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ABSTRACT

MININET Is a local area network designed for instrumentation and 

other real-time applications. It is a true store-and-forward network using 

small fixed-length packets. A very high degree of transparency is 

required, such that the Network Service can be totally invisible to the 

user devices. The design of the network is based around a hierarchical 

architectural model which is similar to. but not identical with, the ISO 

OSI Reference Model. Its small 32—bit packet size was a logical 

consequence of the transparency and real-time service requirements. 

This size was found to be optimum for average user message lengths of 

around 13 bits, as far as the buffer utilization efficiency was concerned. 

A simple, but robust, full-duplex data link protocol, which avoids 

sequence errors and uses only a single sequence number field to 

interlock the packet stream, was developed. Network congestion is 

avoided by means of a flow control algorithm, which uses active 

backpressure vectors and a separate buffer allocation for each 

destination node. to guarantee freedom from store-and-forward 

deadlock. A highly reliable, half-duplex, end-to-end protocol providing 

a Transport Service for the network management entities, has been 

developed. The network compatible DIM intermediate interface has been 

specified, together with DIM-CPC. its basic user protocol providing flow 

control, initialization and error recovery procedures. A routing protocol, 

that maintains packet sequency even in the event of node or link failure, 

has been developed. This distributed algorithm constructs a separate 

tree rooted at each destination node in the network. It uses short 

messages transferred only between adjacent nodes. A quad-phasic 

update cycle is used to guarantee loop freedom at all times and to flush 

old pathways before routing changes are made. Thus, packet sequency 

is maintained without any packets being dropped. A high-speed 

implementation of the network Station has been designed and 

constructed. This uses a two-dimensional polling technique in order to 

maintain fairness, whilst ensuring that no blockages occur within the 

node. A design technique has been pioneered for the construction of 

PROM-based system controllers which are exceptionally agile.
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Chapter 1

INTRODUCTION

This thesis describes the development of MININET, a local area 

network (LAN). The requirements, design decisions and implementation 

of the network are described. It is the aim of this thesis, not just to give 

an account of this work, but also to highlight the lessons learnt in the 

design process and to describe those concepts, protocols and 

techniques which are of general applicability.

A brief overview of the network, its requirements, its relationship 

with other networks and a short history of the project are given in this 

chapter. In Chapter 2, the various network services and protocols are 

explained in the context of an overall hierarchical model of the network. 

The DIM intermediate interface, used to access the network, and the 

routing management algorithm are defined in Chapters 3 and 4 

respectively. An implementation of the network Station is described in 

Chapter 5. In Chapter 6. the design decisions are critically reviewed and 

the lessons learnt from the project are discussed.

1.1 OVERVIEW AND TERMINOLOGY

MININET was conceived as a LAN intended for high-speed 

instrumentation applications [MORL751. These include laboratory 

automation, process control, high energy physics and other areas 

generating high-speed, real-time data. In addition, the properties of the 

network make computer-computer communication particularly easy to 
implement.

The key objective underlying the development of the network is that 

computers and peripherals should be able to communicate through the 

network just as though they are connected directly together. User 

devices are connected to the network through ports which are physical 

Interfaces into the network. Originally, the network was designed using a 

single port interface standard, DIM, which is described in Chapter 3. 

This is a one-to-one interface designed for high-speed instrumentation 
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and network applications. It Includes 16 bidirectional data lines, with an 

additional qualifier line, the data class flag, which distinguishes between 

data class and control class transfers. The latter class is used for the 

exchange of status and command information. The network service was 

originally defined in terms of this interface and the service boundary was 

therefore physically located at the DIM port socket. Other possible types 

of port interface are an IEEE-488 (IEC 625) instrumentation bus 

interface [IEC 79], which enables the bus to be “stretched" across the 

network, and a speech port, which provides voice communications 

(Section 2.5.2). To cater for these heterogeneous interfaces, the 

network service is defined in terms of communication between ports.

In order to provide this high degree of transparency, the Network 

Service provides a Virtual Connection between ports, which means that a 

data word entering a port at one end of the connection will emerge from 

the port at the other and vice versa. This is done by using a very small

packet of only 32 bits which contains a single 16—bit word of user

information as well as the Data Class Flag. Thus, each word is

despatched immediately it enters the network and presented to the user 

immediately it reaches the other end of the Virtual Connection.

Consequently. MININET has been aptly dubbed a word switching 

network.

The network can accommodate up to 64 nodes interconnected in an 

arbitrary topology by channels as shown in Figure 1.1. These channels 

may be point-to-point half-duplex or full-duplex data links or multi-node 

channels such as rings or buses. Implementations of the point-to-point 

channels have used the MININET link protocol (MLP) in order to provide 

a sequential Data Link Service. MININET is a true network, in the ISO 

Open System Interconnection (OSI) Reference Model sense [ISO 821. 

because communicating nodes do not have to be connected to a 

common data link, but may transfer information via one or more 

intermediate nodes. There are two basic types of node in the network. 

One. the Station, provides user access into the network via the network 

ports. The other. the Exchange, provides. in addition. a 

store-and-forward relay function. Nodes connected to the same channel 

are said to be adjacent.

The state information associated with each Virtual Connection is 

held by the nodes at each end of the connection. Transportation of 

packets, between these end-point nodes, is provided by the Packet

12
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Figure 1.1: An Example MININET

Delivery Service which maintains a path between each and every node. 

Virtual Connections are multiplexed along these paths. Underlying the 

Packet Delivery Service are the flow control and routing management 

protocols. Network congestion is avoided by maintaining, in each 

Exchange, separate buffer allocations for each destination node. Flow 

control in and out of these buffers is effected by means of Back Pressure 

Flow Vectors (BPVs) transmitted to all adjacent nodes. Each element of 

the vector acts as a stop-go binary semaphore pertaining to a single 

destination node. For each node in the network the routing management 

algorithm, described in Chapter 4, constructs a tree rooted at the 

destination node. The algorithm guarantees to remain loop free at all 

times and to minimize the channel weighted distance from each node to 
the root.

In addition to transporting packets sequentially between adjacent 
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nodes, the channels also carry special messages which only travel as 

far as the next node. These are called Node-to-Adjacent-Node (NTAN)

messages. They are used for adjacent node identification and by the

flow control and routing protocols.

Each node contains a manager, which supervises its overall
operation. The managers do not perform packet-by-packet traffic
handling but will intervene if an exception condition occurs Managers

can communicate with each other using the MININET control protocol 

(MCP) and co-operate in the establishment and closure of Virtual 

Connections and in the execution of the routing algorithm.

One of the great benefits of the ISO OSI Reference Model has been 

the use of its terminology for the unequivocal description of 

communication systems. Whenever applicable. ISO terminology will be 

used. In particular, the following definitions, taken from [ISO 84], will 

be assumed.

Peer Entities: Entities within the same layer.

(N) -Service: A capability of the (N)-layer and the layers beneath it, 

which is provided to (N+l)-entities at the boundary between the 

(N)-layer and the (N+l)-layer,

(N)-Service-Access-Point ((N)-SAP): The point at which (N)-services 

are provided by an (N)-entity to an (N+l)-entity.

(N) -Protocol: A set of rules and formats (semantic and syntactic) which 

determine the communication behaviour of (N)-entities in the 

performance of (N)-functions.

(N) -Relay: An (N)-function by means of which an (N)-entity forwards 

data received from one correspondent (N)-entity to another 

correspondent (N)-entity.

(N) -Protocol-Control-Information: Information exchanged between

(N)-entitles to co-ordinate their joint operation.

(N) -User-Data: The data transferred between (N)-entities on behalf of 

the (N+l)-entities for which the (N)-entities are providing 

services.

(N)-Protocol-Data-Unit ((N)-PDU): A unit of data specified in an 

(N)-protocol and consisting of (N)-protocol-control-information 

and possibly (N)-user-data.
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(N) -Interface-Control-Information: Information transferred between an 

(N+l)-entity and an (N)-entity to co-ordinate their joint operation.

(N)-Interface-Data: Information transferred from an (N+l) entity to an 

(N)-entity for transmission to a correspondent (N+l)-entity, or 

conversely, information transferred from an (N)-entity to an 

(N+l)-entity after being received from a correspondent 

(N+l) -entity.

(N)-Interface-Data-Unit ((N)-IDU): The unit of Information transferred 

across the service-access-point between an (N+l)-entity and an 

(N)-entity in a single interaction. Each (N)-IDU contains 

(N)-interface-control-information and may also contain the whole 

or part of an (N)-service-data-unit.

(N)-Service-Data-Unit ((N)-SDU): An amount of (N)-interface data 

whose identity is preserved from one end of an (N)-connection to 

the other. Data may be held within an (N)-connection until a 

complete (N)-SDU Is put into the (N)-connection.

Multiplexing: A function within the (N)-layer by which one

(N-l)-connection is used to support more than one

(N) -connection.

Segmenting: A function performed by an (N)-entity to map one (N)-SDU 

Into multiple (N)-PDUs.

Reassembling: The reverse function to segmenting.

Blocking: A function performed by an (N)-entity to map multiple 

(N)-SDUs into one (N)-PDU.

Concatenation: A function performed by an (N)-entity to map multiple

(N)-PDUs into one (N-D-SDU.

The ISO definition of a connection does not quite correspond to

MININET's Virtual Connection These differences are discussed in

Section 2. 1.3.

This thesis is primarily concerned with the 4 lowest layers of the

Reference Model. These are:

Layer 1 : The Physical Layer provides the transmission

encodlng/decoding, signal conditioning and timing 

generation/recovery functions necessary to convey information bits 

between Layer 2 entities through the physical medium for 
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interconnection (e.g. optical fibre or coaxial cable). The SDU of 

the Physical Layer is usually 1 bit in length.

Layer 2: The Data Link Layer enhances the Physical Layer Service with 

block synchronization, flow control and error detection and recovery 

procedures to enable adjacent Layer 3 entities to exchange PDUs in 

an orderly manner.

Layer 3: The Network Layer provides relaying and routing functions which 

enable Transport Layer entities (located in the end systems) to 

communicate transparently. The choice and use of Data Link 

resources are made invisible to the Transport entities. The Network 

Layer can be sublayered using the principle of recursive extension 

[ECMA82] to enable Subnetworks to be interconnected to form larger 

Global Networks. In this case, the users of the Subnetwork Service 

are not the Transport Layer entities but the Global Network entities.

Layer 4: The Transport Layer provides. where necessary, the

end-to-end protocols such as multiplexing, flow control and error 

recovery to enhance the Network Service to the level required by 

the end user.

1.2 AIMS AND REQUIREMENTS

Instrumentation applications present a different and somewhat more 

onerous set of requirements on the Network Service compared with 

computer-to-computer and office automation environments. The major 

requirements may be summarized as:

• heterogenous device handling capability;

• ultra-high transparency;

• real-time operation;

• reliability;

• reconfigurability.

The reasons for these requirements and their effect on the network 

design choices are discussed in the following sections.

1.2.1 Heterogeneity

There should be no constraint on the type of device connected to 

the network. In particular, it must be able to service not only 

"intelligent" devices such as mini- or microcomputers but also "ignorant" 
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devices such as analog-to-digital converters (ADCs) . digital-to-analog 

converters (DACs) or terminals. In this context, an intelligent device is 

one which can be made aware of the network and can be adapted to 

handle the procedures required to access it. On the other hand, an 

ignorant device cannot be modified to comply with the demands of a 

user-invasive network. It should be noted that the mere presence of a 

microprocessor embedded in an instrument does not necessarily mean 

that it Is intelligent in this sense, unless the microprocessor is, or can 

be, programmed to handle a network access protocol.

Secondly, there should be no dependence on any particular device 

manufacturer. User devices from different manufacturers may be freely 

connected to the network. Furthermore, the network should be able to 

support the simultaneous communication between different pairs of user 

devices, with each pair using its own private protocol without 
interference.

Finally, the network should simultaneously support a population of 

user devices communicating at widely different rates without lockout or 

network hogging. Examples range from low speed terminal and process 

control traffic, operating at information rates below 10k bits/sec. 

through computer-computer communications to high speed laboratory 

instrumentation operating in excess of IM bits/sec. (Note that effective 

user throughputs are being discussed, not intra-network line rates.) 

Broadly speaking, user traffic may be divided into two distinct classes. 

Many devices operate in handshake mode where a device waits after 

transmitting a short message until it has received an acknowledging reply 

from the destination before transmitting the next message. For this 

class, the effective throughput is controlled by the end-to-end transport 

delay of the network. Other devices operate in burst mode where a 

relatively long message is transmitted through the network with no 

end-to-end acknowledgement until the end of the burst. For this class, 

the effective user throughput is dominated by the throughput of the 
network.

1.2.2 Transparency

As far as the user is concerned, there should be no operational 

difference between the connection of two devices directly together, as 

shown In Figure 1.2a. or the connection of two devices through the 
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network, as shown in Figure 1.2b. This degree of transparency applies

(a) Directly Connected Equipment

(b) Equipment Remotely Connected via the Network

Figure 1.2: Direct and Indirect Connection of User Devices

from high level software procedures right down to the hardware plug and 

socket level. Effectively, the network is to emulate a length of cable! To 

provide this service, the network must establish a Virtual Connection 

between two ports so that information transferred into one port emerges 

from the other end and vice versa. Thus, the Virtual Connection acts as 

a pair of pipes conveying information sequentially in either direction 

(Figure 1.3). The exact nature of this Virtual Connection and its relation 

to connections as defined in the ISO OSI Reference Model are discussed 

in Section 2.5.1 and Section 2.1.3.

Since the user protocol is unknown to the network in the same way 

as it would be unknown to a cable, the network has no way of delimiting 

user messages other than to the IDU. In addition, the delay associated 

with blocking these data units into a larger packet is undesirable in a 

real-time network. For these reasons, the network should despatch data 

towards the destination as soon as it is passed across the port 

interface. This implies that the Network-PDU should only contain one

18



VIRTUAL CON N EC T IO N

Figure 1.3: The Virtual Connection

Network-SDU and that the Network-SDU is equal to the largest 

Network-IDU likely to be used.

The maximum size of the IDU should be such that the "basic unit" 

of data handled by the majority of instrumentation devices should be 

transferred in a single operation. For example, the "basic unit" of data 

for a terminal is one character, for an ADC it is one sample and so on. 

This requirement implies that the size should be greater than 8 bits as 

ADCs and DACs frequently have a sample size of 10. 12 or even 16

bits. A natural and convenient choice is therefore 16 bits, as it is large 

enough to accept the output of most data acquisition equipment, while a 

larger data unit (say 24 or 32 bits) would tend to be mostly unused and 

so not cost effective. The relationship between message size, packet 

size and efficiency is discussed in Section 2.2.2.

User devices usually need to exchange control information such as 

peripheral status or computer commands in addition to the transfer of 

"data" information. The network should be able to transfer this control 

information without making any code restrictions on the data transfers 

which would result in an effective loss of transparency. The simplest 

means of providing this is to add a flag bit to the Network-SDU. This bit 
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can be used to distinguish between data class and control class 

transfers. Thus, the overall size of the network-SDU should effectively 

be 17 bits.

The network users operate with PDUs that are, in general, bigger 

than the Network-SDU and are unknown to the network. However, these 

arbitrary data-units must be transported through the network unchanged 

just as though they matched the Network-SDU. This is possible thanks to 

a key property of the pipe, namely the delivery of Information across the 

destination network interface in the same order as supplied across the 

source network interface. Of course, control class transfers could be 

used to delimit User-PDUs. There are two fundamental approaches to 

maintaining sequency in the network - end-to-end enhancement or 

intrinsic sequentiality. In wide area store-and-forward networks (e.g. 

ARPANET [MCQU77J, CYCLADES IPOUZ74J) , the internal packet handling 

protocols do not necessarily deliver the packets in the correct sequence 

to the destination node. Instead, the node must resequence arriving 

packets prior to delivering the packets to the user. This message 

reassembly time is undesirable in a real-time environment. Furthermore, 

a sequence number must be carried In every packet header. Since the 

Network-PDU is small, this results in an unacceptably large packet 

overhead. The other approach maintains packet sequency throughout the 

network so that reordering is unnecessary. This has an impact on two 

areas of protocol design. Obviously, one is the routing protocol, where 

dynamic path changes could lead to sequence errors. Somewhat less 

obviously, it also affects the data link protocol, as retransmission of a 

previously corrupted packet could also lead to a sequence error. A 

routing algorithm specifically developed to maintain intrinsic packet 

sequency Is described in Chapter 4 and a link protocol which avoids 

sequence errors during transmission is described In Section 2.3.2.

1.2.3 Real-Time Operation

Computers (and human terminal users, for that matter) are 

relatively easily satisfied, as far as the response time and throughput of 

the network are concerned, compared with the real-time environment of 

instrumentation systems where the desired response time is measured in 

microseconds rather than milliseconds. As already discussed, the 

propagation delay across the network Is frequently much more important 

than network throughput. The properties of the pipe mean that it can be 
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modelled as a flnite-length, first-in, first-out (FIFO) queue combined 

with a time delay. The actual value of the time delay and the queue 

throughput are quantities which vary with the network traffic and 

connectivity. For real-time applications, it is necessary to place bounds 

on these variations. There are a number of ways to specify these limits. 

If the user cannot buffer more than one word at a time (e.g. a single 

ADC sample) . then the worst case maximum propagation delay of the 

Virtual Connection is the critical parameter if the device is operating in 

handshake mode, or the worst case maximum transmission interval if 

operating in burst mode. If the real-time device has a buffering capacity 

of N words, then the constraint is relaxed to a worst case moving 

window N-block average of the propagation delay or throughput 

respectively. Note that buffering within the network ports will average out 

any intra-network fluctuations in throughput and so only the block 

averaged throughput of the network is significant. However, nothing can 

be done inside the network interface to mask any fluctuations in 

propagation delay. Indeed, in order to reduce propagation delay, 

queuing should be avoided wherever possible [MCQU77J.

As discussed in Section 1.2.1. the actual throughput requirements 

of real-time devices vary enormously, but a useful benchmark for the 

fastest likely requirement has been the case of high-fidelity stereo audio 

analog/digital conversion. This generates two 16—bit samples at a 50kHz 

rate which corresponds to a throughput requirement of 100k packets per 

second. This has been adopted as the target throughput figure for the 

network. It is reasonable to expect to maintain such a sustained rate 

only in burst mode. For handshake mode, the effective rate depends 

very much on the number of hops in the path. A delay of 25/zs per hop 

is not unreasonable, which for a single hop would correspond to a user 

throughput of 20k words per second. These figures depend, of course, 

on the channel throughput and assume that a high-speed channel, such 

as a coaxial cable based system, is being used. The presence of a 

modem or low cost optical fibre system in the path would necessarily 

reduce the effective throughput. Nevertheless, the designer of the 

Stations and Exchanges must assume that their channels could each be 

operating up to 100k packets per second.

An Implicit assumption of the discussion, so far, is that the network 

has been only lightly loaded. The converse of this situation is when a 

part, or all, of the network becomes saturated by many devices 
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attempting to communicate at the same time. An important requirement 

of the network, when handling this congestion, is the fairness criterion. 

This demands that, whenever a network resource - such as a channel, 

buffer space or processor time - is in contention, the resource should 

be shared equally amongst those requiring service. In particular, the 

network must not allow burst mode transfers to swamp handshake mode 

traffic.

1.2.4 Reliability

A key method of providing fault tolerance is the provision of 

redundancy. It should be possible to configure the network so that it can 

recover automatically from failure of nodes or links. This implies that the 

topology of the network must allow alternative pathways and that essential 

network management functions should not be centralized.

A ring or bus topology does not meet this requirement without 

duplication. In fact, from a reliability point of view, a ring or bus may 

be considered to be a star system, with the ring or bus, together with 

their couplers, forming the centre of the star. Hence, a failure of any 

of these central elements causes total communication system failure. On 

the other hand, a network, which could be arbitrarily configured into any

topology, can be designed so that, even If a section of the network

becomes isolated, each part can operate independently. The network

should maintain communication pathways between all nodes regardless of 

the node or channel failures, providing, of course, that it is still

physically possible. Furthermore, recovered nodes and channels should 

be reincorporated into the network automatically and a partitioned 

network should recombine smoothly when they are physically re-joined.

The end nodes and ports of a Virtual Connection form unavoidable 

single points of failure as far as that connection is concerned. Complete 

redundancy can only be provided by the user setting up more than one 

Virtual Connection between different end nodes, as well as providing 

duplicate user equipment. For example, a completely redundant remote 

temperature measurement would require not only duplicate network 

paths, end Stations and ports, but also duplicate temperature 

transducers.

The various types of packet error can be classified in order of 

importance to the user, on a scale ranging from outright disaster to 
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minor irritation, as follows:

1st. message delivered to wrong port:

2nd. packet sequence error;

2nd. corrupted message: 

3rd. duplicated message: 

4th. unreported lost packet; 

5th. reported lost packet.

These form the relative priorities of the error procedures of the network. 

The misdelivery of a packet, to the incorrect destination, is potentially 

very serious because it could, for example, trigger a quiescent device at 

quite the wrong time, as well as losing the message as far as the 

correct destination is concerned. Sequence errors and message 

corruption are close joint second in priority. Sequence errors are 

included at this level, because many user Transport Layer error 

detection procedures depend upon a simple checksum or longitudinal 

parity check, which are insensitive to sequence errors. A corrupted 

message is equally dangerous, particularly if its user has no end-to-end 

error checking or where the damaged message appears as a control 

word. The choice, of whether to give duplication higher priority than 

loss, is less clear-cut. From a pragmatic point of view, loss of packets 

may well happen if a node or channel fails completely. Message loss is 

relatively easily detected by the user using a simple timer based 

protocol, situated either at the source or at the destination. The network 

should deliberately drop a packet, if there is any danger of it being 

duplicated. Furthermore, there are a number of rare situations when the 

network may deliberately drop packets. These are where there is a 

danger of sequence errors (Section 4.3.4) or where packet corruption 

is suspected. If possible, the network should report packet loss to the 

user.

Channels operating with only marginal signal quality and nodes with 

intermittent faults can be extremely disruptive to the network as a whole. 

In addition, there is a greatly increased risk of packet corruption for 

packets passing through such a node or channel. Therefore, the 

network should practise error hardening by removing, from service, 

elements of the network that have become marginally operational.

To enhance the overall reliability and to aid fault diagnosis, the 

performance of the nodes and channels should be monitored continually 
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by the network management entitles. Recoverable errors should be 

logged by each node, so that suspect modules- within the node or the 

channel can be Identified.

Hop-by-hop error detection and recovery should be provided within 

each data link. The properties and complexity of this protocol can be 

tailored to the intrinsic error characteristics of the physical medium 

used, in order to make the probability of an undetected error negligibly 

small. Quite what error rate is considered negligible is, of course, 

somewhat arbitrary. A useful yardstick can be found in the requirement 

for PROWAY [IEC 81], which specified an average undetected error rate 

of better than one every thousand years of operation! Operating at 

100k packets per second, this corresponds approximately to a probability 
of undetected packet corruption of 3 x 10 16. Needless to say, error 

protection, to this degree, cannot be measured by any practical means. 

However, schemes that achieve this protection in theory, at least make 

the probability of an undetected error, within the channel Itself, 

negigible. Note, that the probability of framing errors must also be taken 

into account in arriving at the probability of errors in the channel.

Given the high reliability of the channels, the probability of error, 

within the channel controller and the rest of the node, cannot be 

ignored, although It is extremely difficult to quantify. The design of the 

nodes should be such that a single bit error cannot cause packet 

misdelivery, packet corruption or sequence errors. This implies that all 

address and data fields within the node should contain at least one parity 
check digit.

1.2.5 Reconfigurability

When power is applied to a node, it should automatically configure 

itself and integrate into the network. The network should adapt 

dynamically, as nodes and channels become operational. If two isolated 

parts of the network, which were initialized separately, are eventually 

joined they should integrate to form a single network automatically. The 

topology of the network should be able to take any form. When new 

nodes or channels are added to an existing network, no modification 

should be necessary to the existing nodes. The nodes themselves should 

be of a modular construction enabling new ports and channel controllers 

to be added without difficulty. Only reinitialization of the node, which 
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occurs on power-up, is required to incorporate the new ports or channel 

controllers into the node.

As well as the user device characteristics and requirements being 

highly diverse, the network must be capable of operating over a variety 

of physical media such as coaxial cable, optical fibres, modem links.

etc. In addition, multi-node channels, such as rings or buses, should 

be accommodated by the network protocols. The diversity of
interconnecting media implies potentially large variations in maximum
throughput between channels connected to a network node. Slow
channels should not retard the operation of the node or other

high-speed channels.

The net effect of these requirements is that neither network topology 

nor number or type of channels or ports attached to the node can be 

permanently stored in the node manager. Instead, the manager must 

dynamically obtain this information after initialization and configure itself 
accordingly.

1.3 RELATIONSHIP WITH OTHER NETWORKS

In recent years, there has been a proliferation of, so called, local 

area networks. However, most of these are not true networks, but 

multi-point data links providing a Data-Link Layer Service. They can be 

divided into two classes. In one type, the physical medium is common 

to all stations. This usually takes the form of a bus, although passive 

stars, that have been proposed for use in fibre-optic systems [RAWS78], 

also fall into this category. The other major type utilizes a Physical Layer 

relay function in each station. In this case, the usual topology is that of 

a ring or loop.

The primary application of many recent ring and bus developments 

has been the expanding field of office automation. In this environment, 

the network Is primarily concerned with the transfer of files, electronic 

mail and data-base queries and updates. Therefore, the real-time delay 

requirements are less stringent than in instrumentation applications, 

being limited to that of human interactions. In addition, the office traffic 

characteristics are well suited to the use of a connectionless type of 

service (otherwise known as a Unit Data Service). This is in contrast to 

the Instrumentation situation, where an indefinite (usually large) number 

of data units have to be transferred during the lifetime of a Virtual
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Connection.

The major differences, between the various ring and bus designs, 

lie in their access methods which primarily determine the degree of 

fairness and flow control exhibited by the designs. It is of interest to 

examine the various access methods, particularly with a view to their 

suitability for use as a multi-node channel within MININET.

1.3.1 Loop Access Methods

There have been several attempts to classifiy loop access methods 

including one by Heger [HEGE78] and another by Penney and Baghdadi 

[PENN78], In this thesis, the ring control mechanisms have been divided 

into four major classes - token-passing rings, slotted rings, 

register-insertion rings and centralised ring control. These are discussed 
separately.

(1) Token Passing Rings

With this access method, a single token circulates around the ring. 

When a station receives the token it can transmit a message (usually of 

variable length) , prior to passing the token on to the next station in the 

loop. If the station has no message to transmit, the token is passed on 

immediately. This technique was first developed by Farmer and Newhall 

in 1969 [FARM691. after whom it is frequently named. It is also the basis 

of the access method for the ring version of the IEEE LAN standard

802.5 [IEEE85L The method is intrinsically fair, with the guaranteed 

maximum access time proportional to the maximum size of the PDU and 

the number of stations in the loop. Under light load conditions, the 

average latency time is equal to half the loop transit period. This loop 

is, therefore. Ideally suited to situations where long messages (relative 

to the loop transit delay) are to be transported. This is not particularly 

well matched to the MININET situation which has short, fixed-length 

packets. Nevertheless, such a ring is quite usable, within MININET. 

especially where the size of the loop is small. The efficiency (in terms 

of channel capacity) would be strongly dependent on the header, token 
and delimiter size.

In the original Farmer and Newhall loop, the management of the 

loop was centralized with a supervisor station providing bit timing, token 

initialization and loop closure. However, more recent implementations. 
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such as proNET [SALW83], have distributed these functions or provide 

for standby supervisors, as in the case of IEEE Standard 802.5 

[IEEE85], removing the need for a supervisor node with the consequent 

risk of total loop failure. ProNET is of special interest because the 

absence of a master oscillator in a synchronous ring. Instead, each 

station contains a crystal stabilized oscillator phase-locked to the 

received data. Together, the oscillators form a ring of phase-locked 

loops.

(2) Slotted Rings

In a slotted loop, an integer number of fixed-length (usually short) 

frames or slots permanently circulate around the ring. Associated with 

each slot is a full/empty flag. If a station on the ring wishes to send a 

message, it waits until an empty slot is detected. It then marks the slot 

full and places the message into the slot. This type of loop was first 

described by Pierce [PIER72L In his design, the slot is emptied by the 

destination station. Such a scheme has two disadvantages. Firstly, each 

station must buffer the incoming slot sufficiently to read the destination 

address and full/empty flag prior to onward transmission. In a local area 

environment, this greatly increases the effective length of the loop. 

Secondly, it Is possible for one station to fill slots continuously, so 

denying access to all stations between it and the destination. Thus, the 

method is intrinsically unfair with an indefinite maximum access time. 

Kropfl's implementation of the Pierce Loop [KROP72] overcame the latter 

problem, using a special hog prevention control field in the slot

headers. However, a more complete solution to these problems was 

achieved In the Cambridge Ring [HOPP77], by allowing the full slot to 

complete a complete revolution of the ring, before being set empty by 

the original transmitter. The latter must release the slot, even if it has 

another message to transmit. Thus, the station following an active 

station Is guaranteed access after one revolution. In the case of a single 

slot loop, this method Is almost identical to that of a token passing ring. 

However, with a larger loop, where the loop delay is long compared with 

the slot length, the multiple slots circulating around the loop are 

equivalent to a number of tokens. This reduces the loop access time 

compared with a single token ring. Therefore, slotted rings are 

particularly well suited to the short, fixed-length messages of MININET. 

The fairness and guaranteed maximum access time of the Cambridge 
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Ring make it especially suitable. Current implementations carry only 18 

information bits in each slot [SHAR82] which is too small for MININET. 

However, more adaptable versions are anticipated, which would allow a 

complete MININET packet with header and error checking field to be 

placed in a single slot.

One disadvantage of the slotted ring Is the need for a supervisor 

station to set up and maintain the slot structure. (In the Cambridge 

Ring, virtue is made of necessity by placing powerful diagnostic 

procedures in the supervisor station [HOPP79].) In addition to reliability 

considerations, an important disadvantage of the need for a supervisor 

station is the relatively large initial installation cost of the ring, even 

when it contains only a few stations.

(3) Register Insertion Rings

With this technique a station can inject a message into the ring at 

once, provided that another message is not being relayed through the 

station. If the ring is busy, the station can start to transmit its own 

message immediately following the message being relayed. If a message 

is received for relaying, during the time the station is injecting its own 

message into the loop, the incoming message is queued in a variable 

length shift register, until the new message has been transmitted. Thus, 

the shift register has effectively been inserted into the loop, so giving 

this access method its name. A station cannot inject another message 

until it has sufficient memory space to buffer any incoming messages 

during transmission. Therefore, the performance of this access method 

is strongly influenced by the strategy used to remove the inserted shift 

register. Its best known implementation is the Distributed Loop Computer 

Network (DLCN) developed at the Ohio State University [REAM75J. In this 

implementation, the message is removed from the loop by the 

destination and the inserted register is shortened, as and when gaps 

occur in the incoming message stream. This method allows the 

possibility of hogging in a similar manner to that of the original Pierce 

loop. In an independent development. Hafner et al. suggested three 

different removal methods [HAFN741. One of these allowed the message 

to complete a full revolution, so that it filled the inserted register, 

whereupon the register was removed from the ring. This idea has the 

advantage of minimal delay in each receiving station (as opposed to 

buffering enough of the message to be able to recognize the destination 
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address In DLCN) and immunity to hogging. Consequently, it was an 

early proposal by Wilkes for the Cambridge Ring [WILK75]. One 

characteristic that all register insertion techniques have in common is 

that. In contrast to the other access methods, the transit delay is 

variable but bounded by the total maximum length of all buffers in the 

loop. For the short, fixed-length packet MININET case, the method first 

proposed for the Cambridge Ring is very attractive both as far as its 

operating characteristics are concerned and the potential simplicity of its 

implementation.

The management of the DLCN is completely decentralized. 

However, both Hafner and Wilkes proposed the use of a supervisor 

station to deal with exception conditions such as corrupted address 

fields. A recent and apparently independent development by Hawker 

Siddeley Dynamics called Multilink is, in fact, a variant of the DLCN 

access method with the attendant danger of hogging. Its management is 

fully distributed even to the extent of dynamic address assignment.

(4) Centralized Ring Control

In this class of ring, information flows between a single master 

station and a number of slave stations. This asymmetry does not make 

it very suitable for use inside MININET. However, it is interesting to note 

that the application area of a number of implementations of this method 

are very close to that of MININET. The Weller loop [WELL71] and the IBM 

2790 Loop [STEW70] were both intended for interconnection of computers 

with peripherals. The CAMAC Serial Highway [ESON76] connects a 

central computer to a number of CAMAC crates. A register insertion 

technique is used to allow short demand messages to be passed from 

any crate to the central computer.

All three distributed ring access methods could be used within 

MININET, with the appropriate message removal mechanism. It is 

interesting to observe that virtually all access methods, immune from 

hogging, require that the messages complete a full circuit of the loop, 

before being removed by the original transmitter. The short transit 

delay, access time and powerful diagnostics of the Cambridge Ring 

make It especially suitable, particularly if the functions of its monitor 

station could be distributed around the ring.
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1.3.2 Bus Access Mechanisms

Interest in bus systems was triggered by the work of Metcalfe and 

Boggs in adapting the ALOHA packet radio system [ABRA70] to the local 

network environment In the Ethernet system [METC76], This access 

method is called Carrier Sense Multiple Access/Collision Detect 

(CSMA/CD). If a station has a message to transmit, it waits until the 

bus is silent (the "carrier" sense function) , before transmitting the 

message. If two stations attempt to transmit at the same time, a 

collision occurs which corrupts the data on the bus. This corruption is 

sensed by one or other of the transmitters (the collision detection 

function) , which reinforces the collision by jamming the bus to ensure 

that the other transmitter detects the collision. The transmitters then wait 

a random period of time before attempting to retransmit. In the original 

Ethernet, the mean of this interval was exponentially increased if multiple 

collisions occurred. This implies that previously unsuccessful stations 

are delayed longer than stations that have transmitted successfully. 

Thus, under heavy load conditions, Ethernet is unfair and can suffer 

from hogging. Note, that a higher speed version of Ethernet, but with 

essentialy the same collision protocol has been adopted as IEEE 

Standard 802.3 [IEEE841.

There have been a number of modified versions of Ethernet, which 

allow immediate acknowledgement of received packets [TOKO77] and 

more sophisticated retransmission backoff algorithms [HAIN82], Both 

HYPERchannel [CHLA80] and Twentenet [NIEM84] use a CSMA bus with 

address based time slot mechanisms to resolve contention.

The collision danger period lasts for a length of time, following the 

start of transmission, equal to twice the propagation delay from one end 

of the bus to the other. Therefore, the bigger the average data unit 

size, the lower the probability of collision for the same information flow. 

If the message length is reduced to the same order of magnitude as the 

collision danger interval, the bus usage efficiency falls dramatically 

[METC76J. Furthermore, the access time is unbounded and the 

contention method is only stochastically fair under unsaturated load 

conditions. Consequently, this access method is not well suited to the 

real-time, short-packet MININET environment.

An alternative bus access mechanism uses token passing, in a 

similar fashion to that of the token passing ring. This provides a 
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guaranteed maximum access time, but still is most efficient with long 

messages. There have been a number of attempts to modify existing bus 

protocols. to allow token passing arbitration. by adding extra 

functionality. This can either be done at a high level within the data link 

controller, as in the IEEE Standard 802.4 [IEEE85A] and that proposed 

for PROWAY [IEC 81]. or at a low level within the Physical Layer 

[WAWE82J.

As bus lengths get longer and transmission rates get higher, so the 

efficiencies of the conventional bus access methods decline. A number 

of bus access methods have been proposed to overcome these 

limitations. These have the common feature that access to the bus is 

ordered by the physical position of the station along the bus. A burst of 

messages, the "data train" then makes its way from on end of the bus 

to the other. Most methods, like Fasnet [LIMB82L EXPRESS [TARI83] 

and D-Net [CHON82J. use unidirectional transmitter taps. However 

some, like L-EXPRESS [TARI83], and Tokenet [AJMO83], use simpler 

bidirectional taps and timer based procedures to order transmissions.

1.3.3 True Networks

One of the first local area networks was the Spider system, 

developed by Fraser [FRAS74J. The topology of the network is that of a 

rosette consisting of slotted loops interconnected and managed by a 

central switch. Like MININET. it provides a connection orientated service 

and uses a fixed-length packet (albeit larger - 304 bits carrying 256 bits 

of user data) . The main application area of Spider was that of resource 

sharing, between minicomputers, in a laboratory environment [FRAS75]. 

A later development at Bell Laboratories was the DATAKIT system 

[FRAS79]. This uses a short contention bus within the central node. 

Priority classes and the provision of local concentrator nodes are very 

similar to the functional distinction between Exchanges and Stations in 

MININET.

Pierce proposed a store-and-forward interconnection of loops to 

form a hierarchical topology [PIER72J. This idea has, more recently, 

been taken up by workers in Fujitsu as a method of interconnecting 

optical fibre rings (KAWA83J.

Octopus is another hierarchically organized network, which has 

evolved at the Lawrence Livermore Laboratory [FLET73J. The network is 
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functionally partitioned Into a number of subnetworks. There is one 

subnetwork for connecting terminals to the large "worker" computer, 

another connecting the computers to mass file storage, another for the 

provision of high-speed printing facilities and so on. Each subnetwork is 

essentially a star configuration with separate high-speed (16Mbps - 

270Mbps) links between each worker computer and each subnetwork. 

Subnetworks are directly interconnected only through relatively low-speed 

50kbps channels. In a retrospective article [WATS78], the experiences 

gained in the development of Octopus are discussed. The most important 

lesson was the need for a clear architectural model, cleanly separating 

the function of each layer. In Octopus, application and communication 

protocols had been mixed up. with different subnetworks having different 

protocols as a result. This caused great difficulty later, when the 

subnetworks were interconnected. Problems have also arisen due to the 

asymmetry of protocols and interfaces, which can make it difficult for 

worker computers to communicate directly, or remote microcomputers to 

directly access mass storage and high-speed output resources. A 

solution based on HYPERchannel, a high-speed bus developed for 

interconnection of large computers [THOR791. was proposed.

