

City, University of London Institutional Repository

Citation: Morling, R. C. S. The design of a packet-switched local area network.

(Unpublished Doctoral thesis, The City University)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35192/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

THE DESIGN OF A PACKET~SWITCHED

LOCAL AREA NETWORK

by
b

Richard C.S. Morling

A thesis in partial fulfilment of the requirements for the

Degree of Doctor of Philosophy

THE CITY UNIVERSITY

Centre for Information Engineering

October 1988

1

DEDICATION

This thesis is dedicated to the

memory of my

2

CONTENTS

List of tables 6

List of illustrations 7

Acknowledgements 9

Abstract 10

1. Introduction 1]

1.1 Overview and terminology 11

1.2 Aims and requirements 16

1.2.1 Heterogeneity 16

1.2.2 Transparency 17

1.2.3 Real-time operation 20

1.2.4 Reliability 22

1.2.5 Reconfigurability 24

1.3 Relationship with other networks 25

1.3.1 Loop access methods 26

1.3.2 Bus access mechanisms 30

1.3.3 True networks 31

1.4 History of the project 32

2. Network Architecture 35

2. 1 The MININET reference model 35

2.1.1 Model development 35

2.1.2 Sublayer functions 39

2.1.3 Relationship to the ISO OSI Reference Model 43

2.2 Message structures 46

2. 2. 1 Message formats 48

2.2.2 Packet size considerations 51

2. 3 The Channel Service 58

2.3.1 Multi-node channel characteristics 59

2.3.2 The MININET Link Protocol (MLP) 60

2. 3. 3 Channel management 65

2.4 The Packet Delivery Service 69

2.4.1 Congestion and flow control 71

3

2.5 The MININET Service 81

2. 5. 1 Virtual Connection management 81

2.5.2 Network ports 84

2.6 The Management Transport Service 86

3. The DIM Interface 92

3. 1 Interface requirements 92

3. 2 Interface specification 94

3. 2. 1 The basic DIM interface 95

3.2.2 Extensions to the basic interface 100

3.3 The Computer-Peripheral Convention (DIM-CPC) 102
3.3.1 Flow control 1Q9

3.3.2 Initialization -j]3

3.3.3 Exception conditions 117

3.3.4 Command structure 120

3.4 Operational experience 121

4. The Routing Algorithm 125

4. 1 Requirements 125

4.2 Existing Routing algorithms 128

4.2.1 Taxonomy 128

4.2.2 Routing protocols 132

4.3 The sequential routing protocol 138

4.3.1 The basic protocol 138

4.3.2 Recovery from link failure 139

4.3.3 Link recovery 144

4.3.4 Multiple failures 146

4.4 The algorithm performed by the nodes 150

4.4.1 The sink algorithm 154

4.4.2 The intermediate node algorithm 157

4.5 Properties of the algorithm 169

4.6 Implementation 172

4

5. Station Architecture

6.

176

5. 1 Design requirements 176
5. 1. 1 Functional architecture 176
5. 1.2 Speed-power characteristics 178

5. 1.3 Reliability 179

5. 2 Message handler design 180
5. 2. 1 Polling strategy 180
5. 2. 2 The message handler 183
5. 2. 3 Master arbiter operation 186
5. 2. 4 Master arbiter structure 188

5. 2. 5 Controller design 190

5. 3 The Station manager 195

5. 3. 1 MINTOS - the management operating system 195
5. 3. 2 Management tasks 197

5. 4 Station implementation 199

Conclusions 204

6. 1 Project status 204

6. 2 Further research topics 206

6. 3 Project achievements 210

References 214
List of relevant publications by the author 225

5

LIST OF TABLES

2. 1

2. 2
MININET layer functionality

State transitions in a link FSM
40

70

3. 1 Command register control functions 107
3. 2 Status register control functions 108
3. 3 Effect of initialize commands on status register 114
3. 4 Effect of received initialize message on status register 114
3. 5 Interface error codes 119

4. 1 Routing algorithm message types 152
4. 2 Variables used in each sink process 155
4. 3 Sink message handler algorithm 155
4. 4 State transitions in the sink process 156
4. 5 Variables used in an intermediate node for each sink process 159
4. 6 Message handler for an intermediate node routing process 160
4. 7 State transitions in an intermediate node routing process 162

6

LIST OF ILLUSTRATIONS

1.1 An example MININET 13
1.2 Direct and Indirect connection of user devices 18
1.3 The Virtual Connection 19

2. 1 Snail Network architectural model 36
2. 2 Location of layer entities in MININET 38
2. 3 The revised MININET hierarchical model 39

2. 4 OSI Connection establishment procedure 44

2. 5 MININET Connection establishment procedure 45

2. 6 MININET message scope 47

2. 7 MININET message formats 50

2. 8 NTAN message structure 52
2. 9 Expected wastage versus average message length (D=16) 55

2. 10 Expected buffer wastage versus data field size (H= 16) 56

2. 11 Buffer wastage contours and minima loci (H=16) 57

2. 12 Channel wastage contours and minima loci (H=36) 58
2. 13 Time placement of interlocked envelopes (m=3) 61

2. 14 Error recovery maintaining sequency (m=3) 62

2. 15 Acknowledgement by means of sequence numbers (m=2) 63

2. 16 Frame synchronization 66

2. 17 State diagram of the link hold-down algorithm 69

2. 18 Exchange buffer structure 75

2. 19 Destination queue structure 76

3. 1 Noise immunity to rectangular noise Impulses 98

3. 2 Noise immunity to exponential noise Impulses 99

3. 3 Typical uses of a DIM interface processor 103

3. 4 DIM-CPC command format 105

3. 5 DIM-CPC status format 106

3. 6 Write procedures 110

3. 7 Read procedures 112

3. 8 Construction of a HI-FI DAC with DIM interface 122

3. 9 Implementation of an interface processor 123

3. 10 A Dual DIM-Multibus interface 124

7

4. 1 Classification of routing techniques 129

4.2 A typical network tree 136

4.3 Handling link failures 141

4.4 Node failure 147

4.5 Non-contiguous failures along a common pathway 148

4.6 Intra-node and inter-node message transfers 151

4.7 State diagram of the routing process in the sink 157

4.8 State diagram of the intermediate node routing process 158

5.1 Functional division of the Station 177

5.2 Station polling sequence 182

5.3 Station structure 184

5.4 Location of queues and buffer registers 185

5.5 Structure of the master arbiter 189

5.6 General controller model 191

5.7 Synchronous controller structure 192

5.8 Management task and event queue interconnection 197

5.9 The Station core circuit boards 200

5. 10 Half-duplex channel controller 200

5.11 Rear view of a MININET station 201

5. 12 Station development monitor and exerciser 202

6. 1 Vector implementation of Exchange output poll 209

8

ACKNOWLEDGEMENTS

I would like to thank my supervisor. Prof. A.C. Davies, for his patient

encouragement, without which this thesis would not have been

completed, and his helpful and constuctive suggestions. I would also

like to thank for his support and direction. I owe a debt

of gratitude to all those who have worked on Project MININET. In

particular, my thanks goes to

 for their helpful suggestions. Finally, I should like to thank

 for binding up the split Infinitives and separating the

"or's" from the "nor's".

COPYRIGHT NOTICE

I grant powers of discretion to the University Librarian to

allow this thesis to be copied, in whole or in part,

without further reference to me. This permission covers

only single copies made for study purposes, subject to

normal conditions of acknowledgement.

9

ABSTRACT

MININET Is a local area network designed for instrumentation and

other real-time applications. It is a true store-and-forward network using

small fixed-length packets. A very high degree of transparency is

required, such that the Network Service can be totally invisible to the

user devices. The design of the network is based around a hierarchical

architectural model which is similar to. but not identical with, the ISO

OSI Reference Model. Its small 32—bit packet size was a logical

consequence of the transparency and real-time service requirements.

This size was found to be optimum for average user message lengths of

around 13 bits, as far as the buffer utilization efficiency was concerned.

A simple, but robust, full-duplex data link protocol, which avoids

sequence errors and uses only a single sequence number field to

interlock the packet stream, was developed. Network congestion is

avoided by means of a flow control algorithm, which uses active

backpressure vectors and a separate buffer allocation for each

destination node. to guarantee freedom from store-and-forward

deadlock. A highly reliable, half-duplex, end-to-end protocol providing

a Transport Service for the network management entities, has been

developed. The network compatible DIM intermediate interface has been

specified, together with DIM-CPC. its basic user protocol providing flow

control, initialization and error recovery procedures. A routing protocol,

that maintains packet sequency even in the event of node or link failure,

has been developed. This distributed algorithm constructs a separate

tree rooted at each destination node in the network. It uses short

messages transferred only between adjacent nodes. A quad-phasic

update cycle is used to guarantee loop freedom at all times and to flush

old pathways before routing changes are made. Thus, packet sequency

is maintained without any packets being dropped. A high-speed

implementation of the network Station has been designed and

constructed. This uses a two-dimensional polling technique in order to

maintain fairness, whilst ensuring that no blockages occur within the

node. A design technique has been pioneered for the construction of

PROM-based system controllers which are exceptionally agile.

10

Chapter 1

INTRODUCTION

This thesis describes the development of MININET, a local area

network (LAN). The requirements, design decisions and implementation

of the network are described. It is the aim of this thesis, not just to give

an account of this work, but also to highlight the lessons learnt in the

design process and to describe those concepts, protocols and

techniques which are of general applicability.

A brief overview of the network, its requirements, its relationship

with other networks and a short history of the project are given in this

chapter. In Chapter 2, the various network services and protocols are

explained in the context of an overall hierarchical model of the network.

The DIM intermediate interface, used to access the network, and the

routing management algorithm are defined in Chapters 3 and 4

respectively. An implementation of the network Station is described in

Chapter 5. In Chapter 6. the design decisions are critically reviewed and

the lessons learnt from the project are discussed.

1.1 OVERVIEW AND TERMINOLOGY

MININET was conceived as a LAN intended for high-speed

instrumentation applications [MORL751. These include laboratory

automation, process control, high energy physics and other areas

generating high-speed, real-time data. In addition, the properties of the

network make computer-computer communication particularly easy to
implement.

The key objective underlying the development of the network is that

computers and peripherals should be able to communicate through the

network just as though they are connected directly together. User

devices are connected to the network through ports which are physical

Interfaces into the network. Originally, the network was designed using a

single port interface standard, DIM, which is described in Chapter 3.

This is a one-to-one interface designed for high-speed instrumentation

11

and network applications. It Includes 16 bidirectional data lines, with an

additional qualifier line, the data class flag, which distinguishes between

data class and control class transfers. The latter class is used for the

exchange of status and command information. The network service was

originally defined in terms of this interface and the service boundary was

therefore physically located at the DIM port socket. Other possible types

of port interface are an IEEE-488 (IEC 625) instrumentation bus

interface [IEC 79], which enables the bus to be “stretched" across the

network, and a speech port, which provides voice communications

(Section 2.5.2). To cater for these heterogeneous interfaces, the

network service is defined in terms of communication between ports.

In order to provide this high degree of transparency, the Network

Service provides a Virtual Connection between ports, which means that a

data word entering a port at one end of the connection will emerge from

the port at the other and vice versa. This is done by using a very small

packet of only 32 bits which contains a single 16—bit word of user

information as well as the Data Class Flag. Thus, each word is

despatched immediately it enters the network and presented to the user

immediately it reaches the other end of the Virtual Connection.

Consequently. MININET has been aptly dubbed a word switching

network.

The network can accommodate up to 64 nodes interconnected in an

arbitrary topology by channels as shown in Figure 1.1. These channels

may be point-to-point half-duplex or full-duplex data links or multi-node

channels such as rings or buses. Implementations of the point-to-point

channels have used the MININET link protocol (MLP) in order to provide

a sequential Data Link Service. MININET is a true network, in the ISO

Open System Interconnection (OSI) Reference Model sense [ISO 821.

because communicating nodes do not have to be connected to a

common data link, but may transfer information via one or more

intermediate nodes. There are two basic types of node in the network.

One. the Station, provides user access into the network via the network

ports. The other. the Exchange, provides. in addition. a

store-and-forward relay function. Nodes connected to the same channel

are said to be adjacent.

The state information associated with each Virtual Connection is

held by the nodes at each end of the connection. Transportation of

packets, between these end-point nodes, is provided by the Packet

12

RING

KEY

Station

| Exchange

Connected user
devices are not
shown

Figure 1.1: An Example MININET

Delivery Service which maintains a path between each and every node.

Virtual Connections are multiplexed along these paths. Underlying the

Packet Delivery Service are the flow control and routing management

protocols. Network congestion is avoided by maintaining, in each

Exchange, separate buffer allocations for each destination node. Flow

control in and out of these buffers is effected by means of Back Pressure

Flow Vectors (BPVs) transmitted to all adjacent nodes. Each element of

the vector acts as a stop-go binary semaphore pertaining to a single

destination node. For each node in the network the routing management

algorithm, described in Chapter 4, constructs a tree rooted at the

destination node. The algorithm guarantees to remain loop free at all

times and to minimize the channel weighted distance from each node to
the root.

In addition to transporting packets sequentially between adjacent

13

nodes, the channels also carry special messages which only travel as

far as the next node. These are called Node-to-Adjacent-Node (NTAN)

messages. They are used for adjacent node identification and by the

flow control and routing protocols.

Each node contains a manager, which supervises its overall
operation. The managers do not perform packet-by-packet traffic
handling but will intervene if an exception condition occurs Managers

can communicate with each other using the MININET control protocol

(MCP) and co-operate in the establishment and closure of Virtual

Connections and in the execution of the routing algorithm.

One of the great benefits of the ISO OSI Reference Model has been

the use of its terminology for the unequivocal description of

communication systems. Whenever applicable. ISO terminology will be

used. In particular, the following definitions, taken from [ISO 84], will

be assumed.

Peer Entities: Entities within the same layer.

(N) -Service: A capability of the (N)-layer and the layers beneath it,

which is provided to (N+l)-entities at the boundary between the

(N)-layer and the (N+l)-layer,

(N)-Service-Access-Point ((N)-SAP): The point at which (N)-services

are provided by an (N)-entity to an (N+l)-entity.

(N) -Protocol: A set of rules and formats (semantic and syntactic) which

determine the communication behaviour of (N)-entities in the

performance of (N)-functions.

(N) -Relay: An (N)-function by means of which an (N)-entity forwards

data received from one correspondent (N)-entity to another

correspondent (N)-entity.

(N) -Protocol-Control-Information: Information exchanged between

(N)-entitles to co-ordinate their joint operation.

(N) -User-Data: The data transferred between (N)-entities on behalf of

the (N+l)-entities for which the (N)-entities are providing

services.

(N)-Protocol-Data-Unit ((N)-PDU): A unit of data specified in an

(N)-protocol and consisting of (N)-protocol-control-information

and possibly (N)-user-data.

14

(N) -Interface-Control-Information: Information transferred between an

(N+l)-entity and an (N)-entity to co-ordinate their joint operation.

(N)-Interface-Data: Information transferred from an (N+l) entity to an

(N)-entity for transmission to a correspondent (N+l)-entity, or

conversely, information transferred from an (N)-entity to an

(N+l)-entity after being received from a correspondent

(N+l) -entity.

(N)-Interface-Data-Unit ((N)-IDU): The unit of Information transferred

across the service-access-point between an (N+l)-entity and an

(N)-entity in a single interaction. Each (N)-IDU contains

(N)-interface-control-information and may also contain the whole

or part of an (N)-service-data-unit.

(N)-Service-Data-Unit ((N)-SDU): An amount of (N)-interface data

whose identity is preserved from one end of an (N)-connection to

the other. Data may be held within an (N)-connection until a

complete (N)-SDU Is put into the (N)-connection.

Multiplexing: A function within the (N)-layer by which one

(N-l)-connection is used to support more than one

(N) -connection.

Segmenting: A function performed by an (N)-entity to map one (N)-SDU

Into multiple (N)-PDUs.

Reassembling: The reverse function to segmenting.

Blocking: A function performed by an (N)-entity to map multiple

(N)-SDUs into one (N)-PDU.

Concatenation: A function performed by an (N)-entity to map multiple

(N)-PDUs into one (N-D-SDU.

The ISO definition of a connection does not quite correspond to

MININET's Virtual Connection These differences are discussed in

Section 2. 1.3.

This thesis is primarily concerned with the 4 lowest layers of the

Reference Model. These are:

Layer 1 : The Physical Layer provides the transmission

encodlng/decoding, signal conditioning and timing

generation/recovery functions necessary to convey information bits

between Layer 2 entities through the physical medium for

15

interconnection (e.g. optical fibre or coaxial cable). The SDU of

the Physical Layer is usually 1 bit in length.

Layer 2: The Data Link Layer enhances the Physical Layer Service with

block synchronization, flow control and error detection and recovery

procedures to enable adjacent Layer 3 entities to exchange PDUs in

an orderly manner.

Layer 3: The Network Layer provides relaying and routing functions which

enable Transport Layer entities (located in the end systems) to

communicate transparently. The choice and use of Data Link

resources are made invisible to the Transport entities. The Network

Layer can be sublayered using the principle of recursive extension

[ECMA82] to enable Subnetworks to be interconnected to form larger

Global Networks. In this case, the users of the Subnetwork Service

are not the Transport Layer entities but the Global Network entities.

Layer 4: The Transport Layer provides. where necessary, the

end-to-end protocols such as multiplexing, flow control and error

recovery to enhance the Network Service to the level required by

the end user.

1.2 AIMS AND REQUIREMENTS

Instrumentation applications present a different and somewhat more

onerous set of requirements on the Network Service compared with

computer-to-computer and office automation environments. The major

requirements may be summarized as:

• heterogenous device handling capability;

• ultra-high transparency;

• real-time operation;

• reliability;

• reconfigurability.

The reasons for these requirements and their effect on the network

design choices are discussed in the following sections.

1.2.1 Heterogeneity

There should be no constraint on the type of device connected to

the network. In particular, it must be able to service not only

"intelligent" devices such as mini- or microcomputers but also "ignorant"

16

devices such as analog-to-digital converters (ADCs) . digital-to-analog

converters (DACs) or terminals. In this context, an intelligent device is

one which can be made aware of the network and can be adapted to

handle the procedures required to access it. On the other hand, an

ignorant device cannot be modified to comply with the demands of a

user-invasive network. It should be noted that the mere presence of a

microprocessor embedded in an instrument does not necessarily mean

that it Is intelligent in this sense, unless the microprocessor is, or can

be, programmed to handle a network access protocol.

Secondly, there should be no dependence on any particular device

manufacturer. User devices from different manufacturers may be freely

connected to the network. Furthermore, the network should be able to

support the simultaneous communication between different pairs of user

devices, with each pair using its own private protocol without
interference.

Finally, the network should simultaneously support a population of

user devices communicating at widely different rates without lockout or

network hogging. Examples range from low speed terminal and process

control traffic, operating at information rates below 10k bits/sec.

through computer-computer communications to high speed laboratory

instrumentation operating in excess of IM bits/sec. (Note that effective

user throughputs are being discussed, not intra-network line rates.)

Broadly speaking, user traffic may be divided into two distinct classes.

Many devices operate in handshake mode where a device waits after

transmitting a short message until it has received an acknowledging reply

from the destination before transmitting the next message. For this

class, the effective throughput is controlled by the end-to-end transport

delay of the network. Other devices operate in burst mode where a

relatively long message is transmitted through the network with no

end-to-end acknowledgement until the end of the burst. For this class,

the effective user throughput is dominated by the throughput of the
network.

1.2.2 Transparency

As far as the user is concerned, there should be no operational

difference between the connection of two devices directly together, as

shown In Figure 1.2a. or the connection of two devices through the

17

network, as shown in Figure 1.2b. This degree of transparency applies

(a) Directly Connected Equipment

(b) Equipment Remotely Connected via the Network

Figure 1.2: Direct and Indirect Connection of User Devices

from high level software procedures right down to the hardware plug and

socket level. Effectively, the network is to emulate a length of cable! To

provide this service, the network must establish a Virtual Connection

between two ports so that information transferred into one port emerges

from the other end and vice versa. Thus, the Virtual Connection acts as

a pair of pipes conveying information sequentially in either direction

(Figure 1.3). The exact nature of this Virtual Connection and its relation

to connections as defined in the ISO OSI Reference Model are discussed

in Section 2.5.1 and Section 2.1.3.

Since the user protocol is unknown to the network in the same way

as it would be unknown to a cable, the network has no way of delimiting

user messages other than to the IDU. In addition, the delay associated

with blocking these data units into a larger packet is undesirable in a

real-time network. For these reasons, the network should despatch data

towards the destination as soon as it is passed across the port

interface. This implies that the Network-PDU should only contain one

18

VIRTUAL CON N EC T IO N

Figure 1.3: The Virtual Connection

Network-SDU and that the Network-SDU is equal to the largest

Network-IDU likely to be used.

The maximum size of the IDU should be such that the "basic unit"

of data handled by the majority of instrumentation devices should be

transferred in a single operation. For example, the "basic unit" of data

for a terminal is one character, for an ADC it is one sample and so on.

This requirement implies that the size should be greater than 8 bits as

ADCs and DACs frequently have a sample size of 10. 12 or even 16

bits. A natural and convenient choice is therefore 16 bits, as it is large

enough to accept the output of most data acquisition equipment, while a

larger data unit (say 24 or 32 bits) would tend to be mostly unused and

so not cost effective. The relationship between message size, packet

size and efficiency is discussed in Section 2.2.2.

User devices usually need to exchange control information such as

peripheral status or computer commands in addition to the transfer of

"data" information. The network should be able to transfer this control

information without making any code restrictions on the data transfers

which would result in an effective loss of transparency. The simplest

means of providing this is to add a flag bit to the Network-SDU. This bit

19

can be used to distinguish between data class and control class

transfers. Thus, the overall size of the network-SDU should effectively

be 17 bits.

The network users operate with PDUs that are, in general, bigger

than the Network-SDU and are unknown to the network. However, these

arbitrary data-units must be transported through the network unchanged

just as though they matched the Network-SDU. This is possible thanks to

a key property of the pipe, namely the delivery of Information across the

destination network interface in the same order as supplied across the

source network interface. Of course, control class transfers could be

used to delimit User-PDUs. There are two fundamental approaches to

maintaining sequency in the network - end-to-end enhancement or

intrinsic sequentiality. In wide area store-and-forward networks (e.g.

ARPANET [MCQU77J, CYCLADES IPOUZ74J) , the internal packet handling

protocols do not necessarily deliver the packets in the correct sequence

to the destination node. Instead, the node must resequence arriving

packets prior to delivering the packets to the user. This message

reassembly time is undesirable in a real-time environment. Furthermore,

a sequence number must be carried In every packet header. Since the

Network-PDU is small, this results in an unacceptably large packet

overhead. The other approach maintains packet sequency throughout the

network so that reordering is unnecessary. This has an impact on two

areas of protocol design. Obviously, one is the routing protocol, where

dynamic path changes could lead to sequence errors. Somewhat less

obviously, it also affects the data link protocol, as retransmission of a

previously corrupted packet could also lead to a sequence error. A

routing algorithm specifically developed to maintain intrinsic packet

sequency Is described in Chapter 4 and a link protocol which avoids

sequence errors during transmission is described In Section 2.3.2.

1.2.3 Real-Time Operation

Computers (and human terminal users, for that matter) are

relatively easily satisfied, as far as the response time and throughput of

the network are concerned, compared with the real-time environment of

instrumentation systems where the desired response time is measured in

microseconds rather than milliseconds. As already discussed, the

propagation delay across the network Is frequently much more important

than network throughput. The properties of the pipe mean that it can be

20

modelled as a flnite-length, first-in, first-out (FIFO) queue combined

with a time delay. The actual value of the time delay and the queue

throughput are quantities which vary with the network traffic and

connectivity. For real-time applications, it is necessary to place bounds

on these variations. There are a number of ways to specify these limits.

If the user cannot buffer more than one word at a time (e.g. a single

ADC sample) . then the worst case maximum propagation delay of the

Virtual Connection is the critical parameter if the device is operating in

handshake mode, or the worst case maximum transmission interval if

operating in burst mode. If the real-time device has a buffering capacity

of N words, then the constraint is relaxed to a worst case moving

window N-block average of the propagation delay or throughput

respectively. Note that buffering within the network ports will average out

any intra-network fluctuations in throughput and so only the block

averaged throughput of the network is significant. However, nothing can

be done inside the network interface to mask any fluctuations in

propagation delay. Indeed, in order to reduce propagation delay,

queuing should be avoided wherever possible [MCQU77J.

As discussed in Section 1.2.1. the actual throughput requirements

of real-time devices vary enormously, but a useful benchmark for the

fastest likely requirement has been the case of high-fidelity stereo audio

analog/digital conversion. This generates two 16—bit samples at a 50kHz

rate which corresponds to a throughput requirement of 100k packets per

second. This has been adopted as the target throughput figure for the

network. It is reasonable to expect to maintain such a sustained rate

only in burst mode. For handshake mode, the effective rate depends

very much on the number of hops in the path. A delay of 25/zs per hop

is not unreasonable, which for a single hop would correspond to a user

throughput of 20k words per second. These figures depend, of course,

on the channel throughput and assume that a high-speed channel, such

as a coaxial cable based system, is being used. The presence of a

modem or low cost optical fibre system in the path would necessarily

reduce the effective throughput. Nevertheless, the designer of the

Stations and Exchanges must assume that their channels could each be

operating up to 100k packets per second.

An Implicit assumption of the discussion, so far, is that the network

has been only lightly loaded. The converse of this situation is when a

part, or all, of the network becomes saturated by many devices

21

attempting to communicate at the same time. An important requirement

of the network, when handling this congestion, is the fairness criterion.

This demands that, whenever a network resource - such as a channel,

buffer space or processor time - is in contention, the resource should

be shared equally amongst those requiring service. In particular, the

network must not allow burst mode transfers to swamp handshake mode

traffic.

1.2.4 Reliability

A key method of providing fault tolerance is the provision of

redundancy. It should be possible to configure the network so that it can

recover automatically from failure of nodes or links. This implies that the

topology of the network must allow alternative pathways and that essential

network management functions should not be centralized.

A ring or bus topology does not meet this requirement without

duplication. In fact, from a reliability point of view, a ring or bus may

be considered to be a star system, with the ring or bus, together with

their couplers, forming the centre of the star. Hence, a failure of any

of these central elements causes total communication system failure. On

the other hand, a network, which could be arbitrarily configured into any

topology, can be designed so that, even If a section of the network

becomes isolated, each part can operate independently. The network

should maintain communication pathways between all nodes regardless of

the node or channel failures, providing, of course, that it is still

physically possible. Furthermore, recovered nodes and channels should

be reincorporated into the network automatically and a partitioned

network should recombine smoothly when they are physically re-joined.

The end nodes and ports of a Virtual Connection form unavoidable

single points of failure as far as that connection is concerned. Complete

redundancy can only be provided by the user setting up more than one

Virtual Connection between different end nodes, as well as providing

duplicate user equipment. For example, a completely redundant remote

temperature measurement would require not only duplicate network

paths, end Stations and ports, but also duplicate temperature

transducers.

The various types of packet error can be classified in order of

importance to the user, on a scale ranging from outright disaster to

22

minor irritation, as follows:

1st. message delivered to wrong port:

2nd. packet sequence error;

2nd. corrupted message:

3rd. duplicated message:

4th. unreported lost packet;

5th. reported lost packet.

These form the relative priorities of the error procedures of the network.

The misdelivery of a packet, to the incorrect destination, is potentially

very serious because it could, for example, trigger a quiescent device at

quite the wrong time, as well as losing the message as far as the

correct destination is concerned. Sequence errors and message

corruption are close joint second in priority. Sequence errors are

included at this level, because many user Transport Layer error

detection procedures depend upon a simple checksum or longitudinal

parity check, which are insensitive to sequence errors. A corrupted

message is equally dangerous, particularly if its user has no end-to-end

error checking or where the damaged message appears as a control

word. The choice, of whether to give duplication higher priority than

loss, is less clear-cut. From a pragmatic point of view, loss of packets

may well happen if a node or channel fails completely. Message loss is

relatively easily detected by the user using a simple timer based

protocol, situated either at the source or at the destination. The network

should deliberately drop a packet, if there is any danger of it being

duplicated. Furthermore, there are a number of rare situations when the

network may deliberately drop packets. These are where there is a

danger of sequence errors (Section 4.3.4) or where packet corruption

is suspected. If possible, the network should report packet loss to the

user.

Channels operating with only marginal signal quality and nodes with

intermittent faults can be extremely disruptive to the network as a whole.

In addition, there is a greatly increased risk of packet corruption for

packets passing through such a node or channel. Therefore, the

network should practise error hardening by removing, from service,

elements of the network that have become marginally operational.

To enhance the overall reliability and to aid fault diagnosis, the

performance of the nodes and channels should be monitored continually

23

by the network management entitles. Recoverable errors should be

logged by each node, so that suspect modules- within the node or the

channel can be Identified.

Hop-by-hop error detection and recovery should be provided within

each data link. The properties and complexity of this protocol can be

tailored to the intrinsic error characteristics of the physical medium

used, in order to make the probability of an undetected error negligibly

small. Quite what error rate is considered negligible is, of course,

somewhat arbitrary. A useful yardstick can be found in the requirement

for PROWAY [IEC 81], which specified an average undetected error rate

of better than one every thousand years of operation! Operating at

100k packets per second, this corresponds approximately to a probability
of undetected packet corruption of 3 x 10 16. Needless to say, error

protection, to this degree, cannot be measured by any practical means.

However, schemes that achieve this protection in theory, at least make

the probability of an undetected error, within the channel Itself,

negigible. Note, that the probability of framing errors must also be taken

into account in arriving at the probability of errors in the channel.

Given the high reliability of the channels, the probability of error,

within the channel controller and the rest of the node, cannot be

ignored, although It is extremely difficult to quantify. The design of the

nodes should be such that a single bit error cannot cause packet

misdelivery, packet corruption or sequence errors. This implies that all

address and data fields within the node should contain at least one parity
check digit.

1.2.5 Reconfigurability

When power is applied to a node, it should automatically configure

itself and integrate into the network. The network should adapt

dynamically, as nodes and channels become operational. If two isolated

parts of the network, which were initialized separately, are eventually

joined they should integrate to form a single network automatically. The

topology of the network should be able to take any form. When new

nodes or channels are added to an existing network, no modification

should be necessary to the existing nodes. The nodes themselves should

be of a modular construction enabling new ports and channel controllers

to be added without difficulty. Only reinitialization of the node, which

24

occurs on power-up, is required to incorporate the new ports or channel

controllers into the node.

As well as the user device characteristics and requirements being

highly diverse, the network must be capable of operating over a variety

of physical media such as coaxial cable, optical fibres, modem links.

etc. In addition, multi-node channels, such as rings or buses, should

be accommodated by the network protocols. The diversity of
interconnecting media implies potentially large variations in maximum
throughput between channels connected to a network node. Slow
channels should not retard the operation of the node or other

high-speed channels.

The net effect of these requirements is that neither network topology

nor number or type of channels or ports attached to the node can be

permanently stored in the node manager. Instead, the manager must

dynamically obtain this information after initialization and configure itself
accordingly.

1.3 RELATIONSHIP WITH OTHER NETWORKS

In recent years, there has been a proliferation of, so called, local

area networks. However, most of these are not true networks, but

multi-point data links providing a Data-Link Layer Service. They can be

divided into two classes. In one type, the physical medium is common

to all stations. This usually takes the form of a bus, although passive

stars, that have been proposed for use in fibre-optic systems [RAWS78],

also fall into this category. The other major type utilizes a Physical Layer

relay function in each station. In this case, the usual topology is that of

a ring or loop.

The primary application of many recent ring and bus developments

has been the expanding field of office automation. In this environment,

the network Is primarily concerned with the transfer of files, electronic

mail and data-base queries and updates. Therefore, the real-time delay

requirements are less stringent than in instrumentation applications,

being limited to that of human interactions. In addition, the office traffic

characteristics are well suited to the use of a connectionless type of

service (otherwise known as a Unit Data Service). This is in contrast to

the Instrumentation situation, where an indefinite (usually large) number

of data units have to be transferred during the lifetime of a Virtual

25

Connection.

The major differences, between the various ring and bus designs,

lie in their access methods which primarily determine the degree of

fairness and flow control exhibited by the designs. It is of interest to

examine the various access methods, particularly with a view to their

suitability for use as a multi-node channel within MININET.

1.3.1 Loop Access Methods

There have been several attempts to classifiy loop access methods

including one by Heger [HEGE78] and another by Penney and Baghdadi

[PENN78], In this thesis, the ring control mechanisms have been divided

into four major classes - token-passing rings, slotted rings,

register-insertion rings and centralised ring control. These are discussed
separately.

(1) Token Passing Rings

With this access method, a single token circulates around the ring.

When a station receives the token it can transmit a message (usually of

variable length) , prior to passing the token on to the next station in the

loop. If the station has no message to transmit, the token is passed on

immediately. This technique was first developed by Farmer and Newhall

in 1969 [FARM691. after whom it is frequently named. It is also the basis

of the access method for the ring version of the IEEE LAN standard

802.5 [IEEE85L The method is intrinsically fair, with the guaranteed

maximum access time proportional to the maximum size of the PDU and

the number of stations in the loop. Under light load conditions, the

average latency time is equal to half the loop transit period. This loop

is, therefore. Ideally suited to situations where long messages (relative

to the loop transit delay) are to be transported. This is not particularly

well matched to the MININET situation which has short, fixed-length

packets. Nevertheless, such a ring is quite usable, within MININET.

especially where the size of the loop is small. The efficiency (in terms

of channel capacity) would be strongly dependent on the header, token
and delimiter size.

In the original Farmer and Newhall loop, the management of the

loop was centralized with a supervisor station providing bit timing, token

initialization and loop closure. However, more recent implementations.

26

such as proNET [SALW83], have distributed these functions or provide

for standby supervisors, as in the case of IEEE Standard 802.5

[IEEE85], removing the need for a supervisor node with the consequent

risk of total loop failure. ProNET is of special interest because the

absence of a master oscillator in a synchronous ring. Instead, each

station contains a crystal stabilized oscillator phase-locked to the

received data. Together, the oscillators form a ring of phase-locked

loops.

(2) Slotted Rings

In a slotted loop, an integer number of fixed-length (usually short)

frames or slots permanently circulate around the ring. Associated with

each slot is a full/empty flag. If a station on the ring wishes to send a

message, it waits until an empty slot is detected. It then marks the slot

full and places the message into the slot. This type of loop was first

described by Pierce [PIER72L In his design, the slot is emptied by the

destination station. Such a scheme has two disadvantages. Firstly, each

station must buffer the incoming slot sufficiently to read the destination

address and full/empty flag prior to onward transmission. In a local area

environment, this greatly increases the effective length of the loop.

Secondly, it Is possible for one station to fill slots continuously, so

denying access to all stations between it and the destination. Thus, the

method is intrinsically unfair with an indefinite maximum access time.

Kropfl's implementation of the Pierce Loop [KROP72] overcame the latter

problem, using a special hog prevention control field in the slot

headers. However, a more complete solution to these problems was

achieved In the Cambridge Ring [HOPP77], by allowing the full slot to

complete a complete revolution of the ring, before being set empty by

the original transmitter. The latter must release the slot, even if it has

another message to transmit. Thus, the station following an active

station Is guaranteed access after one revolution. In the case of a single

slot loop, this method Is almost identical to that of a token passing ring.

However, with a larger loop, where the loop delay is long compared with

the slot length, the multiple slots circulating around the loop are

equivalent to a number of tokens. This reduces the loop access time

compared with a single token ring. Therefore, slotted rings are

particularly well suited to the short, fixed-length messages of MININET.

The fairness and guaranteed maximum access time of the Cambridge

27

Ring make it especially suitable. Current implementations carry only 18

information bits in each slot [SHAR82] which is too small for MININET.

However, more adaptable versions are anticipated, which would allow a

complete MININET packet with header and error checking field to be

placed in a single slot.

One disadvantage of the slotted ring Is the need for a supervisor

station to set up and maintain the slot structure. (In the Cambridge

Ring, virtue is made of necessity by placing powerful diagnostic

procedures in the supervisor station [HOPP79].) In addition to reliability

considerations, an important disadvantage of the need for a supervisor

station is the relatively large initial installation cost of the ring, even

when it contains only a few stations.

(3) Register Insertion Rings

With this technique a station can inject a message into the ring at

once, provided that another message is not being relayed through the

station. If the ring is busy, the station can start to transmit its own

message immediately following the message being relayed. If a message

is received for relaying, during the time the station is injecting its own

message into the loop, the incoming message is queued in a variable

length shift register, until the new message has been transmitted. Thus,

the shift register has effectively been inserted into the loop, so giving

this access method its name. A station cannot inject another message

until it has sufficient memory space to buffer any incoming messages

during transmission. Therefore, the performance of this access method

is strongly influenced by the strategy used to remove the inserted shift

register. Its best known implementation is the Distributed Loop Computer

Network (DLCN) developed at the Ohio State University [REAM75J. In this

implementation, the message is removed from the loop by the

destination and the inserted register is shortened, as and when gaps

occur in the incoming message stream. This method allows the

possibility of hogging in a similar manner to that of the original Pierce

loop. In an independent development. Hafner et al. suggested three

different removal methods [HAFN741. One of these allowed the message

to complete a full revolution, so that it filled the inserted register,

whereupon the register was removed from the ring. This idea has the

advantage of minimal delay in each receiving station (as opposed to

buffering enough of the message to be able to recognize the destination

28

address In DLCN) and immunity to hogging. Consequently, it was an

early proposal by Wilkes for the Cambridge Ring [WILK75]. One

characteristic that all register insertion techniques have in common is

that. In contrast to the other access methods, the transit delay is

variable but bounded by the total maximum length of all buffers in the

loop. For the short, fixed-length packet MININET case, the method first

proposed for the Cambridge Ring is very attractive both as far as its

operating characteristics are concerned and the potential simplicity of its

implementation.

The management of the DLCN is completely decentralized.

However, both Hafner and Wilkes proposed the use of a supervisor

station to deal with exception conditions such as corrupted address

fields. A recent and apparently independent development by Hawker

Siddeley Dynamics called Multilink is, in fact, a variant of the DLCN

access method with the attendant danger of hogging. Its management is

fully distributed even to the extent of dynamic address assignment.

(4) Centralized Ring Control

In this class of ring, information flows between a single master

station and a number of slave stations. This asymmetry does not make

it very suitable for use inside MININET. However, it is interesting to note

that the application area of a number of implementations of this method

are very close to that of MININET. The Weller loop [WELL71] and the IBM

2790 Loop [STEW70] were both intended for interconnection of computers

with peripherals. The CAMAC Serial Highway [ESON76] connects a

central computer to a number of CAMAC crates. A register insertion

technique is used to allow short demand messages to be passed from

any crate to the central computer.

All three distributed ring access methods could be used within

MININET, with the appropriate message removal mechanism. It is

interesting to observe that virtually all access methods, immune from

hogging, require that the messages complete a full circuit of the loop,

before being removed by the original transmitter. The short transit

delay, access time and powerful diagnostics of the Cambridge Ring

make It especially suitable, particularly if the functions of its monitor

station could be distributed around the ring.

29

1.3.2 Bus Access Mechanisms

Interest in bus systems was triggered by the work of Metcalfe and

Boggs in adapting the ALOHA packet radio system [ABRA70] to the local

network environment In the Ethernet system [METC76], This access

method is called Carrier Sense Multiple Access/Collision Detect

(CSMA/CD). If a station has a message to transmit, it waits until the

bus is silent (the "carrier" sense function) , before transmitting the

message. If two stations attempt to transmit at the same time, a

collision occurs which corrupts the data on the bus. This corruption is

sensed by one or other of the transmitters (the collision detection

function) , which reinforces the collision by jamming the bus to ensure

that the other transmitter detects the collision. The transmitters then wait

a random period of time before attempting to retransmit. In the original

Ethernet, the mean of this interval was exponentially increased if multiple

collisions occurred. This implies that previously unsuccessful stations

are delayed longer than stations that have transmitted successfully.

Thus, under heavy load conditions, Ethernet is unfair and can suffer

from hogging. Note, that a higher speed version of Ethernet, but with

essentialy the same collision protocol has been adopted as IEEE

Standard 802.3 [IEEE841.

There have been a number of modified versions of Ethernet, which

allow immediate acknowledgement of received packets [TOKO77] and

more sophisticated retransmission backoff algorithms [HAIN82], Both

HYPERchannel [CHLA80] and Twentenet [NIEM84] use a CSMA bus with

address based time slot mechanisms to resolve contention.

The collision danger period lasts for a length of time, following the

start of transmission, equal to twice the propagation delay from one end

of the bus to the other. Therefore, the bigger the average data unit

size, the lower the probability of collision for the same information flow.

If the message length is reduced to the same order of magnitude as the

collision danger interval, the bus usage efficiency falls dramatically

[METC76J. Furthermore, the access time is unbounded and the

contention method is only stochastically fair under unsaturated load

conditions. Consequently, this access method is not well suited to the

real-time, short-packet MININET environment.

An alternative bus access mechanism uses token passing, in a

similar fashion to that of the token passing ring. This provides a

30

guaranteed maximum access time, but still is most efficient with long

messages. There have been a number of attempts to modify existing bus

protocols. to allow token passing arbitration. by adding extra

functionality. This can either be done at a high level within the data link

controller, as in the IEEE Standard 802.4 [IEEE85A] and that proposed

for PROWAY [IEC 81]. or at a low level within the Physical Layer

[WAWE82J.

As bus lengths get longer and transmission rates get higher, so the

efficiencies of the conventional bus access methods decline. A number

of bus access methods have been proposed to overcome these

limitations. These have the common feature that access to the bus is

ordered by the physical position of the station along the bus. A burst of

messages, the "data train" then makes its way from on end of the bus

to the other. Most methods, like Fasnet [LIMB82L EXPRESS [TARI83]

and D-Net [CHON82J. use unidirectional transmitter taps. However

some, like L-EXPRESS [TARI83], and Tokenet [AJMO83], use simpler

bidirectional taps and timer based procedures to order transmissions.

