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Electronic filters are one of the basic elements in a 
communication system. In recent years, digital filters 
have attracted much attention due to many reasons, such 
as stability, flexibility, speed, cost, etc. One major 
problem with digital filters is the effects of finite 
wordlength. Wave Digital Filters (WDFs) were first 
introduced by Fettweis in 1971 to reduce these effects. 
However, the main drawback of WDFs is the hardware 
complexity when compared with the conventional cascade 
of second order sections. In general, the implementation 
of WDFs depends on how efficient the 2-port, 3-port 
parallel and 3-port serial adaptors are implemented. 
Therefore, one way of approaching the hardware 
complexity of WDFs is to consider the VLSI 
implementation of WDF adaptors.

In this thesis, bit-level systolic arrays are developed 
for the implementation of WDF adaptors. The systolic 
arrays developed are very suitable for the VLSI 
implementation of WDFs. A 2-port prototype systolic 
adaptoi' has been constructed and tested fully to prove 
the correctness of the design. Also, a universal 
systolic adaptor is designed which can be programmed to 
realise 2-port, 3-port parallel and 3-port serial 
adaptors. The number of transistors required to 
implement the adaptors in CMOS technology and the speed 
of the adaptors has also been estimated.

Also in this thesis, a complete software package has 
been developed which can be used for the synthesis and 
finite wordlength design of WDFs based on three well 
known reference filters, i.e unit element, lattice and 
LC-ladder filters. Software tools are also developed for 
the analysis and simulation of the filters designed. The 
simulation program allows the simulation of the systolic 
WDFs .

Many examples have been considered to illustrate the 
performance of the design programs and the systolic 
WDFs. From the example, it will be shown that the finite 
wordlength design program can be used to minimize the 
number of bits used to represent the filter 
coefficients. Also, it will be seen that a small 
reduction in the number of bits for the coefficients 
would exponentially reduce the complexity, and 
consequently the number of transistors, of a systolic 
WDF .

( xi )
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CHAPTER ONE

DIGITAL FILTERS AND ARRAY PROCESSORS

1.1.0- Introduction

Filters are signal processors that enhance some 

frequency components in a signal while attenuating the 

others. In analouge filters, the signals may be 

continuous functions of time for example current or 

voltage waveforms. These signals are called continuous-

time signals. On the other hand, the input to a digital 

filter is represented by a sequence of values available 

only at discrete intervals of time. These type of 

signals are referred to as discrete-time signals. 

Therefore, a digital filter is a digital signal 

processor that converts a sequence of numbers, called 

input samples, into another sequence of numbers called 

output samples. This computational process may be that 

of low-pass filtering, band-pass filtering, 

interpolation, etc.

Digital filters can also be used to process continuous 

signals by means of A/D and D/A converter, as will be 

shown in section 1.2.6 (Fig. 1.14). There are a number 

of reasons for considering the filtering of a 

continuous signal using digital techniques,

1) The frequency response of a digital filter can be 

made as close as possible to the ideal response.



2) Adaptive filtering and linear phase

characteristics are possible.

3) Also digital filters are programmable and very 

flexible.

4) When designed, digital filters are very stable 

and they are not subjected to ageing.

5) The cost of analogue filters is static while, 

with advances in digital hardware, the cost of digital 

filters is decreasing rapidly.

This chapter presents a concise introduction to the 

fundamental techniques involved in the design and 

implementation of digital filters. The chapter is 

divided into four sections. In the first section, we 

begin with a review of the sampling process of a 

continuous signal. Also we introduce the concept of the 

Z-transform as applied to linear time-invariant 

discrete systems and discuss methods by which a 

continuous filter design can be translated into a 

digital filter design. There are a number of problems 

associated with the realization of digital filters, 

such as coefficient accuracy, quantization and 

rounding, etc, which affect the frequency response of 

the filter. These problems and their solutions are 

also discussed.