Note, that none of these networks was designed to serve the needs 

of instrumentation users. The experiences, gained from the Octopus 

network, support the MININET design decision to separate completely the 

user and network processes. MININET's flexible topology allows it to be 

configured to meet specific application needs. For example, very high 

Virtual Connection throughput and short transit delays can be provided, 

by the installation of a high-speed, point-to-point channel between the 

Stations concerned.

1.4 HISTORY OF THE PROJECT

The idea of a local area instrumentation network grew from the 

need to interconnect data acquisition equipment and minicomputers 

within the Faculty of Engineering and Science of the Polytechnic of 

Central London. It was soon realized that these requirements were not 

unique and that such a network would have more general applicability. 

The earliest description of the network was presented in May 1974 

[MORL74J. At that time, the consensus of opinion, within the networking 

community, was in favour of very large packet sizes. Consequently, an 

investigation of the effect of packet size was undertaken [CAIN741. Not
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surprisingly, this study showed that the optimum packet size was strongly 

dependent on the average message size. By early 1975, the basic 

network service and topology, the packet size and structure, and the 

node functionality were established [MORL75J. However, the problem of 

sequential routing had not been solved and the need for congestion 

control was not understood. Furthermore, the management of the 

network, including Virtual Connection establishment, had not been 

defined.

Collaboration with a team from the Instituto di Automatica, 

University of Bologna. Italy, started in 1974. In conjunction with this 

team, the MININET Link Protocol (MLP), a sequential Data Link control 

protocol, suitable for hardware realization, was developed [NERI77]. A 

prototype network was constructed, consisting of 4 Stations and 2 

Exchanges. A 16—bit PACE microcomputer was used to emulate the 

operation of the packet and channel level hardware. This resulted in an 

Implementation so slow that it became known as the Snail Network! 

Largely as a result of the data link control overhead on the 

microprocessor, the channels operated at less than 100 packets per 

second. A high speed, full-duplex hardware implementation of MLP was 

designed and implemented [FALD78], which relieved the microprocessor 

of channel level responsibilities. However, the nodes themselves could 

not handle more than several hundred packets per second. In Bologna, 

the microprocessor was upgraded to an 8086. which increased the 

throughput to approximately lk packets per second.

The MININET Control Protocol (MCP). a management transport 

protocol, was developed [MORL78J to enable Station managers to 

co-ordinate operations such as Virtual Connection establishment. MCP 

proved to be too slow for use in congestion and routing control. To 

handle these, a new class of message was devised. These NTAN 

messages travel only between nodes directly connected together through 

a single channel. The flow control algorithm is described in 

Section 2.4.1 and the routing management protocol in Chapter 4.

The original intention was to upgrade the Snail Network nodes to 

full speed, by adding additional hardware to Implement the structure 

described In [CAIN781. However, the Snail Network did reveal a number 

of problems of fairness and deadlock prevention, which could not be 

cured without a radical change in the Internal node structure. 

Furthermore, the original architecture was designed to support only 
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point-to-point channels, and its mechanical realization made it difficult 

to add or change channel controllers. Consequently, a completely new 

Station design was undertaken (described in Chapter 5). This 

incorporates a look-ahead polling technique, which handles back 

pressure vectors to ensure fairness and to control congestion. The final 

design can handle packets at speeds approaching IM packet per 

second.

A more detailed description of the technical evolution of MININET up 

to 1980 may be found in [NERI84],
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Chapter 2

NETWORK ARCHITECTURE

2. 1 THE MININET REFERENCE MODEL

With any system of reasonable complexity, it is necessary to divide 

it into a number of sub-systems whose function and the interconnections 

between them are well defined. In the case of a communication system, 

this usually takes the form of a hierarchical model where each layer 

provides a unified service to the layer above. In order to provide this 

service, the entities (sub-systems) within the layer communicate with 

each other by means of a protocol, making use of the service provided 

by the layer below. Layers are interconnected by means of an interface. 

Note that a protocol cannot be properly defined without the required 

service offered to the layer above, and the service provided by the layer 

below, having been previously specified.

2.1.1 Model Development

The architectural model of the Snail Network is shown in 

Figure 2.1. This structure is remarkably close to that of the ISO OSI 

Reference Model (ISO 84] despite the fact that it was conceived quite 

independently of the ISO work. The "Channel Level" provided a Layer 2. 

Data Link Service. Within each channel controller was a line conditioning 

board, whose function roughly corresponded to that of the OSI Physical 

Layer. The Network Layer within MININET was divided into two sublayers. 

The Packet Switching Sublayer (Layer 3P) supplies a Packet Delivery 

Service, which maintains logical paths between source and destination 

nodes. The Virtual Connection Sublayer (Layer 3V) provides the user 

with a word-stream Network Service. Splitting the Network Layer into two 

sublayers allows the Virtual Connection state information to be retained 

only in the end nodes. This facilitates connection establishment and 

dynamic rerouting, as no buffers are specifically reserved for individual 

Virtual Connections in the relay nodes.

This model very conveniently coincided with the major architectural
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Figure 2.1: Snail Network Architectural Model

divisions within the network. Each node consists of a core, concerned 

with Layer 3 operations, surrounded by channel controllers providing a 

transparent, sequential Layer 2 Service. In addition, each node has a 

separate management processor. The two Layer 3 sublayers are handled 

primarily by the different types of node. The Exchanges handle the 

Packet Switching Sublayer while the Stations are mainly concerned with 

the Virtual Connection Sublayer.

While this model was basically sound, there were a number of 

errors and omissions in the original concept. The errors were largely 

representational in nature, particularly in the depiction of the role of 

user management functions as a "Host-Network Protocol". The omissions 

were more serious. The communication requirements of the routing and 

congestion control algorithms entailed the introduction of NTAN 

messages, which did not operate through the usual management 

transport service. Thus, the position of routing and flow control entities 

within the model needed to be clarified. The original MININET conception 

did not include multi-node channels (i.e. rings or buses). In fact, the 

ISO OSI Reference Model also does not really include multi-node data 

links except for one or two acknowledgements to their existence. 

Superficially, it appears a relatively simple matter to incorporate 

multi-node channels into the MININET model and architecture, as the 

ring and bus protocol would be entirely handled within the channel 

36



controller connecting the node to the ring or bus. However, problems 

arise when the functions of a multi-node channel controller and the 

general effect on Layer 3 functions, such as routing and flow control, 

are examined in greater detail.

Two possibilities can be envisaged. The first is that a channel 

controller continues to be exclusively concerned with Layer 2 functions 

and provides a strictly Data Link Service, albeit a multi-node Data Link 

Service. Such a service should continue to provide transparent, 

sequential transportation of packets and NTAN messages between 

adjacent nodes (i.e. nodes connected to the same channel), 

irrespective of the message content. This is exactly the service provided 

by a point-to-point channel. However, in a multi-node channel, the 

node core would also have to provide the data link destination address, 

which may or may not be the same as the Network Layer identifier of the 

receiving node. Similarly, when receiving an NTAN message, the 

channel must also supply the data link source address to enable the 

core to identify the transmitter. For all practical purposes, the 

multi-node channel would be treated as a bundle of point-to-point 

communication paths tied together into the same channel.

The other possibility is to delegate as many as possible of these 

added burdens to the multi-node channel controller. As far as 

packet-by-packet routing is concerned, the node core would route a 

packet to the correct channel controller, whereupon the channel 

controller routes the packet to the appropriate adjacent node. In 

addition, some broadcasting and pre-processing of NTAN messages 

could be done by the multi-node channel controllers. These functions 

are indisputably Layer 3 functions, since they are concerned with 

network addresses and they manipulate NTAN messages. Therefore, the 

adoption of the second option leads to certain Network Layer entities 

being placed in ring and bus controllers. This introduces the concept of 

a further Network sublayer - the Multi-Node Channel Sublayer (Layer 

3M). The extra functionality required to handle multi-node channels is 

almost completely placed in their controllers leaving the node core 

virtually unchanged. Furthermore, the simpler point-to-point channel 

controllers are not burdened with irrelevant jobs, as the secondary 

routing function and the NTAN message processing reduce to that of a 

transparent pipe in the case of a two-node channel. Thus, Layer 3M 

becomes a null layer for point-to-point channels. This is illustrated in
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Figure 2. 2: Location of Layer Entities in MININET
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Figure 2.2, which shows the physical location of the sublayer entities. 

Note that for simplicity, no user interfaces are shown connected to the 

Exchange.

The problems associated with adding multi-node channels to 

MININET are very similar to the problems of internetworking ISLOM83J. 

With internetworking, the subnetworks, which may be pre-existing wide 

area or local area networks, are analogous to the rings and buses used 

as multi-node channels.

2.1.2 Sublayer Functions

The revised MININET hierarchical model is shown in Figure 2. 3 and

Users’ Protocols
Network

Management
Systems

Virtual Connection 
Sub-Layer

MININET Control
Protocol

Flow
Control

Routing
Management Packet Switching Sub-Layer

Multi-Node
Channel Sub-Layer

Data Link Layer Data Link Layer Data Link Layer

Physical Layer Physical Layer

Figure 2.3: The Revised MININET Hierarchical Model

the function of each layer is summarized in Table 2.1. In essence, the 

Channel Service provides a reliable, sequential message delivery service 

between adjacent nodes for packets and NTAN messages. This is strictly 

a Layer 3M Service. There are three layers below this service level.

The Physical Layer, which corresponds directly to the OSI Physical 

Layer, is responsible for transmission coding and channel symbol 

synchronization. The service provided by this sublayer and the interface
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Table 2.1: MININET Layer Functionality
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between it and the Data Link Layer, is not specified in detail. This 

allows maximum freedom to tailor the network's use of whatever physical 

medium is most suited to an environment or application, and to allow 

the exploitation of any further developments in data transmission 

technologies. However, a de facto standard has emerged in 

implementation, which is suitable for high-speed, point-to-point, serial 

links. It allows a variety of physical media (e.g. coaxial cable or optical 

fibre) , modulation and encoding schemes to be used with the same data 

link controller. This implementation has the interesting characteristic that 

the size of the Physical-SDU is the conventional I bit. while the 

Physical-IDU is 4 bits wide. This was done so that the Data Link Layer 

circuitry need only operate at one quarter of the bit rate of the physical 

channel. Allowing the size of the SDU to remain at one bit means that 

the Physical Layer receiver is not required to frame the incoming data 

stream to the original 4—bit boundary. Synchronization to data units 

larger than one bit is left to the Data Link Layer.

The Data Link Layer (corresponding directly with OSI Layer 2) is 

responsible for error recovery procedures that guarantee no loss of 

sequentiality. This would normally involve wrapping the message in an 

envelope, which includes a header containing channel control 

information and some sort of checksum tail protecting the header and 

message. A primary task of the receiving entity, in this layer, is 

envelope synchronization - i.e delimiting the start and end of each 

envelope (block framing). The Data-Link-PDU would normally contain a 

single packet or NTAN message. Segmenting or blocking may be 

necessary if the format of the Data-Link-PDU is already fixed. However, 

since the SDU is already small, segmenting would tend to be rather 

inefficient as far as channel utilization is concerned. If blocking is 

performed to improve channel efficiency, messages should not be 

delayed excessively in order to fill a PDU. The Data Link must preserve 

the identity and distinction between packets and NTAN messages. The 

management of the Data Link includes initialization, maintenance of 

performance statistics, recovery from major failure and in the case of 

multi-node channels, the Identification of other stations on the ring or 

bus. An important management function is to monitor continually the 

channel operation and decide when it is available for use. The Data Link 

Service, per se. is not of any explicit concern except for its effect on 

the Channel Service.
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The primary function of the Multi-Node Channel Sublayer (Layer 

3M) is to route a packet to the appropriate adjacent node. This involves 

mapping the destination node address of the packet into a data link 

address and passing this to the Data Link Layer. Note that this is a 

many-to-one mapping, as there may well be further hops before the 

packet finally reaches its destination. It is not the function of this 

sublayer to determine which is the "correct" next hop. This information 

is loaded into the channel controller by the routing management entity 

within the node core. The transmitter entities, within this sublayer, also 

provide a broadcast service for the transmission of certain NTAN 

messages, including flow vectors, to all other nodes connected to the 

same channel. Upon receipt of a flow vector from an adjacent node, the 

receiving entities must compute a new composite vector, incorporating 

information from the other nodes connected to the channel, and pass 

this to the node core.

The Packet Switching Sublayer (Layer 3P) provides the Packet 

Delivery Service which undertakes to transport packets reliably and 

sequentially from source node to destination node. It does this with the 

aid of the routing management and the buffer allocation algorithms. The 

bulk of the Exchange core is concerned with this sublayer (Figure 2.2). 

The main objectives of the 3P entities, within an Exchange, are to 

choose the correct output channel for a packet (routing), and not to 

allow the Exchange packet buffers to overflow (congestion control). 

Since a Station never performs the relay function of forwarding a packet 

from another node to some other node, it does not have a great deal of 

functionality within this sublayer. However, it must take part in the 

distributed routing management algorithm, so that the presence of the 

Station is known to the rest of the network and to enable it to choose the 

best output channel for packets originating at the Station. It must also 

take part in the congestion control protocol as discussed in 

Section 2.4. 1.

The Virtual Connection Sublayer (Layer 3V) provides a connection 

based service to the network ports and so to the network users. Since 

this is the only service which is visible externally to the users, it is 

called the MININET Service. In the original MININET design, the only 

type of interface into the network was a DIM port. Any other type of 

interface, such as IEC-625 or the V24 asynchronous line interface, 

required an interface translator external to the network. This translator 
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was considered by the network to be part of the user device. Thus, the 

Network Service boundary was the DIM port interface. While 

architecturally and administratively sound, this approach was not always 

cost effective because of the frequent need for interface translators in 

addition to the ports. The alternative now adopted is to allow ports to 

have different types of interfaces. However, unlike DIM. interface 

standards such as the IEC-625 instrumentation bus [IEC 79] were not 

designed for use with a local area network. Consequently, their port 

design is more corpplex than that of a DIM port and a protocol has to 

exist between the ports themselves in order to maintain the "fiction" of a 

direct local connection between devices. This is in contrast to a DIM 

port, which acts as a straightforward interface into the network. In order 

to allow devices connected though a DIM port to communicate with 

devices connected though some other type of port, the other types of 

port must use a protocol compatible with the DIM Computer-Peripheral 

Convention described in Section 3.3. The existence of a protocol 

actually between ports, as entities in their own right, means that a new 

sublayer, in the OSI sense, has been created. This layer could be 

thought of as an interface sublayer at the top of the network. Such a 

model is not entirely satisfactory, as the Network Service would have to 

be defined in terms of the port design. There would no longer be a 

single service specification but many depending on the number of port 

designs. Problems would also arise with DIM devices connected though 

a DIM port to a device via a non-DIM port, because the DIM device 

(outside the network) would be communicating on a peer-peer basis 

with the non-DIM port (inside the network). All these difficulties are 

avoided by placing the MININET service boundary between the ports and 

the Station core.

The Packet Delivery Service is used by MCP [MORL78] to provide a 

highly secure, half-duplex, connection oriented Transport Service (OSI 

Layer 4) for the management entities within each node.

2.1.3 Relationship to the ISO OSI Reference Model

As far as layer identification and boundaries are concerned, the 

MININET and OSI models are very similar. However, in other aspects 

there are a number of important differences. The most fundamental of 

these is that the OSI model is an abstract communication model, while 

the MININET model is an implementation model. As a result, the OSI 
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model is not concerned with physical or administrative divisions. On the 

other hand, the MININET model is designed to provide an architectural 

framework for a specific implementation. As such, it is much more 

concerned with the physical divisions required to meet the performance 

specifications for the network. Boundaries between the layers of the 

model and the physical divisions in the nodes are expected to coincide, 

as shown in Figure 2.2.

The OSI Reference Model, in its original form [ISO 84], used only 

one type of connection-oriented service. Although the model has been 

extended to include connectionless services [ISO 87], with a variety of 

connectionless service types being proposed [VISS85], there appears to 

be no sign of any effort to include other types of connection-oriented 

service in the model. Figure 2.4 illustrates the four-phase sequence of

USER

(N)-SERVICE PROVIDER

USER

Figure 2.4: OSI Connection Establishment Procedure

service primitives required to establish an (N)-connection. through a 

pair of (N)-Service-Access-Points (SAPs) , as defined in the OSI 

reference model. Note that, both the (N+l)-entities are involved in the 

connection establishment and must be actively present for the connection 

to exist. This has been criticised, by proponents of connectionless 

services [VISS85], as being unnecessarily complex. Furthermore, it 

requires a fairly high degree of network awareness on the part of the 

service user during the connection establishment phase. In the case of 
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MININET, this is undesirable as it compromises the requirement for 

transparency (Section 1.2.2).

An alternative approach has been used in MININET. Connection 

establishment is treated as a management function. A user management 

entity requests, via a management-service-access-point (MSAP), a 

Virtual Connection to be established between two ports of the network. 

Network management entities then attempt to set up the connection, 

whereupon the user management entity is informed of the success, or 

otherwise, of the connection establishment. This approach requires only 

two connection service primitives, as shown in Figure 2. 5. The devices

DEVICE A DEVICE BUSER 
MANAGEMENT

c□

NETWORK
MANAGEMENT NETWORK

Figure 2. 5: MININET Connection Establishment Procedure

connected to these ports are not involved in the connection 

establishment procedure. Consequently, the availability or even existence 

of the connected devices is not established by the Network Connection - 

only the existence of pipes between the connected ports. Device 

readiness can only be ascertained by the peer-peer protocol between 

the connected devices just as if they had been physically connected 

directly together. The actual realization of two types of MSAP are 

described in Section 2.5.1.
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A service function that is not explicitly described in the OSI 

Reference Model is PDU delimitation. The general concept of breaking 

an (N)-PDU into a number of (N-l)-SDUs is not described by the ISO 

standard, on the implicit assumption that an (N-l)-SDU will contain at 

least one (N)-PDU (although it may contain more. If the (N)-entity 

performs concatenation) . However, in the specific description of the 

Physical Layer, the usual SDU is envisaged to be one bit - clearly much 

smaller than the Data Link PDU. In practice, the job of delimiting Data 

Link PDUs (otherwise known as framing) may be done either within the 

Data Link Layer or is a service provided by the Physical Layer (e.g. 

through the use of special transmission codes) . For the other layers, it 

is implicitly assumed that PDUs are delimited by the layer below, unless 

concatenation has been performed. Indeed, the whole important problem 

of framing was overlooked in the model specification.

The requirements for ultra-transparency and heterogeneity, in the 

MININET Service specification, mean that MININET cannot know the form 

or size of users' PDUs. Consequently, the MININET Service does not 

delimit user PDUs and it is up to the user entities to frame their own 

messages, just as they would if directly connected together. However, 

the control class of transfer, through the network, provides a 

mechanism for various user synchronization procedures to be 

implemented. An important example is the DIM Computer-Peripheral 

Convention (DIM-CPC). described in Section 3.3, which provides a 

common basis for user protocol design.

2.2 MESSAGE STRUCTURES

Four major types of messages are exchanged between entities at 

various levels within the network. The difference in their purpose is best 

revealed by the difference in their scope, as represented in Figure 2. 6. 

These are packets, node-to-adjacent-node (NTAN) messages, 

intra-node-control (INC) messages, and intra-channel-control (ICC) 

messages.

(i) The "long distance" information carriers are packets which travel 

and retain their identity, from a source node to a destination 

node anywhere in the network, possibly through one or more 

relay nodes. Their scope is, therefore, network wide. There are 

two types of packet. A user packet contains data transferred
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across a network port in the source node. A network packet 

carries information from one node manager to another. It is used 

by the MININET Control Protocol (MCP) described in 

Section 2.6.

(il) NTAN messages travel only between adjacent nodes (i.e. 

between nodes connected to the same channel). There are two 

types of NTAN message. The broadcast-NTAN (B-NTAN) 

message is broadcast to all the nodes connected to a multi-node 

channel, while a specific-NTAN (S-NTAN) message is 

transmitted to only one specified adjacent node. For a 

point-to-point channel, there is no difference in the distribution 

of B-NTAN and S-NTAN messages.

(iii) Control information, between entities within a node, are carried 

by INC messages. These travel primarily between the node core 

and the channel controllers. Thus, they form a means of 

communication between the channel controllers and the 

management entities within the node core. INC messages are 

also divided into two classes. The D-INC message is used to 

carry management data and is subject to flow control between 

the source and destination entities. C-INC messages, on the 

other hand, are not subject to flow control. They are used for 

the exchange of control information, such as channel status or 

commands, and to regulate the flow of D-INC messages.

(iv) ICC messages flow between channel controllers of adjacent 

nodes carrying control information internal to the channels.

2, 2.1 Message Formats

The user packet contains, not only the user data consisting of a 

network-SDU. but also the header which contains addressing information 

and a flag to distinguish between user and network packets. With most 

protocols, it Is necessary to include the source as well as the 

destination address in each packet. However, with the very small amount 

of user data carried in each MININET packet, the overhead, of carrying 

the source as well as the destination address, would be crippling. For 

this reason, only the destination address is included. This address has 

two components: the destination node and the destination port. No 

source address is required, because a port can be virtually connected to 
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only one other port at any one time. The size of the address fields is a 

compromise between the desirability of minimizing the size of the packet 

header and maximizing the potential maximum number of nodes in the 

network and ports in a node. A 6—bit length was selected for both the 

node and port address fields. Therefore, the maximum number of nodes 

in the network and ports in a node are restricted to 64 in both cases. 

The small packet size also precluded any sequence field, as discussed 

in Section 1.2.3. The inclusion of two parity check digits, to fulfil the 

requirements described in Section 1.2.4, results in a total packet size 

of 32 bits.

The overall formats of packets. NTAN messages and INC messages 

are shown in Figure 2.7. Since ICC messages are completely internal to 

the various types of channel, their formats do not require standardization 

across the network. In transit within a node, these different types of 

message are distinguished by means of a message type field as shown. 

Network packets are distinguished from user packets by means of the 

network message flag (NMF). In addition to the NMF. the address 

section of an user packet (Figure 2.7a) contains the destination node 

address (DNA), the destination port address (DPA) and a check bit 

(AFP) which makes the parity of the address section odd. The data 

fields of a user packet consist of a 16—bit data field, the data class flag 

(DCF) and an odd-parity check bit (DFP). These 18 bits of the data 

section form the single Network-SDU/IDU, as discussed in

Section 1.2.2. The network packets (Figure 2.7b) have a similar

structure to the user packets except that, instead of a DPA, it has a 

source node address (SNA) field and, instead of a DCF, it includes a 

modulo-2 sequence number (SQN). These are used by MCP.

The adjacent node address (NODE) field (Figure 2.7c), 

accompanying a NTAN message when travelling from a multi-node 

channel controller to the node core, is generated by the channel 

controller and identifies the adjacent node that originated the message. 

The NODE field, accompanying a S-NTAN message when travelling from 

the core to a multi-node channel controller, identifies the adjacent node 

to which the S-NTAN message should be sent. For B-NTAN messages 

travelling from the core to the channel, the content of the NODE field is 

Immaterial. This is also true for all NTAN messages travelling to or from 

a point-to-point channel since there is only one other node connected to 

that channel. This address is protected by an odd-parity bit (ANP).
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3130________ 25242322 1918__________________________________ 0
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171615 0
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MESSAGE

1 0 0

P 1 0

10 0

Figure 2.7: MININET Message Format

(a) User packet (NMF=O); (b) Network packet (NMF=1); (c) NTAN
message; (d) INC message.

Key:.

NMF = Network message flag
DNA = Destination node address
DPA = Destination port address
SNA = Source node address
AFP = Address fields parity
DFP = Data fields parity
DCF = Data class flag
SQN = Sequence number
ANP = Adjacent node address parity
NODE = Adjacent Node address
NMP = NTAN message parity
SMF = Specific message flag

(0 = B-NTAN, 1 = S-NTAN)
CLASS = Message class
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Note that this must be calculated correctly, even when the adjacent node 

address Is not of any significance. S-NTAN messages are distinguished 

from B-NTAN messages by means of the specific message flag (SMF). 

The message class field (CLASS) basically indicates the destination 

processor and task within the core. The following classes of NTAN 

messages have been allocated:

B-NTAN class 0: flow vectors;

B-NTAN class 1: channel management;

S-NTAN class 1: channel management;

S-NTAN classes 7-15: routing management.

The internal structure of the NTAN messages is shown in 

Figure 2.8. All routing management messages (UPD, FLS and CHG) 

are of the S-NTAN type. Note, that the UPD routing management 

message has a slightly different format to the other NTAN messages, 

because of the relatively large amount of information packed into it. This 

message effectively reserves S-NTAN classes 8 to 15 inclusive. The use 

of these messages and their parameters is described in Chapter 4. The 

WRU. WKE and 1AM messages are described In Section 2.3.3. The BPV 

messages provide updates of backpressure flow vectors and are 

described in Section 2.4.1.

The INC message has a similar format (Figure 2. 7d) to the data 

section of a user packet.

2.2.2 Packet Size Considerations

The size of the user data section of the packet (Network-PDU) has 

been constrained to one Network-IDU by the transparency requirements 

of the network (Section 1.2.2). The size of the packet header is 

determined primarily by the size of the node and port address space as 

discussed in the previous section. However, it is useful to consider the 

effect, of this relatively small fixed packet size, on the overall efficiency 

of the packet transmission and of the storage In network relay nodes. 

This has been discussed at length in [CAIN741.

Let M be the message (I.e. the user-PDU) length. D be the

(fixed) size of the packet's data field and H be the size of the packet's

header (and trailer. If any). Note that M Is, in general, a random

variable whose distribution Is a characteristic of the user traffic, while D
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Figure 2.8: NTAN Message Structure

backpressure flow vector update;
NMF = NTAN message parity (odd);
VECTOR = 16—bit segment of new flow vector.

"Who are you?" - adjacent node identification request; 
ATTRIBUTES = source node characteristics;
ADDR = address of source node.

"Wake" - link rehabilitation request.

"I am" - node identification message.

routing flush message;
SEQ = update cycle sequence number;
CODE = sub-function code;
SINK = address of root node.

routing connectivity change message.

routing distance update;
DISTANCE - distance of source node from the SINK.
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and H are fixed parameters of the network. The wastage can be defined 

as the number of bits, in excess of M, used in transporting the 

message. This wastage arises from two causes: header transmission 

and Incomplete filling of the last packet. The number of packets 

transmitted is

fol
where pa"| is the smallest integer greater than or equal to a. Thus, the 

wastage, for a particular message of length M, is

(H + D) - M

and the expected wastage.

(H + D) - E[M] (2: 1)

Surprisingly, there has been comparatively little experimental 

measurement of the shape of the message length distribution. Supported 

by what little evidence is available [FUCH70], [KLEI74J. and In the 

absence of any information specifically on instrumentation traffic, a 

geometric distribution of message lengths will be assumed, i.e.

P(M=k) = (l-e)0k~1: k= 1, 2, 3... (2:2)

and

E[M] = y-— <2:3)

Then

S
M /
~ =j ?= P{ (j-l)D < M < jD }

= (1-0) £ 0k_1 = (1-0°) (0D)M (2:4)
k=(j-1)D+1

D
This is, again, a geometric distribution with a new parameter. 0 . 

substituted for 0. The expected value is, therefore.

(2: 5)
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Thus, the expected wastage becomes

W = H + D _ 1
1 - 0D 1-0

(2: 6)

where 0=1- 1/EtMJ. (2: 7)

against increasing E[M], it initially falls from its 

before rising again to approach asymptotically.

EtMJ ♦ (2: 8)

If this function is plotted 

starting value of H+D-l 

from above, the line

H 
D

This asymptotic bound can be obtained by taking the limit, as E[M] tends 

to infinity, of

W - 5 E[M1

Unfortunately, it is not possible to obtain an expression for the wastage 

minimum in closed form. Therefore, the minimum wastage can only be 

found using numerical techniques.

Strictly speaking, the size of the user data field in the MININET 

packet is 17 bits, or even 18 bits if the data fields parity bit is included. 

However in practice, a large block of user data would be segmented into 

16—bit segments, with the data class flag used to indicate that data is 

being carried. The control class transfers are used, among other 

functions, to delimit the user messages. Thus, as far as buffer 

utilization within the Exchanges is concerned, the header overhead can 

be taken as 16 bits, with a data field length of 16 bits. Using (2:6), 

the consequent expected wastage per message, as a function of average 

message length, is plotted as the solid line in Figure 2.9 with 

H = 16 bits and D = 16 bits. It can be seen that, as the mean length 

of the messages Increase, the expected wastage falls to a minimum, 

before increasing towards the asymptotic line, EIM] + 15, as predicted 

by (2:8). The minimum wastage occurs with a mean message length of 

only 6 bits. As far as buffer wastage is concerned, this Is the optimum 

average message length for the given values of D and H. However, this 

does not Imply that 16 bits is the optimum data field size for a mean 

message length of 6 bits. To find this optimum value, it is necessary to 

Investigate expected wastage as a function of D. This is plotted, again 

using (2:6), for mean message lengths of 6, 12 and 24 bits, in 

Figure 2.10. This shows that. In fact, 11 bits is the optimum data field
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Figure 2.9: Expected Wastage Versus Average Message Length (D=16)

size for E[M]=6 bits. Furthermore. Figure 2. 10 implies that D=16 bits is 

the optimum for mean message lengths in the order of 12 bits. The total 

picture can be better understood by means of Figure 2.11. which plots 

expected buffer wastage as a function of both data field and expected 

message length. Superimposed, on these wastage contours, are the loci 

of minimum expected wastage for a given mean message length and for 

a given data field size. This confirms that a data field size of 16 bits is 

the optimum value for mean message lengths around 13 bits. For 

average message lengths in the range 1 bit to 20 bits, the wastage is 

within 20% of this optimum value. Note that the buffer wastage 

considered here is due only to overheads within the used buffers. 

Wastage due to buffer utilization is additional to that estimated here and 

is dependent on the buffer allocation algorithm used.
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Figure 2.10: Expected Buffer Wastage Versus Data Field Size (H=16)

When the packet is actually being transmitted between nodes, it is 

wrapped In a channel envelope. This typically consists of a 4—bit header 

and a 16—bit block check field. Therefore, as far as channel wastage is 

concerned, H = 36 bits. The dotted line in Figure 2.9 shows the 

expected wastage, within the channel, as a function of average message 

length. Minimum wastage now occurs with an average message length of 

only 4. 5 bits. As the average message length is increased beyond this 

value, the wastage increases much more rapidly than the buffer wastage 

case. In fact, the asymptote, as given by (2:8). is 

2.25 E[M] + 24.375. Wastage contours for this header overhead are 

shown in Figure 2.12. together with the loci of the wastage minima 

against both data field size and mean message length. This shows that
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Figure 2.11: Buffer Wastage Contours and Minima Loci (H=16)

a 16—bit data field is optimum for average message lengths around 8.5 

bits. The range of E[MJ. for which the channel wastage is within 20% of 

the optimum value, is 1 bit to 14.5 bits. This is quite close to that 

obtained In the buffer wastage case. Note, that this calculation has 

Ignored the packet corrupting effect of noise in the channel. When the 

losses due to this noise are taken into account, the optimum data field 

size is reduced. This effect is primarily due to the lower retransmission 

costs of smaller packets together with the lower probability of smaller 

packets being damaged. However, at error rates typical of a local area 

network, these effects have only a very slight effect on the total wastage 

(CAIN74J.

The results, shown in Figures 2.11 and 2.12, can be used as 

design curves for networks with larger message lengths, by recalibrating
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Expected Message Length [bits]
Figure 2.12: Channel Wastage Contours and Minima Loci (H=36)

recalibrating the lengths in units of bytes instead of bits.

2.3 THE CHANNEL SERVICE

The Channel Service can be summarized as follows

(1) Its primary function is to transport packets and NTAN messages 

sequentially between adjacent nodes.

(2) The probability, of a corrupted or duplicated packet, a corrupted or 

duplicated NTAN message, or a sequence error occuring. is 

vanishingly small.

(3) Flow control, in the sense of being able to reduce the throughput 

of the channel to that which can be handled by the receiving node, 

is provided.
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(4) Statistics on the channel performance (in terms of Physical Layer 

signal quality measurement and/or frequency of retransmission) are 

kept, in order that the channel's current reliability can be assessed 

by the node management.

2. 3.1 Multi-Node Channel Characteristics

The function of the multi-node channel sublayer (Layer 3M) can be 

broken down, firstly, between its handling of packets and its handling of 

NTAN messages, and secondly, between its action on transmission and 

its action on reception.

When transmitting a packet into a multi-node channel, the correct 

adjacent node has to be selected. This is performed by examining the 

destination node address field of the packet, and using this as an index 

to a table which would provide the corresponding data link address. The 

table is supplied and maintained by the routing management entities, in 

the same way as the routing table in the core of the node.

On reception of a packet, no special action is required by this layer 

because the identity of the adjacent node, which transmitted the packet, 

is not required for routing or flow control purposes.

The transmission of S-NTAN messages requires a similar function 

to the transmission of packets. The adjacent node address, supplied 

with the S-NTAN message, is used to determine the data link address. 

B-NTAN messages, on the other hand, should be transmitted to all 

extant nodes connected to that channel. If the Data Link Layer supports 

a broadcast service at sufficiently high quality in terms of reliability, this 

service can be used. Otherwise the 3M sublayer must repeatedly 

transmit the same message to each adjacent node in turn. Thus, one 

Layer 3M service primitive is mapped Into several Layer 2 service 

primitives with identical message contents.

On reception of all types of NTAN messages, other than BPV 

updates, the message is passed on unchanged to the node core, 

together with the address of the node which originated the message. 

The latter is obtained by an inverse mapping from the data link source 

address to the corresponding node address. It is the responsibility of the 

channel management to construct and maintain the mapping table used 

for this purpose. When a BPV update is received, a new composite flow 

vector, associated with all packet transmissions through that channel. 
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must be generated. The composite vector is computed as follows. Let 

U. be the flow vector most recently received from adjacent node /. This 

is the set of destinations for which node I has buffer space available. 

Also, let FL be the set of destinations for which the transmitting entity 

directs packets via node i. The composite flow vector, V. is then given 

by

V = (J R. n Uj (2. 9)

where the union is taken over all adjacent nodes connected to the 

channel. Since only 16 bits of the flow vector are updated at any one 

time, it is necessary to recompute only the affected quarter of the flow 

vector each time. The composite vector must also be recomputed 

whenever a routing change is made within the channel. The use made 

by the node core of the flow vectors is described in Section 2.4.1.

2.3.2 The MtNINET Link Protocol (MLP)

Conventional link protocols, such as HDLC [ISO 791. were designed 

for relatively large, variable-length packets. In the case of MININET, a 

protocol was required to handle very short packets and to maintain 

inherent sequency, even when packets are retransmitted. This required 

protocol could exploit the simplicity of the fixed-length packets to enable 

easy implementation in hardware. However, it had to be robust enough 

to withstand multiple errors.

A half-duplex protocol, used in the terminal concentrators of the 

NPL network [SCAN69], provided the basis for the MININET link protocol 

(MLP) [NERI77J. In fact, MLP can be described as an extension of the 

NPL protocol which makes it full-duplex, thus exploiting more fully the 

bandwidth of the physical channel. Another advantage of full-duplex 

operation is that frames can be transmitted continuously, so avoiding the 

need for any delimiting flags or preambles. Thus, the transmission is 

made fully synchronous at the frame level as well as at the symbol level. 

As a consequence, when there are no messages available to transmit, 

it is necessary to flag the unused frames as dummy envelopes. If one 

side of the link synchronizes its transmitter clock to Its receiver clock 

(as is done in a regenerative repeater), then, since the packets are of 

fixed-length, there is a stable one-to-one correspondence between
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transmitted and received envelopes at both ends of the link. This packet 

interlock allows each outgoing envelope to carry piggyback the 

acknowledgement for the last envelope received. Figure 2. 13 shows an

RACKETS

RACKETS

PACKETS

RACKETS

ARRIVING AT RECEIVER

LEAVING TRANSMITTER

ARRIVING AT RECEIVER

LEAVING TRANSMITTER

►TIME

Figure 2.13: Time Placement of Interlocked Envelopes (m=3)

example of the time placement of envelopes at both ends of the 

channel. Let T be the one-way propagation delay between the two 

nodes, t . and rD be the turn-round delay between the arrival of the 

last symbol of an incoming packet and the start of transmission of the 

following return packet within nodes A and B respectively. If n is the 

number of transmission symbols in each envelope, and f is the Baud 

rate, then n/f Is the time taken to transmit one envelope. Let m be the 

channel latency, i.e. the number of subsequent envelopes transmitted 

before the acknowledgement of an envelope is received. From 

Figure 2. 13,

2T + t k + t b + n/f
(2: 10)ri i n/f

In Figure 2. 13, m=3. Note that, since T > 0, rA > 0 and rB > 0, the

minimum value of m In a full-duplex channel without gaps between

envelopes is 2.

If a receiver detects a damaged envelope, there will be a delay 

before the transmitter at the other end of the link is informed by means 
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of an error message (EM) carried piggyback on the interlocked envelope 

in the return channel. During this time, m other envelopes will have 

been transmitted. When the damaged envelope is then retransmitted, it

will appear behind those intervening packets. If the receiver had simply 

dispatched all undamaged packets as data indication service primitives to 

the layer above. then each retransmission would produce an 

unacceptable sequence error in the Data Link Service. Therefore, in 

MLP. the receiver does not dispatch a packet to the layer above until, 

not only It. but all preceding packets have been received correctly. 

Consequently, the transmitter must retransmit not only the damaged 

envelope but also the following m packets, i.e. the last m+1 envelopes 

must be retransmitted. This is illustrated in Figure 2. 14. where packet 

RACKETS LEAVING

m

a b c d g d e f 9 h

w RETRANSMISSION

TIME

PACKETS ARRIVING AT B a b c - ft f 9 d • f 9 h

NOT DISPATCHED

PACKETS LEAVING B a b c d e' f '(EM) g' h r j k r

PACKETS ARRIVING AT A a b' c' d' e f'(EM) 9 h' r j' k' r

Figure 2.14: Error Recovery Maintaining Sequency (m=3)

A

d, sent by node A. is damaged, and node B sends an EM in envelope 

V that is received by node A while It is transmitting packet g. Node A 

will, instead of transmitting h. retransmit its packets starting from d. 

The damaged envelope d was carrying the acknowledgement for packet 

b'. Consequently, node B does not know whether b' was correctly 

received by A. Therefore, b' must be retransmitted In case it was 

originally damaged. In order to maintain sequency in the pathway from B 

to A. the m packets following b' must also be retransmitted.