1.3.3 True Networks

One of the first local area networks was the Spider system,

developed by Fraser [FRAS74J. The topology of the network is that of a

rosette consisting of slotted loops interconnected and managed by a

central switch. Like MININET. it provides a connection orientated service

and uses a fixed-length packet (albeit larger - 304 bits carrying 256 bits

of user data) . The main application area of Spider was that of resource

sharing, between minicomputers, in a laboratory environment [FRAS75].

A later development at Bell Laboratories was the DATAKIT system

[FRAS79]. This uses a short contention bus within the central node.

Priority classes and the provision of local concentrator nodes are very

similar to the functional distinction between Exchanges and Stations in

MININET.

Pierce proposed a store-and-forward interconnection of loops to

form a hierarchical topology [PIER72J. This idea has, more recently,

been taken up by workers in Fujitsu as a method of interconnecting

optical fibre rings (KAWA83J.

Octopus is another hierarchically organized network, which has

evolved at the Lawrence Livermore Laboratory [FLET73J. The network is

31

functionally partitioned Into a number of subnetworks. There is one

subnetwork for connecting terminals to the large "worker" computer,

another connecting the computers to mass file storage, another for the

provision of high-speed printing facilities and so on. Each subnetwork is

essentially a star configuration with separate high-speed (16Mbps -

270Mbps) links between each worker computer and each subnetwork.

Subnetworks are directly interconnected only through relatively low-speed

50kbps channels. In a retrospective article [WATS78], the experiences

gained in the development of Octopus are discussed. The most important

lesson was the need for a clear architectural model, cleanly separating

the function of each layer. In Octopus, application and communication

protocols had been mixed up. with different subnetworks having different

protocols as a result. This caused great difficulty later, when the

subnetworks were interconnected. Problems have also arisen due to the

asymmetry of protocols and interfaces, which can make it difficult for

worker computers to communicate directly, or remote microcomputers to

directly access mass storage and high-speed output resources. A

solution based on HYPERchannel, a high-speed bus developed for

interconnection of large computers [THOR791. was proposed.

Note, that none of these networks was designed to serve the needs

of instrumentation users. The experiences, gained from the Octopus

network, support the MININET design decision to separate completely the

user and network processes. MININET's flexible topology allows it to be

configured to meet specific application needs. For example, very high

Virtual Connection throughput and short transit delays can be provided,

by the installation of a high-speed, point-to-point channel between the

Stations concerned.

1.4 HISTORY OF THE PROJECT

The idea of a local area instrumentation network grew from the

need to interconnect data acquisition equipment and minicomputers

within the Faculty of Engineering and Science of the Polytechnic of

Central London. It was soon realized that these requirements were not

unique and that such a network would have more general applicability.

The earliest description of the network was presented in May 1974

[MORL74J. At that time, the consensus of opinion, within the networking

community, was in favour of very large packet sizes. Consequently, an

investigation of the effect of packet size was undertaken [CAIN741. Not

32

surprisingly, this study showed that the optimum packet size was strongly

dependent on the average message size. By early 1975, the basic

network service and topology, the packet size and structure, and the

node functionality were established [MORL75J. However, the problem of

sequential routing had not been solved and the need for congestion

control was not understood. Furthermore, the management of the

network, including Virtual Connection establishment, had not been

defined.

Collaboration with a team from the Instituto di Automatica,

University of Bologna. Italy, started in 1974. In conjunction with this

team, the MININET Link Protocol (MLP), a sequential Data Link control

protocol, suitable for hardware realization, was developed [NERI77]. A

prototype network was constructed, consisting of 4 Stations and 2

Exchanges. A 16—bit PACE microcomputer was used to emulate the

operation of the packet and channel level hardware. This resulted in an

Implementation so slow that it became known as the Snail Network!

Largely as a result of the data link control overhead on the

microprocessor, the channels operated at less than 100 packets per

second. A high speed, full-duplex hardware implementation of MLP was

designed and implemented [FALD78], which relieved the microprocessor

of channel level responsibilities. However, the nodes themselves could

not handle more than several hundred packets per second. In Bologna,

the microprocessor was upgraded to an 8086. which increased the

throughput to approximately lk packets per second.

The MININET Control Protocol (MCP). a management transport

protocol, was developed [MORL78J to enable Station managers to

co-ordinate operations such as Virtual Connection establishment. MCP

proved to be too slow for use in congestion and routing control. To

handle these, a new class of message was devised. These NTAN

messages travel only between nodes directly connected together through

a single channel. The flow control algorithm is described in

Section 2.4.1 and the routing management protocol in Chapter 4.

The original intention was to upgrade the Snail Network nodes to

full speed, by adding additional hardware to Implement the structure

described In [CAIN781. However, the Snail Network did reveal a number

of problems of fairness and deadlock prevention, which could not be

cured without a radical change in the Internal node structure.

Furthermore, the original architecture was designed to support only

33

point-to-point channels, and its mechanical realization made it difficult

to add or change channel controllers. Consequently, a completely new

Station design was undertaken (described in Chapter 5). This

incorporates a look-ahead polling technique, which handles back

pressure vectors to ensure fairness and to control congestion. The final

design can handle packets at speeds approaching IM packet per

second.

A more detailed description of the technical evolution of MININET up

to 1980 may be found in [NERI84],

34

Chapter 2

NETWORK ARCHITECTURE

2. 1 THE MININET REFERENCE MODEL

With any system of reasonable complexity, it is necessary to divide

it into a number of sub-systems whose function and the interconnections

between them are well defined. In the case of a communication system,

this usually takes the form of a hierarchical model where each layer

provides a unified service to the layer above. In order to provide this

service, the entities (sub-systems) within the layer communicate with

each other by means of a protocol, making use of the service provided

by the layer below. Layers are interconnected by means of an interface.

Note that a protocol cannot be properly defined without the required

service offered to the layer above, and the service provided by the layer

below, having been previously specified.

2.1.1 Model Development

The architectural model of the Snail Network is shown in

Figure 2.1. This structure is remarkably close to that of the ISO OSI

Reference Model (ISO 84] despite the fact that it was conceived quite

independently of the ISO work. The "Channel Level" provided a Layer 2.

Data Link Service. Within each channel controller was a line conditioning

board, whose function roughly corresponded to that of the OSI Physical

Layer. The Network Layer within MININET was divided into two sublayers.

The Packet Switching Sublayer (Layer 3P) supplies a Packet Delivery

Service, which maintains logical paths between source and destination

nodes. The Virtual Connection Sublayer (Layer 3V) provides the user

with a word-stream Network Service. Splitting the Network Layer into two

sublayers allows the Virtual Connection state information to be retained

only in the end nodes. This facilitates connection establishment and

dynamic rerouting, as no buffers are specifically reserved for individual

Virtual Connections in the relay nodes.

This model very conveniently coincided with the major architectural

35

Remote
Services
Protocol

Terminal
Sub-System

MININET Host-Host Protocol

MININET Host-Network Protocol

DIM Computer-Peripheral Convention

MININET Control ProtocolVirtual Connection Sub-Layer

Packet Switching Sub-Layer

High Speed
Channel
Level

Low Speed
Channel
Level

Local Link
Channel
Level

Figure 2.1: Snail Network Architectural Model

divisions within the network. Each node consists of a core, concerned

with Layer 3 operations, surrounded by channel controllers providing a

transparent, sequential Layer 2 Service. In addition, each node has a

separate management processor. The two Layer 3 sublayers are handled

primarily by the different types of node. The Exchanges handle the

Packet Switching Sublayer while the Stations are mainly concerned with

the Virtual Connection Sublayer.

While this model was basically sound, there were a number of

errors and omissions in the original concept. The errors were largely

representational in nature, particularly in the depiction of the role of

user management functions as a "Host-Network Protocol". The omissions

were more serious. The communication requirements of the routing and

congestion control algorithms entailed the introduction of NTAN

messages, which did not operate through the usual management

transport service. Thus, the position of routing and flow control entities

within the model needed to be clarified. The original MININET conception

did not include multi-node channels (i.e. rings or buses). In fact, the

ISO OSI Reference Model also does not really include multi-node data

links except for one or two acknowledgements to their existence.

Superficially, it appears a relatively simple matter to incorporate

multi-node channels into the MININET model and architecture, as the

ring and bus protocol would be entirely handled within the channel

36

controller connecting the node to the ring or bus. However, problems

arise when the functions of a multi-node channel controller and the

general effect on Layer 3 functions, such as routing and flow control,

are examined in greater detail.

Two possibilities can be envisaged. The first is that a channel

controller continues to be exclusively concerned with Layer 2 functions

and provides a strictly Data Link Service, albeit a multi-node Data Link

Service. Such a service should continue to provide transparent,

sequential transportation of packets and NTAN messages between

adjacent nodes (i.e. nodes connected to the same channel),

irrespective of the message content. This is exactly the service provided

by a point-to-point channel. However, in a multi-node channel, the

node core would also have to provide the data link destination address,

which may or may not be the same as the Network Layer identifier of the

receiving node. Similarly, when receiving an NTAN message, the

channel must also supply the data link source address to enable the

core to identify the transmitter. For all practical purposes, the

multi-node channel would be treated as a bundle of point-to-point

communication paths tied together into the same channel.

The other possibility is to delegate as many as possible of these

added burdens to the multi-node channel controller. As far as

packet-by-packet routing is concerned, the node core would route a

packet to the correct channel controller, whereupon the channel

controller routes the packet to the appropriate adjacent node. In

addition, some broadcasting and pre-processing of NTAN messages

could be done by the multi-node channel controllers. These functions

are indisputably Layer 3 functions, since they are concerned with

network addresses and they manipulate NTAN messages. Therefore, the

adoption of the second option leads to certain Network Layer entities

being placed in ring and bus controllers. This introduces the concept of

a further Network sublayer - the Multi-Node Channel Sublayer (Layer

3M). The extra functionality required to handle multi-node channels is

almost completely placed in their controllers leaving the node core

virtually unchanged. Furthermore, the simpler point-to-point channel

controllers are not burdened with irrelevant jobs, as the secondary

routing function and the NTAN message processing reduce to that of a

transparent pipe in the case of a two-node channel. Thus, Layer 3M

becomes a null layer for point-to-point channels. This is illustrated in

37

MU
LT

I-
NO

DE

MU
LT

I-
NO

DE
ST

AT
IO

N
CH

AN
NE

L
CO

NT
RO

LL
ER

CH

AN
NE

L
CO

NT
RO

LL
ER

Figure 2. 2: Location of Layer Entities in MININET

38

Figure 2.2, which shows the physical location of the sublayer entities.

Note that for simplicity, no user interfaces are shown connected to the

Exchange.

The problems associated with adding multi-node channels to

MININET are very similar to the problems of internetworking ISLOM83J.

With internetworking, the subnetworks, which may be pre-existing wide

area or local area networks, are analogous to the rings and buses used

as multi-node channels.

2.1.2 Sublayer Functions

The revised MININET hierarchical model is shown in Figure 2. 3 and

Users’ Protocols
Network

Management
Systems

Virtual Connection
Sub-Layer

MININET Control
Protocol

Flow
Control

Routing
Management Packet Switching Sub-Layer

Multi-Node
Channel Sub-Layer

Data Link Layer Data Link Layer Data Link Layer

Physical Layer Physical Layer

Figure 2.3: The Revised MININET Hierarchical Model

the function of each layer is summarized in Table 2.1. In essence, the

Channel Service provides a reliable, sequential message delivery service

between adjacent nodes for packets and NTAN messages. This is strictly

a Layer 3M Service. There are three layers below this service level.

The Physical Layer, which corresponds directly to the OSI Physical

Layer, is responsible for transmission coding and channel symbol

synchronization. The service provided by this sublayer and the interface

39

Table 2.1: MININET Layer Functionality

40

between it and the Data Link Layer, is not specified in detail. This

allows maximum freedom to tailor the network's use of whatever physical

medium is most suited to an environment or application, and to allow

the exploitation of any further developments in data transmission

technologies. However, a de facto standard has emerged in

implementation, which is suitable for high-speed, point-to-point, serial

links. It allows a variety of physical media (e.g. coaxial cable or optical

fibre) , modulation and encoding schemes to be used with the same data

link controller. This implementation has the interesting characteristic that

the size of the Physical-SDU is the conventional I bit. while the

Physical-IDU is 4 bits wide. This was done so that the Data Link Layer

circuitry need only operate at one quarter of the bit rate of the physical

channel. Allowing the size of the SDU to remain at one bit means that

the Physical Layer receiver is not required to frame the incoming data

stream to the original 4—bit boundary. Synchronization to data units

larger than one bit is left to the Data Link Layer.

The Data Link Layer (corresponding directly with OSI Layer 2) is

responsible for error recovery procedures that guarantee no loss of

sequentiality. This would normally involve wrapping the message in an

envelope, which includes a header containing channel control

information and some sort of checksum tail protecting the header and

message. A primary task of the receiving entity, in this layer, is

envelope synchronization - i.e delimiting the start and end of each

envelope (block framing). The Data-Link-PDU would normally contain a

single packet or NTAN message. Segmenting or blocking may be

necessary if the format of the Data-Link-PDU is already fixed. However,

since the SDU is already small, segmenting would tend to be rather

inefficient as far as channel utilization is concerned. If blocking is

performed to improve channel efficiency, messages should not be

delayed excessively in order to fill a PDU. The Data Link must preserve

the identity and distinction between packets and NTAN messages. The

management of the Data Link includes initialization, maintenance of

performance statistics, recovery from major failure and in the case of

multi-node channels, the Identification of other stations on the ring or

bus. An important management function is to monitor continually the

channel operation and decide when it is available for use. The Data Link

Service, per se. is not of any explicit concern except for its effect on

the Channel Service.

41

The primary function of the Multi-Node Channel Sublayer (Layer

3M) is to route a packet to the appropriate adjacent node. This involves

mapping the destination node address of the packet into a data link

address and passing this to the Data Link Layer. Note that this is a

many-to-one mapping, as there may well be further hops before the

packet finally reaches its destination. It is not the function of this

sublayer to determine which is the "correct" next hop. This information

is loaded into the channel controller by the routing management entity

within the node core. The transmitter entities, within this sublayer, also

provide a broadcast service for the transmission of certain NTAN

messages, including flow vectors, to all other nodes connected to the

same channel. Upon receipt of a flow vector from an adjacent node, the

receiving entities must compute a new composite vector, incorporating

information from the other nodes connected to the channel, and pass

this to the node core.

The Packet Switching Sublayer (Layer 3P) provides the Packet

Delivery Service which undertakes to transport packets reliably and

sequentially from source node to destination node. It does this with the

aid of the routing management and the buffer allocation algorithms. The

bulk of the Exchange core is concerned with this sublayer (Figure 2.2).

The main objectives of the 3P entities, within an Exchange, are to

choose the correct output channel for a packet (routing), and not to

allow the Exchange packet buffers to overflow (congestion control).

Since a Station never performs the relay function of forwarding a packet

from another node to some other node, it does not have a great deal of

functionality within this sublayer. However, it must take part in the

distributed routing management algorithm, so that the presence of the

Station is known to the rest of the network and to enable it to choose the

best output channel for packets originating at the Station. It must also

take part in the congestion control protocol as discussed in

Section 2.4. 1.

The Virtual Connection Sublayer (Layer 3V) provides a connection

based service to the network ports and so to the network users. Since

this is the only service which is visible externally to the users, it is

called the MININET Service. In the original MININET design, the only

type of interface into the network was a DIM port. Any other type of

interface, such as IEC-625 or the V24 asynchronous line interface,

required an interface translator external to the network. This translator

42

was considered by the network to be part of the user device. Thus, the

Network Service boundary was the DIM port interface. While

architecturally and administratively sound, this approach was not always

cost effective because of the frequent need for interface translators in

addition to the ports. The alternative now adopted is to allow ports to

have different types of interfaces. However, unlike DIM. interface

standards such as the IEC-625 instrumentation bus [IEC 79] were not

designed for use with a local area network. Consequently, their port

design is more corpplex than that of a DIM port and a protocol has to

exist between the ports themselves in order to maintain the "fiction" of a

direct local connection between devices. This is in contrast to a DIM

port, which acts as a straightforward interface into the network. In order

to allow devices connected though a DIM port to communicate with

devices connected though some other type of port, the other types of

port must use a protocol compatible with the DIM Computer-Peripheral

Convention described in Section 3.3. The existence of a protocol

actually between ports, as entities in their own right, means that a new

sublayer, in the OSI sense, has been created. This layer could be

thought of as an interface sublayer at the top of the network. Such a

model is not entirely satisfactory, as the Network Service would have to

be defined in terms of the port design. There would no longer be a

single service specification but many depending on the number of port

designs. Problems would also arise with DIM devices connected though

a DIM port to a device via a non-DIM port, because the DIM device

(outside the network) would be communicating on a peer-peer basis

with the non-DIM port (inside the network). All these difficulties are

avoided by placing the MININET service boundary between the ports and

the Station core.

The Packet Delivery Service is used by MCP [MORL78] to provide a

highly secure, half-duplex, connection oriented Transport Service (OSI

Layer 4) for the management entities within each node.

2.1.3 Relationship to the ISO OSI Reference Model

As far as layer identification and boundaries are concerned, the

MININET and OSI models are very similar. However, in other aspects

there are a number of important differences. The most fundamental of

these is that the OSI model is an abstract communication model, while

the MININET model is an implementation model. As a result, the OSI

43

model is not concerned with physical or administrative divisions. On the

other hand, the MININET model is designed to provide an architectural

framework for a specific implementation. As such, it is much more

concerned with the physical divisions required to meet the performance

specifications for the network. Boundaries between the layers of the

model and the physical divisions in the nodes are expected to coincide,

as shown in Figure 2.2.

The OSI Reference Model, in its original form [ISO 84], used only

one type of connection-oriented service. Although the model has been

extended to include connectionless services [ISO 87], with a variety of

connectionless service types being proposed [VISS85], there appears to

be no sign of any effort to include other types of connection-oriented

service in the model. Figure 2.4 illustrates the four-phase sequence of

USER

(N)-SERVICE PROVIDER

USER

Figure 2.4: OSI Connection Establishment Procedure

service primitives required to establish an (N)-connection. through a

pair of (N)-Service-Access-Points (SAPs) , as defined in the OSI

reference model. Note that, both the (N+l)-entities are involved in the

connection establishment and must be actively present for the connection

to exist. This has been criticised, by proponents of connectionless

services [VISS85], as being unnecessarily complex. Furthermore, it

requires a fairly high degree of network awareness on the part of the

service user during the connection establishment phase. In the case of

44

MININET, this is undesirable as it compromises the requirement for

transparency (Section 1.2.2).

An alternative approach has been used in MININET. Connection

establishment is treated as a management function. A user management

entity requests, via a management-service-access-point (MSAP), a

Virtual Connection to be established between two ports of the network.

Network management entities then attempt to set up the connection,

whereupon the user management entity is informed of the success, or

otherwise, of the connection establishment. This approach requires only

two connection service primitives, as shown in Figure 2. 5. The devices

DEVICE A DEVICE BUSER
MANAGEMENT

c□

NETWORK
MANAGEMENT NETWORK

Figure 2. 5: MININET Connection Establishment Procedure

connected to these ports are not involved in the connection

establishment procedure. Consequently, the availability or even existence

of the connected devices is not established by the Network Connection -

only the existence of pipes between the connected ports. Device

readiness can only be ascertained by the peer-peer protocol between

the connected devices just as if they had been physically connected

directly together. The actual realization of two types of MSAP are

described in Section 2.5.1.

45

A service function that is not explicitly described in the OSI

Reference Model is PDU delimitation. The general concept of breaking

an (N)-PDU into a number of (N-l)-SDUs is not described by the ISO

standard, on the implicit assumption that an (N-l)-SDU will contain at

least one (N)-PDU (although it may contain more. If the (N)-entity

performs concatenation) . However, in the specific description of the

Physical Layer, the usual SDU is envisaged to be one bit - clearly much

smaller than the Data Link PDU. In practice, the job of delimiting Data

Link PDUs (otherwise known as framing) may be done either within the

Data Link Layer or is a service provided by the Physical Layer (e.g.

through the use of special transmission codes) . For the other layers, it

is implicitly assumed that PDUs are delimited by the layer below, unless

concatenation has been performed. Indeed, the whole important problem

of framing was overlooked in the model specification.

The requirements for ultra-transparency and heterogeneity, in the

MININET Service specification, mean that MININET cannot know the form

or size of users' PDUs. Consequently, the MININET Service does not

delimit user PDUs and it is up to the user entities to frame their own

messages, just as they would if directly connected together. However,

the control class of transfer, through the network, provides a

mechanism for various user synchronization procedures to be

implemented. An important example is the DIM Computer-Peripheral

Convention (DIM-CPC). described in Section 3.3, which provides a

common basis for user protocol design.

2.2 MESSAGE STRUCTURES

Four major types of messages are exchanged between entities at

various levels within the network. The difference in their purpose is best

revealed by the difference in their scope, as represented in Figure 2. 6.

These are packets, node-to-adjacent-node (NTAN) messages,

intra-node-control (INC) messages, and intra-channel-control (ICC)

messages.

(i) The "long distance" information carriers are packets which travel

and retain their identity, from a source node to a destination

node anywhere in the network, possibly through one or more

relay nodes. Their scope is, therefore, network wide. There are

two types of packet. A user packet contains data transferred

46

Node Core

EN
D

 NO
D

E
1

RE
LA

Y N
O

D
E

1
EN

D
 NO

D
E 1\

in
id
CD c
in in
id z:

CJ

o

Channel Controller

1 1 1 1

IC
C

M
es

sa
ge

s
1 1 1 1

Channel Controller
1

u

1
M

es
sa

ge
s

Node Core
1

o
z

!

M
es

sa
ge

s *r

Channel Controller

1 1 i
IC

C
M

es
sa

ge
s

1 1 1

Channel Controller

in1)
cd
(0 tn
in
QJ

Node Core

Figure 2.6: MININET Message Scope

47

across a network port in the source node. A network packet

carries information from one node manager to another. It is used

by the MININET Control Protocol (MCP) described in

Section 2.6.

(il) NTAN messages travel only between adjacent nodes (i.e.

between nodes connected to the same channel). There are two

types of NTAN message. The broadcast-NTAN (B-NTAN)

message is broadcast to all the nodes connected to a multi-node

channel, while a specific-NTAN (S-NTAN) message is

transmitted to only one specified adjacent node. For a

point-to-point channel, there is no difference in the distribution

of B-NTAN and S-NTAN messages.

(iii) Control information, between entities within a node, are carried

by INC messages. These travel primarily between the node core

and the channel controllers. Thus, they form a means of

communication between the channel controllers and the

management entities within the node core. INC messages are

also divided into two classes. The D-INC message is used to

carry management data and is subject to flow control between

the source and destination entities. C-INC messages, on the

other hand, are not subject to flow control. They are used for

the exchange of control information, such as channel status or

commands, and to regulate the flow of D-INC messages.

(iv) ICC messages flow between channel controllers of adjacent

nodes carrying control information internal to the channels.

2, 2.1 Message Formats

The user packet contains, not only the user data consisting of a

network-SDU. but also the header which contains addressing information

and a flag to distinguish between user and network packets. With most

protocols, it Is necessary to include the source as well as the

destination address in each packet. However, with the very small amount

of user data carried in each MININET packet, the overhead, of carrying

the source as well as the destination address, would be crippling. For

this reason, only the destination address is included. This address has

two components: the destination node and the destination port. No

source address is required, because a port can be virtually connected to

48

only one other port at any one time. The size of the address fields is a

compromise between the desirability of minimizing the size of the packet

header and maximizing the potential maximum number of nodes in the

network and ports in a node. A 6—bit length was selected for both the

node and port address fields. Therefore, the maximum number of nodes

in the network and ports in a node are restricted to 64 in both cases.

The small packet size also precluded any sequence field, as discussed

in Section 1.2.3. The inclusion of two parity check digits, to fulfil the

requirements described in Section 1.2.4, results in a total packet size

of 32 bits.

The overall formats of packets. NTAN messages and INC messages

are shown in Figure 2.7. Since ICC messages are completely internal to

the various types of channel, their formats do not require standardization

across the network. In transit within a node, these different types of

message are distinguished by means of a message type field as shown.

Network packets are distinguished from user packets by means of the

network message flag (NMF). In addition to the NMF. the address

section of an user packet (Figure 2.7a) contains the destination node

address (DNA), the destination port address (DPA) and a check bit

(AFP) which makes the parity of the address section odd. The data

fields of a user packet consist of a 16—bit data field, the data class flag

(DCF) and an odd-parity check bit (DFP). These 18 bits of the data

section form the single Network-SDU/IDU, as discussed in

Section 1.2.2. The network packets (Figure 2.7b) have a similar

structure to the user packets except that, instead of a DPA, it has a

source node address (SNA) field and, instead of a DCF, it includes a

modulo-2 sequence number (SQN). These are used by MCP.

The adjacent node address (NODE) field (Figure 2.7c),

accompanying a NTAN message when travelling from a multi-node

channel controller to the node core, is generated by the channel

controller and identifies the adjacent node that originated the message.

The NODE field, accompanying a S-NTAN message when travelling from

the core to a multi-node channel controller, identifies the adjacent node

to which the S-NTAN message should be sent. For B-NTAN messages

travelling from the core to the channel, the content of the NODE field is

Immaterial. This is also true for all NTAN messages travelling to or from

a point-to-point channel since there is only one other node connected to

that channel. This address is protected by an odd-parity bit (ANP).

49

TYPE MESSAGE

p 1 0

(a)

(b)

P 1 0

0 0 1

P 1 0

1 1 1 0

0
N A D D
M DNA DPA F F C DATA
F P P F

Data FieldsAddress Fields

0
N A D S
M DNA SNA F F Q DATA
F P P N

Data FieldsAddress Fields

3130________ 25242322 1918__________________________________ 0
A N S
N NODE M M CLASS MESSAGE
P P F

171615 0
D
F
P

D
C
F

MESSAGE

1 0 0

P 1 0

10 0

Figure 2.7: MININET Message Format

(a) User packet (NMF=O); (b) Network packet (NMF=1); (c) NTAN
message; (d) INC message.

Key:.

NMF = Network message flag
DNA = Destination node address
DPA = Destination port address
SNA = Source node address
AFP = Address fields parity
DFP = Data fields parity
DCF = Data class flag
SQN = Sequence number
ANP = Adjacent node address parity
NODE = Adjacent Node address
NMP = NTAN message parity
SMF = Specific message flag

(0 = B-NTAN, 1 = S-NTAN)
CLASS = Message class

50

Note that this must be calculated correctly, even when the adjacent node

address Is not of any significance. S-NTAN messages are distinguished

from B-NTAN messages by means of the specific message flag (SMF).

The message class field (CLASS) basically indicates the destination

processor and task within the core. The following classes of NTAN

messages have been allocated:

B-NTAN class 0: flow vectors;

B-NTAN class 1: channel management;

S-NTAN class 1: channel management;

S-NTAN classes 7-15: routing management.

The internal structure of the NTAN messages is shown in

Figure 2.8. All routing management messages (UPD, FLS and CHG)

are of the S-NTAN type. Note, that the UPD routing management

message has a slightly different format to the other NTAN messages,

because of the relatively large amount of information packed into it. This

message effectively reserves S-NTAN classes 8 to 15 inclusive. The use

of these messages and their parameters is described in Chapter 4. The

WRU. WKE and 1AM messages are described In Section 2.3.3. The BPV

messages provide updates of backpressure flow vectors and are

described in Section 2.4.1.

The INC message has a similar format (Figure 2. 7d) to the data

section of a user packet.

2.2.2 Packet Size Considerations

The size of the user data section of the packet (Network-PDU) has

been constrained to one Network-IDU by the transparency requirements

of the network (Section 1.2.2). The size of the packet header is

determined primarily by the size of the node and port address space as

discussed in the previous section. However, it is useful to consider the

effect, of this relatively small fixed packet size, on the overall efficiency

of the packet transmission and of the storage In network relay nodes.

This has been discussed at length in [CAIN741.

Let M be the message (I.e. the user-PDU) length. D be the

(fixed) size of the packet's data field and H be the size of the packet's

header (and trailer. If any). Note that M Is, in general, a random

variable whose distribution Is a characteristic of the user traffic, while D

51

BPV:

WRU:

WKE:

IAM:

FLS:

CHG:

UPD:

BPV, =

WRU =

WKE =

1AM -

FLS =

CHG =

UPD =

242322 1918 1615_________________________ 0
N
M
P

0 0 0-3 VECTOR

242322 1918 1615 6 5 0
N
M
P

0 1 0 ATTRIBUTES ADDR

242322 1918 1615 0
N
M
P

1 1 1

242322 1918 1615 6 5 0
N
M
P

1 1 0 ATTRIBUTES ADDR

242322 1918 1615_______ 10 9 6 5________ 0
N
M
P

1 7 0 SEQ CODE SINK

242322 1918 1615 10 9 6 5 0
N
M
P

1 7 1 SEQ CODE SINK

24232221 1615 10 9 0
N
M
P

1 1 SINK SEQ DISTANCE

Figure 2.8: NTAN Message Structure

backpressure flow vector update;
NMF = NTAN message parity (odd);
VECTOR = 16—bit segment of new flow vector.

"Who are you?" - adjacent node identification request;
ATTRIBUTES = source node characteristics;
ADDR = address of source node.

"Wake" - link rehabilitation request.

"I am" - node identification message.

routing flush message;
SEQ = update cycle sequence number;
CODE = sub-function code;
SINK = address of root node.

routing connectivity change message.

routing distance update;
DISTANCE - distance of source node from the SINK.

52

and H are fixed parameters of the network. The wastage can be defined

as the number of bits, in excess of M, used in transporting the

message. This wastage arises from two causes: header transmission

and Incomplete filling of the last packet. The number of packets

transmitted is

fol
where pa"| is the smallest integer greater than or equal to a. Thus, the

wastage, for a particular message of length M, is

(H + D) - M

and the expected wastage.

(H + D) - E[M] (2: 1)

Surprisingly, there has been comparatively little experimental

measurement of the shape of the message length distribution. Supported

by what little evidence is available [FUCH70], [KLEI74J. and In the

absence of any information specifically on instrumentation traffic, a

geometric distribution of message lengths will be assumed, i.e.

P(M=k) = (l-e)0k~1: k= 1, 2, 3... (2:2)

and

E[M] = y-— <2:3)

Then

S
M /
~ =j ?= P{ (j-l)D < M < jD }

= (1-0) £ 0k_1 = (1-0°) (0D)M (2:4)
k=(j-1)D+1

D
This is, again, a geometric distribution with a new parameter. 0 .

substituted for 0. The expected value is, therefore.

(2: 5)

53

Thus, the expected wastage becomes

W = H + D _ 1
1 - 0D 1-0

(2: 6)

where 0=1- 1/EtMJ. (2: 7)

against increasing E[M], it initially falls from its

before rising again to approach asymptotically.

EtMJ ♦ (2: 8)

If this function is plotted

starting value of H+D-l

from above, the line

H
D

This asymptotic bound can be obtained by taking the limit, as E[M] tends

to infinity, of

W - 5 E[M1

Unfortunately, it is not possible to obtain an expression for the wastage

minimum in closed form. Therefore, the minimum wastage can only be

found using numerical techniques.

Strictly speaking, the size of the user data field in the MININET

packet is 17 bits, or even 18 bits if the data fields parity bit is included.

However in practice, a large block of user data would be segmented into

16—bit segments, with the data class flag used to indicate that data is

being carried. The control class transfers are used, among other

functions, to delimit the user messages. Thus, as far as buffer

utilization within the Exchanges is concerned, the header overhead can

be taken as 16 bits, with a data field length of 16 bits. Using (2:6),

the consequent expected wastage per message, as a function of average

message length, is plotted as the solid line in Figure 2.9 with

H = 16 bits and D = 16 bits. It can be seen that, as the mean length

of the messages Increase, the expected wastage falls to a minimum,

before increasing towards the asymptotic line, EIM] + 15, as predicted

by (2:8). The minimum wastage occurs with a mean message length of

only 6 bits. As far as buffer wastage is concerned, this Is the optimum

average message length for the given values of D and H. However, this

does not Imply that 16 bits is the optimum data field size for a mean

message length of 6 bits. To find this optimum value, it is necessary to

Investigate expected wastage as a function of D. This is plotted, again

using (2:6), for mean message lengths of 6, 12 and 24 bits, in

Figure 2.10. This shows that. In fact, 11 bits is the optimum data field

54

H = 16

Ex
pe

ct
ed

 Wa
st

ag
e [b

its
!

Expected Message Length [bits]

Figure 2.9: Expected Wastage Versus Average Message Length (D=16)

size for E[M]=6 bits. Furthermore. Figure 2. 10 implies that D=16 bits is

the optimum for mean message lengths in the order of 12 bits. The total

picture can be better understood by means of Figure 2.11. which plots

expected buffer wastage as a function of both data field and expected

message length. Superimposed, on these wastage contours, are the loci

of minimum expected wastage for a given mean message length and for

a given data field size. This confirms that a data field size of 16 bits is

the optimum value for mean message lengths around 13 bits. For

average message lengths in the range 1 bit to 20 bits, the wastage is

within 20% of this optimum value. Note that the buffer wastage

considered here is due only to overheads within the used buffers.

Wastage due to buffer utilization is additional to that estimated here and

is dependent on the buffer allocation algorithm used.

55

E[M]=6

EIM 1=12
e’”m”]’=24

Figure 2.10: Expected Buffer Wastage Versus Data Field Size (H=16)

When the packet is actually being transmitted between nodes, it is

wrapped In a channel envelope. This typically consists of a 4—bit header

and a 16—bit block check field. Therefore, as far as channel wastage is

concerned, H = 36 bits. The dotted line in Figure 2.9 shows the

expected wastage, within the channel, as a function of average message

length. Minimum wastage now occurs with an average message length of

only 4. 5 bits. As the average message length is increased beyond this

value, the wastage increases much more rapidly than the buffer wastage

case. In fact, the asymptote, as given by (2:8). is

2.25 E[M] + 24.375. Wastage contours for this header overhead are

shown in Figure 2.12. together with the loci of the wastage minima

against both data field size and mean message length. This shows that

56

Expected Message Length [bits]
Figure 2.11: Buffer Wastage Contours and Minima Loci (H=16)

a 16—bit data field is optimum for average message lengths around 8.5

bits. The range of E[MJ. for which the channel wastage is within 20% of

the optimum value, is 1 bit to 14.5 bits. This is quite close to that

obtained In the buffer wastage case. Note, that this calculation has

Ignored the packet corrupting effect of noise in the channel. When the

losses due to this noise are taken into account, the optimum data field

size is reduced. This effect is primarily due to the lower retransmission

costs of smaller packets together with the lower probability of smaller

packets being damaged. However, at error rates typical of a local area

network, these effects have only a very slight effect on the total wastage

(CAIN74J.

The results, shown in Figures 2.11 and 2.12, can be used as

design curves for networks with larger message lengths, by recalibrating

57

Po
ck

et
 Do

te
 Fie

ld
 Siz

e

Expected Message Length [bits]
Figure 2.12: Channel Wastage Contours and Minima Loci (H=36)

recalibrating the lengths in units of bytes instead of bits.

2.3 THE CHANNEL SERVICE

The Channel Service can be summarized as follows

(1) Its primary function is to transport packets and NTAN messages

sequentially between adjacent nodes.

(2) The probability, of a corrupted or duplicated packet, a corrupted or

duplicated NTAN message, or a sequence error occuring. is

vanishingly small.

(3) Flow control, in the sense of being able to reduce the throughput

of the channel to that which can be handled by the receiving node,

is provided.

58

(4) Statistics on the channel performance (in terms of Physical Layer

signal quality measurement and/or frequency of retransmission) are

kept, in order that the channel's current reliability can be assessed

by the node management.

2. 3.1 Multi-Node Channel Characteristics

The function of the multi-node channel sublayer (Layer 3M) can be

broken down, firstly, between its handling of packets and its handling of

NTAN messages, and secondly, between its action on transmission and

its action on reception.

When transmitting a packet into a multi-node channel, the correct

adjacent node has to be selected. This is performed by examining the

destination node address field of the packet, and using this as an index

to a table which would provide the corresponding data link address. The

table is supplied and maintained by the routing management entities, in

the same way as the routing table in the core of the node.

On reception of a packet, no special action is required by this layer

because the identity of the adjacent node, which transmitted the packet,

is not required for routing or flow control purposes.

The transmission of S-NTAN messages requires a similar function

to the transmission of packets. The adjacent node address, supplied

with the S-NTAN message, is used to determine the data link address.

B-NTAN messages, on the other hand, should be transmitted to all

extant nodes connected to that channel. If the Data Link Layer supports

a broadcast service at sufficiently high quality in terms of reliability, this

service can be used. Otherwise the 3M sublayer must repeatedly

transmit the same message to each adjacent node in turn. Thus, one

Layer 3M service primitive is mapped Into several Layer 2 service

primitives with identical message contents.

On reception of all types of NTAN messages, other than BPV

updates, the message is passed on unchanged to the node core,

together with the address of the node which originated the message.

The latter is obtained by an inverse mapping from the data link source

address to the corresponding node address. It is the responsibility of the

channel management to construct and maintain the mapping table used

for this purpose. When a BPV update is received, a new composite flow

vector, associated with all packet transmissions through that channel.

59

must be generated. The composite vector is computed as follows. Let

U. be the flow vector most recently received from adjacent node /. This

is the set of destinations for which node I has buffer space available.

Also, let FL be the set of destinations for which the transmitting entity

directs packets via node i. The composite flow vector, V. is then given

by

V = (J R. n Uj (2. 9)

where the union is taken over all adjacent nodes connected to the

channel. Since only 16 bits of the flow vector are updated at any one

time, it is necessary to recompute only the affected quarter of the flow

vector each time. The composite vector must also be recomputed

whenever a routing change is made within the channel. The use made

by the node core of the flow vectors is described in Section 2.4.1.

2.3.2 The MtNINET Link Protocol (MLP)

Conventional link protocols, such as HDLC [ISO 791. were designed

for relatively large, variable-length packets. In the case of MININET, a

protocol was required to handle very short packets and to maintain

inherent sequency, even when packets are retransmitted. This required

protocol could exploit the simplicity of the fixed-length packets to enable

easy implementation in hardware. However, it had to be robust enough

to withstand multiple errors.

A half-duplex protocol, used in the terminal concentrators of the

NPL network [SCAN69], provided the basis for the MININET link protocol

(MLP) [NERI77J. In fact, MLP can be described as an extension of the

NPL protocol which makes it full-duplex, thus exploiting more fully the

bandwidth of the physical channel. Another advantage of full-duplex

operation is that frames can be transmitted continuously, so avoiding the

need for any delimiting flags or preambles. Thus, the transmission is

made fully synchronous at the frame level as well as at the symbol level.

As a consequence, when there are no messages available to transmit,

it is necessary to flag the unused frames as dummy envelopes. If one

side of the link synchronizes its transmitter clock to Its receiver clock

(as is done in a regenerative repeater), then, since the packets are of

fixed-length, there is a stable one-to-one correspondence between

60

transmitted and received envelopes at both ends of the link. This packet

interlock allows each outgoing envelope to carry piggyback the

acknowledgement for the last envelope received. Figure 2. 13 shows an

RACKETS

RACKETS

PACKETS

RACKETS

ARRIVING AT RECEIVER

LEAVING TRANSMITTER

ARRIVING AT RECEIVER

LEAVING TRANSMITTER

►TIME

Figure 2.13: Time Placement of Interlocked Envelopes (m=3)

example of the time placement of envelopes at both ends of the

channel. Let T be the one-way propagation delay between the two

nodes, t . and rD be the turn-round delay between the arrival of the

last symbol of an incoming packet and the start of transmission of the

following return packet within nodes A and B respectively. If n is the

number of transmission symbols in each envelope, and f is the Baud

rate, then n/f Is the time taken to transmit one envelope. Let m be the

channel latency, i.e. the number of subsequent envelopes transmitted

before the acknowledgement of an envelope is received. From

Figure 2. 13,

2T + t k + t b + n/f
(2: 10)ri i n/f

In Figure 2. 13, m=3. Note that, since T > 0, rA > 0 and rB > 0, the

minimum value of m In a full-duplex channel without gaps between

envelopes is 2.

If a receiver detects a damaged envelope, there will be a delay

before the transmitter at the other end of the link is informed by means

61

of an error message (EM) carried piggyback on the interlocked envelope

in the return channel. During this time, m other envelopes will have

been transmitted. When the damaged envelope is then retransmitted, it

will appear behind those intervening packets. If the receiver had simply

dispatched all undamaged packets as data indication service primitives to

the layer above. then each retransmission would produce an

unacceptable sequence error in the Data Link Service. Therefore, in

MLP. the receiver does not dispatch a packet to the layer above until,

not only It. but all preceding packets have been received correctly.

Consequently, the transmitter must retransmit not only the damaged

envelope but also the following m packets, i.e. the last m+1 envelopes

must be retransmitted. This is illustrated in Figure 2. 14. where packet

RACKETS LEAVING

m

a b c d g d e f 9 h

w RETRANSMISSION

TIME

PACKETS ARRIVING AT B a b c - ft f 9 d • f 9 h

NOT DISPATCHED

PACKETS LEAVING B a b c d e' f '(EM) g' h r j k r

PACKETS ARRIVING AT A a b' c' d' e f'(EM) 9 h' r j' k' r

Figure 2.14: Error Recovery Maintaining Sequency (m=3)

A

d, sent by node A. is damaged, and node B sends an EM in envelope

V that is received by node A while It is transmitting packet g. Node A

will, instead of transmitting h. retransmit its packets starting from d.

The damaged envelope d was carrying the acknowledgement for packet

b'. Consequently, node B does not know whether b' was correctly

received by A. Therefore, b' must be retransmitted In case it was

originally damaged. In order to maintain sequency in the pathway from B

to A. the m packets following b' must also be retransmitted.