As a solution to these problems, the concept of Wave 

Digital filters was introduced in 1971 by Fettweis. In 

-2-



section 2, we briefly review the basic theory, design 

and implementation of WDFs. In section 3. the concept 

of VLSI array processing is introduced. Some features 

of suitable architectures for VLSI implementation are 

discussed and systolic and wavefront arrays are 

described and compared. Finally in section 4, we 

outline the main objectives of this thesis.

3



1.2.0- Theory of LTI Digital Filters [11

1.2.1- Sampled Signals

The sampling process can be thought of as the impulse

modulation of a continuous input signal (Fig. 1.1). The

input, x(t), is sampled every T seconds to produce the

output signal, *s(t). From Fig. 1.1, x3(t) is given by,

xa(t)=x(t).6T(t) (1.1)

where 6 (t) = E 6(t-nT) (1.2)

and 6(t-nT) is the Dirac delta function. Substituting

eqn. 1.2 into eqn. 1.1, we have,

*s(t) = x(t) E 6(t-nT) (1.3)

or «3(t) = r x(nT).6(t-nT) (1.4)

assuming x(t)=0 foi' t<0 and x(t) is only known at t = nT. 

Eqn. 1.4 represents the time-domain characteristics of 

the sampled output. In order to see the frequency 

characteristics, we need to apply the Laplace transform 

to eqn. 1.4. 6^(t) can be expressed as a Fourier series 

as shown below,

6T(t) = (1/T) E e:’nWst n=(-oo,-) (1.5)

where is the sampling frequency in Rad/sec.

Substituting (1.5) into (1.1), we have,

x3(t) = (1/T) E x(nT)e3tWst (1.6)

Now taking the Laplace transform of (1.6) and using the 

shifting theorem we obtain,

Xs(s) = (1/T) E X(s-jnw3) (1.7)

Substituting s=jw into (1.7) results,

-4-



xs(ju>) = ( 1/T) £ X [ j (w-nw 3 ) ] (1.8)

Therefore the sampling process has resulted in a

frequency spectrum which is a periodic function with a

period of w . Fig. 1.2 shows the specturm of a typical 
s

signal, x(t), and the corresponding (s) for two cases, 

f>2f and f<2f - where f is the sampling frequencymin min

and f is the maximum frequency component in the input 
mi n

signal. In the first case, the input can be 

reconstructed since the frequency spectrum of ><s(t) can 

be recognised (Fig. 1.2b). In the second case, the 

signal cannot be recovered since the spectra of the 

signal are overlapping (Fig. 1.2c). This effect is known 

as aliasing and its effect can be reduced by 

bandlimiting the input signal (Fig. 1 . 2d) , and/or 

increasing the sampling frequency. From Fig. 1.2, it can 

be deduced that the sampling frequency has to be at 

least equal to 2f in order to be able to recover the 

signal. This is referred to as the Nyquist sampling 

theorem.

1.2.2- Z-Transform

In continuous-time domain, filters are described using 

sets of linear differential equations and the Laplace 

transform can be used to describe the frequency 

characteristics of the filters. Digital filters are 

however described using linear difference equations and 

the z-transform provides information about the

-5-
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frequency response of the filters. The z-transform of a 

sequence x^ is denoted by X(z) and is defined as,

X(z) = 7 {xn> = Exnz"n n=[0,oo] (1.9)

where z=e^wT is the complex variable in the discrete-

time domain and T=(1/f) is the sampling period. The z- 

transform has a number of properties which are useful 

in the manipulation of the equations of digital filters. 

Some of these properties are given below.

- Properties of Z-Transform

a) Linearity Let X(z) = ? (x^) and Y<z) = 2 (ynl. If 

a and b are constant, then

2 taxn + bynJ = aX(z) + bY(z)

b) Right-Shifting

^{xn-k} = z’kX(z)

c) Left-Shifting :-

+ = zkx<z>

d) Convolution-Summation The input/output relation-

ship of a digital filter can be expressed using the 

convolution-summation as described below :- 

where h^ is the impulse response of the filter (Fig 1.3).