This procedure may fruitfully be used to act as the EM itself. Let 

each envelope carry a sequence number by which it can be identified, 

and let the arrival of undamaged packets be acknowledged by 
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transmitting their interlocked packets with a sequence number 

incremented by one with respect to their predecessors. Then the arrival 

of a damaged packet can be signalled merely by retransmitting the 

previous m+1 packets. The receipt of an envelope, whose sequence 

number is m+1 less than expected, acts as an EM. triggering the 

desired retransmission of the damaged packet and the following m 

packets. Moreover, since both directions have retransmitted m+1 

packets, the packet sequences remain Interlocked. Consider as an 

example, the case shown in Figure 2. 15 where m=2 and a modulo~4

RACKETS ARRIVING AT

RACKETS LEAVING B

RACKETS ARRIVING AT

RACKETS LEAVING A

------------------►THE

Figure 2.15: Acknowlegement by Means of Sequence Numbers (m=2)

sequence number is used. Envelope sequence number 3, carrying 

packet d. has been received damaged, by node B, which therefore, 

jumps back m+1 (3 in this case) packets and retransmits packet b' with 

a envelope sequence number of 1. The reception at A of a envelope 

number 1, instead of the expected number 0. during the transmission 

of packet f. Is decoded as an EM and causes transmitter A to jump back 

m+1 (3) . retransmitting packets d. e and f. Meanwhile, node B does 

not dispatch the m (2) packets following the damaged d. to avoid packet 

duplication and sequence errors, so that the the first packet to be 

accepted, once more, is the retransmission of d. Note that, thanks to 

the packet interlock, only a single sequence number Is required in each 

envelope.

The key feature of this protocol Is that the action of a transceiver, 

upon receipt of an EM. is identical to its action on detection of a 
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damaged packet: viz to retransmit the last m+1 packets. This both 

simplifies the protocol implementation and makes it resilient in the 

presence of multiple errors In either direction. In [NERI77], it is shown 

that MLP is reliable, even in the presence of damage to packets in the 

retransmission and recovery intervals (i.e. damage to an EM, damage 

to any of the m packets proceeding an EM or damage to any of the m 

packets following an EM) provided that the following rules are observed:

(a) The packet, carrying an implicit EM in its sequence number, must 

not be dispatched to the layer above since its packet has already 

been received.

(b) The m envelopes, following a damaged packet or an EM, must be 

ignored by the receiver as far as information carried, possible 

damage and sequence numbers are concerned.

(c) The (m+1)th envelope, following a damaged packet or an EM, 

should carry the sequence number originally expected when the 

damaged packet or the EM arrived. If this does not happen, it 

indicates that an error has occured a second time and that the 

recovery procedure should restart.

In order to avoid ambiguity, the sequence number must be, at 

least, modulo-(m+2) . The half-duplex NPL protocol [SCAN691 can be 

obtained as a special case of MLP by setting m=0. The sequence 

number then becomes the modulo-2 phase bit used in that protocol.

It is possible to have a flow control mechanism, which enables 

traffic to be blocked in one direction, while continuing to flow in the 

opposite direction. This is implemented by piggybacking a "wait" flag on 

an envelope in the opposite direction. If a received wait flag is set, the 

next (interlocked) envelope is forced to be dummy, even if there is a 

packet waiting to be transmitted. Packets received, during the channel 

latency period before the wait flags take effect, must be buffered within 

the receiver. With this scheme, the channel appears to the layer above 

as a pair of independent queues. An alternative and simpler method of 

flow control is to trigger retransmissions of packets just as if they had 

been received damaged. This has the apparent drawback that traffic is 

simultaneously blocked in both directions. However, interlock between 

the two data flows is maintained. This is a positive advantage as far as 

the main Network Layer flow control mechanisms are concerned 

(Section 2.4.1), because the channel latency is constant. With
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independent channel flow control, a BPV could be blocked in one 

direction, while packets It should be stopping are able to flow in the 

other direction.

In normal operation, the protocol does not distinguish between the 

two nodes. However, during initialization, it is necessary to designate 

one transceiver as the master and the other as the slave in order to 

establish envelope synchronization. The framing procedure is shown in 

Figure 2. 16. Initially the master continually transmits a specially coded 

synchronism feeder (SF) envelope, while the slave searches for the SF 

pattern in its Incoming data stream. Obviously, its detection soon follows 

Physical Layer symbol synchronization. The slave then replies by 

continually sending SF envelopes to the master. When the master 

detects the SF envelope, it sends another specially coded OK or 

synchronization acknowledgement envelope, whose twofold task is to 

inform the slave that it has established frame synchronization and to 

initialize the serial number sequence from master to slave. This is 

followed by normal information bearing or dummy envelopes. The slave 

then replies with a corresponding OK envelope, which initializes the 

serial number sequence from slave to master, followed by normal 

envelopes. This procedure can also be used if the channel has to be 

resynchronized after a prolonged noise burst or line break. Both sides 

retransmit all their unacknowledged packets. Thanks to the sequence 

number, the receivers are able to pick up the packet stream following 

the last envelope which had been received correctly before the link had 

to be resynchronized [NERI77J.

2. 3. 3 Channel Management

The management of the channels forms part of the overall node 

management and, therefore, it can communicate with other management 

entities both In the same and remote nodes by means of MCP 

transactions (Section 2.6). However, it also uses NTAN messages to 

communicate with channel management entities In adjacent nodes. Since 

the node management is implemented using a general-purpose 

microcomputer, the channel management typically operates at a much 

slower rate than the dedicated high-speed processor, the channel 

controller, which controls the packet-by-packet protocol of the channel.

The operation of the channel management can be split into two
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Figure 2.16: Frame Synchronization Procedure (m=2)
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separate types of task. Each channel controller has a channel 

supervisor, which communicates directly with it via INC messages. The 

exact operation of the channel supervisor is specific to a particular type 

of channel controller. However, in general, it initiates channel 

initialization and possibly resynchronization. In addition, it collects and 

records statistical information, from the channel controller, such as 

number and types of errors detected, number of packets handled, etc. 

This can be used to aid remedial maintenance action if required.

The channel manager, itself, handles the network implications of 

the operational status of the channels. Because the channel supervisors 

handle the channel-type specific management duties and merely inform 

the channel manager when a channel fails and when it recovers, the 

channel manager is able to treat the channels in a uniform manner. It 

communicates with the channel managers in adjacent nodes by means of 

WRU, 1AM and WKE NTAN messages. The WRU (Who are you?) and its 

reply, /AM (I am) messages are used to identify the address of adjacent 

nodes and to verify that the link between the two nodes is operational. 

The WKE (wake) message is used to synchronize the re-use of a link 

following channel recovery. Since, with a multi-node channel, there will 

be more than one adjacent node connected to it, separate routing 

connectivity information must be kept for each adjacent node connected 

to that channel.

The operation of the channel manager can be considered as a 

collection of separate processes which can be described by two different 

types of finite state machine (FSM). The channel FSM indicates the state 

of the channel controller as signalled by its channel supervisor. The link 

FSM indicates the state of the link to one specific adjacent node through 

that channel. Obviously, a point-to-point channel will have only one link 

associated with it, while a multi-node channel could have several. Note 

that, in this context, the term "link" is being used with a very specific 

meaning.

The channel FSM has three states. SI, SD and SU. SI is the initial 

state. When the channel supervisor signals that the channel is 

operational for the first time, the channel manager sets up the database 

for that channel and the FSM enters the up state, SU. On entering SU, 

the process informs the packet switching processor that the channel is 

operational and broadcasts, on that channel, a WRU B-NTAN message, 

while starting the WRU-IAM timeout for every link through that channel.



On receipt of a WRU message, the manager replies with an 1AM S-NTAN 

message without change of state. When a channel failure is signalled by 

the channel supervisor, the process Informs the packet switching 

processor and all the link FSMs operating through that channel of the 

failure, and enters the down state, SD. Periodically, while in SU, the 

process will repeat the WRU transmission in order to ensure that the 

failure of an adjacent node (leaving the channel operational) is 

detected.

The routing management algorithm, described in Chapter 4, 

operates In terms of links to an adjacent node via a channel. The link 

process is responsible for informing the routing manager, when the link 

fails and when it recovers. A problem with all types of network is the 

marginally operational link, which continually fails and almost 

immediately recovers. Without safeguards, such a channel could send 

the network into paroxysms, as it attempts to adapt to the ever changing 

topology. In order to avoid this, the link process practises a link 

hold-down reflex, which delays declaring the link recovered until a time 

Interval has elapsed since the link failed. The length of this hold-down 

period depends on whether an alternative pathway has been found 

around the failure. In order to synchronize the re-establishment of a 

link, the link process transmits a WKE S-NTAN message to its opposite 

number at the other end of the link, which forces it to also declare the 

link operational. The link FSM can be simplified to the four-state 

machine described in Figure 2.17 and Table 2.2. It is driven by failure 

of the channel, timeouts, reception of 1AM and WKE messages and the 

routing table entry for the linked node. When the channel fails or the 

maximum number of WRU-IAM timeouts is exceeded, the algorithm 

immediately sends a link failure flfl) message to the routing manager 

and goes to state SD. Channel recovery does not directly trigger the link 

recovery process. Instead, the link FSM waits until the WRU. transmitted 

after channel recovery by the channel process, invokes the 1AM reply 

from the linked node. When this 1AM message is received, the algorithm 

waits In state SHI until a period TH1 has elapsed since the channel 

failed. Only if the routing table indicates that no alternative route could 

be found to the linked node, does it go to state SU, sending a link 

recovery (Ire) to the routing manager and a WKE message to the linked 

node. Otherwise, the algorithm waits for the longer period, TH2, in 

state SH2. before going to SU and sending the Ire and WKE messages.
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Figure 2.17: State Diagram of the Link Hold-Down Algorithm

The shorter period. TH1. should be roughly equal to the maximum time 

expected for the routing management algorithm to find an alternative 

route, if it exists. The longer period. TH2. allows congestion, arising 

as a result of the original failure, to be dissipated along the new. albeit 

longer path before triggering another routing change. Receipt of a WKE 

message causes the process to go immediately to SU sending a Ire 

message.

2.4 THE PACKET DELIVERY SERVICE

The Packet Delivery Service, provided by the Packet Switching 

Sublayer, can be summarized as follows:

(1) Its primary function is to transport packets from a source node to 

any destination node in the network without any loss of sequency.

(2) The delivery delay time is minimized by finding the minimum delay 

route, between source and destination, and by minimizing the
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Table 2.2
State Transitions in a Link FSM

SU - SD Condition: Channel failure v maximum number of

contiguous 1AM timeouts exceeded.

Action: Start timer TH1 and timer TH2; send If 1.

SD - SHI Condition: 1AM received from link node.

Action: None.

SHI - SU Condition: TH1 complete A alternative route to link node

not found.

Action: Send Ire: send WKE.

SHI - SH2 Condition: TH1 complete A alternative route to link node

found.

Action: None.

SH2 - SU Condition: TH2 complete.

Action: Send Ire; send WKE.

SHI - SD Condition: Channel failure.

SH2 Action: Reset and start timer TH1 and timer TH2.

SHI - SU Condition: WKE received.

SH2 Action: Send Ire.

buffering delay in the relay and end-point nodes.

(3) Overall throughput does not fall significantly as offered load 

increases to saturate the network. The network is guaranteed free 

from store-and-forward deadlock by means of the buffer allocation 

and flow control algorithms.

(4) There is no limit on the number of Virtual Connections routed along 

any pathway in the network. Consequently, a Network Connection 

request is never refused on the grounds of buffer non-availability in 

the Exchanges.
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Note, that this service is only concerned with the transportation of 

packets from source to destination node, and does not distinguish 

between user and network packets or between different destination ports 

within the destination node. This is an important difference between 

MININET and many other connection-orientated networks such as 

TRANSPAC IDANE76], GMDNET [RAUB76] and TYMNET [TYME71] where, 

on connection establishment, state information concerning the Virtual 

Connection Is stored in every relay node along the path. If this latter 

method Is used, then: the connection procedure is complicated by the 

direct involvement of relay nodes: there is a danger that connection 

establishment can be refused If an intermediate node has already 

allocated all its buffers: and connections are lost as a consequence of 

relay node or channel failure.

The congestion control strategy is described in the following 

section, while the routing algorithm is described in Chapter 4.

2. 4.1 Congestion and Flow Control

Congestion is here defined as an overload of a network resource, 

of which there are three major types: node processing power, buffer 

storage space and channel bandwidth [MCQU791. [NESS79], It is the

object of the congestion control mechanisms to handle these overloads 

in such a way that there is no reduction in total packet throughput, no 

discarding of packets and no loss of fairness or sequency (Sections

1.2.2 and 1.2.3). While the routing strategy does have an indirect 

effect on congestion by maintaining the shortest, loop-free path between 

source and destination, it is not used to control congestion within 

MININET. The primary control mechanism is flow control.

Two flow control mechanisms are used in MININET. One. the 

channel flow control, is provided by the Channel Service to match the 

effective channel transmission rate to the speed at which the receiving 

node can process the incoming packets. Thus, processor overload is 

avoided. If this were the only flow control mechanism provided within the 

network, it would be prone to store-and-forward deadlock [KAHN721. For 

this reason, the network layer flow control is provided. Its objective is to 

avoid buffer overflow within the Exchanges, while keeping the paths 

between source and destination nodes deadlock free. In order to achieve 

this, some sort of buffer partitioning, within each Exchange, must be 
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used [MERL80] [GERL801.

In ARPANET, direct store-and-forward deadlock between two 

adjacent nodes is avoided by reserving one buffer within the switch for 

each output channel, and two buffers for each input channel. This 

reduces, but does not remove, the possibility of indirect 

store-and-forward deadlock involving more than two nodes [GERL801. 

Two additional buffers are employed to hold “overflow packets", which 

can be used to attempt to break the log-jam should deadlock occur. As 

a final resort, a reset, with consequent loss of packets, occurs 

[KAHN721. In CIGALE, which is the packet switching network of the 

CYCLADES computer network [POUZ74], the length of each output queue 

(one per output channel) is restricted. This does not guarantee freedom 

from lockup. Instead, each packet is "time-bombed" and old packets are 

discarded, thus dissipating the congestion [GRAN79]. One method, 

which guarantees deadlock free operation, is to reserve at least one 

buffer at each intermediate node when a Network Connection is 

established, as in TYMNET [RIND791. Unfortunately, this has the 

disadvantage of under-utilization of buffers.

Perhaps the first published attempt to devise a more efficient buffer 

allocation scheme, that is guaranteed deadlock free, was the buffer 

class method [GUNT75]. This was used in GMDNET [RAUB76]. For each 

hop undertaken by a packet, its "class" increases by one. Buffers are 

reserved In a node for each class. A packet is permitted to use buffers 

within its own class and any lower class. A modification of this method 

is to base the buffer class on how many hops the packet has to go to 

its destination, rather than on how many it has traversed from its source 

[TOUE791. Merlin and Schweitzer [MERL80] generalized these methods as 

special cases of the buffer graph approach which, by means of a 

number of possible methods, seeks to arrange the buffers within the 

network into a directed graph. Consequently, there are no directed 

loops and there exists at least one directed path corresponding to each 

route in the network. Obviously such a graph is deadlock free. In the 

proposed MININET flow control algorithm, buffers are reserved on a 

destination node basis. Thus, each exchange contains up to 63 buffer 

partitions, each one containing only packets destined for one particular 

node. Since these packets will occupy only buffers associated with that 

destination, the network buffer graph decomposes into up to 63 disjoint 

graphs - one per destination node. Provided that the routing algorithm 
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is loop free (which it is). each of these graphs forms a directed tree 

rooted at the destination. Consequently, the network is guaranteed 

deadlock free. The destination-based buffer class method could also be 

used. However, the high-speed control of the buffers would be greatly 

complicated by the mapping between the buffer class and BPVs. Within 

each buffer partition, the waiting packets form the destination queue.

Given some buffer partitioning scheme, there remains the need for 

a flow control method to avoid overloading the buffers within each 

partition. Global anti-congestion approaches, such as the isarithmic flow 

control method [PRIC77] which seek to limit the total number of packets 

in the network, are discounted because there is no guarantee that local 

congestion cannot occur. In connectionless networks such as CIGALE, 

there is a tendency to discard packets if the congestion gets bad. 

CIGALE attempts to avoid reaching that stage of congestion, by sending 

choke packets back to the source hosts requesting them to reduce their 

rate of transmission. Packets arriving in an ARPANET node are examined 

to see if they can join an output queue. If this is not possible, either 

because there is a shortage of buffers within the node, or because the 

maximum number of packets associated with the output channel would be 

exceeded, the packet is refused. This refusal is implemented by the 

absence of an acknowledgement of the packet to the upstream node. 

Subsequently, the upstream node retains its copy of the packet and 

retransmits it after a timeout. Note that this type of flow control depends 

upon a Network Layer hop-by-hop packet acknowledgement protocol 

because, as far as the Data Link Layer is concerned, the packet was 

received correctly and passed to a Network Layer buffer for examination 

within the node core.

In TYMNET, each node is not allowed to transmit more than a 

certain number of characters belonging to a Virtual Connection, without 

receiving an indication from the next node that buffer space is available. 

This indication is made in the form of a backpressure vector containing 

a single bit for each connection. If there is room in the connection's 

queue within the downstream node, the bit is set to one. Reception of 

this, by the upstream node, allows it to transmit characters, up to the 

limit set for that connection. If the connection's queue in the 

downstream node is over this limit, the corresponding bit of the BPV is 

reset. In the upstream node, this will lead to the halting of transmission 

for that connection. Eventually, the connection's queue within that node 
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will exceed Its limit, thereby triggering the application of backpressure to 

its upstream node. Thus, backpressure propagates backwards along the 

path of the Virtual Connection until. If necessary, it reaches the source. 

Note that buffer space, up to twice the backpressure limit, must be 

reserved for the connection in each node, and that the product of this 

limit and the rate of backpressure vector production determines the 

maximum throughput for that connection. While this passive 

backpressure vector approach is admirably suited for the relatively 

low-speed terminal traffic handled by TYMNET, the high burst rates of 

some instrumentation traffic make it unsuitable for use in MININET. If the 

worst case example of 100k packets per second (Section 1.2.3) is 

taken as the peak Virtual Connection rate and, say, an absolute 

maximum vector update rate of 2k per second (1000 times faster than 

TYMNET) is allowed, then 100 buffers would have to be reserved for 

each connection in each relay node. Instead, a destination node based 

active flow vector is used. This is transmitted only and immediately when 

its contents are changed.

As described above, each MININET Exchange contains a Separate 

output queue for each destination in the network (up to a maximum of 

63) . Disjoint subsets of these queues are attached to the output 

channels, according to the routing algorithm as shown in Figure 2. 18. 

An output switching process polls the queues associated with one output 

channel on a round robin basis. The input switching process places 

incoming packets at the back of the appropriate queue. The Exchange 

maintains its own flow vector, which is a function of the destination 

queue lengths. If the input switch detects that a queue has reached its 

upper limit, the corresponding bit of the flow vector is cleared. 

Similarly, If an output process detects that a queue has reached its 

lower limit, the corresponding bit is set. Any change to the flow vector 

triggers its transmission to all adjacent nodes using BPV B-NTAN 

messages (Figure 2.8). Bit 0 of BPV code 0 pertains to node 0. Bit 15 

of BPV code 0 pertains to node 15 and so on, until bit 15 of BPV code 

3 which pertains to node 63. As each BPV message holds only one 

quarter of the complete flow vector, only those 16—bit segments of the 

flow vector that have changed need be transmitted. Received BPVs are 

used by the output switch corresponding to the channel from which the 

BPV was received. Section 2.3.1 describes the special processing of 

BPVs within the channel controllers of multi-node channels. A packet
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Figure 2.18: Exchange Buffer Structure
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may be transmitted to an adjacent node provided that the bit. 

corresponding to the packet's destination, in the last received BPV, was 

set. In other words, each bit of a BPV may be thought of as a "green 

semaphore" - one for go and zero for stop.

A BPV, received by a Station, acts by gating the polling of user 

ports. Thus, backpressure finally acts to throttle data at their entry point 

into the network. Once a packet is accepted into the Station core, it is 

transmitted, whatever the state of the flow vector for the output channel. 

The consequent desirability of minimal packet latency in the core has 

ramifications in the design of the Station, which are discussed in 

Chapter 5. Since a Station does not forward packets to other nodes, its 

own flow vector contains zero entries except for its own address. This 

vector must be transmitted to adjacent nodes to allow only packets 

destined for the Station to be transmitted to the Station.

The conceptual structure, of each destination queue within an 

Exchange, is shown in Figure 2. 19. The lower and upper buffer limits

Lower Upper
Limit Limit

RESERVOIR 
ZONE

HYSTERESIS 
ZONE

OVERFLOW 
ZONE

•----------- Ir----------• ’---------------------Ih------------------- •*----------- Io----------*

Figure 2.19: Destination Queue Structure

divide the queue allocation into three zones. The overflow zone allocation 

is required to hold packets which arrive after the queue has reached the 

upper limit and triggered the transmission of a BPV to all channels, 

requesting that transmission be stopped for that particular destination. 

The length of the overflow zone, Iq , must be large enough for the zone 

to contain all packets that could arrive in the latency time before the 

BPVs take effect. Assuming minimal latency in the packet handler 

processor, the latency of one input channel is approximately m + p, 

where m is the channel latency, defined in Section 2.3.2. and p is the 

additional core latency due to the pipeline delay between the node core 

and the channel controllers. The minimum possible value of p is 2. It 

could be higher due, most likely, to transmission latency arising from 
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delays in distributing outgoing BPVs to all channel controllers. 

Therefore,

I = T (m. + p) (2: 11)

where the summation is taken over all Input channels and m. is the 

latency of the ith channel. Note that, as far as buffer allocation is 

concerned, half-duplex channels (m=0) are preferable because of their 

low latency. If it is conservatively assumed that the average channel 

latency is 2. that the core latency is 3 and that the maximum number of 

input channels is 8, then, from (2:11), I = 40.
o

The reservoir zone is required to allow the output channel to 

continue to empty the queue in the latency period following the issuing of 

BPVs to restart the flow of packets into the queue, but before new 

packets actually arrive. If the length of this zone, I , is insufficient,

the queue will be exhausted before the new packets arrive. This has the 

effect of reducing the throughput of the output channel, further 

increasing the congestion. The required minimum size of this zone 

depends on the output channel rate relative to the rate and latency of 

the input channels. The worst case would be if all the output channel 

capacity was being used to empty just one queue and that the queue was 

being filled from the input channel with the maximum latency time. 

Then, given that the latency time of the /th channel is ni./f. where f. 

is its packet rate,

lr = po Sup (m./f.)j + p (2:12)

where f is the output channel packet rate and the supremum is taken 

over all input channels. Assuming that the maximum channel latency is 

3 and that all channels have the same rate gives, from (2:12). 

I = 6.
r

The larger the hysteresis zone the less frequently will BPVs be 

Issued. Since channel throughput is reduced by the overhead of BPV 

transmission, throughput is maximized by having the length of this zone. 

I . as large as possible. However, In order to minimize end-to-end 
n 
delay. I. should be kept as small as possible. This is another example 

n
of the conflict between throughput and delay, discussed in 

Section 1.2.3. The maximum BPV rate for a given value of I occurs
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when the queue Is being filled and emptied at maximum rate with

minimum latency. Analysis of these worst case conditions gives an

estimate for the maximum required length of the hysteresis zone.

Minimum latency is obtained with m = 0 (half-duplex channels) and

p = 2. Worst case conditions can be assumed to be an Exchange with 

8 half-duplex channels, all operating at 100k packets per second. If it is 

assumed that the queue is being continuously emptied by one channel, 

while being filled, backpressure permitting, by the other 7 channels, 

then the rates at which the queue is filled and emptied are 100k and 

600k packets per second respectively. The over-run into the reservoir 

and overflow zones are 2 and 14 respectively. Thus, the queue length 

would vary by I + 14 + 2 packets. Hence, the queue filling time is 

(I + 16)/600 ms and the emptying time Is (I + 16)/100 ms. In one 

fill-emptying cycle, two BPVs are transmitted. Therefore, the per 

channel BPV transmission rate In kilo-messages per second. B, is given 

by

~ I + 16 1+16
_ _ H HB = 2 ------------  + -------------

600 100

Rearranging (2: 13) and rounding up.

171
(2: 13)

1 + 16 h

(2: 14)

Equation (2: 14) indicates that, assuming a maximum allowable BPV 

transmission rate of 2k per second (2% of channel throughput) , the 

maximum required size of the hysteresis zone is 70.

The total number of packet buffers, that might be required by the 

queue, can be obtained by adding the maximum lengths of the three 

zones. For the (slightly contradictory) worst-case conditions outlined 

above, this gives a total queue allocation of 116 buffers. However, there 

can be problems with this type of active flow vector if an Exchange has 

channels with large differences in capacity. Since the BPVs are 

distributed to all channels, a high rate of BPV production, associated 

with a high-speed channel, could well take up a considerable part of the 

capacity of a low-speed channel. If there is a danger of this, a much 

larger hysteresis zone would be required. Note that, if a low-speed 

channel is the cause of the congestion, there is no problem because 

the queue emptying rate is low and consequently the BPV generation rate 
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is low.

Buffers can be allocated to a destination queue, and the upper and 

lower trigger points can be set. either statically or dynamically, in a 

number of ways. In selecting a method for implementation, consideration 

must be given, not only to the efficiency of buffer utilization, but also to 

the complexity of the scheme. This is because a specially designed 

switching processor would be required, in order to achieve the desired 

Exchange packet switching capability which is well in excess of 100k 

packets per second. Some options are:

(a) The parameters could be fixed in the design of the Exchange. 

Since the number and type of channels are unknown at design 

time, some worst-case assumptions have to be made, as outlined 

above, in order to determine the sizes of the three zones.

Furthermore, since the network configuration is also unknown, a 

separate allocation must be made for all (63) potential

destinations. Obviously, this results in very poor buffer utilization, 

but the input and output switch algorithms are the simplest

possible. That the buffer under-utilization need not be very

important. can be appreciated by considering a possible 

implementation where the buffer space is organized as an 

8K x 32-bit memory. This can be implemented with only 4 chips 

and can contain 8K packets. The memory could be partitioned into 

64 128-packet allocations, one for each destination address. This 

allocation is 12 more than that required for the worse-case 

conditions described above. Mapping from destination address to 

queue location is very simple and there is no dynamic queue 

allocation process to run.

(b) During initialization, information on the number of channels and 

their speed and latency can be obtained from the channel 

manager. The optimum values of I and I can then be calculatedr o
using (2:11) and (2:12). This allows I to be maximized. The h
total queue allocation remains fixed as in option (a) .

(c) Some form of dynamic allocation can be used. Quiescent 

destination queues are given the minimum safe allocation, which is 

I + 1. A number of buffers are held In reserve. When a hitherto o
quiescent queue begins to fill, instead of immediately applying 

backpressure, buffers are allocated to the newly active queue up to 
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some predefined limit, assuming that the contingency reserve has 

not been exhausted. Further traffic-based allocations can be made 

and buffers removed from newly quiescent queues, by a buffer 

management entity operating much more slowly than the high-speed 

packet handling processor. The dynamic nature of the buffer 

allocation means that the queues would have to be implemented as 

linked lists, instead of the simpler contiguous structures which can 

be used with static partitioning.

Option (c) would theoretically utilize the buffer memory more efficiently, 

but at the unacceptably high price of much greater processing 

complexity. Therefore, dynamic allocation is not recommended. On the 

other hand, option (b) provides some improvement over the 

performance of option (a), with little increase in complexity. Therefore, 

option (b) is recommended for this application.

The simplest and most obvious internal organization of the 

destination queues is a standard FIFO queue. However, with this type of 

structure, burst mode traffic can fill the queue and so significantly delay 

handshake traffic. The throughput of handshake traffic is most sensitive 

to delay (Section 1.2.3). One method of reducing the interference of 

burst mode traffic on handshake delays is to use a two-dimensional 

queue. This consists of a separate FIFO queue for each destination port 
within the destination node, plus one for network packets. These are 

linked together at the front end to form a loop of queues. The output 

switching process uses this loop to remove packets from the queue on a 

round robin basis. The effect of this queue structure is to give 

top-priority to the first packet of each Virtual Connection in the queue. 

Consequently, sequency would no longer be kept in the packet flow 

between nodes, although the sequentiality of the Network Connection is 

preserved. As far as queue size and buffer allocation are concerned, 

the destination queue is treated as a single entity. The primary 

disadvantage of this approach is complexity. Each packet buffer would 

have to contain two link pointers. The input switch would have to 

examine the destination port field, in addition to the destination node 

field, of each incoming packet, and would have to maintain pointers to 

the back of 65 different queues for each destination node.

End-to-end flow control, in the sense of source-sink data rate 

matching, is not directly provided by MININET. To do so would 
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compromise the transparency requirement (Section 1.2.2) because, 

when a pair of user devices are directly connected together, they must 

be able operate their own flow control procedures without the aid of the 
network.

2.5 THE MININET SERVICE

The MININET Service, provided by the Virtual Connection Sublayer, 
can be summarized as follows:

(1) Its primary function is to maintain a transparent Virtual Connection 

between two devices, which are physically connected to two ports 

of the network. The degree of transparency is such that the devices 

are not necessarily aware of the network's presence and 

communicate as if they were directly connected together.

(2) Virtual Connections are established and closed by network 

management, at the request of a user management entity. This 

request is actually made either via the operator console or via a 

network management port, neither of which need be connected to 

either of the end-point nodes.

(3) Failure of an intermediate node or channel does not cause the loss 

of the Virtual Connection, provided that an alternative pathway 

exists between the end-point nodes, although some data loss could 

take place.

2. 5.1 Virtual Connection Management

The di-phasic connection establishment procedure, used in 

MININET, has already been described in Section 2.1.3. Connection 

service interactions, between the user and network managements, have 

been implemented in two ways. One type of MSAP is effectively the node 

operator console, where the operator represents user management. The 

connect request primitive is assembled interactively by the operator and 

the connect confirmation Is displayed at the same console. It is not 

necessary for the console to be situated at an end-point node. The 

other type of MSAP is a management port. This is a port which has been 

virtually connected to its local node manager. Thus, a host computer, 

connected to a management port, can request connection changes 

associated with any pair of ports in the network. This enables extra 
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higher-level services, such as host switching for interactive terminals 

and dynamic resource sharing between processors, to be implemented.

A port may be In a number of states, as far as the status of any 

Virtual Connection made to it is concerned. It may be inactive, i.e. not 

connected to anything. It may be connected to another port which could 

be located in the same node. In which case It Is referred to as a local 

connection, or in some other node, in which case It Is called a remote 

connection. It may be a management port connected to the node 

manager. This allows user management to communicate with network 

management and thus make changes to Virtual Connections, obtain 

network statistics, etc. The standby state is used to enable additional 

services to be provided by higher level entities. The port is connected to 

the node manager in just the same way as a management port. 

However. the content of any data sent to the manager is ignored. 

Instead, its reception triggers the manager to connect the port to a 

destination, whose address has already been stored in the manager. In 

contrast to the strict one-to-one rule on active connections, any number 

of ports over the network can be on standby to the same destination. An 

example of this mode of operation is the provision of a terminal server. 

All inactive terminals are on standby to a port connected to the terminal 

server. When any one of these terminals becomes active (i.e. by its 

user pressing any key) . it is automatically connected to the terminal 

server, provided that the latter is not already connected to some other 

terminal. By means of interactive messages, transparent to the network, 

the terminal user can request the server to connect the terminal to its 

desired host computer. This is done by means of a separate 

management connection to the terminal server.

Each node stores state information. concerning the Virtual 

Connections terminating at that node, in its virtual connection table 

(VCT). There is an entry in this table for each port physically connected 

to the node. This contains:

(a) The connection status of the port. This may be inactive, remote, 

local, management, standby or suspended. The latter state Is 

entered when the routing protocol determines that the destination 

node Is not currently reachable in the network. If the VCT is in a 

Station, the remote state is further sub-divided according to the 

output channel used by each Virtual Connection, as determined by 
the routing protocol.
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(b) The destination node and port address.

(c) The attributes of the connection. If the protocol used by the 

connected devices conforms to DIM-CPC, the network management 

can report certain exception conditions directly to either one of the 

connected devices, following the format described in Section 

3.3.3. In the typical case of the connected devices being a 

computer and a peripheral, the error messages are usually sent to 

the computer. The report local flag, within the port's attributes, 

indicates that the error messages should be sent to the port itself, 

while the report remote flag indicates that any error messages 

should be sent to the port at the other end of the connection.

(d) A password. This is a short password, which must be correctly 

quoted by any user management entity requesting the modification 

of the connection status of the port. It is intended to provide 

protection against the user accidentally specifying the wrong port, 

rather than any deliberate misuse of the network.

Additional entries in the VCT. used internally by the node management, 

are concerned with the implementation of the connection Information in 

the high-speed packet handling hardware (e.g. location in polling 

lists).

When a connection request (or disconnection request) is made via 

the node's operating console, the request is first assembled interactively 

with the operator. This is then dispatched to the VCT manager in the 

node first referenced in the request. Note that this may, or may not, be 

in the same node as that originating the request. If it is not, MCP 

(Section 2.6) is used to transport the request to the node. The VCT 

manager first checks that the request is acceptable as far as It is 

concerned. If the connection request is for a remote connection, it then 

sends a connect message, using MCP. to the VCT manager in the 

second node referenced. The second VCT manager replies indicating 

whether, or not. the request is acceptable and has been implemented. 

On receipt of a positive reply, the first VCT manager implements the 

change. In any case, the success, or otherwise, of the request is 

relayed back to the originating task and hence to the user management. 

Had the request concerned a local, management or standby connection, 

the VCT manager can implement the entire request without recourse to 

any other manager. Connection requests, arising from a user machine 
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communicating via a management port, are handled in an identical 

manner.

2. 5. 2 Network Ports

The main objective of the MININET Service is that the network 

should be as transparent as possible so that it is procedurally invisible to 

the devices communicating through it. In principle, any type of interface 

can be used, provided that the interface protocol does not demand the 

impossible from the network. In particular, any "read" type operation, 

where one side requires information from the other side within a very 

short time (typically considerably less than 1/xs) of activating a control 

strobe, cannot be implemented across any network. This is because the 

requested information cannot be transported across the network within 

the time allowed.

A simple, bidirectional port status bus, quite separate to the packet 

data transfer bus, allows communication between the ports and the node 

manager. This is used by the ports to signal device timeouts and 

interface transmission (parity) errors to the manager, while the manager 

can acknowledge these and selectively reset any port.

The DIM interface has been specially designed so that a network 

could be interposed between the two sides of the interface without any 

change to the interface protocol (Section 3.1). Therefore, the design of 

the DIM port is quite straightforward, without any protocol explicitly 

operating between the ports themselves. Instead, information arriving 

along the 16—bit data lines and the data/control shift line is mapped 

straight into the data field and data class flag of a packet. The only 

actions performed by the DIM port are: to buffer incoming and outgoing 

words, to detect when a user device fails to respond, and to detect 

parity errors across the interface and port bus.

The IEC-625 (IEEE-488) instrumentation bus [IEC 79] is a single 

source (the talker) , multiple destination (the listeners') . byte-serial bus. 

The talker and listeners are selected by the bus controller-in-charge 

which, by asserting the "attention" ATN control line, becomes the 

source, and broadcasts control set-up information to all devices. Data 

transfers are synchronized by means of 3 handshake lines: DAV 

controlled by the source (the talker or controller), and NRFD and NDAC 

controlled by the acceptors (only the listeners during normal data 
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transfer - all devices when the controller is active). The bus was not 

designed to be used across a network. Therefore, an IEC-625 port must 

use an additional protocol in order to obtain procedural invisibility. The 

port always acts as an acceptor. This enables it to capture any data 

transfers on one side of the bifurcated bus and relay them to the section 

of bus on the other side of the network, where the port acts as a 

source. The inter-port protocol uses handshake mode (Section 3.3.1) 

to interlock the flow of data between the ports, so that not more than 

one byte of information is buffered within the network or ports at any one 

time. This is linked with the handshake control lines of the bus. thus 

completely interlocking the flow of information along the bus. 

Consequently, the maximum information rate along the bus is restricted 

to the reciprocal of twice the end-to-end network delay. The information 

flows from the talker in normal mode and from the controller-in-charge 

when it asserts ATN. The value of ATN is relayed by the ports from the 

controller side of the network to the other half of the bus. Similarly, the 

value of the service request SRQ line is relayed to the controller side by 

the ports. Note that the controller and talker may well be on different 

sides of the network, implying that data could flow in different directions 

depending on the type of transfer.

The bus system controller controls the interface clear (IFC) and 

remote enable (.REN) bus control lines. These are relayed from one 

side of the bus to the other by the ports. The location of the system 

controller, and hence the direction of transfer of these signals as well 

as the initial direction of ATN and SRQ, is automatically determined 

when the system controller initializes the bus by asserting IFC. Each 

data packet travelling between the ports carries, in addition to the 8—bit 

bus data byte, two flags. One indicates the value of the EOI line which 

is used to flag the end of a block transmission. The other is used to set 

the ATN line on the destination port, when the data byte is a controller 

command. The parallel poll function cannot be implemented because it 

requires a solicited response within 200ns of the request being issued 

(via the EOI line) . Clearly, this requirement cannot be physically met 

when the information required lies some hundreds of metres away on the 

other side of the network.

Packetized speech can be carried through the network using the 

speech port. Two of these can be virtually connected through the 

network to be used as an full-duplex intercom. Also, it is possible to 
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connect virtually a speech port to a computer, via a DIM port, to allow 

recorded messages to be broadcast. The speech signal is sampled at 

8kHz, using a standard PCM CODEC, to form an 8—bit companded 

sample. Two of these samples are concatenated into a 16—bit data word 

which fills the data field of the packet. Thus, the peak load on the 

network is 4k packets per second. However, data is not transmitted 

continuously at this rate because the transmission is voice keyed, and 

so the network is loaded only when the input signal level becomes 

greater than a preset threshold value. The data is transferred between 

the speech ports in burst mode (Section 3.3.1), and a FIFO is used by 

the receiver to buffer short term fluctuations in the network transit delay. 

The CODECs are clocked independently by separate crystal oscillators. 

