries for the E3-algebra, present the computation of the adjoint action on its

generators and indicate how to obtain simple examples of explicit isospectral pairs of an

E3-invariant non-Hermitian and Hermitian Hamiltonian.

2. PT -symmetric E2-invariant non-Hermitian Hamiltonians

We take here the commutation relations obeyed by the three generators u,v and J as the

defining relations of the Euclidean-algebra E2

[u, J ] = iv, [v, J ] = −iu, and [u, v] = 0. (2.1)

— 2 —
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Obviously there are many representations for this algebra, as for instance one used in

the context of quantizing strings on tori [17] acting on square integrable wavefunctions

L2(S1, dθ) with

J := −i∂θ, u := sin θ, and v := cos θ, (2.2)

or a two-dimensional one in terms of generators of the Heisenberg canonical commutators

qj , pj satisfying [qj , pk] = iδjk for j, k = 1, 2

J := q1p2 − p1q2, u := p2, and v := p1. (2.3)

For our purposes it is important to note that the E2-algebra is left invariant with regard

to an antilinear symmetry [18]. As previously noted [19, 20, 21] in dimensions larger than

one there are in general various types of antilinear symmetries, which by a slight abuse of

language we all refer to as PT -symmetries. For instance, it is easy to see that the algebra

(2.1) is left invariant under the following antilinear maps

PT 1 : J →−J, u→−u, v→−v, i→−i,
PT 2 : J →−J, u→ u, v→ v, i→−i,
PT 3 : J → J, u→ v, v→ u, i→−i,
PT 4 : J → J, u→−u, v→ v, i→−i,
PT 5 : J → J, u→ u, v→−v, i→−i.

(2.4)

Each of these symmetries may be utilized to describe different types of physical scenarios.

For instance, PT 1 was considered in [15] with P1 : θ → θ+π corresponding to a reflection

of the particle to the opposite side of the circle for the representation (2.2). For the

same representation we can identify the remaining symmetries as P2 : θ → θ + 2π, P3 :
θ → π/2 − θ, P4 : θ → π − θ and P5 : θ → −θ. Of course other representations allow

for different interpretations. For instance, in the two dimensional representation (2.3)

the symmetry PT 3 can be used when describing systems with two particle species as

it may be viewed as a particle exchange, or an annihilation of a particle of one species

accompanied by the creation a particle of another species, together with a simultaneous

reflection PT 3 : p1 ↔ p2, q1 ↔−q2.
PT i-invariant Hamiltonians H in term of bilinear combinations of E2-generators are

then easily written down. Crucially, this very general symmetry allows for non-Hermitian

Hamiltonians to be considered since it is antilinear [18]. Following the general techniques

developed over the last years [5, 6, 7] in the context of PT -symmetric non-Hermitian

quantum mechanics we attempt to map these non-Hermitian Hamiltonians H �= H† to

isospectral Hermitian counterparts h = h† by means of a similarity transformation h =

ηHη−1. When η, often referred to as the Dyson map, is Hermitian the latter equation is

equivalent to H† = η2Hη−2, which is another equation one might utilize to determine η.

Taking here the Dyson map to be of the general form

η = eλJ+ρu+τv, for λ, τ, ρ ∈ R, (2.5)

— 3 —
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we can easily compute the adjoint action of this operator on the E2-generators. We find

ηJη−1 = J + i(ρv − τu)
sinhλ

λ
+ (ρu+ τv)

1− coshλ
λ

, (2.6)

ηuη−1 = u coshλ− iv sinhλ, (2.7)

ηvη−1 = v coshλ+ iu sinhλ. (2.8)

Once η is identified the metric operators needed for a consistent quantum mechanical

formulation can in general be taken to be ρ = η†η. Let us now construct isospectral

counterparts, if they exist, for non-Hermitian Hamiltonians symmetric with regard to the

various different types of PT -symmetries. It should be noted that exact computations of

this type remain a rare exception and even for some of the simplest potentials the answer

is only known perturbatively, as for instance even for the simple prototype non-Hermitian

potential V = iεx3 [22, 23, 24].

