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SOCIAL SCIENCES

Emergent social conventions and collective bias in

LLM populations

Ariel Flint Ashery‘, Luca Maria Aiello*3, Andrea Baronchelli

Social conventions are the backbone of social coordination, shaping how individuals form a group. As growing
populations of artificial intelligence (Al) agents communicate through natural language, a fundamental question
is whether they can bootstrap the foundations of a society. Here, we present experimental results that demon-
strate the spontaneous emergence of universally adopted social conventions in decentralized populations of
large language model (LLM) agents. We then show how strong collective biases can emerge during this process,
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even when agents exhibit no bias individually. Last, we examine how committed minority groups of adversarial
LLM agents can drive social change by imposing alternative social conventions on the larger population. Our re-
sults show that Al systems can autonomously develop social conventions without explicit programming and have
implications for designing Al systems that align, and remain aligned, with human values and societal goals.

INTRODUCTION

Social conventions shape social and economic life, determining how
individuals behave and their expectations (1-4). They can be defined
as unwritten, arbitrary patterns of behavior that are collectively
shared by a group. Examples range from conventional greetings like
handshakes or bows to language and moral judgments (5, 6). Recent
numerical (7, 8) and experimental (9) results have confirmed the
hypothesis that conventions can arise spontaneously, without the
intervention of any centralized institution (3, 5, 10, 11). Individual
efforts to coordinate locally with one another can generate universally
accepted conventions.

Do universal conventions also spontaneously emerge in popula-
tions of large language models (LLMs), i.e., in groups of N simulated
agents instantiated from an LLM? This question is critical for predict-
ing and managing artificial intelligence (AI) behavior in real-world
applications, given the proliferation of LLMs using natural language
to interact with one another and with humans (12-14). Answering it
is also a prerequisite to ensure that Al systems behave in ways aligned
with human values and societal goals (15).

A second key question concerns how the biases of individual
LLMs influence the emergence of universal conventions, where
“bias” refers to an initial statistical preference for one option over an
equivalent alternative in norm formation (e.g., individuals system-
atically preferring one name over another in a process leading to the
population settling on a single name). Because collective processes
can, in general, both suppress and amplify individual traits (16, 17),
answering this question is also relevant for practical applications.
While most research has focused on investigating and addressing
bias in one-to-one interactions between humans and LLMs (18-20),
less attention has been given to how these biases evolve through re-
peated communications in populations of LLM agents and, ultimate-
ly, in mixed human-LLM ecosystems (15), even though the safety of
a single LLM does not necessarily imply the safety of a multi-agent
system (21).
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Last, a third question concerns the robustness of social conven-
tions. Recent theoretical (22) and empirical (23) results have shown
how a minority of adversarial agents can exert an outsized influence
on the group, provided that they reach a threshold or “critical mass”
(24-26). Investigating how conventions change through critical
mass dynamics in a population of LLMs will help anticipate and
potentially steer the development of beneficial norms in Al systems,
while mitigating risks of harmful norms (27). It will also provide
valuable models for how AI systems might play a role in shaping
new societal norms to address global challenges such as antibiotic
resistance (28) and the post—carbon transition (29).

Here, we address these three key questions—on the spontaneous
emergence of conventions, the role of individual biases, and critical
mass dynamics—in populations of LLM agents. Drawing from recent
laboratory experiments with human subjects (9, 23, 30), we follow
the well-established practice of using coordination on a naming con-
vention as a general model for conventional behavior (5, 7, 30-33). In
this setting, agents are endowed with purely local incentives and con-
ventions may (or may not) emerge as an unintended consequence of
individuals attempting to coordinate locally with one another. This
sets our paper apart from the growing body of literature on LLM
multi-agent systems, which has made considerable progress in complex
problem-solving and world simulation but has primarily focused
on goal-oriented simulations where LLMs either accomplish pre-
defined group-level tasks or approximate human behavior in struc-
tured settings (15, 34-36). Unlike studies that use LLMs to predict
human responses in social science experiments (37) or to simulate
human societies (38-40), our work does not treat LLMs as proxies for
human participants but rather investigates how conventions emerge
organically within a population of communicating Al agents as a
result of their interactions (6). The emergence of conventions is a
foundational element to any type of LLM multi-agent system (14, 41),
including but not limited to “in silico” experiments to emulate
human social networks (42). Here, we adopt a complex systems per-
spective (43), rather than high-fidelity simulations of human interac-
tions (44), thereby minimizing the complexity of the experimental
design to enhance the transparency of the result interpretation.
Overall, our approach addresses recent calls for Al researchers to
investigate how LLM agents may develop shared solutions to poorly
defined social problems—such as creating language, norms, and
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institutions—to gain insights into the formation and stability of
genuine cooperative Al systems (15).