Therefore, there must be some slight difference in operating frequency 

between any two ports. This rate mismatch is handled by the occasional 

loss or duplication of a sample. This does not seem to be noticed by 

the users. When virtually connected to a computer, the data transfer 

would be synchronized by using handshake mode flow control.

2.6 THE MANAGEMENT TRANSPORT SERVICE

Each node manager consists of a number of distinct tasks, each 

concerned with separate jobs such as: supervising the channel 

controllers and packet handling hardware; maintaining the routing table 

and VCT; handling the operator console interactions; and so forth. The 

implementation of the Station manager is described more fully in 

Section 5.3. Inter-task communication and task synchronization are 

effected by the exchange of various types of message. The Management 

Transport Service effectively extends the scope of one type of inter-task 

message to the entire network. This service is transparent to the extent 

that the tasks are unaware of any procedural differences in the transfer 

of messages between tasks whether they are In the same node or in 

different nodes. An end-to-end protocol, the MININET control protocol 

(MCP), [MORL79] is used to provide this Transport Layer Service.

In the context of this protocol, a network message is defined as a 

block of information carried from one node manager to another by a 

series of network packets (Section 2.2.1). A network conversation Is a 

series of network messages sent alternately between two conversing 

nodes to effect one management operation. The originator of a 

conversation is called the caller, while the other party involved is 
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designated the callee.

This service and protocoi have the following constraints and 

requirements:

(1) Since a network conversation is invariably of the

"question-and-answer" or "request-action" type, there is no point 

In providing a full-duplex message service. Instead, the messages 

should be exchanged alternately.

(2) The network packets, used by MCP. must be the same size and 

use the same Packet Delivery Service as the user packets. The 

consequent small size of this PDU means that the SDU must be 

segmented and reassembled at the other end.

(3) MCP must not significantly interfere with normal traffic, i.e. 

network packets must not hog or block any network resource.

(4) It must be able to recover and continue after damage to. or loss 

of. a network packet.

(5) Total failure of the caller or callee, or total loss of communication 

between them (due to channel or relay node failure), must not 

cause the protocol handler or the communicating tasks to be 
indefinately suspended.

(6) Since the integrity of the whole network operation depends on the 

reliability of MCP. because of the sensitivity of the information it 

carries, end-to-end error protection at a message level is 
desirable.

(7) Since the very time-critical operations of routing and flow control 

do not use MCP, speed is not as important requirement as that of 
simplicity.

Because the Management Transport SDUs are constrained to 

operate alternately in a half-duplex fashion, the service provided is not 

a conventional connection type. In fact. It can be thought of as an 

extension to the user-confirmed connectionless type of service [VISS85], 

which restricts the number of SDUs to a single message from the caller 

and a single reply message from the callee. There is no such restriction 

with this service. However, in practice, no application has used more 

than two messages of the request and answer type. An originating task 

passes Its message to a local distribution routine which, either sends 
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the message directly to the destination task, if it Is in the same node, 

or to the transport server. If it is not. Only two service primitives are 

required: data request and data indication. These consist of: address 

fields specifying the source and destination nodes and tasks; flags to 

indicate that a reply is expected and to Indicate whether failure to 

transport the message should be reported to the source task (used by 

the data-request primitive only); status of message, indicating if there 

was an unrecoverable error while attempting to transmit the message or 

receive its reply (used by the data-indication primitive only); length of 

the message in 16—bit words; and the (variable-length) message itself.

In order to keep the transport server simple, a node can be 

involved in only one conversation at a time. If the node is not engaged 

in a conversation, the Transport server task is in broadcast mode and it 

is open for the reception of a message, either as a service request from 

another task in the same node in which case it becomes the caller, or 

a new incoming message from any other node in which case it becomes 

the callee. The reception of either of these places the server into 

privileged mode. It then responds only to network packets from the other 

node in the conversation, and queues any other requests to open a 

conversation. If a data request primitive indicates that a reply is 

expected, the server stays in privileged mode and awaits a reply.

In order to avoid flooding the network with a block of network 

packets forming a message, and to enhance the reliability of the 

service, network packets (as well as messages) are transmitted on a 

half-duplex basis. The phase bit in each network packet (Figure 2.7) is 

used as a modulo-2 sequence number by the protocol to implement the 

NPL [SCAN69] acknowledgement technique. Since this corresponds to 

MLP (Section 2.3.2) with the channel latency, m. equal to zero, it has 

the intrinsic simplicity and robustness of that protocol. However, in 

MCP, there is a possibility that a network packet might be lost (i.e. 

never delivered to the destination node) somewhere in the network. To 

overcome this problem, the caller maintains a timer and eventually 

retransmits its last packet just as if it had received a damaged packet. 

The period of this timeout must be greater than twice the maximum 

end-to-end network delay (even following a node or channel failure) , 

plus the maximum latency period in the corresponding node manager. If 

this were not the case, the original packet could eventually arrive after 

a retransmission request had already been made for a duplicate. This 
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duplication would continue, for the duration of the conversation, with 

every packet being duplicated and two packets being in the network at 

the same time. If necessary. the caller repeats the timeout 

retransmissions a number of times, before it decides that the pathway 

between the two nodes has permanently failed and aborts the 

conversation. Note, that the callee must not also retransmit after a 

timeout, since this would result in error message packets being 

transmitted In both directions at the same time, leading to the same 

situation as described above. Instead, the callee maintains a timeout, 

which is longer than the maximum number of consecutive retransmission 

timeouts performed by the caller.

In order to initiate a conversation, the caller sends a hello packet, 

which acts as conversation request and places itself into privileged 

mode. If the callee is in broadcast mode, it accepts the hello packet 

and replies with a hello acknowlegement packet. It then switches to 

privileged mode to block hello packets from other nodes. However, if 

the callee is in privileged mode, it ignores all network packets not 

originating from the node with which it is conversing. This can be done 

because each network packet contains the address of its source node 

(Figure 2.7). Therefore, the hello packet is ignored and the caller must 

retransmit the hello packet after an appropriate timeout interval. In the 

event of two nodes happening to send hello packets at the same time, 

the packets will be ignored, because each node would have switched 

into privileged mode, upon hello transmission, and would be expecting a 

hello acknowledgement. There is a danger that subsequent 

retransmissions will also be rejected if the hello retransmission is the 

same for both nodes. In order to overcome this problem, the hello 

retransmission timeout period is made different for each node by the 

simple expedient of making them proportional to the node address. The 

values of the phase bits in the hello and hello acknowledgement packets 

initialize the expected sequence numbers in both directions.

Following reception of the hello acknowledgement packet, the caller 

transmits the first packet of its message. The message consists of a 

two-packet header, a data field containing the SDU and a single packet 

checksum. The contents of the header are obtained from the data 

request SDU and consist of the source and destination task identifiers 

(the source and destination node addresses are already carried in every 

network packet) , a set of flags as specified in the data request primitive 
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and the length of the message. Each packet of the header and data 

fields is acknowledged by the callee with a message continue packet, 

which indicates that the next packet of the message should be sent. 

Following reception of the packet containing the checksum, the callee 

responds with a message acknowledgement packet, if the checksum is 

correct. If this is not the case, a message repeat packet is transmitted 

Instead. If the checksum repeatedly falls more than a certain number of 

times, the conversation is aborted by means of a message failure 

packet.

If a reply is expected, the caller responds to the message 

acknowledgement packet with a message continue packet. When the 

callee server receives this and the reply SDU from the original 

destination task, it starts to transmit the reply message following the 

same procedure, as already described, with the role of the caller and 

callee reversed. This alternate message exchange can continue as long 

as is required by the users of the Transport Service. When, eventually, 

a reply is not expected, the conversation is terminated. This is not as 

simple as it may appear in that it breaks the packet interlock and there 

is no way of acknowledging the last packet. In order to ensure that the 

last packets of significance are safely received, an additional goodbye 

packet is transmitted to signal termination of the conversation and to 

acknowledge the message acknowledgement packet. Following 

transmission of a goodbye packet, the server returns to broadcast 

mode. If the last message is sent by the caller and it does not receive 

a message acknowledgement packet, it will timeout and retransmit in the 

usual way. On the other hand, if the goodbye packet, transmitted by the 

caller following reception of a message acknowledgement packet, is lost 

or damaged, it is never retransmitted. It is important only because it 

informs the callee that its message acknowledgement has been received 

and It can return to broadcast mode. Its loss merely delays, until its 

timeout interval expires, the callee's return to broadcast mode. If the 

last message is from the callee, the goodbye packet from the callee, 

acts to stop the caller retransmitting the last message acknowledgement. 

If it Is lost, the caller will eventually reach the maximum number of 

retransmissions and return to broadcast mode.

End-to-end error protection is provided by the parity bits in each 

packet. For the messages, these are reinforced by the checksum. In 

combination, these longitudinal and transverse checks provide a 
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Hamming distance of 4. The hello, message continue, message 

acknowledgement, message repeat, message failure and goodbye 

packets do not form part of a message and do not, therefore, get 

additional protection from any checksum. Therefore, their codes are 

spaced at a Hamming distance of at least 8 from each other. Such a 

code can be constructed as follows. Since there are 6 distinct 

codewords to be generated, an information field of. at least. 3-bits is 

required. Consider a 15—bit binary cyclic code. The 

Bose-Chaudhuri-Hocquenghem (BCH) bound guarantees that the code 

will have a minimum distance of (at least) 8, if the roots of the 

generator polynomial include a0, a1, a2, a3. a*, a* and a6, where 

a is a primitive element of the Galois Field of order 2* (GF(24)) 

[PETE72]. This can be achieved by forming the generator polynomial,

g(X) = m0(X).m1(X).m3(X).m5(X) (2:15)

where m.(X) Is the minimum polynomial containing a. Since, mQ(X) 

is of degree 1, m±(X) and m3(X) are of degree 4, and mg(X) is of 

degree 2, the generator polynomial is of degree 11. Since the number 

of check digits is the same as the degree of the check polynomial, the 

information field length is 4, which is one more than that required. For 

example, using the tables of irreducible polynomials over GF(2), found 

in [PETE721, and taking the primitive polynomial, X4 + X + 1, as 
mx(X) results in

g (X) = XU + X10 t X® + X® + X® + x4 + X3 + 1 (2: 16)

Note, that only 14 bits are required for this code leaving two bits 

unused. However, attempting to incorporate these bits Into a linear code 

with a greater Hamming distance results in a check field which is too 

large for this application. Of course, the codeword need not be 

computed each time it is used because, with such a small code set, it 

is much easier to use a table look-up method both for encoding and for 

checking.
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Chapter 3

THE DIM INTERFACE

The advantages of an intermediate interface standard for the 

interconnection of computers and peripherals (or computers and 

computers) are well known. It avoids the necessity of designing a large 

number of special-purpose computer and peripheral specific interfaces. 

Normally, only one peripheral-independent computer interface need be 

designed for each computer type and only one computer-independent 

peripheral interface need be designed for each peripheral type. 

Furthermore, an intermediate interface becomes almost mandatory when 

computers and peripherals (or computers) are connected via a 

communications network. The DIM interface [MORL83] has been 

especially designed to facilitate computer-peripheral and 

computer-computer transfers either directly or via MININET.

3, 1 INTERFACE REQUIREMENTS

Early in the specification of MININET, it was necessary to adopt a 

flexible and economical standard interfacing technique that was 

compatible both with the requirements of its application areas (e.g. 

laboratory instrumentation, real-time audio processing, process control, 

etc. ) and with the transparency, cost and speed goals of the network 

(Section 1.2). The requirements of the interface can be summarized as 

follows:

(1) A single interface must be able to support 16—bit transfers in both 

directions and, in addition, the transfer of control information in 

either direction. That is. in terms of conventional computer 

terminology, a single interface should support "read data", "write 

data", "read status" and "write command" operations.

(2) Especially in process control and medical applications. It may be 

necessary to isolate a maverick device which Is threatening to 

disrupt the entire system by some form of unsociable behaviour. 

This, therefore, precludes the use of a bus system, such as

\
92



CAMAC [ESON72] and the IEC-625 bus [IEC 79], because there only 

has to be a short on a transfer control line, within one device, to 

halt all operations on the bus, or on a data line to corrupt the data 

transfers between any devices on the bus. An interface between 

individual devices allows each device to be isolated. Furthermore, 

it allows the network to apply flow control to each device 

individually, thus avoiding the danger of one user flooding the 
network with its data.

(3) Transfer rates should be controlled by asynchronous handshake 

signals in the interface to enable data throughput that is as fast as 

can be comfortably accommodated by both the sender and 

receiver. This freedom, however, may well be qualified by some 

relatively long timeout period to detect if the other party is powered 

down or faulty.

(4) Protection against both internal and external electrical interference 

should be provided to avoid false transfers, lost transfers or 

corruption of the information during transfer. Handshake interfaces 

are notoriously prone to false transfers and to transfer cycles being 

aborted early, due to impulsive noise appearing on the handshake 

lines. Thus, special attention should be given to the protection of 

these lines. Whether or not the data itself should be encoded for 

error protection across the interface is less certain, as most 

instrumentation systems and computer input-output systems have no 

such protection. Computer-computer block transfers would usually 

include end-to-end error protection of the entire block to cover all 

parts of the data's journey. Thus, the extra complexity of error 

encoding in the interface does not seem justifed for most 

applications. Nevertheless, there may be some very sensitive 

applications where, at least, a parity check should be made. 

Consequently, the interface should provide the option of including a 

parity bit with the data.

(5) The maximum transfer rate of the interface should be greater than 

the maximum user throughput requirements. However, It should not 

be so fast as to require any exotic logic technology in the 

interfaces. This requirement implies a maximum throughput in the 

10-20Mbps range. This speed is more than sufficient for most 

instrumentation applications. Of course, in an unsympathetic noise 

environment, the maximum transfer rate may be reduced in order 
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to improve the dynamic noise immunity, by allowing longer 

validation intervals (Section 3.2.1).

(6) Under normal conditions, the interface should be able to operate 

over distances of, at least, 10m at maximum transfer rates and up 

to 30m at reduced transfer rates. These distances are as great as. 

if not greater than, the maximum distances expected within one 

application area. Wider separations would be serviced by a 
communications system such as MININET.

(7) The interface should operate in such a way that a transparent

communications network can be inserted between two devices, that 

had been communicating directly, without any change to the 

interface or higher layer protocols. The most important

consequence of this requirement is that the interface cannot 

support directly elicited responses. That is, there can be no 

equivalent to the read strobe found in most computer memory and 

I/O buses because the propagation delay through the network 

would, most likely, be much longer than the maximum read cycle 

time the computer could tolerate. The equivalent of directly elicited 

responses can be achieved by sending a control message 

requesting the desired data. In order to be compatible with 

computer buses, which expect to read data and status directly with 

minimum delay, the computer interface must contain data and 

status registers which are updated from the peripheral via the 
interface.

(8) The cost of the interface should be low, commensurate with the 

relatively inexpensive peripherals that it is interfacing. This 

constrains many of the above requirements. Without cost 

constraints, it would be possible to design a very fancy interface 

with a very fancy price tag which, for the last very good reason 

alone, would not be used! Consequently, the interface has to do its 

job as quickly and efficiently as possible while remaining cheap and 
easy to implement.

3.2 INTERFACE SPECIFICATION

DIM is fundamentally a symmetrical interface with the operation of 

the two sides of the interface being almost identical. However, there are 

some differences between the two sides associated with line assignment 
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and arbitration. For this reason, one side of the interface is termed the 

master and the other the slave. Negative logic convention is used for all 

lines In the interface with the line terminations attempting to pull each 

line to a high (i.e. false) level. Therefore, the driver's low output state 

must be active, while the high state may be active or passive. Further 

information on the electrical and mechanical characteristics of the 

interface can be found in [MORL83].

3. 2. 1 The Basic DIM Interface

The basic DIM interface consists of 22 signal lines comprising 16 

bidirectional data lines, a data/control shift line, master handshake and 

slave handshake control lines, and a dominance line.

(1) Data Transfers

Sixteen parallel data lines (DDL0-DDL15), numbered in a bigendian 

sense [C0HE81] (i.e. bit 0 is the most significant), are used to perform 

the required 16—bit transfers. Of course, devices do not have to use all 

of these lines. For example, terminals usually transmit characters along 

the 8 least significant lines while ADCs, having a resolution less than 16 

bits, usually use the most significant lines. The lines are bidirectional to 

avoid the unnecessary wires, connector pins and electrical buffering 

components required if two unidirectional sets of data lines are used.

Transfer of data between a computer and a peripheral is usually 

divided into command or status information on the one hand, and actual 

end-user data on the other. Different registers are associated with each 

class of transfer. The data/control shift line (DDC) qualifies the data 

lines to distinguish between these classes during a transfer. If this flag 

is set. the data lines contain normal end-user information (data class). 

If DDC is not set. the data lines contain control information (control 

class) . Like the data lines. DDC is bidirectional. This enables a single 

DIM interface to handle the four basic computer-peripheral operations: 

read-data, write-data, read-status and write-command.

(2) Transfer Control

Two pairs of transfer control lines are provided in the interface. 

The master handshake lines, master interrupt (DMI) and master 
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acknowledge (DMA), are used to control the transfer of data from the 

master to the slave. The slave handshake lines, slave interrupt (DSI) 

and slave acknowledge (DSA), are used for transfers from the slave to 

the master. When a device wishes to transfer data (of either class), it 

sets its interrupt line true (DMI if it is the master or DSI if it is the 

slave) to indicate it has data available. After the other device has 

detected this interrupt and is ready to receive data, it replies by setting 

its acknowledge line true (DMA if it is the slave or DSA if it is the 

master) . Once the original device has detected the acknowledgement it 

then, and only then, enables its data and data class transmitters (17 

bits in all) , thus placing the data to be transferred onto the interface 

lines. At the same time, it sets its interrupt line false. When the 

receiver has detected the removal of the interrupt, it first waits for any 

reflections and crosstalk on the interface cable to die down before 

quietly accepting the data (usually by loading it into a buffer register). 

It then sets the acknowledge line false. When the sender detects the 

removal of the acknowledgement, it disables the data and data class 

transmitters and the transfer cycle is complete.

If a noise impulse appears on an interrupt line, there is a danger 

that it could cause a false transfer of nonsensical or duplicate 

information, or cause the corruption of data passing in the opposite 

direction. Similarly, a noise impulse on an acknowledge line could result 

in the loss of a transfer and/or corruption of data passing in the 

opposite direction. The designers of the British Standard Interface 

(BS4421) [BSI 69] recognised this danger [DAVI73] and protected their 

interface by the use of low-pass filters and large hysteresis receivers on 

the handshake control lines. An alternative method, using validation 

timeouts, has been adopted for use with DIM. This method is more 

suitable for implementing in an LSI chip than that using low-pass filters. 

Logic state changes of a control line are not accepted until it has stayed 

in Its new state for a fixed validation interval. If, at any time during this 

Interval it returns to its original state, then It is ignored. If, 

subsequently, it goes to its new state again, the validation timing starts 

again from zero. Any noise Impulses of width less than the validation 

interval are therefore rejected, no matter how close together they occur, 

and irrespective of their magnitude.

The noise rejection characteristics of the validation timeout 

approach may be compared with that of a first-order low-pass filter, by
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calculating the Impulse height required for acceptance as a function of 
the pulse width. In order to 

constant of the filter, t c  , is 

transition is the same as
o'

the

make the comparison 

set so that the delay 

validation interval, tQ.

equitable, the time 

to a normal signal 

That is

To
‘o

AVs
(3: 1)

where AVs is the normal

,O9 AVs - AVth

signal swing and AVth is the swing required to 
reach the receiver threshold level. Using a rectangular pulse of height, 

Vp, and width, r, as the model of a noise impulse, the noise immunity 
of the filter is given by

Vp = (1 - e T/T0)"1 AVth (3: 2)

while that for the timeout circuit is

Vp co T < *o*
= AVth, r >

(3: 3)

Perhaps a more realistic

function of peak height, Vp, and time constant, r.

noise immunity of the filter circuit can be found by equating the peak 

value of the convolution of the noise impulse and the filter impulse 

response to the threshold voltage. Solving for the noise immunity.

noise impulse model is a decaying exponential

For this model, the

(r0/r - 1) AVth

(r/ro)T/(To t) - (t /t o)t o /(t o t ) °'

(3. 4) 
= e AVth, T = rQ.

Similarly, for the timeout circuit the noise immunity to the exponential 
impulse model is given by

Vp = e^77" AVth (3:5)

Using (3:2) and (3:3), the performance of these circuits for a 

rectangular noise pulse model is shown in Figure 3. 1 where 

AVs =1.5 AVth. The performance of the low-pass filter circuit Is labelled 

"L. P.F." and that of the validation timeout circuit is labelled HV.T.O.H.
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Figure 3. 1: Noise Immunity to Rectangular Noise Impulses

Similar plots for the decaying exponential noise pulse model, using 

(3:4) and (3:5), are shown in Figure 3.2. From both plots, it can be 

seen that the validation timeout approach has superior immunity against 

short noise pulses of width less than about tQ, while the filter circuit is 

slightly better for longer pulses. In addition, a series of closely spaced 

noise spikes cannot "pump-up" the timeout circuit as they can with the 

filter circuit, so reducing the latter's immunity.

Leading and trailing edges of the interrupt and acknowledge lines 

must be validated. Consequently, there are four separate validations in 

each transfer cycle. In a noisy environment, the validation Interval can 

be increased, provided that It does not slow the maximum transfer rate 

required by the application. Note also, that the data lines are not 

sampled until a settling-time interval has elapsed after the last movement 

of any line on the interface. Thus, the danger of crosstalk or reflections 

in the interface cable Is, for all practical purposes, completely 

removed. In the present implementation of the interface, the minimum 

validation interval is approximately 100-200ns, while the minimum settling 

time, before the data is accepted. Is approximately 300ns. This results
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Figure 3.2: Noise Immunity to Exponential Noise Impulses 

in the maximum throughput of the interface being approximately one 
million transfers per second.

(3) Master-Slave Relationship

The master and slave designation of the interfaces principally 

determines which control lines are used by which party. However, the 

master interface has one additional function. Since the data lines are 

bidirectional, it is not possible to perform transfers in both directions at 

the same time. The master interface arbitrates, on a first-come, 

first-served basis, which transfer goes first. It performs this by ignoring 

the master acknowledgement, if it is already asserting the slave 

acknowledgement, and delaying the slave acknowledgement, if it is 

already receiving the master acknowledgement. Note that the master 

designation determines the location of the arbitration logic, rather than 
any priority of data transfer.

By convention, peripherals use slave interfaces and the network 

uses master interfaces. It is necessary, therefore, for computer 
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interfaces to be masters when they are connected directly to a 

peripheral, while they must be slaves when connected via the network. 

To facilitate this, without resorting to hardware modification, network 

interfaces permanently assert true the dominance line (DDM) in the 

interface and so are called dominant masters. The computer interface, 

called a submissive master, monitors this line and. if it is asserted, acts 

as a slave interface while, if it is not, acts as a master. Since slaves 

do not assert the dominance line, a submissive master can be 

successively connected either to a slave or to a dominant master without 

modification. To prevent noise on the dominance line confusing a 

transfer, it is heavily low-pass filtered by the submissive master. Note 

that two submissive masters cannot be directly connected together 

although, of course, they can through the network. Thus, in order to 

connect two computers together directly, one interface must be switched 

either to slave or dominant master mode.

3. 2. 2 Extensions to the Basic Interface

The basic interface is sufficient for most connections between 

computer and peripherals. However, for some applications, such as 

certain computer-computer and computer-network connections, there is 

a need for further qualification of the data transferred. Also, some 

applications requiring higher data integrity, such as process control, 

may need some error protection during the data transfer. These 

requirements are satisfied within DIM by means of address and parity 
lines respectively.

Cl) The DIM Address Lines

Six bidirectional address lines (DAL0-DAL5) are provided, which 

are enabled and can transfer information at the same time as the data 

lines. These lines can be used to provide sub-addressing for links 

between intelligent devices. For example, two computers can be 

connected, via a single DIM interface, with the DIM addresses being 

mapped into the computers' peripheral address spaces to form a number 

of independent connections between processes in the two machines. 

Another application arises when a computer is virtually connected to a 

number of devices via a communications link or a network such a 

MININET. It is economically undesirable to connect the computer to the 
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network via separate interfaces for each remotely connected peripheral, 

as the transfers would first be demultiplexed to each interface and then 

remultiplexed into the network station. A more attractive solution is to 

use a single interface between the computer and the network, with the 

address lines discriminating between the different devices connected. 

The data would only be demultiplexed when it reached the remote DIM 

ports connected to the destination devices. Of course, to utilize such an 

economy, a multiple DIM computer interface is required.

The end-to-end flow control for each multiplexed connection is 

independent, because each DIM address has its own control class of 

transfer used by the flow control techniques described in Section 3.3.1. 

However, as far as the local flow control across the interface between 

the computer and the network is concerned, the multiplexed connections 

are treated as one. Consequently, if congestion associated with one 

Virtual Connection causes the network port to stop accepting data 

transfers for that connection, it would also block all the other 

connections multiplexed along that DIM interface. For this reason, 

multiplexing a number of connections along a single DIM interface is 

only recommended where the destination devices are associated with the 

same project or connected to the same destination node.

(2) Parity Control

Two bidirectional parity lines are included in the interface. One. 

the data parity line (DDP), provides an odd parity check of the data and 

the data/control shift lines. The other, the address parity line (DAP), 

provides an odd parity check on the address lines. In order to enable 

interfaces without the parity option to be connected to interfaces that are 

checking parity, without spurious errors being detected, two additional 

lines are provided. The master parity available (DMP) and the slave 

parity available (DSP) indicate whether the master or slave interface 

respectively are generating parity signals. This is a similar facility to that 

provided in the BS4421 interface [BSI 69], Of course, a single bit error 

on this line could result in the detection of a false error or a failure to 

detect a parity error, because the parity check logic was disabled. This 

danger is minimized by heavily low-pass filtering the parity available 

lines. These lines, like the dominance line, are quasi-static and would 

be expected to change state only when the interface connector is 

physically moved. Since all the interface signals are asserted-low, which 
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is the active level, undriven lines are pulled high (i.e. false) by the line 

termination [MORL83]. Therefore, DMP and DSP are automatically false 

when connected to a basic master or slave interface which do not use 

those lines.

3.3 THE COMPUTER-PERIPHERAL CONVENTION (DIM-CPC)

In order to realize fully the advantages of an intermediate interface 

standard, the design of a computer interface must be independent of the 

device to which it is connected, whether the device be a terminal, an 

ADC or another computer. Conversely, the device interface design 

should be independent of the computer to which it is connected. To this 

end, only the device interface can contain the device specific circuitry 

and only the computer interface can contain the circuitry specific to the 

computer. It is possible to standardize further, as the procedures 

involved in initializing and maintaining the transfer of information between 

a device and a computer are remarkably uniform, irrespective both of 

the device and the computer type. This enables the bulk of the computer 

interface to be constructed independently, not only of the peripheral, but 
also of the computer itself.

In order to achieve this independence, it is necessary to specifiy a 

common initialization, error and flow control protocol and to define the 

format of the control class transfers between the device and computer 

interfaces. This Is done with the DIM computer—peripheral convention 

(DIM-CPC). In addition, the convention allows an intervening 

communication system such as MININET to report any error condition to 

the computer interfaces.

This approach facilitates the construction of multiple DIM-computer 

Interfaces like the interface processor shown in Figure 3.3. Only that 

part which is concerned with the connection to the computer's peripheral 

bus need be specific to the particular computer type. This computer 

personality interface must conform to the electrical and mechanical 

standards of the computer bus and may contain logic to map status and 

command Information between the computer's conventional assignments 

and that of the DIM-CPC.

The central part of the interface contains a data-in, a data-out, a 

command and a status register for each DIM interface handled. The 

data-in and data-out registers act as buffers for data class transfers
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Figure 3.3: Typical Uses of a DIM Interface Processor
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between the computer and the DIM interface. (Remember that directly 

elicited responses, such as a computer bus read operation, cannot be 

extended out to the remote device. Instead, the computer reads the data 

in the buffer register.) The command registers are loaded from the 

computer. Part of each command register is reserved for control of the 

Internal functions of the interface processor such as the enabling of 

timeouts and computer interrupts. The remainder of the register is 

relayed to the device in a control class transfer. Each status register 

contains information about the health and operational mode of the device 

and the ready (not busy) semaphores controlling the flow of data to and 

from the device. It is updated by events occurring within the interface 

processor, such as the computer reading or writing to the data 

registers, and by the receipt of control class transfers from the device 

or. possibly, from the network itself.

The DIM control sections in the computer and device interfaces 

handle the DIM transfer procedure. In the computer interface, the DIM 

section usually maintains a timer to monitor each transfer and prevent a 

lockout situation caused by. for example, the device being switched off. 

The device interface contains circuitry specific to the interfaced device. 

This may well include: a control register, which is updated by 

commands from the computer received via DIM control class transfers; a 

status register, whose contents are relayed to the computer interface 

whenever a change occurs; and data buffer registers for the data class 

transfers.

The overall formats of the command register and transfers are 

shown in Figure 3.4. and those of the status register and transfers are 

shown in Figure 3.5. The precise mechanisms, by which the bits within 

the command and status registers are set and cleared, are detailed in 

Table 3.1 and Table 3.2. These provide a formal description of a 

DIM-CPC interface and need not concern those interested only in the 

general principles underlying the protocol. Although DIM-CPC is 

described here in the context of computer-peripheral communication, 

the formats of the command and status transfers are complementary and 

their operation is designed to facilitate computer-to-computer 

communication.
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Figure 3.4: DIM-CPC Command Format

BIT MNEMONIC DESCRIPTION
0 READ CONT

BRST TRAN
Read Continuous (Burst Transfer). Commands the device to 
output data in burst mode without waiting for a data request 
acknowledgement from the computer interface.

1-6 Dev. Dep. Mode Sets mode of operation of the device. Allocation specific to 
device type.

7-8 Dev. Dep. Trig. Triggers the device to perform some action which is 
device-specific.

9-10 INIT Initialization Commands. See Table 3.3.

11 DATA REQ Data Request. Requests the device to send one word of data 
to the computer.

12 Res. Reserved for future use within the computer interface. Must 
be zero.

13 ENB T T Enable Transaction Timer. Allows the transaction "deadman’s" 
timer to run.

14 ENB A A Enable Auto-acknowledge. Causes the computer interface to 
send a data request message to the device whenever the 
data-in register is read by the computer.

15 ENB INT Enable Interrupts. Causes the computer interface to request 
a computer interrupt whenever an event requiring computer 
servicing occurs.

Use of bits 1 and 8 are restricted to commands to non-intellegent devices only. 
Otherwise they must be zero.
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Figure 3. 5: DIM—CPC Status Format

register waiting to be read.

BIT MNEMONIC DESCRIPTION
0 WRT CONT

BRST TRAN
Write Continuous (Burst Transfer). Informs the computer 
interface that the device can accept data in burst mode.

1 REM ERR Remote Error. See Table 3.5.

2-7 Dev. Dep. Allocation specific to device type.

8 TR ERR Transmission Error. See Table 3.5.

9 CMD REQ Command Request. Indicates that the device has sent an 
initialize or block terminate message. See Table 3.4.

10 DEV RDY Device Ready. Indicates that the device is ready for 
operation. See Tables 3.3 and 3.4.

9-10 INIT Initialization Messages. See Table 3.4.

11 WRT RDY Write Ready. Indicates that the computer can safely write 
into the data-out register.

11 DATA REQ Data Request. Requests the computer to send one word of 
data.

12 T E Q Transmission Error Qualifier. See Table 3.5.

13 D U Device Unavailable. See Table 3.5.

14 READ OVL Read Overlap. Indicates that data has arrived from the device 
before the previous data had been read by the computer.

15 READ RDY Read Ready. Indicates that there is new data in the data-in

Exception Condition Bit.
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Table 3.1: Command Register Control Functions
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Table 3.2

Status Register Control Functions

BIT MNEMONIC SET CLEARED after power-up

0
2-3

WRT CONT 
Dev. Dep.

by receipt of a status word 
with the corresponding bit true.

OR by receipt of a status word 
with the corresponding bit false

OR by receipt of a command word 
with bit 9 true AND bit 10 true.

1
4-7

9

REM ERR
Dev. Dep.
CMD REQ

by receipt of a status word 
with the corresponding bit true.

OR by receipt of a status word 
with the corresponding bit false

OR by receipt of a command word 
with bit 10 true.

8 TR ERR by receipt of a status word 
with bit 8 true

OR by detection of a parity error 
In a word received from the 
device or network.

OR by receipt of a status word 
with bit 8 false

OR by receipt of a command word 
with bit 10 true.

10 DEV RDY by receipt of a status word 
with bit 10 true.

OR by receipt of a command word 
with bit 9 true AND bit 10 true.

11 WRT RDY IF bit 10 of the status register 
(DEV RDY) is set. by receipt of 
a status word with bit 11 true

OR receipt of a status word with 
bit 10 true AND bit 11 true

OR. IF bit 0 of the status register 
(WRT CONT) Is set, after 
dispatch of a data word 
towards the device.

OR by the computer writing to the 
data-out register

OR by receipt of a command word 
with bit 9 true

OR by receipt of a status word with 
bit 10 true AND bit 11 false.

12 T E Q by receipt of a status word 
with bit 12 true

OR by expiration of the transaction 
timeout Interval

OR by detection of a parity error 
In a word received from the 
device or network.

OR by receipt of a status word 
with bit 12 false

OR by receipt of a command word 
with bit 10 true.

13 D U by receipt of a status word 
with bit 13 true

OR by expiration of the DIM 
timeout Interval

OR by receipt of a status word 
with bit 13 false

OR by receipt of a command word 
with bit 10 true.

14 READ OVL IF bit 15 of the status register 
(READ RDY) is already set. 
by the arrival of a data word 
from the device.

OR by receipt of a command word 
with bit 10 true.

15 READ RDY IF bit 10 of the status register 
(DEV RDY) is set. by the 
arrival of a data word from 
the device.

OR by the computer reading the 
data-in register

OR by receipt of a command word 
with bit 10 true.
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3. 3. 1 Flow Control

The transfer of information from the computer to the device is 

controlled by the WRT RDY and WRT CONT bits in the status register. 

After initialization, when it is ready, the device sends a data request 

message by means of a control class transfer with bit 11 (DATA REQ) 

true. Bit 0 (BRST TRAN), of the same transfer, determines whether the 

end-to-end handshake transfer mode (bit 0 false) or the burst transfer 

mode (bit 0 true) is to be used for the write operations. The data 

request message sets the WRT RDY semaphore in the status register and 

causes a computer interrupt if enabled. By reading the status register, 

the computer can sense when WRT RDY becomes true. It can then 

safely write data into the data-out register. This event immediately clears 

WRT RDY in the status register. The data is subsequently dispatched, as 

a data class transfer, through the DIM interface towards the device.

In the end-to-end handshake transfer mode (Figure 3.6a), WRT 

RDY stays reset until the device signals its readiness to accept another 

data word by dispatching a data request message to the computer 

interface which then sets WRT RDY. The process continues with data 

class transfers from computer to device alternating with control class 

transfers from device to computer. In the burst transfer mode 

(Figure 3.6b), WRT RDY is set immediately data is dispatched through 

the DIM interface and the device sends only the one data request 

message to start the burst. Thus, data is transferred as fast as the 

computer can write into the data-out register and the interface can 

dispatch the data. The device must be capable of accepting data at this 

rate or a loss of data will occur. The end of the burst is indicated by 

the computer issuing a block terminate command, which is described in 

Section 3.3.2.

Note that the computer procedures are identical in both modes of 

transfer. For this reason, in some Implementations, when the computer 

reads the status register, the group error flag (GE), which is the 

inclusive-OR of the exception bits in the status register (bits 4-9 and 

12-14), is substituted for WRT CONT in bit 0.

The read process is controlled by READ RDY in the status register 

and DATA REQ, ENB A A and READ CONT in the command register. If 

READ CONT (bit 0) is not set by the computer, the data transfer from 

the device to the computer interface operates in handshake mode. If the
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Figure 3.6: Write Procedures

computer sets READ CONT. the data transfer operates in burst mode. 

ENB A A (bit 14) enables the interface to acknowledge automatically the 

receipt of data, by sending a data request message after the data has 

been read by the computer.

In order to start a read operation, the computer writes a command 

word with bit 11 (DATA REQ) set. This is dispatched to the device, 

whereupon the bit is reset in the command register. After receipt of this 

data request message, the device sends data to the computer. Receipt 

of the data class transfer by the computer interface causes bit 15 (READ 

RDY) of the status register to be set and. If enabled, a computer 

Interrupt requested. The computer can detect when the data has arrived 

by reading the status register and checking bit 15. If it is set. the
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computer can then read the data-in register, which causes READ RDY to 

be reset.

Had both READ CONT and ENB A A been false in the original 

command word, it would be necessary for the computer to output a 

command with bit 11 true after each read operation, as shown in 

Figure 3.7a. In this mode, there is an explicit handshake between the 

device and the computer itself.

If, in the original command. ENB A A had been true and READ 

CONT false, then, following a computer read operation, the computer 

Interface automatically sets DATA REQ in the command register and 

dispatches a control class transfer towards the device, as shown in 

Figure 3. 7b. Thus, it is only necessary for the computer to issue one 

command placed at the beginning of the transfer of a block of 

information. There is still an implicit handshake between the computer 

and the device, by means of the computer driven read operation. 

Consequently, there is no danger of data being overwritten in the 

computer interface before it has been read. Note that, because DATA 

REQ cannot be cleared by a computer command with bit 11 false (other 

than an initialization command) . and because it is immediately cleared 

after dispatch of a copy of the register (Table 3.1), commands can be 

given in the automatic handshake mode, without data request messages 

being lost before they are transmitted, or duplicate requests being 

generated.

The burst mode of transfer is obtained by setting READ CONT, as 

well as DATA REQ, in the original command (ENB A A should be 

reset). The device receives this command, with BRST TRAN true, as a 

burst request and so sends data continually, without waiting for data 

request messages, as fast as the data is generated, and the interface 

or a possibly intervening network can transmit. There is, therefore, a 

danger that data is not read by the computer before it is overwritten by 

new data arriving in the data-in register of the computer interface. If 

this occurs, the error flag READ OVL (bit 14) of the status register is 

set to warn the computer. The burst mode of transfer to the computer is 

commonly used with terminals, which generate data relatively slowly, 

and. in any case, the character rate from the terminal to the 

terminal-DIM interface cannot normally be dynamically controlled. 

