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 A B S T R A C T

The advance of deep learning has invigorated the research of few-shot classification. However, the interference 
of non-target information in feature representations hampers classification generalization. To tackle this issue, 
we propose an irrelevant information suppression (IIS) module, which is focused on suppressing the weight of 
unimportant information and elevating the sparsity of feature representations. An IIS network with three consecutive 
IIS modules is developed, to illustrate the progressive suppression of unimportant information and highlighting 
of key discriminative features of the target. Extensive experiments showcase the superior performance of 
our IIS network on five widely-used benchmark datasets. Furthermore, we show that the IIS module can be 
readily used as a plug-in module by state-of-the-art few-shot classifiers, and can clearly further improve their 
performance. Our code is available on GitHub at https://github.com/LC4188/IISNet.
1. Introduction

Deep learning-based classifiers traditionally require a large amount 
of annotated data for model training. In practice, however, it is often 
very expensive if not impossible to obtain a large number of labeled 
samples. The objective of few-shot image classification [1,2] is to accu-
rately learn new visual concepts from only very few labeled samples. 
This task is defined as classifying query images into new classes, where 
the new classes were not involved in the model training, and only a 
few images are available to support new classes.

However, due to the interference of non-target information, the 
learned embeddings often suffer from overfitting to irrelevant informa-
tion, hindering the generalization to unseen novel classes [3]. There-
fore, it is necessary to calibrate feature embeddings by reducing the 
effect of the image content irrelevant to the target. This is particularly 
prominent and challenging in few-shot learning, as few samples are 
available for learning.

To achieve this goal, we propose an irrelevant information sup-
pression (IIS) module, which is aimed at suppressing irrelevant infor-
mation in the base feature representation that is unrelated to a class, 
thereby reducing its impact on classification. The IIS module consists 
of two components: the perceptive information (PI) module and the 
self-subtraction (SS) module.

∗ Corresponding author.
E-mail address: rui.zhu@city.ac.uk (R. Zhu).

The PI module is responsible for recognizing the key areas of the 
target. Firstly, it transforms the base feature representation into a self-
similarity tensor [4] to obtain the structural information of an image 
by computing the product between each position in the feature map 
and its neighborhood, which has been utilized for object detection and 
few-shot classification [5]. Subsequently, a dual-branch convolutional 
operation with two different kernel sizes is developed to aggregate the 
local and global similarity information. The key areas of the target are 
determined as the positions with strong agreement between the local 
and global windows.

The SS module then utilizes the key area information provided by 
the PI module for IIS. To achieve this, we propose a novel inverse 
operation to subtract the irrelevant information or the inversion of 
the key target information, from the base features, ensuring that only 
regions deemed important by both the base representation and the PI 
module are retained and those with irrelevant information receive very 
low or zero activation values. Therefore, the output feature represen-
tation from the IIS module is sparse and can identify the most vital 
information to help recognize the target.

For illustrative purposes, we introduce an irrelevant information 
suppression network (IISNet), which is composed of three concatenated 
IIS modules. As depicted in Fig.  1, the input image undergoes feature 
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Fig. 1. The effect of the proposed irrelevant information suppression (IIS) module. (a) Five randomly selected images from five benchmark datasets. (b) Feature mapping by 
backbone (ResNet-12), with many irrelevant details mapped to the feature space. To progressively eliminate these irrelevant features while retaining discriminative foreground 
features, we introduce three concatenated IIS modules, with progressively improved results shown in (c), (d), and (e).
extraction through the backbone network, resulting in base feature rep-
resentations (Fig.  1(a)→(b)). It is observed that many details irrelevant 
to the target are mapped to the feature space. By progressively applying 
IIS modules layer by layer, these irrelevant features can be effectively 
eliminated gradually while the discriminative features of the target is 
more and more highlighted (see Fig.  1(c)→(e)).

In short, our main novelties and contributions are as follows:

• We propose an irrelevant information suppression (IIS) module, 
which can be readily applied to progressively suppress non-target 
information in the base representations.

• We show that the IIS module can also be readily used as a plug-in 
module by state-of-the-art few-shot classifiers.

• We also show that, when incorporated into the state-of-the-art 
few-shot classification models, the IIS module can clearly improve 
their performance.

2. Related work

2.1. Few-shot classification

Recent methods in few-shot classification can be broadly catego-
rized into three types. Optimization-based methods [6–8] focus on 
designing appropriate objective functions and choosing suitable op-
timization algorithms. Data augmentation-based methods [9,10] im-
prove the generalization ability of classifiers by increasing the diversity 
and quantity of training data. Metric-based methods use or learn dis-
tance or similarity measures between samples [11–13]. Common metric 
functions are Euclidean distance [14], cosine similarity [15,16], Man-
hattan distance, etc. These functions project features into a metric space 
and measure the similarity between samples [5].

One challenging task in few-shot image classification is to classify 
fine-grained images, where images are labeled by subcategories with 
quite similar appearance details. To take the subtle inter-class variation 
into consideration, attention mechanisms [17–19] are used to generate 
features with strong discriminative power. In a recent work, [20] 
2 
proposes to enhance the discriminative ability by tailoring multi-scale 
features.

In our work, after suppressing irrelevant information, we adopt 
a metric-based approach using the cosine similarity to measure the 
similarity between query images and class prototypes. Our work is also 
demonstrated to work well on both coarse-grained and fine-grained 
images.