This procedure may fruitfully be used to act as the EM itself. Let

each envelope carry a sequence number by which it can be identified,

and let the arrival of undamaged packets be acknowledged by

62

transmitting their interlocked packets with a sequence number

incremented by one with respect to their predecessors. Then the arrival

of a damaged packet can be signalled merely by retransmitting the

previous m+1 packets. The receipt of an envelope, whose sequence

number is m+1 less than expected, acts as an EM. triggering the

desired retransmission of the damaged packet and the following m

packets. Moreover, since both directions have retransmitted m+1

packets, the packet sequences remain Interlocked. Consider as an

example, the case shown in Figure 2. 15 where m=2 and a modulo~4

RACKETS ARRIVING AT

RACKETS LEAVING B

RACKETS ARRIVING AT

RACKETS LEAVING A

------------------►THE

Figure 2.15: Acknowlegement by Means of Sequence Numbers (m=2)

sequence number is used. Envelope sequence number 3, carrying

packet d. has been received damaged, by node B, which therefore,

jumps back m+1 (3 in this case) packets and retransmits packet b' with

a envelope sequence number of 1. The reception at A of a envelope

number 1, instead of the expected number 0. during the transmission

of packet f. Is decoded as an EM and causes transmitter A to jump back

m+1 (3) . retransmitting packets d. e and f. Meanwhile, node B does

not dispatch the m (2) packets following the damaged d. to avoid packet

duplication and sequence errors, so that the the first packet to be

accepted, once more, is the retransmission of d. Note that, thanks to

the packet interlock, only a single sequence number Is required in each

envelope.

The key feature of this protocol Is that the action of a transceiver,

upon receipt of an EM. is identical to its action on detection of a

63

damaged packet: viz to retransmit the last m+1 packets. This both

simplifies the protocol implementation and makes it resilient in the

presence of multiple errors In either direction. In [NERI77], it is shown

that MLP is reliable, even in the presence of damage to packets in the

retransmission and recovery intervals (i.e. damage to an EM, damage

to any of the m packets proceeding an EM or damage to any of the m

packets following an EM) provided that the following rules are observed:

(a) The packet, carrying an implicit EM in its sequence number, must

not be dispatched to the layer above since its packet has already

been received.

(b) The m envelopes, following a damaged packet or an EM, must be

ignored by the receiver as far as information carried, possible

damage and sequence numbers are concerned.

(c) The (m+1)th envelope, following a damaged packet or an EM,

should carry the sequence number originally expected when the

damaged packet or the EM arrived. If this does not happen, it

indicates that an error has occured a second time and that the

recovery procedure should restart.

In order to avoid ambiguity, the sequence number must be, at

least, modulo-(m+2) . The half-duplex NPL protocol [SCAN691 can be

obtained as a special case of MLP by setting m=0. The sequence

number then becomes the modulo-2 phase bit used in that protocol.

It is possible to have a flow control mechanism, which enables

traffic to be blocked in one direction, while continuing to flow in the

opposite direction. This is implemented by piggybacking a "wait" flag on

an envelope in the opposite direction. If a received wait flag is set, the

next (interlocked) envelope is forced to be dummy, even if there is a

packet waiting to be transmitted. Packets received, during the channel

latency period before the wait flags take effect, must be buffered within

the receiver. With this scheme, the channel appears to the layer above

as a pair of independent queues. An alternative and simpler method of

flow control is to trigger retransmissions of packets just as if they had

been received damaged. This has the apparent drawback that traffic is

simultaneously blocked in both directions. However, interlock between

the two data flows is maintained. This is a positive advantage as far as

the main Network Layer flow control mechanisms are concerned

(Section 2.4.1), because the channel latency is constant. With

64

independent channel flow control, a BPV could be blocked in one

direction, while packets It should be stopping are able to flow in the

other direction.

In normal operation, the protocol does not distinguish between the

two nodes. However, during initialization, it is necessary to designate

one transceiver as the master and the other as the slave in order to

establish envelope synchronization. The framing procedure is shown in

Figure 2. 16. Initially the master continually transmits a specially coded

synchronism feeder (SF) envelope, while the slave searches for the SF

pattern in its Incoming data stream. Obviously, its detection soon follows

Physical Layer symbol synchronization. The slave then replies by

continually sending SF envelopes to the master. When the master

detects the SF envelope, it sends another specially coded OK or

synchronization acknowledgement envelope, whose twofold task is to

inform the slave that it has established frame synchronization and to

initialize the serial number sequence from master to slave. This is

followed by normal information bearing or dummy envelopes. The slave

then replies with a corresponding OK envelope, which initializes the

serial number sequence from slave to master, followed by normal

envelopes. This procedure can also be used if the channel has to be

resynchronized after a prolonged noise burst or line break. Both sides

retransmit all their unacknowledged packets. Thanks to the sequence

number, the receivers are able to pick up the packet stream following

the last envelope which had been received correctly before the link had

to be resynchronized [NERI77J.

2. 3. 3 Channel Management

The management of the channels forms part of the overall node

management and, therefore, it can communicate with other management

entities both In the same and remote nodes by means of MCP

transactions (Section 2.6). However, it also uses NTAN messages to

communicate with channel management entities In adjacent nodes. Since

the node management is implemented using a general-purpose

microcomputer, the channel management typically operates at a much

slower rate than the dedicated high-speed processor, the channel

controller, which controls the packet-by-packet protocol of the channel.

The operation of the channel management can be split into two

65

Figure 2.16: Frame Synchronization Procedure (m=2)

-►
TI

M
E

66

separate types of task. Each channel controller has a channel

supervisor, which communicates directly with it via INC messages. The

exact operation of the channel supervisor is specific to a particular type

of channel controller. However, in general, it initiates channel

initialization and possibly resynchronization. In addition, it collects and

records statistical information, from the channel controller, such as

number and types of errors detected, number of packets handled, etc.

This can be used to aid remedial maintenance action if required.

The channel manager, itself, handles the network implications of

the operational status of the channels. Because the channel supervisors

handle the channel-type specific management duties and merely inform

the channel manager when a channel fails and when it recovers, the

channel manager is able to treat the channels in a uniform manner. It

communicates with the channel managers in adjacent nodes by means of

WRU, 1AM and WKE NTAN messages. The WRU (Who are you?) and its

reply, /AM (I am) messages are used to identify the address of adjacent

nodes and to verify that the link between the two nodes is operational.

The WKE (wake) message is used to synchronize the re-use of a link

following channel recovery. Since, with a multi-node channel, there will

be more than one adjacent node connected to it, separate routing

connectivity information must be kept for each adjacent node connected

to that channel.

The operation of the channel manager can be considered as a

collection of separate processes which can be described by two different

types of finite state machine (FSM). The channel FSM indicates the state

of the channel controller as signalled by its channel supervisor. The link

FSM indicates the state of the link to one specific adjacent node through

that channel. Obviously, a point-to-point channel will have only one link

associated with it, while a multi-node channel could have several. Note

that, in this context, the term "link" is being used with a very specific

meaning.

The channel FSM has three states. SI, SD and SU. SI is the initial

state. When the channel supervisor signals that the channel is

operational for the first time, the channel manager sets up the database

for that channel and the FSM enters the up state, SU. On entering SU,

the process informs the packet switching processor that the channel is

operational and broadcasts, on that channel, a WRU B-NTAN message,

while starting the WRU-IAM timeout for every link through that channel.

On receipt of a WRU message, the manager replies with an 1AM S-NTAN

message without change of state. When a channel failure is signalled by

the channel supervisor, the process Informs the packet switching

processor and all the link FSMs operating through that channel of the

failure, and enters the down state, SD. Periodically, while in SU, the

process will repeat the WRU transmission in order to ensure that the

failure of an adjacent node (leaving the channel operational) is

detected.

The routing management algorithm, described in Chapter 4,

operates In terms of links to an adjacent node via a channel. The link

process is responsible for informing the routing manager, when the link

fails and when it recovers. A problem with all types of network is the

marginally operational link, which continually fails and almost

immediately recovers. Without safeguards, such a channel could send

the network into paroxysms, as it attempts to adapt to the ever changing

topology. In order to avoid this, the link process practises a link

hold-down reflex, which delays declaring the link recovered until a time

Interval has elapsed since the link failed. The length of this hold-down

period depends on whether an alternative pathway has been found

around the failure. In order to synchronize the re-establishment of a

link, the link process transmits a WKE S-NTAN message to its opposite

number at the other end of the link, which forces it to also declare the

link operational. The link FSM can be simplified to the four-state

machine described in Figure 2.17 and Table 2.2. It is driven by failure

of the channel, timeouts, reception of 1AM and WKE messages and the

routing table entry for the linked node. When the channel fails or the

maximum number of WRU-IAM timeouts is exceeded, the algorithm

immediately sends a link failure flfl) message to the routing manager

and goes to state SD. Channel recovery does not directly trigger the link

recovery process. Instead, the link FSM waits until the WRU. transmitted

after channel recovery by the channel process, invokes the 1AM reply

from the linked node. When this 1AM message is received, the algorithm

waits In state SHI until a period TH1 has elapsed since the channel

failed. Only if the routing table indicates that no alternative route could

be found to the linked node, does it go to state SU, sending a link

recovery (Ire) to the routing manager and a WKE message to the linked

node. Otherwise, the algorithm waits for the longer period, TH2, in

state SH2. before going to SU and sending the Ire and WKE messages.

68

Figure 2.17: State Diagram of the Link Hold-Down Algorithm

The shorter period. TH1. should be roughly equal to the maximum time

expected for the routing management algorithm to find an alternative

route, if it exists. The longer period. TH2. allows congestion, arising

as a result of the original failure, to be dissipated along the new. albeit

longer path before triggering another routing change. Receipt of a WKE

message causes the process to go immediately to SU sending a Ire

message.

2.4 THE PACKET DELIVERY SERVICE

The Packet Delivery Service, provided by the Packet Switching

Sublayer, can be summarized as follows:

(1) Its primary function is to transport packets from a source node to

any destination node in the network without any loss of sequency.

(2) The delivery delay time is minimized by finding the minimum delay

route, between source and destination, and by minimizing the

69

Table 2.2
State Transitions in a Link FSM

SU - SD Condition: Channel failure v maximum number of

contiguous 1AM timeouts exceeded.

Action: Start timer TH1 and timer TH2; send If 1.

SD - SHI Condition: 1AM received from link node.

Action: None.

SHI - SU Condition: TH1 complete A alternative route to link node

not found.

Action: Send Ire: send WKE.

SHI - SH2 Condition: TH1 complete A alternative route to link node

found.

Action: None.

SH2 - SU Condition: TH2 complete.

Action: Send Ire; send WKE.

SHI - SD Condition: Channel failure.

SH2 Action: Reset and start timer TH1 and timer TH2.

SHI - SU Condition: WKE received.

SH2 Action: Send Ire.

buffering delay in the relay and end-point nodes.

(3) Overall throughput does not fall significantly as offered load

increases to saturate the network. The network is guaranteed free

from store-and-forward deadlock by means of the buffer allocation

and flow control algorithms.

(4) There is no limit on the number of Virtual Connections routed along

any pathway in the network. Consequently, a Network Connection

request is never refused on the grounds of buffer non-availability in

the Exchanges.

70

Note, that this service is only concerned with the transportation of

packets from source to destination node, and does not distinguish

between user and network packets or between different destination ports

within the destination node. This is an important difference between

MININET and many other connection-orientated networks such as

TRANSPAC IDANE76], GMDNET [RAUB76] and TYMNET [TYME71] where,

on connection establishment, state information concerning the Virtual

Connection Is stored in every relay node along the path. If this latter

method Is used, then: the connection procedure is complicated by the

direct involvement of relay nodes: there is a danger that connection

establishment can be refused If an intermediate node has already

allocated all its buffers: and connections are lost as a consequence of

relay node or channel failure.

The congestion control strategy is described in the following

section, while the routing algorithm is described in Chapter 4.

2. 4.1 Congestion and Flow Control

Congestion is here defined as an overload of a network resource,

of which there are three major types: node processing power, buffer

storage space and channel bandwidth [MCQU791. [NESS79], It is the

object of the congestion control mechanisms to handle these overloads

in such a way that there is no reduction in total packet throughput, no

discarding of packets and no loss of fairness or sequency (Sections

1.2.2 and 1.2.3). While the routing strategy does have an indirect

effect on congestion by maintaining the shortest, loop-free path between

source and destination, it is not used to control congestion within

MININET. The primary control mechanism is flow control.

Two flow control mechanisms are used in MININET. One. the

channel flow control, is provided by the Channel Service to match the

effective channel transmission rate to the speed at which the receiving

node can process the incoming packets. Thus, processor overload is

avoided. If this were the only flow control mechanism provided within the

network, it would be prone to store-and-forward deadlock [KAHN721. For

this reason, the network layer flow control is provided. Its objective is to

avoid buffer overflow within the Exchanges, while keeping the paths

between source and destination nodes deadlock free. In order to achieve

this, some sort of buffer partitioning, within each Exchange, must be

71

used [MERL80] [GERL801.

In ARPANET, direct store-and-forward deadlock between two

adjacent nodes is avoided by reserving one buffer within the switch for

each output channel, and two buffers for each input channel. This

reduces, but does not remove, the possibility of indirect

store-and-forward deadlock involving more than two nodes [GERL801.

Two additional buffers are employed to hold “overflow packets", which

can be used to attempt to break the log-jam should deadlock occur. As

a final resort, a reset, with consequent loss of packets, occurs

[KAHN721. In CIGALE, which is the packet switching network of the

CYCLADES computer network [POUZ74], the length of each output queue

(one per output channel) is restricted. This does not guarantee freedom

from lockup. Instead, each packet is "time-bombed" and old packets are

discarded, thus dissipating the congestion [GRAN79]. One method,

which guarantees deadlock free operation, is to reserve at least one

buffer at each intermediate node when a Network Connection is

established, as in TYMNET [RIND791. Unfortunately, this has the

disadvantage of under-utilization of buffers.

Perhaps the first published attempt to devise a more efficient buffer

allocation scheme, that is guaranteed deadlock free, was the buffer

class method [GUNT75]. This was used in GMDNET [RAUB76]. For each

hop undertaken by a packet, its "class" increases by one. Buffers are

reserved In a node for each class. A packet is permitted to use buffers

within its own class and any lower class. A modification of this method

is to base the buffer class on how many hops the packet has to go to

its destination, rather than on how many it has traversed from its source

[TOUE791. Merlin and Schweitzer [MERL80] generalized these methods as

special cases of the buffer graph approach which, by means of a

number of possible methods, seeks to arrange the buffers within the

network into a directed graph. Consequently, there are no directed

loops and there exists at least one directed path corresponding to each

route in the network. Obviously such a graph is deadlock free. In the

proposed MININET flow control algorithm, buffers are reserved on a

destination node basis. Thus, each exchange contains up to 63 buffer

partitions, each one containing only packets destined for one particular

node. Since these packets will occupy only buffers associated with that

destination, the network buffer graph decomposes into up to 63 disjoint

graphs - one per destination node. Provided that the routing algorithm

72

is loop free (which it is). each of these graphs forms a directed tree

rooted at the destination. Consequently, the network is guaranteed

deadlock free. The destination-based buffer class method could also be

used. However, the high-speed control of the buffers would be greatly

complicated by the mapping between the buffer class and BPVs. Within

each buffer partition, the waiting packets form the destination queue.

Given some buffer partitioning scheme, there remains the need for

a flow control method to avoid overloading the buffers within each

partition. Global anti-congestion approaches, such as the isarithmic flow

control method [PRIC77] which seek to limit the total number of packets

in the network, are discounted because there is no guarantee that local

congestion cannot occur. In connectionless networks such as CIGALE,

there is a tendency to discard packets if the congestion gets bad.

CIGALE attempts to avoid reaching that stage of congestion, by sending

choke packets back to the source hosts requesting them to reduce their

rate of transmission. Packets arriving in an ARPANET node are examined

to see if they can join an output queue. If this is not possible, either

because there is a shortage of buffers within the node, or because the

maximum number of packets associated with the output channel would be

exceeded, the packet is refused. This refusal is implemented by the

absence of an acknowledgement of the packet to the upstream node.

Subsequently, the upstream node retains its copy of the packet and

retransmits it after a timeout. Note that this type of flow control depends

upon a Network Layer hop-by-hop packet acknowledgement protocol

because, as far as the Data Link Layer is concerned, the packet was

received correctly and passed to a Network Layer buffer for examination

within the node core.

In TYMNET, each node is not allowed to transmit more than a

certain number of characters belonging to a Virtual Connection, without

receiving an indication from the next node that buffer space is available.

This indication is made in the form of a backpressure vector containing

a single bit for each connection. If there is room in the connection's

queue within the downstream node, the bit is set to one. Reception of

this, by the upstream node, allows it to transmit characters, up to the

limit set for that connection. If the connection's queue in the

downstream node is over this limit, the corresponding bit of the BPV is

reset. In the upstream node, this will lead to the halting of transmission

for that connection. Eventually, the connection's queue within that node

73

will exceed Its limit, thereby triggering the application of backpressure to

its upstream node. Thus, backpressure propagates backwards along the

path of the Virtual Connection until. If necessary, it reaches the source.

Note that buffer space, up to twice the backpressure limit, must be

reserved for the connection in each node, and that the product of this

limit and the rate of backpressure vector production determines the

maximum throughput for that connection. While this passive

backpressure vector approach is admirably suited for the relatively

low-speed terminal traffic handled by TYMNET, the high burst rates of

some instrumentation traffic make it unsuitable for use in MININET. If the

worst case example of 100k packets per second (Section 1.2.3) is

taken as the peak Virtual Connection rate and, say, an absolute

maximum vector update rate of 2k per second (1000 times faster than

TYMNET) is allowed, then 100 buffers would have to be reserved for

each connection in each relay node. Instead, a destination node based

active flow vector is used. This is transmitted only and immediately when

its contents are changed.

As described above, each MININET Exchange contains a Separate

output queue for each destination in the network (up to a maximum of

63) . Disjoint subsets of these queues are attached to the output

channels, according to the routing algorithm as shown in Figure 2. 18.

An output switching process polls the queues associated with one output

channel on a round robin basis. The input switching process places

incoming packets at the back of the appropriate queue. The Exchange

maintains its own flow vector, which is a function of the destination

queue lengths. If the input switch detects that a queue has reached its

upper limit, the corresponding bit of the flow vector is cleared.

Similarly, If an output process detects that a queue has reached its

lower limit, the corresponding bit is set. Any change to the flow vector

triggers its transmission to all adjacent nodes using BPV B-NTAN

messages (Figure 2.8). Bit 0 of BPV code 0 pertains to node 0. Bit 15

of BPV code 0 pertains to node 15 and so on, until bit 15 of BPV code

3 which pertains to node 63. As each BPV message holds only one

quarter of the complete flow vector, only those 16—bit segments of the

flow vector that have changed need be transmitted. Received BPVs are

used by the output switch corresponding to the channel from which the

BPV was received. Section 2.3.1 describes the special processing of

BPVs within the channel controllers of multi-node channels. A packet

74

Figure 2.18: Exchange Buffer Structure

iV
EC

TO
R UPDA

TE

75

may be transmitted to an adjacent node provided that the bit.

corresponding to the packet's destination, in the last received BPV, was

set. In other words, each bit of a BPV may be thought of as a "green

semaphore" - one for go and zero for stop.

A BPV, received by a Station, acts by gating the polling of user

ports. Thus, backpressure finally acts to throttle data at their entry point

into the network. Once a packet is accepted into the Station core, it is

transmitted, whatever the state of the flow vector for the output channel.

The consequent desirability of minimal packet latency in the core has

ramifications in the design of the Station, which are discussed in

Chapter 5. Since a Station does not forward packets to other nodes, its

own flow vector contains zero entries except for its own address. This

vector must be transmitted to adjacent nodes to allow only packets

destined for the Station to be transmitted to the Station.

The conceptual structure, of each destination queue within an

Exchange, is shown in Figure 2. 19. The lower and upper buffer limits

Lower Upper
Limit Limit

RESERVOIR
ZONE

HYSTERESIS
ZONE

OVERFLOW
ZONE

•----------- Ir----------• ’---------------------Ih------------------- •*----------- Io----------*

Figure 2.19: Destination Queue Structure

divide the queue allocation into three zones. The overflow zone allocation

is required to hold packets which arrive after the queue has reached the

upper limit and triggered the transmission of a BPV to all channels,

requesting that transmission be stopped for that particular destination.

The length of the overflow zone, Iq , must be large enough for the zone

to contain all packets that could arrive in the latency time before the

BPVs take effect. Assuming minimal latency in the packet handler

processor, the latency of one input channel is approximately m + p,

where m is the channel latency, defined in Section 2.3.2. and p is the

additional core latency due to the pipeline delay between the node core

and the channel controllers. The minimum possible value of p is 2. It

could be higher due, most likely, to transmission latency arising from

76

delays in distributing outgoing BPVs to all channel controllers.

Therefore,

I = T (m. + p) (2: 11)

where the summation is taken over all Input channels and m. is the

latency of the ith channel. Note that, as far as buffer allocation is

concerned, half-duplex channels (m=0) are preferable because of their

low latency. If it is conservatively assumed that the average channel

latency is 2. that the core latency is 3 and that the maximum number of

input channels is 8, then, from (2:11), I = 40.
o

The reservoir zone is required to allow the output channel to

continue to empty the queue in the latency period following the issuing of

BPVs to restart the flow of packets into the queue, but before new

packets actually arrive. If the length of this zone, I , is insufficient,

the queue will be exhausted before the new packets arrive. This has the

effect of reducing the throughput of the output channel, further

increasing the congestion. The required minimum size of this zone

depends on the output channel rate relative to the rate and latency of

the input channels. The worst case would be if all the output channel

capacity was being used to empty just one queue and that the queue was

being filled from the input channel with the maximum latency time.

Then, given that the latency time of the /th channel is ni./f. where f.

is its packet rate,

lr = po Sup (m./f.)j + p (2:12)

where f is the output channel packet rate and the supremum is taken

over all input channels. Assuming that the maximum channel latency is

3 and that all channels have the same rate gives, from (2:12).

I = 6.
r

The larger the hysteresis zone the less frequently will BPVs be

Issued. Since channel throughput is reduced by the overhead of BPV

transmission, throughput is maximized by having the length of this zone.

I . as large as possible. However, In order to minimize end-to-end
n
delay. I. should be kept as small as possible. This is another example

n
of the conflict between throughput and delay, discussed in

Section 1.2.3. The maximum BPV rate for a given value of I occurs

77

when the queue Is being filled and emptied at maximum rate with

minimum latency. Analysis of these worst case conditions gives an

estimate for the maximum required length of the hysteresis zone.

Minimum latency is obtained with m = 0 (half-duplex channels) and

p = 2. Worst case conditions can be assumed to be an Exchange with

8 half-duplex channels, all operating at 100k packets per second. If it is

assumed that the queue is being continuously emptied by one channel,

while being filled, backpressure permitting, by the other 7 channels,

then the rates at which the queue is filled and emptied are 100k and

600k packets per second respectively. The over-run into the reservoir

and overflow zones are 2 and 14 respectively. Thus, the queue length

would vary by I + 14 + 2 packets. Hence, the queue filling time is

(I + 16)/600 ms and the emptying time Is (I + 16)/100 ms. In one

fill-emptying cycle, two BPVs are transmitted. Therefore, the per

channel BPV transmission rate In kilo-messages per second. B, is given

by

~ I + 16 1+16
_ _ H HB = 2 ------------ + -------------

600 100

Rearranging (2: 13) and rounding up.

171
(2: 13)

1 + 16 h

(2: 14)

Equation (2: 14) indicates that, assuming a maximum allowable BPV

transmission rate of 2k per second (2% of channel throughput) , the

maximum required size of the hysteresis zone is 70.

The total number of packet buffers, that might be required by the

queue, can be obtained by adding the maximum lengths of the three

zones. For the (slightly contradictory) worst-case conditions outlined

above, this gives a total queue allocation of 116 buffers. However, there

can be problems with this type of active flow vector if an Exchange has

channels with large differences in capacity. Since the BPVs are

distributed to all channels, a high rate of BPV production, associated

with a high-speed channel, could well take up a considerable part of the

capacity of a low-speed channel. If there is a danger of this, a much

larger hysteresis zone would be required. Note that, if a low-speed

channel is the cause of the congestion, there is no problem because

the queue emptying rate is low and consequently the BPV generation rate

78

is low.

Buffers can be allocated to a destination queue, and the upper and

lower trigger points can be set. either statically or dynamically, in a

number of ways. In selecting a method for implementation, consideration

must be given, not only to the efficiency of buffer utilization, but also to

the complexity of the scheme. This is because a specially designed

switching processor would be required, in order to achieve the desired

Exchange packet switching capability which is well in excess of 100k

packets per second. Some options are:

(a) The parameters could be fixed in the design of the Exchange.

Since the number and type of channels are unknown at design

time, some worst-case assumptions have to be made, as outlined

above, in order to determine the sizes of the three zones.

Furthermore, since the network configuration is also unknown, a

separate allocation must be made for all (63) potential

destinations. Obviously, this results in very poor buffer utilization,

but the input and output switch algorithms are the simplest

possible. That the buffer under-utilization need not be very

important. can be appreciated by considering a possible

implementation where the buffer space is organized as an

8K x 32-bit memory. This can be implemented with only 4 chips

and can contain 8K packets. The memory could be partitioned into

64 128-packet allocations, one for each destination address. This

allocation is 12 more than that required for the worse-case

conditions described above. Mapping from destination address to

queue location is very simple and there is no dynamic queue

allocation process to run.

(b) During initialization, information on the number of channels and

their speed and latency can be obtained from the channel

manager. The optimum values of I and I can then be calculatedr o
using (2:11) and (2:12). This allows I to be maximized. The h
total queue allocation remains fixed as in option (a) .

(c) Some form of dynamic allocation can be used. Quiescent

destination queues are given the minimum safe allocation, which is

I + 1. A number of buffers are held In reserve. When a hitherto o
quiescent queue begins to fill, instead of immediately applying

backpressure, buffers are allocated to the newly active queue up to

79

some predefined limit, assuming that the contingency reserve has

not been exhausted. Further traffic-based allocations can be made

and buffers removed from newly quiescent queues, by a buffer

management entity operating much more slowly than the high-speed

packet handling processor. The dynamic nature of the buffer

allocation means that the queues would have to be implemented as

linked lists, instead of the simpler contiguous structures which can

be used with static partitioning.

Option (c) would theoretically utilize the buffer memory more efficiently,

but at the unacceptably high price of much greater processing

complexity. Therefore, dynamic allocation is not recommended. On the

other hand, option (b) provides some improvement over the

performance of option (a), with little increase in complexity. Therefore,

option (b) is recommended for this application.

The simplest and most obvious internal organization of the

destination queues is a standard FIFO queue. However, with this type of

structure, burst mode traffic can fill the queue and so significantly delay

handshake traffic. The throughput of handshake traffic is most sensitive

to delay (Section 1.2.3). One method of reducing the interference of

burst mode traffic on handshake delays is to use a two-dimensional

queue. This consists of a separate FIFO queue for each destination port
within the destination node, plus one for network packets. These are

linked together at the front end to form a loop of queues. The output

switching process uses this loop to remove packets from the queue on a

round robin basis. The effect of this queue structure is to give

top-priority to the first packet of each Virtual Connection in the queue.

Consequently, sequency would no longer be kept in the packet flow

between nodes, although the sequentiality of the Network Connection is

preserved. As far as queue size and buffer allocation are concerned,

the destination queue is treated as a single entity. The primary

disadvantage of this approach is complexity. Each packet buffer would

have to contain two link pointers. The input switch would have to

examine the destination port field, in addition to the destination node

field, of each incoming packet, and would have to maintain pointers to

the back of 65 different queues for each destination node.

End-to-end flow control, in the sense of source-sink data rate

matching, is not directly provided by MININET. To do so would

80

compromise the transparency requirement (Section 1.2.2) because,

when a pair of user devices are directly connected together, they must

be able operate their own flow control procedures without the aid of the
network.

2.5 THE MININET SERVICE

The MININET Service, provided by the Virtual Connection Sublayer,
can be summarized as follows:

(1) Its primary function is to maintain a transparent Virtual Connection

between two devices, which are physically connected to two ports

of the network. The degree of transparency is such that the devices

are not necessarily aware of the network's presence and

communicate as if they were directly connected together.

(2) Virtual Connections are established and closed by network

management, at the request of a user management entity. This

request is actually made either via the operator console or via a

network management port, neither of which need be connected to

either of the end-point nodes.

(3) Failure of an intermediate node or channel does not cause the loss

of the Virtual Connection, provided that an alternative pathway

exists between the end-point nodes, although some data loss could

take place.

2. 5.1 Virtual Connection Management

The di-phasic connection establishment procedure, used in

MININET, has already been described in Section 2.1.3. Connection

service interactions, between the user and network managements, have

been implemented in two ways. One type of MSAP is effectively the node

operator console, where the operator represents user management. The

connect request primitive is assembled interactively by the operator and

the connect confirmation Is displayed at the same console. It is not

necessary for the console to be situated at an end-point node. The

other type of MSAP is a management port. This is a port which has been

virtually connected to its local node manager. Thus, a host computer,

connected to a management port, can request connection changes

associated with any pair of ports in the network. This enables extra

81

higher-level services, such as host switching for interactive terminals

and dynamic resource sharing between processors, to be implemented.

A port may be In a number of states, as far as the status of any

Virtual Connection made to it is concerned. It may be inactive, i.e. not

connected to anything. It may be connected to another port which could

be located in the same node. In which case It Is referred to as a local

connection, or in some other node, in which case It Is called a remote

connection. It may be a management port connected to the node

manager. This allows user management to communicate with network

management and thus make changes to Virtual Connections, obtain

network statistics, etc. The standby state is used to enable additional

services to be provided by higher level entities. The port is connected to

the node manager in just the same way as a management port.

However. the content of any data sent to the manager is ignored.

Instead, its reception triggers the manager to connect the port to a

destination, whose address has already been stored in the manager. In

contrast to the strict one-to-one rule on active connections, any number

of ports over the network can be on standby to the same destination. An

example of this mode of operation is the provision of a terminal server.

All inactive terminals are on standby to a port connected to the terminal

server. When any one of these terminals becomes active (i.e. by its

user pressing any key) . it is automatically connected to the terminal

server, provided that the latter is not already connected to some other

terminal. By means of interactive messages, transparent to the network,

the terminal user can request the server to connect the terminal to its

desired host computer. This is done by means of a separate

management connection to the terminal server.

Each node stores state information. concerning the Virtual

Connections terminating at that node, in its virtual connection table

(VCT). There is an entry in this table for each port physically connected

to the node. This contains:

(a) The connection status of the port. This may be inactive, remote,

local, management, standby or suspended. The latter state Is

entered when the routing protocol determines that the destination

node Is not currently reachable in the network. If the VCT is in a

Station, the remote state is further sub-divided according to the

output channel used by each Virtual Connection, as determined by
the routing protocol.

82

(b) The destination node and port address.

(c) The attributes of the connection. If the protocol used by the

connected devices conforms to DIM-CPC, the network management

can report certain exception conditions directly to either one of the

connected devices, following the format described in Section

3.3.3. In the typical case of the connected devices being a

computer and a peripheral, the error messages are usually sent to

the computer. The report local flag, within the port's attributes,

indicates that the error messages should be sent to the port itself,

while the report remote flag indicates that any error messages

should be sent to the port at the other end of the connection.

(d) A password. This is a short password, which must be correctly

quoted by any user management entity requesting the modification

of the connection status of the port. It is intended to provide

protection against the user accidentally specifying the wrong port,

rather than any deliberate misuse of the network.

Additional entries in the VCT. used internally by the node management,

are concerned with the implementation of the connection Information in

the high-speed packet handling hardware (e.g. location in polling

lists).

When a connection request (or disconnection request) is made via

the node's operating console, the request is first assembled interactively

with the operator. This is then dispatched to the VCT manager in the

node first referenced in the request. Note that this may, or may not, be

in the same node as that originating the request. If it is not, MCP

(Section 2.6) is used to transport the request to the node. The VCT

manager first checks that the request is acceptable as far as It is

concerned. If the connection request is for a remote connection, it then

sends a connect message, using MCP. to the VCT manager in the

second node referenced. The second VCT manager replies indicating

whether, or not. the request is acceptable and has been implemented.

On receipt of a positive reply, the first VCT manager implements the

change. In any case, the success, or otherwise, of the request is

relayed back to the originating task and hence to the user management.

Had the request concerned a local, management or standby connection,

the VCT manager can implement the entire request without recourse to

any other manager. Connection requests, arising from a user machine

83

communicating via a management port, are handled in an identical

manner.

2. 5. 2 Network Ports

The main objective of the MININET Service is that the network

should be as transparent as possible so that it is procedurally invisible to

the devices communicating through it. In principle, any type of interface

can be used, provided that the interface protocol does not demand the

impossible from the network. In particular, any "read" type operation,

where one side requires information from the other side within a very

short time (typically considerably less than 1/xs) of activating a control

strobe, cannot be implemented across any network. This is because the

requested information cannot be transported across the network within

the time allowed.

A simple, bidirectional port status bus, quite separate to the packet

data transfer bus, allows communication between the ports and the node

manager. This is used by the ports to signal device timeouts and

interface transmission (parity) errors to the manager, while the manager

can acknowledge these and selectively reset any port.

The DIM interface has been specially designed so that a network

could be interposed between the two sides of the interface without any

change to the interface protocol (Section 3.1). Therefore, the design of

the DIM port is quite straightforward, without any protocol explicitly

operating between the ports themselves. Instead, information arriving

along the 16—bit data lines and the data/control shift line is mapped

straight into the data field and data class flag of a packet. The only

actions performed by the DIM port are: to buffer incoming and outgoing

words, to detect when a user device fails to respond, and to detect

parity errors across the interface and port bus.

The IEC-625 (IEEE-488) instrumentation bus [IEC 79] is a single

source (the talker) , multiple destination (the listeners') . byte-serial bus.

The talker and listeners are selected by the bus controller-in-charge

which, by asserting the "attention" ATN control line, becomes the

source, and broadcasts control set-up information to all devices. Data

transfers are synchronized by means of 3 handshake lines: DAV

controlled by the source (the talker or controller), and NRFD and NDAC

controlled by the acceptors (only the listeners during normal data

84

transfer - all devices when the controller is active). The bus was not

designed to be used across a network. Therefore, an IEC-625 port must

use an additional protocol in order to obtain procedural invisibility. The

port always acts as an acceptor. This enables it to capture any data

transfers on one side of the bifurcated bus and relay them to the section

of bus on the other side of the network, where the port acts as a

source. The inter-port protocol uses handshake mode (Section 3.3.1)

to interlock the flow of data between the ports, so that not more than

one byte of information is buffered within the network or ports at any one

time. This is linked with the handshake control lines of the bus. thus

completely interlocking the flow of information along the bus.

Consequently, the maximum information rate along the bus is restricted

to the reciprocal of twice the end-to-end network delay. The information

flows from the talker in normal mode and from the controller-in-charge

when it asserts ATN. The value of ATN is relayed by the ports from the

controller side of the network to the other half of the bus. Similarly, the

value of the service request SRQ line is relayed to the controller side by

the ports. Note that the controller and talker may well be on different

sides of the network, implying that data could flow in different directions

depending on the type of transfer.

The bus system controller controls the interface clear (IFC) and

remote enable (.REN) bus control lines. These are relayed from one

side of the bus to the other by the ports. The location of the system

controller, and hence the direction of transfer of these signals as well

as the initial direction of ATN and SRQ, is automatically determined

when the system controller initializes the bus by asserting IFC. Each

data packet travelling between the ports carries, in addition to the 8—bit

bus data byte, two flags. One indicates the value of the EOI line which

is used to flag the end of a block transmission. The other is used to set

the ATN line on the destination port, when the data byte is a controller

command. The parallel poll function cannot be implemented because it

requires a solicited response within 200ns of the request being issued

(via the EOI line) . Clearly, this requirement cannot be physically met

when the information required lies some hundreds of metres away on the

other side of the network.

Packetized speech can be carried through the network using the

speech port. Two of these can be virtually connected through the

network to be used as an full-duplex intercom. Also, it is possible to

85

connect virtually a speech port to a computer, via a DIM port, to allow

recorded messages to be broadcast. The speech signal is sampled at

8kHz, using a standard PCM CODEC, to form an 8—bit companded

sample. Two of these samples are concatenated into a 16—bit data word

which fills the data field of the packet. Thus, the peak load on the

network is 4k packets per second. However, data is not transmitted

continuously at this rate because the transmission is voice keyed, and

so the network is loaded only when the input signal level becomes

greater than a preset threshold value. The data is transferred between

the speech ports in burst mode (Section 3.3.1), and a FIFO is used by

the receiver to buffer short term fluctuations in the network transit delay.

The CODECs are clocked independently by separate crystal oscillators.

Therefore, there must be some slight difference in operating frequency

between any two ports. This rate mismatch is handled by the occasional

loss or duplication of a sample. This does not seem to be noticed by

the users. When virtually connected to a computer, the data transfer

would be synchronized by using handshake mode flow control.

2.6 THE MANAGEMENT TRANSPORT SERVICE

Each node manager consists of a number of distinct tasks, each

concerned with separate jobs such as: supervising the channel

controllers and packet handling hardware; maintaining the routing table

and VCT; handling the operator console interactions; and so forth. The

implementation of the Station manager is described more fully in

Section 5.3. Inter-task communication and task synchronization are

effected by the exchange of various types of message. The Management

Transport Service effectively extends the scope of one type of inter-task

message to the entire network. This service is transparent to the extent

that the tasks are unaware of any procedural differences in the transfer

of messages between tasks whether they are In the same node or in

different nodes. An end-to-end protocol, the MININET control protocol

(MCP), [MORL79] is used to provide this Transport Layer Service.

In the context of this protocol, a network message is defined as a

block of information carried from one node manager to another by a

series of network packets (Section 2.2.1). A network conversation Is a

series of network messages sent alternately between two conversing

nodes to effect one management operation. The originator of a

conversation is called the caller, while the other party involved is

86

designated the callee.

This service and protocoi have the following constraints and

requirements:

(1) Since a network conversation is invariably of the

"question-and-answer" or "request-action" type, there is no point

In providing a full-duplex message service. Instead, the messages

should be exchanged alternately.

(2) The network packets, used by MCP. must be the same size and

use the same Packet Delivery Service as the user packets. The

consequent small size of this PDU means that the SDU must be

segmented and reassembled at the other end.

(3) MCP must not significantly interfere with normal traffic, i.e.

network packets must not hog or block any network resource.

(4) It must be able to recover and continue after damage to. or loss

of. a network packet.

(5) Total failure of the caller or callee, or total loss of communication

between them (due to channel or relay node failure), must not

cause the protocol handler or the communicating tasks to be
indefinately suspended.

(6) Since the integrity of the whole network operation depends on the

reliability of MCP. because of the sensitivity of the information it

carries, end-to-end error protection at a message level is
desirable.

(7) Since the very time-critical operations of routing and flow control

do not use MCP, speed is not as important requirement as that of
simplicity.

Because the Management Transport SDUs are constrained to

operate alternately in a half-duplex fashion, the service provided is not

a conventional connection type. In fact. It can be thought of as an

extension to the user-confirmed connectionless type of service [VISS85],

which restricts the number of SDUs to a single message from the caller

and a single reply message from the callee. There is no such restriction

with this service. However, in practice, no application has used more

than two messages of the request and answer type. An originating task

passes Its message to a local distribution routine which, either sends

87

the message directly to the destination task, if it Is in the same node,

or to the transport server. If it is not. Only two service primitives are

required: data request and data indication. These consist of: address

fields specifying the source and destination nodes and tasks; flags to

indicate that a reply is expected and to Indicate whether failure to

transport the message should be reported to the source task (used by

the data-request primitive only); status of message, indicating if there

was an unrecoverable error while attempting to transmit the message or

receive its reply (used by the data-indication primitive only); length of

the message in 16—bit words; and the (variable-length) message itself.

In order to keep the transport server simple, a node can be

involved in only one conversation at a time. If the node is not engaged

in a conversation, the Transport server task is in broadcast mode and it

is open for the reception of a message, either as a service request from

another task in the same node in which case it becomes the caller, or

a new incoming message from any other node in which case it becomes

the callee. The reception of either of these places the server into

privileged mode. It then responds only to network packets from the other

node in the conversation, and queues any other requests to open a

conversation. If a data request primitive indicates that a reply is

expected, the server stays in privileged mode and awaits a reply.

In order to avoid flooding the network with a block of network

packets forming a message, and to enhance the reliability of the

service, network packets (as well as messages) are transmitted on a

half-duplex basis. The phase bit in each network packet (Figure 2.7) is

used as a modulo-2 sequence number by the protocol to implement the

NPL [SCAN69] acknowledgement technique. Since this corresponds to

MLP (Section 2.3.2) with the channel latency, m. equal to zero, it has

the intrinsic simplicity and robustness of that protocol. However, in

MCP, there is a possibility that a network packet might be lost (i.e.

never delivered to the destination node) somewhere in the network. To

overcome this problem, the caller maintains a timer and eventually

retransmits its last packet just as if it had received a damaged packet.

The period of this timeout must be greater than twice the maximum

end-to-end network delay (even following a node or channel failure) ,

plus the maximum latency period in the corresponding node manager. If

this were not the case, the original packet could eventually arrive after

a retransmission request had already been made for a duplicate. This

88

duplication would continue, for the duration of the conversation, with

every packet being duplicated and two packets being in the network at

the same time. If necessary. the caller repeats the timeout

retransmissions a number of times, before it decides that the pathway

between the two nodes has permanently failed and aborts the

conversation. Note, that the callee must not also retransmit after a

timeout, since this would result in error message packets being

transmitted In both directions at the same time, leading to the same

situation as described above. Instead, the callee maintains a timeout,

which is longer than the maximum number of consecutive retransmission

timeouts performed by the caller.