Another common application is where a high-speed device, such as a 

multiplexed ADC, is connected via a network and the trans-network delay
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is too long for the handshake mode. In the latter case, the priority of 

the computer interface and its software server, as well as the interrupt 

latency of the computer, can be critical if overlap of data in the 

computer interface is to be avoided. The interface processor is 

frequently connected to the computer with direct memory access (DMA) 

for these applications. High speed block transfers between computers 

can also be undertaken, using burst mode and the block terminate 

command (Section 3.3.2) . Note that, as far as the computer is 

concerned, the automatic handshake mode and the burst mode read 

procedures are identical, with the exception of the contents of the initial 

command word.

If the computer and device are separated by a communications link 

or network such as MININET. the maximum data transfer rate in the 

handshake mode is limited by twice the end-to-end transport delay of 

the network, whereas, in the burst mode, it is limited by the maximum 

effective user throughput of the network. Consequently, even with a 

network like MININET, which has been specifically designed to minimize 

the transport delay rather than just maximizing throughput, burst mode 

will be considerably faster. MININET target throughputs for these two 

modes are discussed in Section 1.2.3.

3. 3. 2 Initialization

The initialization procedure provides the means to reset the device 

and computer interfaces into a fully defined initial condition, with the 

pathway between the two clear of any pre-existing messages. Bits 9 and 

10, of the control class transfers and of the command and status 

registers, are concerned with the initialization procedure. The format of 

the initialization messages, and their effect on the status register when 

transmitted, is shown in Table 3.3. The effect on the status register 

when received is shown in Table 3.4.

To Initialize the interfaces, the computer outputs an initialize 

message, which is a command word with bits 9 and 10 true. This clears 

the status register entirely including the CMD REQ flag (bit 9) and DEV 

RDY semaphore (bit 10). If the computer Is ready to receive data from 

the device, bit 11 (DATA REQ) of the command would also be true. If 

it is not ready, bit 11 of the command word is false, which clears the 

corresponding bit in the command register (Table 3.1). Thus, any
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Table 3.3

Effect of initialize Commands on Status Register

Message = Initialize Initialize 
Acknowledge

Block 
Terminate

None

Code (bits 9,10) 11 01 10 00

DEV RDY (10) Cleared Unchanged Unchanged Unchanged

WRT RDY (11) Cleared Unchanged Cleared Unchanged

READ RDY (15) Cleared Cleared Unchanged Unchanged

Exception 
Condition bits 
(1, 4-9, 12-14)

Cleared Cleared Unchanged Unchanged

Non-Exception 
Condition bits 
(0, 2, 3)

Cleared Unchanged Unchanged Unchanged

Table 3.4
Effect of Received Initialize Message on Status Register

Message = Initialize Initialize 
Acknowledge

Block 
Terminate

None

Code (bits 9,10) 11 01 10 00

CMD REQ (9) Set Cleared Set Cleared

DEV RDY (10) Set Set Unchanged Unchanged

WRT RDY (11) Note 1 Note 1 Note 2 Note 2

READ OVL (14) 
READ RDY (15) Unchanged Unchanged Unchanged Unchanged

Others (0-8,
12-13) Note 1 Note 1 Note 1 Note 1

Note 1: Jam loaded from corresponding bit in message.
Note 2: Set if corresponding bit in message is set; otherwise unchanged. 
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undispatched data request message Is overwritten by the initialize 

command. After the contents of the command register have been 

dispatched towards the device, bits 9 and 10 are cleared to avoid 

duplication.

Upon receipt of the initialize message, the device resets itself, 

clears any error flags (unless the fault condition still exists), and halts 

any ongoing data acquisition or output. After this process is complete, 

the device sends a control class message back to the computer. This 

message contains the new status of the device and has bit 9 false and 

bit 10 true (.initialize acknowledge'), to acknowledge the initialize 

command. The arrival of this acknowledgement, at the computer 

interface, causes the DEV RDY semaphore (bit 10) in the status register 

to be set, thus informing the computer that the device is ready for 

operation. Any subsequent status transfers from the device, informing of 

exception conditions or carrying a data request, must have bits 9 and 10 

false. The DEV RDY semaphore remains set, being only cleared by a 

further initialize command from the computer (Table 2.2).

In the interval between the initialize command and its 

acknowledgement, while DEV RDY is reset, the WRT RDY and READ RDY 

semaphores remain firmly reset - despite the arrival of any data or data 

requests from the device. Thus, any pre-existing data traffic is ignored. 

However, other status bits, including error flags, can be set and 

computer interrupts are not suppressed. Consequently, the computer is 

informed of any error message, which may well originate in an 

intervening network, concerning the fate of the initialize message.

The device itself can issue an initialize message, which indicates 

that it is initialized, but it requires a command from the computer as an 

acknowledgement. (For a non-intelligent device this usually only occurs 

after power-up.) This message sets bit 9 (CMD REQ) and bit 10 (DEV 

RDY) in the status register of the computer interface. The WRT RDY 

semaphore is jam loaded with the value of bit 11 (DATA REQ) of the 

status message. The computer must respond with bit 10 of its command 

word true - normally by sending an initialize acknowledge message. 

When the computer loads the command register with this message, the 

exception condition bits and READ RDY in the status register are reset. 

However, DEV RDY. WRT RDY and the remaining non-exception 

condition bits (0, 2 and 3) remain unchanged (Table 3.2), so that, if 

a data or burst request was included with the received initialize 

115



message, they are not lost.

It is quite acceptable for the computer to respond with an initialize 

instead of an initialize acknowledge command. However, this second 

initialize message would require an acknowledgement from the device 

before data transfer could begin. Of course, if both sides responded 

with initialize messages deadlock would result.

The block terminate command (bit 9 true, bit 10 false) is used, 

following the transmission, usually in burst mode, of a block of data. It 

signifies to the device that the block is complete, and that the device 

should reply with a further (burst) data request message (bits 0 and 11 

true) . when it is ready for the next block. The block terminate command 

automatically clears the WRT RDY semaphore in the status register 

(Table 3.3). which was previously set by the dispatch of the last data 

word. Thus, the computer will wait, until it receives the data request 

message from the device, before transmitting the next block of data in 

burst mode. Reception of a status word containing a block terminate 

message sets the CMD REQ flag. If data was being received in burst 

mode, and then transferred to the computer memory via a DMA 

controller, the block terminate message would cause the controller to 

terminate the transfer and interrupt the main processor, since CMD REQ 

is an exception bit. The computer would then be able to process the 

data or switch DMA buffers, prior to requesting the next block in burst 

mode, by sending a command with bits 0 and 11 set. Had the device 

selected the handshake mode of transfer (by keeping bit 0 of its status 

message false) . the WRT RDY semaphore would not be affected by the 

block terminate command, since it would be reset already. In this case, 

the terminate command merely delimits the block for the device.

Once set by the computer, bits 9 and 10 of the command register 

are only reset after dispatch to the device (Table 3.1). Consequently, 

the initialize commands cannot be inadvertently lost or duplicated by any 

subsequent commands, provided that, bits 9 and 10 of these commands 

are reset. An initialize command has priority over an initialize 

acknowledge command, in the sense that an initialize command will 

overwrite an, as yet undispatched, acknowledge message in the 

command register.

Data, or burst, requests and other status or command messages 

may be included with an initialize or initialize acknowledge message in
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either direction. These overwrite any flow control information transferred 

prior to the initialization of the two interfaces. For example, at the 

beginning of the transfer of a block of data from a device in automatic 

handshake mode (Figure 3.7b), the computer can issue a single 

command with bits 9, 10, 11 and 14 true. Both interfaces are then

initialized and the device informed that the computer is ready to receive 

data. The device then acknowledges the initialize command and sends 

the first data word. After the computer reads this, the next data request 

is automatically returned to the device with bits 9 and 10 false. In order 

to avoid data being transferred before the initialize acknowledgement has 

been dispatched, it is important that control class transfers have priority 

over data class transfers, when being dispatched by either interface. Of 

course, the communication network being used must handle all transfers 

on a first-come, first-served basis, quite independently of the data 

class. Indeed, the initialization procedure depends on the network 

maintaining a strictly sequential flow of information between the two 

Interfaces.

3. 3. 3 Exception Conditions

The status register contains two types of status bits, in addition to 

the three semaphores concerned with initialization and flow control 

(bits 10. 11 and 15). If any of bits 1, 4-9 or 12-14 are set, an 

exception condition exists and the group error (GE) flag becomes true. 

The exception condition may be an error occurring within the device 

(such as a paper low condition in a printer) , or it may be an error 

arising out of the DIM interface functions themselves (such as a parity 

error) , or it may be an alarm condition such as an bearing overheating 

in the plant being controlled by the device. It may not be an error 

condition at all - such as a block terminate message resulting in CMD 

REQ (bit 9) being set in the status register. The common characteristic 

of all these conditions is that the flow of data cannot continue without 

special action being taken. The form of the recovery procedure must, of 

course, remain device dependent. However, it typically involves the 

re-initialization of the interfaces, followed by a second attempt at the 

data transfer. although frequently the condition requires manual 

intervention to clear the fault.

The GE flag enables the computer or DMA controller to ascertain 

whether the device is healthy by testing a single bit. Device service 
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routines normally check that no exception condition bit is set in the 

status register, prior to testing the READ RDY or WRT RDY semaphores.

The non-exception condition bits (0, 2 and 3) of the status register 

do not set the GE flag and so can be set without affecting the data flow. 

Bit 0 (BRST TRAN) is reserved for use by the flow control procedures 

(Section 3.3.1). while bits 2 and 3 can be used, for example, to 

indicate the device's mode of operation.

Whenever a status message arrives, the exception and 

non-exception bits, of the status register, are updated with the contents 

of the corresponding bit in the message. The exception to this is bit 14 

(READ OVL), which is wholly controlled from within the computer 

interface. It is necessary for the device to send a status message 

whenever its internal status changes. This status message may be 

transmitted together with flow control or initialization messages in the 

same control class transfer.

An exception condition can be detected and reported by the device, 

by an intervening network such as MININET or by the computer interface 

itself. The exception conditions. READ OVL (bit 14) and CMD REQ 

(bit 9), have already been described. Bits 4-7 are used for the 

exception conditions that arise from within the device. Obviously, their 

detailed assignment is highly device dependent. Bits 1, 8, 12 and 13

are used to signal exception conditions that are concerned with the 

general DIM interface functions and are almost completely independent 

of the device type. The format of this interface error group of messages 

is shown In Table 3. 5.

Some of the error conditions are detected by the computer interface 

itself. If its DIM interface times-out when attempting to output to the 

device, bit 13 (D (J) of the status register is set to signify a local DIM 

timeout error. This timeout could be due to the interface being physically 

disconnected or the device powered down or, if connected through a 

network, the local node could be powered down. If, when the network 

attempts to deliver a word to the device, a DIM timeout takes place due 

to the device not being connected or being powered down, the network 

sends a remote DIM timeout message back to the computer interface.

If a parity error is detected in an incoming transfer, bit 8 (TR 

ERR) and bit 12 (T E Q) of the status register are set to indicate that 

a received transmission error has been detected. If a transmission error.
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Table 3. 5 

Interface Error Codes

Message Origin

Status Bits

1

REM 
ERR

8

TR 
ERR

12

T E 
Q

13

D U

Local DIM 
Timeout

Computer 
Interface

0 0 0 1

Transaction 
Timeout

Computer 
Interface

0 0 1 0

Received 
Transmission Error

Computer 
Interface

0 1 1 0

Transmitted 
Transmission Error

Device 0 1 0 0

Remote DIM 
Timeout

Network 1 0 0 1

Outgoing 
Transmission Error

Network 1 1 0 0

Incoming 
Transmission Error

Network 1 1 1 0

Link Down Network 1 0 1 1

No Error 0 0 0 0

in data travelling in the opposite direction, is detected by the device, it 

can inform the computer by sending a transmitted transmission error 

message. If a parity error is detected by the network, or a word is 

dropped for any other reason, the network can send an outgoing 

transmission error or an incoming transmission error message, 

depending on the direction of the damaged transfer. It should be noted 

that MININET does not use this mechanism for error recovery in its 

channels, as this is handled within the network quite transparently to the 

user. This type of error message occurs if a parity error is detected, by 

the network. In data transferred through the DIM port, or (hopefully very 

rarely) due to corruption of the data within a network node. In all cases 
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of a parity error being detected, the damaged word is never delivered. 

If, due to node or channel failures,the network cannot deliver or receive 

any data from the device, the computer is informed by means of a link 

down message.

All the exception conditions reported by the network are 

characterized by the REM ERR flag (bit 1). The network must know 

whether a particular device is capable of accepting these network error 

messages - i.e. whether the device is intelligent and conforms to 

DIM-CPC (at least as far as the exception condition handling is 

concerned). Separate flags in the VCT (Section 2.5.1) indicate whether 

errors can be reported to the device connected to the local network port 

or, alternatively, whether they can be sent to the device connected to 

the remote port at the other end of the connection. In the case of 

transmission errors where both devices are intelligent, the error 

message is sent to the device that should have received the damaged 

word.

In order to avoid a lockout situation, due to a data or data request 

word being lost between the device and the computer interface, or due 

to a fault condition within the device, the computer can request its 

interface to maintain a "dead-man's timer" by outputting a command with 

bit 13 (.ENB T T) true. While this bit is set in the command register, a 

timer is reset and started whenever a word of either class is dispatched 

towards the device. The timer is halted whenever: a data or control 

class message is received from the device or network; data is 

dispatched in burst mode; or a DIM timeout or parity error is detected 

by the interface itself. If none of these events occur, a timeout will 

eventually take place and bit 12 is set in the status register to indicate 

that a transaction timeout has occurred.

It can be seen, from Table 3.5, that bit 13 (D U) of the status 

register is set if there is a local or remote DIM timeout, or the device 

Is unreachable through the network. This flag, therefore, serves to 

inform the computer that the device is unavailable. Also, bit 8 (TR ERR) 

indicates that, somewhere, a transmission error has occurred.

3.3.4 Command Structure

The control of the internal operation of the non-intelligent devices 

is effected by means of the device-dependent portion (bits 1-8) of the 
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command word. There are two types of command bits. Most affect the 

mode of operation of the device and they remain in force until the 

computer explicitly changes the mode. These mode commands are 

duplicated every time a command word is sent to the device from the 

computer interface. These duplications do not have any deleterious 

effect, as they merely update the control register within the device with 

the same information that it already contains. Typical of this type of 

command function are echoplex control of a terminal interface and 

selection of an external or internal clock in a DAC. Device dependent 

bits 1-6 are used for mode commands and bit 0 (READ CONT), is also 

of this type.

The other type of command triggers a single event or sequence of 

events in the device. For example, a single command may trigger an 

analog data acquisition system to perform a scan of its input channels. 

Device-dependent bits 7 and 8 are used for these trigger commands. 

The data request and initialization commands are also of this type. 

Clearly, duplication of a trigger command must be avoided. For this 

reason, the trigger bits (7-11) in the command register are cleared 

after dispatch to the device.

Bits 12-15 of the command register are reserved for internal use in 

the computer interface and are always transmitted as zero towards the 

device (Figure 3.3). Bit 15 (.ENB INT) is used to enable computer 

interrupts. If it is set, a computer interrupt request is generated 

whenever: data or status information is received by the interface; or 

when a DIM timeout, parity error or transaction timeout is detected by 

the interface; or when data is dispatched towards the device if WRT 

CONT is set in the status register. The use of bit 13 (ENB T T) and 

bit 14 (ENB A A) has already been described. Bit 12 is reserved for 

future use within the computer interface and should remain zero.

3.4 OPERATIONAL EXPERIENCE

The DIM interface has been in use at the Polytechnic of Central 

London and the University of Bologna since the mid-seventies, with 

interfaces to DEC PDP-11, Perkin-Elmer and Apollo computers. In that 

time, a large amount of equipment has been constructed using the DIM 

Interface, including high-speed converters for digital audio processing 

and recording, computer-controlled adaptive filters and an arbitrary 
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waveform generator, as well as the more usual computer peripherals, 

such as terminal interfaces, paper tape readers, etc. The interface has 

also been used for resource sharing between microcomputer 

development systems and a minicomputer, allowing the microcomputer 

access to the hard discs and fast printers of the minicomputer system. 

Construction of most DIM devices has been greatly eased by the use of 

a standard DIM interface circuit board, which handles the transfer cycle 

and flow and initialization protocols. It is only necessary, therefore, to 

design the device-specific circuitry for each device type. As an 

example. Figure 3.8 shows an exploded view of a 16—bit stereo DAC

Figure 3. 8: Construction of a HI-FI DAC with a DIM Interface

capable of working up to a 50kHz sample rate. The DIM interface circuit 

board can be seen in the left of the picture. Work is currently underway 

to replace this board with a custom chip. To the right of the DIM 

interface card is the device specific board. This contains two 8K x 16—bit 

buffer memories, which are used to buffer blocks of audio data 

transmitted through the DIM interface in burst mode (Section 3.3.1). 

together with control and timing logic, address counters and bus 

switches. The DAC itself, together with its deglitching amplifiers, is 

contained in the diecast box located in the upper right of the picture. 

The DAC is optically isolated from the rest of the device circuitry in 
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order to eliminate Interference from the digital circuitry.

Figure 3.9 shows the implementation of an interface processor

Figure 3. 9: Implementation of an Interface Processor

connected to a Perkin-Elmer 3210 computer. The computer personality 

interface is located within the card cage of the computer, directly 

connected to its I/O backplane bus. This is connected to the interface 

processor by means of two 34-way flat cables which can be seen in the 

lower right of the picture. The interface processor can handle up to 16 

DIM interfaces by means of the DIM ports connected immediately to the 

left of the Interface processor. (In the picture. 4 ports are shown 

connected to their devices via 34-way flat cables. ) The main part of the 

interface operates as a high-speed FSM, which executes a routine 

whenever a computer read or write, DIM transfer or a timeout takes 

place. The main controller is implemented using a microprogrammed, 

purpose-built microsequencer. The data, status and command registers 

for each DIM interface are located within a 64 x 16—bit RAM. A special 

processor, implemented using field programmable logic arrays (FPLAs), 
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is used to perform the various operations on the status and command 

registers. The speed of the processor is such that the computer treats 

the. sometimes quite remote, devices as if they were separate 

peripherals directly connected to its I/O bus. The DIM interface control 

is handled by a separate processor. A bank of addressable semaphores 

is used to indicate when the contents of a data-out or command register 

are scheduled for DIM transmission. The Interrupt requests are handled 

In a similar manner by a different bank of interlock semaphores.

With the advent of affordable custom integrated circuits, the 

economic justification for the multiple-port interface processor is much 

less. Figure 3.10 shows a Multibus (IEEE-796 [IEEE83]) card providing 

two DIM interfaces. Each Interface uses a single-port interface 

processor implemented on a CMOS gate array. (Only one of these 

64-pin DIL packages is shown inserted in the picture.) The bulk of the 

rest of the circuit board is taken up with Multibus address comparators 

and transceiver chips to provide the relatively high drive currents 

required by DIM and Multibus.

Figure 3.10: A Dual DIM-Multibus Interface
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Chapter 4

THE ROUTING ALGORITHM

4. 1 REQUIREMENTS

The objective of the routing management algorithm is to find the 

"best" routes from each node to every other reachable node in the 

network. The best route or path between two nodes is defined as the 

route which has the minimum "cost" compared with all other possible 

routes. This cost is computed as the sum of the costs of each individual 

hop along the route and will be referred to as the distance along that 

path between the two nodes. Each route should be optimized 

individually. Note, that this does not necessarily produce a set of routes 

which is globally optimum in the sense of minimizing the total cost of all 

the routes in the network. In fact, optimizing globally is not only difficult 

to implement, but also can lead to certain path costs being made 

unnecessarily high in the interests of the average common good 

[MCQU771. Such a proposal would be very unfair.

Each hop is identified as a link defined, in Section 2.3.3, as a 

pathway from one node to an adjacent node via a channel. Remember 

that, for multi-node channels, several links are logically multiplexed 

through the same channel. There are a number of possible methods of 

defining the cost of each hop (the link weight). It could be the same 

value (e.g. unity) for all links regardless of the speed or length of the 

link, or the traffic levels in each link. Such a metric has the advantage 

of simplicity and results in a algorithm which attempts to minimize the 

number of hops along each path. However, if there are significant 

variations in the performance of different links, it is advantageous to 

weight each link with a hop cost which could be a measure of the link 

throughput or propagation delay.

Since the network is required to minimize delay rather than 

maximize the throughput (Section 1.2), link weights should be 

proportional to an estimate of the hop delay. This is defined as the 

period between a packet arriving at the Channel Service boundary in the 

node and it arriving at the same point in the next node. It consists of 
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two components: one being the time spent queuing for the channel and 

the other being the channel transit time including any buffering within the 

channel controllers. Provided that the output switch processor 

(Figure 2.18) is not limiting throughput, the latter component of the hop 

delay is inversely proportional to the channel speed for a given channel 

protocol. Note, that a half-duplex protocol generally provides less delay 

than a full-duplex channel with the same throughput. If the routing 

algorithm is connectivity-driven, the link weights do not change 

dynamically. Instead, an a priori estimate of the queuing delay is used. 

Hence, routing changes only occur if the connectivity of the network 

changes (i.e. node or link outages or restoration). It would be quite 

possible to maintain different hop costs for different destinations. With a 

traffic-driven routing algorithm, the hop cost adapts dynamically to 

changes in traffic conditions as well as the link availability. This requires 

some sort of ongoing measurement of the delays being experienced by 
the traffic through each link.

At first sight, some form of traffic-driven metric appears to be 

desirable for use in MININET. However, there are a number of reasons 

why the algorithm should only be connectivity-driven.

(1) When all traffic to a particular destination is switched onto a new 

channel by the routing algorithm, the length of its queues and 

hence its hop delay will increase. This could well make the 

previously used channel appear, once again, more attractive 

causing the routing algorithm to switch back the traffic to the 

original channel. The consequent increase in traffic on the original 

channel would trigger a repeat of the first routing change. Thus, 

instability could well result. Traffic bifurcation cannot be used 

because of the danger of sequence errors violating the 

requirements of the Packet Delivery Service (Section 2.4). 

Incremental changes in route cannot be made when Virtual 

Connections are established and removed. This is because packets 

In intermediate store-and-forward nodes are classified purely on 

the basis of their destination node address, regardless of their 

Virtual Connection or even their source node. In any case, routing 

changes would be implemented relatively slowly at a rate dependent 

on the user opening and closing connections.

(2) In a large network, with many independent users, the aggregate 

traffic may approximate to a quasi-stationary stochastic process. 

126



where statistics gathered from the (recent) past provide a 

reasonabie estimate of future requirements. However, in a small 

network serving the type of environment for which MININET has 

been designed, the assumption of traffic ergodicity is highly 

suspect. There are fewer users, who, by their nature, tend to be 

intermittent and bursty in their use of the network. Furthermore, 

since the users are frequently co-operating in the control of linked 

industrial processes or scientific experiments, they cannot be 

treated as statistically independent sources. In fact, even with wide 

area networks, there are real problems in obtaining a meaningful 

traffic-driven metric. The simplest method is to take a 

instantaneous sample of the total length of the output queues for 

each channel and use this, perhaps with the addition of a fixed 

bias term, as the link weight. This was the method used in the old 

ARPANET routing protocol [MCQU78], However, the random 

fluctuations of the queue lengths cause excessive variations in the 

link weights. In order to reduce the variance of the delay 

estimates, the queue lengths could be averaged in some way. 

While heavy averaging produces a more reliable estimate in a 

steady state situation, it will respond very sluggishly to any change 

in the traffic pattern.

(3) It will be shown, in the development of the routing protocol, that 

the maintenance of intrinsic sequentiality, when routing changes 

are made, results in unavoidable delay to packets while the old 

path is flushed. Thus, the effort of attempting to follow an ever 

changing optimum path may well be more costly than staying with 

one which is slightly suboptimal.

The link weights would be set initially from a knowledge of the type 

and speed of the channel through which it passes. This latter

information is obtained from the channel controller. Note that,

notwithstanding the arguments outined above for fixed link weights, it 

should be possible for the weights to be adjusted by management entities 

external to the routing algorithm such as the operator. This manual 

intervention may well be based on knowledge, external to the network, of 

future traffic patterns.

The routing algorithm must automatically, and as rapidly as 

possible, adapt to topological changes in the network, including the 
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failure and recovery of nodes and channels. Note, that failure and 

recovery of nodes can be treated as the failure and recovery of all the 

links to that node, as far as the routing algorithm is concerned.

The algorithm must operate with no a priori knowledge about the 

topology of the network. The only node-specific information available to 

the routing manager is the node's own address and the link weights. 

This implies not only that a newly powered-up node must dynamically 

find routes to all other nodes in the network, but also that all the other 

nodes must learn about the new node and find routes to it. 

Furthermore, the algorithm must be non-centralized in that it should not 

be dependent for its operation on any central network control centre.

In most routing algorithms, the sequentiality of the packets is not 

guaranteed following a route change. A sequence error is most likely to 

occur following the recovery of a node or channel when the new route is 

considerably shorter than that previously used. The algorithm for use in 

MININET must guarantee that a route is changed without any sequence 

errors occurring. Note that this implies, but goes much further than, 

the requirement that it never routes packets in a loop (loop freedom).

4.2 EXISTING ROUTING ALGORITHMS

4. 2. 1 Taxonomy

Over the years there have been many attempts to produce a 

taxonomy of routing techniques [BOEH69], [RUDI76], [MCQU77A], 

[DAVI79] and [SCHW80]. Figure 4. 1 shows a general classification 

scheme largely based on [DAVI791. Most routing methods maintain a 

routing directory or table in each node. This table is used on a 

packet-by-packet basis to determine the next link that the packet is to 

travel.

There are some routing methods, however, that do not require a 

directory. With flood routing [BOEH691, an arriving packet is 

re-transmitted on all the other links with the exception of the incoming 

link. Obviously, the network is soon flooded with copies of the packet. 

In order to stop the process continuing ad infinitum, two methods may 

be used. In one method, each packet contains a hop counter, which is 

initially set to a number greater than the number of hops between the 

most distant node pair in the network. At each hop, the counter within
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each packet is decremented. When it reaches zero the packet is 

destroyed. The other method uses some form of unique identification 

(e.g. a serial number) to enable each node to remember when it has 

retransmitted a particular packet. Subsequent reception of the same 

packet will not cause a duplicate retransmission of that packet. While 

very wasteful of network resources and increasing the danger of 

congestion, this method is. at once, simple, robust and fast. For these 

reasons, it is often used for the dissemination of control information in 

the more sophisticated routing algorithms such as the new ARPANET 

routing protocol [MCQU80].

With random routing LPROS621. incoming packets are randomly 

assigned to an output link regardless of whether the link leads towards 

or away from the packet's destination. Like flooding, this algorithm is 

simple and requires no knowledge of the network topology. However, it 

is also very inefficient and indeterminately slow. Again, a hop counter 

can be used to kill packets that have been in the network too long. This 

may be because the destination is unreachable, or merely because the 

random path of the packet happened not to touch the destination node. 

Hot-potato routing [BOEH64] is similar to random routing except that an 

incoming packet is assigned to the shortest output queue instead of a 

queue selected at random.

If a routing directory is used, its contents may remain fixed after 

being initially loaded when the network was configured or it may be 

updated automatically so that it adapts to changes in the network 

characteristics. In the former case, the fixed directory may contain only 

a single route to each destination or it may. in addition, contain one or 

more alternative routes. The international airline reservation network. 

SITA [BRAN72] uses fixed routes with alternatives stored in each node for 

use in the event of a node or line failure. In IBM's Systems Network 

Architecture (SNA) . a total of up to 8 alternative routes can be stored 

[AHUJ79J. With an adaptive routing approach, the routing directory is 

updated automatically. It can be further sub-divided into isolated, 

distributed, centralized and hybrid methods depending on the scope of 

the routing information and the location of the entities responsible for the 

updating of the routing tables. Note, that the distinction between 

connectivity-driven and traffic-driven metrics is often confused with the 

distinction between fixed and adaptive routing. A routing algorithm which 

responds only to changes in the network topology is still adaptive in this 
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classification scheme.

With isolated adaptive routing the routing decisions are taken on the 

basis of a pre-loaded routing table, the operability of the output links 

and the length of the output queues associated with each link. One 

example of this method is the shortest queue plus bias algorithm 

[FULT72] (also discussed in [DAVI79D . which calculates a figure of 

merit, for each output link, from the weighted sum of the number of 

spare slots in its output queue and a bias figure obtained from the 

routing table. Note that, if the weight of the bias term is set to zero, it 

becomes a hot potato algorithm, while if the weight of the queue length 

term is set to zero, the routing becomes fixed. Thus, this method may 

be thought of as a combination of those two techniques already 
discussed.

In order to increase the efficiency of the routing algorithm, a more 

global view of the network status must be taken. One approach is to use 

centralized adaptive routing where status reports containing queue 

lengths, link availability, etc. , are sent from all nodes to a network 

management centre (NMC). On the basis of this information, the NMC 

calculates the optimum routing table for each node and then distributes 

them to the nodes. Note that, by the time status reports have reached 

the NMC, the routing calculations performed and the routing table 

updates distributed, the information upon which the tables were derived 

may well be out of date and the chosen routes no longer the best. 

TYMNET [RAJA78] is the best known example of the use of this 
technique.

Instead of the routing update calculation being performed at a 

centralized site, the computation could be spread over the network, with 

each node calculating its own routing table on the basis of status 

information received from other nodes in the network as well as local 

information. This is distributed adaptive routing. It has all the reliability 

and flexibility of distributed techniques in general. However, the 

disadvantages of the original ARPANET routing protocol [MCQU78], which 

is probably the best known example of a distributed adaptive routing 

algorithm, are often erroneously ascribed to distributed routing 

algorithms in general (e.g. [DAVI79]). In addition, a distributed

algorithm shares the problem of centralized techniques in that the 

information upon which routing decisions are based is always out of date 

and consequently potentially erroneous. In fact, even if the entire 
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network status was available to all nodes, the so-called "magic eye" or 

"ideal observer" technique, the routing decisions would still not 

necessarily be optimal because the network conditions could change by 

the time packets have reached other parts of the network [DAVI79],

Of course, mixtures of these techniques can be proposed. One 

hybrid adaptive routing algorithm, proposed by Rudin [RUDI76], is delta 

routing which is a combination of centralized and isolated adaptive 

routing. The centralized portion gives the long-term, long-distance, 

strategic view, while the use of local information (i.e. queue lengths 

and link availability) enables the algorithm to make fast tactical routing 

changes in response to changes in the local environment.

Given the requirements on the MININET routing protocol of 

optimality, adaption to changes in topology and avoidance of centralized 

control, it is obvious that some form of directory-based, adaptive, 

distributed protocol is required. Following McQuillan [MCQU80], the 

operation of a distributed adaptive algorithm may be divided into four 

functions.

1. A measurement process to establish the current cost of each hop.

2. A protocol for disseminating this information to the rest of the 
network.

3. A calculation to determine the contents of each routing table.

4. An implementation of the packet-by-packet routing using the 

information stored in the routing table.

The first and last function are, more or less, independent of the others. 

However, the second and third are interrelated depending on how the 

algorithm is distributed.

The measurement process has already been discussed in 

Section 4. 1 and a connectivity-driven algorithm chosen with the fixed link 

weights only being modified by manual intervention. The protocol and 

calculation process are discussed in the next section.

4.2.2 Routing Protocols

Probably the most well known routing protocol is the original 

ARPANET protocol [MCQU78J which was designed in 1969. It has been 

adopted, with some modifications, by a number of other networks 
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including CIGALE, the communications network for CYCLADES [POUZ74] 

and the European Informatics Network (EIN) (PONC751. The algorithm, 

which is a distributed form of the shortest chain algorithm [FORD62], 

seeks to construct, for each destination, a multi-branched tree rooted at 

the destination. Each node stores, for each of its links, an estimate of 

the distance to each destination via that link. From this network delay 

table it selects, for each destination node, the link with the minimum 

distance and enters this into its routing directory. It also places the 

corresponding minimum distance into its minimum delay table. The size 

of the network delay table is proportional to N.L where N is the number 

of nodes in the network and L the average number of links attached to 

the node. The size of the minimum delay table is proportional to N only. 

Periodically, (every 2/3s in the case of ARPANET) the node transmits 

its minimum delay table to its adjacent neighbours and receives their 

minimum delay tables. These tables update the network delay table after 

the addition of the appropriate link weight (which is traffic-driven in 

ARPANET). In CIGALE, the update period is normally very long (20s) 

but more rapid updates occur when network changes occur [GRAN78].

Although the algorithm will eventually converge to the optimal tree 

under steady state conditions, transient loops are frequently formed 

while the algorithm adapts to changes in network topology. A most 

unfortunate characterisic of the algorithm is that, while "good news" 

(i.e. link recovery) propagates quickly through the network, "bad news" 

(i.e. link failure) travels relatively slowly [MCQU78L This is because, 

following the failure of its down-tree link, a node will believe that it can 

reach the destination through its up-tree links with little increase in 

delay. However, this belief is based on tables that were produced before 

the failure of the link and the up-tree nodes still believe the optimum 

route Is towards the failed link. Depending on how many hops it takes to 

reach a part of the original tree unaffected by the link failure, it can 

take several update cycles for the algorithm to settle. During that time, 

the resulting loops make any attempt at maintaining packet sequency 

impossible, as well as worsening the congestion following the link 

failure. This problem was patched-up, to some extent, by means of a 

hold-down technique, which introduced inertia into the changes to the 

minimum delay table [MCQU78J. All in all, however, this protocol does 

not appear to be a very promising basis for the MININET routing 

algorithm.
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The new ARPANET routing algorithm [MCQU801 largely overcomes 

these problems by the use of a completely different algorithm. Instead of 

a distributed calculation attempting to construct separate trees rooted at 

every destination, each node attempts to construct a tree rooted at 

itself. It is, therefore, a source based algorithm with, in one sense, a 

centralized calculation performed In the root node. Every node 

asynchronously broadcasts its set of link weights to all the other nodes 

in the network using flood routing. This raw information forms the 

database within each node, that allows it to calculate the tree with itself 

at the root.

The algorithm, actually used to construct this tree, is an extension 

of Dijkstra's shortest path first algorithm [DIJK59]. Starting with the root, 

the tree is constructed by adding the node closest to the root and 

continues by adding the next nearest node and so on, until the furthest 

node has been included. The next nearest node is selected, at each 

incremental stage, by maintaining a list of all nodes adjacent to, but not 

yet part of. the partially constructed tree. Since the minimum distance 

to the root, from every node within the tree, is known, the current 

shortest distance for the nodes on the list can be found by adding the 

appropriate link weight. For the case of a node having more than one 

neighbour in the tree, the minimum distance is taken. After selecting 

the nearest node in the list and adding it to the tree, the list is updated 

by adding any new adjacent nodes and updating their minimum distance. 

This process is repeated until all nodes have been included in the tree. 

The routing directory is formed by noting the first branch (i.e. the 

root's output link) leading to each destination node in the tree. In the 

ARPANET implementation, the algorithm is extended to allow incremental 

modification upon the reception of a new set of link weights. The storage 

requirement of this algorithm is proportional to N. L. The routing 

message size is proportional to L but, unlike the old algorithm where 

only one message per update cycle is transmitted along each link, N 

messages are required to broadcast information about all nodes and 

their links. While less prone to looping than the original ARPANET 

algorithm, this protocol does not guarantee freedom from loops. This is 

because, in a dynamic situation, there is no guarantee that the trees 

calculated by different nodes are consistent. In addition, a special flood 

routing protocol is required to broadcast the link weights to all nodes.

As far as the requirements for MININET are concerned, a much 
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more applicable routing algorithm has been developed by Merlin and 

Segall [MERL79]. Their algorithm converges to the optimum routes very 

rapidly, guarantees loop freedom at all times and handles, en passant, 

the network initialization problem. It is distributed and requires 

information to be exchanged only between adjacent nodes so that NTAN 

messages can be used. Unfortunately, it does not maintain intrinsic 

sequentiality. However, it provides a basis upon which a sequential 

algorithm can be designed. Like the original ARPANET algorithm, it 

constructs a tree routed at the destination or sink. Successive update 

cycles of the protocol minimize the distance from each node to the sink.

Merlin and Segall present two versions of their algorithm. The basic 

protocol cannot handle certain changes of topology such as node or 

channel failures. The extended protocol can handle single or even 

multiple failures. The algorithm operates independently for each sink. 

Each node has a routing link (connected to the preferred neighbour in 

the terminology of [MERL79]) . These routing links can be thought of as 

directed arcs which, with the nodes, form a tree directed towards the 

sink as shown in Figure 4.2. This tree spans the network. The nodes at 

the tips of the outermost branches will be denoted as the leaves. Only 

one type of NTAN message is used in the basic protocol, the distance 

update (UPD) message (.MSG in the terminology of (MERL79J) . This 

carries an estimate of the distance to the sink from the sending node.

< An update cycle is initiated by the sink sending a UPD message to 

all its links with, of course, a distance of zero. When a node receives 

a UPD message, it adjusts the distance to allow for the added delay of 

the link and records that distance. If the message arrived along the 

routing link, the node transmits the shortest distance it has received, by 

that time in the update cycle, to all the links except the routing link. 

UPD messages, therefore, propagate from the sink up-tree towards the 

leaves. Only when a node receives UPD messages from all its links does 

it send a UPD message back down the routing channel. Of course, this
I

first occurs in the leaves. At this time, the node can select a new 

routing link if It has found one with a distance shorter than that of the 

current routing link. The second phase of the update cycle, therefore, 

consists of UPD messages propagated back down-tree towards the sink. 

When the sink has received a UPD message back from every link, the 

update cycle is complete.