2.1 PT 1-invariant Hamiltonians of E2-Lie algebraic type

The most general PT 1-invariant Hamiltonian expressed in terms of bilinear combinations

of the E2-generators is

HPT 1 = µ1J
2 + iµ2J + iµ3u+ iµ4v + µ5uJ + µ6vJ + µ7u

2 + µ8v
2 + µ9uv, (2.9)

with µi ∈ R for i = 1, . . . , 9. Clearly the Hamiltonian HPT 1 is non-Hermitian with regard

to the standard inner product when considering it for a Hermitian representation with

J† = J , v† = v and u† = u, unless µ2 = 0, µ5 = −2µ4, µ6 = 2µ3. The specific case

HBK = J2 + igv when µi = 0 for i �= 1, 4 was studied in [15], where partially real spectra

were found but no isospectral counterparts were constructed. Using the relations (2.6)-

(2.8), we compute the adjoint action of η on H and subsequently demand the result to be

Hermitian. This requirement will constrain our 12 free parameters µi, λ, τ , ρ. A priori it

is unclear whether solutions to the resulting set of equations exist. For HPT 1 we find the

manifestly Hermitian isospectral counterpart

hPT 1 = µ1J
2 + µ3{v, J} − µ4{u, J} −

2µ3µ4
µ1

uv +
µ24 − µ23

µ1
u2 + µ8(u

2 + v2). (2.10)

As usual, we denote by {A,B} := AB +BA the anti-commutator. Without loss of gener-

ality we may set µ8 = 0 since C = u2 + v2 is a Casimir operator for the E2-algebra and

can therefore always be added to H having simply the effect of shifting the ground state

energy. The remaining constants µi have been constrained to

τ =
λµ3
µ1

, ρ = −λµ4
µ1

, µ2 = 0, µ5 = −2µ4, µ6 = 2µ3, µ7 = µ8 +
µ24 − µ23

µ1
, µ9 = −

2µ3µ4
µ1

,

(2.11)

by the requirement that hPT 1 ought to be Hermitian, whereas λ, µ1, µ3, µ4 are chosen to

be free. We observe that we have been led to the constraints (2.11), of which a subset

stated that HPT 1 is already Hermitian before the transformation. We also note that the
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constraints (2.11) do not allow a reduction to the Hamiltonian HBK , dealt with in [15], as

for instance µ5 = 0 implies µ4 = 0.

Having guaranteed that HPT 1 possess real energies under certain constraints we may

now also compute the corresponding solutions to the time-independent Schrödinger equa-

tion hPT 1φ = Eφ or equivalently to HPT 1ψ = Eψ with ψ = η−1φ. We find

φ(θ) = e
−
iµ4 cos θ

µ1
−i sin θ

µ1
µ3




c1 exp

�

−iθ
�

E

µ1
+

µ23
µ21

�

+
i

2

�
E
µ1
+

µ2
3

µ2
1

c2 exp

�

iθ

�
E

µ1
+

µ23
µ21

�



 ,

(2.12)

with normalization constants c1, c2. Imposing either bosonic or fermionic boundary con-

ditions, i.e. ψ(θ + 2π) = ±ψ(θ), we obtain the discrete real energy spectra

bosonic: En = µ1

�
n2 − µ23

µ21

�
, fermionic: En = µ1

�
n2 + n+

1

4
− µ23

µ21

�
, n ∈ Z.

(2.13)

As expected, the wavefunctions are eigenstates of the PT -operator, selecting different be-

haviours for the two linearly independent parts of φ(θ), acting as PT 1φn(c1) = (−1)nφn(c1)
and PT 1φn(c2) = (−1)n+1φn(c2).

2.2 PT 2-invariant Hamiltonians of E2-Lie algebraic type

Similarly as in the previous subsection we use the adjoint action of η as specified in (2.5)

to map the general PT 2-symmetric and for µ2 �= 0, µ5 �= 2µ4, µ6 = −2µ3 non-Hermitian

Hamiltonian

HPT 2 = µ1J
2 + iµ2J + µ3u+ µ4v + iµ5uJ + iµ6vJ + µ7u

2 + µ8v
2 + µ9uv, (2.14)

to the Hermitian isospectral counterpart

hPT 2 = µ1J
2 + µ3 tanh

λ

2
{u, J}+ µ4 tanh

λ

2
{u, J}+ 2µ3µ4

µ1
tanh2

λ

2
uv (2.15)

+
µ23
µ1

coshλ

cosh2 λ2
u2 +

�
µ23
µ1
+

µ24
µ1
tanh2

λ

2

�
v2 + µ8(u

2 + v2).