In order to initiate a conversation, the caller sends a hello packet,

which acts as conversation request and places itself into privileged

mode. If the callee is in broadcast mode, it accepts the hello packet

and replies with a hello acknowlegement packet. It then switches to

privileged mode to block hello packets from other nodes. However, if

the callee is in privileged mode, it ignores all network packets not

originating from the node with which it is conversing. This can be done

because each network packet contains the address of its source node

(Figure 2.7). Therefore, the hello packet is ignored and the caller must

retransmit the hello packet after an appropriate timeout interval. In the

event of two nodes happening to send hello packets at the same time,

the packets will be ignored, because each node would have switched

into privileged mode, upon hello transmission, and would be expecting a

hello acknowledgement. There is a danger that subsequent

retransmissions will also be rejected if the hello retransmission is the

same for both nodes. In order to overcome this problem, the hello

retransmission timeout period is made different for each node by the

simple expedient of making them proportional to the node address. The

values of the phase bits in the hello and hello acknowledgement packets

initialize the expected sequence numbers in both directions.

Following reception of the hello acknowledgement packet, the caller

transmits the first packet of its message. The message consists of a

two-packet header, a data field containing the SDU and a single packet

checksum. The contents of the header are obtained from the data

request SDU and consist of the source and destination task identifiers

(the source and destination node addresses are already carried in every

network packet) , a set of flags as specified in the data request primitive

89

and the length of the message. Each packet of the header and data

fields is acknowledged by the callee with a message continue packet,

which indicates that the next packet of the message should be sent.

Following reception of the packet containing the checksum, the callee

responds with a message acknowledgement packet, if the checksum is

correct. If this is not the case, a message repeat packet is transmitted

Instead. If the checksum repeatedly falls more than a certain number of

times, the conversation is aborted by means of a message failure

packet.

If a reply is expected, the caller responds to the message

acknowledgement packet with a message continue packet. When the

callee server receives this and the reply SDU from the original

destination task, it starts to transmit the reply message following the

same procedure, as already described, with the role of the caller and

callee reversed. This alternate message exchange can continue as long

as is required by the users of the Transport Service. When, eventually,

a reply is not expected, the conversation is terminated. This is not as

simple as it may appear in that it breaks the packet interlock and there

is no way of acknowledging the last packet. In order to ensure that the

last packets of significance are safely received, an additional goodbye

packet is transmitted to signal termination of the conversation and to

acknowledge the message acknowledgement packet. Following

transmission of a goodbye packet, the server returns to broadcast

mode. If the last message is sent by the caller and it does not receive

a message acknowledgement packet, it will timeout and retransmit in the

usual way. On the other hand, if the goodbye packet, transmitted by the

caller following reception of a message acknowledgement packet, is lost

or damaged, it is never retransmitted. It is important only because it

informs the callee that its message acknowledgement has been received

and It can return to broadcast mode. Its loss merely delays, until its

timeout interval expires, the callee's return to broadcast mode. If the

last message is from the callee, the goodbye packet from the callee,

acts to stop the caller retransmitting the last message acknowledgement.

If it Is lost, the caller will eventually reach the maximum number of

retransmissions and return to broadcast mode.

End-to-end error protection is provided by the parity bits in each

packet. For the messages, these are reinforced by the checksum. In

combination, these longitudinal and transverse checks provide a

90

Hamming distance of 4. The hello, message continue, message

acknowledgement, message repeat, message failure and goodbye

packets do not form part of a message and do not, therefore, get

additional protection from any checksum. Therefore, their codes are

spaced at a Hamming distance of at least 8 from each other. Such a

code can be constructed as follows. Since there are 6 distinct

codewords to be generated, an information field of. at least. 3-bits is

required. Consider a 15—bit binary cyclic code. The

Bose-Chaudhuri-Hocquenghem (BCH) bound guarantees that the code

will have a minimum distance of (at least) 8, if the roots of the

generator polynomial include a0, a1, a2, a3. a*, a* and a6, where

a is a primitive element of the Galois Field of order 2* (GF(24))

[PETE72]. This can be achieved by forming the generator polynomial,

g(X) = m0(X).m1(X).m3(X).m5(X) (2:15)

where m.(X) Is the minimum polynomial containing a. Since, mQ(X)

is of degree 1, m±(X) and m3(X) are of degree 4, and mg(X) is of

degree 2, the generator polynomial is of degree 11. Since the number

of check digits is the same as the degree of the check polynomial, the

information field length is 4, which is one more than that required. For

example, using the tables of irreducible polynomials over GF(2), found

in [PETE721, and taking the primitive polynomial, X4 + X + 1, as
mx(X) results in

g (X) = XU + X10 t X® + X® + X® + x4 + X3 + 1 (2: 16)

Note, that only 14 bits are required for this code leaving two bits

unused. However, attempting to incorporate these bits Into a linear code

with a greater Hamming distance results in a check field which is too

large for this application. Of course, the codeword need not be

computed each time it is used because, with such a small code set, it

is much easier to use a table look-up method both for encoding and for

checking.

91

Chapter 3

THE DIM INTERFACE

The advantages of an intermediate interface standard for the

interconnection of computers and peripherals (or computers and

computers) are well known. It avoids the necessity of designing a large

number of special-purpose computer and peripheral specific interfaces.

Normally, only one peripheral-independent computer interface need be

designed for each computer type and only one computer-independent

peripheral interface need be designed for each peripheral type.

Furthermore, an intermediate interface becomes almost mandatory when

computers and peripherals (or computers) are connected via a

communications network. The DIM interface [MORL83] has been

especially designed to facilitate computer-peripheral and

computer-computer transfers either directly or via MININET.

3, 1 INTERFACE REQUIREMENTS

Early in the specification of MININET, it was necessary to adopt a

flexible and economical standard interfacing technique that was

compatible both with the requirements of its application areas (e.g.

laboratory instrumentation, real-time audio processing, process control,

etc.) and with the transparency, cost and speed goals of the network

(Section 1.2). The requirements of the interface can be summarized as

follows:

(1) A single interface must be able to support 16—bit transfers in both

directions and, in addition, the transfer of control information in

either direction. That is. in terms of conventional computer

terminology, a single interface should support "read data", "write

data", "read status" and "write command" operations.

(2) Especially in process control and medical applications. It may be

necessary to isolate a maverick device which Is threatening to

disrupt the entire system by some form of unsociable behaviour.

This, therefore, precludes the use of a bus system, such as

\
92

CAMAC [ESON72] and the IEC-625 bus [IEC 79], because there only

has to be a short on a transfer control line, within one device, to

halt all operations on the bus, or on a data line to corrupt the data

transfers between any devices on the bus. An interface between

individual devices allows each device to be isolated. Furthermore,

it allows the network to apply flow control to each device

individually, thus avoiding the danger of one user flooding the
network with its data.

(3) Transfer rates should be controlled by asynchronous handshake

signals in the interface to enable data throughput that is as fast as

can be comfortably accommodated by both the sender and

receiver. This freedom, however, may well be qualified by some

relatively long timeout period to detect if the other party is powered

down or faulty.

(4) Protection against both internal and external electrical interference

should be provided to avoid false transfers, lost transfers or

corruption of the information during transfer. Handshake interfaces

are notoriously prone to false transfers and to transfer cycles being

aborted early, due to impulsive noise appearing on the handshake

lines. Thus, special attention should be given to the protection of

these lines. Whether or not the data itself should be encoded for

error protection across the interface is less certain, as most

instrumentation systems and computer input-output systems have no

such protection. Computer-computer block transfers would usually

include end-to-end error protection of the entire block to cover all

parts of the data's journey. Thus, the extra complexity of error

encoding in the interface does not seem justifed for most

applications. Nevertheless, there may be some very sensitive

applications where, at least, a parity check should be made.

Consequently, the interface should provide the option of including a

parity bit with the data.

(5) The maximum transfer rate of the interface should be greater than

the maximum user throughput requirements. However, It should not

be so fast as to require any exotic logic technology in the

interfaces. This requirement implies a maximum throughput in the

10-20Mbps range. This speed is more than sufficient for most

instrumentation applications. Of course, in an unsympathetic noise

environment, the maximum transfer rate may be reduced in order

93

to improve the dynamic noise immunity, by allowing longer

validation intervals (Section 3.2.1).

(6) Under normal conditions, the interface should be able to operate

over distances of, at least, 10m at maximum transfer rates and up

to 30m at reduced transfer rates. These distances are as great as.

if not greater than, the maximum distances expected within one

application area. Wider separations would be serviced by a
communications system such as MININET.

(7) The interface should operate in such a way that a transparent

communications network can be inserted between two devices, that

had been communicating directly, without any change to the

interface or higher layer protocols. The most important

consequence of this requirement is that the interface cannot

support directly elicited responses. That is, there can be no

equivalent to the read strobe found in most computer memory and

I/O buses because the propagation delay through the network

would, most likely, be much longer than the maximum read cycle

time the computer could tolerate. The equivalent of directly elicited

responses can be achieved by sending a control message

requesting the desired data. In order to be compatible with

computer buses, which expect to read data and status directly with

minimum delay, the computer interface must contain data and

status registers which are updated from the peripheral via the
interface.

(8) The cost of the interface should be low, commensurate with the

relatively inexpensive peripherals that it is interfacing. This

constrains many of the above requirements. Without cost

constraints, it would be possible to design a very fancy interface

with a very fancy price tag which, for the last very good reason

alone, would not be used! Consequently, the interface has to do its

job as quickly and efficiently as possible while remaining cheap and
easy to implement.

3.2 INTERFACE SPECIFICATION

DIM is fundamentally a symmetrical interface with the operation of

the two sides of the interface being almost identical. However, there are

some differences between the two sides associated with line assignment

94

and arbitration. For this reason, one side of the interface is termed the

master and the other the slave. Negative logic convention is used for all

lines In the interface with the line terminations attempting to pull each

line to a high (i.e. false) level. Therefore, the driver's low output state

must be active, while the high state may be active or passive. Further

information on the electrical and mechanical characteristics of the

interface can be found in [MORL83].

3. 2. 1 The Basic DIM Interface

The basic DIM interface consists of 22 signal lines comprising 16

bidirectional data lines, a data/control shift line, master handshake and

slave handshake control lines, and a dominance line.

(1) Data Transfers

Sixteen parallel data lines (DDL0-DDL15), numbered in a bigendian

sense [C0HE81] (i.e. bit 0 is the most significant), are used to perform

the required 16—bit transfers. Of course, devices do not have to use all

of these lines. For example, terminals usually transmit characters along

the 8 least significant lines while ADCs, having a resolution less than 16

bits, usually use the most significant lines. The lines are bidirectional to

avoid the unnecessary wires, connector pins and electrical buffering

components required if two unidirectional sets of data lines are used.

Transfer of data between a computer and a peripheral is usually

divided into command or status information on the one hand, and actual

end-user data on the other. Different registers are associated with each

class of transfer. The data/control shift line (DDC) qualifies the data

lines to distinguish between these classes during a transfer. If this flag

is set. the data lines contain normal end-user information (data class).

If DDC is not set. the data lines contain control information (control

class) . Like the data lines. DDC is bidirectional. This enables a single

DIM interface to handle the four basic computer-peripheral operations:

read-data, write-data, read-status and write-command.

(2) Transfer Control

Two pairs of transfer control lines are provided in the interface.

The master handshake lines, master interrupt (DMI) and master

95

acknowledge (DMA), are used to control the transfer of data from the

master to the slave. The slave handshake lines, slave interrupt (DSI)

and slave acknowledge (DSA), are used for transfers from the slave to

the master. When a device wishes to transfer data (of either class), it

sets its interrupt line true (DMI if it is the master or DSI if it is the

slave) to indicate it has data available. After the other device has

detected this interrupt and is ready to receive data, it replies by setting

its acknowledge line true (DMA if it is the slave or DSA if it is the

master) . Once the original device has detected the acknowledgement it

then, and only then, enables its data and data class transmitters (17

bits in all) , thus placing the data to be transferred onto the interface

lines. At the same time, it sets its interrupt line false. When the

receiver has detected the removal of the interrupt, it first waits for any

reflections and crosstalk on the interface cable to die down before

quietly accepting the data (usually by loading it into a buffer register).

It then sets the acknowledge line false. When the sender detects the

removal of the acknowledgement, it disables the data and data class

transmitters and the transfer cycle is complete.

If a noise impulse appears on an interrupt line, there is a danger

that it could cause a false transfer of nonsensical or duplicate

information, or cause the corruption of data passing in the opposite

direction. Similarly, a noise impulse on an acknowledge line could result

in the loss of a transfer and/or corruption of data passing in the

opposite direction. The designers of the British Standard Interface

(BS4421) [BSI 69] recognised this danger [DAVI73] and protected their

interface by the use of low-pass filters and large hysteresis receivers on

the handshake control lines. An alternative method, using validation

timeouts, has been adopted for use with DIM. This method is more

suitable for implementing in an LSI chip than that using low-pass filters.

Logic state changes of a control line are not accepted until it has stayed

in Its new state for a fixed validation interval. If, at any time during this

Interval it returns to its original state, then It is ignored. If,

subsequently, it goes to its new state again, the validation timing starts

again from zero. Any noise Impulses of width less than the validation

interval are therefore rejected, no matter how close together they occur,

and irrespective of their magnitude.

The noise rejection characteristics of the validation timeout

approach may be compared with that of a first-order low-pass filter, by

96

calculating the Impulse height required for acceptance as a function of
the pulse width. In order to

constant of the filter, t c , is

transition is the same as
o'

the

make the comparison

set so that the delay

validation interval, tQ.

equitable, the time

to a normal signal

That is

To
‘o

AVs
(3: 1)

where AVs is the normal

,O9 AVs - AVth

signal swing and AVth is the swing required to
reach the receiver threshold level. Using a rectangular pulse of height,

Vp, and width, r, as the model of a noise impulse, the noise immunity
of the filter is given by

Vp = (1 - e T/T0)"1 AVth (3: 2)

while that for the timeout circuit is

Vp co T < *o*
= AVth, r >

(3: 3)

Perhaps a more realistic

function of peak height, Vp, and time constant, r.

noise immunity of the filter circuit can be found by equating the peak

value of the convolution of the noise impulse and the filter impulse

response to the threshold voltage. Solving for the noise immunity.

noise impulse model is a decaying exponential

For this model, the

(r0/r - 1) AVth

(r/ro)T/(To t) - (t /t o)t o /(t o t) °'

(3. 4)
= e AVth, T = rQ.

Similarly, for the timeout circuit the noise immunity to the exponential
impulse model is given by

Vp = e^77" AVth (3:5)

Using (3:2) and (3:3), the performance of these circuits for a

rectangular noise pulse model is shown in Figure 3. 1 where

AVs =1.5 AVth. The performance of the low-pass filter circuit Is labelled

"L. P.F." and that of the validation timeout circuit is labelled HV.T.O.H.

97

"0
r—4
0

_c
co
GJ
L

_£
I—
X
-P
_c

CD
•H

qj
X

GJ
(0

•—I
□
Q_
E

Impulse Width/Va1idation Delay

Figure 3. 1: Noise Immunity to Rectangular Noise Impulses

Similar plots for the decaying exponential noise pulse model, using

(3:4) and (3:5), are shown in Figure 3.2. From both plots, it can be

seen that the validation timeout approach has superior immunity against

short noise pulses of width less than about tQ, while the filter circuit is

slightly better for longer pulses. In addition, a series of closely spaced

noise spikes cannot "pump-up" the timeout circuit as they can with the

filter circuit, so reducing the latter's immunity.

Leading and trailing edges of the interrupt and acknowledge lines

must be validated. Consequently, there are four separate validations in

each transfer cycle. In a noisy environment, the validation Interval can

be increased, provided that It does not slow the maximum transfer rate

required by the application. Note also, that the data lines are not

sampled until a settling-time interval has elapsed after the last movement

of any line on the interface. Thus, the danger of crosstalk or reflections

in the interface cable Is, for all practical purposes, completely

removed. In the present implementation of the interface, the minimum

validation interval is approximately 100-200ns, while the minimum settling

time, before the data is accepted. Is approximately 300ns. This results

98

“O
r—i
0

X
(0
ty
L

X
H-
X
+>
X

CD
•rt
OJ
X

0)
co

r—I
□
Q_
E

Impulse Time Constant/Va1idation Delay

Figure 3.2: Noise Immunity to Exponential Noise Impulses

in the maximum throughput of the interface being approximately one
million transfers per second.

(3) Master-Slave Relationship

The master and slave designation of the interfaces principally

determines which control lines are used by which party. However, the

master interface has one additional function. Since the data lines are

bidirectional, it is not possible to perform transfers in both directions at

the same time. The master interface arbitrates, on a first-come,

first-served basis, which transfer goes first. It performs this by ignoring

the master acknowledgement, if it is already asserting the slave

acknowledgement, and delaying the slave acknowledgement, if it is

already receiving the master acknowledgement. Note that the master

designation determines the location of the arbitration logic, rather than
any priority of data transfer.

By convention, peripherals use slave interfaces and the network

uses master interfaces. It is necessary, therefore, for computer

99

interfaces to be masters when they are connected directly to a

peripheral, while they must be slaves when connected via the network.

To facilitate this, without resorting to hardware modification, network

interfaces permanently assert true the dominance line (DDM) in the

interface and so are called dominant masters. The computer interface,

called a submissive master, monitors this line and. if it is asserted, acts

as a slave interface while, if it is not, acts as a master. Since slaves

do not assert the dominance line, a submissive master can be

successively connected either to a slave or to a dominant master without

modification. To prevent noise on the dominance line confusing a

transfer, it is heavily low-pass filtered by the submissive master. Note

that two submissive masters cannot be directly connected together

although, of course, they can through the network. Thus, in order to

connect two computers together directly, one interface must be switched

either to slave or dominant master mode.

3. 2. 2 Extensions to the Basic Interface

The basic interface is sufficient for most connections between

computer and peripherals. However, for some applications, such as

certain computer-computer and computer-network connections, there is

a need for further qualification of the data transferred. Also, some

applications requiring higher data integrity, such as process control,

may need some error protection during the data transfer. These

requirements are satisfied within DIM by means of address and parity
lines respectively.

Cl) The DIM Address Lines

Six bidirectional address lines (DAL0-DAL5) are provided, which

are enabled and can transfer information at the same time as the data

lines. These lines can be used to provide sub-addressing for links

between intelligent devices. For example, two computers can be

connected, via a single DIM interface, with the DIM addresses being

mapped into the computers' peripheral address spaces to form a number

of independent connections between processes in the two machines.

Another application arises when a computer is virtually connected to a

number of devices via a communications link or a network such a

MININET. It is economically undesirable to connect the computer to the

100

network via separate interfaces for each remotely connected peripheral,

as the transfers would first be demultiplexed to each interface and then

remultiplexed into the network station. A more attractive solution is to

use a single interface between the computer and the network, with the

address lines discriminating between the different devices connected.

The data would only be demultiplexed when it reached the remote DIM

ports connected to the destination devices. Of course, to utilize such an

economy, a multiple DIM computer interface is required.

The end-to-end flow control for each multiplexed connection is

independent, because each DIM address has its own control class of

transfer used by the flow control techniques described in Section 3.3.1.

However, as far as the local flow control across the interface between

the computer and the network is concerned, the multiplexed connections

are treated as one. Consequently, if congestion associated with one

Virtual Connection causes the network port to stop accepting data

transfers for that connection, it would also block all the other

connections multiplexed along that DIM interface. For this reason,

multiplexing a number of connections along a single DIM interface is

only recommended where the destination devices are associated with the

same project or connected to the same destination node.

(2) Parity Control

Two bidirectional parity lines are included in the interface. One.

the data parity line (DDP), provides an odd parity check of the data and

the data/control shift lines. The other, the address parity line (DAP),

provides an odd parity check on the address lines. In order to enable

interfaces without the parity option to be connected to interfaces that are

checking parity, without spurious errors being detected, two additional

lines are provided. The master parity available (DMP) and the slave

parity available (DSP) indicate whether the master or slave interface

respectively are generating parity signals. This is a similar facility to that

provided in the BS4421 interface [BSI 69], Of course, a single bit error

on this line could result in the detection of a false error or a failure to

detect a parity error, because the parity check logic was disabled. This

danger is minimized by heavily low-pass filtering the parity available

lines. These lines, like the dominance line, are quasi-static and would

be expected to change state only when the interface connector is

physically moved. Since all the interface signals are asserted-low, which

101

is the active level, undriven lines are pulled high (i.e. false) by the line

termination [MORL83]. Therefore, DMP and DSP are automatically false

when connected to a basic master or slave interface which do not use

those lines.

3.3 THE COMPUTER-PERIPHERAL CONVENTION (DIM-CPC)

In order to realize fully the advantages of an intermediate interface

standard, the design of a computer interface must be independent of the

device to which it is connected, whether the device be a terminal, an

ADC or another computer. Conversely, the device interface design

should be independent of the computer to which it is connected. To this

end, only the device interface can contain the device specific circuitry

and only the computer interface can contain the circuitry specific to the

computer. It is possible to standardize further, as the procedures

involved in initializing and maintaining the transfer of information between

a device and a computer are remarkably uniform, irrespective both of

the device and the computer type. This enables the bulk of the computer

interface to be constructed independently, not only of the peripheral, but
also of the computer itself.

In order to achieve this independence, it is necessary to specifiy a

common initialization, error and flow control protocol and to define the

format of the control class transfers between the device and computer

interfaces. This Is done with the DIM computer—peripheral convention

(DIM-CPC). In addition, the convention allows an intervening

communication system such as MININET to report any error condition to

the computer interfaces.

This approach facilitates the construction of multiple DIM-computer

Interfaces like the interface processor shown in Figure 3.3. Only that

part which is concerned with the connection to the computer's peripheral

bus need be specific to the particular computer type. This computer

personality interface must conform to the electrical and mechanical

standards of the computer bus and may contain logic to map status and

command Information between the computer's conventional assignments

and that of the DIM-CPC.

The central part of the interface contains a data-in, a data-out, a

command and a status register for each DIM interface handled. The

data-in and data-out registers act as buffers for data class transfers

102

Figure 3.3: Typical Uses of a DIM Interface Processor

103

between the computer and the DIM interface. (Remember that directly

elicited responses, such as a computer bus read operation, cannot be

extended out to the remote device. Instead, the computer reads the data

in the buffer register.) The command registers are loaded from the

computer. Part of each command register is reserved for control of the

Internal functions of the interface processor such as the enabling of

timeouts and computer interrupts. The remainder of the register is

relayed to the device in a control class transfer. Each status register

contains information about the health and operational mode of the device

and the ready (not busy) semaphores controlling the flow of data to and

from the device. It is updated by events occurring within the interface

processor, such as the computer reading or writing to the data

registers, and by the receipt of control class transfers from the device

or. possibly, from the network itself.

The DIM control sections in the computer and device interfaces

handle the DIM transfer procedure. In the computer interface, the DIM

section usually maintains a timer to monitor each transfer and prevent a

lockout situation caused by. for example, the device being switched off.

The device interface contains circuitry specific to the interfaced device.

This may well include: a control register, which is updated by

commands from the computer received via DIM control class transfers; a

status register, whose contents are relayed to the computer interface

whenever a change occurs; and data buffer registers for the data class

transfers.

The overall formats of the command register and transfers are

shown in Figure 3.4. and those of the status register and transfers are

shown in Figure 3.5. The precise mechanisms, by which the bits within

the command and status registers are set and cleared, are detailed in

Table 3.1 and Table 3.2. These provide a formal description of a

DIM-CPC interface and need not concern those interested only in the

general principles underlying the protocol. Although DIM-CPC is

described here in the context of computer-peripheral communication,

the formats of the command and status transfers are complementary and

their operation is designed to facilitate computer-to-computer

communication.

104

* *

0 1 2 3,4 5 6 7 l 8 9 10 11 12 13 14 15
READ
CONT

- j | | j j
Device Dependent Mode

i iiii

1
Dev Dep
Trigger

- - - - - - !- - - - -
INIT

L
DATA
REQ Res ENB

T T
ENB
A A

ENB
INT

(a)
Command Register Format

0 1 2 3,4 5 6 7 1 8 9 10 n 12 13 14 15
BRST
TRAN

i i 1 i i

Device Dependent Mode
---------- 1 i i i i

1
Dev Dep
Trigger

i
INIT

i
DATA
REQ

"...... 1 I "T......... -

0 0 0 0
---------- 1--------- 1 1

(b)
Command Transfer Format

Figure 3.4: DIM-CPC Command Format

BIT MNEMONIC DESCRIPTION
0 READ CONT

BRST TRAN
Read Continuous (Burst Transfer). Commands the device to
output data in burst mode without waiting for a data request
acknowledgement from the computer interface.

1-6 Dev. Dep. Mode Sets mode of operation of the device. Allocation specific to
device type.

7-8 Dev. Dep. Trig. Triggers the device to perform some action which is
device-specific.

9-10 INIT Initialization Commands. See Table 3.3.

11 DATA REQ Data Request. Requests the device to send one word of data
to the computer.

12 Res. Reserved for future use within the computer interface. Must
be zero.

13 ENB T T Enable Transaction Timer. Allows the transaction "deadman’s"
timer to run.

14 ENB A A Enable Auto-acknowledge. Causes the computer interface to
send a data request message to the device whenever the
data-in register is read by the computer.

15 ENB INT Enable Interrupts. Causes the computer interface to request
a computer interrupt whenever an event requiring computer
servicing occurs.

Use of bits 1 and 8 are restricted to commands to non-intellegent devices only.
Otherwise they must be zero.

105

WRT
CONT

i

REM
ERR

c 3- - - - - - !- - - - -
Device

i

,4 5 6 71- - - - - 1——l—“—l- - - - - -
Dependent Status
iiii

8
TR

ERR

9
CMD
REQ

10
DEV
RDY

11
WRT
RDY

12
T E

Q

13

D U

14
READ
OVL

15
READ
RDY

* * * * * * * * * *
(a)

Status Register Format

0 1 2 3 ,4 5 6 7 8 9 10 11 12 13 14 15
BRST
TRAN 0

I
Device

i

iiii
Dependent Status

1 i t
TR

ERR

i
INIT

i
DATA
REQ 0

—
0

T

0
!

0
* * * * * * * * * *

(b)
Status Transfer Format (Generated by Device)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1

1
0 0

1

i i i
0 0 0 0

1 1 1

TR
ERR

i
0

i

- - - - - r
0

i
0 T E

Q D U
i

0
L

0
* ****** < X X

(c)
Status Transfer Format (Generated by Network)

Figure 3. 5: DIM—CPC Status Format

register waiting to be read.

BIT MNEMONIC DESCRIPTION
0 WRT CONT

BRST TRAN
Write Continuous (Burst Transfer). Informs the computer
interface that the device can accept data in burst mode.

1 REM ERR Remote Error. See Table 3.5.

2-7 Dev. Dep. Allocation specific to device type.

8 TR ERR Transmission Error. See Table 3.5.

9 CMD REQ Command Request. Indicates that the device has sent an
initialize or block terminate message. See Table 3.4.

10 DEV RDY Device Ready. Indicates that the device is ready for
operation. See Tables 3.3 and 3.4.

9-10 INIT Initialization Messages. See Table 3.4.

11 WRT RDY Write Ready. Indicates that the computer can safely write
into the data-out register.

11 DATA REQ Data Request. Requests the computer to send one word of
data.

12 T E Q Transmission Error Qualifier. See Table 3.5.

13 D U Device Unavailable. See Table 3.5.

14 READ OVL Read Overlap. Indicates that data has arrived from the device
before the previous data had been read by the computer.

15 READ RDY Read Ready. Indicates that there is new data in the data-in

Exception Condition Bit.

106

Table 3.1: Command Register Control Functions

107

Table 3.2

Status Register Control Functions

BIT MNEMONIC SET CLEARED after power-up

0
2-3

WRT CONT
Dev. Dep.

by receipt of a status word
with the corresponding bit true.

OR by receipt of a status word
with the corresponding bit false

OR by receipt of a command word
with bit 9 true AND bit 10 true.

1
4-7

9

REM ERR
Dev. Dep.
CMD REQ

by receipt of a status word
with the corresponding bit true.

OR by receipt of a status word
with the corresponding bit false

OR by receipt of a command word
with bit 10 true.

8 TR ERR by receipt of a status word
with bit 8 true

OR by detection of a parity error
In a word received from the
device or network.

OR by receipt of a status word
with bit 8 false

OR by receipt of a command word
with bit 10 true.

10 DEV RDY by receipt of a status word
with bit 10 true.

OR by receipt of a command word
with bit 9 true AND bit 10 true.

11 WRT RDY IF bit 10 of the status register
(DEV RDY) is set. by receipt of
a status word with bit 11 true

OR receipt of a status word with
bit 10 true AND bit 11 true

OR. IF bit 0 of the status register
(WRT CONT) Is set, after
dispatch of a data word
towards the device.

OR by the computer writing to the
data-out register

OR by receipt of a command word
with bit 9 true

OR by receipt of a status word with
bit 10 true AND bit 11 false.

12 T E Q by receipt of a status word
with bit 12 true

OR by expiration of the transaction
timeout Interval

OR by detection of a parity error
In a word received from the
device or network.

OR by receipt of a status word
with bit 12 false

OR by receipt of a command word
with bit 10 true.

13 D U by receipt of a status word
with bit 13 true

OR by expiration of the DIM
timeout Interval

OR by receipt of a status word
with bit 13 false

OR by receipt of a command word
with bit 10 true.

14 READ OVL IF bit 15 of the status register
(READ RDY) is already set.
by the arrival of a data word
from the device.

OR by receipt of a command word
with bit 10 true.

15 READ RDY IF bit 10 of the status register
(DEV RDY) is set. by the
arrival of a data word from
the device.

OR by the computer reading the
data-in register

OR by receipt of a command word
with bit 10 true.

108

3. 3. 1 Flow Control

The transfer of information from the computer to the device is

controlled by the WRT RDY and WRT CONT bits in the status register.

After initialization, when it is ready, the device sends a data request

message by means of a control class transfer with bit 11 (DATA REQ)

true. Bit 0 (BRST TRAN), of the same transfer, determines whether the

end-to-end handshake transfer mode (bit 0 false) or the burst transfer

mode (bit 0 true) is to be used for the write operations. The data

request message sets the WRT RDY semaphore in the status register and

causes a computer interrupt if enabled. By reading the status register,

the computer can sense when WRT RDY becomes true. It can then

safely write data into the data-out register. This event immediately clears

WRT RDY in the status register. The data is subsequently dispatched, as

a data class transfer, through the DIM interface towards the device.

In the end-to-end handshake transfer mode (Figure 3.6a), WRT

RDY stays reset until the device signals its readiness to accept another

data word by dispatching a data request message to the computer

interface which then sets WRT RDY. The process continues with data

class transfers from computer to device alternating with control class

transfers from device to computer. In the burst transfer mode

(Figure 3.6b), WRT RDY is set immediately data is dispatched through

the DIM interface and the device sends only the one data request

message to start the burst. Thus, data is transferred as fast as the

computer can write into the data-out register and the interface can

dispatch the data. The device must be capable of accepting data at this

rate or a loss of data will occur. The end of the burst is indicated by

the computer issuing a block terminate command, which is described in

Section 3.3.2.

Note that the computer procedures are identical in both modes of

transfer. For this reason, in some Implementations, when the computer

reads the status register, the group error flag (GE), which is the

inclusive-OR of the exception bits in the status register (bits 4-9 and

12-14), is substituted for WRT CONT in bit 0.

The read process is controlled by READ RDY in the status register

and DATA REQ, ENB A A and READ CONT in the command register. If

READ CONT (bit 0) is not set by the computer, the data transfer from

the device to the computer interface operates in handshake mode. If the

109

(a)

DEVICE

----- —----- ------- Cantrol Claes Tronafen

INTERFACE
PROCESSOR

CWRT RDY-0]
VRT RDY<1

COMPUTER

dJota Request: bit 11 true; bit 0 false) *

Data Vrite
—>

Qpto Claw Transfer-------------------- -— VRT RDY<0

------------—---------- —Data nequeet

VRT RDY<1 --------- -Intercept
■---- — Statue R*nrT — >

rirrta Vrite ----------
Drrta Claaa TranfiffiC—---------------------- VRT RDY<0

*------------------

—----------------------------Data Request

VRT RDY<1 --------- ^Intgrcupt
---------- Statue Renrl — >

-*1

Burst Mode

Figure 3.6: Write Procedures

computer sets READ CONT. the data transfer operates in burst mode.

ENB A A (bit 14) enables the interface to acknowledge automatically the

receipt of data, by sending a data request message after the data has

been read by the computer.

In order to start a read operation, the computer writes a command

word with bit 11 (DATA REQ) set. This is dispatched to the device,

whereupon the bit is reset in the command register. After receipt of this

data request message, the device sends data to the computer. Receipt

of the data class transfer by the computer interface causes bit 15 (READ

RDY) of the status register to be set and. If enabled, a computer

Interrupt requested. The computer can detect when the data has arrived

by reading the status register and checking bit 15. If it is set. the

no

computer can then read the data-in register, which causes READ RDY to

be reset.

Had both READ CONT and ENB A A been false in the original

command word, it would be necessary for the computer to output a

command with bit 11 true after each read operation, as shown in

Figure 3.7a. In this mode, there is an explicit handshake between the

device and the computer itself.

If, in the original command. ENB A A had been true and READ

CONT false, then, following a computer read operation, the computer

Interface automatically sets DATA REQ in the command register and

dispatches a control class transfer towards the device, as shown in

Figure 3. 7b. Thus, it is only necessary for the computer to issue one

command placed at the beginning of the transfer of a block of

information. There is still an implicit handshake between the computer

and the device, by means of the computer driven read operation.

Consequently, there is no danger of data being overwritten in the

computer interface before it has been read. Note that, because DATA

REQ cannot be cleared by a computer command with bit 11 false (other

than an initialization command) . and because it is immediately cleared

after dispatch of a copy of the register (Table 3.1), commands can be

given in the automatic handshake mode, without data request messages

being lost before they are transmitted, or duplicate requests being

generated.

The burst mode of transfer is obtained by setting READ CONT, as

well as DATA REQ, in the original command (ENB A A should be

reset). The device receives this command, with BRST TRAN true, as a

burst request and so sends data continually, without waiting for data

request messages, as fast as the data is generated, and the interface

or a possibly intervening network can transmit. There is, therefore, a

danger that data is not read by the computer before it is overwritten by

new data arriving in the data-in register of the computer interface. If

this occurs, the error flag READ OVL (bit 14) of the status register is

set to warn the computer. The burst mode of transfer to the computer is

commonly used with terminals, which generate data relatively slowly,

and. in any case, the character rate from the terminal to the

terminal-DIM interface cannot normally be dynamically controlled.

Another common application is where a high-speed device, such as a

multiplexed ADC, is connected via a network and the trans-network delay

ill

DEVICE

fnntrol ClaM InflD«£*E- - - 7T—t—

INTERFACE
PROCESSOR

[READ RDY-0]
DATA REQ<1
nATA prficfl

t-■(Data Request: bit 11 true: bit 0 tai-;

READ RDY<1

READ RDY<0

Data Request---------------------------— DATA REQ<1
DATA REQ<0X----------------------Dfltfl Class Transfer
READ RDY<1

READ RDY<0

Data Reauaet------- ————— DATA REQ<1
«—------------- -

---- Jatsrcypt

Co—and

COMPUTER

e

(a)
Non-Automatic Handshake Mode

(READ CONT=0 and ENB A A=0)

(READ CONT=0 and ENB A A=l)

DEVICE

Control Cla— Traos£*C--------7---------

INTERFACE
PROCESSOR

[READ RDY-0]
DATA REQ<1

READ CONT<1
DATA REQ<0

COMPUTER

'"(bits 0 and 11 true)
(bit 13 false)

*■ (Burst Request: bits 0 and 11 true)

READ RDY<1 ---------pJattrcypi^_____ _

------------------------Data Class Transfer.
READ RDY<0
READ RDY<1 ---------_________________ s

READ RDY<0
READ RDY<1

(c)
Buret Mode

(READ CONT=1 and ENB A A=0)

Figure 3.7: Read Procedures

112

is too long for the handshake mode. In the latter case, the priority of

the computer interface and its software server, as well as the interrupt

latency of the computer, can be critical if overlap of data in the

computer interface is to be avoided. The interface processor is

frequently connected to the computer with direct memory access (DMA)

for these applications. High speed block transfers between computers

can also be undertaken, using burst mode and the block terminate

command (Section 3.3.2) . Note that, as far as the computer is

concerned, the automatic handshake mode and the burst mode read

procedures are identical, with the exception of the contents of the initial

command word.

If the computer and device are separated by a communications link

or network such as MININET. the maximum data transfer rate in the

handshake mode is limited by twice the end-to-end transport delay of

the network, whereas, in the burst mode, it is limited by the maximum

effective user throughput of the network. Consequently, even with a

network like MININET, which has been specifically designed to minimize

the transport delay rather than just maximizing throughput, burst mode

will be considerably faster. MININET target throughputs for these two

modes are discussed in Section 1.2.3.

3. 3. 2 Initialization

The initialization procedure provides the means to reset the device

and computer interfaces into a fully defined initial condition, with the

pathway between the two clear of any pre-existing messages. Bits 9 and

10, of the control class transfers and of the command and status

registers, are concerned with the initialization procedure. The format of

the initialization messages, and their effect on the status register when

transmitted, is shown in Table 3.3. The effect on the status register

when received is shown in Table 3.4.

To Initialize the interfaces, the computer outputs an initialize

message, which is a command word with bits 9 and 10 true. This clears

the status register entirely including the CMD REQ flag (bit 9) and DEV

RDY semaphore (bit 10). If the computer Is ready to receive data from

the device, bit 11 (DATA REQ) of the command would also be true. If

it is not ready, bit 11 of the command word is false, which clears the

corresponding bit in the command register (Table 3.1). Thus, any

113

Table 3.3

Effect of initialize Commands on Status Register

Message = Initialize Initialize
Acknowledge

Block
Terminate

None

Code (bits 9,10) 11 01 10 00

DEV RDY (10) Cleared Unchanged Unchanged Unchanged

WRT RDY (11) Cleared Unchanged Cleared Unchanged

READ RDY (15) Cleared Cleared Unchanged Unchanged

Exception
Condition bits
(1, 4-9, 12-14)

Cleared Cleared Unchanged Unchanged

Non-Exception
Condition bits
(0, 2, 3)

Cleared Unchanged Unchanged Unchanged

Table 3.4
Effect of Received Initialize Message on Status Register

Message = Initialize Initialize
Acknowledge

Block
Terminate

None

Code (bits 9,10) 11 01 10 00

CMD REQ (9) Set Cleared Set Cleared

DEV RDY (10) Set Set Unchanged Unchanged

WRT RDY (11) Note 1 Note 1 Note 2 Note 2

READ OVL (14)
READ RDY (15) Unchanged Unchanged Unchanged Unchanged

Others (0-8,
12-13) Note 1 Note 1 Note 1 Note 1

Note 1: Jam loaded from corresponding bit in message.
Note 2: Set if corresponding bit in message is set; otherwise unchanged.

114

undispatched data request message Is overwritten by the initialize

command. After the contents of the command register have been

dispatched towards the device, bits 9 and 10 are cleared to avoid

duplication.

Upon receipt of the initialize message, the device resets itself,

clears any error flags (unless the fault condition still exists), and halts

any ongoing data acquisition or output. After this process is complete,

the device sends a control class message back to the computer. This

message contains the new status of the device and has bit 9 false and

bit 10 true (.initialize acknowledge'), to acknowledge the initialize

command. The arrival of this acknowledgement, at the computer

interface, causes the DEV RDY semaphore (bit 10) in the status register

to be set, thus informing the computer that the device is ready for

operation. Any subsequent status transfers from the device, informing of

exception conditions or carrying a data request, must have bits 9 and 10

false. The DEV RDY semaphore remains set, being only cleared by a

further initialize command from the computer (Table 2.2).

In the interval between the initialize command and its

acknowledgement, while DEV RDY is reset, the WRT RDY and READ RDY

semaphores remain firmly reset - despite the arrival of any data or data

requests from the device. Thus, any pre-existing data traffic is ignored.

However, other status bits, including error flags, can be set and

computer interrupts are not suppressed. Consequently, the computer is

informed of any error message, which may well originate in an

intervening network, concerning the fate of the initialize message.

The device itself can issue an initialize message, which indicates

that it is initialized, but it requires a command from the computer as an

acknowledgement. (For a non-intelligent device this usually only occurs

after power-up.) This message sets bit 9 (CMD REQ) and bit 10 (DEV

RDY) in the status register of the computer interface. The WRT RDY

semaphore is jam loaded with the value of bit 11 (DATA REQ) of the

status message. The computer must respond with bit 10 of its command

word true - normally by sending an initialize acknowledge message.

When the computer loads the command register with this message, the

exception condition bits and READ RDY in the status register are reset.

However, DEV RDY. WRT RDY and the remaining non-exception

condition bits (0, 2 and 3) remain unchanged (Table 3.2), so that, if

a data or burst request was included with the received initialize

115

message, they are not lost.

It is quite acceptable for the computer to respond with an initialize

instead of an initialize acknowledge command. However, this second

initialize message would require an acknowledgement from the device

before data transfer could begin. Of course, if both sides responded

with initialize messages deadlock would result.

The block terminate command (bit 9 true, bit 10 false) is used,

following the transmission, usually in burst mode, of a block of data. It

signifies to the device that the block is complete, and that the device

should reply with a further (burst) data request message (bits 0 and 11

true) . when it is ready for the next block. The block terminate command

automatically clears the WRT RDY semaphore in the status register

(Table 3.3). which was previously set by the dispatch of the last data

word. Thus, the computer will wait, until it receives the data request

message from the device, before transmitting the next block of data in

burst mode. Reception of a status word containing a block terminate

message sets the CMD REQ flag. If data was being received in burst

mode, and then transferred to the computer memory via a DMA

controller, the block terminate message would cause the controller to

terminate the transfer and interrupt the main processor, since CMD REQ

is an exception bit. The computer would then be able to process the

data or switch DMA buffers, prior to requesting the next block in burst

mode, by sending a command with bits 0 and 11 set. Had the device

selected the handshake mode of transfer (by keeping bit 0 of its status

message false) . the WRT RDY semaphore would not be affected by the

block terminate command, since it would be reset already. In this case,

the terminate command merely delimits the block for the device.