In order to extend the basic protocol to cover line failures and other
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topological changes, the UPD message is lengthened to include a 

sequence number. When a link fails, the node down-tree of the failure 

sends a topological change (CHG) message down-tree to the sink. This 

causes the sink to abort any previous update cycle and start a new cycle 

with a higher sequence number. Meanwhile, the node immediately 

up-tree of the failure sends UPD messages out on all its links with its 

distance set to infinity. Nodes up-tree of the failure propagate this 

message on. as in the basic protocol, so that all the nodes up-tree of 

the failure soon learn that they have lost their path to the sink. Both the 

CHG propagating down-tree and the UPD propagating up-tree carry the 

highest sequence number received by the nodes either side of the 

failure. The new update cycle, originating from the sink after the news 

of the failure reaches it. has a higher sequence number and this causes 

the intermediate nodes to abandon any previous updates. When a node 

up-tree of the failure receives a UPD message with a sequence number 

higher than that which announced that it had lost its path, the node 

immediately chooses the receiving link as its new routing link. Thus, a 

new tree is constructed. Further update cycles, with the same new 

sequence number, will optimize the new tree. Note, that the protocol 

can handle multiple line failures as. at least, the failure closest to the 

sink will result in a CHG message reaching the sink to trigger a new 

update cycle. Node failures are equivalent to failures of all links 

connected to that node. When a link becomes operational, a CHG 

message is generated by the associated nodes and a new update cycle 

will be initiated by the sink with a higher sequence number. Therefore, 

no timeout is theoretically required by the protocol to operate safely. 

However, it would be a brave network designer that did not put a 

long-stop timer in the sink process!

As with all the routing algorithms described, the memory required 

by this protocol is roughly proportional to N. L but. unlike the others, the 

size of the messages is fixed and only one message is exchanged 

between nodes per update cycle. However, because there are N sinks in 

the network, the number of messages required to provide an update 

cycle to every sink is proportional to N. This protocol forms the basis of 

the sequential MININET routing algorithm. It will be referred to as the 

nonsequential protocol.
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4.3 THE SEQUENTIAL ROUTING PROTOCOL

4. 3. 1 The Basic Protocol

A path change, in the protocols described so far, could very well 

lead to a sequence error occurring in one or more of the Virtual 

Connections established to that sink. In order to make a routing change 

safely, a node must be sure that the old pathway is clear before it 

makes the change. To achieve this, a new NTAN message type is 

introduced, the flash control (FLS) message. An update cycle now 

consists of four phases instead of the two in the non-sequential version. 

Phase 1 consists of UPD messages moving up-tree, phase 2 of FLS 

messages moving down-tree, phase 3 - FLS messages moving back 

up-tree and finally, phase 4 - UPD messages moving down-tree. The 

basic protocol only requires that the FLS message carries a variable, f. 

with two values, FLU and NFL. When travelling down-tree an FLS 

message containing f=FLU, FLS(FLU), acts as a flush request message 

while, when travelling up-tree, it acts as a permit to make a routing 

change. The no-flush message, FLS(NFL), indicates that no flushing is 

required when travelling down-tree and a refusal to change route when 

travelling up-tree. This ability to refuse up-tree route changes is utilized 

during the recovery from link failures (Section 4.3.2).

Phase 1 proceeds, as with the non-sequential protocol, with UPD 

messages moving up-tree. When a node receives a UPD message along 

its routing link, it designates that link as the down-tree link. It then 

sends, on all other links, a distance estimate (UPD) message based on 

the shortest distance, from itself to the sink, that it has obtained so far. 

When any node, including the sink, receives a UPD message from a 

link, other than the routing link, it responds by sending a no-flush 

message back along the same link to acknowledge receipt of the UPD 

message. At this stage, the mutual exchange of UPD and FLS messages 

only occur along cross-tree links (i.e. links that do not currently form 

part of the tree) . When a node has received FLS messages from all its 

links except its down tree link (this first occurs in the leaves) , it may 

decide, on the basis of the distance information then available to the 

node, to make a routing change. To prepare for the change, the node 

first freezes packet flow down the old pathway and dispatches a flush 

request message (FLS(FLU)) down-tree. When a node receives a flush 

request, it must ensure that all packets in that pathway have been 
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dispatched down-tree, before it passes on the flush request. Of course, 

this is not done until FLS messages are received from all the other 

links. If none of the FLS messages contain flush requests (i.e. they are 

all FLS(NFL)) and the node does not wish to make a routing change, 

then a no-flush message is sent down-tree. If a node wishes to make a 

routing change and also receives a flush request from an up-tree link, 

it must flush itself before freezing the pathway.

The sink waits until it has received an FLS message from all its 

links. It then starts phase 3 by sending a flush message out on all links, 

except those that had already transmitted a no-flush message during 

phases 1 and 2. When a node receives an FLS message from its 

down-tree link, it transmits an FLS message along all links that have not 

previously transmitted an FLS(NFL) as an acknowledgement to a UPD 

message. The contents of the propagated FLS message is FLU if 

FLS(FLU) had been received from the down-tree link and the node 

flushed its buffers during phase 2. Otherwise, FLS(NFL) is transmitted. 

If the node had frozen the packets flowing down its pathway during phase 

2, the receipt of a flush message from its routing link acts as an 

indication that the old pathway has been successfully flushed. However, 

the node cannot immediately change its routing link because the new 

link, with the shortest distance to the sink, may well be connected to a 

node which is still using the same link in the opposite direction.

Once a node has received a UPD and an FLS message from all 

links, it sends a UPD message back along the down-tree link. If the 

node Is ready to make a routing change, it selects the link with the 

shortest distance estimate as its new routing link and releases the sink 

traffic along this link. This first occurs in the leaves, and then 

propagates down-tree, until the cycle is completed when the sink has 

received UPD messages along all its links. Note that, by the completion 

of the update cycle, a UPD message and an FLS message have been 

transmitted in both directions along every operational link in the network.

4. 3. 2 Recovery From Link Failure

If a link which forms a branch fails, the nodes up-tree of the 

failure cannot directly flush their old paths. This raises three problems 

that could give rise to sequence errors. Firstly, there is a danger of 

packets down-tree of the failure arriving at the sink after packets 
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travelling along a new pathway. Secondly, a diversion pathway may well 

involve packets having to flow back up-tree. Finally, if more than one 

diversion pathway is established from different parts of the isolated 

section, there is a danger that the separate diversions could deliver 

packets belonging to the same Virtual Connection in the wrong 

sequence.

As with the non-sequential protocol, the UPD and FLS messages 

are extended to include a sequence number and the CHG message is 

introduced. The latter operates in the same manner as in the 

non-sequentlal protocol. Also, the vocabulary of the FLS message is 

extended to include the values DIV and FRT to be described later.

An update cycle follows the same quad-phasic pattern of the basic 

sequential protocol. However, in addition, during phases 1 and 2, a 

diversion path is established (if possible) from the node immediately 

above the failure to the sink. Also, nodes below the failure are flushed 

during phase 2. In phases 3 and 4. stranded packets up-tree of the 

failure are extracted in the correct order along the diversion path and 

a new tree is established which, once more, spans the entire network. 

The set of nodes which have lost their path to the sink will be referred 

to as the dead bough and the nodes which still have a pathway to the 

sink will be described as live. The node, immediately above the failure, 

is the root of the tree formed by the dead bough and will, therefore, be 

termed the failure root.

When a link forming part of the tree fails (for example the link 

between nodes 2 and 3 in Figure 4.3) , the node immediately up-tree 

sends a UPD message containing its current sequence number and a 

distance of Infinity. Nodes up-tree of the failure (nodes 3-8 in 

Figure 4. 3) receiving this message freeze traffic destined for the sink. 

Meanwhile, the node down-tree of the failure (node 2 in Figure 4.3) 

sends a CHG message, containing the highest sequence number 

received by that node, back to the sink, indicating that a link has failed. 

Any intermediate node carrying this message (e.g. node 1 in 

Figure 4.3) will abort any previously uncompleted update cycle. This 

message triggers a new cycle with a higher sequence number. When a 

UPD message of this new cycle (i.e. with a higher sequence number) 

reaches a live node along its routing link, the node aborts any ongoing 

update and deletes all previous distance information. It then transmits a 

revised UPD message on all links except its routing (down-tree) link. If
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Handling Link FailuresFigure

8

an alternative pathway exists around the failure, eventually a UPD will 

reach a node in the dead bough (e.g. nodes 6 and 8 in Figure 4.3). 

The node will record the link as its down-tree link and will send a UPD 

along the old routing link only. Subsequent receipts of any UPD message 

from other links will result in the node treating them as normal 

cross-tree links by replying with a no-flush message. Thus, a UPD 
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message propagates down the old pathway until, either it reaches a 

node which has already selected a diversion pathway (e.g. from node 

8, through node 7 to node 6) or it reaches the failure root (e.g. from 

node 6 through node 5 to node 3). In the former case, the UPD 

message is acknowledged with a no-flush message. This informs the 

sending node that the diversion Is not required and the node must not 

attempt to make any routing change. The no-flush message propagates 

back up the unsuccessful diversion pathway until it reaches a live node. 

However, for the duration of the update cycle, the nodes along this 

pathway will continue to treat the diversion link as the down-tree link. 

Thus, in Figure 4.3, node 6 will reject the diversion through node 7. 

assuming that it received a UPD from 13 before 7. Otherwise, it will 

accept the diversion via 7 and treat the link to 13 as a cross-tree link.

When a UPD message reaches the failure root (e.g. node 6 in 

Figure 4.3), the node replies with an FLS(DIV) message if its buffers 

contain any packets for the sink. This acts as a diversion request 

message. However, if the node contains no packets for the sink, it 

replies with a failure root transfer message (FLS(FRT) ) and designates 

the same link as its new routing link. This effectively makes the adjacent 

down-tree node the failure root. The node also sends a UPD message 

out on all its other links. Receipt of a diversion request (FLS(DIV)). by 

a node forming part of the dead bough, causes the node to set up a 

special diversion buffer for handling packets that will be traversing the 

diversion later on in the cycle. The node then passes the diversion 

request on down-tree and sends UPD messages out on all the other 

links. If the node receives an FLS(FRT) message, it also sends UPD 

messages out on all its links other than the two links involved with the 

diversion. If Its own buffers for the sink are empty, it passes on the 

failure root transfer message and assigns Its down-tree link as its 

routing link. However, if its buffers are not empty, it becomes the 

failure root and sends a diversion request down-tree.

When an FLS(DIV) or FLS(FRT) message eventually reaches a live 

node, the request is treated as a no-flush message. Thus, in 

Figure 4.3, assuming that the buffers of node 3 are not empty, nodes 

5 and 6 allocate diversion buffers for a diversion path through to node 

13. Note, that these diversion buffers are quite distinct from the normal 

buffer holding packets for the sink. The latter remain frozen.

When nodes In the dead bough, other than those forming the 
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diversion path, receive a UPD message from their old routing link, they 

propagate a UPD message out on all their other links except their 

down-tree link. Those that have not previously received a UPD message 

of the new update cycle choose the old routing link as their down-tree 

link. Those that have previously received a UPD message from another 

link will have already selected that link as their down-tree link and sent 

a UPD message down the old routing link.

Flush requests and no-flush messages are handled in the same way 

as in the basic protocol by nodes which have not lost their path to the 

sink. The node, immediately below the failure, will flush itself during 

phase 2 and propagate a flush request down-tree. Thus, by the end of 

phase 2. when the sink has received an FLS message from all links, the 

path below the failure is flushed, and a diversion has been established 

between the node immediately above the failure and the sink. The 

protocol guarantees that the diversion consists of possibly a number of 

former up-tree links in the dead bough followed by one, and only one, 

cross-tree link and a number of down-tree links in the live part of the 

network. Note, that restricting UPD messages to the old routing channel 

in the dead bough, during phase 1. avoids the danger of the diversion 

path taking on an obscure form such as via node 4 in Figure 4. 3.

Above the diversion path in the dead bough, phases 1 and 2 may 

still be continuing because the diversion request and any diversion 

refusals, in the shape of no-flush messages, are propagated down-tree 

by nodes in the dead bough without waiting for FLS messages to arrive 

from all the other links. Furthermore, the tree, formed in the update 

cycle by the set of down-tree links, may well be different to the old 

routing tree. This is not important, as the protocol forces these nodes 

not to make any routing changes in the current cycle. At the end of the 

cycle, the routing link becomes the down-tree link.

Phase 3 is started by the sink sending flush messages out on all 

links. Nodes in the live section propagate this message on all links that 

have not earlier transmitted an FLS message. When an FLS message 

eventually reaches a node in the dead bough along Its down-tree link, 

the node transmits a no-flush message on all other links that have not 

transmitted an FLS message earlier as a UPD acknowledgement. If the 

node had received a diversion request from its old routing link (i.e. the 

node forms part of the diversion) . an FLS message is passed on down 

the diversion path until it reaches the failure root. This Informs the node 
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that the old pathway is flushed and a diversion path has been prepared. 

It then selects the down-tree link as its routing link for the packets 

destined for the sink which had been frozen since the old path failed. It 

also dispatches no-flush messages on all links that have not already 

transmitted an FLS message in response to a UPD message. The 

no-flush messages, dispatched on the links not involved in the 

diversion, serve to block any attempt at a routing change by nodes 

up-tree from the diversion. When the buffers of the failure root are 

flushed, it sends a failure root transfer message down-tree. Finally, 

when It has received UPD and FLS messages from all its operational 

links, the node transmits a UPD message down-tree. As far as that 

node is concerned, the update cycle is complete.

Receipt of the root transfer message, by the node immediately 

down-tree along the diversion path (e.g. node 5 in Figure 4.3). 

informs the node that the preceding node has flushed the diversion path. 

Once its diversion buffer is empty, the node can select the diversion link 

as its routing link and flush its hitherto frozen buffers along the 

diversion. Thus, the packets, held by that node, will follow the packets 

that had been trapped in nodes that were down-tree prior to the link 

failure, so maintaining sequency. When the node is flushed, it sends a 

failure root transfer message down-tree and, when it has received UPD 

and FLS messages from all its operational links, the node transmits a 

UPD message down-tree to complete the update process. The failure 

root transfer and flushing of the diversion pathway continues down the 

new tree until it reaches a live node (node 13 in Figure 4.3).

Meanwhile, in other parts of the network, phases 3 and 4 operate 

as in the basic protocol with nodes propagating flush messages up-tree. 

Subsequently, having received UPD messages from all links, they return 

a UPD message down-tree. When the sink has received UPD messages 

from all its links, the update cycle is complete. Subsequent normal 

update cycles, with the same sequence number, will optimize the new 

tree.

4. 3. 3 Unk Recovery

At first sight, the recovery of a channel or node should present 

very few problems, as there is no loss of communication with the sink 

along the routing link and the newly restored link can be incorporated by 
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means of the normal update cycles which will find the new optimum tree. 

This is true providing the link becomes operational between update 

cycles. However, if the link becomes operational half way through a 

cycle, it must be excluded from the protocol for that cycle, otherwise 

lock-out could occur. For example, a node could be waiting for an FLS 

message from a link that never had a UPD message transmitted earlier. 

For this reason, each node for each sink maintains a status variable for 

each link. This variable has the values, DOWN, READY and UP. 

Normally an operational link has the status UP. If it fails, its status 

becomes DOWN. If the link recovers during an update cycle, it does not 

immediately go to the UP state, instead it becomes READY until the 

cycle is complete whereupon it becomes UP.

The protocol must safeguard against the possibility of one node 

deciding that a link is UP while the node at the other end leaves it in 

READY state. This could occur if a new update cycle had already started 

in one node, but not the other, when the link becomes READY. The 

non-sequential protocol used a local exchange of messages to attempt to 

synchronize the rehabilitation of the link [MERL791. The link is not 

accepted as UP until the start of a new cycle with a higher sequence 

number than that received hitherto by either node. Since agreement in 

a distributed protocol can never be reached simultaneously, any 

deadlock situation, which could arise, is resolved by the new update 

cycle. The new cycle is triggered by the dispatch, down tree, of a CHG 

message bearing the highest sequence number received by the node. 

Receipt of the messages causes the sink to abort any ongoing update 

cycle, just as in the case of a link failure.

This approach is not so attractive for the sequential protocol, 

basically because here, a path change is more costly, as user traffic is 

temporarily blocked while the old pathway is flushed. Thus, it is 

undesirable to abort an update cycle, even though the new cycle, 

including the recovered link, might result in an improved tree. It is 

much better to complete the current update cycle and get packets 

moving again, and then to optimize the tree by starting the new cycle 

with a higher sequence number. Of course, a link failure must cause 

the immediate abortion of any current update cycle and the start of a 

new cycle with a higher sequence number. The CHG message is 

extended to include a binary variable, which may have the values FAIL or 

REC to distinguish between link failures and recoveries respectively.
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Instead of attempting to block a link becoming UP one side and 

only READY the other, this protocol attempts to avoid deadlock if and 

when link asymmetry occurs. A node will automatically make a READY 

link UP if It is not currently performing an update cycle. If, however, it 

receives a UPD message from a link which is not UP. after it has 

broadcast UPD messages in phase 1 of the cycle, but before it has 

performed phase 2, the node assigns the status UP to the link and 

sends a UPD message down the link. In other words, the link is allowed 

to catch up with the other links. If. however, the node has already sent 

an FLS message down-tree the link status does not change. 

Nevertheless, the node transmits an FLS(NFL) and a UPD message 

down the link so as to satisfy the protocol requirements of the adjacent 

node. The link will eventually be accepted by the node because a CHG 

message will result in a new update cycle with a higher sequence 

number.

Because of the link hold-down process practised by the channel 

managers at each end of the link (Section 2.3.3). one side could 

decide that the link had recovered while the other was still treating it as 

down. This means that the protocol may receive a UPD message along 

a link which it considers to be DOWN.

4. 3.4 Multiple Failures

The protocol, so far described, will successfully handle two or 

more link failures provided that sufficient time occurs between each 

failure for an update cycle to repair the damage. In addition, the 

protocol performs satisfactorily if a number of disjoint failures - i.e. 

failures of links carrying no common pathway - or if a number of 

contiguous failures - i.e. failures of nodes and links forming a 

contiguous section of a pathway - occur simultaneously. The most likely 

cause of these types of failure is that of a single node as shown in 

Figure 4. 4.

There are three ways, however, in which a second failure, 

occurring anywhere in the network very soon after the first failure, can 

cause problems.

(1) The second failure occurs down-tree from the first failure after the 

CHG(FAIL) message had been transmitted down-tree but before a 

new cycle could flush the old pathway. This is illustrated in
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Figure 4.4: Node Failure

Figure 4.5 assuming that Failure A occurred before Failure B.

(2) The second failure occurs up-tree of the first failure before a 

diversion could be established and flushed. This is shown in 

Figure 4.5 if Failure A occurred after Failure B.

(3) The second failure causes the update cycle to restart during the 

time that the diversion around the first failure is being flushed. The 

nodes along the diversion pathway cannot abort the flushing 

operation without the danger of sequence errors.

The first two cases result in some pathways being split into three parts. 

The protocol, so far described, would set up two diversions operating 

simultaneously, which would result in the distinct possibility of sequence 

errors.

The approach to these problems, adopted in this protocol, is based 

on the fact that the time taken to perform an update cycle (probably a 

few milliseconds in MININET) is infinitesimal compared with the mean 

time between separate channel failures. Therefore, these are extremely 

unlikely events. Consequently, as packet loss is more acceptable than 

loss of sequency in MININET (Section 1.2.4), the aim of the protocol, 

when faced with multiple failures, is to recover without loss of sequency 

but allowing packets to be dropped. The basic method is firstly to detect 

that a multiple failure has occurred, and then to drop packets if there is
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SINK

Figure 4.5: Non-Contiguous Failures Along a Common Pathway

any danger of sequence errors.

In order to be able to propagate the detection of a multiple failure 

within a dead bough, the vocabulary of the FLS message is extended, 

yet again, to include the value KIL, which causes the up-tree receiving 

node to drop all packets for the sink. In addition, the node will 

propagate the message on up the routing tree.

There are a number of methods which could be used to recover 

from multiple failures. One. initially very attractive, is to allow only one 

diversion to be set up in any one update cycle. The diversion request 

would be relayed all the way to the sink during phase 2, with the 

intermediate nodes recording the link, from which they received the 

request, as their diversion link. During phase 3, the sink would transmit 

not more than one diversion permit and this Is relayed back up the 

diversion links until it reaches the dead bough. If there is more than one 

failure root, only one would receive the permit. If a node, which forms 

part of the diversion, receives an FLS message which does not contain 
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a diversion permit from its down-tree link, it would drop all packets for 

the root and propagate FLS(KIL) messages up-tree to empty the dead 

bough of all packets for the sink. Thus, if multiple failures lead to the 

existence of more than one failure root, only one would be allowed to 

set up a diversion. The other dead boughs would be emptied. While this 

solution is undeniably safe, it is. nevertheless, a little too drastic. In 

particular, the relatively likely case of a single node failure, as shown in 

Figure 4.4. would result in only one diversion being permitted while 

there may well be a large number of packets lost in the other dead 

bough. Interruption of the flushing of a diversion by a new update cycle 

would result in a similar emptying of the dead bough.

An alternative approach has been adopted based on the fact that a 

node knows when a link fails up-tree (because of the CHG message 

which is propagated towards the sink) and also when a link fails 

down-tree (because of the UPD message containing a distance of infinity 

which is propagated up-tree). This knowledge can be used to drop all 

packets in a section of the network sandwiched between two failures,

such as that between Failure A and Failure B in Figure 4. 5. Whenever

a CHG(FAIL) message is received by a node, or one of its up-tree links 

fails, a flag is set which is only cleared after the node reaches phase 3

of a new update cycle. If the node is live - or thinks it is - the

CHG(FAIL) message causes the node to abort any ongoing update cycle 

and await a new cycle with a higher sequence number. If the node then 

receives a UPD message from its routing link, which indicates that it has 

lost its path to the sink, and this flag is still set. the node drops all 

packets addressed to the sink. This handles the first type of multiple 

failure described earlier. If a node within a dead bough receives a 

CHG(FAIL) message or an up-tree link fails, then it also drops all 

packets for the sink. Furthermore, if the node is actively involved with 

the diversion operation it propagates FLS(KIL) messages to all up-tree 

links. This Is done because, while the diversion is being flushed, nodes 

up-tree of the diversion will have received normal UPD and FLS 

messages up-tree and therefore would not be aware that they still form 

part of the dead bough. The FLS(KIL) messages ensure that the entire 

bough Is emptied. This may appear rather drastic, but remember that 

this type of failure is an extremely unlikely situation. This procedure 

protects against the second type of multiple failure. The third type of 

multiple failure can now only occur if the second failure, which triggered 
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the new update cycles, is not up-tree of the original failure - otherwise 

the diversion would have been aborted when the CHG(FAIL) message 

was received. It is only necessary to drop packets in nodes along the 

diversion if a new update cycle is started before the diversion is flushed.

The protocol, therefore, will recover from single channel or node 

failures without loss of packets and from multiple failures occurring 

simultaneously with the possible loss of some packets.

If the network becomes partitioned, i.e. no pathway can be found 

to one or more sinks, then a dead bough remains isolated until repairs 

are effected. In terms of the network timescale, this could be an 

unconscionably long time. In the interim, resources are tied up in the 

dead bough with buffers containing packets that cannot be delivered. 

Worst still, when the network is reunited, there is the danger that the 

current sequence number of the live network has incremented more than 

half circle from its value when the network was partitioned. This would 

result in the dead node ignoring the new update cycle as it would appear 

to have a lower sequence number. For these reasons, it is desirable for 

the nodes in the dead bough to maintain a timer while they are in a 

dead state. After a certain time without any new update cycle reaching 

the node, it is reasonable for the node to assume that no path exists to 

the sink. The node can then drop all packets destined for the sink and 

release the buffer allocation. It may then forget the existence of the 

sink. Of course, it is necessary for the nodes up-tree of the failure to 

also reset at the same time. This is performed by the resetting node 

transmitting a further extension of the FLS message, FLS(RST), to all 

up-tree nodes. FLS(RST) has the same effect as the KIL message but. 

in addition, causes the node to release any resources permanently 

allocated to the sink and forget the last sequence number. When a 

pathway is finally re-established to the sink, the protocol operates 

normally as during network initialization, with the first UPD message 

received defining the routing and down-tree links and the current 

sequence number.

4.4 THE ALGORITHM PERFORMED BY THE NODES

A separate copy of the algorithm operates for each sink in the 

network. Since each algorithm is distributed across every node in the 

network, each node must contain a separate routing process for each 
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sink (except itself) plus its own sink process. Thus, each routing 

process must be identified by the node. n. where it resides and the 

sink. r. to which it pertains. However, the following description of the 

operation of these processes will exclude indexing all variables with n 

and r for the sake of brevity. Similarly all messages both inter-nodal and 

intra-nodal must contain the sink identification, r. which will also be 

suppressed in the following description.

The routing process in each node interacts, not only with routing 

processes in adjacent nodes by means of NTAN inter-node messages, 

but also with the channel manager and buffer control processes within 

the same node. This is performed by means of intra-node messages as 

shown in Figure 4.6. The types of messages exchanged are described 
in Table 4. 1.

Adjacent

Nodes

Figure 4. 6: Intra-Node and Inter—Node Message Transfers
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Table 4. 1
Routing Algorithm Message Types

Note that all messages (except Ifl and Ire), buffers, traffic, etc. refer 

only to a specific sink. r.

I Intra-node Messages

con(1) Connect buffers - Directs all output from the packet 

buffers to link 1. Note that the buffers can be frozen 

by the message, con(nil).

blk Block input - Block all traffic input to the node.

ubl Unblock input - Allow packets into the node. (i.e. 

allow normal flow control mechanisms to operate. )

flu Flush buffers - Requests buffer to be flushed.

ufl Unflush buffers - Abort buffer flushing operation (if 

any) .

bfl Buffers flushed - Indicates that buffers have been 

flushed, (i.e. all packets in the node at the time of 

the flush request have been dispatched.)

adb(ir 12) Allocate diversion buffer - Request to allocate a 

diversion buffer for traffic flowing from link to

link l2-

fdb Flush diversion buffer - Requests that the diversion 

buffer be flushed and then released.

dbf Diversion buffer flushed - Indicates that the diversion 

buffer has been emptied.

rst Reset buffers - Drop all packets, release all buffers, 

including any diversion buffer, and drop any incoming 

packets.

opr Operational - Allocate buffers and halt dropping of any 

packets.

Ifl(l) Link failure - Indicates that link 1 has failed.

lrc(l) Link recovery - Indicates that link 1 is once again 

operational.
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II Inter-Node Messages

UPD(Jt, m. d)

FLS(t. m. f)

Distance update message sent along link 1. containing 

sequence number m, and distance to sink d.

Flush control message sent along link 1. containing 

sequence number m. and flush control variable f which 

may have the values:

NFL = no-operation;

FLU = flush request/grant;

DIV = diversion link request;

FRT = failure root transfer;

KIL = kill buffers and reset;

RST = kill buffers and forget the sink.

CHG(£, m. c) Change message sent along link L. containing
sequence number m. and of type c which may have

the values:

FAIL = link failure;

REC = link recovery.

Note, that the buffer control process must be able to freeze the 

buffers, i.e. halt all output of packets destined for the sink upon receipt 

of a con (nil) message. The buffers can be thawed with a subsequent 

con message which defines the new output link for all traffic for the 

sink. Thus, actual routing changes are made by freezing the buffers and 

then thawing with a new output link. The blocking operation stops input 

to the node. A blocking request, blk, does not have to come into effect 

immediately. However, it is expected to be effective within the time 

required for the flow control process to request the adjacent up-tree 

nodes to freeze their output by transmitting a back pressure vector 

(BPV) in an NTAN message. That is, within the BPV turnround time 

between adjacent nodes.

The flush request message, flu, requires the buffer manager to 

inform the routing process when all the packets for the sink, that are 

currently in the node, are safely transmitted. This may be implemented 

in number of ways. If the packets or buffer slots are distinguishable, the 

manager can simply tag the packets currently in the node and wait until 

all the tagged packets have been transmitted. Similarly, if the internal 
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buffer organization is a strict first-in, first-out queue, then the manager 

need only note the number of packets present when the request is made 

and wait until that number has been transmitted. However, if the queue 

structure is more complex and tagging is impractical, as may well be the 

case in MININET. then a sure-fire method of flushing the node is to 

block inputs and wait until the node empties, whereupon the inputs are 

unblocked and the routing process is informed. Unfortunately, this does 

cause some undesirable perturbation of the traffic flow.

In order to provide a diversion pathway, the node must not only 

provide a diversion queue allocation attached to the down-tree link, but 

also selectively unblock only the diversion input link leaving the other 

links blocked. The reset command, rst, is used, after multiple errors or 

after a long period with all pathways to the sink lost, to drop all sink 

packets, both in the normal queue, and in the diversion buffer. When 

the node initially receives a UPD message from the sink and during 

recovery from multiple failures, the operational message, opr, is used 

to set up the buffer handling control mechanisms for packets destined 

for the sink.

Following Merlin and Segall [MERL79], the routing algorithm can be 

expressed as a set of FSMs operating in each node. The FSMs of all 

nodes other than the sink are identical. Each FSM is driven by a 

message handler which receives both inter-node and Intra-node 

messages.

4. 4.1 The Sink Algorithm

The state diagram for the sink is shown in Figure 4.7. Tables 4.2.

4.3 and 4.4 define the variables used, the message handler algorithm 

and the FSM transition algorithm respectively. During phases 1 and 2 of 

an update cycle, the sink Is in state SI. When it has received FLS 

messages from all links that are UP. It moves to state S2 where it 

normally stays until the end of the update cycle. Before starting a new 

cycle, the node waits a fixed time In state SW. This is because, unlike 

the non-sequential algorithm, update cycles can interrupt user traffic 

while old pathways are being flushed. This loss ,of user throughput is in 

addition to the usual loss of effective channel capacity due to the routing 

messages. It will be shown in Section 4.5 that, after two cycles with 

no-flush requests reaching the sink, the tree is optimized and the sink
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Table 4.2
Variables Used in Each Sink Process

s Major state. € {SI. SI. S2. SW, SQ)

Me Current sequence number, e {0. 1. 2.. Mmax)

N Cycle counter, e {0, 1, 2)

H CHG received flag e {0. 1)

Table 4.3
Sink Message Handler Algorithm

For each link. 1 = 1. 2. . . Lmax:

C( 1) Link status, e {DOWN, READY, UP)

Ud) UPD received flag, e {0. 1)

F( 1) FLS received flag, e {0, 1)

For UPD( 1, m = Me, d):

if Cd) # UP then

( if S = SI then ( Cd) «- UP; send UPDd, Me, 0) )

if S = S2 then

( send UPDd, Me, 0) ;

send FLS d. Me, NFL) ) );

if S = SI then send FLS d, Me, NFL) :

U(l) «- 1: execute FSM.

For FLS(1, m = Me, f):

Fd) - 1;

If C( Jt) = UP then

( if f = FLU then N *■ 0; execute FSM ).

For CHG( 1. m = Me, c):

H *- 1; execute FSM.

For Ifld):

H «- 1; Cd) - DOWN; execute FSM.

For Ire ( 1):

H - 1; if Cd) = DOWN then Cd) *-

execute FSM.

READY;
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init -♦ SI

Table 4.4

State Transitions in the Sink Process

Condition: node initialization.

Action: Me «- 0; N «- 0: H ♦- 0; start timer T^:

V / then ( U(/) - 0: F(/) - 0:

if link / operational then C(/‘) *- UP 

else C(D - DOWN ):

V / s.t. C(/) = UP, send UPD(f, Me, 0) .

SI - S2 Condition: V /. s.t. C(/) = UP then F(/) = 1.

Action: V / s.t. (C(z) = UP)A(U(/) = 0) then

send FLSC/, Me, FLU).

S2 - SW Condition: V /, s.t. C(/) = UP, (U(/) = 1)A(N < 2).

Action: Start timer T .w

S2 -» SQ Condition: V i s.t. C(/) = UP, (U(/) = 1)A(N > 2).

Action: None.

Condition: CHG (£, m, c = FAIL) v If I (1)

v time Ta expired.

SQ - SI Condition: H = 1.

SI -* SI

SW Action: V / s.t. C(/) = READY, CO) - UP:

Me ♦- Me +1: N *- 1: H ♦- 0: start timer T :

v /. (U(/) - 0: F(/) - 0):

V i s.t. C(/) = UP. send UPD (/, Me, 0).

SW -* SI Condition: time period expired.

Action: V / s.t. C(/) = READY, C(z) «- UP:

N *- N + 1: H - 0; start timer T^:

V /. (U(/‘) - 0: F(/) *■ 0) ;

V / s.t. C(/) = UP, send UPD (/, Me, 0) :
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"■> Normal Pathways

---------- > Network Change Pathway,

Figure 4.7: State Diagram of the Routing Process in the Sink

enters the quiescent state, SQ. It only leaves this state when a CHG 

message Is received or one of its links changes status.

If, at any time in the cycle, the sink receives a CHG(FAIL) 

message or one of its own links fails or the "dead-man's timer" of 

period times-out. then the process immediately starts a new cycle 

with an incremented sequence number and enters SI. The dead-man's 

timer is a "long-stop" timer to guard against (the theoretically 

impossible) deadlock.

4. 4. 2 The Intermediate Node Algorithm

Figure 4.8 shows the state diagram of the routing process in an 

intermediate node. The variables used in this process are listed in 

Table 4.5. Its message handler and FSM algorithms are described in 

Tables 4.6 and 4.7 respectively. The initialization state, SI, is included 

for convenience. In a practical implementation, where the process may 

well not be created until the existence of the sink is disclosed by the 

arrival of a UPD message, the state SI would not be necessary.
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Note 1Note 5

------> Multiple Failure Transitions

Note 1 From SI ,SF,S2,S3,SQ,SFR
Note 2 From SI,SF,S2,S3,SFR
Note 3 From SI,SF,S2,S3,SQ,SB,SFR
Note 4 From S2D,S3D,SFD,S2R
Note 5 From any state
Note 6 From any other state.

Figure 4. 8: State Diagram of the Intermediate Node Routing Process
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Table 4.5

Variables Used in an Intermediate Node for Each Sink Process

s Major state, e (SI. SI. SF. S2.

S2D. S3D.

S3.

SFD.

SQ. SB. S

SR, S2R.

Me Current sequence number. € (0. 1. 2 . . . Mmax)

Mh Highest sequence number. € (0. 1. 2 . . . Mmax)

Lr Routing link. € (nil. 1. 2. . . Lmax)

Lt Down-tree link. € (nil. 1. 2. Lmax)

Ls Shortest distance link. € (nil. 1. 2. . . Lmax)

Ld Diversion link, e (nil. 1. 2.. . Lmax)

SFR. SM)

SID.

R Flush received flag. € {0, 1)

P Path change flag. € {0. 1}

B Change blocking flag. € (0. 1)

X Up-tree failure flag. € (0, 1)

For each link. L = 1. 2. . . . Lmax:

C( 1) Link status, e (DOWN. READY. UP)

(N. B. C(nil) « DOWN)

D( £) Distance to sink, e (0. 1. 2... Dmax. °°)

(N. B. D(nil) = ~)

W( £) Distance weight, e (0. 1. 2... Dmax. <»)

U( £) UPD received flag. € (0. 1)

F( L) FLS received flag, e (0. 1)

The states SI. SF. S2. S3 and SQ are the states used in a normal 

update cycle. Upon receipt of a UPD message from the down-tree link, 

the process performs phase 1 by propagating UPD messages up-tree 

and enters SI. When it has received FLS messages from all its up-tree 

links, the process enters SF if it has received any flush requests 

(indicated by the flag R). If no flush requests had been received, the 

node performs phase 2 by sending an FLS message down-tree and
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Table 4. 6

Message Handler for an Intermediate Node Routing Process

For UPD(£, m > Me, d) V ( UPD(£, m. d)A(S = SI) ): 

if (C(£) # UP)A(m = Me) then

( C(£) - READY;

if S e (SI. S2D, S2R) then

( C(£) «- UP; send UPD(£, Me, D(Ls)) );

if S € (SF, S2, S3, S3D, SFD. SFR) then

( send UPD(£, Me. D(Ls)) ;

send FLS(£, Me, NFL) ) );

if m > Mh then

( V i then ( DU) *- °°; U(/) -

Mh *- m; Ls - nil ) :

if m = Mh then

( d - d + W( £); U(£) «- 1;

if (£ = Ls)A(d > D(£)) then

( D(£) - d;

V / s.t. C(/> = UP then

if D(/) < D(Ls) then Ls - i )

else D( £) *- d ) ;

if C(£) = UP then

( if (£ # Lt)A(m = Me)

A(S € (SQ. SI, SF, S2, SID, S2D, S2R) then 

send FLS(£, Me. NFL);

if D(£) < D(Ls) then Ls - £;

execute FSM ).

For FLS(£. m = Mh, f):

F(£) - 1;

if C(£) = UP then

( If (f = FLU)A(£ # Lt) then R «- 1;

if (m = Me) v (f € (KIL, RST)) then execute FSM ).
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For CHG( 1, m, c):

if C(Lr) = UP then send CHGCLr, m, c)

else If C(Lt) = UP then send CHG (Lt, m, c);

If c = FAIL then ( if £ # Lr then X «- 1; execute FSM ). 

For Ifl(l):

C( £) *■ DOWN; R *- 1; if 1 # Lr then X *- 1; D(Jt) «- <»;

if C(Lr) = UP then send CHGCLr, Me, FAIL)

else if CCLt) = UP then send CHGCLt, Me, FAIL);

execute FSM.

For Irc(Jt):

if C(JL) = DOWN then C(£) - READY;

if C(Lr) = UP then send CHGCLr, Me, REC)

else if CCLt) = UP then send CHGCLt, Me, REC);

if S € CSQ, SB. SD, SID, SR, SM} then C(£) - UP ).

For bfl. dbf:

execute FSM.

enters S2. After flushing its buffers, the process leaves SF and enters 

S2 performing phase 2. It is at this time that the node decides whether 

to make a routing change. If there is another link having a shorter 

distance than the current routing link (I.e. DCLs) < DCLr)), then the 

process freezes sink traffic and sets the flag P. Upon receipt of the FLS 

message from its down-tree link, the node performs phase 3 by sending 

FLS messages to all those remaining links to which it had not already 

sent an FLS message. It then enters S3. Finally, when UPD messages 

have been received from all links, the node makes a routing change if 

requested and permitted, performs phase 4 by sending a UPD message 

down-tree and enters the quiescent state, SQ. Note that, if a node is a 

leaf, it may pass straight through states SI and S3. Therefore, the 

implementation cannot assume only one state transition per event.

If the node receives a UPD message from a link, other than Lr, 

with a higher sequence number than the node's current sequence 

number. Me, the process enters the standby state, SB. If, eventually, 

a UPD message with the same sequence number reaches the node via
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Table 4.7

State Transitions in an Intermediate Node Routing Process

init -» SI Condition: node initialization.

Action: none.

SI ■* SI Condition: UPD (£. m. d * °°).