The z-transform of the output can be expressed as

Y(z) = X(z).H(z)

e) Multiplication by An :-

2{Anx } = X(A"1z)

-7-



1.2.3- Digital filter Configuration^ 

- Transfer Functions

As mentioned earlier, linear differential equations are 

used to describe analogue filters, while linear 

difference equations are used for digital filters. The 

linear difference equations express the output samples 

of the digital filter in terms of the present input 

sample and a number of past input and output samples. A 

typical form of a difference equation is,

Vn E a . x + E b . y
1 n-i 3n-3

(1.10)

where xn is the present input sample, X; is the ith

input s ample and similarly y represent the jth output

sample.

determine

function,

A. and 
i

b. ai'e constant coefficients which
□

the response of the filter. The transfer

G(z), of a digital filter may be obtained by

taking the z-transform of eqn. 1.10. This will result 

in ,

Y(z) E a/f1

G ( z ) = ------  --------- -p— (1.11)
X( z ) 1-E b_.Z J

i = ( 0 , N ) and j = (1,M)

The frequency response of the filter can then be 

obtained by substituting z=e^wT. The frequency response 

of a digital filter described by eqn. 1.10 would have an 

infinite impulse response and filters of this type are 

called recursive, or IIR, filters. If we, however, set 

b_. = o, then the filter would become finite impulse 
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response, or FIR.

The design of digital filters involves approximation 

and synthesis methods which are used to find the values 

of the a^ and p_. coefficients for a given set of 

specifications. These specifications include passband 

edge frequency, stopband edge frequency, minimum loss in 

the stopband and maximum ripple in the passband. Fig. 

1.4 illustrates typical lowpass specifications and a 

typical response which meets these specifications.

1.2.4- Digital filter realisations

Eqn. 1.10 suggest that there are three basic elements 

required to realise a digital filter. First, some form 

of storage is needed to store the input and output 

samples, secondly digital multipliers are needed to 

multiply a constant with a sampled signal and finally 

digital adders are needed to add two samples together. 

There are many digital filter configurations which can 

be designed to realise the difference equation 1.10. 

Each configuration has properties which may or may not 

be desirable depending on the particular applications. 

Here we briefly consider three form of realisations.

- Direct and Canonical Forms of Realisation

The simplest form of realisation of eqn. 1.10 would be

to implement the difference equation directly. The

output, y , i s obtained by adding the present sample

inputs, xn, with the past sample inputs, x ., and 
n - k
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Fig-1.5_ Direct realisation of a Digital filler.
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ouputs, y where k=1,2.....N assuming that M = N. This
O — K

configuration is shown in Fig. 1.5. As can be seen, the 

number of delays needed to implement eqn. 1.10 using the 

direct form is 2N where N is the order of the filter. 

This form of realisation is not canonic and Fig. 1.6 

illustrates a direct canonic configuration where the 

number of delays is equal to the order of the filter. 

Direct implementation of a digital filter suffers from 

the fact that the filter response is very sensitive to 

variations in the multiplier coefficients when the order 

of the filter is high [1].

- Cascade and Parallel forms of Realisation

The sensitivity in the direct form realisation can be 

reduced if the filter is implemented in a cascade or 

parallel form. In the cascade form the transfer function 

of the filter, eqn. 1.11, is expressed as a product of 

factors in second or first order form,

IT ( 1 +aiz~ 1 + b . z~2 )
G ( Z ) = A ------------- ----i-- --- (1.12)

IT ( Wc.z^td.z“2|
1 1

where A^ is a scaling factor. This configuration is 

illustrated in Fig. 1.7. In parallel form the transfer 

function is expressed as a sum of partial fractions, as 

shown below,

a . + b • z
G(Z) = AQ + E [B± ---- i--------— ] (1.13)

1 + c . z + d . z
i 1

This form of realisation is shown in Fig. 1.8. As

-11-
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Fig.1.6- Canonic direct form.