2.2. Irrelevant information suppression

Irrelevant information suppression (IIS) is to highlight target regions 
by suppressing unimportant information. Previous work has delved 
deeply into the influence of image background on learning-based visual 
systems from various perspectives. The study by [21] provides prelim-
inary evidence of false correlations between background and image 
categories, and further reveals the negative impact of background 
on visual model predictions. A simple approach to IIS is to set a 
threshold to filter out background areas that are not suppressed by 
backbone. [22] introduces a background suppression and foreground 
alignment (BSFA) method with the background activation suppression 
(BAS) module to generate foreground masks by suppressing background 
activation values. However, BAS simply calculates the mean of features 
in the base representation as a threshold to roughly filter out back-
ground information, with no guarantee about the importance of the 
features kept. [23] adopts a similar approach to obtain the background 
map and suppress its values. Contrastive learning is also utilized to 
distinguish foreground and background features. For instance, [24] 
presents a novel contrastive learning framework, COSOC, to extract 
foregrounds by identifying shared patterns among images. [25] pro-
poses to extract feature representations in the frequency domain using 
discrete cosine transform to filter out high-frequency signals considered 
as noise. [26] proposes the foreground-background contrastive learning 
(FBCL) method to separate features of objects and background with 
supervised contrastive learning. However, contrastive learning requires 
significant computational resources and training time. [27] proposes 
the foreground object transformation (FOT) method, which utilizes a 
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Fig. 2. The architecture of the IISNet with two IIS layers. The base representations 𝐙 are obtained through the feature extractor 𝑓𝜃 , which are then processed by 𝑑 concatenated 
IIS modules to progressively suppress irrelevant information. In the PI module, the key structural information 𝐺(𝐄) is extracted. Subsequently, in the SS module, the irrelevant 
information is obtained as an inversion of 𝐺(𝐄), which is then subtracted from 𝐙, resulting in the irrelevant information-suppressed feature representation 𝐅. The support and 
query features 𝐅 are then averaged in the spatial dimensions, leading to 𝐶-dimensional representations, 𝐅𝑆 and 𝐅𝑄, respectively. The cosine similarity between the query feature 
𝐅𝑄 and the 𝑛th support class prototype, �̄�𝑛

𝑆 , is calculated to determine the class label.
pre-trained BASNet [28] to identify the foreground and background 
regions in the image.

In our work, the proposed IIS module suppresses irrelevant infor-
mation by jointly considering the base representation and the key 
areas of targets identified by local and global structural information. 
In addition, our approach can ensure competitive performance with 
relatively low computational resource consumption.

3. Our approach

3.1. Preliminaries

Few-shot classification aims to achieve superior generalization per-
formance on new classes, by training on base classes with few images 
per class. The majority of few-shot classifiers employ the 𝑁-way 𝐾-
shot episodic training strategy to enhance the generalization ability [1,
2,14]. That is, the classifier is trained on a large number of randomly 
sampled tasks from the base dataset, and each task is composed of 𝑁
classes with 𝐾 images per class. The evaluation of the classifier is then 
performed on the novel dataset with classes not seen during training.

Specifically, given a dataset with image and label pairs,  =
{𝐱𝑖, 𝑦𝑖}𝑇𝑖=1, where 𝐱𝑖 denotes the 𝑖th image, 𝑦𝑖 is its label and 𝑇  is the 
total number of observations, we randomly divide it to three subsets: 
a base set base, a validation set valid and a novel set novel. The 
label sets of the three subsets are mutually exclusive and their union 
is the label set of . During the training process, we repeat random 
sampling of tasks from base. Each task is composed of a support set  =
{𝐱𝑆𝑗 , 𝑦

𝑆
𝑗 }

𝑁𝐾
𝑗=1  with 𝑁 classes and 𝐾 images per class, and a query set  =

{𝐱𝑄𝑙 , 𝑦
𝑄
𝑙 }

𝑁𝑞
𝑙=1 with the same 𝑁 classes and 𝑞 images per class. The model 

is updated by learning discriminative features from  to correctly 
classify images in . The same task sampling strategy is applied to the 
validation set valid, helping choose the hyper-parameters of the model. 
Lastly, the trained model is evaluated by classifying tasks randomly 
sampled from novel and the average accuracy is usually adopted as 
the evaluation metric.

3.2. Architecture overview

The structure of the IIS module and the overall architecture of the 
IISNet are illustrated in Fig.  2. Given the support and query images, we 
first extract their base feature representations 𝐙 from a feature extractor 
𝑓𝜃 . Then the IIS module operates on 𝐙 to remove target-irrelevant fea-
ture. First, the PI module extract features 𝐺(𝐄) containing information 
about the key structural information of the target, through the self-
similarity tensor 𝐄 and the dual-branch convolutional operation with 
two different kernel sizes. Note that the Hadamard product of the two 
branches is adopted to determine the positions with strong agreement 
between the local and global perceptions. Afterwards, the SS module 
conducts an inverse operation on the key target information in 𝐺(𝐄)
to extract the irrelevant information, which is then subtracted from 
3 
the base feature 𝐙. The latter subtraction leads to a large proportion 
of zero activations and few large activations highlighting the target, 
resulting in more sparse and discriminative feature representations. To 
boost the suppression effect, we propose to concatenate 𝑑 IIS modules 
in the network and obtain 𝐅. The default value of 𝑑 is set to 3. Next, 
average pooling is applied to the 𝐻 and 𝑊  dimensions of 𝐅. Lastly, 
the cosine similarity is adopted to measure the similarity between the 
query image 𝐅𝑄 and the support class prototypes �̄�𝑆 .

3.3. Irrelevant Information Suppression (IIS)

The IIS module takes the base representation as input and sequen-
tially processes it with two components: the PI module to capture the 
key target information and the SS module to suppress the non-target 
information based on the output from the PI module. The operations 
in the IIS module are the same for support and query features, so we 
do not distinguish them in this section.

3.3.1. Perceptive Information (PI) module
The structure of the PI module is depicted in Fig.  3. Given the 

base feature representation 𝐙 ∈ R𝐻×𝑊 ×𝐶 , where 𝐻 , 𝑊  and 𝐶 are 
the height, width and number of channels, respectively, we compute 
the self-similarities, extracting the structural patterns of the image. 
Specifically, for each spatial position in 𝐙, we take its 𝐶-dimensional 
channel vector and calculate its Hadamard product with the channel 
vectors of all spatial positions in the neighborhood window of size 
𝑈 × 𝑉 , resulting in the self-similarity tensor 𝐄 ∈ R𝐻×𝑊 ×𝑈×𝑉 ×𝐶 .