Action: Lr - L: Lt - t; Ls - 1; Ld «- nil;

Me *- m; Mh «- m;

R - 0; P «- 0; B - 0; X - 0;
v / then

( D(/) - °°; U(/) - 0; F(/) «- 0;

if link i operational then C(i) *- UP 

else C(/) - DOWN );

D( JL) - d; U(l) - 1;

V / # Lt s.t. C(/) = UP then

send UPD(/. Me, D(Ls));

send opr; send ubl; send con(Lr).

SI - SF Condition: (V / # Lt s.t. C(/) = UP then F(z)) ARAB'. 
Action: send fls.

SI - S2 Condition: (V I # Lt s.t. C(/) = UP then F(/))A(R' v B) . 

Action: if (D(Ls) < D(Lr)) A B' then

( send con(nil) ; P «- 1;

send FLSCLt. Me. FLU) )

else send FLS (Lt. Me. NFL).

SF - S2 Condition: bfl.

Action: if D(Ls) < D(Lr) then

( send con(nil); P *- 1 );

send FLS(Lt. Me. FLU).

S2 - S3 Condition: FLS( Jt = Lt. m. f # KIL).

Action: if P A ((f # FLU) V B) then

( send con(Lr); P «- 0 ) ;

if B V R' then f *- NFL;

R - R A (f # FLU) ; X «- 0;

V / s.t. (C(z) = UP) A U(/)' then 

send FLS(/. Me. f) .
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S3 - SQ Condition: V i s.t. C(/‘) = UP then U(/) A FC/) .

Action: if P then ( Lr ♦- Ls; send con(Lr): P *- 0 );

send UPD (Lt. Me. D(Lr));

Lt - Lr:

V / s.t. C(/) = READY then C(/) - UP;

V / then ( U(D - 0; F(/) «- 0 ) .

SQ - SI Condition: UPD( L = Lr. m. D # «»).

Action: Me *- m: B - 0; Ld *- nil;

V i # Lt s.t. C(/) = UP then

send UPD(/. Me. D(Ls)).

SFR

SI - SB Condition: UPD( £

SF

S2 Action: Lt «- Lr;

S3 if P then

SQ send ufl;

Lr. m > Me. d) V If I (L * Lr) 

VCHGd, m. FAIL).

if UPD then Ls *- £;

( send con(Lr); P «- 0) ;

V i s.t. C(/) = READY then C(/) - UP.

SB -* SI Condition: UPD (£ = Lr. m = Mh. d # <»).

Action: Me - m; B *- 0; Ld nil;

V / * Lr s.t. U(/) A (C(/) = UP) then

send FLS(/. Me. NFL):

V / # Lt s.t. C(/) = UP then

send UPD (/. Me. D(Ls)).

V / # Lt s.t. C(/) = UP then

SI - SI Condition: UPD (£ = Lr. m > Me. d * °°).

SF Action: Me m; Lt *- Lr; Ld *- nil; B *- 0:

S2 if P then ( send con(Lr); P *- 0) ;

S3 send ufl;

SFR v / s.t. C(/) = READY then C(/) - UP;

send UPD(/. Me. D(Ls)).
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SI - SR Condition: If 1 ( £ = Lr) A ;

SF Action: V / then ( DC

S2 send con(nil);
S3 start timer T ;D
SQ P - 0; R *- 0

SB V / s.t. C(/)

SFR V i s.t. C(/)

SI - SD Condition: UPD (£ = Lr,

SF Action: V / then ( D(i
S2 send con(nil) ;

S3 start timer T ;D
SQ Me «- m; P *-

SB V / s.t. C(/)

SFR V i # Lr s.t.

«- 00; U(/) «- 0; F(/) ♦- 0 ) ;

send blk; send ufl;

Ls «- nil; Ld nil;

READY then C(/) «- UP;

UP then send UPD(/, Me, «»).

m = Mh, d = 00) A X'

- 00; U (/) - 0; F( - 0 ) ;

send blk; send ufl;

Ls «- nil; Ld *- Lr;

0; R - 0;

READY then C(/‘) «- UP;

C(/) = UP then

send UPD(/, Me, °°).

SD - SI Condition: UPD (£ = Lr, m > Me, d # 00)

SID Action: Me «- m; Lt «- Lr; Ld «- nil;
SR send con( Lr) ; send ubl:

V / * Lt s.t. C(/) = UP then

send UPD(/, Me, D(Ls)).

SD - SID Condition: UPD( £ #

SID Action: Me «- m;

B - 1.

Lr, m > Me, d # «>).

Lt - £; send UPD (Ld. Me. D(Ls));

SB -» SID Condition: UPD( £ = Lr, m < Mh, d = °°) A X'.

Action: send con(nil); send blk; B «- 1; R «- 0;

Me *- Mh; Lt «- Ls; Ld *■ Lr;

V i # Lr s.t. C(/) = UP then

send UPD(/» m, °°) ;

send UPD(Ld, Me, D(Ls)) .

SR - S2R Condition: UPD( £ # Lr, m > Me, d # °°)

A buffers non-empty.

Action: Me - m; Lr «- nil; Lt - £; B «- 1; 

send FLS(Lt, Me, DIV);

V / # Lt s.t. C(/) = UP then

send UPD (/, Me, D(Ls)).
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send con(Lr); send ubl.

SR - S2 Condition: UPD( £ # Lr, m > Me, d # °°) A buffers empty.
Action: Me *- m; Lr - £; Lt - £; B - 1;

send FLS(Lt, Me, FRT);

V / # Lt s. t. C(/) = UP then
send UPD (/, Me. D(Ls));

SID - S2D Condition: FLS( £ = Ld, m. f = DIV) .

Action: send adb(Ld, Lt) ; Lr «- nil;
send FLS(Lt. Me , DIV);

V / # Lt. Ld s. t. C(/) = UP then
send UPD(/, Me, D(Ls)).

SID - S2R Condition: FLS( £ = Ld. m. f = FRT)

A buffers non-empty.
Action: send FLS (Lt, Me.. DIV) ;

V i # Lt. Ld s.t. C(/) = UP then
send UPD(/, Me, D(Ls)):

Lr «- nil; Ld ♦* nil.

SID -* S2 Condition: (FLS( £ = Ld, m. f = FRT) A buffers
V FLS(£ = Ld , m. f = NFL)

V UPD(£ = Ld, m = Me, d # °°) .

Action: if UPD then f «- NFL;

send FLSCLt, Me, f) ;

if f = FRT then Lr «- Lt;

V / * Lt, Ld s.t. C(/) = UP then

send UPD(/, Me, D(Ls));

Ld *- nii send con(Lr); send ubl.

S2D -* S3D Condition: FLS( JI = Lt, m, f # KIL, RST) .

Action: V / s.t. (C(/) = UP) A U(/)' then

send FLS(/, Me, NFL).

S2R - SFR Condition: FLS( £ = Lt, m, f # KIL, RST).

Action: Lr «- Lt; send con(Lr); send flu;

V / s.t. (C(/) = UP) A U(/)' then

send FLS(/, Me, NFL).
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SFR -• S3 Condition: bfl.

Action: send FLS (Lt, Me, FRT); send ubl; X - 0.

S3D ■- SFD Condition: FLS( I = Ld. m, f = FRT).

Action: send fdb.

SFD ■-* SFR Condition: dbf.

Action: Lr «- Lt; send con(Lr); send flu.

Any - 
State

► SM Condition: FLS( £ = Lr, m, f = KIL) .

SD -* SM Condition: CHG( £, m, c = FAIL) v If 1 (£ # Lr) .
SID Action: if FLS then Me *• m;
S2D V z s.t. C(z) = READY then C(z) «- UP;
S3D V z # Lr s.t. C(z) = UP then
SFD send FLS(z, Me, KIL);
S2R send rst; send blk;

v / then ( D(z) «- «; U(z) «- 0; F(z) - 0 );

B «- 0; R *■ 0; P «- 0; X *- 0; start timer T .

Any -»
State

SM Condition: (UPD( L = Lr, m, d = °°) v If 1 (£ = Lr)) AX

S2D -<• SM Condition: UPD( £, m > Me, d = «»)

V UPD( L = Lt, m, D = oo) .
S3D Action: if UPD then Me *• m;
SFD V / s.t. C(z) - READY then C(z) «- UP;
S2R V z # £ s.t. C(z) = UP then

send UPD(£, Me, °°) ;

send rst; send blk;

V z then ( D(z) «- «>; U(/) *- 0; F(z) *-());

B«-0; R *- 0; P«-0; X«-0; start timer T .

S2D -* SI Condition: UPD( £, m > Me, d °°).

S3D Action: Me m; send rst;
SFD V / s.t. C(z) = READY then C(z) - UP;
S2R Lt «- £; Lr - £; Ls «- £; Ld «- nil; 

B - 0; R «- 0; P *- 0; X *- 0;

V / # Lt s.t. C(z) = UP then

send UPD(z, Me, D(Ls)); 

send opr; send ubl; send con(Lr).
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SM - SI Condition: UPD( I. m, d # <») ;

Action: Lr — Jt: Lt - L; Ls «- £; Ld - nil:

Me *- m; send opr; send ubl; send con(Lr);

V / * Lt s.t. C(/) = UP then

send UPD(/‘, Me. D(Ls)).

SI' - SI Condition: FLS( I = Lr. m. f = RST).

SD - SI Condition: Time T expired.

SR Action: if FLS then Me «- m:

SM V / # Lr s.t. C(/) UP then

D

send FLS(/. Me. RST): 

send rst; send blk.

Lr. the process performs phase 1. enters SI and carries on with the 

normal update cycle.

Receipt of a UPD message with d = 00 from Lr causes the process 

to enter the dead state. SD, and halt all sink traffic. If link Lr fails, the 

process enters the failure root state. SR. Provided that there is not a 

second failure, the process can leave SD or SR when a UPD message 

is received with a higher sequence number. If the message is received 

along Lr. the process moves to SI and continues as a normal cycle 

except that the change blocking flag. B. is set in order to suppress any 

attempt to change paths. If the message is received on a link other than

Lr. a node in SD designates this link as its down-tree link, Lt. and the

old routing channel as the diversion input channel, Ld. It then transmits

the UPD message only along Ld and enters state SID. If the node is in

SB when the UPD message with d = « is received along Lr, the process 

moves immediately to SID. Eventually, a UPD message reaches the 

failure root in state SR. The process designates the receiving link as Lt 

and performs phase 1 by propagating UPD messages up-tree. If. 

fortuitously, it does not contain any sink packets the process designates 

Lt as Lr. immediately performs phase 2 by sending a failure root transfer 

message (FLS(FRT)) down Lt and enters S2. so continuing as a normal 

cycle. If. however, the node does contain some sink traffic, it sends a 

diversion request (FLS(DIV)) down Lt and enters state S2R.

A process in SID can move in one of three ways. Firstly, if it 

receives an FLS(FRT) along Ld and the node contains no sink traffic, or 

167



it receives an FLS(NFL) along Ld or a UPD message with d # 00 along 

Ld, it completes phase 1. by transmitting UPD messages along all links 

other than Ld and Lt. In the case of receiving a failure root transfer 

message, it transfers the root further down-tree, thus performing phase 

2. Otherwise the normal phase 2 is performed by sending an FLS(NFL) 

down-tree. The process then enters S2. Secondly, if the node receives 

an FLS(FRT) along Ld while its buffers contain some sink traffic, the 

node completes phase 1. performs phase 2 by sending a diversion 

request down-tree and assumes the role of the failure root by entering 

S2R. Thirdly, if the node receives an FLS(DIV) from Ld. it assigns a 

diversion buffer to allow traffic to flow from Ld to Lt. completes phase 1. 

performs phase 2 by sending a diversion request down-tree and enters 

state S2D. Note, that this assumes that the diversion arrangements can 

be made instantaneously. If there is any possibility of delay due, for 

example, to buffer space not being immediately available, then an 

additional wait state must be inserted between SID and S2D.

When a process in S2D receives an FLS message from Lt, it 

performs phase 3. This includes sending an FLS message down Ld. The 

process then enters state S3D. When the failure root, in state S2R, 

receives an FLS message from Lt. it also performs phase 3. designates 

Lt as Lr. starts to flush packets down Lr and enters state SFR until all 

sink traffic has been flushed. It then sends an FLS(FRT) message 

down-tree In order to inform the next node, in state S3D, that the 

diversion is complete, and enters S3. The node receiving this message 

enters state SFD to await the emptying of its diversion buffer. When this 

is complete, the process releases the diversion buffer, starts to flush its 

normal buffers down Lt, which is now designated Lr, and enters SFR. 

Note that processes, which enter S2 or S3 from a dead state, do so 

without waiting for FLS messages from all up-tree links. There is no 

danger in this action because path changes are blocked by the flag B. 

Indeed, this is a deliberate strategy to enable a diversion to get 

underway as soon as possible. However, it is necessary, when 

performing phase 4 in the transition between S3 and SQ, to check not 

only the UPD received flags, U, but also the FLS flags, F.

Detection of a multiple failure causes the process to drop all 

packets destined for the sink. It then enters state SM. unless the 

detection of a multiple failure involved a UPD message with a new 

sequence number, in which case the process directly enters SI. The 
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flag X is used to indicate a possibly unflushed up-tree failure. The 

process will leave state SM when a new UPD message, with a higher 

sequence number, reaches the node. Finally, if the node remains in 

states SD, SR or SM for a time greater than TD. it is assumed that no 

alternative path to the sink exists, and the process resets itself 

re-entering state SI.

The message handler is not only responsible for the appropriate 

execution of the FSM but in addition:

(a) records the highest sequence number received, Mn;

(b) maintains the UPD and FLS received flags, U and F;

(c) calculates the distance to sink for each link;

(d) monitors this distance and records the shortest distance link;

(e) maintains the status of each link, automatically bringing the link UP 

in certain circumstances;

(f) acknowledges UPD messages from cross-tree links with FLS 

messages if the FLS had not already been transmitted in that cycle.

Most of the time, the routing link, Lr, and the down-tree link. Lt, 

are the same link. However, they will be different links if the node 

passes through SID during the recovery cycle. Lr becomes Lt if and 

when the process enters SFR. Lt becomes Lr if and when the process 

enters SQ or SI.

4. 5 PROPERTIES OF THE ALGORITHM

The algorithm enjoys a number of properties. These have yet to be 

rigorously proved. Such proofs would, in the main, be based on the 

proofs of the original protocol's properties [MERL78].

Property 1: Loop Freedom

(a) At all times, the directed graph, comprising of the nodes and their 

links defined by the latest con message, forms a set of disjoint 

trees rooted either at the sink or in a node whose buffers are 

frozen.

(b) Consider the directed paths formed by the nodes in states S3D and 

SFD and their links defined by their latest adb message. Then, at 
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all times, each path terminates at a node which forms part of a 

tree which is neither rooted at the origin of the path nor at any 

intermediate node along the path.

The above property guarantees that no loop can be found - even 

temporarily. It is strongly associated with the properties of the graph 

formed by the nodes and their routing links, (Lr), and the graph formed 

by the nodes and their down-tree links. (Lt). The latter forms a set of 

disjoint trees at all times. Unfortunately, the graph based on Lr does not 

always form a tree although, at the end of an update cycle (when 

(Lr) = (Lt)) , it Is guaranteed to form a set of trees. The Lr graph fails 

to form a tree set when a node is in state SID and the adjacent node 

connected to link Lr moves to state S2 from SR. This is because, in so 

doing, the latter node will denote the same link as Lr thus forming a 

loop. The loop freedom property is not affected, however, because all 

sink traffic is frozen when a node is in state SID, and it cannot leave 

SID under these conditions without changing Lr. In any case, this 

condition lasts only one NTAN message delay before the node in SID 

receives an FLS message from Lr, whereupon the node leaves SID and 

Lr is changed to equal Lt or nil.

Property 2: Sequentiality

All packets addressed to the sink dispatched from a node, n, 

either will have arrived at the sink or will have been destroyed 

before a path change is made by node n.

This property is dependent on Property 1 as well as the correctness 

of the flushing and multiple failure detection functions.

Property 3: Completion

If a cycle is started with sequence number, m, then, within a finite 

length of time, this cycle will be properly completed or a link 

outage will occur in a node having Me = m. Upon completion of 

this cycle and until a channel outage or recovery occurs, the set of 

all nodes, which have some potential path to the sink, form, with 

their links defined by the latest con message, a single tree rooted 

at the sink.
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Property 4: Recovery

If a Ifl or a Ire message is generated within a node, having 

Me = m, then an update cycle will be. or has been, started with 

a sequence number of m+1.

Provided that link failures do not happen too frequently in 

comparison with the propagation time of the update cycle. Properties 3 

and 4 together guarantee that the protocol will always recover and a path 

will be provided to the sink if it is physically possible.

Property 5: Convergence

Provided that there is no change in the network topology or the link 

weights, the protocol will tend to minimize the distance of each 

node to the sink. Within a finite number of cycles, that is not 

greater than one plus the maximum number of hops across the 

network, an optimum tree in terms of shortest distance is obtained. 

Furthermore, the tree is optimized if the sink receives no FLS(FLU) 

messages down any link for two consecutive cycles having the same 

sequence number.

The latter part of this property is based on the fact that the 

FLS(FLU) message indicates a path change up-tree. If there were no 

path changes then no node could find a better path and. therefore, the 

tree must be optimized. Because the decision to change routes is made 

early in the cycle, it may be that a shorter path is not discovered until 

later in the cycle. The route change would then be made in the next 

cycle. This is why two cycles clear of flush requests are required before 

the sink can be sure that the tree is optimized.

With the exception of Property 2. these are very similar to the 

properties of the non-sequential protocol [MERL79J. The major 

differences are due to:

(i) the complication of the diversion pathways:

(ii) the different handling of link failures and recoveries:

(iii) the fact that the shortest distance link discovered late in one 

cycle will not become the routing link until the end of the 

following cycle:

(iv) the ability of the sink to know when the tree is optimized.
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4.6 IMPLEMENTATION

This protocol is ideally suited to MININET. Conversely, the small 

NTAN message size of MININET is (almost) ideal for this protocol, since 

it entails many short messages exchanged between adjacent nodes as 

opposed to the fewer larger messages of other protocols such as the 

ARPANET routing protocols [MCQU78J. [MCQU80],

Each node in the network requires a process for each sink in the 

network. While the code executed by these processes would be common 

(with the exception of the sink process for the node itself) . separate 

copies of the variables, defined in Table 4.5. must be stored in RAM for 

each sink in each node. A routing control block (RCB), containing the 

variables described in Table 4. 5 plus a pointer to a timer event block for 

use with timeouts, would be assigned dynamically as the node learns of 

the existence of the sink node. If the sink does not exist, or the node 

does not know of its existence, the RCB does not exist. This is the 

equivalent of state SI in Figure 4.8. Making the reasonable assumption 

that the absolute maximum number of links connected to a node is 32. 

the U and F flag array can be stored as two 32—bit set variables. 

Furthermore, the link status can be stored as two 32-bit set variables 

representing the links in state UP and state READY respectively. This 

greatly facilitates fast set operations such as the condition tests for the 

S1-*S2 and S3-»SQ transitions in Table 4.7. If Me. Mh. and each D(£) 

and W(£) are stored as 16—bit words and the remainder of the variables 

stored as 8—bit bytes, the contents of Table 4. 5. together with a timer 

event block and a pointer to the timer block, would require 49 + 4. Lmax 

bytes. For the maximum number of links allowed (i.e. 32). this implies 

a total memory requirement of 177 bytes per sink. Assuming that the 

network contains 32 nodes, the total RAM requirement is just over

5. 5KB. Using similar assumptions, the sink process would require only 

41 bytes of RAM to store the contents of Table 4.2 together with the 

timer event block and a pointer.

Since Stations must act as a sink in their own right and decide 

which output channel to use for outgoing packets, they must take part in 

the routing protocol. However, since a Station cannot switch packets for 

other nodes, it must transmit a distance of infinity for all destinations 

other than itself.

The algorithm assumes that the message sequence number may 
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increase without limit. Of course. In practice, the sequence number 

range is finite and eventually wraps around and repeats. If the sequence 

number range is 0 to Mmax, then ali comparisons and arithmetic are 

performed modulo-CMmax + 1). Consequently, if the difference between 

two sequence numbers becomes greater than (Mmax + l)/2, then the 

polarity of the difference is reversed. This is potentially very hazardous 

to the routing algorithm and was the principal reason for the introduction 

of the dead state timer described in Section 4.3.4. The period of this 

timer, T , should theoretically be shorter than the product of minimum 

time between link failures and the number of increments to the sequence 

number before wrap-around occurs. However, the period between link 

failures is very ill defined and has no lower limit. It is assumed that link 

hold-down is practised by the channel manager (Section 2.3.3). 

Consequently, because the only likely cause of a close packed sequence 

of link failures is a single marginally operational link repeatedly failing 

and recovering, the minimum hold-down period can reasonably be used 

as the minimum inter-failure period.

One method of increasing the wrap-around distance, without 

increasing the size of the sequence number field, is based upon the fact 

that the node will not receive messages with sequence numbers more 

than 1 or 2 behind its current sequence number, as a new update cycle 

very quickly supercedes any older cycle. Therefore, each intermediate 

node's routing process can bias its sequence number comparisons so 

that the difference between the sequence number of an incoming 

message and the node's own sequence number has a negative range of 

only 3 (say) with the remainder of the range considered positive.

The distance carried in a UPD message is, like the sequence 

number, a variable which has an arbitrary and possibly restrictive 

maximum value placed on it by the finite dimensions of NTAN messages. 

One state of the distance variables is reserved to denote infinity. The 

other states are used to represent the distance range 0 to Dmax. The 

maximum finite distance, Dmax must be greater than the product of the 

maximum number of hops across the network and the maximum weight of 

one hop. This maximum weight should not be smaller than the ratio of 

the estimated hop delay of the slowest channel to that of the fastest 

channel.

The formats of the UPD, FLS and CHG messages are shown in 

Figure 2.8. In terms of required information content, the UPD message
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is the most critical as it contains both a sequence number and a 

distance estimate as well as the sink identity. The sink address field 

must be. of course. 6 bits long. Therefore, if all three fields were to be 

squeezed Into the 19—bit data field of a NTAN message, there would be 

only 13 bits left for the distance and sequence fields. This is clearly

insufficient. The problem is overcome by utilizing 3 out of the 4 bits of

the NTAN class field to make available 16 bits for the distance and

sequence fields. The remaining bit of the class field (bit 22) is used to

distinguish the UPD message from other S-NTAN messages. Somewhat 

arbitrarily assigning 10 bits to the distance field gives a distance range 

of 0 to 1022 with the value 1023 reserved to represent infinity. This 

leaves 6 bits for the sequence number giving it 64 states. Thus, serial 

number comparisons would have the numerical range from -3 to +60. 

The code field of the FLS message carries the possible values, NFL. 

FLU. DIV. FRT, KIL or RST while the code field of the CHG message 

carries the values FAIL or REC.

Management modification to the link weights (e.g. manual 

intervention by an operator) would use MCP (Section 2.6) to transfer 

the weight update. The sink must be informed of a weight change so 

that it can start a new update cycle. Furthermore, there may well be 

more than one link weight to be changed and it would be best to make 

all the changes prior to starting the update cycle. Therefore, the most 

convenient mode of operation would be to send a MCP message to the 

sink listing all the weight updates. The sink then would transmit each 

new weight to the appropriate node in turn (using MCP). Finally, the 

sink would start a new update cycle to incorporate the new weights into 

the distance estimates.

A routing link. Identified by the routing management algorithm, can 

be broken into two components, the channel controller address (internal 

to the node) and the adjacent node address connected to that channel. 

The actual packet-by-packet implementation of the routing function is 

undertaken by special-purpose dedicated processors. This function is 

distributed between the core processor, which routes the packet to a 

particular channel, and the channel controller which selects the 

appropriate adjacent node for the packet (Section 2.3.1). Of course, 

for a point-to-point channel, the latter function is null and the link is 

completely specified by the channel address. Routing decisions, within 

the core of an Exchange, would be implemented by attaching a
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particular destination node's queue to a particular channel

(Figure 2.18). Disconnecting the queue from any channel has the effect 

of freezing the buffers. In the Station core, routing is performed by

placing the address, of one of its own ports, into the poll list for the

output channel appropriate for the destination node of that port's Virtual 

Connection (Section 5.2.1). Traffic for a particular sink can be frozen 

by removing all ports connected to that node from the channel poll list. 

Note, that there are no explicit routing directories used by the 

high-speed packet handling processors in either the Exchange or the 
Station.
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Chapter 5

STATION ARCHITECTURE

The relatively slow line rates and large packets of the typical wide 

area network generally result in processing requirements, on each 

node, that can be adequately met with conventional general-purpose 

single or multi-processor systems [HEAR70], IORNS751, [FORN76]. 

[MUEL77]. On the other hand, the required processing rate, within 

small-packet, high-speed local area networks such as MININET. is too 

high for a conventional processor structure. One method of improving 

efficiency is to give several general-purpose microcomputers different 

jobs within a functionally distributed architecture [FALD761. However, in 

order to achieve very high packet handling rates, the individual 

processors must be designed specifically for their function [MCDE78J. 

[AROZ80L This design philosophy was adopted in the implementation of 

a full-speed MININET Station described in this chapter.

5. 1 DESIGN REQUIREMENTS

5.1.1 Functional Architecture

The Station may be divided functionally into four parts as shown in 

Figure 5. 1.

(1) The port section consists of the interfaces to the user devices.

Different types of interface can be accommodated. One is the DIM 

interface described in Chapter 3. Other possible types of port 

include an IEC-625 [IEC 79] bus interface and a speech port 

(Section 2.5.2). End-to-end flow control, in the sense of 

source-sink data rate matching, is handled by the interface 

protocols (e.g. DIM-CPC described in Section 3.3).

(2) The channel section consists of up to 8 channel controllers which 

provide the MININET Channel Service (Section 2.3). For 

point-to-point channels, this corresponds to the Layer 2 Data Link 

Service of the OSI Reference Model. However, for multi-node 

channels, the channel controllers have additional responsibilities
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Figure 5.1: Functional Division of the Station

which correspond to Layer 3M. These responsibilities are described 

in Section 2.3.1. For point-to-point channels this sublayer has no 

function.

(3) The Station manager is responsible for all management functions 

including: Station initialization; establishing and changing Virtual 

Connections; running the routing algorithm; performance 

monitoring of the whole Station including ports, channels and the 

manager itself. The manager can communicate with other node 

managers by means of MCP (Section 2.6). which provides a 

message exchange service for the management entities. It also 

communicates with the operator by means of a console 

(Section 2.5.1). In addition, the operator can obtain the status of 

the network. Station, port or channel. It is also possible for user 

devices to be connected to the Station manager via a port. This 

enables a computer, for example, to request Virtual Connection 

changes in the same manner as the operator at the Station 

console.

(4) The message handler forms the heart of the Station. Its main job is 

to route information between the ports, channel controllers and the 

manager. It must package data entering the network via a port and 

dispatch the packets towards their destination, as defined by the 

port's Virtual Connection information described in Section 2.5.1. If 

it Is a local connection, then the destination is another port in the 
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same Station. If it is a management connection or the port is in the 

standby state, then the destination is the Station manager. If it is 

a remote connection, then the destination is a port in another 

Station. The packet should be routed to the channel controller 

(specified by the routing management algorithm) , provided that the 

BPV (received from that channel) allows packet flow towards the 

destination Station. If the BPV indicates that the adjacent node 

cannot accept packets for that particular destination node, then the 

packet must not be dispatched (Section 2.4.1).

The message handler and the Station manager together form the Station 

core to which ports and channel controllers are added as required.

5.1.2 Speed - Power Characteristics

The maximum design throughput of the channels is in the order of 

100k packets per second. This means that at times of peak activity each 

channel could need feeding once every 10/zs and, more importantly, be 

delivering a packet to the Station once every 10/z.s. Since there can be 

up to 8 channels, this implies sub-microsecond packet processing times 

within the message handler. At the other extreme, it is quite possible 

that some channels, perhaps using modems, are operating at much 

lower speeds and have service intervals as long as a few milliseconds. 

In instrumentation and process control applications, the end-to-end 

propagation time of a packet is usually more important than throughput. 

For this reason, greater emphasis is put on minimizing delays than 

maximizing throughput. In matters such as increase of channel or 

processing speeds both throughput and delay are improved. However, 

pipelining of operations and buffering of packets may increase 

throughput at the expense of increased propagation delay. It is 

desirable, therefore, in the design of the Station to avoid pipelining and 

buffering wherever possible.

When moving messages within the Station and when a particular 

destination (within the Station) is busy, it is important that other traffic 

is not blocked. For this purpose, each channel controller must be 

treated as a separate destination because there may be very large 

differences between channel service intervals. However, since 

end-to-end flow control is handled by the interface protocols, the ports 

should not remain busy for any appreciable period and so they can be 
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lumped together and treated as a single destination. A queue should be 

incorporated into the port to Iron out any fluctuations in the packet 

delivery rate. The Station manager and the received BPV memory are 

also destinations which should always be able to accept messages. A 

queue should be incorporated into the interface towards the manager to 

ensure this.

The fairness criterion (Section 1.2.3) implies that the ports and 

channel controllers cannot be connected to the Station core using any 

method which gives a particular port or channel any fixed priority over 

the others. Instead, a method of rotating priority must be used. 

However, because it is desirable to clear the long-distance traffic 

arriving in the channel controllers, the channels are made equally the 

highest priority source. Secondly, since the messages generated by the 

Station manager are important to the proper running of the network, its 

output should have second highest source priority within the Station. The 

ports have the third highest priority, which again must be shared 

equally.

In contrast to the high-speed dedicated processing of the message 

handler, the Station manager has a large number of relatively 

sophisticated jobs to perform. However, for the most part, the time 

constraints on these tasks are less severe. Consequently, the manager 

is best implemented using a general-purpose microcomputer. 

Nevertheless. it is advisable to use a fairly powerful 16—bit 

microprocessor in order to expedite the management operations used to 

recover from, for example, a channel or port failure.

In order to minimize Station cost and power consumption, it is 

desirable to use mainly low power Schottky TTL and to avoid multi-layer 

printed circuit boards wherever possible.

5.1.3 Reliability

In order to meet the requirements of Section 1.2.4. the following 

precautions have been taken:

(i) Each bus field, be it data or address, uses negative logic and 

includes an odd parity bit. This particular choice of polarity and 

parity ensures that failure of a source to turn on forces a bus parity

error.
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(il) A soft error should not harden into a permanent error by, for 

example, causing lockout of a network resource. On the other 

hand, recurrent failures of resources, such as an intermittent 

channel, should be hardened to avoid continual re-routing of 

packets.

(ill) During initialization, the manager should perform a thorough 

confidence test of the Station.

(iv) During normal Station operation the manager should continually 

monitor and exercise the operation of the whole Station, and 

validate the Virtual Connection and routing information stored in the 

message handler.

5.2 MESSAGE HANDLER DESIGN

5. 2.1 Polling Strategy

Earlier versions of the MININET Station [MORL75], [NERI84] 

connected the ports to the Station core, by means of a bus that used 

Interrupts and a "daisy chain" interrupt acknowledgement system. While 

the network load was such that this did not cause any real problems in 

practice, the interrupt approach suffered from several disadvantages. 

Firstly, the Station core had no control over the input of data into the 

network. This could lead to temporary blockages if the data could not 

immediately be delivered to its destination. Secondly, it was impossible 

to Isolate maverick devices connected to the ports. Finally, the 

acknowledgement chain imposed a fixed priority order on the ports. This 

contravened the fairness criterion.

In this latest high-speed design each port is polled to find data 

waiting to be dispatched through the network. The polling operation is 

performed independently of any transfer to or from the port.

In the initial planning stages of this design, a single poll loop of all 

connected ports was considered. The data word would then be 

transferred from the port and, combined with the address fields to form 

a complete packet, held in a buffer register until the channel through 

which It was routed was ready to accept a message. The problem, with 

this pipelined approach, is that other ports are blocked while this packet 

waits for the channel to become free. This structure was therefore 

rejected. If the channel availability is gated into the port poll response. 
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such blockages could be avoided. In order to do this, it would be 

necessary for the port poller to also poll the channel controllers or 

maintain a table of channel availability. The problem with such a 

source-led poll Is that. In many circumstances. It can be unfair. 

Assuming that the channel service Intervals are Independent of the poll 

loop period (a most doubtful assumption) , then a sort of stochastic 

fairness can be obtained, provided that the ports, connected through the 

same channel, are placed at equidistant intervals around the loop. If, 

on the other hand, the ports are bunched together In polling order, then 

the port at the head of the group has the highest probability of being the 

first port polled after the channel becomes ready. In any case, the 

channel service intervals and the poll loop frequency would be fairly 

constant, leading to beat phenomena giving certain ports precedence. 

Consequently, this approach was also rejected.

The polling scheme finally adopted is the two-dimensional polling 

structure shown In Figure 5.2. With the exception of the channel input 

poller, which remains autonomous, all the polling operations have been 

combined into a unified master arbiter (MA). This poller is 

destination-led. Its primary polling loop searches for a destination within 

the Station that is ready to accept data, while the secondary loops 

search for a source with a message for that destination. To this end. 

the connected ports are placed in different poll loops depending on their 

destination. There is one loop for each channel, plus a loop for the 

interface to the Station manager, and a loop for the ports connected 

locally. The intra-Station destination of a port Is determined by a 

combination of Virtual Connection information, which specifies the 

destination node, and routing information, which determines the output 

channel for that destination node. When the MA finds a 

source-destination pair ready and able to communicate, it passes that 

Information on to the master transfer controller (MTC). This controls the 

transfer of information along the packet bus, which forms the backbone 

of the message handler. The packet bus has dual address fields, which 

allows the .MTC to transfer a message from any source to any destination 

connected to it. The data transferred consists of 3 fields: a message 

type identifier, a message field (containing either a packet, a NTAN 

message or an INC message as described In Figure 2.7) . and a 

channel controller address. This last field Identifies the destination 

channel when travelling towards the channels, and the source channel
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Figure 5.2: Station Polling Sequence

when travelling in the other direction. All these fields include an odd 

parity bit. These are checked during every transfer along the packet 

bus. In the rare event of a parity violation, the MTC does not deliver the 

message but. instead, informs the Station manager for diagnostic and. 

if possible, recovery purposes.

This design highlights the difficulty, not widely appreciated, of 

achieving fairness. This two-dimensional polling technique guarantees 

strict fairness when interconnecting data sources and sinks, via a 

common resource, under saturation conditions (i.e. all sources wishing 

to transmit) . However, even this polling technique does not guarantee 
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equal latency periods under uneven Intermediate load conditions. One 

method of accomplishing this would be to re-order the secondary poll 

lists in accordance with the time each list element was last serviced. 

The element least recently serviced would be placed at the front of the 

list and the most recently serviced element at the rear. Such a solution 

was considered unnecessarily complex for this application. In any case, 

under all load conditions, two-dimensional polling does guarantee that 

no source or sink can hog or block the common communication 

resource.

5.2.2 The Message Handler

The overall structure of the Station is shown in Figure 5.3. The 

channel controllers are joined to the Station core by means of the 

channel bus. This bus transfers data, consisting of the message type 

identifier and the message, to or from the channel bus controller 

(CBC), which interfaces the channel bus to the packet bus. The 

channel bus also includes two independent polling buses each with their 

own channel address field. One is used to find whether the channel 

controller is ready to accept a message output from the CBC. and the 

other to find whether it has a message ready to Input to the CBC. The 

former is under the control of the MA, while the latter Is controlled by 

the channel input poller located within the CBC. This, together with the 

arrival of messages from the packet bus. feeds the channel bus transfer 

controller. Arbitration between Input and output operations Is arranged 

so that priority is given to the channel input poller after a message is 

written to a channel controller, and to the packet bus arrivals after a 

channel bus read operation. Thus, the resources of the channel bus 

and CBC are shared fairly between channel transmission and reception. 

Upon receipt of data transferred from a channel controller, the CBC 

decodes the message to determine Its destination along the packet bus. 

If It is a user packet and the destination node address field matches the 

Station's own address, the CBC sends the packet to the port section, if 

It Is a NTAN message containing a BPV update, it Is sent to the BPV 

memory. Anything else, including network packets, INC messages and 

NTAN routing messages are sent to the Station manager.

The ports are connected via the port bus, which is Interfaced to the 

packet bus by means of the port bus transfer controller. The port bus 

can be divided Into three autonomous sections. The transfer section
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Figure 5.3: Station Structure

moves the data word to or from the ports. The port transfer poller 

section Is used by the MA to search for a port with information to 

transmit. The port status poller Is used to check the health of each port 

In turn. Errors, such as parity failures or timeouts at the network 

Interface, may be reported by means of this bus.

The locations of FIFO queues and buffer registers within the Station 

are shown in Figure 5.4. Note that data flows unbuffered, directly from 

a port to its destination along the packet bus. This is done to minimize
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transfer delay and simplifies the interface between the MA and the MTC. 

but means that the port bus must be synchronized with the packet bus 

for data Input operations. Data output along the port bus, on the other 

hand, can be performed while the MTC is busy with transfers between 

other elements on the packet bus. The port bus transfer controller uses 

the destination port address field, within arriving packets, to determine 

their destination along the port bus.

The Station manager can monitor and control the operation of the 

message handler by means of the management bus. This is a subset and 

extension of the microcomputer's system bus. The management bus is 

connected to the packet bus by means of the packet bus management 

interface (PBMI). The PBMI Includes a 256-message long input queue 

to avoid blockages caused by the relatively slow management processor 

being unable to deal with a burst of messages arriving in rapid 

succession.

5.2.3 Master Arbiter Operation

In its polling operations, the MA treats the ports Individually as 

sources, but collectively as a single destination. On the other hand, the 

channel controllers are treated collectively as a single source, but 

individually as destinations. This has been done because the major 

unknown, insofar as the poller is concerned, is the service interval of 

the channels. In normal circumstances, the other destinations have a 

relatively short service interval of not more than a microsecond or two. 

A timeout mechanism on the port bus protects the Station from 

blockages due to deficiencies In user flow control.

In executing the polling sequence described In Figure 5.2. the MA 

checks each channel controller for Its readiness to accept a message. 