Fig. 1.8 - Parallel form .
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mentioned before there are many other form of 

realisation which include Wave Digital Filters [2], 

Linear Transformation digital filters [3,4], ROM- 

Accumulator [5,6], Low sensitive Digital Ladder filters 

[7], Residue Number System filters [8], etc. The main 

objective in all the implementations and design 

techniques is to find a structure which generates lower 

noise than the other structures. In this thesis, we 

consider the WDF approach and the reasons for this
*

choice will be discussed at relevant points throughout 

the remainder of this chapter.

1.2.5- Design of digital filters from
prototype analogue filters

In the previous section we briefly looked at some 

possible realisation forms to implement a digital 

filter. Now we address ourselves to the question of how

to obtain a transfer function, G(z), such that its

a s sociated attenuation approximates a

given specification. There are many direct approaches in 

the design of a digital filter using approximation and 

optimization techniques [1]. But in this section, we 

show how we can make use of the existing methods and 

techniques which have been developed for analogue 

filters. The fundamental difficulty in using continuous 

methods in the discrete-time domain is the fact that a 

suitable transformation is required to transform the 

continuous transfer function, H(s) , which is a rational
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function in s (complex variable), into a transfer 

function in the z-plane, G ( z ) , which has all the 

desirable frequency domain properties of H(s).

There are a number of transformation which can be used, 

such as the standard z-transform (sometimes referred to 

as impulse invariant transform), matched z-transform or 

the bilinear transform. Here we only look at the 

bilinear transform which will be used later in this 

thesis. The reader is referred to [1] for more details 

on the bilinear transformation and the other 

transformations available.

- Bilinear Transformation

The bilinear transformation is a mapping from the s- 

plane into the z-plane and it is described as,

1 - z" 1

1 + s
z = ------- (1.15)

1 - s

This transformation maps the entire left-hand side of 

the s-plane into the inside of a unit circle in the z- 

Plane and the right-hand side to the outside of the unit 

circle as illustrated in Fig. 1.9. Therefore any stable 

transfer function in the s-plane, H(s), can be mapped 

into a corresponding transfer function in the z-plane,

s = -------- - (1.14)
1 + z"1

with its inverse as,

14-



S - plane Z - plane

Fig.1.9_ Bilinear I ransformation.

Fig. 1.10_ Frequency warping effect.
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G(z). Substituting s=jQ and z=e3wT in eqn. 1.14, any 

■frequency in the s-plane can be expressed in terms of 

its corresponding frequency in the z-plane,

Q = tan (u)T/2 ) (1.16)

and w = (2/T) tan"1(Q) (1.17)

where Q and u) are in Rad/sec and T=1/f is the sampling 

period. Note that the relationship in eqn. 1.16 is not a 

linear relationship. This fact results in a frequency 

"warping" near to the half sampling frequency (Fig. 

1.10). We are now in the position of designing digital 

filters from prototype classical analogue filters which 

have many excellent properties.

- Sensitivity of Doubly Terminated
Lossless LC-ladder Network

In this section, we briefly consider the sensitivity of 

a doubly terminated lossless lc-ladder filter and show 

that if the filter has been designed for maximum power 

transfer (MPT) from the source to the load then the 

sensitivity of the network is extremely low.

Fig. 1.11 shows the two lc-ladder filters fox' even and 

odd transfer functions. The condition for MPT states 

that at a reflection zero the input impedance of the 

network should be real and equal in value to the source 

resistance. Fox' a lc-ladder filter of odd order (Fig. 

1.11a) at Q=0 the input impedence of the network is 

equal to R1 (Fig. 1.12) and all we need to do is to make

- 1 6



Fig. 1.11 _ LC _ Ladder of a), odd, and b). even order.

a—— ----- 7?----- 1----- a
L2 L4

C1 (-3 C5 '

/n ______ /M______o 0 0
L2 L4

a— ------a

a

a

a

LC-Ladder

Network

Rl

Fig. 1.12 _ Block representation of a doubly terminated 
network.