To extract important and target-related structural patterns from 𝐄, 
we design a dual-branch convolutional operation with two kernel sizes, 
capturing the global and local perceptions about the key information. 
The local branch is denoted as 𝐶3 while the global branch is denoted 
as 𝐶5. 𝐶3 consists of two three-dimensional convolution kernels of size 
𝑘3 = (1, 3, 3), while 𝐶5 comprises two three-dimensional convolution 
kernels of sizes 𝑘5 = (1, 5, 5) and 𝑘1 = (1, 1, 1), respectively. The 
convolution gradually aggregates the information in the 𝑈 × 𝑉  dimen-
sions, squeezing the structural patterns at different kernel scales. To 
reduce the computational cost and speed up processing, we decrease 
the channel dimensions of both branches from 𝐶 to 𝐶0 by factor 𝑟
(𝐶0 = 𝐶∕𝑟) and restore them to 𝐶 after the second kernel calculation. 
Lastly, average pooling is applied to the 𝑈 × 𝑉  dimensions, and as a 
result, the outputs 𝐶3(𝐄) and 𝐶5(𝐄) have the same sizes as 𝐙, i.e., 𝐶3, 
𝐶5: R𝐻×𝑊 ×𝑈×𝑉 ×𝐶 → R𝐻×𝑊 ×𝐶 .

To merge the results from the global and local branches, we propose 
to take the Hadamard product of the results from the two branches: 
𝐺(𝐄) = 𝐶3(𝐄)⊙ 𝐶5(𝐄), (1)

where 𝐺(𝐄) ∈ R𝐻×𝑊 ×𝐶 is the output from the PI module and ⊙ is 
the Hadamard product. This operation ensures that only positions with 
high values in both branches are identified as crucial to represent the 
target.
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Fig. 3. The structure of the PI module. From the base representation 𝐙, we calculate the self-similarity tensor 𝐄. Then, a dual-branch convolutional operation is applied to 𝐄, 
aggregating the local similarity information in the local branch 𝐶3 and the global similarity information in the global branch 𝐶5. Lastly, the Hadamard product of the two branches, 
𝐺(𝐄), is calculated as the output of the PI module, identifying the key structural information related to the target.
Fig. 4. The illustration of the operation of the SS module in Eq.  (2). Given the base 
representation 𝐙 and the key structural information 𝐺(𝐄), if both 𝐙 and 𝐺(𝐄) are large, 
the information at the corresponding position of 𝐅 will be preserved. However, if either 
𝐙 or 𝐺(𝐄) or both of them are small, the information at that position will be suppressed, 
becoming insignificant for subsequent processing.

Table 1
The sparsity , i.e. the proportion of non-zero values, of 𝐙 and 𝐅 after ReLU activation 
for five benchmark datasets. 𝐅1 to 𝐅3 denote the output of the three concatenated IIS 
modules, respectively.
 Dataset 𝐙 𝐅1 𝐅2 𝐅3  
 Aircraft 14.47% 55.22% 79.92% 90.21% 
 Cars 11.18% 52.39% 77.31% 86.93% 
 CUB-200–2001 14.39% 48.83% 74.00% 86.09% 
 miniImageNet 14.34% 49.50% 75.29% 87.05% 
 TieredImageNet 12.47% 48.56% 77.63% 88.32% 

3.3.2. Self-Subtraction (SS) module
Given the key areas of the target in 𝐺(𝐄), we calculate the irrelevant 

information via an inversion operation, which is then subtracted from 
the base representation 𝐙: 
𝐅 = 𝐙 − (1 − min(𝐺(𝐄), 1))2, (2)

where all operations are element-wise. By capping the maximum value 
of 𝐺(𝐄) at one, the second term with an inversion of 𝐺(𝐄) represents the 
irrelevant information. 𝐺(𝐄) is the output from the PI module, which 
should have high values for important target features. For those posi-
tions with values higher than 1, we simply keep the base representation 
𝐙, which we believe to be target-relevant. In 𝐅, only positions identified 
as important by both base representation and key target representation, 
i.e. the elements with high values in both 𝐙 and 𝐺(𝐄), are less affected 
and remains large. Otherwise, those only considered important by one 
type of representation or trivial by both representations are substan-
tially reduced to negative and suppressed to zeros via ReLU activation. 
Such impact of 𝐙 and 𝐺(𝐄) on 𝐅 is illustrated in Fig.  4.

Moreover, we calculate the sparsity of 𝐙, 𝐺(𝐄) and 𝐅 after ReLU 
activation in Table  1 for five benchmark datasets, Aircraft, Cars, CUB-
200-2001, miniImageNet and TieredImageNet, whose details will be 
revealed in Section ‘‘Experiments’’. It is clear that the sparsity of 𝐅
gradually rises by passing through three concatenated IIS modules, and 
the sparsity of the output of the last IIS module, 𝐅3, is 6 to 8 times to 
that of the base representation 𝐙.
4 
Since the output 𝐅 from the last IIS module is already sparse and 
highly discriminative, it can be directly used in a simple prototype-
based metric for classification. As the metric functions usually take 
vectors as inputs, we average 𝐅 in the 𝐻 × 𝑊  dimensions, resulting 
in 𝐶-dimensional feature representations.

3.4. Loss functions

As with [5,29,30], we train the IISNet end to end based on two clas-
sification losses: the anchor loss to supervise the correct classification 
of the query features, and the metric loss to guide the query features 
to be close to the corresponding support prototypes.