In this case the coupling constants are constraint to

ρ = τ
µ3
µ4
=

µ3λ cothλ

µ1
, µ2 = 0, µ5 = 2µ4, µ6 = −2µ3, µ7 = µ8+

µ23 − µ24
µ1

, µ9 =
2µ3µ4
µ1

,

(2.16)

We note that once again we have only the four free parameters λ, µ1, µ3, µ4 left at our

disposal, as µ8 may be set to zero for the above mentioned reason. As in the previous case

these conditions imply also that the original Hamiltonian HPT 2 is already Hermitian when

these type of constraints are imposed.
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2.3 PT 3-invariant Hamiltonians of E2-Lie algebraic type
As the general PT 3-invariant Hamiltonian of Lie algebraic type we consider

HPT 3 = µ1J
2 + µ2J + µ3(u+ v) + iµ4(u− v) + µ5(u+ v)J + iµ6(u− v)J + iµ7(v

2 − u2)

+µ8(v
2 + u2) + µ9uv. (2.17)

For Hermitian representations of the E2-generators this Hamiltonian is non-Hermitian un-

less µ6 = µ7 = 0 and µ5 = 2µ4. As isospectral Hermitian counterpart we find in this

case

hPT 3 = µ1J
2 + µ2J +

1

2

�
µ5 + µ6 tanh

λ

2

�
{u+ v, J} (2.18)

+



1

2µ1

�
µ25 + µ26 tanh

2 λ

2
+ µ6µ5

4 + 4 coshλ− 2 cosh(2λ)
sinh(2λ)

�
+

2µ7
sinh(2λ)

�
uv

+

�
µ3 −

µ6
2
+
�
µ4 −

µ5
2

�
tanh

λ

2

�
(u+ v) +

�
µ8 +

µ5µ6 sinhλ+ µ26 coshλ

2µ1(1 + coshλ)

�
(u2 + v2)

with only four constraining equations

ρ = τ =
λ (µ5 + µ6 cothλ)

2µ1
, cothλ =

µ2µ5 + µ1 (µ6 − 2µ3)
µ1 (2µ4 − µ5)− µ2µ6

, (2.19)

µ9 =
µ25 + µ26 + 2µ6µ5 coth(2λ)

2µ1
+ 2µ7 coth(2λ). (2.20)

Thus, in this case we have eight free parameters left. We also note that unlike as for the

PT 1 and PT 2 symmetric cases we are not led to constraints which render the original

Hamiltonian HPT 3 Hermitian. For µ1 = 1, µ7 = 2q and all other coupling constants

vanishing the Schrödinger equation with representation (2.2) converts into the standard

Mathieu differential equation, see e.g. [25],

−φ′′(θ) + 2iq cos(2θ)φ(θ) = Eφ(θ). (2.21)

with purely complex coupling constant. Unfortunately for this choice of the coupling

constants the Dyson map is no longer well-defined, because of the last equation in (2.19),

such that it remains an open problem to find the corresponding isospectral counterpart for

this scenario.

2.4 PT 4-invariant Hamiltonians of E2-Lie algebraic type
The general PT 4-invariant Hamiltonian we consider is

HPT 4 = µ1J
2 + µ2J + iµ3u+ µ4v + iµ5uJ + µ6vJ + µ7u

2 + µ8v
2 + iµ9uv. (2.22)

This Hamiltonian is non-Hermitian unless µ5 = µ9 = 0 and µ6 = 2µ3. Constraining now

the parameters as

ρ = 0, τ =
λ (µ5 cothλ+ µ6)

2µ1
, coth(2λ) =

4µ1(µ8 − µ7)− µ25 − µ26
2µ5µ6

, (2.23)

µ3 =
µ1µ5 + µ2µ6 − 2µ1µ4

2µ1
tanhλ+

µ2µ5
2µ1

+
µ6
2
, µ9 = 0, (2.24)

— 6 —
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we map this to the isospectral counterpart

hPT 4 = µ1J
2 + µ2J +

1

2

�
µ6 + µ5 tanh

λ

2

�
{v, J} (2.25)

+

�
µ2 tanh

�
λ
2

�
(µ5 + µ6 tanhλ)

2µ1
+
�
µ4 −

µ5
2

�
sechλ

�

v

+

�
µ25
�
tanh2 λ2 − cosh(2λ)

�
− 2µ26 sinh2 λ+ 2µ5µ6

�
tanh λ2 − sinh(2λ)

�

8µ1

+
µ8 − µ7
2

cosh(2λ)

� �
v2 − u2

�
+

µ25 coshλ+ µ5µ6 sinhλ

4µ1(1 + coshλ)
+
1

2
(µ7 + µ8) .