Loss

aP
Freq

Fig. 1.13-Passband characteristics of a lossless filter.
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Rs=Rl. It has been shown, [9], that for a lc-ladder 

filter of even order, we have to choose the termination

R1 according to, 

R1 1 + 2e2 + (1.18)

where e is the passband ripple factor and related to the

passband ripple a^

7(10ap/10

by,

(1.19)

for maximum power transfer. Now consider a doubly

terminated lossless lc-ladder filter which has been

designed for MPT throughout the passband. Now let us

consider that the filter response has m reflection zeros

throughout the pa s sband and denoted by ur where

. ,m (Fig. 1.13). The loss of the transfer

function is equal to zero at these points, L (u»i ) =0 ,

and elsewhere in

the effect on L(w)

the passband L(w)<a dr 
P

when any element in the

Now consider

filter

Lk or Ck • is decreased or increased from its ideal

value. Since the filter is lossless, therefore L%)

cannot become negative and must increase above zero as

shown in Fig. 1 .13. Clearly

2 e/ ( 1 + e )

e 1 )

i= 1 , 2 , .

i . e

i . e

>

a,“i>

aL.< aCK
(1.20)

d (uij^)
0

for i=1 .2.....m. This argument has been stated very

briefly here and the reader is referred to [10] for more

details. Therefore from (1.20), it can be deduced that,
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as long as the number of reflection zeros in the 

passband is large and also the maimum ripple in the pass 

band is kept small, then the frequency response of a 

doubly terminated lc-ladder filter which has been 

designed for MPT is very insensitive to small variations 

in the values of its components. This is not 

particularly true in the stopband of such a filter, but 

usually in a filtering application the effect of 

variations in the stopband are far less important than 

variations in the passband. Apart from lc-ladder filters 

there are other types of analogue filters which exhibit 

low sensitivity characteristics to variations in the 

components values. These include unit-element and 

lattice filters.

In previous section, we illustrated how a continuous 

filter design can be transformed into a discrete filter 

design and preserve all the properties of the analogue 

filter using bilinear transformation. The transformation 

of unit-element filters, lattice and lc-ladder filters 

results in a digital filter which is also insensitive to 

variation in its multiplier coefficients. This is very 

important, as will be seen in the next section, when the 

filter is implemented using discrete components.

The design of the reference filters can be achieved in 

several ways. The first approach would be to use 

analogue filter design tables [11]. This approach is 

- 19-



limited to some extent since tables cannot provide 

designs for every specification. The alternative would 

be to synthesize or use some form of optimization to 

derive the reference filters [12-15]. It is also 

possible to use explicit formulae to calculate the 

element values for a given specification [9]. The 

problem with the explicit formulae is that only 

Butterworth and Chebyshev filters can be designed and 

unfortunately no such formulae have yet been developed 

for the design of Elliptic filters.

1-2.6- Finite wordlength effects

Fig. 1.14 shows how a digital filtei' may be used in a 

practical filtering application. The output of the A/D 

convertor is a digital representation of the input 

samples xs(t). Also the coefficients are stored as m-bit 

binary numbers. Therefore inherent errors exist in this 

representation of the parameters and they give rise to 

three types of error sources,

1) Error due to the quantization of the filter 

coefficients .

2) Error due to the quantization of the input.

3) Error due to rounding or truncating the 

results of any arithmetic operations.

- Coefficient Quantization

When the filter is designed the coefficients are 

normally evaluated to a high degree of accuracy.

-20-
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However, if they are quantized, the resulting frequency 

response of the filter may differ from the ideal case 

and sometime s it may not even meet the design 

specifications. In WDFs, because of their low 

attenuation sensitivity, this effect is minimized [16- 

17]. Also the low sensitivity of WDFs allows the design 

of filters with short coefficient wordlength [18-22].

- Arithmetic Quantization Error

If two m-bit binary numbers, a and b, are added or 

multiplied then m+1 or 2m bits are required to store the 

results respectively. Since it is essential to use a 

fixed register length in practice, the results of any 

arithmetic operation need to be rounded or truncated. 

This will result in an output noise which reduces the 

signal-to-noise ratio of the filter. In general, WDFs, 

if carefully chosen and scaled, exhibit better 

performance than the conventional cascade of second 

order sections [23-25].