Experimental setting

Background and framework

Our approach builds on Wittgenstein’s general model of linguistic
conventions, where repeated interactions lead to collective agreement
between two players (32). Theoretical extensions of this approach
have argued that purely local interactions taking place on social net-
works can lead to population-wide, or “global,” coordinated behavior
(1, 2, 6, 45). Predictions for our study are based on the naming game
model of convention formation, where agents, aiming to coordinate
in pairwise interactions, accumulate a memory of past plays, which
they then use to “guess” the words their subsequent partners will use
(7, 8). Extensive numerical and analytical work has shown how the
model captures the rapid growth of universally shared social conven-
tions in different settings (6). Derived laboratory experiments involv-
ing human participants in naming games have provided the first
empirical evidence for the spontaneous emergence of shared linguistic
conventions (9). A similar approach has confirmed these predictions
by adopting more realistic input data within an application-driven set-
ting (33, 46).

The naming game framework has also been applied to study
norm change and critical mass theory, which posits that committed
minorities can overturn stable social conventions once their size
reaches a tipping point, or “critical mass” Theoretical models sug-
gest critical masses between 10 and 40% of the population (22, 47).
Empirical evidence from controlled social coordination experi-
ments, which closely follow the scheme described above, supports a
25% threshold (23). However, real-world observations reveal a wid-
er range, with some studies proposing 30 to 40% for gender conven-
tions in corporate leadership (25, 48), and others indicating that
minorities as small as 0.3% can trigger substantial linguistic and
social changes (29, 49-51).

Experimental setup
A simulation trial consists of a population of N interacting agents.
At each time step, two agents are randomly selected for interaction.
Interaction rules are specified by prompting the LLM agent (see the
next section). From a multi-agent perspective, each agent outputs a
convention, or “name,” from a pool of finite size W, and these out-
puts are compared to determine coordination. The prompt specifies
that if the conventions match, then the game score of the agent is
incremented, and if they do not match, then it is decremented. In
either scenario, the game scores of both agents change by the same
amount. This implements an incentive for coordination in pairwise
interactions, while no incentive promotes global consensus. More-
over, the prompt does not specify that agents are part of a popula-
tion or provide any detail on how the interaction partner is selected
from a group. The prompt provides the LLM agent with a “memory”
storing details about the past H interactions that they participated
in, including their co-player’s convention choice, their own conven-
tion choice, whether the interaction was successful or not, and their
own accumulated score over these H interactions. The memory is
initialized as empty so that, in the first interaction, the output is a
random convention chosen from the pool of available names.

Last, in the experiments on norm change and critical mass theory,
we introduce a small number of adversarial agents (i.e., a “committed
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minority”) into each population, who consistently promote a novel
alternative at every interaction and irrespectively of their history
(22, 23). These dynamics reflect common types of online interac-
tions where community members engage directly with a large, often
anonymous population, using chat interfaces or messaging technol-
ogies, leading to the adoption of linguistic and behavioral con-
ventions that enable effective coordination with other participants’
expectations (9, 23, 52, 53). Here, we simulate these social interac-
tions with four different LLM models: Llama-2-70b-Chat, Llama-3-
70B-Instruct, Llama-3.1-70B-Instruct, and Claude-3.5-Sonnet (see
the Materials and Methods).

Prompting

Interactions within the game take place in the form of a series of
text-based moves. In each interaction, the LLM agent is given a text
prompt composed of a system prompt and a user input prompt. The
system prompt contains all information about the game. The user
input requests the agent to predict a player’s next action based on the
history of choices in the H most recent interactions. This positions
the agent as an external observer of the game, tasked with forecast-
ing the upcoming round. In practice, these decisions dictate the
state of play. Agents do not receive information about the players’
identities or personalities, such as whether they are rational actors.
Consequently, we can interpret the agent’s reccommendations as their
de facto participation in the game.