First, to obtain the anchor loss, we add a fully connected layer 
following 𝐅𝑄 and calculate 

a = − log
exp(𝐮⊤𝑚𝐅𝑄 + ℎ𝑚)

∑
|train|
𝑚′=1 exp(𝐮⊤𝑚′𝐅𝑄 + ℎ𝑚′ )

, (3)

where train is the label set of the base dataset and [𝐮⊤1 ,… ,𝐮⊤
|train|

] and 
[ℎ1,… , ℎ

|train|
] represent the weights and biases of the fully connected 

layer, respectively.
Second, the metric loss is calculated based on the cosine similarity 

between the query feature and the support class prototypes: 

m = − log
exp(sim(�̄�𝑛

𝑆 ,𝐅𝑄)∕𝜎)
∑𝑁

𝑛′=1 exp(sim(�̄�𝑛′
𝑆 ,𝐅𝑄)∕𝜎)

, (4)

where sim(⋅) is the cosine similarity, �̄�𝑛
𝑆 is the prototype of the 𝑛th 

support class or the average of all support features in the 𝑛th class, 
and 𝜎 is the scale hyperparameter.

Finally, the total loss is calculated as the weighted sum of the two 
losses: 
total = a + 𝛾m, (5)

where 𝛾 is the hyperparameter to control the relative contributions of 
the two losses.

In the test phase, only the metric loss m is adopted to classify the 
query images.

4. Experiments

4.1. Datasets

To evaluate the effectiveness of the IIS network, we adopt three fine-
grained few-shot datasets, CUB-200-2011 [31], Aircraft [32] and Stan-
ford Cars [33], and two coarse-grained few-shot datasets,
miniImageNet [2] and TieredImageNet [34]. All these datasets are 
widely accepted benchmarks for few-shot classification [5,19].

CUB-200-2011 (CUB): 11,788 bird images in total, distributed
across 200 species. We randomly partition it into 100, 50 and 50 
bird species for training, validation and test, respectively. The version 
of pre-cropped images with human bounding boxes is used in the 
experiments.

Aircraft: 10,000 model images of 100 aircraft classes. We randomly 
split the 100 classes into 50 for training, 25 for validation and 25 for 
test.
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Table 2
The 5-way few-shot classification accuracy on the CUB, Aircraft and Cars datasets for the ResNet-12 backbone. Bold represents the best 
performance while underscore indicates the second best one; ∗ represents the result of our reproduction while † indicates the result from the 
original paper. Discrepancies from the original papers are due to a reduced number of ways for training; detailed explanations are provided in 
main text.
 Method CUB Aircraft Cars

 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot  
 MatchingNet [2]∗ 73.02 ± 0.88 85.17 ± 0.60 65.20 ± 0.80 78.99 ± 0.55 73.32 ± 0.93 87.61 ± 0.55  
 ProtoNet [14]∗ 78.37 ± 0.21 90.18 ± 0.12 86.37 ± 0.18 93.74 ± 0.09 86.58 ± 0.17 94.91 ± 0.08  
 Baseline++ [39]† 64.62 ± 0.98 81.15 ± 0.61 63.51 ± 0.90 78.06 ± 0.44 67.92 ± 1.01 84.17 ± 0.58  
 DeepEMD [35]† 71.11 ± 0.31 86.30 ± 0.19 61.86 ± 0.30 76.17 ± 0.28 73.30 ± 0.29 88.37 ± 0.17  
 RENet [5]∗ 83.04 ± 0.42 92.68 ± 0.22 87.32 ± 0.38 93.68 ± 0.17 85.36 ± 0.31 94.31 ± 0.37  
 FRN [40]∗ 83.07 ± 0.19 92.46 ± 0.10 87.68 ± 0.17 93.95 ± 0.09 88.20 ± 0.17 95.43 ± 0.08  
 MixtFSL [41]† 67.87 ± 0.94 82.18 ± 0.66 60.55 ± 0.86 77.57 ± 0.69 58.15 ± 0.87 80.54 ± 0.63  
 AGPF [42]† 78.73 ± 0.84 89.77 ± 0.49 82.65 ± 0.89 89.25 ± 0.45 85.35 ± 0.38 95.22 ± 0.20  
 HelixFormer [43]∗ 81.66 ± 0.30 91.93 ± 0.17 75.79 ± 0.23 83.03 ± 0.16 79.40 ± 0.43 92.26 ± 0.15  
 FicNet [44]∗ 80.97 ± 0.57 93.17 ± 0.32 69.11+0.62 83.71+0.39 86.81 ± 0.47 95.36 ± 0.22  
 TDM [19]† 82.64 ± 0.19 92.27 ± 0.10 70.35 ± 0.17 83.36 ± 0.13 87.21 ± 0.17 95.11 ± 0.07  
 LCCRN [45]∗ 81.93 ± 0.19 92.72 ± 0.10 88.48 ± 0.17 94.61 ± 0.08 87.27 ± 0.17 96.19 ± 0.06  
 IDEAL [46]∗ 77.56 ± 0.86 88.87 ± 0.51 81.37 ± 0.92 82.51 ± 0.55 74.02 ± 0.89 89.98 ± 0.50  
 MCL-katz [47]∗ 85.97 ± 0.18 93.09 ± 0.15 87.69 ± 0.17 93.28 ± 0.08 85.04 ± 0.19 93.92 ± 0.09  
 Bi-FRN [48]∗ 85.44 ± 0.19 94.73+0.09 87.05 ± 0.18 93.78 ± 0.09 87.90 ± 0.16 96.34 ± 0.07  
 C2-Net [49]∗ 83.34 ± 0.42 92.20 ± 0.23 87.98 ± 0.39 93.69 ± 0.20 84.81 ± 0.42 92.61 ± 0.23  
 BSFA [22]∗ 86.00 ± 0.41 92.53 ± 0.23 87.85 ± 0.35 94.93 ± 0.14 88.93 ± 0.38 95.20 ± 0.20  
 COSOC [24]∗ 76.95 ± 0.23 88.02 ± 0.14 83.86 ± 0.32 92.73 ± 0.21 86.62 ± 0.37 95.67 ± 0.23  
 IISNet 85.53 ± 0.41 93.71 ± 0.21 90.95 ± 0.35 95.38 ± 0.14 89.76 ± 0.33 96.16 ± 0.14  
 IISNet♯ 85.29 ± 0.41 93.64 ± 0.21 91.30 ± 0.33 95.64 ± 0.13 90.12 ± 0.32 96.41 ± 0.14 
Stanford Cars (Cars): 16,185 images of 196 car classes. We randomly 
divide it into 130 classes for training, 17 classes for validation and 49 
classes for test.