- Input Quantization Error

As shown in Fig. 1.14, when the filter is used to 

operate on continuous signals, the input signal needs to 

be quantized to a fixed number of bits. This introduces 

a non-linear error which effects the output of the 

filter. In general, the number of bits needed for the 

A/D convertor depends on the attenuation required in the 

stopband of the filter. For example, if a 12-bit A/D 
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convertor is used the maximum attenuation. or the 

dynamic range. which can be obtained is equal to 

1 2201og2 ( i.e 72 DB . Therefore for a given specification

we can choose a suitable A/D convertor.

1 .2.7- Summary

In the previous sections, we looked at the theory of 

digital filters and sampled data processing. We stated 

the problems associated with finite wordlength effects 

which are non-existence for analogue filters. We also 

introduced very briefly the concept of WDFs and 

highlighted some of their main advantages. In the 

following sections, the design and implementation of 

WDFs are considered in more detail.
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1 - 3 • 0- Wave Digital Filters

1.3.1- Introduction

Since the early development of digital filters, there 

have been many different approaches to the design and 

implementation of digital filters. During the initial 

developments the transfer function was implemented 

directly, but this approach resulted in structures which 

were highly sensitive. The next method was to split the 

transfer function into lower order term and connect them 

in cascade or parallel forms. The resulting structures 

were much less sensitive but still they suffered from 

finite wordlength effects when implemented in hardware. 

An excellent contribution towards the design of a 

suitable structure for the implementation of digital 

filters was due to Fettweis in 1971 [2], He referred to 

these type of digital filters as Wave Digital Filters 

(WDFs).

WDFs represent a class of digital filters which are 

based on classical analogue filter networks. Thus, 

several of the good properties of the reference filter 

are preserved after the transformation. One of the main 

advantages of WDFs is the direct consequence of the 

excellent low sensitivity of doubly terminated lossless 

reference filters. This reduces the coefficient 

accuracy required for the multipliers in the WDFs. The 

other finite wordlength effects, such as limit cycle.



parasitic oscillation, stability, etc, can also be

minimized or eliminated if the WDF is designed properly

[26] .

WDFs are derived from conventional analogue filters

using the bilinear transform. The analogue filter is

described using the voltage/current relationship and two 

variables Ak and Bk as follows,

Ak = Vk + Rk.Ik
(1.21)

Bk - Vk - Rk.Ik

where Ak and Bk are called the incident and reflected 

waves, due to their relationship to scattering matrix 

theory, and this is the main reason to refer to the 

resulting filters as Wave Digital Filters. There are two 

main approaches to the design of WDFs. In the first 

approach, the elements of the reference filter are 

treated as one-port network and are connected to other 

elements using adaptors [2]. In the second approach, 

due to Lawson [27], the elements in the reference filter 

are treated as a two-port network, therefore they can be 

connected to the other elements directly and without the 

use of adaptors.

In this section, we briefly consider the design

procedures for both techniques. The reader is

recommended to consult Ref [2 & 27] for further

details. Recently an excellent review of WDFs has been

published by Fettweis which covers in detail all the
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aspects in the first approach [28].

1.3.2- Theory and Design of WDFs (I)

- Elements and Sources Realisation

The first step in deriving a WDF from a reference filter 

is to find the translation of the elements in the 

reference filter into the digita 1-domain. This is 

achieved by applying the bilinear transformation to the 

wave relationships of all the elements which may exist 

in the reference filter. Here we only consider the 

realisation of a capacitor, an inductor, a resistor and 

a resistive voltage source.

- Inductor

The steady-state voltage/current relationship for an 

inductor is,

V = RIs (1.22)

Using eqn. 1.21 and 1.14, we obtain,

B (1.23)

Capacitor

The steady-state relationship of a capacitor is,

V = RI / s (1.24)

and in using eqn. 1.21 and 1.14, we obtain,

B (1.25)

Resistor

The equation to realise is,

V = RI (1.26)

and application of eqn. 1.21 gives,
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CAPACITOR

-1

RESISTOR

VOLTAGE
SOURCE

1
R

J

UNIT-ELEMENT
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B = 0

This represents a wave sink.