Thus, in this case we have seven free parameters left to our disposal. Also in this case we

obtained a genuine non-Hermitian/Hermitian isospectral pair of Hamiltonians.

2.5 PT 5-invariant Hamiltonians of E2-Lie algebraic type
As general PT 5-invariant Hamiltonian we consider

HPT 5 = µ1J
2 + µ2J + µ3u+ iµ4v + µ5uJ + iµ6vJ + µ7u

2 + µ8v
2 + iµ9uv. (2.26)

This Hamiltonian is non-Hermitian unless µ6 = µ9 = 0 and µ5 = −2µ4. In the same

manner as in the previous subsections we construct the isospectral counterpart

hPT 5 = µ1J
2 + µ2J +

1

2

�
µ5 − µ6 tanh

λ

2

�
{u, J} (2.27)

+

�
2µ25 sinh

2 λ+ µ26(sech
2 λ
2 + cosh(2λ)− 1) + 2(tanh λ2 − sinh(2λ))µ5µ6

8µ1

+
µ8 − µ7
2

cosh(2λ)

�
(v2 − u2) +

�
cschλ

�
µ4 +

1

2
µ5

�
+

µ2
2µ1

(µ5 − cothλµ6)
�
u

+
µ26 coshλ− µ5µ6 sinhλ

4µ1(1 + coshλ)
+
1

2
(µ7 + µ8) ,

where the constants are constraint to

τ = 0, ρ =
λ (µ5 − µ6 cothλ)

2µ1
, coth(2λ) =

µ25 + µ26 − 4µ1µ7 + 4µ1µ8
2µ5µ6

, (2.28)

µ3 =
(2µ1µ4 + µ1µ5 − µ2µ6) coth(λ)

2µ1
+

µ2µ5
2µ1

− µ6
2
, µ9 = 0. (2.29)

Thus, in this case we have also seven free parameters left to our disposal.

Having obtained the Hermitian counterpart, let us construct in this case some solutions

to the time-independent Schrödinger equation. The discussion of the entire parameter

space is a formidable task, but as we shall see it will be sufficient to focus on some special

parameter choices in order to extract different types of qualitative behaviour. We will also

make contact to some special cases previously treated in the literature, notably in the area

of complex optical lattices.

— 7 —
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2.5.1 Maps to a three parameter real Mathieu equation

First we specify our parameters further such that only three are left free

µ1 = 1, µ2 = 0, µ5 = −2µ4, µ6 = −2µ3, µ8 = µ9 = 0, (2.30)

τ = 0, ρ = λ (µ3 cothλ− µ4) , coth(2λ) =
µ23 + µ24 − µ7
2µ3µ4

. (2.31)

The corresponding isospectral pair of Hamiltonians simplifies in this case to

H
(3)
PT 5

= J2 − iµ3{v, J} − µ4{u, J}+ µ7u
2, (2.32)

h
(3)
PT 5

= J2 + α{u, J}+ βu2 + γ, (2.33)

where α, β, γ are functions of µ3, µ4, µ7

α = µ3 tanh
λ

2
− µ4, (2.34)

β =
2µ3

1 + coshλ
(µ3 coshλ− µ4 sinhλ) + µ7 − 2γ, (2.35)

γ = (µ3 coshλ− µ4 sinhλ)
2 − µ7 sinh

2 λ. (2.36)

For the representation (2.2) the standard Mathieu differential equation (2.21) with real

coupling constant is easily converted into the time-independent Schrödinger equation

h
(3)
PT 5

ψ(θ) = Eψ(θ) (2.37)

with the transformations φ(θ)→ e−iα cos θψ(θ), q → (α2−β)/4 and E → E+(α2−β)/2−γ.