MiniImageNet: a subset of ImageNet, consisting of 60,000 images 
evenly distributed over 100 classes. The training, validation and test 
sets are composed of 64, 16, and 20 object classes, respectively.

TieredImageNet:a subset of ImageNet, made up of images dis-
tributed over 608 classes. The training, validation, and test sets are 
composed of 351, 97, and 160 object classes respectively.

4.2. Implementation details

We adopt ResNet-12 [35] as the backbone network, which is widely 
used in recent works on few-shot classification [30,36–38]. ResNet-12 
takes input images of size 84 × 84 and produces the base representation 
with size 640 × 5 × 5. In the training phase, we resize the images to 
224 × 224 and randomly crop them to obtain 84 × 84 patches. In the 
test phase, we resize the images to 92 × 92 and obtain 84 × 84 patches 
through center cropping.

In the training phase, we conduct 5-way 𝐾-shot classification with 
𝐾 = 1 or 5. In the test phase, we randomly sample 15 query samples 
per class in a task and evaluate the average classification accuracy with 
a 95% confidence interval based on 2000 randomly sampled test tasks.

In the IIS module, to reduce the computational complexity, we 
decrease the number of channels by a factor of 𝑟. In the experiments, 
we set 𝑟 = 4 and reduce the number of channels of 𝐶 = 640 to 
𝐶0 = 𝐶∕𝑟 = 160. For miniImageNet, CUB, Stanford Cars, and Aircraft 
we set the hyperparameter 𝛾 = 0.53, 1.5, 1.5, 1.5, respectively. The 
temperature parameter 𝜎 for m is set to 0.2.

In this work, we adopt the stochastic gradient descent (SGD) opti-
mizer. The IISNet is trained for 60 and 80 epochs for the 5-shot and 
1-shot settings, respectively.

4.3. Comparison with state-of-the-art methods

We report the classification accuracies and their 95% confidence 
intervals in Table  2 for fine-grained datasets and Table  3 for the coarse-
grained dataset. Twenty-two state-of-the-art (SOTA) few-shot classifiers 
are selected in the comparison, including two background suppression-
based classifiers as our main competitors, BSFA [22] and COSOC [24]. 
Since these two background suppression-based classifiers both involve 
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a module to align the target object across support and query images, 
we also report the results of an enhanced IISNet by adding the existing 
cross-correlational attention (CCA) module [5] after the three IIS layers, 
to match their settings. The hyperparameter of the CCA module is set to 
8 for all datasets. In Tables  2 and 3, the original IIS network is denoted 
as IISNet while the enhanced version is denoted as IISNet♯. Moreover, 
some SOTA methods are originally trained using a large number of 
ways, e.g. C2-Net uses 30 ways and Bi-FRN uses 15 ways, while our 
methods are trained using only 5 ways. To make the comparisons fairer, 
we reproduce their methods by using 10 ways, leading to discrepancies 
on accuracies from their original papers.

Obviously, for the fine-grained datasets in Table  2, IISNet and 
IISNet♯ rank the first two places in most settings. In the 1-shot CUB 
scenario, although IISNet♯ and IISNet are not highlighted, they are still 
competitive with less than 0.5% difference from the best SOTA method. 
For both IISNet and IISNet♯, noticeable improvement of over or around 
2.5% can be observed in the 1-shot setting for the Aircraft dataset, 
which suggests that this dataset is severely affected by the irrelevant 
information while other methods fail to eliminate it effectively. In 
addition, the involvement of the CCA module in IISNet♯ makes it 
better than the original IISNet in most cases, but the improvement is 
only minor with below or around 0.3% increase in mean accuracy. 
More importantly, IISNet and IISNet♯ can beat the two background 
suppression-based classifiers in all settings on the three fine-grained 
datasets, except for the 1-shot setting for CUB. We also note that 
the results of the contrastive learning-based method, COSOC, are well 
below the SOTA performances on the CUB and Aircraft datasets.

On the contrary, for the coarse-grained datasets, COSOC dominates 
all methods in Table  3 while IISNet♯ is the second best. However, we 
further note that the superior performance of COSOC is mostly achieved 
by its SOC module to align the target objects across images. When the 
SOC module is removed and only background suppression is activated, 
COSOC provides substantially lower mean accuracies compared with 
IISNet. Thus, to fairly compare the irrelevant information suppression 
performance, we also present the results of COSOC and BSFA with the 
object alignment modules deactivated, which are listed with a super-
script of ♭ in Table  3. Clearly, when only assessing the performance of 
irrelevant information suppression, IISNet is remarkably over COSOC♭
and BSFA♭. This pattern suggests that object alignment is important to 
correctly classify miniImageNet, potentially caused by a large amount 
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Table 3
The 5-way few-shot classification accuracy on the miniImageNet and tieredImageNet dataset. Bold represents the best 
performance, while underscore indicates the second best one; ∗ represents the result of our reproduction, while † indicates 
the result from the original paper. 
 Method Backbone miniImageNet tieredImageNet