The system prompt (see the Materials and Methods) is designed
such that the agent’s output follows a consistent format, from which
we can extract its decision. Following previous works on LLMs’ cog-
nitive abilities (54), we prompt the agent to “think step by step” and
to explicitly consider the history of play. The prompt thus encour-
ages agents to make a decision based on their previous experience
but provides no instruction as to how it should be used in the
decision-making process. Agents are asked to select a name from the
name pool, which is presented to them as a list of W unique letters
sampled from the English alphabet. Ordering bias is removed by
randomizing the list of presented letters for each player at every in-
teraction. A successful interaction garners equal rewards for the par-
ticipating agents, whereas a failure to coordinate results in a penalty.
In the absence of human guidance, LLMs are notoriously bad at
arithmetic (55). To avoid decision errors based on a misjudgment of
the game state, we explicitly provide the agent with both the payoff
that they obtained at each round and their cumulative score within
memory range. Last, to ensure that the responses generated by the
LLM are correctly guided by the prompt and not merely the result of
random hallucinations (56), we have implemented a meta-prompting
strategy to assess the LLM’s understanding of the given instructions.
This practice, previously used in evaluating LLMs within game-
theoretical frameworks (57), consists of posing a series of text com-
prehension queries to the LLM and evaluating the precision of its
responses. The LLMs subjected to our testing demonstrated good
comprehension capabilities (see fig. S1).

RESULTS

To balance experimental time, which should allow for multiple rep-
etitions, with parameters that provide agents a rich set of alterna-
tives and meaningful awareness of their history, we set the name
pool size to W = 10 and the individual memory length to H = 5 for
populations of N = 24 agents, unless otherwise specified. The results
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presented below remain robust with respect to variations in these
parameters (see fig. S2).

Spontaneous emergence
Figure 1 shows that group-wide linguistic conventions spontane-
ously emerge across all models. The dashed black line shows that
the theoretical model (see the Supplementary Text for a descrip-
tion) captures the dynamics generated by the LLM populations.
Initial steps have a low probability of success because the ran-
dom pairing of agents makes repeated interactions improbable,
thus preventing the formation of “neighborhoods” of entrenched
behavior. However, these local dynamics lead to a disorder-to-order
transition toward a consensus state where every agent systemati-
cally outputs the same name, i.e., where a global convention has
emerged. The fact that the population converges to one of many
possible alternatives characterizes the transition as a case of sym-
metry breaking (8). This interpretation is further supported by ex-
amining the space of competing alternatives, shown in Fig. 1B. After
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Fig. 1. The spontaneous emergence of conventions. (A) The success rate, i.e., the
probability of observing a success at a given time, for population size N =24 and a
name pool of size W = 10, for each of the four models. Thick lines represent average
curves obtained from 40 experimental runs, while thin lines are representative
individual runs. To improve visibility, we only show five individual trajectories for
each LLM. The black, dashed line shows the success rate of the theoretical minimal
naming game model, averaged over 10,000 runs under the same constraints. (B) Word
competition in a single run in a population of Llama-3.1-70B-Instruct agents. Differ-
ent markers and colors represent the trajectories of unique conventions. Each data
point is a bin averaging the past interactions up until the preceding bin boundary.
Error bars indicate SEM.
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an initial period in which several names are nearly equally popular,
a single convention rapidly becomes dominant, transitioning the
system into a “winner-take-all” regime. The speed of convergence is
similar across models: A shared social convention is established by
population round 15 in all cases, except for Llama-2-70b-Chat, the
least advanced LLM considered.

A natural question is whether consensus on a global convention
also occurs (i) for larger population sizes, where the probability of
repeated interactions is reduced, and (ii) when the number of com-
peting alternative conventions increases, which could potentially
complicate even local convergence. Figure S2 shows that populations
as large as N = 200 agents reach consensus and that a shared conven-
tion emerges for a name pool as large as W = 26, demonstrating the
robustness of the convergence process. Larger populations reach
consensus at a comparable speed, measured in terms of population
rounds, while the effect of the name pool size W is more nuanced,
although not marked. In the next section, we examine how the com-
position of the available pool of conventions affects convergence.