Therefore (2.37) is solved by

ψ(θ) = eiα cos θ
�
c1C

�
E +

α2 − β

2
− γ,

α2 − β

4
, θ

�
+ c2S

�
E +

α2 − β

2
− γ,

α2 − β

4
, θ

��

(2.38)

where C and S denote the even and odd Mathieu function, respectively. A discrete energy

spectrum is extracted in the usual way by imposing periodic boundaries ψ(θ + 2π) =

eiπsψ(θ) as quantization condition. While in general anyonic conditions are possible in

dimensions lower than 4, we present here only the bosonic and fermionic case, that is s = 0

and s = 1, respectively. As the Mathieu function is known to possess infinitely many

periodic solutions, the boundary condition as such is not sufficient to obtain a unique

solution. However, the latter is achieved by demanding in addition the continuity of the

energy levels at q = 0. The inclusion of all values for swill naturally lead to band structures.

We commence our numerical analysis by taking µ7 = 0. In this case the map η is

well-defined, except when µ3 = µ4 for which λ→∞ by (2.31). Thus we expect an entirely

real energy spectrum. In figure 1 we present the results of our numerical solutions for the

computation of the lowest seven energy levels, demonstrating that this is indeed the case

for the even and odd solutions for bosonic as well as fermionic boundary conditions.

For nonzero values of µ7 we can enter the ill-defined region for the Dyson map as for

the last constraint in (2.31) we may encounter values on the right hand side between −1

— 8 —
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and 1. Viewing the energies as functions of µ3/4 we expect therefore to find four exceptional

points at µ3/4 = ±µ4/3±
√
µ7. As an example we fix µ3/4 = 1 and µ7 = 4, such that η(µ4/3)

is only well defined for |µ4/3| < 1 or |µ4/3| > 3. Indeed our numerical solutions for this

choice presented in figure 2 confirm this prediction. We observe that the energies acquire

a complex part when 1 < µ3/4 < 3 and −3 < µ3/4 < −1 and is real otherwise. We present

here only the spectrum for bosonic boundary condition with an even wavefunction since

the qualitative behaviour for the other cases and levels are very similar as already noted

in the previous example.

(a)
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Figure 1: Entirely real energy spectrum for the non-Hermitian Hamiltonian H
(3)
PT 5

as a function of

µ4 with µ3 = 1/2 and µ7 = 0. The values for even (odd) eigenfunctions with bosonic and fermionic

boundary conditions are displayed in the panels a and c (b and d), respectively.

We clearly observe the typical behaviour of spontaneously broken PT -symmetry in

form of two of the real energies merging into complex conjugate pairs at exceptional points.

We further note that there are three disconnected regions |µ3/4| < 1 or |µ3/4| > 3 in which

all the energies are real.

Alternatively we may also view the energy spectra as functions of µ7, in which case we

expect just two exceptional points at (µ3 ± µ4)
2. Our numerical solutions for this choice

are presented in figure 3, which clearly confirms these values and the predicted qualitative
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behaviour.
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Figure 2: Spontaneously broken energy spectra for H
(3)
PT 5

as a function of µ3 with fixed values

µ4 = 1 and µ7 = 4 with even (green, short dashed) and odd (black, dotted) eigenfunctions for

bosonic boundary conditions and as a function of µ4 with fixed values µ3 = 1 and µ7 = 4 with even

(red, solid) and odd (blue, dashed) eigenfunctions for bosonic boundary conditions. The exceptional

points are located at (µ3/4 = ±1, E = 3), (µ3 = ±3, E = 7) and (µ4 = ±3, E = −1).
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Figure 3: Spontaneously broken energy spectra for H
(3)
PT 5

as a function of µ7 with fixed values

µ3 = 1 and µ4 = 3 with even (red, solid) and odd (blue, dashed) eigenfunctions. The exceptional

points are located at (µ7 = 4, E = −1) and (µ7 = 16, E = 5).