Once set by the computer, bits 9 and 10 of the command register

are only reset after dispatch to the device (Table 3.1). Consequently,

the initialize commands cannot be inadvertently lost or duplicated by any

subsequent commands, provided that, bits 9 and 10 of these commands

are reset. An initialize command has priority over an initialize

acknowledge command, in the sense that an initialize command will

overwrite an, as yet undispatched, acknowledge message in the

command register.

Data, or burst, requests and other status or command messages

may be included with an initialize or initialize acknowledge message in

116

either direction. These overwrite any flow control information transferred

prior to the initialization of the two interfaces. For example, at the

beginning of the transfer of a block of data from a device in automatic

handshake mode (Figure 3.7b), the computer can issue a single

command with bits 9, 10, 11 and 14 true. Both interfaces are then

initialized and the device informed that the computer is ready to receive

data. The device then acknowledges the initialize command and sends

the first data word. After the computer reads this, the next data request

is automatically returned to the device with bits 9 and 10 false. In order

to avoid data being transferred before the initialize acknowledgement has

been dispatched, it is important that control class transfers have priority

over data class transfers, when being dispatched by either interface. Of

course, the communication network being used must handle all transfers

on a first-come, first-served basis, quite independently of the data

class. Indeed, the initialization procedure depends on the network

maintaining a strictly sequential flow of information between the two

Interfaces.

3. 3. 3 Exception Conditions

The status register contains two types of status bits, in addition to

the three semaphores concerned with initialization and flow control

(bits 10. 11 and 15). If any of bits 1, 4-9 or 12-14 are set, an

exception condition exists and the group error (GE) flag becomes true.

The exception condition may be an error occurring within the device

(such as a paper low condition in a printer) , or it may be an error

arising out of the DIM interface functions themselves (such as a parity

error) , or it may be an alarm condition such as an bearing overheating

in the plant being controlled by the device. It may not be an error

condition at all - such as a block terminate message resulting in CMD

REQ (bit 9) being set in the status register. The common characteristic

of all these conditions is that the flow of data cannot continue without

special action being taken. The form of the recovery procedure must, of

course, remain device dependent. However, it typically involves the

re-initialization of the interfaces, followed by a second attempt at the

data transfer. although frequently the condition requires manual

intervention to clear the fault.

The GE flag enables the computer or DMA controller to ascertain

whether the device is healthy by testing a single bit. Device service

117

routines normally check that no exception condition bit is set in the

status register, prior to testing the READ RDY or WRT RDY semaphores.

The non-exception condition bits (0, 2 and 3) of the status register

do not set the GE flag and so can be set without affecting the data flow.

Bit 0 (BRST TRAN) is reserved for use by the flow control procedures

(Section 3.3.1). while bits 2 and 3 can be used, for example, to

indicate the device's mode of operation.

Whenever a status message arrives, the exception and

non-exception bits, of the status register, are updated with the contents

of the corresponding bit in the message. The exception to this is bit 14

(READ OVL), which is wholly controlled from within the computer

interface. It is necessary for the device to send a status message

whenever its internal status changes. This status message may be

transmitted together with flow control or initialization messages in the

same control class transfer.

An exception condition can be detected and reported by the device,

by an intervening network such as MININET or by the computer interface

itself. The exception conditions. READ OVL (bit 14) and CMD REQ

(bit 9), have already been described. Bits 4-7 are used for the

exception conditions that arise from within the device. Obviously, their

detailed assignment is highly device dependent. Bits 1, 8, 12 and 13

are used to signal exception conditions that are concerned with the

general DIM interface functions and are almost completely independent

of the device type. The format of this interface error group of messages

is shown In Table 3. 5.

Some of the error conditions are detected by the computer interface

itself. If its DIM interface times-out when attempting to output to the

device, bit 13 (D (J) of the status register is set to signify a local DIM

timeout error. This timeout could be due to the interface being physically

disconnected or the device powered down or, if connected through a

network, the local node could be powered down. If, when the network

attempts to deliver a word to the device, a DIM timeout takes place due

to the device not being connected or being powered down, the network

sends a remote DIM timeout message back to the computer interface.

If a parity error is detected in an incoming transfer, bit 8 (TR

ERR) and bit 12 (T E Q) of the status register are set to indicate that

a received transmission error has been detected. If a transmission error.

118

Table 3. 5

Interface Error Codes

Message Origin

Status Bits

1

REM
ERR

8

TR
ERR

12

T E
Q

13

D U

Local DIM
Timeout

Computer
Interface

0 0 0 1

Transaction
Timeout

Computer
Interface

0 0 1 0

Received
Transmission Error

Computer
Interface

0 1 1 0

Transmitted
Transmission Error

Device 0 1 0 0

Remote DIM
Timeout

Network 1 0 0 1

Outgoing
Transmission Error

Network 1 1 0 0

Incoming
Transmission Error

Network 1 1 1 0

Link Down Network 1 0 1 1

No Error 0 0 0 0

in data travelling in the opposite direction, is detected by the device, it

can inform the computer by sending a transmitted transmission error

message. If a parity error is detected by the network, or a word is

dropped for any other reason, the network can send an outgoing

transmission error or an incoming transmission error message,

depending on the direction of the damaged transfer. It should be noted

that MININET does not use this mechanism for error recovery in its

channels, as this is handled within the network quite transparently to the

user. This type of error message occurs if a parity error is detected, by

the network. In data transferred through the DIM port, or (hopefully very

rarely) due to corruption of the data within a network node. In all cases

119

of a parity error being detected, the damaged word is never delivered.

If, due to node or channel failures,the network cannot deliver or receive

any data from the device, the computer is informed by means of a link

down message.

All the exception conditions reported by the network are

characterized by the REM ERR flag (bit 1). The network must know

whether a particular device is capable of accepting these network error

messages - i.e. whether the device is intelligent and conforms to

DIM-CPC (at least as far as the exception condition handling is

concerned). Separate flags in the VCT (Section 2.5.1) indicate whether

errors can be reported to the device connected to the local network port

or, alternatively, whether they can be sent to the device connected to

the remote port at the other end of the connection. In the case of

transmission errors where both devices are intelligent, the error

message is sent to the device that should have received the damaged

word.

In order to avoid a lockout situation, due to a data or data request

word being lost between the device and the computer interface, or due

to a fault condition within the device, the computer can request its

interface to maintain a "dead-man's timer" by outputting a command with

bit 13 (.ENB T T) true. While this bit is set in the command register, a

timer is reset and started whenever a word of either class is dispatched

towards the device. The timer is halted whenever: a data or control

class message is received from the device or network; data is

dispatched in burst mode; or a DIM timeout or parity error is detected

by the interface itself. If none of these events occur, a timeout will

eventually take place and bit 12 is set in the status register to indicate

that a transaction timeout has occurred.

It can be seen, from Table 3.5, that bit 13 (D U) of the status

register is set if there is a local or remote DIM timeout, or the device

Is unreachable through the network. This flag, therefore, serves to

inform the computer that the device is unavailable. Also, bit 8 (TR ERR)

indicates that, somewhere, a transmission error has occurred.

3.3.4 Command Structure

The control of the internal operation of the non-intelligent devices

is effected by means of the device-dependent portion (bits 1-8) of the

120

command word. There are two types of command bits. Most affect the

mode of operation of the device and they remain in force until the

computer explicitly changes the mode. These mode commands are

duplicated every time a command word is sent to the device from the

computer interface. These duplications do not have any deleterious

effect, as they merely update the control register within the device with

the same information that it already contains. Typical of this type of

command function are echoplex control of a terminal interface and

selection of an external or internal clock in a DAC. Device dependent

bits 1-6 are used for mode commands and bit 0 (READ CONT), is also

of this type.

The other type of command triggers a single event or sequence of

events in the device. For example, a single command may trigger an

analog data acquisition system to perform a scan of its input channels.

Device-dependent bits 7 and 8 are used for these trigger commands.

The data request and initialization commands are also of this type.

Clearly, duplication of a trigger command must be avoided. For this

reason, the trigger bits (7-11) in the command register are cleared

after dispatch to the device.

Bits 12-15 of the command register are reserved for internal use in

the computer interface and are always transmitted as zero towards the

device (Figure 3.3). Bit 15 (.ENB INT) is used to enable computer

interrupts. If it is set, a computer interrupt request is generated

whenever: data or status information is received by the interface; or

when a DIM timeout, parity error or transaction timeout is detected by

the interface; or when data is dispatched towards the device if WRT

CONT is set in the status register. The use of bit 13 (ENB T T) and

bit 14 (ENB A A) has already been described. Bit 12 is reserved for

future use within the computer interface and should remain zero.

3.4 OPERATIONAL EXPERIENCE

The DIM interface has been in use at the Polytechnic of Central

London and the University of Bologna since the mid-seventies, with

interfaces to DEC PDP-11, Perkin-Elmer and Apollo computers. In that

time, a large amount of equipment has been constructed using the DIM

Interface, including high-speed converters for digital audio processing

and recording, computer-controlled adaptive filters and an arbitrary

121

waveform generator, as well as the more usual computer peripherals,

such as terminal interfaces, paper tape readers, etc. The interface has

also been used for resource sharing between microcomputer

development systems and a minicomputer, allowing the microcomputer

access to the hard discs and fast printers of the minicomputer system.

Construction of most DIM devices has been greatly eased by the use of

a standard DIM interface circuit board, which handles the transfer cycle

and flow and initialization protocols. It is only necessary, therefore, to

design the device-specific circuitry for each device type. As an

example. Figure 3.8 shows an exploded view of a 16—bit stereo DAC

Figure 3. 8: Construction of a HI-FI DAC with a DIM Interface

capable of working up to a 50kHz sample rate. The DIM interface circuit

board can be seen in the left of the picture. Work is currently underway

to replace this board with a custom chip. To the right of the DIM

interface card is the device specific board. This contains two 8K x 16—bit

buffer memories, which are used to buffer blocks of audio data

transmitted through the DIM interface in burst mode (Section 3.3.1).

together with control and timing logic, address counters and bus

switches. The DAC itself, together with its deglitching amplifiers, is

contained in the diecast box located in the upper right of the picture.

The DAC is optically isolated from the rest of the device circuitry in

122

order to eliminate Interference from the digital circuitry.

Figure 3.9 shows the implementation of an interface processor

Figure 3. 9: Implementation of an Interface Processor

connected to a Perkin-Elmer 3210 computer. The computer personality

interface is located within the card cage of the computer, directly

connected to its I/O backplane bus. This is connected to the interface

processor by means of two 34-way flat cables which can be seen in the

lower right of the picture. The interface processor can handle up to 16

DIM interfaces by means of the DIM ports connected immediately to the

left of the Interface processor. (In the picture. 4 ports are shown

connected to their devices via 34-way flat cables.) The main part of the

interface operates as a high-speed FSM, which executes a routine

whenever a computer read or write, DIM transfer or a timeout takes

place. The main controller is implemented using a microprogrammed,

purpose-built microsequencer. The data, status and command registers

for each DIM interface are located within a 64 x 16—bit RAM. A special

processor, implemented using field programmable logic arrays (FPLAs),

123

is used to perform the various operations on the status and command

registers. The speed of the processor is such that the computer treats

the. sometimes quite remote, devices as if they were separate

peripherals directly connected to its I/O bus. The DIM interface control

is handled by a separate processor. A bank of addressable semaphores

is used to indicate when the contents of a data-out or command register

are scheduled for DIM transmission. The Interrupt requests are handled

In a similar manner by a different bank of interlock semaphores.

With the advent of affordable custom integrated circuits, the

economic justification for the multiple-port interface processor is much

less. Figure 3.10 shows a Multibus (IEEE-796 [IEEE83]) card providing

two DIM interfaces. Each Interface uses a single-port interface

processor implemented on a CMOS gate array. (Only one of these

64-pin DIL packages is shown inserted in the picture.) The bulk of the

rest of the circuit board is taken up with Multibus address comparators

and transceiver chips to provide the relatively high drive currents

required by DIM and Multibus.

Figure 3.10: A Dual DIM-Multibus Interface

124

Chapter 4

THE ROUTING ALGORITHM

4. 1 REQUIREMENTS

The objective of the routing management algorithm is to find the

"best" routes from each node to every other reachable node in the

network. The best route or path between two nodes is defined as the

route which has the minimum "cost" compared with all other possible

routes. This cost is computed as the sum of the costs of each individual

hop along the route and will be referred to as the distance along that

path between the two nodes. Each route should be optimized

individually. Note, that this does not necessarily produce a set of routes

which is globally optimum in the sense of minimizing the total cost of all

the routes in the network. In fact, optimizing globally is not only difficult

to implement, but also can lead to certain path costs being made

unnecessarily high in the interests of the average common good

[MCQU771. Such a proposal would be very unfair.

Each hop is identified as a link defined, in Section 2.3.3, as a

pathway from one node to an adjacent node via a channel. Remember

that, for multi-node channels, several links are logically multiplexed

through the same channel. There are a number of possible methods of

defining the cost of each hop (the link weight). It could be the same

value (e.g. unity) for all links regardless of the speed or length of the

link, or the traffic levels in each link. Such a metric has the advantage

of simplicity and results in a algorithm which attempts to minimize the

number of hops along each path. However, if there are significant

variations in the performance of different links, it is advantageous to

weight each link with a hop cost which could be a measure of the link

throughput or propagation delay.

Since the network is required to minimize delay rather than

maximize the throughput (Section 1.2), link weights should be

proportional to an estimate of the hop delay. This is defined as the

period between a packet arriving at the Channel Service boundary in the

node and it arriving at the same point in the next node. It consists of

125

two components: one being the time spent queuing for the channel and

the other being the channel transit time including any buffering within the

channel controllers. Provided that the output switch processor

(Figure 2.18) is not limiting throughput, the latter component of the hop

delay is inversely proportional to the channel speed for a given channel

protocol. Note, that a half-duplex protocol generally provides less delay

than a full-duplex channel with the same throughput. If the routing

algorithm is connectivity-driven, the link weights do not change

dynamically. Instead, an a priori estimate of the queuing delay is used.

Hence, routing changes only occur if the connectivity of the network

changes (i.e. node or link outages or restoration). It would be quite

possible to maintain different hop costs for different destinations. With a

traffic-driven routing algorithm, the hop cost adapts dynamically to

changes in traffic conditions as well as the link availability. This requires

some sort of ongoing measurement of the delays being experienced by
the traffic through each link.

At first sight, some form of traffic-driven metric appears to be

desirable for use in MININET. However, there are a number of reasons

why the algorithm should only be connectivity-driven.

(1) When all traffic to a particular destination is switched onto a new

channel by the routing algorithm, the length of its queues and

hence its hop delay will increase. This could well make the

previously used channel appear, once again, more attractive

causing the routing algorithm to switch back the traffic to the

original channel. The consequent increase in traffic on the original

channel would trigger a repeat of the first routing change. Thus,

instability could well result. Traffic bifurcation cannot be used

because of the danger of sequence errors violating the

requirements of the Packet Delivery Service (Section 2.4).

Incremental changes in route cannot be made when Virtual

Connections are established and removed. This is because packets

In intermediate store-and-forward nodes are classified purely on

the basis of their destination node address, regardless of their

Virtual Connection or even their source node. In any case, routing

changes would be implemented relatively slowly at a rate dependent

on the user opening and closing connections.

(2) In a large network, with many independent users, the aggregate

traffic may approximate to a quasi-stationary stochastic process.

126

where statistics gathered from the (recent) past provide a

reasonabie estimate of future requirements. However, in a small

network serving the type of environment for which MININET has

been designed, the assumption of traffic ergodicity is highly

suspect. There are fewer users, who, by their nature, tend to be

intermittent and bursty in their use of the network. Furthermore,

since the users are frequently co-operating in the control of linked

industrial processes or scientific experiments, they cannot be

treated as statistically independent sources. In fact, even with wide

area networks, there are real problems in obtaining a meaningful

traffic-driven metric. The simplest method is to take a

instantaneous sample of the total length of the output queues for

each channel and use this, perhaps with the addition of a fixed

bias term, as the link weight. This was the method used in the old

ARPANET routing protocol [MCQU78], However, the random

fluctuations of the queue lengths cause excessive variations in the

link weights. In order to reduce the variance of the delay

estimates, the queue lengths could be averaged in some way.

While heavy averaging produces a more reliable estimate in a

steady state situation, it will respond very sluggishly to any change

in the traffic pattern.

(3) It will be shown, in the development of the routing protocol, that

the maintenance of intrinsic sequentiality, when routing changes

are made, results in unavoidable delay to packets while the old

path is flushed. Thus, the effort of attempting to follow an ever

changing optimum path may well be more costly than staying with

one which is slightly suboptimal.

The link weights would be set initially from a knowledge of the type

and speed of the channel through which it passes. This latter

information is obtained from the channel controller. Note that,

notwithstanding the arguments outined above for fixed link weights, it

should be possible for the weights to be adjusted by management entities

external to the routing algorithm such as the operator. This manual

intervention may well be based on knowledge, external to the network, of

future traffic patterns.

The routing algorithm must automatically, and as rapidly as

possible, adapt to topological changes in the network, including the

127

failure and recovery of nodes and channels. Note, that failure and

recovery of nodes can be treated as the failure and recovery of all the

links to that node, as far as the routing algorithm is concerned.

The algorithm must operate with no a priori knowledge about the

topology of the network. The only node-specific information available to

the routing manager is the node's own address and the link weights.

This implies not only that a newly powered-up node must dynamically

find routes to all other nodes in the network, but also that all the other

nodes must learn about the new node and find routes to it.

Furthermore, the algorithm must be non-centralized in that it should not

be dependent for its operation on any central network control centre.

In most routing algorithms, the sequentiality of the packets is not

guaranteed following a route change. A sequence error is most likely to

occur following the recovery of a node or channel when the new route is

considerably shorter than that previously used. The algorithm for use in

MININET must guarantee that a route is changed without any sequence

errors occurring. Note that this implies, but goes much further than,

the requirement that it never routes packets in a loop (loop freedom).

4.2 EXISTING ROUTING ALGORITHMS

4. 2. 1 Taxonomy

Over the years there have been many attempts to produce a

taxonomy of routing techniques [BOEH69], [RUDI76], [MCQU77A],

[DAVI79] and [SCHW80]. Figure 4. 1 shows a general classification

scheme largely based on [DAVI791. Most routing methods maintain a

routing directory or table in each node. This table is used on a

packet-by-packet basis to determine the next link that the packet is to

travel.

There are some routing methods, however, that do not require a

directory. With flood routing [BOEH691, an arriving packet is

re-transmitted on all the other links with the exception of the incoming

link. Obviously, the network is soon flooded with copies of the packet.

In order to stop the process continuing ad infinitum, two methods may

be used. In one method, each packet contains a hop counter, which is

initially set to a number greater than the number of hops between the

most distant node pair in the network. At each hop, the counter within

128

Techniques.Figure 4.1: Classification of Flouting

Ro
ut
in
g

Te
ch

ni
qu

es

129

each packet is decremented. When it reaches zero the packet is

destroyed. The other method uses some form of unique identification

(e.g. a serial number) to enable each node to remember when it has

retransmitted a particular packet. Subsequent reception of the same

packet will not cause a duplicate retransmission of that packet. While

very wasteful of network resources and increasing the danger of

congestion, this method is. at once, simple, robust and fast. For these

reasons, it is often used for the dissemination of control information in

the more sophisticated routing algorithms such as the new ARPANET

routing protocol [MCQU80].

With random routing LPROS621. incoming packets are randomly

assigned to an output link regardless of whether the link leads towards

or away from the packet's destination. Like flooding, this algorithm is

simple and requires no knowledge of the network topology. However, it

is also very inefficient and indeterminately slow. Again, a hop counter

can be used to kill packets that have been in the network too long. This

may be because the destination is unreachable, or merely because the

random path of the packet happened not to touch the destination node.

Hot-potato routing [BOEH64] is similar to random routing except that an

incoming packet is assigned to the shortest output queue instead of a

queue selected at random.

If a routing directory is used, its contents may remain fixed after

being initially loaded when the network was configured or it may be

updated automatically so that it adapts to changes in the network

characteristics. In the former case, the fixed directory may contain only

a single route to each destination or it may. in addition, contain one or

more alternative routes. The international airline reservation network.

SITA [BRAN72] uses fixed routes with alternatives stored in each node for

use in the event of a node or line failure. In IBM's Systems Network

Architecture (SNA) . a total of up to 8 alternative routes can be stored

[AHUJ79J. With an adaptive routing approach, the routing directory is

updated automatically. It can be further sub-divided into isolated,

distributed, centralized and hybrid methods depending on the scope of

the routing information and the location of the entities responsible for the

updating of the routing tables. Note, that the distinction between

connectivity-driven and traffic-driven metrics is often confused with the

distinction between fixed and adaptive routing. A routing algorithm which

responds only to changes in the network topology is still adaptive in this

130

classification scheme.

With isolated adaptive routing the routing decisions are taken on the

basis of a pre-loaded routing table, the operability of the output links

and the length of the output queues associated with each link. One

example of this method is the shortest queue plus bias algorithm

[FULT72] (also discussed in [DAVI79D . which calculates a figure of

merit, for each output link, from the weighted sum of the number of

spare slots in its output queue and a bias figure obtained from the

routing table. Note that, if the weight of the bias term is set to zero, it

becomes a hot potato algorithm, while if the weight of the queue length

term is set to zero, the routing becomes fixed. Thus, this method may

be thought of as a combination of those two techniques already
discussed.

In order to increase the efficiency of the routing algorithm, a more

global view of the network status must be taken. One approach is to use

centralized adaptive routing where status reports containing queue

lengths, link availability, etc. , are sent from all nodes to a network

management centre (NMC). On the basis of this information, the NMC

calculates the optimum routing table for each node and then distributes

them to the nodes. Note that, by the time status reports have reached

the NMC, the routing calculations performed and the routing table

updates distributed, the information upon which the tables were derived

may well be out of date and the chosen routes no longer the best.

TYMNET [RAJA78] is the best known example of the use of this
technique.

Instead of the routing update calculation being performed at a

centralized site, the computation could be spread over the network, with

each node calculating its own routing table on the basis of status

information received from other nodes in the network as well as local

information. This is distributed adaptive routing. It has all the reliability

and flexibility of distributed techniques in general. However, the

disadvantages of the original ARPANET routing protocol [MCQU78], which

is probably the best known example of a distributed adaptive routing

algorithm, are often erroneously ascribed to distributed routing

algorithms in general (e.g. [DAVI79]). In addition, a distributed

algorithm shares the problem of centralized techniques in that the

information upon which routing decisions are based is always out of date

and consequently potentially erroneous. In fact, even if the entire

131

network status was available to all nodes, the so-called "magic eye" or

"ideal observer" technique, the routing decisions would still not

necessarily be optimal because the network conditions could change by

the time packets have reached other parts of the network [DAVI79],

Of course, mixtures of these techniques can be proposed. One

hybrid adaptive routing algorithm, proposed by Rudin [RUDI76], is delta

routing which is a combination of centralized and isolated adaptive

routing. The centralized portion gives the long-term, long-distance,

strategic view, while the use of local information (i.e. queue lengths

and link availability) enables the algorithm to make fast tactical routing

changes in response to changes in the local environment.

Given the requirements on the MININET routing protocol of

optimality, adaption to changes in topology and avoidance of centralized

control, it is obvious that some form of directory-based, adaptive,

distributed protocol is required. Following McQuillan [MCQU80], the

operation of a distributed adaptive algorithm may be divided into four

functions.

1. A measurement process to establish the current cost of each hop.

2. A protocol for disseminating this information to the rest of the
network.

3. A calculation to determine the contents of each routing table.

4. An implementation of the packet-by-packet routing using the

information stored in the routing table.

The first and last function are, more or less, independent of the others.

However, the second and third are interrelated depending on how the

algorithm is distributed.

The measurement process has already been discussed in

Section 4. 1 and a connectivity-driven algorithm chosen with the fixed link

weights only being modified by manual intervention. The protocol and

calculation process are discussed in the next section.

4.2.2 Routing Protocols

Probably the most well known routing protocol is the original

ARPANET protocol [MCQU78J which was designed in 1969. It has been

adopted, with some modifications, by a number of other networks

132

including CIGALE, the communications network for CYCLADES [POUZ74]

and the European Informatics Network (EIN) (PONC751. The algorithm,

which is a distributed form of the shortest chain algorithm [FORD62],

seeks to construct, for each destination, a multi-branched tree rooted at

the destination. Each node stores, for each of its links, an estimate of

the distance to each destination via that link. From this network delay

table it selects, for each destination node, the link with the minimum

distance and enters this into its routing directory. It also places the

corresponding minimum distance into its minimum delay table. The size

of the network delay table is proportional to N.L where N is the number

of nodes in the network and L the average number of links attached to

the node. The size of the minimum delay table is proportional to N only.

Periodically, (every 2/3s in the case of ARPANET) the node transmits

its minimum delay table to its adjacent neighbours and receives their

minimum delay tables. These tables update the network delay table after

the addition of the appropriate link weight (which is traffic-driven in

ARPANET). In CIGALE, the update period is normally very long (20s)

but more rapid updates occur when network changes occur [GRAN78].

Although the algorithm will eventually converge to the optimal tree

under steady state conditions, transient loops are frequently formed

while the algorithm adapts to changes in network topology. A most

unfortunate characterisic of the algorithm is that, while "good news"

(i.e. link recovery) propagates quickly through the network, "bad news"

(i.e. link failure) travels relatively slowly [MCQU78L This is because,

following the failure of its down-tree link, a node will believe that it can

reach the destination through its up-tree links with little increase in

delay. However, this belief is based on tables that were produced before

the failure of the link and the up-tree nodes still believe the optimum

route Is towards the failed link. Depending on how many hops it takes to

reach a part of the original tree unaffected by the link failure, it can

take several update cycles for the algorithm to settle. During that time,

the resulting loops make any attempt at maintaining packet sequency

impossible, as well as worsening the congestion following the link

failure. This problem was patched-up, to some extent, by means of a

hold-down technique, which introduced inertia into the changes to the

minimum delay table [MCQU78J. All in all, however, this protocol does

not appear to be a very promising basis for the MININET routing

algorithm.

133

The new ARPANET routing algorithm [MCQU801 largely overcomes

these problems by the use of a completely different algorithm. Instead of

a distributed calculation attempting to construct separate trees rooted at

every destination, each node attempts to construct a tree rooted at

itself. It is, therefore, a source based algorithm with, in one sense, a

centralized calculation performed In the root node. Every node

asynchronously broadcasts its set of link weights to all the other nodes

in the network using flood routing. This raw information forms the

database within each node, that allows it to calculate the tree with itself

at the root.

The algorithm, actually used to construct this tree, is an extension

of Dijkstra's shortest path first algorithm [DIJK59]. Starting with the root,

the tree is constructed by adding the node closest to the root and

continues by adding the next nearest node and so on, until the furthest

node has been included. The next nearest node is selected, at each

incremental stage, by maintaining a list of all nodes adjacent to, but not

yet part of. the partially constructed tree. Since the minimum distance

to the root, from every node within the tree, is known, the current

shortest distance for the nodes on the list can be found by adding the

appropriate link weight. For the case of a node having more than one

neighbour in the tree, the minimum distance is taken. After selecting

the nearest node in the list and adding it to the tree, the list is updated

by adding any new adjacent nodes and updating their minimum distance.

This process is repeated until all nodes have been included in the tree.

The routing directory is formed by noting the first branch (i.e. the

root's output link) leading to each destination node in the tree. In the

ARPANET implementation, the algorithm is extended to allow incremental

modification upon the reception of a new set of link weights. The storage

requirement of this algorithm is proportional to N. L. The routing

message size is proportional to L but, unlike the old algorithm where

only one message per update cycle is transmitted along each link, N

messages are required to broadcast information about all nodes and

their links. While less prone to looping than the original ARPANET

algorithm, this protocol does not guarantee freedom from loops. This is

because, in a dynamic situation, there is no guarantee that the trees

calculated by different nodes are consistent. In addition, a special flood

routing protocol is required to broadcast the link weights to all nodes.

As far as the requirements for MININET are concerned, a much

134

more applicable routing algorithm has been developed by Merlin and

Segall [MERL79]. Their algorithm converges to the optimum routes very

rapidly, guarantees loop freedom at all times and handles, en passant,

the network initialization problem. It is distributed and requires

information to be exchanged only between adjacent nodes so that NTAN

messages can be used. Unfortunately, it does not maintain intrinsic

sequentiality. However, it provides a basis upon which a sequential

algorithm can be designed. Like the original ARPANET algorithm, it

constructs a tree routed at the destination or sink. Successive update

cycles of the protocol minimize the distance from each node to the sink.

Merlin and Segall present two versions of their algorithm. The basic

protocol cannot handle certain changes of topology such as node or

channel failures. The extended protocol can handle single or even

multiple failures. The algorithm operates independently for each sink.

Each node has a routing link (connected to the preferred neighbour in

the terminology of [MERL79]) . These routing links can be thought of as

directed arcs which, with the nodes, form a tree directed towards the

sink as shown in Figure 4.2. This tree spans the network. The nodes at

the tips of the outermost branches will be denoted as the leaves. Only

one type of NTAN message is used in the basic protocol, the distance

update (UPD) message (.MSG in the terminology of (MERL79J) . This

carries an estimate of the distance to the sink from the sending node.

< An update cycle is initiated by the sink sending a UPD message to

all its links with, of course, a distance of zero. When a node receives

a UPD message, it adjusts the distance to allow for the added delay of

the link and records that distance. If the message arrived along the

routing link, the node transmits the shortest distance it has received, by

that time in the update cycle, to all the links except the routing link.

UPD messages, therefore, propagate from the sink up-tree towards the

leaves. Only when a node receives UPD messages from all its links does

it send a UPD message back down the routing channel. Of course, this
I

first occurs in the leaves. At this time, the node can select a new

routing link if It has found one with a distance shorter than that of the

current routing link. The second phase of the update cycle, therefore,

consists of UPD messages propagated back down-tree towards the sink.

When the sink has received a UPD message back from every link, the

update cycle is complete.

In order to extend the basic protocol to cover line failures and other

135

6 Leaf _ —’ ~~ ~~ \

7 Leaf

SINK

------ Link forming branch

------------------ Cross-tree link

Figure 4. 2: A Typical Network Tree

136

topological changes, the UPD message is lengthened to include a

sequence number. When a link fails, the node down-tree of the failure

sends a topological change (CHG) message down-tree to the sink. This

causes the sink to abort any previous update cycle and start a new cycle

with a higher sequence number. Meanwhile, the node immediately

up-tree of the failure sends UPD messages out on all its links with its

distance set to infinity. Nodes up-tree of the failure propagate this

message on. as in the basic protocol, so that all the nodes up-tree of

the failure soon learn that they have lost their path to the sink. Both the

CHG propagating down-tree and the UPD propagating up-tree carry the

highest sequence number received by the nodes either side of the

failure. The new update cycle, originating from the sink after the news

of the failure reaches it. has a higher sequence number and this causes

the intermediate nodes to abandon any previous updates. When a node

up-tree of the failure receives a UPD message with a sequence number

higher than that which announced that it had lost its path, the node

immediately chooses the receiving link as its new routing link. Thus, a

new tree is constructed. Further update cycles, with the same new

sequence number, will optimize the new tree. Note, that the protocol

can handle multiple line failures as. at least, the failure closest to the

sink will result in a CHG message reaching the sink to trigger a new

update cycle. Node failures are equivalent to failures of all links

connected to that node. When a link becomes operational, a CHG

message is generated by the associated nodes and a new update cycle

will be initiated by the sink with a higher sequence number. Therefore,

no timeout is theoretically required by the protocol to operate safely.

However, it would be a brave network designer that did not put a

long-stop timer in the sink process!

As with all the routing algorithms described, the memory required

by this protocol is roughly proportional to N. L but. unlike the others, the

size of the messages is fixed and only one message is exchanged

between nodes per update cycle. However, because there are N sinks in

the network, the number of messages required to provide an update

cycle to every sink is proportional to N. This protocol forms the basis of

the sequential MININET routing algorithm. It will be referred to as the

nonsequential protocol.

137

4.3 THE SEQUENTIAL ROUTING PROTOCOL

4. 3. 1 The Basic Protocol

A path change, in the protocols described so far, could very well

lead to a sequence error occurring in one or more of the Virtual

Connections established to that sink. In order to make a routing change

safely, a node must be sure that the old pathway is clear before it

makes the change. To achieve this, a new NTAN message type is

introduced, the flash control (FLS) message. An update cycle now

consists of four phases instead of the two in the non-sequential version.

Phase 1 consists of UPD messages moving up-tree, phase 2 of FLS

messages moving down-tree, phase 3 - FLS messages moving back

up-tree and finally, phase 4 - UPD messages moving down-tree. The

basic protocol only requires that the FLS message carries a variable, f.

with two values, FLU and NFL. When travelling down-tree an FLS

message containing f=FLU, FLS(FLU), acts as a flush request message

while, when travelling up-tree, it acts as a permit to make a routing

change. The no-flush message, FLS(NFL), indicates that no flushing is

required when travelling down-tree and a refusal to change route when

travelling up-tree. This ability to refuse up-tree route changes is utilized

during the recovery from link failures (Section 4.3.2).

Phase 1 proceeds, as with the non-sequential protocol, with UPD

messages moving up-tree. When a node receives a UPD message along

its routing link, it designates that link as the down-tree link. It then

sends, on all other links, a distance estimate (UPD) message based on

the shortest distance, from itself to the sink, that it has obtained so far.

When any node, including the sink, receives a UPD message from a

link, other than the routing link, it responds by sending a no-flush

message back along the same link to acknowledge receipt of the UPD

message. At this stage, the mutual exchange of UPD and FLS messages

only occur along cross-tree links (i.e. links that do not currently form

part of the tree) . When a node has received FLS messages from all its

links except its down tree link (this first occurs in the leaves) , it may

decide, on the basis of the distance information then available to the

node, to make a routing change. To prepare for the change, the node

first freezes packet flow down the old pathway and dispatches a flush

request message (FLS(FLU)) down-tree. When a node receives a flush

request, it must ensure that all packets in that pathway have been

138

dispatched down-tree, before it passes on the flush request. Of course,

this is not done until FLS messages are received from all the other

links. If none of the FLS messages contain flush requests (i.e. they are

all FLS(NFL)) and the node does not wish to make a routing change,

then a no-flush message is sent down-tree. If a node wishes to make a

routing change and also receives a flush request from an up-tree link,

it must flush itself before freezing the pathway.

The sink waits until it has received an FLS message from all its

links. It then starts phase 3 by sending a flush message out on all links,

except those that had already transmitted a no-flush message during

phases 1 and 2. When a node receives an FLS message from its

down-tree link, it transmits an FLS message along all links that have not

previously transmitted an FLS(NFL) as an acknowledgement to a UPD

message. The contents of the propagated FLS message is FLU if

FLS(FLU) had been received from the down-tree link and the node

flushed its buffers during phase 2. Otherwise, FLS(NFL) is transmitted.

If the node had frozen the packets flowing down its pathway during phase

2, the receipt of a flush message from its routing link acts as an

indication that the old pathway has been successfully flushed. However,

the node cannot immediately change its routing link because the new

link, with the shortest distance to the sink, may well be connected to a

node which is still using the same link in the opposite direction.

Once a node has received a UPD and an FLS message from all

links, it sends a UPD message back along the down-tree link. If the

node Is ready to make a routing change, it selects the link with the

shortest distance estimate as its new routing link and releases the sink

traffic along this link. This first occurs in the leaves, and then

propagates down-tree, until the cycle is completed when the sink has

received UPD messages along all its links. Note that, by the completion

of the update cycle, a UPD message and an FLS message have been

transmitted in both directions along every operational link in the network.

4. 3. 2 Recovery From Link Failure

If a link which forms a branch fails, the nodes up-tree of the

failure cannot directly flush their old paths. This raises three problems

that could give rise to sequence errors. Firstly, there is a danger of

packets down-tree of the failure arriving at the sink after packets

139

travelling along a new pathway. Secondly, a diversion pathway may well

involve packets having to flow back up-tree. Finally, if more than one

diversion pathway is established from different parts of the isolated

section, there is a danger that the separate diversions could deliver

packets belonging to the same Virtual Connection in the wrong

sequence.

As with the non-sequential protocol, the UPD and FLS messages

are extended to include a sequence number and the CHG message is

introduced. The latter operates in the same manner as in the

non-sequentlal protocol. Also, the vocabulary of the FLS message is

extended to include the values DIV and FRT to be described later.

An update cycle follows the same quad-phasic pattern of the basic

sequential protocol. However, in addition, during phases 1 and 2, a

diversion path is established (if possible) from the node immediately

above the failure to the sink. Also, nodes below the failure are flushed

during phase 2. In phases 3 and 4. stranded packets up-tree of the

failure are extracted in the correct order along the diversion path and

a new tree is established which, once more, spans the entire network.

The set of nodes which have lost their path to the sink will be referred

to as the dead bough and the nodes which still have a pathway to the

sink will be described as live. The node, immediately above the failure,

is the root of the tree formed by the dead bough and will, therefore, be

termed the failure root.

When a link forming part of the tree fails (for example the link

between nodes 2 and 3 in Figure 4.3) , the node immediately up-tree

sends a UPD message containing its current sequence number and a

distance of Infinity. Nodes up-tree of the failure (nodes 3-8 in

Figure 4. 3) receiving this message freeze traffic destined for the sink.

Meanwhile, the node down-tree of the failure (node 2 in Figure 4.3)

sends a CHG message, containing the highest sequence number

received by that node, back to the sink, indicating that a link has failed.

Any intermediate node carrying this message (e.g. node 1 in

Figure 4.3) will abort any previously uncompleted update cycle. This

message triggers a new cycle with a higher sequence number. When a

UPD message of this new cycle (i.e. with a higher sequence number)

reaches a live node along its routing link, the node aborts any ongoing

update and deletes all previous distance information. It then transmits a

revised UPD message on all links except its routing (down-tree) link. If

140

Handling Link FailuresFigure

8

an alternative pathway exists around the failure, eventually a UPD will

reach a node in the dead bough (e.g. nodes 6 and 8 in Figure 4.3).

The node will record the link as its down-tree link and will send a UPD

along the old routing link only. Subsequent receipts of any UPD message

from other links will result in the node treating them as normal

cross-tree links by replying with a no-flush message. Thus, a UPD

141

message propagates down the old pathway until, either it reaches a

node which has already selected a diversion pathway (e.g. from node

8, through node 7 to node 6) or it reaches the failure root (e.g. from

node 6 through node 5 to node 3). In the former case, the UPD

message is acknowledged with a no-flush message. This informs the

sending node that the diversion Is not required and the node must not

attempt to make any routing change. The no-flush message propagates

back up the unsuccessful diversion pathway until it reaches a live node.

However, for the duration of the update cycle, the nodes along this

pathway will continue to treat the diversion link as the down-tree link.

Thus, in Figure 4.3, node 6 will reject the diversion through node 7.

assuming that it received a UPD from 13 before 7. Otherwise, it will

accept the diversion via 7 and treat the link to 13 as a cross-tree link.

When a UPD message reaches the failure root (e.g. node 6 in

Figure 4.3), the node replies with an FLS(DIV) message if its buffers

contain any packets for the sink. This acts as a diversion request

message. However, if the node contains no packets for the sink, it

replies with a failure root transfer message (FLS(FRT)) and designates

the same link as its new routing link. This effectively makes the adjacent

down-tree node the failure root. The node also sends a UPD message

out on all its other links. Receipt of a diversion request (FLS(DIV)). by

a node forming part of the dead bough, causes the node to set up a

special diversion buffer for handling packets that will be traversing the

diversion later on in the cycle. The node then passes the diversion

request on down-tree and sends UPD messages out on all the other

links. If the node receives an FLS(FRT) message, it also sends UPD

messages out on all its links other than the two links involved with the

diversion. If Its own buffers for the sink are empty, it passes on the

failure root transfer message and assigns Its down-tree link as its

routing link. However, if its buffers are not empty, it becomes the

failure root and sends a diversion request down-tree.

When an FLS(DIV) or FLS(FRT) message eventually reaches a live

node, the request is treated as a no-flush message. Thus, in

Figure 4.3, assuming that the buffers of node 3 are not empty, nodes

5 and 6 allocate diversion buffers for a diversion path through to node

13. Note, that these diversion buffers are quite distinct from the normal

buffer holding packets for the sink. The latter remain frozen.

When nodes In the dead bough, other than those forming the

142

diversion path, receive a UPD message from their old routing link, they

propagate a UPD message out on all their other links except their

down-tree link. Those that have not previously received a UPD message

of the new update cycle choose the old routing link as their down-tree

link. Those that have previously received a UPD message from another

link will have already selected that link as their down-tree link and sent

a UPD message down the old routing link.

Flush requests and no-flush messages are handled in the same way

as in the basic protocol by nodes which have not lost their path to the

sink. The node, immediately below the failure, will flush itself during

phase 2 and propagate a flush request down-tree. Thus, by the end of

phase 2. when the sink has received an FLS message from all links, the

path below the failure is flushed, and a diversion has been established

between the node immediately above the failure and the sink. The

protocol guarantees that the diversion consists of possibly a number of

former up-tree links in the dead bough followed by one, and only one,

cross-tree link and a number of down-tree links in the live part of the

network. Note, that restricting UPD messages to the old routing channel

in the dead bough, during phase 1. avoids the danger of the diversion

path taking on an obscure form such as via node 4 in Figure 4. 3.

Above the diversion path in the dead bough, phases 1 and 2 may

still be continuing because the diversion request and any diversion

refusals, in the shape of no-flush messages, are propagated down-tree

by nodes in the dead bough without waiting for FLS messages to arrive

from all the other links. Furthermore, the tree, formed in the update

cycle by the set of down-tree links, may well be different to the old

routing tree. This is not important, as the protocol forces these nodes

not to make any routing changes in the current cycle. At the end of the

cycle, the routing link becomes the down-tree link.