Collective bias in convention selection

Having established that social conventions emerge, a natural ques-
tion arises: What are these conventions? The single Latin alphabet
letters available in the name pool are all equally valid as global
conventions, and so we would expect them to all to have the same
probability to become the accepted social convention, as supported
by the theoretical model (8) (see also the Supplementary Text).
However, the experimental results present a different picture (Fig. 2A).
The probability that a particular name becomes the social con-
vention is neither uniform nor deterministic. Some names appear
to have a pronouncedly higher likelihood of becoming the adopted
convention than others. This pattern holds across models, although
the preferred names vary between models.

Two hypotheses could explain the observed behavior. The selec-
tion process may be non-uniform due to (i) intrinsic model (i.e.,
individual, single-agent) biases or (ii) prompt features, specifically
the order in which names in the name pool are presented to the
agents, as noted in a different context (58). The latter hypothesis can
be discarded because, as mentioned above, the names are presented
to the agents in a list in randomized order for each agent and at
every interaction.

Having ruled out the order of name presentation as a factor, we
can focus on the role of individual (i.e., single-agent) biases in shap-
ing collective behavior. The hypothesis that individual bias can be
responsible for a collective bias is supported by the theoretical model.
When the theoretical model is run with only two names, a bias to-
ward a particular name quickly results in unilateral convergence on
that name at the population level (see fig. S3). The speed of conver-
gence depends on the size of the bias.

To test this intuition in our experiment, we examine the selection
preferences of individual agents during their first round, when they
have no prior memory. We find that individual biases are possible.
For example, when agents can choose any letter from the complete
English alphabet, the population systematically converges on the let-
ter “A” because individual agents overwhelmingly prefer to select it
over all other letters, even without prior memory (see fig. S4). How-
ever, a similar test on the frequency of name selection by agents with
no prior memory for the case of Fig. 1, where the name pool contains
10 elements but not the letter “A;” yields mixed results. Under these
conditions, individual Llama-2-70b-Chat and Claude-3.5-Sonnet
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Fig. 2. Emergent collective bias. (A) Distribution of consensus conventions, for a name pool of size W= 10 (N = 24). Results of 40 runs for the Llama-3-70B-Instruct and
Llama-3.1-70B-Instruct models, and 27 and 20 runs for Claude-3.5-Sonnet and Llama-2-70b-Chat, respectively. The collective dynamics systematically amplify individual
biases (shown in fig. S5). (B) Individual versus collective bias for W= 2, name pool { Q, M }. Left: Probability of selecting either convention for agents with no prior memory
(Q, lighter hue; M, darker hue). Raw values reported in table S1. Asterisks (*) indicate that there is insufficient evidence to reject the null hypothesis that the model is un-
biased at the 5% significance level (calculated using an exact binomial test from 10,000 samples per model, apart from Llama-3-70B-Instruct that had 5000 samples, see
the Materials and Methods). Corresponding P values for the models (from left to right) are P = 0.068, 0.116, 0.757, and 0.849. Right: The proportion of runs (40) that re-

sulted in consensus on the respective convention. Raw values reported in table S2.

agents are unbiased across conventions in this name pool (chi-square
test, P = 0.100 and 0.410), whereas individual Llama-3/3.1-70B-
Instruct agents exhibit a significant statistical skew in their name
selections (see fig. S5). In all cases, the final consensus distribution
shows that specific names are favored as a consensus option, even if
they appeared to be less likely to be selected in the initial step (Fig.
2A). Thus, both social conventions and collective biases in the selec-
tion process emerge also in absence of individual biases.

The findings suggest that collective bias may stem from the con-
vention formation process itself, as agents are exposed to diverse
memory states with different name combinations and success-failure
sequences. To test this hypothesis, we focus on the case of a name

Ashery et al., Sci. Adv. 11, eadu9368 (2025) 14 May 2025

pool size W = 2, because tracking potential confounders of bias be-
comes impractical as the space of possible names increases. Figure
2B shows that, across all models, although agents are initially unbi-
ased, local communication and coordination lead to a collective bias
toward a specific convention, which we term the “strong convention”
(as opposed to its “weak” counterpart). This finding is consistent
across various convention combinations (see fig. S6).