 1-shot 5-shot 1-shot 5-shot  
 MatchingNet [2]† ResNet-12 48.14 ± 0.72 63.49 ± 0.43 68.50 ± 0.92 80.60 ± 0.71  
 ProtoNet [14]† ResNet-12 49.42 ± 0.78 68.20 ± 0.66 68.23 ± 0.23 84.03 ± 0.16  
 Baseline++ [39]† ResNet-12 48.24 ± 0.75 66.43 ± 0.63 – –  
 DeepEMD [35]† ResNet-12 66.50 ± 0.80 82.41 ± 0.56 71.16 ± 0.87 85.28 ± 0.58  
 RENet [5]∗ ResNet-12 67.60 ± 0.44 82.58 ± 0.30 71.61 ± 0.51 85.28 ± 0.35  
 FRN [40]∗ ResNet-12 66.45 ± 0.19 82.83 ± 0.13 72.06 ± 0.22 86.69 ± 0.14  
 MixtFSL [41]† ResNet-12 63.98 ± 0.79 82.04 ± 0.49 70.97 ± 1.03 86.16 ± 0.67  
 ATT [50]† ResNet-12 67.64 ± 0.81 82.31 ± 0.49 69.34 ± 0.95 83.82 ± 0.63  
 SEMAN-G [50]† ResNet-12 68.24 ± 0.82 83.48 ± 0.48 71.06 ± 0.92 86.02 ± 0.58  
 QSFormer [51]† ResNet-12 65.24 ± 0.28 79.96 ± 0.20 72.47 ± 0.31 85.43 ± 0.22  
 DeepBDC [52]† ResNet-12 60.76 ± 0.28 78.25 ± 0.20 63.03 ± 0.31 81.57 ± 0.22  
 Diff-ResNet [51]† ResNet-18 68.47 80.02 – –  
 UniSiam [53]† ResNet-34 65.55 ± 0.36 83.40 ± 0.24 67.57 ± 0.39 84.12 ± 0.28  
 BSFA♭ [22]∗ ResNet-12 66.54 ± 0.50 80.62 ± 0.34 70.12 ± 0.57 85.47 ± 0.32  
 BSFA [22]∗ ResNet-12 66.67 ± 0.50 80.79 ± 0.34 70.46 ± 0.57 85.79 ± 0.32  
 COSOC♭ [24]∗ ResNet-12 65.05 ± 0.06 81.16 ± 0.17 69.87 ± 0.48 85.43 ± 0.16  
 COSOC [24]† ResNet-12 69.28 ± 0.49 85.46 ± 0.12 73.57 ± 0.43 87.57 ± 0.10 
 IISNet ResNet-12 68.08 ± 0.44 83.54 ± 0.30 72.12 ± 0.47 86.53 ± 0.32  
 IISNet♯ ResNet-12 68.63 ± 0.44 83.86 ± 0.30 72.73 ± 0.47 86.98 ± 0.32  
Table 4
The accuracy of using one layer of the IIS module and the BAS module in BSFA as plug-ins after the ResNet-12 backbone for three few-shot classifiers. 
The values in the brackets are the differences between the means of the classifier with and without the plug-in module. Increases are indicated by ↑ 
while decreases are marked by ↓. 

Method CUB Aircraft Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet [14] 78.37ś0.21 90.18ś0.12 86.37ś0.18 93.74ś0.09 86.58ś0.17 94.91ś0.08
+ BAS 77.09ś0.21(1.28 ↓) 89.67ś0.12(0.51 ↓) 85.16ś0.18(1.21 ↓) 93.17ś0.09(0.57 ↓) 84.25ś0.19(2.33 ↓) 94.03ś0.09(0.88 ↓)
+ IIS 80.53ś0.20(2.16 ↑) 90.92ś0.11(0.74 ↑) 88.10ś0.17(1.73 ↑) 94.40ś0.08(0.66 ↑) 87.43ś0.17(0.85 ↑) 95.10ś0.08(0.19 ↑)
RENet [5] 83.04ś0.42 92.38ś0.22 87.33ś0.38 93.68ś0.17 85.36ś0.31 94.31ś0.37
+ BAS 81.35ś0.44(1.69 ↓) 91.51ś0.12(0.87 ↓) 83.71ś0.41(3.62 ↓) 92.64ś0.19(1.04 ↓) 83.77ś0.39(1.59 ↓) 93.83ś0.18(0.48 ↓)
+ IIS 83.42ś0.43(0.38 ↑) 92.84ś0.22(0.46 ↑) 88.23ś0.36(0.90 ↑) 94.18ś0.16(0.50 ↑) 88.32ś0.35(2.70 ↑) 95.74ś0.15(1.43 ↑)
FRN [48] 83.07ś0.19 92.46ś0.10 87.68ś0.17 93.95ś0.09 88.20ś0.17 95.43ś0.08
+ BAS 81.20ś0.19(1.87 ↓) 91.51ś0.10(0.95 ↓) 87.59ś0.18(0.09 ↓) 91.03ś0.09(2.92 ↓) 84.85ś0.17(3.35 ↓) 92.03ś0.10(3.40 ↓)
+ IIS 84.20ś0.19(1.13 ↑) 93.25ś0.10(0.79 ↑) 88.10ś0.17(0.42 ↑) 94.40ś0.08(0.45 ↑) 88.55ś0.16(0.35 ↑) 96.42ś0.06(0.99 ↑)
.

of multi-object images. This is also evidenced by the increase of 0.55% 
of IISNet♯ over IISNet.

Nonetheless, this paper aims at developing the IIS network to re-
move irrelevant information and generate sparse and discriminative 
features, whose superior performance is demonstrated on both fine-
grained and coarse-grained datasets.

4.4. Evaluation of plug-in performance

The IIS module can be readily used as a plug-in module to improve 
the performance of few-shot classifiers. In this section, we embed one 
layer of IIS module after the ResNet-12 backbone to three state-of-the-
art methods, ProtoNet [14], RENet [5] and FRN [48], and report the 
impact of the IIS module in Table  4. Additionally, we compare our 
performance with the background suppression module, BAS, in BSFA. 
The related module in COSOC is not included in the comparison here, 
as its performance on background suppression is the worst, especially 
on the fine-grained datasets.