We conclude this subsection by considering the behaviour of some intensities, as in

principle these quantities are experimentally accessible. In figure 4 we display the intensity

I(θ) = |ψ(θ)|2 for an odd and even wavefunction merging at the exceptional points whose

energy spectrum as displayed in figure 2. In the spontaneously broken PT -regime we

clearly observe the loss/gain symmetry around the line Imax(θ)/2, which is absent in the

unbroken PT -regime. Searching for a measurable quantity that can be used to identify the
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symmetry breaking we observe that

I(θ) := |ψeven(θ)|2 + |ψodd(θ)|2 − |ψeven(0)|2
�
= 0 for broken PT -symmetry

�= 0 for unbroken PT -symmetry
. (2.39)

We note that the change from one regime to the other is very abrupt and sharp. This effect

is very strongly displayed in figure 5, where we scan over a larger range for the coupling

constant µ3 entering and leaving the broken PT -regime. We depict I(θ) as defined in

(2.39) and clearly observe an oscillatory behaviour in the unbroken PT -regime (µ3 < 1

and µ3 > 3) and complete annihilation in the region where the symmetry is spontaneously

broken (1 < µ3 < 3). This qualitative behaviour is somewhat reminiscent of the symmetric

gain/loss behaviour observed in complex optical potentials [10].

Based on our observation we propose (2.39) as a measurable quantity that can be used

as a criterium to distinguish between unbroken PT -symmetric and spontaneously broken

PT -symmetric regimes. At this point this behaviour remains an observation for which we

have no rigorous explanation.

(a)
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0.2

0.3
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Θ

Μ
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ÈΨHΘL 2

(b)
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3

ÈΨHΘL 2

Figure 4: Intensities for a merging an even (red, solid) and odd (blue, dashed) wavefunction

together with their sum (black, dotted) in the unbroken with µ3 = 0.8, µ4 = 1, µ7 = 4 and broken

PT -regime with µ3 = 1.2, µ4 = 1, µ7 = 4, panel (a) and (b), respectively.

2.5.2 Sinusoidal optical lattices

For different choices we can also make contact with a simpler example currently of great

interest, since it can be realized experimentally in form of optical lattices. Making the

simple choice

µ1 = 1, µ2 = µ3 = µ4 = µ5 = µ6 = 0 τ = ρ, coth(2λ) =
µ7 − µ8

µ9
, (2.40)

we obtain the isospectral Hermitian counterpart

h
(ol)
PT 4/5

= J2 +
1

2

�
(µ7 − µ8)

2 − µ29(v
2 − u2) +

1

2
(µ7 + µ8). (2.41)
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Figure 5: Intensity sum I(θ) = |ψeven(θ)|2+ |ψodd(θ)|2− |ψeven(0)|2 as a function of µ3 with fixed

values µ4 = 1 and µ7 = 4.

Taking the representation (2.2) in (2.41), the further special choices µ7 = 0, µ8 = −4,
µ9 = −8V0 or µ7 = −µ8 = A/2, µ9 = −2AV0 reduce the potential to the sinusoidal optical

lattice potential dealt with in [11] or [12], respectively. In both cases the requirement for

the validity of the Dyson map |(µ7 − µ8)/µ9| < 1, implied by the last equation in (2.40),

boils down to |V0| < 1/2 confirming the finding in [11] and [12] that only in this regime

the corresponding potential leads to a real energy spectrum.

2.5.3 Complex Mathieu equation

We conclude by discussing the parameter choice

µ1 = 1, µ2 = 0, µ3 = −
µ6
2
, µ5 = −µ4, µ7 =

µ24
2
, µ8 = −

µ26
4
, µ9 = −

µ4µ6
2

.

(2.42)

In that case the reported similarity transformation is invalid. However, similarly as in the

previous case we may solve the corresponding Schrödinger equation exactly by mapping it

to the Mathieu equation, which is however complex in this case. We then find the solution

ψ(θ) = e−iµ4/2 cos θ+µ6/2 sin θ [c1C (4E, iµ4, θ/2) + c2S (4E, iµ4, θ/2)] . (2.43)

As in the previous case we impose bosonic or fermionic boundary conditions to determine

the spectrum. Our results are depicted in figure 6.

We clearly observe the usual merger of two energy levels at the exceptional points where

they split into complex conjugate pairs. Since the real part of the energy is monotonically

increasing we note that the spectrum is entirely real for |µ4| ≤ 1.46876. It remains an
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Figure 6: Spontaneously broken energy spectra for the parameter choice (2.37) as a function of

µ4 with even eigenfunctions for bosonic boundary conditions. The exceptional points are located

at (µ4 = ±1.4687, E = 0.5205), (µ4 = ±16.47116, E = 6.8323) and (µ4 = ±47.80596, E = 20.1677).

open challenge to explain the origin of this value for instance by finding an exact similarity

transformation. As we expect, this behaviour is similar to the one reported in [15].