We examine the microscopic contributions to collective bias
in Table 1. The top row of Table 1 shows a case where there is no
individual bias toward a particular name in the first interaction
(P =0.116 > 0.05, indicating that the evidence is not strong enough
to reject the hypothesis that the agent is unbiased). In the second
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Table 1. The origin of collective bias. The strategies of a Llama-3.1-70B-Instruct agent in the early phases of the experimental setting up to the third
interaction, with W = 2 and a name pool { Q, M }. The asterisk (*) indicates that the model is statistically neutral in the respective interaction. In interaction 1,
agents are initially unbiased (P = 0.116, see also Fig. 2B), based on 10,000 name selections by agents with empty memory. In interaction 2, the convention
production probability remains unbiased (P = 0.110) when aggregated across equally likely memory configurations. Agents generally adhere to a winning
convention but switch to their co-player’s convention following failure. By interaction 3, the dominant memory configurations display a considerable bias
toward the strong convention, M (P < 2.2 x 107'°). In stochastic simulations, some agents will inevitably interact with others who have experienced more
interactions. These interactions create a bias toward the strong convention, as experienced players are more likely to favor it. Thus, this table provides a

conservative estimate of the collective bias emerging for the strong convention.

Interaction Memory P(Q) P(M) Aggregated P(M)
Interaction: played, observed
1 - 0.492 b 0.508*
QM 0.049 {
1M, Q
o BQQ
3 0.563

'Q i B
MM

100

interaction, agents have some memory influencing their decision, but
the observed outcome probability remains symmetric (P = 0.110).
We observe that if an agent succeeds in the first interaction, then it will
almost surely continue to use the successful name in the next interac-
tion (99.4% of the time in the data in Table 1, with similar results in real
simulations and for other models). However, if an agent fails, then it
will almost surely switch names (97.3% of the time). In all tested cases
with W =2, and across all models, an asymmetric selection bias emerges
by the agent’s third interaction, distinguishing between the “weak”
and “strong” conventions. For the model and name pool reported in
Table 1, agents at this stage are more likely to choose the strong name in
five of the eight most expected memory states. Crucially, the agent’s
strategies are not symmetric under a relabeling of the conventions in
the memory state. The most egregious example of this from Table 1
isP(M|{1:M,Q;2:Q,M})and P(Q| {1: Q, M;2: M, Q}), which are
equal to 0.848 and 0.451, respectively. In subsequent interactions,
agents are more likely to encounter the strong name in successful in-
teractions, reinforcing its use and ultimately leading to consensus on
that name as the social convention.

In summary, our results suggest that a collective bias may also
emerge also from repeated interactions among agents who, when
tested in isolation (i.e., in interaction 1), appear to be unbiased in
their decision-making. It is important to emphasize that this dy-
namically emerging bias is not required for the spontaneous emer-
gence of a convention. The collective and individual biases of these
agents drive the consensus toward particular conventions. For ref-
erence, the theoretical model produces conventions without any
individual bias but accommodates it at the individual level to ex-
plain the dominance of specific conventions over competing alter-
natives (see fig. S3) (6, 8). In LLMs, on the contrary, we observe that
bias emerges when agents develop diverse memory states, which

Ashery et al., Sci. Adv. 11, eadu9368 (2025) 14 May 2025

form through a collective process of agent-to-agent communica-
tion. Our results are robust with respect to variations in the prompt
and convention labels and hold also in non-fine-tuned LLMs (see
the Supplementary Text).

Tipping points and critical mass

Social conventions are steady states of the system: Once a global
convention spontaneously emerges, the population adheres to it in-
definitely (see fig. S7). A natural question concerns the stability of
such steady states: How resistant is a convention to deliberate efforts
to overturn it? To address this question, we investigate whether a
committed minority can “flip” an equilibrium consensus on a con-
vention. We consider the scenario in which a population has long
converged on a convention and every agent has solely observed that
convention in the past H interactions (which were, therefore, all
successful). We then introduce a committed minority of agents pro-
ducing an alternative convention (22, 23). These committed agents
follow a fixed strategy and use the alternative convention at all
times. We test populations using the same two-name (W = 2) con-
ditions as in our convergence experiments. We simulate a consensus
on each name per combination and introduce its complementary
name as an adversary.