Clearly, including one layer of IIS module produces positive im-
provement on all three methods under all settings. Remarkable in-
creases in mean accuracies can be observed for the 1-shot setting of 
Cars and CUB. In contrast, BAS has negative impact on all methods 
and datasets. This indicates that BAS may only work within the BSFA 
method and cannot be easily adapted as a plug-in module, suggesting 
that the simple threshold-based strategy in BAS does not work well 
alone.
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Table 5
The impact of the number of layers 𝑑 of the IIS modules on the classification accuracy
 𝑑 Aircraft Cars

 1-shot 5-shot 1-shot 5-shot  
 0 88.01 ± 0.37 93.81 ± 0.16 88.46 ± 0.34 93.89 ± 0.17  
 1 89.28 ± 0.36 94.87 ± 0.14 88.75 ± 0.34 94.94 ± 0.17  
 2 90.04 ± 0.35 95.48 ± 0.13 89.08 ± 0.34 96.04 ± 0.15  
 3 91.30 ± 0.33 95.64 ± 0.13 90.12 ± 0.32 96.41 ± 0.12 
 4 90.53 ± 0.35 95.39 ± 0.14 90.51 ± 0.32 95.11 ± 0.16  

4.5. Ablation experiments

To gain a deeper understanding of how hyperparameters of the IIS 
network affect the classification, we conduct ablation studies on the 
number of layers of the IIS modules. Since the SS module is responsible 
for background suppression and its calculation requires the output from 
the PI module, we do not perform ablation studies on the two modules 
in the IIS module. In this section, the classification accuracies of the 
Aircraft and Cars datasets under the 5-way 5-shot setting are recorded.

4.5.1. The number of layers 𝑑 of the IIS modules
In IISNet, we concatenate 𝑑 layers of IIS modules to gradually 

remove the irrelevant information. As shown in Table  5, when 𝑑
is set to 3, IISNet can achieve the best classification accuracies in 
most scenarios. As 𝑑 increases from 0 to 3, the classification per-
formance progressively improves. Note that when 𝑑 is 0, the base 
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Table 6
The impact of the channel compression factor 𝑟 on the classification accuracy.
 𝑟 Aircraft Cars

 1-shot 5-shot 1-shot 5-shot  
 1 91.08 ± 0.34 95.20 ± 0.14 89.77 ± 0.33 95.24 ± 0.16  
 2 90.71 ± 0.33 95.58 ± 0.13 89.81 ± 0.35 95.59 ± 0.16  
 4 91.30 ± 0.33 95.64 ± 0.13 90.12 ± 0.32 96.41 ± 0.14 
 5 90.42 ± 0.34 95.27 ± 0.14 89.84 ± 0.32 96.13 ± 0.15  
 8 90.75 ± 0.34 95.28 ± 0.14 89.55 ± 0.33 96.26 ± 0.15  
 10 90.39 ± 0.34 95.18 ± 0.13 89.47 ± 0.33 96.21 ± 0.15  

Table 7
The impact of the global similarity aggregation 𝐶5 and the local similarity aggregation 
𝐶3 in the PI module on the classification accuracy.
 Aircraft Cars

 1-shot 5-shot 1-shot 5-shot  
 𝐶3 90.23 ± 0.34 95.44 ± 0.13 89.28 ± 0.34 96.18 ± 0.14  
 𝐶5 88.71 ± 0.36 95.28 ± 0.14 88.84 ± 0.34 96.27 ± 0.14  
 𝐶3 + 𝐶3 90.42 ± 0.35 95.11 ± 0.14 89.89 ± 0.33 96.30 ± 0.14  
 𝐶5 + 𝐶5 90.73 ± 0.34 95.23 ± 0.14 89.71 ± 0.33 96.29 ± 0.15  
 𝐶3 + 𝐶5 91.30 ± 0.33 95.64 ± 0.13 90.12 ± 0.32 96.41 ± 0.14 

features are directly used in the final classification, resulting in poor 
performance, especially on the Aircraft dataset. With the concatenated 
IIS modules, the irrelevant information are suppressed and the sparse 
but discriminative target-related features are emphasized, leading to 
better performance. However, when 𝑑 exceeds 3, the excessive removal 
of information tends to weaken useful target-related information and 
results in decreases in classification accuracy. From these results, we 
suggest to set 𝑑 to 3, to suppress the irrelevant information as much as 
possible while retaining the key information to classify the target.

4.5.2. The channel compression factor 𝑟 in the PI module
In the PI module, to reduce the computational cost, we reduce 

the number of channels by dividing the original number of channels 
640 with a factor 𝑟. A small 𝑟 increases the model’s complexity and 
computational cost, while a large 𝑟 leads to a reduction in the model’s 
representation capacity. As show in Table  6, setting 𝑟 to 4 can balance 
the two sides of the trade-off and provides the best classification 
accuracies.

4.5.3. The dual-branch operation in the PI module
In the PI module, we design a dual-branch operation with two 

different kernel sizes to aggregate the global and local similarity infor-
mation, where the global similarity aggregation with a kernel size of 5 
is denoted as 𝐶5 while the local similarity aggregation with a kernel size 
of 3 is denoted as 𝐶3. Here we test the effectiveness of such dual-branch 
operation. In Table  7, we first test the performance of using only one 
type of information with one branch; that is, the dual-branch operation 
is changed to a single-branch operation with either 𝐶3 or 𝐶5. We then 
present the results of using the dual-operation but with the same kernel 
size: 𝐶3 + 𝐶3 only uses the local similarity while 𝐶5 + 𝐶5 only uses the 
global similarity. Lastly, the results of using the dual-branch with two 
different kernel sizes are shown as 𝐶3 + 𝐶5.