Phase 3 is started by the sink sending flush messages out on all

links. Nodes in the live section propagate this message on all links that

have not earlier transmitted an FLS message. When an FLS message

eventually reaches a node in the dead bough along Its down-tree link,

the node transmits a no-flush message on all other links that have not

transmitted an FLS message earlier as a UPD acknowledgement. If the

node had received a diversion request from its old routing link (i.e. the

node forms part of the diversion) . an FLS message is passed on down

the diversion path until it reaches the failure root. This Informs the node

143

that the old pathway is flushed and a diversion path has been prepared.

It then selects the down-tree link as its routing link for the packets

destined for the sink which had been frozen since the old path failed. It

also dispatches no-flush messages on all links that have not already

transmitted an FLS message in response to a UPD message. The

no-flush messages, dispatched on the links not involved in the

diversion, serve to block any attempt at a routing change by nodes

up-tree from the diversion. When the buffers of the failure root are

flushed, it sends a failure root transfer message down-tree. Finally,

when It has received UPD and FLS messages from all its operational

links, the node transmits a UPD message down-tree. As far as that

node is concerned, the update cycle is complete.

Receipt of the root transfer message, by the node immediately

down-tree along the diversion path (e.g. node 5 in Figure 4.3).

informs the node that the preceding node has flushed the diversion path.

Once its diversion buffer is empty, the node can select the diversion link

as its routing link and flush its hitherto frozen buffers along the

diversion. Thus, the packets, held by that node, will follow the packets

that had been trapped in nodes that were down-tree prior to the link

failure, so maintaining sequency. When the node is flushed, it sends a

failure root transfer message down-tree and, when it has received UPD

and FLS messages from all its operational links, the node transmits a

UPD message down-tree to complete the update process. The failure

root transfer and flushing of the diversion pathway continues down the

new tree until it reaches a live node (node 13 in Figure 4.3).

Meanwhile, in other parts of the network, phases 3 and 4 operate

as in the basic protocol with nodes propagating flush messages up-tree.

Subsequently, having received UPD messages from all links, they return

a UPD message down-tree. When the sink has received UPD messages

from all its links, the update cycle is complete. Subsequent normal

update cycles, with the same sequence number, will optimize the new

tree.

4. 3. 3 Unk Recovery

At first sight, the recovery of a channel or node should present

very few problems, as there is no loss of communication with the sink

along the routing link and the newly restored link can be incorporated by

144

means of the normal update cycles which will find the new optimum tree.

This is true providing the link becomes operational between update

cycles. However, if the link becomes operational half way through a

cycle, it must be excluded from the protocol for that cycle, otherwise

lock-out could occur. For example, a node could be waiting for an FLS

message from a link that never had a UPD message transmitted earlier.

For this reason, each node for each sink maintains a status variable for

each link. This variable has the values, DOWN, READY and UP.

Normally an operational link has the status UP. If it fails, its status

becomes DOWN. If the link recovers during an update cycle, it does not

immediately go to the UP state, instead it becomes READY until the

cycle is complete whereupon it becomes UP.

The protocol must safeguard against the possibility of one node

deciding that a link is UP while the node at the other end leaves it in

READY state. This could occur if a new update cycle had already started

in one node, but not the other, when the link becomes READY. The

non-sequential protocol used a local exchange of messages to attempt to

synchronize the rehabilitation of the link [MERL791. The link is not

accepted as UP until the start of a new cycle with a higher sequence

number than that received hitherto by either node. Since agreement in

a distributed protocol can never be reached simultaneously, any

deadlock situation, which could arise, is resolved by the new update

cycle. The new cycle is triggered by the dispatch, down tree, of a CHG

message bearing the highest sequence number received by the node.

Receipt of the messages causes the sink to abort any ongoing update

cycle, just as in the case of a link failure.

This approach is not so attractive for the sequential protocol,

basically because here, a path change is more costly, as user traffic is

temporarily blocked while the old pathway is flushed. Thus, it is

undesirable to abort an update cycle, even though the new cycle,

including the recovered link, might result in an improved tree. It is

much better to complete the current update cycle and get packets

moving again, and then to optimize the tree by starting the new cycle

with a higher sequence number. Of course, a link failure must cause

the immediate abortion of any current update cycle and the start of a

new cycle with a higher sequence number. The CHG message is

extended to include a binary variable, which may have the values FAIL or

REC to distinguish between link failures and recoveries respectively.

145

Instead of attempting to block a link becoming UP one side and

only READY the other, this protocol attempts to avoid deadlock if and

when link asymmetry occurs. A node will automatically make a READY

link UP if It is not currently performing an update cycle. If, however, it

receives a UPD message from a link which is not UP. after it has

broadcast UPD messages in phase 1 of the cycle, but before it has

performed phase 2, the node assigns the status UP to the link and

sends a UPD message down the link. In other words, the link is allowed

to catch up with the other links. If. however, the node has already sent

an FLS message down-tree the link status does not change.

Nevertheless, the node transmits an FLS(NFL) and a UPD message

down the link so as to satisfy the protocol requirements of the adjacent

node. The link will eventually be accepted by the node because a CHG

message will result in a new update cycle with a higher sequence

number.

Because of the link hold-down process practised by the channel

managers at each end of the link (Section 2.3.3). one side could

decide that the link had recovered while the other was still treating it as

down. This means that the protocol may receive a UPD message along

a link which it considers to be DOWN.

4. 3.4 Multiple Failures

The protocol, so far described, will successfully handle two or

more link failures provided that sufficient time occurs between each

failure for an update cycle to repair the damage. In addition, the

protocol performs satisfactorily if a number of disjoint failures - i.e.

failures of links carrying no common pathway - or if a number of

contiguous failures - i.e. failures of nodes and links forming a

contiguous section of a pathway - occur simultaneously. The most likely

cause of these types of failure is that of a single node as shown in

Figure 4. 4.

There are three ways, however, in which a second failure,

occurring anywhere in the network very soon after the first failure, can

cause problems.

(1) The second failure occurs down-tree from the first failure after the

CHG(FAIL) message had been transmitted down-tree but before a

new cycle could flush the old pathway. This is illustrated in

146

Figure 4.4: Node Failure

Figure 4.5 assuming that Failure A occurred before Failure B.

(2) The second failure occurs up-tree of the first failure before a

diversion could be established and flushed. This is shown in

Figure 4.5 if Failure A occurred after Failure B.

(3) The second failure causes the update cycle to restart during the

time that the diversion around the first failure is being flushed. The

nodes along the diversion pathway cannot abort the flushing

operation without the danger of sequence errors.

The first two cases result in some pathways being split into three parts.

The protocol, so far described, would set up two diversions operating

simultaneously, which would result in the distinct possibility of sequence

errors.

The approach to these problems, adopted in this protocol, is based

on the fact that the time taken to perform an update cycle (probably a

few milliseconds in MININET) is infinitesimal compared with the mean

time between separate channel failures. Therefore, these are extremely

unlikely events. Consequently, as packet loss is more acceptable than

loss of sequency in MININET (Section 1.2.4), the aim of the protocol,

when faced with multiple failures, is to recover without loss of sequency

but allowing packets to be dropped. The basic method is firstly to detect

that a multiple failure has occurred, and then to drop packets if there is

147

SINK

Figure 4.5: Non-Contiguous Failures Along a Common Pathway

any danger of sequence errors.

In order to be able to propagate the detection of a multiple failure

within a dead bough, the vocabulary of the FLS message is extended,

yet again, to include the value KIL, which causes the up-tree receiving

node to drop all packets for the sink. In addition, the node will

propagate the message on up the routing tree.

There are a number of methods which could be used to recover

from multiple failures. One. initially very attractive, is to allow only one

diversion to be set up in any one update cycle. The diversion request

would be relayed all the way to the sink during phase 2, with the

intermediate nodes recording the link, from which they received the

request, as their diversion link. During phase 3, the sink would transmit

not more than one diversion permit and this Is relayed back up the

diversion links until it reaches the dead bough. If there is more than one

failure root, only one would receive the permit. If a node, which forms

part of the diversion, receives an FLS message which does not contain

148

a diversion permit from its down-tree link, it would drop all packets for

the root and propagate FLS(KIL) messages up-tree to empty the dead

bough of all packets for the sink. Thus, if multiple failures lead to the

existence of more than one failure root, only one would be allowed to

set up a diversion. The other dead boughs would be emptied. While this

solution is undeniably safe, it is. nevertheless, a little too drastic. In

particular, the relatively likely case of a single node failure, as shown in

Figure 4.4. would result in only one diversion being permitted while

there may well be a large number of packets lost in the other dead

bough. Interruption of the flushing of a diversion by a new update cycle

would result in a similar emptying of the dead bough.

An alternative approach has been adopted based on the fact that a

node knows when a link fails up-tree (because of the CHG message

which is propagated towards the sink) and also when a link fails

down-tree (because of the UPD message containing a distance of infinity

which is propagated up-tree). This knowledge can be used to drop all

packets in a section of the network sandwiched between two failures,

such as that between Failure A and Failure B in Figure 4. 5. Whenever

a CHG(FAIL) message is received by a node, or one of its up-tree links

fails, a flag is set which is only cleared after the node reaches phase 3

of a new update cycle. If the node is live - or thinks it is - the

CHG(FAIL) message causes the node to abort any ongoing update cycle

and await a new cycle with a higher sequence number. If the node then

receives a UPD message from its routing link, which indicates that it has

lost its path to the sink, and this flag is still set. the node drops all

packets addressed to the sink. This handles the first type of multiple

failure described earlier. If a node within a dead bough receives a

CHG(FAIL) message or an up-tree link fails, then it also drops all

packets for the sink. Furthermore, if the node is actively involved with

the diversion operation it propagates FLS(KIL) messages to all up-tree

links. This Is done because, while the diversion is being flushed, nodes

up-tree of the diversion will have received normal UPD and FLS

messages up-tree and therefore would not be aware that they still form

part of the dead bough. The FLS(KIL) messages ensure that the entire

bough Is emptied. This may appear rather drastic, but remember that

this type of failure is an extremely unlikely situation. This procedure

protects against the second type of multiple failure. The third type of

multiple failure can now only occur if the second failure, which triggered

149

the new update cycles, is not up-tree of the original failure - otherwise

the diversion would have been aborted when the CHG(FAIL) message

was received. It is only necessary to drop packets in nodes along the

diversion if a new update cycle is started before the diversion is flushed.

The protocol, therefore, will recover from single channel or node

failures without loss of packets and from multiple failures occurring

simultaneously with the possible loss of some packets.

If the network becomes partitioned, i.e. no pathway can be found

to one or more sinks, then a dead bough remains isolated until repairs

are effected. In terms of the network timescale, this could be an

unconscionably long time. In the interim, resources are tied up in the

dead bough with buffers containing packets that cannot be delivered.

Worst still, when the network is reunited, there is the danger that the

current sequence number of the live network has incremented more than

half circle from its value when the network was partitioned. This would

result in the dead node ignoring the new update cycle as it would appear

to have a lower sequence number. For these reasons, it is desirable for

the nodes in the dead bough to maintain a timer while they are in a

dead state. After a certain time without any new update cycle reaching

the node, it is reasonable for the node to assume that no path exists to

the sink. The node can then drop all packets destined for the sink and

release the buffer allocation. It may then forget the existence of the

sink. Of course, it is necessary for the nodes up-tree of the failure to

also reset at the same time. This is performed by the resetting node

transmitting a further extension of the FLS message, FLS(RST), to all

up-tree nodes. FLS(RST) has the same effect as the KIL message but.

in addition, causes the node to release any resources permanently

allocated to the sink and forget the last sequence number. When a

pathway is finally re-established to the sink, the protocol operates

normally as during network initialization, with the first UPD message

received defining the routing and down-tree links and the current

sequence number.

4.4 THE ALGORITHM PERFORMED BY THE NODES

A separate copy of the algorithm operates for each sink in the

network. Since each algorithm is distributed across every node in the

network, each node must contain a separate routing process for each

150

sink (except itself) plus its own sink process. Thus, each routing

process must be identified by the node. n. where it resides and the

sink. r. to which it pertains. However, the following description of the

operation of these processes will exclude indexing all variables with n

and r for the sake of brevity. Similarly all messages both inter-nodal and

intra-nodal must contain the sink identification, r. which will also be

suppressed in the following description.

The routing process in each node interacts, not only with routing

processes in adjacent nodes by means of NTAN inter-node messages,

but also with the channel manager and buffer control processes within

the same node. This is performed by means of intra-node messages as

shown in Figure 4.6. The types of messages exchanged are described
in Table 4. 1.

Adjacent

Nodes

Figure 4. 6: Intra-Node and Inter—Node Message Transfers

151

Table 4. 1
Routing Algorithm Message Types

Note that all messages (except Ifl and Ire), buffers, traffic, etc. refer

only to a specific sink. r.

I Intra-node Messages

con(1) Connect buffers - Directs all output from the packet

buffers to link 1. Note that the buffers can be frozen

by the message, con(nil).

blk Block input - Block all traffic input to the node.

ubl Unblock input - Allow packets into the node. (i.e.

allow normal flow control mechanisms to operate.)

flu Flush buffers - Requests buffer to be flushed.

ufl Unflush buffers - Abort buffer flushing operation (if

any) .

bfl Buffers flushed - Indicates that buffers have been

flushed, (i.e. all packets in the node at the time of

the flush request have been dispatched.)

adb(ir 12) Allocate diversion buffer - Request to allocate a

diversion buffer for traffic flowing from link to

link l2-

fdb Flush diversion buffer - Requests that the diversion

buffer be flushed and then released.

dbf Diversion buffer flushed - Indicates that the diversion

buffer has been emptied.

rst Reset buffers - Drop all packets, release all buffers,

including any diversion buffer, and drop any incoming

packets.

opr Operational - Allocate buffers and halt dropping of any

packets.

Ifl(l) Link failure - Indicates that link 1 has failed.

lrc(l) Link recovery - Indicates that link 1 is once again

operational.

152

II Inter-Node Messages

UPD(Jt, m. d)

FLS(t. m. f)

Distance update message sent along link 1. containing

sequence number m, and distance to sink d.

Flush control message sent along link 1. containing

sequence number m. and flush control variable f which

may have the values:

NFL = no-operation;

FLU = flush request/grant;

DIV = diversion link request;

FRT = failure root transfer;

KIL = kill buffers and reset;

RST = kill buffers and forget the sink.

CHG(£, m. c) Change message sent along link L. containing
sequence number m. and of type c which may have

the values:

FAIL = link failure;

REC = link recovery.

Note, that the buffer control process must be able to freeze the

buffers, i.e. halt all output of packets destined for the sink upon receipt

of a con (nil) message. The buffers can be thawed with a subsequent

con message which defines the new output link for all traffic for the

sink. Thus, actual routing changes are made by freezing the buffers and

then thawing with a new output link. The blocking operation stops input

to the node. A blocking request, blk, does not have to come into effect

immediately. However, it is expected to be effective within the time

required for the flow control process to request the adjacent up-tree

nodes to freeze their output by transmitting a back pressure vector

(BPV) in an NTAN message. That is, within the BPV turnround time

between adjacent nodes.

The flush request message, flu, requires the buffer manager to

inform the routing process when all the packets for the sink, that are

currently in the node, are safely transmitted. This may be implemented

in number of ways. If the packets or buffer slots are distinguishable, the

manager can simply tag the packets currently in the node and wait until

all the tagged packets have been transmitted. Similarly, if the internal

153

buffer organization is a strict first-in, first-out queue, then the manager

need only note the number of packets present when the request is made

and wait until that number has been transmitted. However, if the queue

structure is more complex and tagging is impractical, as may well be the

case in MININET. then a sure-fire method of flushing the node is to

block inputs and wait until the node empties, whereupon the inputs are

unblocked and the routing process is informed. Unfortunately, this does

cause some undesirable perturbation of the traffic flow.

In order to provide a diversion pathway, the node must not only

provide a diversion queue allocation attached to the down-tree link, but

also selectively unblock only the diversion input link leaving the other

links blocked. The reset command, rst, is used, after multiple errors or

after a long period with all pathways to the sink lost, to drop all sink

packets, both in the normal queue, and in the diversion buffer. When

the node initially receives a UPD message from the sink and during

recovery from multiple failures, the operational message, opr, is used

to set up the buffer handling control mechanisms for packets destined

for the sink.

Following Merlin and Segall [MERL79], the routing algorithm can be

expressed as a set of FSMs operating in each node. The FSMs of all

nodes other than the sink are identical. Each FSM is driven by a

message handler which receives both inter-node and Intra-node

messages.

4. 4.1 The Sink Algorithm

The state diagram for the sink is shown in Figure 4.7. Tables 4.2.

4.3 and 4.4 define the variables used, the message handler algorithm

and the FSM transition algorithm respectively. During phases 1 and 2 of

an update cycle, the sink Is in state SI. When it has received FLS

messages from all links that are UP. It moves to state S2 where it

normally stays until the end of the update cycle. Before starting a new

cycle, the node waits a fixed time In state SW. This is because, unlike

the non-sequential algorithm, update cycles can interrupt user traffic

while old pathways are being flushed. This loss ,of user throughput is in

addition to the usual loss of effective channel capacity due to the routing

messages. It will be shown in Section 4.5 that, after two cycles with

no-flush requests reaching the sink, the tree is optimized and the sink

154

Table 4.2
Variables Used in Each Sink Process

s Major state. € {SI. SI. S2. SW, SQ)

Me Current sequence number, e {0. 1. 2.. Mmax)

N Cycle counter, e {0, 1, 2)

H CHG received flag e {0. 1)

Table 4.3
Sink Message Handler Algorithm

For each link. 1 = 1. 2. . . Lmax:

C(1) Link status, e {DOWN, READY, UP)

Ud) UPD received flag, e {0. 1)

F(1) FLS received flag, e {0, 1)

For UPD(1, m = Me, d):

if Cd) # UP then

(if S = SI then (Cd) «- UP; send UPDd, Me, 0))

if S = S2 then

(send UPDd, Me, 0) ;

send FLS d. Me, NFL)));

if S = SI then send FLS d, Me, NFL) :

U(l) «- 1: execute FSM.

For FLS(1, m = Me, f):

Fd) - 1;

If C(Jt) = UP then

(if f = FLU then N *■ 0; execute FSM).

For CHG(1. m = Me, c):

H *- 1; execute FSM.

For Ifld):

H «- 1; Cd) - DOWN; execute FSM.

For Ire (1):

H - 1; if Cd) = DOWN then Cd) *-

execute FSM.

READY;

155

init -♦ SI

Table 4.4

State Transitions in the Sink Process

Condition: node initialization.

Action: Me «- 0; N «- 0: H ♦- 0; start timer T^:

V / then (U(/) - 0: F(/) - 0:

if link / operational then C(/‘) *- UP

else C(D - DOWN):

V / s.t. C(/) = UP, send UPD(f, Me, 0) .

SI - S2 Condition: V /. s.t. C(/) = UP then F(/) = 1.

Action: V / s.t. (C(z) = UP)A(U(/) = 0) then

send FLSC/, Me, FLU).

S2 - SW Condition: V /, s.t. C(/) = UP, (U(/) = 1)A(N < 2).

Action: Start timer T .w

S2 -» SQ Condition: V i s.t. C(/) = UP, (U(/) = 1)A(N > 2).

Action: None.

Condition: CHG (£, m, c = FAIL) v If I (1)

v time Ta expired.

SQ - SI Condition: H = 1.

SI -* SI

SW Action: V / s.t. C(/) = READY, CO) - UP:

Me ♦- Me +1: N *- 1: H ♦- 0: start timer T :

v /. (U(/) - 0: F(/) - 0):

V i s.t. C(/) = UP. send UPD (/, Me, 0).

SW -* SI Condition: time period expired.

Action: V / s.t. C(/) = READY, C(z) «- UP:

N *- N + 1: H - 0; start timer T^:

V /. (U(/‘) - 0: F(/) *■ 0) ;

V / s.t. C(/) = UP, send UPD (/, Me, 0) :

156

"■> Normal Pathways

---------- > Network Change Pathway,

Figure 4.7: State Diagram of the Routing Process in the Sink

enters the quiescent state, SQ. It only leaves this state when a CHG

message Is received or one of its links changes status.

If, at any time in the cycle, the sink receives a CHG(FAIL)

message or one of its own links fails or the "dead-man's timer" of

period times-out. then the process immediately starts a new cycle

with an incremented sequence number and enters SI. The dead-man's

timer is a "long-stop" timer to guard against (the theoretically

impossible) deadlock.

4. 4. 2 The Intermediate Node Algorithm

Figure 4.8 shows the state diagram of the routing process in an

intermediate node. The variables used in this process are listed in

Table 4.5. Its message handler and FSM algorithms are described in

Tables 4.6 and 4.7 respectively. The initialization state, SI, is included

for convenience. In a practical implementation, where the process may

well not be created until the existence of the sink is disclosed by the

arrival of a UPD message, the state SI would not be necessary.

157

Note 1Note 5

------> Multiple Failure Transitions

Note 1 From SI ,SF,S2,S3,SQ,SFR
Note 2 From SI,SF,S2,S3,SFR
Note 3 From SI,SF,S2,S3,SQ,SB,SFR
Note 4 From S2D,S3D,SFD,S2R
Note 5 From any state
Note 6 From any other state.

Figure 4. 8: State Diagram of the Intermediate Node Routing Process

158

Table 4.5

Variables Used in an Intermediate Node for Each Sink Process

s Major state, e (SI. SI. SF. S2.

S2D. S3D.

S3.

SFD.

SQ. SB. S

SR, S2R.

Me Current sequence number. € (0. 1. 2 . . . Mmax)

Mh Highest sequence number. € (0. 1. 2 . . . Mmax)

Lr Routing link. € (nil. 1. 2. . . Lmax)

Lt Down-tree link. € (nil. 1. 2. Lmax)

Ls Shortest distance link. € (nil. 1. 2. . . Lmax)

Ld Diversion link, e (nil. 1. 2.. . Lmax)

SFR. SM)

SID.

R Flush received flag. € {0, 1)

P Path change flag. € {0. 1}

B Change blocking flag. € (0. 1)

X Up-tree failure flag. € (0, 1)

For each link. L = 1. 2. . . . Lmax:

C(1) Link status, e (DOWN. READY. UP)

(N. B. C(nil) « DOWN)

D(£) Distance to sink, e (0. 1. 2... Dmax. °°)

(N. B. D(nil) = ~)

W(£) Distance weight, e (0. 1. 2... Dmax. <»)

U(£) UPD received flag. € (0. 1)

F(L) FLS received flag, e (0. 1)

The states SI. SF. S2. S3 and SQ are the states used in a normal

update cycle. Upon receipt of a UPD message from the down-tree link,

the process performs phase 1 by propagating UPD messages up-tree

and enters SI. When it has received FLS messages from all its up-tree

links, the process enters SF if it has received any flush requests

(indicated by the flag R). If no flush requests had been received, the

node performs phase 2 by sending an FLS message down-tree and

159

Table 4. 6

Message Handler for an Intermediate Node Routing Process

For UPD(£, m > Me, d) V (UPD(£, m. d)A(S = SI)):

if (C(£) # UP)A(m = Me) then

(C(£) - READY;

if S e (SI. S2D, S2R) then

(C(£) «- UP; send UPD(£, Me, D(Ls)));

if S € (SF, S2, S3, S3D, SFD. SFR) then

(send UPD(£, Me. D(Ls)) ;

send FLS(£, Me, NFL)));

if m > Mh then

(V i then (DU) *- °°; U(/) -

Mh *- m; Ls - nil) :

if m = Mh then

(d - d + W(£); U(£) «- 1;

if (£ = Ls)A(d > D(£)) then

(D(£) - d;

V / s.t. C(/> = UP then

if D(/) < D(Ls) then Ls - i)

else D(£) *- d) ;

if C(£) = UP then

(if (£ # Lt)A(m = Me)

A(S € (SQ. SI, SF, S2, SID, S2D, S2R) then

send FLS(£, Me. NFL);

if D(£) < D(Ls) then Ls - £;

execute FSM).

For FLS(£. m = Mh, f):

F(£) - 1;

if C(£) = UP then

(If (f = FLU)A(£ # Lt) then R «- 1;

if (m = Me) v (f € (KIL, RST)) then execute FSM).

160

For CHG(1, m, c):

if C(Lr) = UP then send CHGCLr, m, c)

else If C(Lt) = UP then send CHG (Lt, m, c);

If c = FAIL then (if £ # Lr then X «- 1; execute FSM).

For Ifl(l):

C(£) *■ DOWN; R *- 1; if 1 # Lr then X *- 1; D(Jt) «- <»;

if C(Lr) = UP then send CHGCLr, Me, FAIL)

else if CCLt) = UP then send CHGCLt, Me, FAIL);

execute FSM.

For Irc(Jt):

if C(JL) = DOWN then C(£) - READY;

if C(Lr) = UP then send CHGCLr, Me, REC)

else if CCLt) = UP then send CHGCLt, Me, REC);

if S € CSQ, SB. SD, SID, SR, SM} then C(£) - UP).

For bfl. dbf:

execute FSM.

enters S2. After flushing its buffers, the process leaves SF and enters

S2 performing phase 2. It is at this time that the node decides whether

to make a routing change. If there is another link having a shorter

distance than the current routing link (I.e. DCLs) < DCLr)), then the

process freezes sink traffic and sets the flag P. Upon receipt of the FLS

message from its down-tree link, the node performs phase 3 by sending

FLS messages to all those remaining links to which it had not already

sent an FLS message. It then enters S3. Finally, when UPD messages

have been received from all links, the node makes a routing change if

requested and permitted, performs phase 4 by sending a UPD message

down-tree and enters the quiescent state, SQ. Note that, if a node is a

leaf, it may pass straight through states SI and S3. Therefore, the

implementation cannot assume only one state transition per event.

If the node receives a UPD message from a link, other than Lr,

with a higher sequence number than the node's current sequence

number. Me, the process enters the standby state, SB. If, eventually,

a UPD message with the same sequence number reaches the node via

161

Table 4.7

State Transitions in an Intermediate Node Routing Process

init -» SI Condition: node initialization.

Action: none.

SI ■* SI Condition: UPD (£. m. d * °°).

Action: Lr - L: Lt - t; Ls - 1; Ld «- nil;

Me *- m; Mh «- m;

R - 0; P «- 0; B - 0; X - 0;
v / then

(D(/) - °°; U(/) - 0; F(/) «- 0;

if link i operational then C(i) *- UP

else C(/) - DOWN);

D(JL) - d; U(l) - 1;

V / # Lt s.t. C(/) = UP then

send UPD(/. Me, D(Ls));

send opr; send ubl; send con(Lr).

SI - SF Condition: (V / # Lt s.t. C(/) = UP then F(z)) ARAB'.
Action: send fls.

SI - S2 Condition: (V I # Lt s.t. C(/) = UP then F(/))A(R' v B) .

Action: if (D(Ls) < D(Lr)) A B' then

(send con(nil) ; P «- 1;

send FLSCLt. Me. FLU))

else send FLS (Lt. Me. NFL).

SF - S2 Condition: bfl.

Action: if D(Ls) < D(Lr) then

(send con(nil); P *- 1);

send FLS(Lt. Me. FLU).

S2 - S3 Condition: FLS(Jt = Lt. m. f # KIL).

Action: if P A ((f # FLU) V B) then

(send con(Lr); P «- 0) ;

if B V R' then f *- NFL;

R - R A (f # FLU) ; X «- 0;

V / s.t. (C(z) = UP) A U(/)' then

send FLS(/. Me. f) .

162

S3 - SQ Condition: V i s.t. C(/‘) = UP then U(/) A FC/) .

Action: if P then (Lr ♦- Ls; send con(Lr): P *- 0);

send UPD (Lt. Me. D(Lr));

Lt - Lr:

V / s.t. C(/) = READY then C(/) - UP;

V / then (U(D - 0; F(/) «- 0) .

SQ - SI Condition: UPD(L = Lr. m. D # «»).

Action: Me *- m: B - 0; Ld *- nil;

V i # Lt s.t. C(/) = UP then

send UPD(/. Me. D(Ls)).

SFR

SI - SB Condition: UPD(£

SF

S2 Action: Lt «- Lr;

S3 if P then

SQ send ufl;

Lr. m > Me. d) V If I (L * Lr)

VCHGd, m. FAIL).

if UPD then Ls *- £;

(send con(Lr); P «- 0) ;

V i s.t. C(/) = READY then C(/) - UP.

SB -* SI Condition: UPD (£ = Lr. m = Mh. d # <»).

Action: Me - m; B *- 0; Ld nil;

V / * Lr s.t. U(/) A (C(/) = UP) then

send FLS(/. Me. NFL):

V / # Lt s.t. C(/) = UP then

send UPD (/. Me. D(Ls)).

V / # Lt s.t. C(/) = UP then

SI - SI Condition: UPD (£ = Lr. m > Me. d * °°).

SF Action: Me m; Lt *- Lr; Ld *- nil; B *- 0:

S2 if P then (send con(Lr); P *- 0) ;

S3 send ufl;

SFR v / s.t. C(/) = READY then C(/) - UP;

send UPD(/. Me. D(Ls)).

163

SI - SR Condition: If 1 (£ = Lr) A ;

SF Action: V / then (DC

S2 send con(nil);
S3 start timer T ;D
SQ P - 0; R *- 0

SB V / s.t. C(/)

SFR V i s.t. C(/)

SI - SD Condition: UPD (£ = Lr,

SF Action: V / then (D(i
S2 send con(nil) ;

S3 start timer T ;D
SQ Me «- m; P *-

SB V / s.t. C(/)

SFR V i # Lr s.t.

«- 00; U(/) «- 0; F(/) ♦- 0) ;

send blk; send ufl;

Ls «- nil; Ld nil;

READY then C(/) «- UP;

UP then send UPD(/, Me, «»).

m = Mh, d = 00) A X'

- 00; U (/) - 0; F(- 0) ;

send blk; send ufl;

Ls «- nil; Ld *- Lr;

0; R - 0;

READY then C(/‘) «- UP;

C(/) = UP then

send UPD(/, Me, °°).

SD - SI Condition: UPD (£ = Lr, m > Me, d # 00)

SID Action: Me «- m; Lt «- Lr; Ld «- nil;
SR send con(Lr) ; send ubl:

V / * Lt s.t. C(/) = UP then

send UPD(/, Me, D(Ls)).

SD - SID Condition: UPD(£ #

SID Action: Me «- m;

B - 1.

Lr, m > Me, d # «>).

Lt - £; send UPD (Ld. Me. D(Ls));

SB -» SID Condition: UPD(£ = Lr, m < Mh, d = °°) A X'.

Action: send con(nil); send blk; B «- 1; R «- 0;

Me *- Mh; Lt «- Ls; Ld *■ Lr;

V i # Lr s.t. C(/) = UP then

send UPD(/» m, °°) ;

send UPD(Ld, Me, D(Ls)) .

SR - S2R Condition: UPD(£ # Lr, m > Me, d # °°)

A buffers non-empty.

Action: Me - m; Lr «- nil; Lt - £; B «- 1;

send FLS(Lt, Me, DIV);

V / # Lt s.t. C(/) = UP then

send UPD (/, Me, D(Ls)).

164

send con(Lr); send ubl.

SR - S2 Condition: UPD(£ # Lr, m > Me, d # °°) A buffers empty.
Action: Me *- m; Lr - £; Lt - £; B - 1;

send FLS(Lt, Me, FRT);

V / # Lt s. t. C(/) = UP then
send UPD (/, Me. D(Ls));

SID - S2D Condition: FLS(£ = Ld, m. f = DIV) .

Action: send adb(Ld, Lt) ; Lr «- nil;
send FLS(Lt. Me , DIV);

V / # Lt. Ld s. t. C(/) = UP then
send UPD(/, Me, D(Ls)).

SID - S2R Condition: FLS(£ = Ld. m. f = FRT)

A buffers non-empty.
Action: send FLS (Lt, Me.. DIV) ;

V i # Lt. Ld s.t. C(/) = UP then
send UPD(/, Me, D(Ls)):

Lr «- nil; Ld ♦* nil.

SID -* S2 Condition: (FLS(£ = Ld, m. f = FRT) A buffers
V FLS(£ = Ld , m. f = NFL)

V UPD(£ = Ld, m = Me, d # °°) .

Action: if UPD then f «- NFL;

send FLSCLt, Me, f) ;

if f = FRT then Lr «- Lt;

V / * Lt, Ld s.t. C(/) = UP then

send UPD(/, Me, D(Ls));

Ld *- nii send con(Lr); send ubl.

S2D -* S3D Condition: FLS(JI = Lt, m, f # KIL, RST) .

Action: V / s.t. (C(/) = UP) A U(/)' then

send FLS(/, Me, NFL).

S2R - SFR Condition: FLS(£ = Lt, m, f # KIL, RST).

Action: Lr «- Lt; send con(Lr); send flu;

V / s.t. (C(/) = UP) A U(/)' then

send FLS(/, Me, NFL).

165

SFR -• S3 Condition: bfl.

Action: send FLS (Lt, Me, FRT); send ubl; X - 0.

S3D ■- SFD Condition: FLS(I = Ld. m, f = FRT).

Action: send fdb.

SFD ■-* SFR Condition: dbf.

Action: Lr «- Lt; send con(Lr); send flu.

Any -
State

► SM Condition: FLS(£ = Lr, m, f = KIL) .

SD -* SM Condition: CHG(£, m, c = FAIL) v If 1 (£ # Lr) .
SID Action: if FLS then Me *• m;
S2D V z s.t. C(z) = READY then C(z) «- UP;
S3D V z # Lr s.t. C(z) = UP then
SFD send FLS(z, Me, KIL);
S2R send rst; send blk;

v / then (D(z) «- «; U(z) «- 0; F(z) - 0);

B «- 0; R *■ 0; P «- 0; X *- 0; start timer T .

Any -»
State

SM Condition: (UPD(L = Lr, m, d = °°) v If 1 (£ = Lr)) AX

S2D -<• SM Condition: UPD(£, m > Me, d = «»)

V UPD(L = Lt, m, D = oo) .
S3D Action: if UPD then Me *• m;
SFD V / s.t. C(z) - READY then C(z) «- UP;
S2R V z # £ s.t. C(z) = UP then

send UPD(£, Me, °°) ;

send rst; send blk;

V z then (D(z) «- «>; U(/) *- 0; F(z) *-());

B«-0; R *- 0; P«-0; X«-0; start timer T .

S2D -* SI Condition: UPD(£, m > Me, d °°).

S3D Action: Me m; send rst;
SFD V / s.t. C(z) = READY then C(z) - UP;
S2R Lt «- £; Lr - £; Ls «- £; Ld «- nil;

B - 0; R «- 0; P *- 0; X *- 0;

V / # Lt s.t. C(z) = UP then

send UPD(z, Me, D(Ls));

send opr; send ubl; send con(Lr).

166

SM - SI Condition: UPD(I. m, d # <») ;

Action: Lr — Jt: Lt - L; Ls «- £; Ld - nil:

Me *- m; send opr; send ubl; send con(Lr);

V / * Lt s.t. C(/) = UP then

send UPD(/‘, Me. D(Ls)).

SI' - SI Condition: FLS(I = Lr. m. f = RST).

SD - SI Condition: Time T expired.

SR Action: if FLS then Me «- m:

SM V / # Lr s.t. C(/) UP then

D

send FLS(/. Me. RST):

send rst; send blk.

Lr. the process performs phase 1. enters SI and carries on with the

normal update cycle.

Receipt of a UPD message with d = 00 from Lr causes the process

to enter the dead state. SD, and halt all sink traffic. If link Lr fails, the

process enters the failure root state. SR. Provided that there is not a

second failure, the process can leave SD or SR when a UPD message

is received with a higher sequence number. If the message is received

along Lr. the process moves to SI and continues as a normal cycle

except that the change blocking flag. B. is set in order to suppress any

attempt to change paths. If the message is received on a link other than

Lr. a node in SD designates this link as its down-tree link, Lt. and the

old routing channel as the diversion input channel, Ld. It then transmits

the UPD message only along Ld and enters state SID. If the node is in

SB when the UPD message with d = « is received along Lr, the process

moves immediately to SID. Eventually, a UPD message reaches the

failure root in state SR. The process designates the receiving link as Lt

and performs phase 1 by propagating UPD messages up-tree. If.

fortuitously, it does not contain any sink packets the process designates

Lt as Lr. immediately performs phase 2 by sending a failure root transfer

message (FLS(FRT)) down Lt and enters S2. so continuing as a normal

cycle. If. however, the node does contain some sink traffic, it sends a

diversion request (FLS(DIV)) down Lt and enters state S2R.

A process in SID can move in one of three ways. Firstly, if it

receives an FLS(FRT) along Ld and the node contains no sink traffic, or

167

it receives an FLS(NFL) along Ld or a UPD message with d # 00 along

Ld, it completes phase 1. by transmitting UPD messages along all links

other than Ld and Lt. In the case of receiving a failure root transfer

message, it transfers the root further down-tree, thus performing phase

2. Otherwise the normal phase 2 is performed by sending an FLS(NFL)

down-tree. The process then enters S2. Secondly, if the node receives

an FLS(FRT) along Ld while its buffers contain some sink traffic, the

node completes phase 1. performs phase 2 by sending a diversion

request down-tree and assumes the role of the failure root by entering

S2R. Thirdly, if the node receives an FLS(DIV) from Ld. it assigns a

diversion buffer to allow traffic to flow from Ld to Lt. completes phase 1.

performs phase 2 by sending a diversion request down-tree and enters

state S2D. Note, that this assumes that the diversion arrangements can

be made instantaneously. If there is any possibility of delay due, for

example, to buffer space not being immediately available, then an

additional wait state must be inserted between SID and S2D.

When a process in S2D receives an FLS message from Lt, it

performs phase 3. This includes sending an FLS message down Ld. The

process then enters state S3D. When the failure root, in state S2R,

receives an FLS message from Lt. it also performs phase 3. designates

Lt as Lr. starts to flush packets down Lr and enters state SFR until all

sink traffic has been flushed. It then sends an FLS(FRT) message

down-tree In order to inform the next node, in state S3D, that the

diversion is complete, and enters S3. The node receiving this message

enters state SFD to await the emptying of its diversion buffer. When this

is complete, the process releases the diversion buffer, starts to flush its

normal buffers down Lt, which is now designated Lr, and enters SFR.

Note that processes, which enter S2 or S3 from a dead state, do so

without waiting for FLS messages from all up-tree links. There is no

danger in this action because path changes are blocked by the flag B.

Indeed, this is a deliberate strategy to enable a diversion to get

underway as soon as possible. However, it is necessary, when

performing phase 4 in the transition between S3 and SQ, to check not

only the UPD received flags, U, but also the FLS flags, F.

Detection of a multiple failure causes the process to drop all

packets destined for the sink. It then enters state SM. unless the

detection of a multiple failure involved a UPD message with a new

sequence number, in which case the process directly enters SI. The

168

flag X is used to indicate a possibly unflushed up-tree failure. The

process will leave state SM when a new UPD message, with a higher

sequence number, reaches the node. Finally, if the node remains in

states SD, SR or SM for a time greater than TD. it is assumed that no

alternative path to the sink exists, and the process resets itself

re-entering state SI.

The message handler is not only responsible for the appropriate

execution of the FSM but in addition:

(a) records the highest sequence number received, Mn;

(b) maintains the UPD and FLS received flags, U and F;

(c) calculates the distance to sink for each link;

(d) monitors this distance and records the shortest distance link;

(e) maintains the status of each link, automatically bringing the link UP

in certain circumstances;

(f) acknowledges UPD messages from cross-tree links with FLS

messages if the FLS had not already been transmitted in that cycle.

Most of the time, the routing link, Lr, and the down-tree link. Lt,

are the same link. However, they will be different links if the node

passes through SID during the recovery cycle. Lr becomes Lt if and

when the process enters SFR. Lt becomes Lr if and when the process

enters SQ or SI.

4. 5 PROPERTIES OF THE ALGORITHM

The algorithm enjoys a number of properties. These have yet to be

rigorously proved. Such proofs would, in the main, be based on the

proofs of the original protocol's properties [MERL78].

Property 1: Loop Freedom

(a) At all times, the directed graph, comprising of the nodes and their

links defined by the latest con message, forms a set of disjoint

trees rooted either at the sink or in a node whose buffers are

frozen.

(b) Consider the directed paths formed by the nodes in states S3D and

SFD and their links defined by their latest adb message. Then, at

169

all times, each path terminates at a node which forms part of a

tree which is neither rooted at the origin of the path nor at any

intermediate node along the path.

The above property guarantees that no loop can be found - even

temporarily. It is strongly associated with the properties of the graph

formed by the nodes and their routing links, (Lr), and the graph formed

by the nodes and their down-tree links. (Lt). The latter forms a set of

disjoint trees at all times. Unfortunately, the graph based on Lr does not

always form a tree although, at the end of an update cycle (when

(Lr) = (Lt)) , it Is guaranteed to form a set of trees. The Lr graph fails

to form a tree set when a node is in state SID and the adjacent node

connected to link Lr moves to state S2 from SR. This is because, in so

doing, the latter node will denote the same link as Lr thus forming a

loop. The loop freedom property is not affected, however, because all

sink traffic is frozen when a node is in state SID, and it cannot leave

SID under these conditions without changing Lr. In any case, this

condition lasts only one NTAN message delay before the node in SID

receives an FLS message from Lr, whereupon the node leaves SID and

Lr is changed to equal Lt or nil.

Property 2: Sequentiality

All packets addressed to the sink dispatched from a node, n,

either will have arrived at the sink or will have been destroyed

before a path change is made by node n.

This property is dependent on Property 1 as well as the correctness

of the flushing and multiple failure detection functions.

Property 3: Completion

If a cycle is started with sequence number, m, then, within a finite

length of time, this cycle will be properly completed or a link

outage will occur in a node having Me = m. Upon completion of

this cycle and until a channel outage or recovery occurs, the set of

all nodes, which have some potential path to the sink, form, with

their links defined by the latest con message, a single tree rooted

at the sink.