In Fig. 3, we show that, when the committed minority reaches
the critical threshold, the whole population adopts their conven-
tion. Below this threshold, the population settles into a mixed state,
as committed agents always use the minority convention. The criti-
cal mass of the committed minority needed to trigger a new con-
vention depends on the convention itself. The stronger name (i.e.,
the name more likely to become the social convention had we start-
ed with no prior memory, as seen in the previous section) requires
alarger committed minority to be overturned. Conversely, a smaller
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Fig. 3. Committed minority and critical mass dynamics. Populations of N = 24 agents (N = 48 for Llama-3-70B-Instruct) were initialized in two conditions, with complete
consensus on either the weak (Q) or strong (M) convention (W = 2). Each agent’s memory exclusively stored one convention in each setting, with memory length H =5
(H = 3 for Llama-3-70B-Instruct). (A) The average probability of producing the alternative convention when the majority holds the weak (top) or strong (bottom) conven-
tion. The legend shows the size of the committed minority (CM). Bold (faint) lines represent the production probability when the CM reaches the critical mass needed to
flip the majority on the strong (weak) convention. Solid lines with filled circles indicate that all trials achieved population consensus on the alternative convention (95%
success rate in the past 3N rounds). (B) Critical mass needed to flip the majority for each model. Raw values reported in table S3. Error bars indicate SEM.

number of adversarial agents can overturn a consensus on the
weaker name.

The relative strength of the two conventions can vary so widely
depending on the LLM that committed groups as small as 2%
(Llama-3-70B-Instruct) or as large as 67% (Llama-2-70b-Chat),
effectively no longer a minority, were observed (see Fig. 3). In Llama-
3.1-70B-Instruct populations, the bias is so strongly weighted against
the weaker convention that the population spontaneously switches
to the alternative, stronger convention without requiring any com-
mitted agents at all. Relative strength can be understood by consid-
ering the limits of an agent’s exploration, i.e., the likelihood that their
output deviates from the strong (weak) social convention as the
game unfolds (see the Supplementary Text). As the population con-
verges toward the strong convention, agents quickly reach memory
configurations that resist further exploration, making the consensus
steady state robust. In contrast, weaker conventions coexist with a
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greater propensity for exploration among agents. Similar dynamics
take place when the system is perturbed from a consensus steady
state on the strong convention. Adopting a dynamical systems per-
spective, we can say that the basin of attraction of the strong conven-
tion is both larger and deeper than that of the weaker convention, as
it attracts more system configurations and makes it more difficult for
the system to escape (see the Supplementary Text).

DISCUSSION

Our findings show that social conventions can spontaneously emerge
in populations of large language models (LLMs) through purely local
interactions, without any central coordination. These results reveal
how the process of social coordination can give rise to collective bi-
ases, increasing the likelihood of specific social conventions develop-
ing over others. This collective bias is not easily deducible from
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analyzing isolated agents, and its nature varies depending on the
LLM model used. Additionally, our work uncovers the existence of
tipping points in social conventions, where a minority of committed
agents can impose their preferred convention on a majority settled
on a different one. The critical size of this committed minority is in-
fluenced by at least two factors: the interplay between the majority’s
established convention and the minority’s promoted alternative, and
the specific LLM model used.

Within the expanding field of LLM multi-agent systems (34),
multi-agent experiments with Al agents simulating opinion dynamics
models suggest that LLMs are able to reach consensus in groups with-
out any incentive, although this is limited by group size (59). In this
context, our study presents a flexible benchmarking framework to
detect the hidden higher-order biases that could arise from complex
interactions in social LLM experiments (60). Our results on norm
change could stimulate research into similar dynamics within the
framework of cultural evolution, particularly in chains of communi-
cating agents (61). Game theoretical approaches would naturally allow
investigation of asymmetric payoffs’ effects on collective consensus,
potentially contrasting individual biases with explicit collective
goals (62-64). Further promising research avenues include develop-
ing frameworks to promote the emergence of specific conventions
(35) and higher-order social norms (36, 65), as well as testing interac-
tions between agents based on different LLMs within populations.