3. PT -symmetric E3-invariant systems

The E3-algebra is the rank 3 extension of the E2-algebra, spanned by six generators Ji, Pi
for i = 1, 2, 3 satisfying the algebra

[Jj, Jk] = iεjklJl, [Jj, Pk] = iεjklPl, and [Pj, Pk] = 0. (3.1)

Evidently every subset {Jj, Pk, Pl} with j �= k �= l constitutes an E2-subalgebra. It is

convenient to introduce the following combinations of the generators

Jz = 2J1, J± = J2 ± iJ3, Pz = P1, and P± = ±P2 + iP3, (3.2)

such that we obtain the commutation relations

[Jz, J±] = ±2J±, [J+, J−] = Jz, [Jz, P±] = ±2P±, [J±, Pz] = −P±, [J±, P∓] = −2Pz,
(3.3)

with all remaining ones vanishing. In [26] the following representation was provided for

this algebra
Jz := x∂x − y∂y, J+ := x∂y, J− := y∂x,

Pz := −xy∂z, P+ := x2∂z, P− := y2∂z.
(3.4)

Similarly as E2, also E3 is left invariant with respect to various types of PT -symmetries

PT 1 : Jk →−Jk, Pk → −Pk, i→−i;
PT 2 : Jk →−Jk, Pk → Pk, i→−i;
PT 3 : Jk → Jk, P1 → P1, P2 ↔ P3, i→−i;
PT 4 : J1 →−J1, J2/3 → J2/3, P1/3 ↔−P1/3, P2 ↔ P2, i→−i;

(3.5)
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for k = 1, 2, 3.

Once again we wish to find the Dyson map to map non-Hermitian Hamiltonians ex-

pressed in terms of bilinear combinations of these generators to Hermitian ones. For the

E3-algebra we take it to be of the general form

η = eλzJz+λ+J++λ−J−+κzPz+κ+P++κ−P− , for λz, λ±, κz, κ± ∈ R. (3.6)

For the adjoint action of this operator on the E3-generators we compute

ηPℓη
−1 = µℓzPz + µℓ+P+ + µℓ−P− for ℓ = z,± (3.7)

with constant coefficients

µzz = 1 + 2c(ω)λ+λ−, µ±± = 1+ (2λ
2
z + λ+λ−)c(ω)± 2s(ω)λz,

µ±∓ = c(ω)λ2∓, µ±z = ∓2c(ω)λzλ∓ − 2s(ω)λ∓, µz± = ∓c(ω)λzλ± − s(ω)λ±,

and

ηJℓη
−1 = νℓzJz + νℓ+J+ + νℓ−J− + ρℓzPz + ρℓ+P+ + ρℓ−P− for ℓ = z,± (3.8)

with constant coefficients

νzz = 1+ 2c(ω)λ+λ−, ν±± = 1 + ω̃2c(ω)± 2s(ω)λz, ν±∓ = −c(ω)λ2∓,
ν±z = ∓s(ω)λ∓ − c(ω)λzλ∓, νz± = −2c(ω)λzλ± ∓ 2s(ω)λ±,

ρzz = 4

�
(λ−κ+ − λ+κ−) c(ω)−

λ+λ−
ω2

µ(c(ω)− s(ω))

�

ρz± = c(ω)(±λ±κz − 2λzκ±)∓ 2s(ω)(κ± + λ±κz)±
2c(ω)

ω2
λ±ν +

s(ω)

ω2
λ± (µ∓ 2ν)

−cosh(2ω)
ω2

µλ±

ρ±z = c(ω)(λ∓κz ± 2λzκ∓) + 2s(ω)(κ∓ − λ∓κz) +
2c(ω)

ω2
λ∓ν ±

s(ω)

ω2
λ∓ (µ∓ 2ν)

∓cosh(2ω)
ω2

µλ∓

ρ±± = ±c(ω)µ̃+ s(ω)κz ± µ
ω̃2

ω2
[s(ω)− c(ω)] +

cosh(2ω)− s(ω)

ω2
λzµ

ρ±∓ = −2c(ω)λ∓κ∓ ±
µλ2∓
ω2

[s(ω)− c(ω)]

where we abbreviated ω :=
�

λ2z + λ+λ−, ω̃ :=
�
2λ2z + λ+λ−, µ := κzλz + κ+λ− − κ−λ+,

µ̃ := 2κzλz+κ+λ−−κ−λ+, ν := κ+λzλ−−κzλ+λ−−κ−λzλ+, c(ω) := (cosh(2ω)−1)/(2ω2)
and s(ω) := sinh(2ω)/(2ω).