170

Property 4: Recovery

If a Ifl or a Ire message is generated within a node, having

Me = m, then an update cycle will be. or has been, started with

a sequence number of m+1.

Provided that link failures do not happen too frequently in

comparison with the propagation time of the update cycle. Properties 3

and 4 together guarantee that the protocol will always recover and a path

will be provided to the sink if it is physically possible.

Property 5: Convergence

Provided that there is no change in the network topology or the link

weights, the protocol will tend to minimize the distance of each

node to the sink. Within a finite number of cycles, that is not

greater than one plus the maximum number of hops across the

network, an optimum tree in terms of shortest distance is obtained.

Furthermore, the tree is optimized if the sink receives no FLS(FLU)

messages down any link for two consecutive cycles having the same

sequence number.

The latter part of this property is based on the fact that the

FLS(FLU) message indicates a path change up-tree. If there were no

path changes then no node could find a better path and. therefore, the

tree must be optimized. Because the decision to change routes is made

early in the cycle, it may be that a shorter path is not discovered until

later in the cycle. The route change would then be made in the next

cycle. This is why two cycles clear of flush requests are required before

the sink can be sure that the tree is optimized.

With the exception of Property 2. these are very similar to the

properties of the non-sequential protocol [MERL79J. The major

differences are due to:

(i) the complication of the diversion pathways:

(ii) the different handling of link failures and recoveries:

(iii) the fact that the shortest distance link discovered late in one

cycle will not become the routing link until the end of the

following cycle:

(iv) the ability of the sink to know when the tree is optimized.

171

4.6 IMPLEMENTATION

This protocol is ideally suited to MININET. Conversely, the small

NTAN message size of MININET is (almost) ideal for this protocol, since

it entails many short messages exchanged between adjacent nodes as

opposed to the fewer larger messages of other protocols such as the

ARPANET routing protocols [MCQU78J. [MCQU80],

Each node in the network requires a process for each sink in the

network. While the code executed by these processes would be common

(with the exception of the sink process for the node itself) . separate

copies of the variables, defined in Table 4.5. must be stored in RAM for

each sink in each node. A routing control block (RCB), containing the

variables described in Table 4. 5 plus a pointer to a timer event block for

use with timeouts, would be assigned dynamically as the node learns of

the existence of the sink node. If the sink does not exist, or the node

does not know of its existence, the RCB does not exist. This is the

equivalent of state SI in Figure 4.8. Making the reasonable assumption

that the absolute maximum number of links connected to a node is 32.

the U and F flag array can be stored as two 32—bit set variables.

Furthermore, the link status can be stored as two 32-bit set variables

representing the links in state UP and state READY respectively. This

greatly facilitates fast set operations such as the condition tests for the

S1-*S2 and S3-»SQ transitions in Table 4.7. If Me. Mh. and each D(£)

and W(£) are stored as 16—bit words and the remainder of the variables

stored as 8—bit bytes, the contents of Table 4. 5. together with a timer

event block and a pointer to the timer block, would require 49 + 4. Lmax

bytes. For the maximum number of links allowed (i.e. 32). this implies

a total memory requirement of 177 bytes per sink. Assuming that the

network contains 32 nodes, the total RAM requirement is just over

5. 5KB. Using similar assumptions, the sink process would require only

41 bytes of RAM to store the contents of Table 4.2 together with the

timer event block and a pointer.

Since Stations must act as a sink in their own right and decide

which output channel to use for outgoing packets, they must take part in

the routing protocol. However, since a Station cannot switch packets for

other nodes, it must transmit a distance of infinity for all destinations

other than itself.

The algorithm assumes that the message sequence number may

172

increase without limit. Of course. In practice, the sequence number

range is finite and eventually wraps around and repeats. If the sequence

number range is 0 to Mmax, then ali comparisons and arithmetic are

performed modulo-CMmax + 1). Consequently, if the difference between

two sequence numbers becomes greater than (Mmax + l)/2, then the

polarity of the difference is reversed. This is potentially very hazardous

to the routing algorithm and was the principal reason for the introduction

of the dead state timer described in Section 4.3.4. The period of this

timer, T , should theoretically be shorter than the product of minimum

time between link failures and the number of increments to the sequence

number before wrap-around occurs. However, the period between link

failures is very ill defined and has no lower limit. It is assumed that link

hold-down is practised by the channel manager (Section 2.3.3).

Consequently, because the only likely cause of a close packed sequence

of link failures is a single marginally operational link repeatedly failing

and recovering, the minimum hold-down period can reasonably be used

as the minimum inter-failure period.

One method of increasing the wrap-around distance, without

increasing the size of the sequence number field, is based upon the fact

that the node will not receive messages with sequence numbers more

than 1 or 2 behind its current sequence number, as a new update cycle

very quickly supercedes any older cycle. Therefore, each intermediate

node's routing process can bias its sequence number comparisons so

that the difference between the sequence number of an incoming

message and the node's own sequence number has a negative range of

only 3 (say) with the remainder of the range considered positive.

The distance carried in a UPD message is, like the sequence

number, a variable which has an arbitrary and possibly restrictive

maximum value placed on it by the finite dimensions of NTAN messages.

One state of the distance variables is reserved to denote infinity. The

other states are used to represent the distance range 0 to Dmax. The

maximum finite distance, Dmax must be greater than the product of the

maximum number of hops across the network and the maximum weight of

one hop. This maximum weight should not be smaller than the ratio of

the estimated hop delay of the slowest channel to that of the fastest

channel.

The formats of the UPD, FLS and CHG messages are shown in

Figure 2.8. In terms of required information content, the UPD message

173

is the most critical as it contains both a sequence number and a

distance estimate as well as the sink identity. The sink address field

must be. of course. 6 bits long. Therefore, if all three fields were to be

squeezed Into the 19—bit data field of a NTAN message, there would be

only 13 bits left for the distance and sequence fields. This is clearly

insufficient. The problem is overcome by utilizing 3 out of the 4 bits of

the NTAN class field to make available 16 bits for the distance and

sequence fields. The remaining bit of the class field (bit 22) is used to

distinguish the UPD message from other S-NTAN messages. Somewhat

arbitrarily assigning 10 bits to the distance field gives a distance range

of 0 to 1022 with the value 1023 reserved to represent infinity. This

leaves 6 bits for the sequence number giving it 64 states. Thus, serial

number comparisons would have the numerical range from -3 to +60.

The code field of the FLS message carries the possible values, NFL.

FLU. DIV. FRT, KIL or RST while the code field of the CHG message

carries the values FAIL or REC.

Management modification to the link weights (e.g. manual

intervention by an operator) would use MCP (Section 2.6) to transfer

the weight update. The sink must be informed of a weight change so

that it can start a new update cycle. Furthermore, there may well be

more than one link weight to be changed and it would be best to make

all the changes prior to starting the update cycle. Therefore, the most

convenient mode of operation would be to send a MCP message to the

sink listing all the weight updates. The sink then would transmit each

new weight to the appropriate node in turn (using MCP). Finally, the

sink would start a new update cycle to incorporate the new weights into

the distance estimates.

A routing link. Identified by the routing management algorithm, can

be broken into two components, the channel controller address (internal

to the node) and the adjacent node address connected to that channel.

The actual packet-by-packet implementation of the routing function is

undertaken by special-purpose dedicated processors. This function is

distributed between the core processor, which routes the packet to a

particular channel, and the channel controller which selects the

appropriate adjacent node for the packet (Section 2.3.1). Of course,

for a point-to-point channel, the latter function is null and the link is

completely specified by the channel address. Routing decisions, within

the core of an Exchange, would be implemented by attaching a

174

particular destination node's queue to a particular channel

(Figure 2.18). Disconnecting the queue from any channel has the effect

of freezing the buffers. In the Station core, routing is performed by

placing the address, of one of its own ports, into the poll list for the

output channel appropriate for the destination node of that port's Virtual

Connection (Section 5.2.1). Traffic for a particular sink can be frozen

by removing all ports connected to that node from the channel poll list.

Note, that there are no explicit routing directories used by the

high-speed packet handling processors in either the Exchange or the
Station.

175

Chapter 5

STATION ARCHITECTURE

The relatively slow line rates and large packets of the typical wide

area network generally result in processing requirements, on each

node, that can be adequately met with conventional general-purpose

single or multi-processor systems [HEAR70], IORNS751, [FORN76].

[MUEL77]. On the other hand, the required processing rate, within

small-packet, high-speed local area networks such as MININET. is too

high for a conventional processor structure. One method of improving

efficiency is to give several general-purpose microcomputers different

jobs within a functionally distributed architecture [FALD761. However, in

order to achieve very high packet handling rates, the individual

processors must be designed specifically for their function [MCDE78J.

[AROZ80L This design philosophy was adopted in the implementation of

a full-speed MININET Station described in this chapter.

5. 1 DESIGN REQUIREMENTS

5.1.1 Functional Architecture

The Station may be divided functionally into four parts as shown in

Figure 5. 1.

(1) The port section consists of the interfaces to the user devices.

Different types of interface can be accommodated. One is the DIM

interface described in Chapter 3. Other possible types of port

include an IEC-625 [IEC 79] bus interface and a speech port

(Section 2.5.2). End-to-end flow control, in the sense of

source-sink data rate matching, is handled by the interface

protocols (e.g. DIM-CPC described in Section 3.3).

(2) The channel section consists of up to 8 channel controllers which

provide the MININET Channel Service (Section 2.3). For

point-to-point channels, this corresponds to the Layer 2 Data Link

Service of the OSI Reference Model. However, for multi-node

channels, the channel controllers have additional responsibilities

176

Connected
User

Devices

To other
► MININET

Nodes

Figure 5.1: Functional Division of the Station

which correspond to Layer 3M. These responsibilities are described

in Section 2.3.1. For point-to-point channels this sublayer has no

function.

(3) The Station manager is responsible for all management functions

including: Station initialization; establishing and changing Virtual

Connections; running the routing algorithm; performance

monitoring of the whole Station including ports, channels and the

manager itself. The manager can communicate with other node

managers by means of MCP (Section 2.6). which provides a

message exchange service for the management entities. It also

communicates with the operator by means of a console

(Section 2.5.1). In addition, the operator can obtain the status of

the network. Station, port or channel. It is also possible for user

devices to be connected to the Station manager via a port. This

enables a computer, for example, to request Virtual Connection

changes in the same manner as the operator at the Station

console.

(4) The message handler forms the heart of the Station. Its main job is

to route information between the ports, channel controllers and the

manager. It must package data entering the network via a port and

dispatch the packets towards their destination, as defined by the

port's Virtual Connection information described in Section 2.5.1. If

it Is a local connection, then the destination is another port in the

177

same Station. If it is a management connection or the port is in the

standby state, then the destination is the Station manager. If it is

a remote connection, then the destination is a port in another

Station. The packet should be routed to the channel controller

(specified by the routing management algorithm) , provided that the

BPV (received from that channel) allows packet flow towards the

destination Station. If the BPV indicates that the adjacent node

cannot accept packets for that particular destination node, then the

packet must not be dispatched (Section 2.4.1).

The message handler and the Station manager together form the Station

core to which ports and channel controllers are added as required.

5.1.2 Speed - Power Characteristics

The maximum design throughput of the channels is in the order of

100k packets per second. This means that at times of peak activity each

channel could need feeding once every 10/zs and, more importantly, be

delivering a packet to the Station once every 10/z.s. Since there can be

up to 8 channels, this implies sub-microsecond packet processing times

within the message handler. At the other extreme, it is quite possible

that some channels, perhaps using modems, are operating at much

lower speeds and have service intervals as long as a few milliseconds.

In instrumentation and process control applications, the end-to-end

propagation time of a packet is usually more important than throughput.

For this reason, greater emphasis is put on minimizing delays than

maximizing throughput. In matters such as increase of channel or

processing speeds both throughput and delay are improved. However,

pipelining of operations and buffering of packets may increase

throughput at the expense of increased propagation delay. It is

desirable, therefore, in the design of the Station to avoid pipelining and

buffering wherever possible.

When moving messages within the Station and when a particular

destination (within the Station) is busy, it is important that other traffic

is not blocked. For this purpose, each channel controller must be

treated as a separate destination because there may be very large

differences between channel service intervals. However, since

end-to-end flow control is handled by the interface protocols, the ports

should not remain busy for any appreciable period and so they can be

178

lumped together and treated as a single destination. A queue should be

incorporated into the port to Iron out any fluctuations in the packet

delivery rate. The Station manager and the received BPV memory are

also destinations which should always be able to accept messages. A

queue should be incorporated into the interface towards the manager to

ensure this.

The fairness criterion (Section 1.2.3) implies that the ports and

channel controllers cannot be connected to the Station core using any

method which gives a particular port or channel any fixed priority over

the others. Instead, a method of rotating priority must be used.

However, because it is desirable to clear the long-distance traffic

arriving in the channel controllers, the channels are made equally the

highest priority source. Secondly, since the messages generated by the

Station manager are important to the proper running of the network, its

output should have second highest source priority within the Station. The

ports have the third highest priority, which again must be shared

equally.

In contrast to the high-speed dedicated processing of the message

handler, the Station manager has a large number of relatively

sophisticated jobs to perform. However, for the most part, the time

constraints on these tasks are less severe. Consequently, the manager

is best implemented using a general-purpose microcomputer.

Nevertheless. it is advisable to use a fairly powerful 16—bit

microprocessor in order to expedite the management operations used to

recover from, for example, a channel or port failure.

In order to minimize Station cost and power consumption, it is

desirable to use mainly low power Schottky TTL and to avoid multi-layer

printed circuit boards wherever possible.

5.1.3 Reliability

In order to meet the requirements of Section 1.2.4. the following

precautions have been taken:

(i) Each bus field, be it data or address, uses negative logic and

includes an odd parity bit. This particular choice of polarity and

parity ensures that failure of a source to turn on forces a bus parity

error.

179

(il) A soft error should not harden into a permanent error by, for

example, causing lockout of a network resource. On the other

hand, recurrent failures of resources, such as an intermittent

channel, should be hardened to avoid continual re-routing of

packets.

(ill) During initialization, the manager should perform a thorough

confidence test of the Station.

(iv) During normal Station operation the manager should continually

monitor and exercise the operation of the whole Station, and

validate the Virtual Connection and routing information stored in the

message handler.

5.2 MESSAGE HANDLER DESIGN

5. 2.1 Polling Strategy

Earlier versions of the MININET Station [MORL75], [NERI84]

connected the ports to the Station core, by means of a bus that used

Interrupts and a "daisy chain" interrupt acknowledgement system. While

the network load was such that this did not cause any real problems in

practice, the interrupt approach suffered from several disadvantages.

Firstly, the Station core had no control over the input of data into the

network. This could lead to temporary blockages if the data could not

immediately be delivered to its destination. Secondly, it was impossible

to Isolate maverick devices connected to the ports. Finally, the

acknowledgement chain imposed a fixed priority order on the ports. This

contravened the fairness criterion.

In this latest high-speed design each port is polled to find data

waiting to be dispatched through the network. The polling operation is

performed independently of any transfer to or from the port.

In the initial planning stages of this design, a single poll loop of all

connected ports was considered. The data word would then be

transferred from the port and, combined with the address fields to form

a complete packet, held in a buffer register until the channel through

which It was routed was ready to accept a message. The problem, with

this pipelined approach, is that other ports are blocked while this packet

waits for the channel to become free. This structure was therefore

rejected. If the channel availability is gated into the port poll response.

180

such blockages could be avoided. In order to do this, it would be

necessary for the port poller to also poll the channel controllers or

maintain a table of channel availability. The problem with such a

source-led poll Is that. In many circumstances. It can be unfair.

Assuming that the channel service Intervals are Independent of the poll

loop period (a most doubtful assumption) , then a sort of stochastic

fairness can be obtained, provided that the ports, connected through the

same channel, are placed at equidistant intervals around the loop. If,

on the other hand, the ports are bunched together In polling order, then

the port at the head of the group has the highest probability of being the

first port polled after the channel becomes ready. In any case, the

channel service intervals and the poll loop frequency would be fairly

constant, leading to beat phenomena giving certain ports precedence.

Consequently, this approach was also rejected.

The polling scheme finally adopted is the two-dimensional polling

structure shown In Figure 5.2. With the exception of the channel input

poller, which remains autonomous, all the polling operations have been

combined into a unified master arbiter (MA). This poller is

destination-led. Its primary polling loop searches for a destination within

the Station that is ready to accept data, while the secondary loops

search for a source with a message for that destination. To this end.

the connected ports are placed in different poll loops depending on their

destination. There is one loop for each channel, plus a loop for the

interface to the Station manager, and a loop for the ports connected

locally. The intra-Station destination of a port Is determined by a

combination of Virtual Connection information, which specifies the

destination node, and routing information, which determines the output

channel for that destination node. When the MA finds a

source-destination pair ready and able to communicate, it passes that

Information on to the master transfer controller (MTC). This controls the

transfer of information along the packet bus, which forms the backbone

of the message handler. The packet bus has dual address fields, which

allows the .MTC to transfer a message from any source to any destination

connected to it. The data transferred consists of 3 fields: a message

type identifier, a message field (containing either a packet, a NTAN

message or an INC message as described In Figure 2.7) . and a

channel controller address. This last field Identifies the destination

channel when travelling towards the channels, and the source channel

181

co

O

Figure 5.2: Station Polling Sequence

when travelling in the other direction. All these fields include an odd

parity bit. These are checked during every transfer along the packet

bus. In the rare event of a parity violation, the MTC does not deliver the

message but. instead, informs the Station manager for diagnostic and.

if possible, recovery purposes.

This design highlights the difficulty, not widely appreciated, of

achieving fairness. This two-dimensional polling technique guarantees

strict fairness when interconnecting data sources and sinks, via a

common resource, under saturation conditions (i.e. all sources wishing

to transmit) . However, even this polling technique does not guarantee

182

equal latency periods under uneven Intermediate load conditions. One

method of accomplishing this would be to re-order the secondary poll

lists in accordance with the time each list element was last serviced.

The element least recently serviced would be placed at the front of the

list and the most recently serviced element at the rear. Such a solution

was considered unnecessarily complex for this application. In any case,

under all load conditions, two-dimensional polling does guarantee that

no source or sink can hog or block the common communication

resource.

5.2.2 The Message Handler

The overall structure of the Station is shown in Figure 5.3. The

channel controllers are joined to the Station core by means of the

channel bus. This bus transfers data, consisting of the message type

identifier and the message, to or from the channel bus controller

(CBC), which interfaces the channel bus to the packet bus. The

channel bus also includes two independent polling buses each with their

own channel address field. One is used to find whether the channel

controller is ready to accept a message output from the CBC. and the

other to find whether it has a message ready to Input to the CBC. The

former is under the control of the MA, while the latter Is controlled by

the channel input poller located within the CBC. This, together with the

arrival of messages from the packet bus. feeds the channel bus transfer

controller. Arbitration between Input and output operations Is arranged

so that priority is given to the channel input poller after a message is

written to a channel controller, and to the packet bus arrivals after a

channel bus read operation. Thus, the resources of the channel bus

and CBC are shared fairly between channel transmission and reception.

Upon receipt of data transferred from a channel controller, the CBC

decodes the message to determine Its destination along the packet bus.

If It is a user packet and the destination node address field matches the

Station's own address, the CBC sends the packet to the port section, if

It Is a NTAN message containing a BPV update, it Is sent to the BPV

memory. Anything else, including network packets, INC messages and

NTAN routing messages are sent to the Station manager.

The ports are connected via the port bus, which is Interfaced to the

packet bus by means of the port bus transfer controller. The port bus

can be divided Into three autonomous sections. The transfer section

183

Figure 5.3: Station Structure

moves the data word to or from the ports. The port transfer poller

section Is used by the MA to search for a port with information to

transmit. The port status poller Is used to check the health of each port

In turn. Errors, such as parity failures or timeouts at the network

Interface, may be reported by means of this bus.

The locations of FIFO queues and buffer registers within the Station

are shown in Figure 5.4. Note that data flows unbuffered, directly from

a port to its destination along the packet bus. This is done to minimize

184

C
o
n
t
r
o
l

1
e
r

C
o
n
t
r
o
l
l
e
r

O m o

L
ai

■p
CD

•rl
CD
W

Ct

L
+>
co •w
CD
ai
ct

L
□ •P 0)

CD □ •P
Q_ ©

-P ■P •r4
L □ CD
0 O at

Q_ Ct

Figure 5.4: Location of Queues and Buffer Registers

185

transfer delay and simplifies the interface between the MA and the MTC.

but means that the port bus must be synchronized with the packet bus

for data Input operations. Data output along the port bus, on the other

hand, can be performed while the MTC is busy with transfers between

other elements on the packet bus. The port bus transfer controller uses

the destination port address field, within arriving packets, to determine

their destination along the port bus.

The Station manager can monitor and control the operation of the

message handler by means of the management bus. This is a subset and

extension of the microcomputer's system bus. The management bus is

connected to the packet bus by means of the packet bus management

interface (PBMI). The PBMI Includes a 256-message long input queue

to avoid blockages caused by the relatively slow management processor

being unable to deal with a burst of messages arriving in rapid

succession.

5.2.3 Master Arbiter Operation

In its polling operations, the MA treats the ports Individually as

sources, but collectively as a single destination. On the other hand, the

channel controllers are treated collectively as a single source, but

individually as destinations. This has been done because the major

unknown, insofar as the poller is concerned, is the service interval of

the channels. In normal circumstances, the other destinations have a

relatively short service interval of not more than a microsecond or two.

A timeout mechanism on the port bus protects the Station from

blockages due to deficiencies In user flow control.

In executing the polling sequence described In Figure 5.2. the MA

checks each channel controller for Its readiness to accept a message.

At the same time, it checks whether the PBMI has a message for the

channel. If the channel is ready and the PBMI does not have a

message, the poller searches, through all the ports connected through

that channel, for a port with information to transmit. The poller starts

with the port following the last to transmit through that channel. The port

poll response is qualified by the content of the BPV memory, which is

indexed by the channel and destination Station address. If the MA finds

a port or the PBMI ready to transmit (and after waiting. If necessary, for

the MTC to become free) . it passes the packet bus source and

186

destination address to the MTC. If the source is the PBMI. the latter

supplies the port address, the channel controller address and the

address portion of the packet. If the source is a port, this information is

supplied by tables within the MA. The MA also records the address of

the port following the source port In the poll loop, so that the poll can

start with that port on subsequent occasions. The source port will then

be the last port to be polled In the loop - effectively becoming the lowest

priority source for the channel in question. This rotation of priority

guarantees that. If there are p ports connected through a particular

channel (i.e. p ports in its poll loop), then. Ignoring any management

traffic, each port can obtain at least 1/p of the channel throughput. The

channel priorities are also rotated so that the Station core resources are

shared equally among the channels.

Immediately after successfully finding a channel controller and

source ready to transfer information, and passing this Information onto

the MTC, or after unsuccessfully polling all channels and finding no

channel or source ready, the MA returns to destination poll, level 1

(Figure 5.2). It then checks whether the port bus output register is

empty. At the same time. It tests whether the CBC or PBMI have data

for a port. If both have data and the register is empty then the CBC has

priority. If neither have data, the MA polls all locally connected ports,

in a similar manner to those remotely connected through the channel

controllers. The same procedure is followed for the PBMI as a

destination, with the ports connected to the manager being polled. The

PBMI, Itself, is included as the lowest priority source for test purposes.

The BPV memory normally receives updates from the channels but.

during Initialization, is loaded from the Station manager. Because the

BPV memory Is, in fact, part of the MA, the MA waits to take part in the

transfer operation. This is unlike the procedure with other destinations

when it continues to poll ahead while the transfer takes place. Special

interlock comparators are used in the MTC and CBC to stop the MA

duplicating a transfer.

The MA communicates with the PBMI and CBC by means of the poll
bus which includes packet bus and channel bus destination address

fields. The latter field is relayed onwards, as the channel output poll

address, along the channel bus. These allow the MA to broadcast the

destination currently being polled. The poll bus also Includes a number

of response lines. One is used for the destination (a channel controller

187

or the PBMI) to Indicate its readiness to accept a message, while two

other lines are each used by the PBMI and CBC to indicate that they are

holding a message for the specified destination.

5. 2.4 Master Arbiter Structure

The structure of the MA is shown In Figure 5. 5. For simplicity, the

channel controller addresses have been constrained to form a

contiguous set starting from zero. This allows the channel poll pointer to

be Implemented using a simple counter. The channel register contains

the highest channel address present in the Station, which Is determined

by the manager during initialization. This register controls the modulus

of the channel counter, which Is used to determine the completion of

the channel poll loop, and the modulus of the channel poll pointer

counter, which determines the currently polled channel controller. The

packet bus destination address being polled is derived from the MA

controller. Together with the channel poll address, this information is

used to index into two memories, the list length memory and the next

port list. These provide the length and current position within the

corresponding port poll list respectively. The channel buffer register is

used to enable a partial overlay of the channel and port poll operations.

The next port list supplies the address of the first port In the poll list to

the port poll register. This, in turn, indexes into the main port poll list

memory. The content of the location, so specified, is the address of the

next port In the loop and is fed to the port poll register for the second

and subsequent poll cycles. The address of the currently polled port is

also fed into the destination address table, which provides its destination

port and Station address. The destination Station field, together with the

channel controller address, is used to Index into the BPV memory, in

order to determine whether the adjacent node is accepting any packets

for that destination. If this is so and the port has data available, the MA

waits for the MTC If it Is busy. Then the polled port address is loaded

Into the source port register and the packet address and output channel

address are loaded into the transfer buffer register. The port poll cycle

terminates when either the port counter indicates that all ports in the

loop have been polled, or a port ready and able to transmit has been

found. In the latter case, the next port list Is updated with the address

of the next port In the loop to achieve the required rotation in port

priority.

188

PORT
BUS

POLL
BUS

Channel
Register

PORT BUS PACKET BUS

Figure 5. 5: Structure of the Master Arbiter

169

5.2.5 Controller Design

The MA is controlled by a microprogrammed FSM. In order to allow

multiple decisions to be taken simultaneously, no conventional

microprogram sequencer has been used in the design. For example, the

existence of a port poll loop, the availability of messages from the PBMI

and CBC, and the readiness of the selected destination and MTC are

checked In a single MA cycle of 100ns. The total poll time is therefore

much shorter than that implied by Figure 5.2 If all tests were made

sequentially. Under quiescent conditions (i.e. no destinations busy - no

sources ready) , the total number of cycles required to complete one

circuit of the whole poll list is

3 + n + 3 n + m + m (5: 1)c p p c

where n Is the number of channel controllers on the Station, n isc p
the total number of connected ports, is the total number of empty

port poll loops and m is the number of empty port poll loops attached

to a channel other than the last in the channel loop. An empty port poll

loop can occur if no ports are connected through a particular

destination. The destination must still be polled as the PBMI or CBC may

wish to dispatch a message to it. For a typical Station of 2 channels and

10 active ports, the circuit time is 35 cycles (3.5/zs), assuming that

there is at least one port in each of the 4 port poll loops. This

corresponds to the maximum latency time of the MA. Under even

moderate load conditions, the average latency time is much less than

half this maximum. This is because the port poll loops attached to busy

destinations are not polled and, after successfully finding a ready

destination-source pair, the poller short circuits back to the destination,

level 1 loop. Under complete saturation conditions (i.e. all destinations

busy) , the total poll circuit period is reduced to

5 + 3 nc (5: 2)

cycles. For the typical Station configuration described above, this takes

only 1. Ijits.

Altogether, this implementation of the message handler uses a total

of seven FSMs to control its operation. The design methodology and

techniques, developed to implement these and other controllers within

the Station, are fully described In [MORL85J. Briefly, the basic approach

Is as follows. Firstly, the controller's functional requirements are

190

specified, primarily by means of an objective state diagram (OSD). In

general, this implies that the controller has to be an asynchronous

Mealey machine. The controller is then internally partitioned as shown in

Figure 5.6. Any required continuous-time functional blocks, such as

Figure 5.6: General Controller Model

timeout monostables and interlock semaphores, are partitioned into a

separate section. Similarly, outputs, which are a function of the inputs

as well as the controller state variable, are partitioned into a separate

combinational logic block. This leaves, at the heart of the controller, a

synchronous Moore machine. The operation of this FSM is specified by

means of a synchronous controller state diagram (SCSD). The rationale,

behind this procedure, is that large synchronous Moore machines can

be implemented more easily and reliably than large asynchronous Mealey

machines.

The synchronous controllers of the channel input poller, MTC and

port bus transfer controller are implemented using conventional

hard-wired random logic. For the more complex controllers, the Moore

machine is implemented using PROMs as arbitrary logic function

generators. The conventional output decoder of a Moore machine

(Figure 5.7a) is merged with the next state encoder, so that the outputs

are computed in parallel with the next state, as shown in Figure 5.7b.

191

Inputs
Outputs

(a) Conventional Synchronous Moore Machine Structure

Inputs Outputs

(b) Moore Machine with Single Combinational Logic Block

Figure 5. 7: Synchronous Controller Structure

Both the next state and the machine outputs are passed through a

non-transparent register. The former becomes the current state of the

machine and is fed back to the input of the next state encoder. Note,

that there is no pipeline delay associated with registering the outputs,

because they were pre-computed simultaneously with the next state and

so appear at the output of the register concurrently with the state.

One disadvantage of using PROMs as combinational logic blocks is

that the PROM outputs are undefined, immediately following a change on

any of its address input lines, for a period equal to its access time.

This means that asynchronous inputs cannot be applied directly to the

PROM lest they change value near the clock edge and effectively corrupt

the PROM output sampled by the register. The problem can be overcome

by passing all inputs, that are not synchronous with the controller clock.

192

through a synchronizing register. Unfortunately, this can lead to pipeline

type delays. For this reason, the design of the channel bus transfer

controller uses a hybrid approach combining conventional discrete gate

circuitry (to provide a fast response to asychronous inputs without the

synchronizing register's pipeline delay) with PROMs (to allow complex

logic functions to be implemented with the minimum of chips) .

The basic machine, in its simplest form, can be implemented using

a single-chip registered PROM. This is the form used for the port status

poller and the PBMI queue controller. However, for larger machines

such as the MA controller, the finite number of PROM inputs and outputs

act as bottlenecks in the design. This is especially true in the case of

the Inputs where every additional address input doubles the size of the

PROM. These restrictions can be ameliorated by techniques aiming to

minimize the number of inputs, outputs and states.

There are three basic methods used to reduce the number of input

variables applied to the PROM, each exploiting different redundancies in

the SCSD. The first method utilizes the fact that not all the inputs are

relevent to the machine all of the time. Therefore, a data selector can

be used as a jump condition multiplexer to select different sets of input

variables at different times. The multiplexer must be controlled by the

FSM and, consequently, the required number of outputs is increased.

However, this cost, in terms of PROM size, is small compared with the

double-exponentially greater saving on PROM size due to the reduction of

inputs.

The second method uses pre-encoding to concentrate the effective

information, stored in sparsely coded input variables, thereby producing

a concentrated jump condition code. This utilizes the fact that, in a

multi-way branch, the number of branches is far smaller than the

number of minterms that can be formed from the number of conditional

inputs. For the more complex pre-encoder functions, another PROM can

be used as a very powerful pre-encoder. However, the relatively long

propagation delays of PROMs usually imply that, to achieve the desired

processing speeds, it is necessary to add a pipeline register between

the pre-encoder and the main PROM.

The third method is the technique of ROM bank swapping, which

utilizes the fact that the states with complex exit conditions are much

fewer than the states with uncomplicated branch conditions. This

193

technique is similar to the normal address extension of a memory

selecting between two or more memory banks, except that different

banks have a different mix of state variable feedback and inputs

connected to their address pins. For example, one 512-word PROM

bank may have 7 address inputs connected to the state variable, leaving

2 inputs for conditional inputs, while another 512-word bank may have

only 2 address inputs connected to the state variable, with the other 7

free to be connected to conditional inputs. Thus, the first bank can be

used for up to 128 different states but the exit conditions of these states

cannot be very complex. On the other hand, the second bank can

distinguish between only 4 states but the large number of inputs allows

it to handle complex multi-way branches.

All these techniques can be used in conjunction to produce very

agile controllers relatively economically. An example of the power of

these methods is the master controller for the half-duplex channel

controller, which uses one IK x 4—bit PROM as a pre-encoder. one

8 to 1 data selector as a jump condition multiplexer, and two 512 x 8—bit

PROMs with one IK x 8—bit PROM, arranged in two banks, as the main

encoder. Altogether, this controller has a total of 19 inputs and 207

states. In two of these states, the controller makes an 18-way branch as

a function of 15 inputs in a single 100ns clock cycle. In the case of the

MA controller, three IK x 16—bit ROM banks are used, together with a

2-pole 4-way jump condition multiplexer, to form a FSM operating at

10MHz. Its SCSD contains 45 states controlled by a total of 18 inputs. A

large number of states have relatively complex exit conditions, involving

up to a 7-way branch as a function of 8 inputs.

Two methods are used to reduce the number of PROM outputs. The

first exploits the fact that many outputs are mutually exclusive (i.e. never

asserted at the same time) . Consequently, a binary decoder can be

used to decode an encoded output from the registered PROM. For

example, a 3 to 8 line decoder can be used to provide up to 7 mutually

exclusive outputs. Note, that one output code has always to be reserved

for the states where none of the outputs are asserted. The other method

of output variable reduction is that of output variable sharing, where the

values of the state variable for each state are chosen so that some of its

bits can be used directly as outputs. This is especially useful with

partially defined outputs (i.e. outputs whose value is only specified, in

the SCSD, for some of the states). The select controls for the jump

194

condition multiplexer are an example of this type of output, because the

select output is only defined in a state whose exit conditions are a

function of the multiplexer output.

Minimization of the number of states of the machine is doubly

beneficial, as it reduces both the number of PROM address inputs and

the number of PROM outputs. Long strings of states to provide time

delay can be avoided by the use of monostables or, if greater accuracy

is required, by a counter. The latter can also be used as a loop

counter, which allows the removal of states generating repetitions of the

same sequence of events. The counter can be loaded, from the

controller, with different starting values to vary the number of loops or

the delay length. Quite dramatic reductions in the number of states can

be achieved with these techniques. In contrast, the technique of state

merging is useful to save just a few states. It is frequently used to

reduce the total number of states to a power of two, so that the number

of state variables is reduced by one. This technique takes advantage of

the fact that the PROM outputs, that are destined to become the

controller outputs after passing through a register, can be made a direct

function of the inputs without the inputs necessarily affecting the next

state variable. This may be thought of as a pseudo Mealey machine

because, from the point of view of the SCSD, this is similar to the

specification of a Mealey machine. However, since the output passes

through a register, it is strictly still a Moore machine.

5.3 THE STATION MANAGER

5. 3.1 MINTOS - The Management Operating System

The management of the Station is undertaken by a number of

concurrent tasks running inside a

communication is accomplished by

especially developed for MININET.

16—bit microcomputer. Inter-task

means of an operating system

In the first operating system

developed, the conventional semaphore primitives "Signal" and "Wait"

were utilized to handle task synchronization and queue management

[LAUE751. While this operating system was quite powerful, experience

with the snail network suggested that a more powerful and flexible means

of inter-task communication was required. In particular, tasks needed to

be able to wait for a whole number of different types of events at the

same time. Consequently, a new operating system, named MINTOS,

195

was developed for the new Station design. Tasks communicate by means

of FIFO event queues (EQs). The elements of the queues are messages

of arbitrary size and structure. These might be quite short, such as a

network packet or a timeout notification, or relatively large, such as an

MCP message. A task can wait for messages to be placed in one or

more EQs. It does this by calling a multi-wait primitive specifying a list

of EQs that it wishes to test. The message, at the front of the first

non-empty EQ on the list, is passed to the task. If all the specified EQs

are empty, then the task is suspended and attached to each empty EQ.

If more than one task is waiting on the same EQ. then a queue of tasks

is formed. Note, that by virtue of the multi-wait primitive, a task can be

in a number of queues at the same time. Of course when, eventually,

a task is given a message it is removed from all task queues.

This structure enables event servicing to be ordered chronologically

by placing event messages in the same EQ. and/or ordered in a

prioritized fashion by placing the messages in different EQs. Because

more than one task can wait on the same EQ. buffer pools are very

easily implemented as EQs which are initialized with a full complement of

usable message buffers by MINTOS.

Timer management is obtained using a primitive which relays a

message to a specified EQ after a specified time has elapsed. Thus,

event timeouts are implemented simply by sending a delayed timeout

message to the same EQ as will be used by the expected event

notification message, and then waiting on this EQ. If the expected

message does not arrive within the timeout interval, the timeout message

will be received by the task instead. On the other hand, if the expected

message arrives first, the timeout message must be deactivated by using

a special primitive which removes the timeout message from the timer or

event queue.

Interrupt handlers are implemented as tasks. Each level of interrupt

is enabled by a task executing a wait-interrupt primitive which causes the

task to wait until the interrupt is active. It is the responsibility of the task

to service and clear the interrupt condition before re-enabling the

interrupt. The interrupt handlers communicate with other tasks using the

standard EQ primitives.

196

5. 3. 2 Management Tasks

The overall view of the management system including tasks, EQs

and the major data bases is shown in Figure 5.8. For simplicity, buffer

Ham

PBMI
Output

Handl

PBMI
Input

Handler

Routing

I

Display
InterF ace
Handler

Connect
Request

EQ

Virtual
Lomeot i on

Port
Exception

Handler

■O-

Expedited
PBMI

Tranemit

Network
Transaction

Handler

Parity

Handl

T ieeout
Handl er

VCT

Change

Request

Monogement
Port

Hand1er

I"'""”
Routing

Meeeoge
EQ

Routing
Manager

Channe1
Manager

Channe1
Manager
Message

Channel
Supervisor

0
EQ

Chonne1
Supervisor

0

VCT

Meeeage
EQ

System
Mon itor

EQ

VCT System

Manager Mon i tor

Operator
Interact i on

Hand1 er

Operator

Message

Operator Console

Figure 5. 8: Management Task and Event Queue Interconnection

pool EQs are not shown. Incoming messages from other network nodes,

management ports and channel controllers are decoded by the PBMI

input handler and sent to the appropriate EQ. The PBMI output handler

performs a similar operation in the other direction. It has two EQs for

outgoing messages. The lower priority EQ is used for normal

transmission, while the other is used for expedited transmission of

urgent messages such as those concerned with rerouting and channel

recovery operations. Dialogue with the user via a terminal or dedicated

197

front panel is handled by the operator interaction handler. Messages to

the operator are formatted by the device-dependent display interface

handier, while the device-dependent portion of the Input processing is

performed by a procedure contained within the operator interaction

handler. Communication with user computers is managed by the

management port handler, which also handles ports in the standby state

(Section 2.5.1). The MCP protocol for communication with other node

managers is implemented by the network transaction handler, which

provides the connection based management Transport Service

(Section 2.6). These three handlers communicate with the management

tasks using a common message format and protocol.

Information concerning the type and state of a Virtual Connection

is stored in the VCT (Section 2.5.1). It is indexed by the local port

address and also contains the destination address and the position of

the port in the poll lists. The VCT is updated by the VCT manager. The

operation of opening or closing a remote Virtual Connection requires the

cooperation of the VCT manager in the remote Station. This is obtained

using the services of the network transaction handler. Actual changes to

the poll lists and tables within the MA are made by the MA supervisor,

which also implements routing changes by moving ports between

channels in the port poll lists. Requests for changes in route (i.e.

choice of output channel) are made by the routing manager which, by

means of S-NTAN messages, determines the shortest path to every

other node in the network, and also enables other nodes to find the

shortest route to the Station. For every node in the network, the routing

manager maintains an entry in the routing table. This contains state

variables, required by the distributed algorithm used by the routing

protocol (Chapter 4) . and the channel and link identity to be used for

the first hop. This latter information Is used by the MA supervisor when

opening new Virtual Connections and by the network transaction handler

when transmitting network packets.

During Station initialization, the existence and type of each channel

controller present in the Station is established. For each channel

controller, a channel supervisor task is dynamically created. The

channel supervisors are specific for each type of channel controller.

They supervise channel operations such as synchronization and extract

statistical information on errors and packet flow. The channel manager

has overall responsibility for the operability of all the channels and

198

communication with adjacent nodes. It also practises the "hold-down

reflex" to suppress Intermittent channels, described in Section 2.3.3.

Upon initialization and prior to activating any task, MINTOS checks

the RAM used by the management tasks. The first task activated

performs read/wrlte tests on the poll lists, destination address table and

BPV memory within the MA. Only after this task has completed its

confidence tests of the operation of the message handler, does normal

operation of the Station commence. Exception conditions occurring in

the hardware message handler are handled by the parity and timeout

error handlers. Exception conditions occurring at the port-user interface

are handled by a separate task, the port exception handler. After

attempting to clear the fault condition and get packets flowing again, the

exception handlers and channel supervisors send a report to the display

interface handler and update the system log table. The latter enables

operating statistics to be accumulated and extracted by the operator.

Background monitoring of the Station's memory is performed by the

system monitor which continually validates the checksum of the VCT and

routing table, and compares the content of the MA lists with that

contained in the VCT.

5.4 STATION IMPLEMENTATION

This Station design was constructed using catalogue parts. Most

logic was implemented using low-power Schottky TTL components, while

the time critical portions used standard Schottky TTL. The Station core

occupies six 220mm x 233mm Eurocard two-layer printed-circuit boards

which are shown in Figure 5.9. The top three boards together contain

the MA. MTC. port bus controllers and the packet bus parity checkers.

The lower left board is the PBMI. the lower centre board the CBC. while

the lower right board contains the management computer. The size

could be reduced considerably by incorporating custom integrated

circuits into the message handler.