It is important to delimit the scope of our findings while high-
lighting possible avenues for future work. First, our results reveal
key aspects of norm dynamics in populations of LLMs within an
experimental setup that is, unavoidably in LLM research, reliant on
several parameters including the LLM model, the prompt, and spe-
cific conventions. While rigorous testing, including meta-prompting
and experiment repetitions using different parameters, confirms
the robustness of the results in this context, an important aspect of
future work will consist of generalizing the results to different con-
trolled experimental settings. In this context, scaling to larger pop-
ulations and semantic spaces should also be investigated (46, 59).
Second, we considered only unstructured populations where inter-
acting pairs are randomly selected. A straightforward yet crucial
extension of this work consists of embedding the population in
more realistic social networks, which may have a profound impact
on the collective dynamics (6, 40), as well as considering micro-
scopic interactions involving more than two agents (66). Third, to
bridge the gap between synthetic experiments and real-world ap-
plications, an exciting frontier for future study lies in considering
more realistic conventions, such as moving from alphabet letters to
sensitive human norms related to gender, race, and other social cat-
egories. Last, simulated cooperative games played by Al agents may
also prove useful for tuning the agentic behavior toward desirable
outcomes. This could be potentially achieved through multi-agent
reinforcement learning (67) or, in games for which a clear optimal
strategy can be defined, by integrating strategic reasoning into the
agent’s decision workflow through external knowledge bases or
Bayesian reasoning modules (68, 69).

An important point concerns the dialogue between our results on
Al agents and the current understanding of social convention dy-
namics in humans. On the one hand, our results showed qualitative
similarities between the collective dynamics of AI and human sub-
jects, concerning both the emergence of shared norms and critical
mass dynamics. On the other hand, we unveiled what appear to be
LLM-specific phenomena regarding collective bias, affecting both the
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emergence and resilience of conventions, which call for further hu-
man testing. These indications are important because assessing the
similarities and differences between artificial and human societies in
such a foundational aspect as norm dynamics has implications for
digital-twin synthetic modeling and applications (44). For example, if
AT agents behaved exactly like humans, then synthetic testing of
norm dynamics under collective stresses—such as pandemics, terror-
ism, or wars—would be justified. If, on the other hand, LLM-specific
dynamics proved to be substantial (e.g., if evidence of collective bias
were further confirmed), then using these agents as simulations of
human social systems or deploying these agents in social settings
such as social media would require additional care. In particular, it is
crucial to develop techniques to systematically identify discrepancies
between LLM outputs and the expected human behavior (70), to then
correct them with statistical techniques (7I) or by keeping human
judgments in the loop (72). Addressing these points is a key endeavor
for the future, with far-reaching implications. Next steps involve fur-
ther investigating convention dynamics in human and AI popula-
tions as well as in mixed LLM-human ecosystems, both in laboratory
settings and, eventually, in natural environments like social media.

Our work also underscores the ethical challenges of bias propa-
gation in LLMs. Despite their rapid adoption, these models pose
serious risks, as the vast, unfiltered internet data used to train them
can reinforce and amplify harmful biases, disproportionately harm-
ing marginalized communities (73). Accordingly, a central focus of
the alignment research community has been to improve LLM per-
formance in individual bias tests (74, 75). However, our findings
reveal that alignment must also be tested at the group level, where
collective biases can emerge and persist.

Last, understanding how Al systems spontaneously develop con-
ventions and more sophisticated norms without explicit program-
ming is a critical first step for predicting and managing ethical Al
behavior in real-world applications while ensuring agent alignment
with human values and societal goals. It is also crucial for safeguard-
ing Al agents from potential attacks. In particular, tipping points in
norm dynamics present both opportunities, such as addressing
global challenges (28, 29), and risks, particularly if exploited for so-
cial control (76). Our findings highlight potential vulnerabilities in
multi-agent systems, which could be exploited through injection at-
tacks to influence the emergence of specific norms (77). Recogniz-
ing these risks, studying collective LLM behavior is crucial for
assessing potential harms from the integration of Al agents into ap-
plications and for developing effective mitigation strategies. More-
over, efforts to measure and instill human social norms in LLMs
have so far yielded mixed results (78, 79), and, as of yet, Al agents
struggle to represent multiple cultures (80) and continuously evolv-
ing social norms (27, 81, 82). We argue that the challenge extends
beyond merely detecting “undesirable behavior,” to understanding
the evolution of social norms held by agents (27). In this light, our
work represents a first step toward a better understanding of norm
and bias dynamics in populations of LLMs, and we anticipate that it
will be of interest to researchers and practitioners working to make
Al a tool for societal good.