The construction of isospectral counterparts, if they exist, for non-Hermitian Hamil-

tonians symmetric with regard to various different types of PT -symmetries is far more

involved in this for this algebra. The most generic cases are very complicated in this
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case as they involve 25 free parameters. One may therefore restrict the discussion to sim-

pler examples, such as for instance the complements of E2 in E3 constitutes well-defined

subclasses

For instance, we may consider a PT 1-invariant Hamiltonians of E3/E2-Lie algebraic

type. Selecting {Jz, P±} as the generators of the E2-subalgebra the most general Hamil-

tonian of this type is

H̃PT 1 = µ1J
2
++µ2J

2
−+µ3P

2
z +µ4PzJ++µ5PzJ−+µ6J+J−+iµ7J++iµ8J−+iµ9Pz. (3.9)

All the necessary tools have been provided here to find the corresponding counterparts etc.

We leave this discussion for future investigations [27].

4. Conclusion

We presented five different types of PT -symmetries (2.4) for the Euclidean algebra E2
(2.1). Considering the most general invariant non-Hermitian Hamiltonians in terms of bi-

linear combinations of the generators of this algebra, we have systematically constructed

isospectral counterparts from Dyson maps η of the general form (2.5) by exploiting its ad-

joint action on the Lie algebraic generators. In this process some of the coupling constants

involved had to be constrained. We noted that the different versions of the symmetries also

lead to qualitatively quite different isospectral counterparts. For the symmetries PT 1 and

PT 2 the required constraints rendered the original Hamiltonians HPT 1/2 Hermitian, such

that the adjoint action of η maps Hermitian Hamiltonians to Hermitian ones. It should

be noted that the maps are non-trivial, albeit the distinguishing features of the obtained

Hamiltonians hPT 1/2 remain unclear. More interesting are the transformation properties

of the non-Hermitian Hamiltonians invariant under the symmetries PT 3, PT 4 and PT 5,
as they lead to genuine non-Hermitian/Hermitian isospectral pairs constructed from an

explicit non-perturbative Dyson map.

For the representation (2.2) we analyzed the PT 5-system in further detail by solving

the corresponding time-dependent Schrödinger equation. For some parameter choices we

found simple transformations of the real Mathieu equation as solutions. In a subset of cases

the corresponding energy spectra were identified to be entirely real, see figure 1. For other

choices we observed spontaneously broken PT -symmetry with region in the parameter

space where the whole spectrum remained real. It is possible to consider the spectra as

functions of coupling constants in such a way that its monotonic variation leads to an

initial break down of the PT -symmetry at some exceptional points which is subsequently

regained, see figure 2. This numerically observed behaviour is completely understood from

the explicit formulae for the Dyson maps, which break down at the exceptional points.

In section 2.5.2. we have made contact to some simple systems of optical lattices and it

should be highly interesting to investigate further whether the more involved systems with

richer structure we considered here may also be realized experimentally. We have verified

the typical gain/loss symmetry for one of those models.

Clearly we have not exhausted the discussion for the entire parameter space for the

PT 5-system and also left the analysis of time-dependent Schrödinger equation PT 3 and
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PT 4 for further investigation. An additional open problem is the analysis of alternative

representations such as (2.3) and many more not mentioned here. Also still an intriguing

open challenge is the computation of the explicit Dyson map for systems of the type dealt

with in section 2.5.3. We established that they certainly require a different type of Ansatz

for the Dyson map η as the one in (2.5).

The completion of the above mentioned programme is far from being finished for the

Euclidean algebra E3. For that case we have provided the far more complicated adjoint

action on the generators and left the further analysis, which can be carried out along the

same lines as for E2, for future investigations [27].
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