In addition to the DIM and speech ports, a half-duplex channel

controller was designed and constructed (Figure 5.10). The physical

layer is implemented on the upper left half circuit board using a MS43

ternary transmission code [FRAN68] operating at 20M Baud. The data

link controller occupies the rest of the boards. This achieves

throughputs of 140k packets per second over a separation distance of

199

Figure 5.9: The Station Core Circuit Boards

Figure 5.10: Half-Duplex Channel Controller

100m. The design allows other Physical Layer implementations to be

attached to the same data link controller. A complete Station, equipped

with 5 DIM ports and one channel controller is shown in Figure 5.11,

The two coaxial cables are the physical medium of the channel, while

200

Figure 5.11: Rear View of a MININET Station

the flat cable connects the operator's console to the Station manager.

With locally connected ports, user throughputs have been measured

corresponding to over 700k packets per second in the message handler.

The management processor is an Intel 8086 microprocessor. Its

system bus conforms electrically to the Multibus IEEE-796 standard

[IEEE83J. However, in common with the rest of the Station mechanics,

the more robust Eurocard mechanical standard was used for this bus.

The operating system kernel was implemented in assembler, while the

tasks are. for the most part, written in Pascal.

Testing of the complete Station. or one or more of its

sub-systems, during development was greatly facilitated by a system

201

monitor and exerciser (Figure 5.12) based upon an Apple

Figure 5. 12: Station Development Monitor and Exerciser

microcomputer. Each of the five buses along the Station backplane is

wired to a general-purpose 64-point test board, which monitors the logic

level on each bus line and, in addition, optionally drives the line to a

high or low level. These cards, which can be seen at the top of the

rack in Figure 5. 12, are interfaced to the microcomputer via an IEC-625

bus. A graphical display and tablet. also interfaced to the

microcomputer, provide the designer with a continual monitor of the

activity on each bus of the Station and a "soft keyboard" input. The latter

enables the designer to emulate the controller or a slave on each bus

during sub-system development, or merely to observe the activity along

each bus during system integration. With the controlling program written

in a mixture of assembler and interpreted Pascal, the microcomputer

samples and displays the state of all buses at a rate of approximately 5

updates per second. The system clock of the message handler is

controlled by the microcomputer, so that the Station can be "walked" at

202

a rate slow enough for the human observer to follow the action. Timing

problems, occurring when the message handler was operating at its full

speed of 10MHz. were investigated using further monitoring circuits,

which enabled a multi-channel logic analyser to be connected to any bus

at the press of a single "soft button". Testing was further facilitated by

the built-in ability to monitor the internal state of the MA. PBMI and CBC

controllers via the management bus.

203

Chapter 6

CONCLUSIONS

6. 1 PROJECT STATUS

The development of MININET originated as an in-house project to

solve actual laboratory communication problems. From this small

beginning, it grew to become a research project in its own right. The

problems encountered and solved during the development of the network

encompassed a wide variety of topics, ranging from clock recovery at

20M Baud to operating system design, from interface noise rejection to

sequential routing algorithms, from high-speed controller design to the

hierarchical modelling implications of multi-node channels, and so on.

Despite all the successful and innovatory design work undertaken, the

project is currently moribund.

It is instructive to examine the reasons for this situation. Certainly,

the intermittent nature and level of funding was not commensurate with

the size of the project. In particular, the funding hiatuses made it almost

impossible to keep a project team intact. However, this was not the

whole reason for its failure. Originally, the network was envisaged as a

low-cost solution to the needs of remote instrumentation. In particular,

the Station was expected to be relatively simple and, therefore, an

inexpensive unit in comparison with the Exchange. Since it was expected

that there would be two to three times as many Stations as Exchanges in

a network, this would have kept the total cost of a network installation

within reasonable bounds. Of course, the magnitude of many of the

design problems, such as routing, congestion control and maintaining

fairness had not been forseen. As evidenced in Chapter 5, the

ramifications of the fairness criterion, together with the required packet

processing speed, made the Station design much more complicated than

the structure envisaged at the outset of the project [MORL75J. Almost

certainly, it would have been better to have concentrated the design

effort on the Exchange, with its store-and-forward network relay

function, instead of on the Station. The level of complexity in the

Exchange design would not have been that much greater than in the final

204

Station design. Furthermore, the amount and complexity of the

managerial software development task had been underestimated.

In summary, the network design became too complex, and

consequently too expensive, for its application areas.

This situation could, possibly, have been avoided by lowering the

quality of the MININET Service. The transparency requirement could have

been relaxed and some network awareness been expected from the

network users. Then a larger packet could have been used to achieve

the same information throughput with a lower packet rate. This, in turn,

would have reduced the processing requirements of the nodes allowing

simpler packet processing hardware. However, the ultra-transparent

service requirement has always been fundamental to the design of the

network and makes its Network Service distinctive in comparison with

other networks. Another approach would have been to reduce the speed

requirement allowing the use of less specialized hardware, although this

would have narrowed the network's area of application. This would have

excluded, for example, audio signal processing. Another requirement

that could have been relaxed was the fairness criterion. It appears

innocuous enough, a requirement that no just-minded network designer

could refuse. However, the complexity of the Station design, as already

discussed, is evidence of its cost. Had it been ignored, a much simpler

Station could have been designed. It is doubtful if the user would have

noticed much difference under normal network load conditions -

especially if most of the traffic was operating in handshake mode.

However, if the network was heavily loaded with a lot of burst mode

traffic, the level of unfairness could have been very noticeable.

Another approach to reducing the cost of the network would have

been to simplify the network's internal structure, while retaining all the

essential elements of the MININET Service. If all the links had had the

same capacity, then the routing protocol could have been somewhat

simplified, the flow control could have been made more efficient and the

Station's polling structure greatly simplified (Section 5.2.1). An even

more extreme simplification would have been not to allow an arbitrary

network topology. If the network was restricted to being a single bus or

ring, then none of the Network Layer store-and-forward functions would

have been required. In particular, there would have been no need for a

routing protocol, congestion control or Exchanges and the Station design

would have been very straightforward. The access method used by the

205

Cambridge Ring [HOPP77], with its small fixed-length PDUs,

anti-hogging mechanism and short access time, is especially suited to

real-time Instrumentation applications (Section 1.3.1). A MININET type

service could very easily be built on top of a Cambridge Ring protocol

allowing fully transparent communication between user devices without

any knowledge of the network protocols.

The advances, both in semiconductor technology and in design

methodology [MORL85A] have made It. not only possible, but almost the

norm to integrate large parts of digital systems into custom integrated

circuits. This has made feasible the routine use of algorithms, which

hitherto were considered economically impractical. Examples range from

the use of error correction coding In domestic compact disc players to

the sophisticated embellishments of the IEEE 802.5 token passing ring

standard [IEEE85]. Had the design of the MININET nodes been targetted

towards a custom silicon implementation, a smaller and more reliable

product would have been the result. Much of the high-speed

special-purpose circuitry would have mapped very efficiently onto a

custom-chip implementation. However, the very wide interconnecting

buses would have caused problems as far as pin-out is concerned, and

narrower multiplexed buses would have been preferable even though they

may well have reduced somewhat the packet processing throughput.

In conclusion, it seems that the most economical means of

providing the MININET Service would be to adopt a fixed ring topology

using a Cambridge Ring type access method and implement the design

using custom silicon techniques.

6.2 FURTHER RESEARCH TOPICS

Notwithstanding the previous discussion concerning the economic

viability of the full-blown MININET conception, the development of the

network revealed several areas of interest which would profit from further

research. One is that of congestion control. This seems to be

something of a "Cinderella" subject in comparison with routing and other

network protocols, with only a few networks having an effective deadlock

avoidance scheme. The solution proposed for MININET. using active

backpressure flow vectors (Section 2.4.1). has problems of efficiency if

the channels, connected to a node, have very different throughputs.

The rate of generation of BPVs. which could be triggered by traffic

206

arriving and departing through the high-speed channels, would tend to

saturate the low-speed channels. An approach based upon the uses of

different maximum BPV rates for channels of different capacity could

solve the problem, but it is not clear how this could be implemented

efficiently. A second problem arises if the buffer partitioning scheme

used by MININET is applied to another larger network, where the large

number of nodes makes the partitioning scheme, based on the

destination node address, impractical. A more general buffer class

scheme could be used [MERL80] but, unlike many of the existing buffer

class based algorithms, some sort of fairness should be maintained.

In any case, it would be useful to investigate the performance of

active flow vectors (in comparison with the passive flow vectors used by

TYMNET [RIND79]) together with the various buffer handling algorithms

proposed in Section 2.4.1. The efficiency of the algorithm, in terms of

buffer utilization, packet delay and packet throughput could be examined

as a function of the length of the reservoir, hysteresis and overflow

zones.

Another very interesting area of future research is that of

high-speed packet switch design. The basic algorithm, for the output

switch of the Exchange, consists of a two-dimensional poll. The primary

poll loop checks the readiness of each output channel, while the

secondary loops check the availability of packets in each destination

queue attached to that channel (Figure 2.18). The latter must be

qualified by the BPV received from the appropriate channel. The starting

point of each secondary poll must be rotated, following the dispatch of

a packet along the channel. In a fashion analogous to that of the port

poll loops within the Station (Section 5.2.1).

The packet processing rate of the Exchange would be limited

primarily by the speed of this poll, if it is implemented directly.

Alternatively, the secondary poll loop could be replaced by a vector

approach. Let D be the set of all destination queues that are

non-empty, R. be the set of all destinations reached via channel i. as

determined by the routing algorithm, and V. be the latest received flow

vector from channel i. Then the set of queues attached to output

channel i with packets ready and able to be transmitted, T, is given

by

T = D n a n v. (6: 1)
i i i

207

If T. is considered to be ordered in a circular fashion, then it can be

considered as a circular list of available queues. Searching this list,

from some given starting point, until a non-zero entry is found, is

equivalent to performing the secondary poll loop function described

above, provided that the starting point is set to the element following the

last queue to have a packet transmitted.

Since each set can be physically represented by means of a 64-bit

binary array, the operation corresponding to (6: 1) can be implemented

very simply by an array of 3-input AND gates to form the T array.

The second operation, that of rotating the array to the correct starting

point, can be performed by means of a combinational circular shifter.

The final operation, that of selecting the first queue with a packet

available for transmission, can be implemented by means of a priority

encoder. To the address output from the priority encoder, the starting

address must be added, in order to identify the queue selected for next

output. These processes are illustrated in Figure 6.1. Note that all the

operations involve only combinational logic. Therefore, the complete

queue poll loop could be performed in one cycle for each channel,

independently of the number of queues attached to that channel. With a

maximum of 64 nodes, a direct implementation of this algorithm is

certainly feasible within a custom chip design. The rotator array would

be implemented in 6 stages, each consisting of a 64-pole 2-way data

selector. There is, however, a fairly horrendous connection mapping

between each stage, which would increase the interconnection area on

the chip, and increase the propagation delay through the rotator. The

priority encoder would almost certainly be implemented as a two stage

tree taking 8 bits at a time, or even a 3 stage tree taking 4 bits at a

time. The total propagation delay of this combinational logic block would

be quite considerable. Even so, with the speed of modern integrated

circuit technologies, it is unlikely to exceed the delay in eliciting the

channel controller's readiness for transmission. In any case, pipelining

could be used within the block in order to Improve its throughput.

Another implementation, which could be used to reduce the amount

and complexity of the combinational logic, is to multiplex the vectors to

the priority encoder, say. 16 bits at a time. The rotation of the array is

then performed, initially to the nearest 16 bits, by means of the order in

which the segments are fetched from memory and finally by a 32—bit

input, 16—bit output barrel shifter. Because the shifter has to be initially

208

Figure 6.1: Vector Implementation of Exchange Output Poll

<n
0) tn
□ 0)
0) L
□ 73
o ■U

<

209

loaded. It would take up to 5 cycles to perform a complete poll for one

channel. This general technique could be applied to the design of

high-speed packet switching nodes for other networks, or Indeed

anywhere where high-speed arbitration is required.

6.3 PROJECT ACHIEVEMENTS

From this project, there have been a number of concepts, lessons

and techniques which are of general Interest and applicability. It has

been the intention of this thesis to record some, at least, of these

items. The more Important are summarised below:

(1) The Importance of a structured approach to communication

system design cannot be over-emphasised (Section 2.1). This

entails the use of a proper hierarchical model of the system, with

Its various functions partitioned into layers and service

specifications defining how the layers interact. These ideas have

become generally accepted In recent years due to the wide

acceptance of the ISO OSI Reference Model [ISO 84]. However,

while the basic concepts enshrined In the OSI model are

Indisputable, there are many details, mainly concerning the

specific layers and type of service, which may not suit a specific

network. Therefore. It behoves the designer of a closed

communication system, like MININET. to adopt the OSI layered

philosophy, while remaining free to define sublayers and their

services appropriate to the specific application. In particular, it is

vitally important that the major service boundaries in the model

coincide with the major boundaries within the implementation,

whether they be actual physical divisions between different pieces of

hardware, or partitions between different software processes.

(2) The service provided by the communication system needs to

be carefully specified before the design of the system can start.

This modern communication system design approach shares, with

other top-down design methodologies, the very real danger of

specifying a service which turns out to be extraordinarily expensive

to implement. Therefore. It is necessary to scrutinize carefully a

service specification to ensure, not just Its desirability, but most

Importantly, its feasibility.

(3) Transparency, taken to the point of Invisibility, is probably the

210

(4)

(5)

(6)

most notable aspect of the MININET Service. It embodies the

assumption that user devices are primarily concerned with

communicating with each other on a point-to-point basis and.

therefore, they do not wish to be bothered with details of the

network connection. Of course. In situations, such as office

automation applications, where the users wish to communicate with

a large number of other users in the network. It is entirely proper

that they are more aware and concerned with the presence of the

network. However, in an Instrumentation environment, this is

usually not the case and the MININET concept of network

transparency could well be applied to other networks designed for

that type of application.

The network layer problems, raised by the inclusion of

multi-node channels within MININET. are very similar to those

encountered in internetworking [SIND83]. The solutions adopted by

MININET are of direct relevance to the design of a global network.

Note, that the functionality of the additional 3M sublayer introduced

to the MININET model (Section 2.3.1) Is more than a mere

subnetwork service equalization layer. Wherever possible, global

network protocol functions are devolved to the sublayer In order to

ease the processing burden of the main global network layer

entities.

A suitable choice of packet size in the design of a network is

Influenced by two major considerations. Firstly, there are the

consequences of the service requirements of the network. The

ramifications, on the quality of service, of segmenting or blocking

must be taken into account. In the case of MININET. these

requirements (Section 1.2.2) forced a very small packet size on

the network design. The second consideration is that of channel

and buffer memory utilization efficiency. Section 2.2.2 discusses

techniques for estimating the suitability of a particular packet size

given an estimate of the distribution of user message sizes. Note,

that the choice of a variable packet size generally improves

efficiency, as far as channel utilization Is concerned, but has little

effect on buffer efficiency since most allocation implementations

reserve buffer space up to the maximum packet length.

Data-llnk protocols are increasingly Implemented in dedicated

hardware processors. Indeed this is mandatory, where very high

211

(7)

(8)

(9)

(10)

frame processing rates are required. It is desirable, therefore, to

adopt a simple data link protocol. MLP. described in

Section 2.3.2. is ideal for such applications, provided that the

frames are of fixed length. Despite the simplicity of its

implementation, it is. nevertheless, very robust, thanks to its

property of treating corrupted frames in an identical manner to

error messages. Furthermore. Its single sequence number field

makes it efficient as far as header overhead is concerned.

The anti-congestion flow-control algorithm. described in

Section 2.4.1. guarantees fairness and freedom from

store-and-forward deadlock, without resorting to dropping packets.

The destination node based buffer partitions restrict the use of this

algorithm, in its present form, to smaller networks. However, it

could be easily extended if hierachical addressing and routing is

used.

The management transport protocol. MOP. described in

Section 2.6. goes to great lengths to maintain reliability, even if

the quality of the Packet Delivery Service is poor due to some

malfunction of the network hardware. In particular, the problem of

unacknowledged packets, during the closure of a conversation, has

been overcome.

DIM is a relatively straightforward interface (Chapter 3) which,

nevertheless, has a very useful capacity. It is. therefore, very

suitable for interfacing data conversion equipment to a computer or

linking computers together, even over extended distances of 10m or

more, where data rates In order of mega-bits per second are

required.

At the beginning of the project, it was not at all clear whether

it would be possible to devise a routing protocol which maintains

intrinsic packet sequency. The routing algorithm described in

Chapter 4 achieves this aim. with packets being dropped only in

exceptional circumstances. This distributed algorithm constructs a

set of guaranteed loop-free trees, based on each destination in the

network. A quad-phasic update cycle Is required to flush old packet

pathways, so maintaining packet sequency. This is obtained using

only small messages exchanged between adjacent nodes. Many of

the connection-orientated wide area networks, such as TYMNET

212

[RIND76], TRANSPAC [DANE76] and SNA [AHUJ79], use an

approach where routes are fixed at connection establishment time

and all connections, passing through a link or node which fails,

are automatically closed. These networks could well be improved by

the use of the routing algorithm developed here.

(11) It has been shown that fairness In network protocol design is

much more difficult to achieve than at first appears. Indeed, there

are a number of ways in which fairness can be defined leading to

the concept of different degrees of fairness. The fairness criterion

was restricted to be essentially an anti-hogging requirement.

Destination-led. two-dimensional polling structures (Section 5.2.1)

were used to achieve fairness in the Station design. In Section 6.2

a high-speed implementation of a similar algorithm, for the

Exchanges, was proposed.

(12) In order to achieve the required performance of the Station

message handler. It was necessary to develop agile

microprogrammed controllers. The PROM based design technique

which evolved (Section 5.2.5) can be used In a wide variety of

applications.

(13) The management processes needed a method of Inter-task

communication, where a task could wait for a number of events

simultaneously. The resulting operating system (Section 5.3.1)

provides this by means of a multi-wait primitive, where each task

can wait on a number of FIFO event queues which are ranked in

priority order by the task. This relatively simple concept provided

an operating system which has remarkable versatility in real time

applications.

Overall, the project has made contributions to many different

branches of communication engineering and system design.

213

REFERENCES

[ABRA70] Abramson, N. . "The ALOHA system", AFIPS Conf. Proc. ,

vol. 37. pp. 281-285, 1970.

[ACAM83] Acampora, A.S., M.G. Hluchyj and C. D. Tsao. "A

centralized-bus architecture for local area networks". Proc. Int.

Commun, Conf. (ICC). Boston, Mass. (IEEE). June 1983.

IAHUJ79] Ahuja, V. , "Routing and flow control In Systems Network

Architecture". IBM System J. , vol. 18, no. 2, pp. 298-314,
1979.

[AJMO83] Ajmone Marsan, M. and M. Gerla, "Tokenet - a token based

local area network". Proc. Mediterranean Electrotechnical Conf.
(MELECON '83), vol. 1. paper Al. 01, Athens, Greece, May
1983.

[AROZ80] Arozullah, S.C. Crist and J.F, Burnell, "AM. .

microprocessor based

IEEE Trans.
high-speed space-borne packet switch",

on Commun. , vol. COM-28, no. 1, pp. 7-21,
January 1980.

(BSI 79] British Standards Institution. A Digital Input/Output Interface for
Data Collection Systems, BS4421. London. England. 1969.

[BOEH64] Boehm, S. P. and P. Baran, "On distributed communications

- II: digital simulation of hot-potato routing in a broadband

distributed communications network", RAND Corp. Rep. RM

3101-PR. August 1964.

[BOEH69J Boehm. B.W. and R. L. Mobley, "Adaptive routing techniques

for distributed communication systems", IEEE Trans, on Commun.

Technol. , vol. COM-17, pp. 340-349, June 1969.

[BRAN72] Brandt, G.J. and G.J. Chretien, "Methods to control and

operate a message-switching network". Proc. Symp, on Computer

Communs. , Networks and Teletraffic, Polytechnic Institute of

Brooklyn, p. 263, April 1972.

214

[CAIN74] Cain. G.D., R.C.S. Morling and P.M. Stevens. "Comparisons

of fixed and variable packet size for data communication", PCL

Technical Memorandum MN-2, Polytechnic of Central London.

November 1974.

(CAIN78J Cain G. D. and R.C.S. Morling. "MININET: A local area

network for real-time instrumentation and control". Proc. 3rd Conf,

on Local Computer Networking. Minneapolis. Minnesota. October

1978.

[CHLA80] Chlamtac I. and W. R. Franta. "Message-based priority access

to local networks". Computer Communs. , vol. 3. no. 2.

pp. 77-84. April 1980.

[CHON821 Chong-Wei Tseng and Bor-Mei Chen, "D-net. A new scheme

for high data rate optical local area network". Proc. GLOBECOM

'82. Miami. Florida. November 1982.

[COHE81] Cohen. D. . "On holy wars and a plea for peace". Computer,
vol. 14, no. 10, PP- 48- 54, October 1981.

(DANE76J Danet. A. et al. , "The French Public Packet Switching

Service: the TRANSPAC network". Proc. 3rd Int. Conf. on

Computer Commun. (ICCC). pp. 251-260. Toronto. Canada.

August 1976.

[DAVI73] Davies. D.W. and D. L. A. Barber. Communication Networks for

Computers, Appendix. Wiley. 1973.

(DAVI79J Davies. D.W. et al.. Computer Networks and their Protocols,

Wiley. 1979.

[DIJK59] Dijkstra. E. W. . "A note on two problems in connexion with

graphs". Numerische Mathematik, vol. 1. pp. 269-271.1959.

[ECMA821 European Computer Manufacturers Association. Network Layer

Principles — Final Draft, ECMA/TC24/82/18. Geneva, Switzerland.

January 1982.

[ESON72] ESONE Committee. CAMAC - a Modular Instrumentation System

for Data Handling - Revised Description and Specification,

EURATOM Std. EUR4100e. Commission of the European

Communities. Luxembourg, 1972.

215

[ESON76] ESONE Committee. Serial Highway Interface System (CAMAC),

EURATOM Std. EUR6100e. Commission of the European

Communities. Luxembourg. 1976.

[FALD76] Faldella. E. . G. Neri and T. Salmon. "A two—microprocessor

Implementation of a MININET Station". Proc. 2nd. Symp. on Micro

Architecture (Euromicro'76), pp. 305-310. Venice. Italy. October
1976.

[FALD78] Faldella. E. . G. Neri and T. Salmon-Cinotti, "High-speed

data link control in MININET". Trends and Applications 78:

Distributed Processing. NBS Report. Gaithersburg. Maryland. May
1978.

[FARM69] Farmer. W. D. and E. E. Newhall, "An experimental distributed

switching system to handle bursty computer traffic". Proc. ACM

Symp. on Problems on the Optimization of Data Commun, Systems,

pp. 1-33, Pine Mountain, Georgia, October 1969.

IFLET73] Fletcher, J.G.. "The Octopus computer network". Datamation
pp. 58-63, April 1973.

[FORD62] Ford, L. R. and D. R. Fulkerson, Flows in Networks, Princeton

Univ. Press. 1962.

[FORN76] Forney. G. D. . and J.E. Vander Mey. "The Codex 6000 series

of intelligent network processors". Comp. Comm. Review, vol. 6.

no. 2, pp. 7-11, April 1976.

[FRAN68] Franaszek, P.A. , "Sequence state coding for digital

transmission". Bell System Tech. J., vol. 47, no. 1.

pp. 143-157. January, 1968.

[FRAS74] Fraser, A. G. . "Spider - an experimental data communication

system". Proc. Int. Commun. Conf. (ICC) . (IEEE)

pp. 21F.1-21F.10, 1974.

[FRAS75] Fraser A.G.. "A virtual channel network". Datamation,

pp. 51-56. February 1975.

[FRAS79] Fraser, A.G. , "DATAKIT — A modular network for synchronous

and asynchronous traffic". Proc. Int. Commun, Conf, (ICC),

(IEEE), pp. 20.2.1-20.2.3, June 1979.

216

[FUCH701 Fuchs, E. and P. E. Jackson, “Estimates of distributions of

random variables for certain computer communications traffic

models", Commun. of the ACM, vol. 13, no. 12, pp. 752-757,

December 1970.

IFULT72) Fultz, G.L. , "Adaptive routing techniques for message

switching computer communication networks", Univ, of California.

Los Angeles. Rep. UCLA-ENG-7352, July 1972.

[GERL80] Gerla, M. and L. Kleinrock, "Flow control: a comparitive

survey". IEEE Trans. on Commun. , vol. COM-28. no. 4.

pp. 553-574. April 1980.

IGRAN78] Grange, J. L. and M.l. Irland, "Thirty nine steps to a

computer network". Proc. 4th Int. Conf, on Computer Commun.

(ICCC) . pp. 763-769, Kyoto. Japan, September 1978.

[GRAN79] GrangG, J. L. , "Traffic control in a packet switching network".

IRIA Report SCH 618, May 1979.

[HAFN74] Hafner, E. R. , Z. Nenadal and M. Tschanz, "A digital loop

communication system", IEEE Trans, on Commun. , vol. COM-22,

no. 6, pp. 877-881, June 1974.

[HAIN82] Hainich. R. , "An improved Ethernet for real-time applications".

Proc. Real Time Data *82, 2nd Int. Symp. , pp. 257-265,

Versailles. France, 1982.

[HEAR70] Heart. F.E. et al., "The Interface message processor for the

ARPA computer network", AFIPS Conf. Proc. . vol. 36.

pp. 551-567, June 1970.

[HEGE78] Heger, D. . Communication methods In line sharing systems

and a comparison of their performance", IITB-Mitteilungen,

pp. 41-48, 1978.

[HOPP77] Hopper, A. . "Data ring at Computer Laboratory, University of

Cambridge", Local Area Networking Workshop. NBS Report

No. 500-31, pp. 11-16. Gaithersburg, Maryland. August 1977.

[HOPP79] Hopper, A. . "A maintenance of ring communication systems",

IEEE Trans, on Commun., vol. COM-27, no. 4. pp. 760-761,

April 1979.

217

[IEC 79] International Electrotechnical Organization. An Interface System

for Programmable Measuring Instruments, IEC Standard 625.

Geneva. Switzerland. 1975.

[IEC 81] International Electrotechnical Organization. Process Data

Highway for Distributed Process Control Systems, Part 1: General

Description and Functional Requirements, February 1981.

[IEEE831 Institute of Electrical and Electronics Engineers. IEEE Standard:

Microcomputer System Bus, IEEE Std. 796. 1983.

[IEEE84] Institute of Electrical and Electronics Engineers. IEEE Standards

for Local Area Networks: Carrier Sense Multiple Access with

Collision Detection (CSMA/CD) Access Method and Physical Layer

Specifications, IEEE Std. 802.3. 1984.

[IEEE85] Institute of Electrical and Electronics Engineers. IEEE Standards

for Local Area Networks: Token-Passing Ring Access Method and

Physical Layer Specifications, IEEE Std. 802. 5. 1985.

[IEEE85A] Institute of Electrical and Electronics Engineers, IEEE

Standards for Local Area Networks: Token-Passing Bus Access

Method and Physical Layer Specifications, IEEE Std. 802.4. 1985.

(ISO 79] International Standards Organization. High Level Data Link

Control Procedures - Elements of Procedures, ISO 4335. Geneva.

Switzerland. 1979.

[ISO 84] International Standards Organization. Information Processing

Systems - Open Systems Interconnection - Basic Reference Model,

ISO 7498. Geneva. Switzerland. 1984.

[ISO 87] International Standards Organization. Basic Reference Model for

Open Systems Interconnection: Connectionless-Mode Transmission,

ISO 7498/Add 1. Geneva. Switzerland. 1987.

[KAHN72] Kahn. R. E. and W. R. Crowther. “Flow control in a

resource-shared computer network", IEEE Trans, on Commun. ,

vol. COM-20. no. 3. pp. 539-546. June 1972.

[KAWA83] Kawashlma. M. . R. Yatsuboshi and Y. Mochida. "High

capacity LAN by LSI and fiber optics". 2nd Int. Workshop on VLSI in

Communs. . (Unpublished). Saratoga Springs. New York. June

1983.

218

[KLEI74] Kleinrock, L. and W. E. Naylor. "On measured behavior of the

ARPA Network". Network Information Center. Network Measurement

Note no. 18, July 1974.

[KROP72] Kropfl. W.J.. "An experimental data block switching system".

Bell System Tech. J., vol. 51. no. 6. pp. 1147-1165. July 1972.

[LAUE75] Lauesen. S. . "A large semaphore based operating system".

Common. ACM, vol. 18. no. 7. pp. 377-389. July 1975.

[LIMB82] Limb. J.O. and C. Flores. "Description of Fasnet - a

unidirectional local area communication network". Bell System

Tech. J., vol. 61. no. 7, pp. 1413-1440. September 1982.

[MCDE78]. McDermid. J. A.. "COMFLEX - a high speed packet switch

for inter-computer communication". Proc. European Computing

Congress (Eurocomp78) . pp. 187-204. London. U.K.. May 1978.

[MCQU77] McQuillan. J. M. and D. C. Walden. "The ARPA Network

design decisions". Computer Networks, vol. 1. pp. 243-289.

1977.

[MCQU77A] McQuillan. J. M. . "Routing algorithms for computer networks

- a survey". Nat. Telecomm. Conf. . session 28. paper 1.

pp. 28:1.1-28:1.6, December 1977.

[MCQU78J McQuillan. J. M. . G. Falk and I. Richer. "A review of the

development and performance of the ARPANET routing algorithm".

IEEE Trans, on Commun. , vol. COM-26, no. 12. pp. 1802-1811.

December 1978.

[MCQU79] McQuillan. J.M.. "Interactions between routing and

congestion control in computer networks". Int. Symp. on Flow

Control In Computer Networks, session 2. paper 3. Paris. France.

February 1979.

[MCQU80] McQuillan. J. M. . I. Richer and E.C. Rosen. "The new

routing algorithm for the ARPANET". IEEE Trans, on Commun. ,

vol. COM-28, no. 5. pp . 711-719. May 1980.

[MERL781 Merlin. P. M. and A. Segall. "A failsafe distributed routing

protocol". EE Pub. No. 313. Dept. Elec. Eng. ,, Technlon, Haifa.

May 1978.

219

[MERL79] Merlin, P.M. and A. Segall. "A failsafe distributed routing

protocol". IEEE Trans, on Commun. , vol. COM-27, no. 9.

pp. 1280-1287, September 1979.

[MERL80] Merlin, P.M. and P.J. Schweitzer, "Deadlock avoidance in

store-and-forward networks - I: store-and-forward deadlock". IEEE

Trans, on Commun. , vol. COM-28, no. 3, pp. 345-354. March

1980.

[METC76] Metcalfe. R. M. and D. R. Boggs, "ETHERNET: distributed

packet switching for local computer networks", Commun. of the

ACM, vol. 19, no. 7. pp. 395-404. July 1976.

[MORL74] Morling. R.C.S.. "MININET: a real-time packet switching

network", presented at Minicomputers In Data Communs. . (PCL)

Firenze. Italy. May 1974.

[MORL751 Morling. R.C.S. and G. D. Cain. "MININET: a

packet-switching minicomputer network for real-time

instrumentation". Proc. A.I.M. Int. Meeting on Minicomputers and

Data Communs. , Liege. Belgium. January 1975.

[MORL781 Morling. R.C.S. et al.. "The MININET internode control

protocol". Proc. Symp. on Computer Network Protocols.

pp. B4.1-B4.6, Liege, Belgium, February 1978.

[MORL83] Morling. R.C.S.. "DIM: a network compatible intermediate

interface standard". Interfaces in Computing, vol. 1, no. 2.

pp. 117-144, 1983.

[MORL85] Morling. R.C.S.. "System controller design". Electronic

Product Design, Vol. 6, Part 1: no. 7. pp. 55-58. July 1985;

Part 2: no. 8. pp. 45-48, August 1985; Part 3: no. 9.

pp. 81-83. September 1985.

[MORL85AJ Morling, R.C.S. and A. J. Carter, "Hierarchical system

design and the engineering workstation revolution", presented at

the Int. Computer Graphics User Conf. , London, U.K., February

1985.

[MUEL77] Mueller, D.J.. "Microcomputers decentralize processing In

data communication networks". Computer Design, pp. 81-88.

October 1977.

220

[NERI77] Neri. G. , R.C.S. Morling and G.D. Cain. "A reliable control

protocol for high-speed packet transmission", IEEE Trans, on

Commun. , vol. COM-25, no. 10, pp. 1203-1210. October 1977.

[NERI84] Neri. G. et al. . "MININET: a local area network for real-time

instrumentation applications". Computer Networks, vol. 8. no. 2.

pp. 107-132. April 1984.

[NESS791 Nessett. D. . "A survey of congestion control Issues in

store-and-forward networks". Lawrence Livermore Lab. preprint

UCRL-83551. November 1979.

[NIEM84J Niemegeers. I.G. and C.A. Vissers. "Twentenet. a LAN with

message priorities. design and performance considerations",

presented at the ACM SIGCOMM. Montreal. Canada. June 1984.

published in

pp. 178-185.

Computer Commun. Rev. , vol. 14. no. 2.

[ORNS75J Ornstein. S.M. et al. . "PLURIBUS a reliable

multiprocessor". AFIPS Conf. Proc. . vol. 44. pp. 551-559. May

1975.

[PENN78] Penney. B. K. and A. A. Baghdadi. "Survey of computer

communication loop networks’. Research Report 78/42. Dept, of

Computing and Control. Imperial College. London. September

1978.

[PETE72J Peterson. W. W. and E.J. Weldon Jr.. Error-Correcting Codes

(2nd Edition), MIT Press. 1972.

[PIER72] Pierce. J. R. . 'Network for block switching of data". Bell

System Tech. J., no. 6. pp. 1133-1145. July 1972.

[PONC75] Poncet. F. and J. B. Tucker. "The design of the packet

switched network for the EIN project". Proc. European Computing

Congress (EUROCOMP-75) . pp. 301-314. 1975.

[POUZ74J Pouzin. L. . "CIGALE. the packet switching machine of the

CYCLADES computer network". Proc. IFIP Congress (North

Holland), Stockholm. Sweden. August 1974.

[PRIC77J Price. W. L. . "Data network simulation: experiments at the

National Physical Laboratory 1968-1976". Computer Networks,

vol. 1. pp. 199-210. 1977.

221

[PROS62] Prosser, R. T. . “Routing procedures in communication

networks", IRE Trans. Commun. Syst. , vol. CS-10. pp. 322-335,

December 1962.

[RAJA78] Rajaraman, A. , “Routing In TYMNET", Proc. European

Computing Congress (Eurocomp78) , pp. 9-21, London. U.K.,

May 1978.

[RAUB761 Raubold. E. and J. Haenle, "A method of deadlock-free

resource allocation and flow control In packet networks". Proc. 3rd

Int. Conf. on Computer Commun. , pp. 483-487, Toronto,

Canada, August 1976.

[RAWS78] Rawsom E.G. and R.M. Metcalfe, “Fibernet: multimode

optical fibers for local computer networks", IEEE Trans. on

Commun. , vol. COM-26, no. 7, pp. 983-990. July 1978.

[REAM75J Reames, C.C. and M.T. Liu. "A loop network for

simultaneous Transmission of variable-length messages". Proc. 2nd

Annual Symp. on Computer Arch. , pp. 7-12. Houston, Texas,

January 1975.

[RIND76] Rinde, J. , "TYMNET I: an alternative to packet technology".

Proc. 3rd Int. Conf. on Computer Commun. (ICCC),

pp. 268-273. Toronto, Canada, August 1976.

[RIND791 Rinde, J. and A. Caisse, "Passive flow control techniques for

distributed networks". Int. Symp. on Flow Control in Computer

Networks, session 5, paper 1, Paris. France. February 1979.

[RUDI761 Rudin. H. , “On routing and 'delta routing': a taxonomy and

performance comparison of techniques for packet switched

networks". IEEE Trans, on Commun., vol. COM-24, no. 1,

pp. 43-59. January 1976.

[SALW83] Salwen, H.C., "In praise of ring architecture for local area

networks". Computer Design. March 1983.

[SCAN691 Scantlebury, R. , "A model for the local area of a data

communication network - objectives and hardware organization".

Proc. ACM Symp. on Data Communs. , Pine Mountain, Georgia,

1969.

222

[SCHW80] Schwartz, M. and T. E. Stern, "Routing techiques used In

computer communication networks", IEEE Trans, on Commun. ,

vol. COM-28, no. 4, pp. 539-552. April 1980.

[SHAR82] Sharpe, W. P. and A. R. Cash, Eds.. Cambridge Ring 82

Interface Specifications, Science and Engineering Research

Council. RAL Labs. . Dldcot. England. September 1982.

[SIND83] van Sinderen. M. and C.A. Vissers. "An architectural model

for network interconnection". Proc. European Teleinformatics Conf.

(EUTECO) . pp. 475-488. Varese. Italy. October 1983.

[SLOM83] Sloman. M.S.. R.C.S. Morling and D. Heger. "Activities of

the local area network service specification group". Suppl. to Proc.

European Teleinformatics Conf. (EUTECO) . pp. 11-15. Varese.

Italy. October 1983.

[STEW70] Steward. E. H. . "A loop transmission system". Proc. 6th IEEE

Conf, on Commons. . pp. 36/1-36/9. San Francisco. California.

June 1970.

[TARI83J Tarini. F. and P. Zini. "Channel access schemes for

high-speed/long-distance LANs". Proc. European Teleinformatics

Conf. (EUTECO). pp. 415-423. Varese. Italy. October 1983.

[THOR79] Thornton. J. E. , "Overview of HYPERchannel". Proc. Computer

Conf, (COMPCON), pp. 262-265. San Francisco. California.

(IEEE) February 1979.

[TOKO77J Tokoro. M. and K. Tamaru. "Acknowledging Ethernet". IEEE

Computer Commun. Conf. (COMPCOM) . pp. 320-325. Fall 1977.

[TOUE79] Toueg. S. and J. D. Ullman. "Deadlock-free packet switching

n etwo r ks". Proc. ACM Symp. on the Theory of Computing.

pp. 89-98. Atlanta. Georgia. 1979.

[TYME71] Tymes. L. R. . "TYMNET - a terminal oriented communications

network". Spring Joint Computer Conference. AFIPS Conf. Proc,

vol. 38. pp. 211-216. Spring. 1971.

[VISS85] Vissers. C.A. and L. Logrippo. "The importance of the service

concept In the design of data communication protocols". Proc.

IFIP 6. 1 5th Int. Workshop on Protocol Specification. Testing and

Verification, pp. 3-19. Toulouse-Molssae. France. June 1985.

223

[WATS781 Watson. R.W. , "The LLL Octopus network: some lessons and •

future directions". Proc. 3rd USA-Japan Computer Conf. .

pp. 12-21. San Francisco. California. 1978.

(WAWE82J Wawer. W. . K. Emmelmann and V. Tachammer. "Ordered

bus access by low level token passing for the local network

TOPAS". Proc. 2nd European Symp. on Real-Time Data Handling

and Process Control. . pp. 237-239. Versailles. France. November

1982.

[WELL71] Weller. D. R. . "A loop communication system for I/O to a

small multi-user computer". Proc. 5th Annual IEEE Conf, on

Hardware. Software. Firmware and Tradeoffs, pp. 49-50. Boston.

Mass.. September 1971.

[WILK75] Wilkes. M.V. . "Communication using a digital ring". Proc.

PACNET Conf. . pp. 47-55. Sendai. Japan, August 1975.

224

LIST OF RELEVANT PUBLICATIONS

BY THE AUTHOR

The following papers have already been presented or published by

the author and are directly relevant to the subject of this thesis.

"MININET: a real-time packet switching network", presented at

Minicomputers in Data Communs, . (PCL) Firenze, Italy, May
1974.

with G. D. Cain, "MININET: a packet-switching minicomputer network for

real-time Instrumentation", Proc. A.I.M. Int. Meeting on

Minicomputers and Data Communs, . Liege, Belgium, January
1975.

with G. Neri and G.D. Cain. "A reliable control protocol for high-speed

packet transmission", IEEE Trans, on Commun. , vol. COM-25,

no. 10. pp. 1203-1210, October 1977.

with G. Neri, G.D. Cain. E. Faldella, T. Salmon and D.J. Stedham.

"The MININET internode control protocol". Proc. Symp. on

Computer Network Protocols, pp. B4. 1-B4.6, Liege, Belgium,
February 1978.

with G.D. Cain, ’MININET: A local area network for real-time

Instrumentation and control". Proc. 3rd Conf, on Local Computer

Networking, Minneapolis. Minnesota. October 1978.

with G.D. Cain. T. Salmon-Cinotti. E. Faldella. G. Neri and P. M.

Stevens. "The value of transparency in local area data networks".

Proc. 1st European Symp. on Real-Time Data Handling and

Process Control, pp. 691-696. Berlin, Germany. October 1979,

with G.D. Caln. G. Neri and M. Longhi-Gelati, "MININET: an

ultra-transparent local area network for service to high-speed

instrumentation users", presented at Distributed Computing: a

Review for Industry. Manchester. U.K.. March 1983.

225

with G.D. Caln, "A routing protocol that maintains packet sequency".

Proc. Mediterranean Electrotechnical Conf. (MELECON *83) ,

vol. 1. paper A3.03, Athens. Greece, May 1983.

"DIM: a network compatible intermediate interface standard". Interfaces

in Computing, vol. 1. no. 2, pp. 117-144. 1983.

with M.S. Sloman and D. Heger. "Activities of the local area network

service specification group". Suppl. to Proc. European

Teleinformatics Conf. (EUTECO). pp. 11-15, Varese. Italy.

October 1983.

with G. Neri. G.D. Cain, E. Faldella. M. Longhi-Gelati, T.

Salmon-Cinotti and P. Natali. "MININET: a local area network for

real-time instrumentation applications". Computer Networks, vol. 8,

no. 2. pp. 107-132, April 1984.

"System controller design". Electronic Product Design, Vol. 6, Part 1:

no. 7, pp. 55-58. July 1985: Part 2: no. 8. pp. 45-48. August

1985: Part 3: no. 9. pp. 81-83. September 1985.

with A. J. Carter, "Hierarchical system design and the engineering

workstation revolution", presented at the Int. Computer Graphics

User Conf. . London, U.K., February 1985.

226