At the same time, it checks whether the PBMI has a message for the 

channel. If the channel is ready and the PBMI does not have a 

message, the poller searches, through all the ports connected through 

that channel, for a port with information to transmit. The poller starts 

with the port following the last to transmit through that channel. The port 

poll response is qualified by the content of the BPV memory, which is 

indexed by the channel and destination Station address. If the MA finds 

a port or the PBMI ready to transmit (and after waiting. If necessary, for 

the MTC to become free) . it passes the packet bus source and 
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destination address to the MTC. If the source is the PBMI. the latter 

supplies the port address, the channel controller address and the 

address portion of the packet. If the source is a port, this information is 

supplied by tables within the MA. The MA also records the address of 

the port following the source port In the poll loop, so that the poll can 

start with that port on subsequent occasions. The source port will then 

be the last port to be polled In the loop - effectively becoming the lowest 

priority source for the channel in question. This rotation of priority 

guarantees that. If there are p ports connected through a particular 

channel (i.e. p ports in its poll loop), then. Ignoring any management 

traffic, each port can obtain at least 1/p of the channel throughput. The 

channel priorities are also rotated so that the Station core resources are 

shared equally among the channels.

Immediately after successfully finding a channel controller and 

source ready to transfer information, and passing this Information onto 

the MTC, or after unsuccessfully polling all channels and finding no 

channel or source ready, the MA returns to destination poll, level 1 

(Figure 5.2). It then checks whether the port bus output register is 

empty. At the same time. It tests whether the CBC or PBMI have data 

for a port. If both have data and the register is empty then the CBC has 

priority. If neither have data, the MA polls all locally connected ports, 

in a similar manner to those remotely connected through the channel 

controllers. The same procedure is followed for the PBMI as a 

destination, with the ports connected to the manager being polled. The 

PBMI, Itself, is included as the lowest priority source for test purposes. 

The BPV memory normally receives updates from the channels but. 

during Initialization, is loaded from the Station manager. Because the 

BPV memory Is, in fact, part of the MA, the MA waits to take part in the 

transfer operation. This is unlike the procedure with other destinations 

when it continues to poll ahead while the transfer takes place. Special 

interlock comparators are used in the MTC and CBC to stop the MA 

duplicating a transfer.

The MA communicates with the PBMI and CBC by means of the poll 
bus which includes packet bus and channel bus destination address 

fields. The latter field is relayed onwards, as the channel output poll 

address, along the channel bus. These allow the MA to broadcast the 

destination currently being polled. The poll bus also Includes a number 

of response lines. One is used for the destination (a channel controller 
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or the PBMI) to Indicate its readiness to accept a message, while two 

other lines are each used by the PBMI and CBC to indicate that they are 

holding a message for the specified destination.

5. 2.4 Master Arbiter Structure

The structure of the MA is shown In Figure 5. 5. For simplicity, the 

channel controller addresses have been constrained to form a 

contiguous set starting from zero. This allows the channel poll pointer to 

be Implemented using a simple counter. The channel register contains 

the highest channel address present in the Station, which Is determined 

by the manager during initialization. This register controls the modulus 

of the channel counter, which Is used to determine the completion of 

the channel poll loop, and the modulus of the channel poll pointer 

counter, which determines the currently polled channel controller. The 

packet bus destination address being polled is derived from the MA 

controller. Together with the channel poll address, this information is 

used to index into two memories, the list length memory and the next 

port list. These provide the length and current position within the 

corresponding port poll list respectively. The channel buffer register is 

used to enable a partial overlay of the channel and port poll operations. 

The next port list supplies the address of the first port In the poll list to 

the port poll register. This, in turn, indexes into the main port poll list 

memory. The content of the location, so specified, is the address of the 

next port In the loop and is fed to the port poll register for the second

and subsequent poll cycles. The address of the currently polled port is

also fed into the destination address table, which provides its destination

port and Station address. The destination Station field, together with the

channel controller address, is used to Index into the BPV memory, in 

order to determine whether the adjacent node is accepting any packets 

for that destination. If this is so and the port has data available, the MA 

waits for the MTC If it Is busy. Then the polled port address is loaded 

Into the source port register and the packet address and output channel 

address are loaded into the transfer buffer register. The port poll cycle 

terminates when either the port counter indicates that all ports in the 

loop have been polled, or a port ready and able to transmit has been 

found. In the latter case, the next port list Is updated with the address 

of the next port In the loop to achieve the required rotation in port 

priority.
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Figure 5. 5: Structure of the Master Arbiter
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5.2.5 Controller Design

The MA is controlled by a microprogrammed FSM. In order to allow 

multiple decisions to be taken simultaneously, no conventional 

microprogram sequencer has been used in the design. For example, the 

existence of a port poll loop, the availability of messages from the PBMI 

and CBC, and the readiness of the selected destination and MTC are 

checked In a single MA cycle of 100ns. The total poll time is therefore 

much shorter than that implied by Figure 5.2 If all tests were made

sequentially. Under quiescent conditions (i.e. no destinations busy - no 

sources ready) , the total number of cycles required to complete one

circuit of the whole poll list is

3 + n + 3 n + m + m (5: 1)c p p c

where n Is the number of channel controllers on the Station, n isc p
the total number of connected ports, is the total number of empty 

port poll loops and m is the number of empty port poll loops attached 

to a channel other than the last in the channel loop. An empty port poll 

loop can occur if no ports are connected through a particular 

destination. The destination must still be polled as the PBMI or CBC may 

wish to dispatch a message to it. For a typical Station of 2 channels and 

10 active ports, the circuit time is 35 cycles (3.5/zs), assuming that 

there is at least one port in each of the 4 port poll loops. This 

corresponds to the maximum latency time of the MA. Under even 

moderate load conditions, the average latency time is much less than 

half this maximum. This is because the port poll loops attached to busy 

destinations are not polled and, after successfully finding a ready 

destination-source pair, the poller short circuits back to the destination, 

level 1 loop. Under complete saturation conditions (i.e. all destinations 

busy) , the total poll circuit period is reduced to

5 + 3 nc (5: 2)

cycles. For the typical Station configuration described above, this takes 

only 1. Ijits.

Altogether, this implementation of the message handler uses a total 

of seven FSMs to control its operation. The design methodology and 

techniques, developed to implement these and other controllers within 

the Station, are fully described In [MORL85J. Briefly, the basic approach 

Is as follows. Firstly, the controller's functional requirements are 
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specified, primarily by means of an objective state diagram (OSD). In 

general, this implies that the controller has to be an asynchronous 

Mealey machine. The controller is then internally partitioned as shown in 

Figure 5.6. Any required continuous-time functional blocks, such as

Figure 5.6: General Controller Model

timeout monostables and interlock semaphores, are partitioned into a 

separate section. Similarly, outputs, which are a function of the inputs 

as well as the controller state variable, are partitioned into a separate 

combinational logic block. This leaves, at the heart of the controller, a 

synchronous Moore machine. The operation of this FSM is specified by 

means of a synchronous controller state diagram (SCSD). The rationale, 

behind this procedure, is that large synchronous Moore machines can 

be implemented more easily and reliably than large asynchronous Mealey 

machines.

The synchronous controllers of the channel input poller, MTC and 

port bus transfer controller are implemented using conventional 

hard-wired random logic. For the more complex controllers, the Moore 

machine is implemented using PROMs as arbitrary logic function 

generators. The conventional output decoder of a Moore machine 

(Figure 5.7a) is merged with the next state encoder, so that the outputs 

are computed in parallel with the next state, as shown in Figure 5.7b.
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Figure 5. 7: Synchronous Controller Structure

Both the next state and the machine outputs are passed through a 

non-transparent register. The former becomes the current state of the 

machine and is fed back to the input of the next state encoder. Note, 

that there is no pipeline delay associated with registering the outputs, 

because they were pre-computed simultaneously with the next state and 

so appear at the output of the register concurrently with the state.

One disadvantage of using PROMs as combinational logic blocks is 

that the PROM outputs are undefined, immediately following a change on 

any of its address input lines, for a period equal to its access time. 

This means that asynchronous inputs cannot be applied directly to the 

PROM lest they change value near the clock edge and effectively corrupt 

the PROM output sampled by the register. The problem can be overcome 

by passing all inputs, that are not synchronous with the controller clock.
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through a synchronizing register. Unfortunately, this can lead to pipeline 

type delays. For this reason, the design of the channel bus transfer 

controller uses a hybrid approach combining conventional discrete gate 

circuitry (to provide a fast response to asychronous inputs without the 

synchronizing register's pipeline delay) with PROMs (to allow complex 

logic functions to be implemented with the minimum of chips) .

The basic machine, in its simplest form, can be implemented using 

a single-chip registered PROM. This is the form used for the port status 

poller and the PBMI queue controller. However, for larger machines 

such as the MA controller, the finite number of PROM inputs and outputs 

act as bottlenecks in the design. This is especially true in the case of 

the Inputs where every additional address input doubles the size of the 

PROM. These restrictions can be ameliorated by techniques aiming to 

minimize the number of inputs, outputs and states.

There are three basic methods used to reduce the number of input 

variables applied to the PROM, each exploiting different redundancies in 

the SCSD. The first method utilizes the fact that not all the inputs are 

relevent to the machine all of the time. Therefore, a data selector can 

be used as a jump condition multiplexer to select different sets of input 

variables at different times. The multiplexer must be controlled by the 

FSM and, consequently, the required number of outputs is increased. 

However, this cost, in terms of PROM size, is small compared with the 

double-exponentially greater saving on PROM size due to the reduction of 

inputs.

The second method uses pre-encoding to concentrate the effective 

information, stored in sparsely coded input variables, thereby producing 

a concentrated jump condition code. This utilizes the fact that, in a 

multi-way branch, the number of branches is far smaller than the 

number of minterms that can be formed from the number of conditional 

inputs. For the more complex pre-encoder functions, another PROM can 

be used as a very powerful pre-encoder. However, the relatively long 

propagation delays of PROMs usually imply that, to achieve the desired 

processing speeds, it is necessary to add a pipeline register between 

the pre-encoder and the main PROM.

The third method is the technique of ROM bank swapping, which 

utilizes the fact that the states with complex exit conditions are much 

fewer than the states with uncomplicated branch conditions. This 
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technique is similar to the normal address extension of a memory 

selecting between two or more memory banks, except that different 

banks have a different mix of state variable feedback and inputs 

connected to their address pins. For example, one 512-word PROM 

bank may have 7 address inputs connected to the state variable, leaving 

2 inputs for conditional inputs, while another 512-word bank may have 

only 2 address inputs connected to the state variable, with the other 7 

free to be connected to conditional inputs. Thus, the first bank can be 

used for up to 128 different states but the exit conditions of these states 

cannot be very complex. On the other hand, the second bank can 

distinguish between only 4 states but the large number of inputs allows 

it to handle complex multi-way branches.

All these techniques can be used in conjunction to produce very 

agile controllers relatively economically. An example of the power of 

these methods is the master controller for the half-duplex channel 

controller, which uses one IK x 4—bit PROM as a pre-encoder. one 

8 to 1 data selector as a jump condition multiplexer, and two 512 x 8—bit 

PROMs with one IK x 8—bit PROM, arranged in two banks, as the main 

encoder. Altogether, this controller has a total of 19 inputs and 207 

states. In two of these states, the controller makes an 18-way branch as 

a function of 15 inputs in a single 100ns clock cycle. In the case of the 

MA controller, three IK x 16—bit ROM banks are used, together with a 

2-pole 4-way jump condition multiplexer, to form a FSM operating at 

10MHz. Its SCSD contains 45 states controlled by a total of 18 inputs. A 

large number of states have relatively complex exit conditions, involving 

up to a 7-way branch as a function of 8 inputs.

Two methods are used to reduce the number of PROM outputs. The 

first exploits the fact that many outputs are mutually exclusive (i.e. never 

asserted at the same time) . Consequently, a binary decoder can be 

used to decode an encoded output from the registered PROM. For 

example, a 3 to 8 line decoder can be used to provide up to 7 mutually 

exclusive outputs. Note, that one output code has always to be reserved 

for the states where none of the outputs are asserted. The other method 

of output variable reduction is that of output variable sharing, where the 

values of the state variable for each state are chosen so that some of its 

bits can be used directly as outputs. This is especially useful with 

partially defined outputs (i.e. outputs whose value is only specified, in 

the SCSD, for some of the states). The select controls for the jump 
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condition multiplexer are an example of this type of output, because the 

select output is only defined in a state whose exit conditions are a 

function of the multiplexer output.

Minimization of the number of states of the machine is doubly 

beneficial, as it reduces both the number of PROM address inputs and 

the number of PROM outputs. Long strings of states to provide time 

delay can be avoided by the use of monostables or, if greater accuracy 

is required, by a counter. The latter can also be used as a loop 

counter, which allows the removal of states generating repetitions of the 

same sequence of events. The counter can be loaded, from the 

controller, with different starting values to vary the number of loops or 

the delay length. Quite dramatic reductions in the number of states can 

be achieved with these techniques. In contrast, the technique of state 

merging is useful to save just a few states. It is frequently used to 

reduce the total number of states to a power of two, so that the number 

of state variables is reduced by one. This technique takes advantage of 

the fact that the PROM outputs, that are destined to become the 

controller outputs after passing through a register, can be made a direct 

function of the inputs without the inputs necessarily affecting the next 

state variable. This may be thought of as a pseudo Mealey machine 

because, from the point of view of the SCSD, this is similar to the 

specification of a Mealey machine. However, since the output passes 

through a register, it is strictly still a Moore machine.

5.3 THE STATION MANAGER

5. 3.1 MINTOS - The Management Operating System

The management of the Station is undertaken by a number of 

concurrent tasks running inside a 

communication is accomplished by 

especially developed for MININET.

16—bit microcomputer. Inter-task 

means of an operating system 

In the first operating system

developed, the conventional semaphore primitives "Signal" and "Wait" 

were utilized to handle task synchronization and queue management 

[LAUE751. While this operating system was quite powerful, experience 

with the snail network suggested that a more powerful and flexible means 

of inter-task communication was required. In particular, tasks needed to 

be able to wait for a whole number of different types of events at the 

same time. Consequently, a new operating system, named MINTOS, 
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was developed for the new Station design. Tasks communicate by means 

of FIFO event queues (EQs). The elements of the queues are messages 

of arbitrary size and structure. These might be quite short, such as a 

network packet or a timeout notification, or relatively large, such as an 

MCP message. A task can wait for messages to be placed in one or 

more EQs. It does this by calling a multi-wait primitive specifying a list 

of EQs that it wishes to test. The message, at the front of the first 

non-empty EQ on the list, is passed to the task. If all the specified EQs 

are empty, then the task is suspended and attached to each empty EQ. 

If more than one task is waiting on the same EQ. then a queue of tasks 

is formed. Note, that by virtue of the multi-wait primitive, a task can be 

in a number of queues at the same time. Of course when, eventually, 

a task is given a message it is removed from all task queues.

This structure enables event servicing to be ordered chronologically 

by placing event messages in the same EQ. and/or ordered in a 

prioritized fashion by placing the messages in different EQs. Because 

more than one task can wait on the same EQ. buffer pools are very 

easily implemented as EQs which are initialized with a full complement of 

usable message buffers by MINTOS.

Timer management is obtained using a primitive which relays a 

message to a specified EQ after a specified time has elapsed. Thus, 

event timeouts are implemented simply by sending a delayed timeout 

message to the same EQ as will be used by the expected event 

notification message, and then waiting on this EQ. If the expected 

message does not arrive within the timeout interval, the timeout message 

will be received by the task instead. On the other hand, if the expected 

message arrives first, the timeout message must be deactivated by using 

a special primitive which removes the timeout message from the timer or 

event queue.

Interrupt handlers are implemented as tasks. Each level of interrupt 

is enabled by a task executing a wait-interrupt primitive which causes the 

task to wait until the interrupt is active. It is the responsibility of the task 

to service and clear the interrupt condition before re-enabling the 

interrupt. The interrupt handlers communicate with other tasks using the 

standard EQ primitives.
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5. 3. 2 Management Tasks

The overall view of the management system including tasks, EQs

and the major data bases is shown in Figure 5.8. For simplicity, buffer
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Figure 5. 8: Management Task and Event Queue Interconnection

pool EQs are not shown. Incoming messages from other network nodes, 

management ports and channel controllers are decoded by the PBMI 

input handler and sent to the appropriate EQ. The PBMI output handler 

performs a similar operation in the other direction. It has two EQs for 

outgoing messages. The lower priority EQ is used for normal 

transmission, while the other is used for expedited transmission of 

urgent messages such as those concerned with rerouting and channel 

recovery operations. Dialogue with the user via a terminal or dedicated 
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front panel is handled by the operator interaction handler. Messages to 

the operator are formatted by the device-dependent display interface 

handier, while the device-dependent portion of the Input processing is 

performed by a procedure contained within the operator interaction 

handler. Communication with user computers is managed by the 

management port handler, which also handles ports in the standby state 

(Section 2.5.1). The MCP protocol for communication with other node 

managers is implemented by the network transaction handler, which 

provides the connection based management Transport Service 

(Section 2.6). These three handlers communicate with the management 

tasks using a common message format and protocol.

Information concerning the type and state of a Virtual Connection 

is stored in the VCT (Section 2.5.1). It is indexed by the local port 

address and also contains the destination address and the position of 

the port in the poll lists. The VCT is updated by the VCT manager. The 

operation of opening or closing a remote Virtual Connection requires the 

cooperation of the VCT manager in the remote Station. This is obtained 

using the services of the network transaction handler. Actual changes to 

the poll lists and tables within the MA are made by the MA supervisor, 

which also implements routing changes by moving ports between 

channels in the port poll lists. Requests for changes in route (i.e. 

choice of output channel) are made by the routing manager which, by 

means of S-NTAN messages, determines the shortest path to every 

other node in the network, and also enables other nodes to find the 

shortest route to the Station. For every node in the network, the routing 

manager maintains an entry in the routing table. This contains state 

variables, required by the distributed algorithm used by the routing 

protocol (Chapter 4) . and the channel and link identity to be used for 

the first hop. This latter information Is used by the MA supervisor when 

opening new Virtual Connections and by the network transaction handler 

when transmitting network packets.

During Station initialization, the existence and type of each channel 

controller present in the Station is established. For each channel 

controller, a channel supervisor task is dynamically created. The 

channel supervisors are specific for each type of channel controller. 

They supervise channel operations such as synchronization and extract 

statistical information on errors and packet flow. The channel manager 

has overall responsibility for the operability of all the channels and 
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communication with adjacent nodes. It also practises the "hold-down 

reflex" to suppress Intermittent channels, described in Section 2.3.3.

Upon initialization and prior to activating any task, MINTOS checks 

the RAM used by the management tasks. The first task activated 

performs read/wrlte tests on the poll lists, destination address table and 

BPV memory within the MA. Only after this task has completed its 

confidence tests of the operation of the message handler, does normal 

operation of the Station commence. Exception conditions occurring in 

the hardware message handler are handled by the parity and timeout 

error handlers. Exception conditions occurring at the port-user interface 

are handled by a separate task, the port exception handler. After 

attempting to clear the fault condition and get packets flowing again, the 

exception handlers and channel supervisors send a report to the display 

interface handler and update the system log table. The latter enables 

operating statistics to be accumulated and extracted by the operator. 

Background monitoring of the Station's memory is performed by the 

system monitor which continually validates the checksum of the VCT and 

routing table, and compares the content of the MA lists with that 

contained in the VCT.

5.4 STATION IMPLEMENTATION

This Station design was constructed using catalogue parts. Most 

logic was implemented using low-power Schottky TTL components, while 

the time critical portions used standard Schottky TTL. The Station core 

occupies six 220mm x 233mm Eurocard two-layer printed-circuit boards 

which are shown in Figure 5.9. The top three boards together contain 

the MA. MTC. port bus controllers and the packet bus parity checkers. 

The lower left board is the PBMI. the lower centre board the CBC. while 

the lower right board contains the management computer. The size 

could be reduced considerably by incorporating custom integrated 

circuits into the message handler.

In addition to the DIM and speech ports, a half-duplex channel 

controller was designed and constructed (Figure 5.10). The physical 

layer is implemented on the upper left half circuit board using a MS43 

ternary transmission code [FRAN68] operating at 20M Baud. The data 

link controller occupies the rest of the boards. This achieves 

throughputs of 140k packets per second over a separation distance of

199



Figure 5.9: The Station Core Circuit Boards

Figure 5.10: Half-Duplex Channel Controller

100m. The design allows other Physical Layer implementations to be 

attached to the same data link controller. A complete Station, equipped 

with 5 DIM ports and one channel controller is shown in Figure 5.11, 

The two coaxial cables are the physical medium of the channel, while
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Figure 5.11: Rear View of a MININET Station

the flat cable connects the operator's console to the Station manager. 

With locally connected ports, user throughputs have been measured 

corresponding to over 700k packets per second in the message handler.

The management processor is an Intel 8086 microprocessor. Its 

system bus conforms electrically to the Multibus IEEE-796 standard 

[IEEE83J. However, in common with the rest of the Station mechanics, 

the more robust Eurocard mechanical standard was used for this bus. 

The operating system kernel was implemented in assembler, while the 

tasks are. for the most part, written in Pascal.

Testing of the complete Station. or one or more of its 

sub-systems, during development was greatly facilitated by a system
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monitor and exerciser (Figure 5.12) based upon an Apple

Figure 5. 12: Station Development Monitor and Exerciser

microcomputer. Each of the five buses along the Station backplane is 

wired to a general-purpose 64-point test board, which monitors the logic 

level on each bus line and, in addition, optionally drives the line to a 

high or low level. These cards, which can be seen at the top of the 

rack in Figure 5. 12, are interfaced to the microcomputer via an IEC-625 

bus. A graphical display and tablet. also interfaced to the 

microcomputer, provide the designer with a continual monitor of the 

activity on each bus of the Station and a "soft keyboard" input. The latter 

enables the designer to emulate the controller or a slave on each bus 

during sub-system development, or merely to observe the activity along 

each bus during system integration. With the controlling program written 

in a mixture of assembler and interpreted Pascal, the microcomputer 

samples and displays the state of all buses at a rate of approximately 5 

updates per second. The system clock of the message handler is 

controlled by the microcomputer, so that the Station can be "walked" at 
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a rate slow enough for the human observer to follow the action. Timing 

problems, occurring when the message handler was operating at its full 

speed of 10MHz. were investigated using further monitoring circuits, 

which enabled a multi-channel logic analyser to be connected to any bus 

at the press of a single "soft button". Testing was further facilitated by 

the built-in ability to monitor the internal state of the MA. PBMI and CBC 

controllers via the management bus.
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Chapter 6

CONCLUSIONS

6. 1 PROJECT STATUS

The development of MININET originated as an in-house project to 

solve actual laboratory communication problems. From this small 

beginning, it grew to become a research project in its own right. The 

problems encountered and solved during the development of the network 

encompassed a wide variety of topics, ranging from clock recovery at 

20M Baud to operating system design, from interface noise rejection to 

sequential routing algorithms, from high-speed controller design to the 

hierarchical modelling implications of multi-node channels, and so on. 

Despite all the successful and innovatory design work undertaken, the 

project is currently moribund.

It is instructive to examine the reasons for this situation. Certainly, 

the intermittent nature and level of funding was not commensurate with 

the size of the project. In particular, the funding hiatuses made it almost 

impossible to keep a project team intact. However, this was not the 

whole reason for its failure. Originally, the network was envisaged as a 

low-cost solution to the needs of remote instrumentation. In particular, 

the Station was expected to be relatively simple and, therefore, an 

inexpensive unit in comparison with the Exchange. Since it was expected 

that there would be two to three times as many Stations as Exchanges in 

a network, this would have kept the total cost of a network installation 

within reasonable bounds. Of course, the magnitude of many of the 

design problems, such as routing, congestion control and maintaining 

fairness had not been forseen. As evidenced in Chapter 5, the 

ramifications of the fairness criterion, together with the required packet 

processing speed, made the Station design much more complicated than 

the structure envisaged at the outset of the project [MORL75J. Almost 

certainly, it would have been better to have concentrated the design 

effort on the Exchange, with its store-and-forward network relay 

function, instead of on the Station. The level of complexity in the 

Exchange design would not have been that much greater than in the final 
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Station design. Furthermore, the amount and complexity of the 

managerial software development task had been underestimated.

In summary, the network design became too complex, and 

consequently too expensive, for its application areas.

This situation could, possibly, have been avoided by lowering the 

quality of the MININET Service. The transparency requirement could have 

been relaxed and some network awareness been expected from the 

network users. Then a larger packet could have been used to achieve 

the same information throughput with a lower packet rate. This, in turn, 

would have reduced the processing requirements of the nodes allowing 

simpler packet processing hardware. However, the ultra-transparent 

service requirement has always been fundamental to the design of the 

network and makes its Network Service distinctive in comparison with 

other networks. Another approach would have been to reduce the speed 

requirement allowing the use of less specialized hardware, although this 

would have narrowed the network's area of application. This would have 

excluded, for example, audio signal processing. Another requirement 

that could have been relaxed was the fairness criterion. It appears 

innocuous enough, a requirement that no just-minded network designer 

could refuse. However, the complexity of the Station design, as already 

discussed, is evidence of its cost. Had it been ignored, a much simpler 

Station could have been designed. It is doubtful if the user would have 

noticed much difference under normal network load conditions - 

especially if most of the traffic was operating in handshake mode. 

However, if the network was heavily loaded with a lot of burst mode 

traffic, the level of unfairness could have been very noticeable.

Another approach to reducing the cost of the network would have 

been to simplify the network's internal structure, while retaining all the 

essential elements of the MININET Service. If all the links had had the 

same capacity, then the routing protocol could have been somewhat 

simplified, the flow control could have been made more efficient and the 

Station's polling structure greatly simplified (Section 5.2.1). An even 

more extreme simplification would have been not to allow an arbitrary 

network topology. If the network was restricted to being a single bus or 

ring, then none of the Network Layer store-and-forward functions would 

have been required. In particular, there would have been no need for a 

routing protocol, congestion control or Exchanges and the Station design 

would have been very straightforward. The access method used by the 
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Cambridge Ring [HOPP77], with its small fixed-length PDUs, 

anti-hogging mechanism and short access time, is especially suited to 

real-time Instrumentation applications (Section 1.3.1). A MININET type 

service could very easily be built on top of a Cambridge Ring protocol 

allowing fully transparent communication between user devices without 

any knowledge of the network protocols.

The advances, both in semiconductor technology and in design 

methodology [MORL85A] have made It. not only possible, but almost the 

norm to integrate large parts of digital systems into custom integrated 

circuits. This has made feasible the routine use of algorithms, which 

hitherto were considered economically impractical. Examples range from 

the use of error correction coding In domestic compact disc players to 

the sophisticated embellishments of the IEEE 802.5 token passing ring 

standard [IEEE85]. Had the design of the MININET nodes been targetted 

towards a custom silicon implementation, a smaller and more reliable 

product would have been the result. Much of the high-speed 

special-purpose circuitry would have mapped very efficiently onto a 

custom-chip implementation. However, the very wide interconnecting 

buses would have caused problems as far as pin-out is concerned, and 

narrower multiplexed buses would have been preferable even though they 

may well have reduced somewhat the packet processing throughput.

In conclusion, it seems that the most economical means of 

providing the MININET Service would be to adopt a fixed ring topology 

using a Cambridge Ring type access method and implement the design 

using custom silicon techniques.

6.2 FURTHER RESEARCH TOPICS

Notwithstanding the previous discussion concerning the economic 

viability of the full-blown MININET conception, the development of the 

network revealed several areas of interest which would profit from further 

research. One is that of congestion control. This seems to be 

something of a "Cinderella" subject in comparison with routing and other 

network protocols, with only a few networks having an effective deadlock 

avoidance scheme. The solution proposed for MININET. using active 

backpressure flow vectors (Section 2.4.1). has problems of efficiency if 

the channels, connected to a node, have very different throughputs. 

The rate of generation of BPVs. which could be triggered by traffic 
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arriving and departing through the high-speed channels, would tend to 

saturate the low-speed channels. An approach based upon the uses of 

different maximum BPV rates for channels of different capacity could 

solve the problem, but it is not clear how this could be implemented 

efficiently. A second problem arises if the buffer partitioning scheme 

used by MININET is applied to another larger network, where the large 

number of nodes makes the partitioning scheme, based on the 

destination node address, impractical. A more general buffer class 

scheme could be used [MERL80] but, unlike many of the existing buffer 

class based algorithms, some sort of fairness should be maintained.

In any case, it would be useful to investigate the performance of 

active flow vectors (in comparison with the passive flow vectors used by 

TYMNET [RIND79]) together with the various buffer handling algorithms 

proposed in Section 2.4.1. The efficiency of the algorithm, in terms of 

buffer utilization, packet delay and packet throughput could be examined 

as a function of the length of the reservoir, hysteresis and overflow 

zones.

Another very interesting area of future research is that of 

high-speed packet switch design. The basic algorithm, for the output 

switch of the Exchange, consists of a two-dimensional poll. The primary 

poll loop checks the readiness of each output channel, while the 

secondary loops check the availability of packets in each destination 

queue attached to that channel (Figure 2.18). The latter must be 

qualified by the BPV received from the appropriate channel. The starting 

point of each secondary poll must be rotated, following the dispatch of 

a packet along the channel. In a fashion analogous to that of the port 

poll loops within the Station (Section 5.2.1).

The packet processing rate of the Exchange would be limited 

primarily by the speed of this poll, if it is implemented directly. 

Alternatively, the secondary poll loop could be replaced by a vector 

approach. Let D be the set of all destination queues that are 

non-empty, R. be the set of all destinations reached via channel i. as 

determined by the routing algorithm, and V. be the latest received flow 

vector from channel i. Then the set of queues attached to output 

channel i with packets ready and able to be transmitted, T, is given 

by

T = D n a n v. (6: 1)
i i i
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If T. is considered to be ordered in a circular fashion, then it can be 

considered as a circular list of available queues. Searching this list, 

from some given starting point, until a non-zero entry is found, is 

equivalent to performing the secondary poll loop function described 

above, provided that the starting point is set to the element following the 

last queue to have a packet transmitted.

Since each set can be physically represented by means of a 64-bit 

binary array, the operation corresponding to (6: 1) can be implemented 

very simply by an array of 3-input AND gates to form the T array.

The second operation, that of rotating the array to the correct starting 

point, can be performed by means of a combinational circular shifter. 

The final operation, that of selecting the first queue with a packet 

available for transmission, can be implemented by means of a priority 

encoder. To the address output from the priority encoder, the starting 

address must be added, in order to identify the queue selected for next 

output. These processes are illustrated in Figure 6.1. Note that all the 

operations involve only combinational logic. Therefore, the complete 

queue poll loop could be performed in one cycle for each channel, 

independently of the number of queues attached to that channel. With a 

maximum of 64 nodes, a direct implementation of this algorithm is 

certainly feasible within a custom chip design. The rotator array would 

be implemented in 6 stages, each consisting of a 64-pole 2-way data 

selector. There is, however, a fairly horrendous connection mapping 

between each stage, which would increase the interconnection area on 

the chip, and increase the propagation delay through the rotator. The 

priority encoder would almost certainly be implemented as a two stage 

tree taking 8 bits at a time, or even a 3 stage tree taking 4 bits at a 

time. The total propagation delay of this combinational logic block would 

be quite considerable. Even so, with the speed of modern integrated 

circuit technologies, it is unlikely to exceed the delay in eliciting the 

channel controller's readiness for transmission. In any case, pipelining 

could be used within the block in order to Improve its throughput.

Another implementation, which could be used to reduce the amount 

and complexity of the combinational logic, is to multiplex the vectors to 

the priority encoder, say. 16 bits at a time. The rotation of the array is 

then performed, initially to the nearest 16 bits, by means of the order in 

which the segments are fetched from memory and finally by a 32—bit 

input, 16—bit output barrel shifter. Because the shifter has to be initially
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Figure 6.1: Vector Implementation of Exchange Output Poll
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loaded. It would take up to 5 cycles to perform a complete poll for one 

channel. This general technique could be applied to the design of 

high-speed packet switching nodes for other networks, or Indeed 

anywhere where high-speed arbitration is required.

6.3 PROJECT ACHIEVEMENTS

From this project, there have been a number of concepts, lessons 

and techniques which are of general Interest and applicability. It has 

been the intention of this thesis to record some, at least, of these 

items. The more Important are summarised below:

(1) The Importance of a structured approach to communication 

system design cannot be over-emphasised (Section 2.1). This 

entails the use of a proper hierarchical model of the system, with 

Its various functions partitioned into layers and service 

specifications defining how the layers interact. These ideas have 

become generally accepted In recent years due to the wide 

acceptance of the ISO OSI Reference Model [ISO 84]. However, 

while the basic concepts enshrined In the OSI model are 

Indisputable, there are many details, mainly concerning the 

specific layers and type of service, which may not suit a specific 

network. Therefore. It behoves the designer of a closed 

communication system, like MININET. to adopt the OSI layered 

philosophy, while remaining free to define sublayers and their 

services appropriate to the specific application. In particular, it is 

vitally important that the major service boundaries in the model 

coincide with the major boundaries within the implementation, 

whether they be actual physical divisions between different pieces of 

hardware, or partitions between different software processes.

(2) The service provided by the communication system needs to 

be carefully specified before the design of the system can start. 

This modern communication system design approach shares, with 

other top-down design methodologies, the very real danger of 

specifying a service which turns out to be extraordinarily expensive 

to implement. Therefore. It is necessary to scrutinize carefully a 

service specification to ensure, not just Its desirability, but most 

Importantly, its feasibility.

(3) Transparency, taken to the point of Invisibility, is probably the
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(4)

(5)

(6)

most notable aspect of the MININET Service. It embodies the 

assumption that user devices are primarily concerned with 

communicating with each other on a point-to-point basis and. 

therefore, they do not wish to be bothered with details of the 

network connection. Of course. In situations, such as office 

automation applications, where the users wish to communicate with 

a large number of other users in the network. It is entirely proper 

that they are more aware and concerned with the presence of the 

network. However, in an Instrumentation environment, this is 

usually not the case and the MININET concept of network 

transparency could well be applied to other networks designed for 

that type of application.

The network layer problems, raised by the inclusion of 

multi-node channels within MININET. are very similar to those 

encountered in internetworking [SIND83]. The solutions adopted by 

MININET are of direct relevance to the design of a global network. 

Note, that the functionality of the additional 3M sublayer introduced 

to the MININET model (Section 2.3.1) Is more than a mere 

subnetwork service equalization layer. Wherever possible, global 

network protocol functions are devolved to the sublayer In order to 

ease the processing burden of the main global network layer 

entities.

A suitable choice of packet size in the design of a network is 

Influenced by two major considerations. Firstly, there are the 

consequences of the service requirements of the network. The 

ramifications, on the quality of service, of segmenting or blocking 

must be taken into account. In the case of MININET. these 

requirements (Section 1.2.2) forced a very small packet size on 

the network design. The second consideration is that of channel 

and buffer memory utilization efficiency. Section 2.2.2 discusses 

techniques for estimating the suitability of a particular packet size 

given an estimate of the distribution of user message sizes. Note, 

that the choice of a variable packet size generally improves 

efficiency, as far as channel utilization Is concerned, but has little 

effect on buffer efficiency since most allocation implementations 

reserve buffer space up to the maximum packet length.

Data-llnk protocols are increasingly Implemented in dedicated 

hardware processors. Indeed this is mandatory, where very high
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(7)

(8)

(9)

(10)

frame processing rates are required. It is desirable, therefore, to 

adopt a simple data link protocol. MLP. described in 

Section 2.3.2. is ideal for such applications, provided that the 

frames are of fixed length. Despite the simplicity of its 

implementation, it is. nevertheless, very robust, thanks to its 

property of treating corrupted frames in an identical manner to 

error messages. Furthermore. Its single sequence number field 

makes it efficient as far as header overhead is concerned.

The anti-congestion flow-control algorithm. described in 

Section 2.4.1. guarantees fairness and freedom from 

store-and-forward deadlock, without resorting to dropping packets. 

The destination node based buffer partitions restrict the use of this 

algorithm, in its present form, to smaller networks. However, it 

could be easily extended if hierachical addressing and routing is 

used.

The management transport protocol. MOP. described in 

Section 2.6. goes to great lengths to maintain reliability, even if 

the quality of the Packet Delivery Service is poor due to some 

malfunction of the network hardware. In particular, the problem of 

unacknowledged packets, during the closure of a conversation, has 

been overcome.

DIM is a relatively straightforward interface (Chapter 3) which, 

nevertheless, has a very useful capacity. It is. therefore, very 

suitable for interfacing data conversion equipment to a computer or 

linking computers together, even over extended distances of 10m or 

more, where data rates In order of mega-bits per second are 

required.

At the beginning of the project, it was not at all clear whether 

it would be possible to devise a routing protocol which maintains 

intrinsic packet sequency. The routing algorithm described in 

Chapter 4 achieves this aim. with packets being dropped only in 

exceptional circumstances. This distributed algorithm constructs a 

set of guaranteed loop-free trees, based on each destination in the 

network. A quad-phasic update cycle Is required to flush old packet 

pathways, so maintaining packet sequency. This is obtained using 

only small messages exchanged between adjacent nodes. Many of 

the connection-orientated wide area networks, such as TYMNET 
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[RIND76], TRANSPAC [DANE76] and SNA [AHUJ79], use an 

approach where routes are fixed at connection establishment time 

and all connections, passing through a link or node which fails, 

are automatically closed. These networks could well be improved by 

the use of the routing algorithm developed here.

(11) It has been shown that fairness In network protocol design is 

much more difficult to achieve than at first appears. Indeed, there 

are a number of ways in which fairness can be defined leading to 

the concept of different degrees of fairness. The fairness criterion 

was restricted to be essentially an anti-hogging requirement. 

Destination-led. two-dimensional polling structures (Section 5.2.1) 

were used to achieve fairness in the Station design. In Section 6.2 

a high-speed implementation of a similar algorithm, for the 

Exchanges, was proposed.

(12) In order to achieve the required performance of the Station 

message handler. It was necessary to develop agile 

microprogrammed controllers. The PROM based design technique 

which evolved (Section 5.2.5) can be used In a wide variety of 

applications.

(13) The management processes needed a method of Inter-task 

communication, where a task could wait for a number of events 

simultaneously. The resulting operating system (Section 5.3.1) 

provides this by means of a multi-wait primitive, where each task 

can wait on a number of FIFO event queues which are ranked in 

priority order by the task. This relatively simple concept provided 

an operating system which has remarkable versatility in real time 

applications.

Overall, the project has made contributions to many different 

branches of communication engineering and system design.
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