MATERIALS AND METHODS

Prompt

The system prompt comprises of three components: (i) a fixed
prompt that outlines the game’s rules, including the payoff structure
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and the player’s objective, (ii) a dynamic memory prompt that pro-
vides contextual information about the state of play within the play-
er’s memory range, and (iii) an instructional prompt that provides
information for how the agent should format its response. The user
prompt asks the agent to select a name to use in the current inter-
action. We use zero-shot prompting to directly extract the agent’s
name decision in response to the state of play. We do not provide
instructions as to how agents should decide their next move, nor
do we present them with example strategies. We ask the agent to
behave in a self-interested manner, and the only part of the prompt
in which we suggest to the agent that it should consider partaking in
coordination is when we state that the agent’s objective is to “maxi-
mize their own accumulated point tally, conditional on the behavior
of their co-player” We apply fixed payoffs for successful and failed
interactions, set at +100 and —50 points, respectively.

Models and APIs

For our experiments, we use homogeneous populations of agents in-
stantiated from the following LLMs: Llama-3-70B-Instruct, Llama-
3.1-70B-Instruct, Llama-2-70b-Chat (in 4-bit quantization format),
and Claude-Sonnet-3.5 (see Table 2 for specific versions). All Llama
family models are open-sourced LLMs, released under a commercial
use license (https://ai.meta.com/llama/license/). We use versions
of the Llama 3 family models hosted by Hugging Face, which we
access through the inference Application Programming Interface
(API) (https://huggingface.co/inference-api/serverless). We quantize
Llama-2-70b-Chat into a 4-bit version using Hugging Face’s Trans-
formers library (https://huggingface.co/docs/transformers) and run
the model locally using a single A100 GPU. In auto-regressive LLMs,
each newly generated word is produced on the basis of previously
inputted and generated words, and so the sequence of generation
matters. More precisely, the probability distribution for predicting
the next word is conditional on the product of all previous word
probability distribution. To mimic LLMs deployed in real-world
applications, we demand all agents in our experiments to behave
non-deterministically by fixing them with a nonzero constant tem-
perature. This means that, for each agent, the next generated word is
randomly selected from the conditional probability distribution. We
use K-sampling to restrict the probability distribution of the next
word to the next K most likely words, thus increasing the likelihood
of high probability words and decreasing the likelihood of low prob-
ability words that are outside of the name pool (see table S4 for all
parameter values).

Measuring individual bias

We quantify the individual bias of agents by measuring the number of
times each convention was produced in the first round of the game,
when their memory inventory is empty, over T trials. Experiments

]
Table 2. Model names and versions.

Model name Model version

Meta-Llama-3-70B-Instruct
Meta-Llama-3.1-70B-Instruct
claude-3-5-sonnet-20240620

Meta-Llama-2-70b-Chat

Llama-3-70B-Instruct

Llama-2-70b-Chat
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with W =2 are effectively a Bernoulli trial, and so we measure wheth-
er the agent is biased by performing a two-tailed exact binomial test
with the observed proportions. We calculate the P value using a null
probability of 0.5 and reject the hypothesis that the model is biased if
P < 0.05. For the case of W = 10, we perform a chi-square test and
also test the null hypothesis that the model is neutral in its con-
vention selection. Thus, we use the expected value of 0.1 T in our
calculations and, again, reject the null hypothesis that the model is
unbiased if P < 0.05.

Committed minorities

To determine the critical size of the committed minority, we identify
the point at which the majority consensus is overturned. A consen-
sus flip occurs when 95% of the past 3N interactions succeed after
the introduction of the committed minority. For Llama-3-70B-
Instruct, we tested the smallest minority needed to overturn a weak
convention majority and then repeated the experiment with a strong
convention majority to measure the critical mass within the same
time frame. For other models, the critical mass threshold is defined
as the minimum proportion of committed agents that is required to
flip the consensus within 30 population rounds. These criteria ac-
count for potential fluctuations in nondeterministic agent decisions.

Supplementary Materials
This PDF file includes:
Supplementary Text

Figs.S1to S12

Tables S1 to S7
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