The results of 𝐶3+𝐶5 in Table  7 are the best, suggesting that letting 
the global and local information work together to find the key areas 
of the target is beneficial. Using the same kernel size in both branches 
only improves marginally and sometimes is harmful compared with the 
single-branch operation.

4.5.4. The impact of backbone
Lastly, we evaluate the impact of the backbone structure. In Table  8, 

IIS is used as a plug-in module for two Vision Transformer (ViT)-based 
few-shot classifiers, FewTURE [54] and CPEA [54]. Since ViT methods 
typically output a sequence of features without a spatial structure, the 
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convolutional kernels in IIS have to be adapted for these models. In this 
experiment, we replace the convolutional kernels with linear layers, 
using two MLPs to substitute the local compression operations 𝐶3 and 
𝐶5, respectively. The classification accuracies in Table  8 demonstrate 
the superiority of the IIS module with ViT backbones.

4.6. Visualization of 𝐙, 𝐺(𝐄) and 𝐅

To qualitatively verify the effectiveness of the proposed method, 
Grad-CAM [55] visualization is performed on the base feature 𝐙, 
the key structural information 𝐺(𝐄) and the irrelevant information-
suppressed feature 𝐅 for four examples from the Aircraft dataset in 
Fig.  5. It can be observed that 𝐙 tends to identify the whole body of 
the aircraft as important and also includes class-irrelevant background 
information, such as the grass field in the third image, while 𝐺(𝐄) can 
focus on more delicate areas due to the global and local similarity 
fusion. The final output from the IIS module, 𝐅, is the most sparse 
one, recognizing the most discriminative areas to distinguish aircraft 
classes. In addition, the areas highlighted by both 𝐙 and 𝐺(𝐄) are also 
emphasized by 𝐅, for example, the yellow tail of the first aircraft and 
the front windows in the second one.

4.7. Computational complexity

Finally, we compare the computational complexities of IISNet, 
IISNet♯, BSFA and COSOC in Table  9. IISNet and IISNet♯ are the most 
efficient ones in terms of FLOPs and average training time. They 
require relatively low computational resources to achieve state-of-
the-art performance. As expected, COSOC is the most expensive one. 
Although BSFA has the smallest number of parameters, its FLOPs and 
average training time are higher than IISNet and IISNet♯, because in 
their published code, the mask matrix to identify the target-related 
positions is transferred from GPU to CPU.

4.8. Limitations

In our IIS module, fixed convolutional kernels are used to obtain 
local features and global features, resulting in a fixed ratio between 
them. This makes IISNet emphasize on features of specific scales.

Fig.  6 shows three misclassification examples of IISNet from the 1-
shot CUB dataset. The values represent the posterior probabilities of 
assigning a query image to a support class, with red indicating the true 
label and green the misclassified label. When the highlighted feature is 
the small beak, query images of savannah and vesper are misclassified 
as belonging to the brewer support class, which also emphasizes the 
small beak. Thus, objects with similarly sized features tend to be 
classified into the same category, regardless of their true labels. 

5. Conclusion

This work introduces the irrelevant information suppression net-
work (IISNet) tailored for few-shot classification, aiming to enhance 
the accuracy of extracting class-related information from the base 
feature representation. Through three concatenated IIS modules, IIS-
Net can gradually suppress the irrelevant information and generate 
highly sparse and discriminative features to assist classification. The 
experiments on both fine-grained and coarse-grained datasets show-
case the exceptional generalization capability of IISNet to new classes. 
Moreover, we also demonstrate the remarkable improvement of using 
one layer of the IIS module as a plug-in module to enhance the 
state-of-the-art few-shot classifiers.

IISNet uses fixed global and local sizes, which may result in an 
emphasis on features of specific scales. In future work, we aim to in-
corporate multiscale features to address this limitation. Other possible 
future work includes designing a target alignment module to boost the 
performance of IISNet on coarse-grained datasets.
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Table 8
The classification accuracies on tieredImageNet and miniImagenet for two ViT-based few-shot classifiers.
 Method Backbone miniImageNet tieredImageNet

 1-shot 5-shot 1-shot 5-shot   
 FewTURE [54] ViT-S/16 68.02 ± 0.88 84.51 ± 0.53 72.96 ± 0.92 86.43 ± 0.67   
 +IIS ViT-S/16 68.88 ± 0.86 (0.76 ↑) 85.07 ± 0.52 (0.56 ↑) 73.34 ± 0.89 (0.38 ↑) 86.78 ± 0.65 (0.35 ↑)  
 CPEA [54] ViT-S/16 73.36 ± 0.65 88.30 ± 0.36 73.94 ± 0.71 88.45 ± 0.44   
 +IIS ViT-S/16 73.95 ± 0.62 (0.59 ↑) 88.73 ± 0.36 (0.43 ↑) 74.07 ± 0.71 (0.13 ↑) 88.77 ± 0.43 (0.32 ↑)  
Fig. 5. Visualization of the base representation 𝐙, the key structural information 𝐺(𝐄) and the irrelevant information-suppressed feature 𝐅. 𝐙 identifies a large part of the aircraft 
as important and also includes irrelevant background, while 𝐺(𝐄) focuses on more delicate areas of the aircraft. 𝐅 is the most sparse feature, recognizing the most discriminative 
areas to distinguish aircraft classes.
Fig. 6. Three misclassification examples of IISNet on the 1-shot CUB data.
Table 9
Computational complexity comparison of IISNet, IISNet♯, BSFA and COSOC. Params is 
the number of parameters of the network, FLOPs is calculated for each task, and Time 
is the average training time of the network on three datasets with Nvidia GeForce RTX 
4090.
 Params (M) FLOPs (G) Time (h) 
 BSFA 8.04 50.64 5.08  
 COSOC 49.9 8.78 × 105 98.4  
 IISNet 25.98 35.73 1.14  
 IISNet♯ 26.51 38.09 1.35  
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