- Resistive Source

The equation to be realised is,

E = V + RI (1.27)

Substituting in eqn 1.21 gives,

A = E

This is the representation of a wave source. Table 1.1 

illustrates the schematical representation of these 

relationships.

- Unit Elements

A unit element, table 1.1, or a lossless transmission 

line, can be described by the following relationships 

[29] ,

V1 - V2 Cosh(X) - RI2 Sinh(X)
(1.28)

RI1 = V2 Sinh(X) - RI2 Cosh(X)

where X=(sT/2). It corresponds to a delay of T/2 seconds 

and with characteristic impedence of R. From eqn. 1.28a,

we have.

(cosh(x) + sinh(x))V1 + RI1 = (V2 - RI 2 )

or VI + RI1 = (V2 - RI2 ) exp(X)

By the use of eqn 1.21, we obtain,

A1 s B2 exp(X)

or B2 = exp(-X) A1

a exp(-sT/2 ) A1
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and therefore,

B2

S imilla ry,

z- 1 /2 A1 (1.29a)

B 1 = exp(“X) A2

= expt -sT/2 ) A2

and B1 = z~(1/2 > A2 (1 .29b)

The schematic representation of 1.29 is also given 

table 1.1.

- Interconnection and Adaptors

Now that the necessary elements from the reference 

filter have been translated into the digital-domain, we 

need to cons ider the realisation of the 

interconnections. so called adaptors. There are three 

main types of adaptors which must be considered, the 2- 

port, the 3-port serial and the 3-port parallel 

adaptors.

- 2-port Adaptor

This is the simplest form of adaptor and is used to 

connect two ports with different port resistances. Fig. 

1.15a illustrates the interconnection of two ports with 

port resistances R1 and R2. From Fig. 1.15a, we have,

V1 = V2 11 = - 12 (1.30)

Substituting 1.30 into eqn. 1.21, we obtain,

B1 = A2 + a(A2 - A1)
(1.31)

B2 = A1 + a(A2 - A1 )

where a = (R1 - R2)/(R1 + R2) (1.32)
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Fig.1.15

V1 V2

a).  2-Port interconnection.

oc

R1 R2

b).  Schematic representation of a 2-Port adaptor.

«-------- B1
>-------------

B2-------->
------------------------- 0

c).  One possible realisation of a 2-Porf adaptor.
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Fig. 1.15b shows the schematic representation of a 2- 

port adaptor and Fig. 1.15c shows a possible realisation 

of eqn. 1.31. Eqn. 1.32 suggests that |a |<1 as long as 

the port resistances, R1 and R2, are positive.

- 3-port Parallel adaptor

Consider the connection of n ports with port resistances

R 1 , R2 , . . . , Rn. If the ports are connected in parallel 

(Fig. 1.16a) then we have,

V1= V2= . . . =Vn & I 1 + 12+ . . .*  In = O (1.33)

Substituting in eqn. 1.21, we obtain,

Now if we assume n = 3 then Fig. 1.16b shows the schematic

Bk =

AO =

AO - Ak
(1.34)

E akAk k=1 , 2 . . . • . n

where ak= 2Gk/(G1 +G2 + . . . + G n ) , Gk = 1/Rk (1.35)

and a 1 +a „ + . . .+a =2 n 2 (1.36)

representation of a 3-port parallel adaptor. Eqn. 1.34 

suggests that we need 3 multipliers to realise the 

adaptor. However, with the use of eqn. 1.36, one of the 

coefficients can be expressed in terms of the other two, 

i.e making one port dependent. A possible wave flow 

diagram of a 3-port parallel adaptor with port 3 being 

the dependent port is shown in Fig. 1.16c.

- 3-port Serial Adaptor

If the n ports in previous section are connected in 

series (Fig. 1.17a) then we have,

V 1 + V 2 + . . . + V n = 0 & 11 = 12=.. .=In (1.37)
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Fig.1.16

a). N-Port parallel interconnection.
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Substituting eqn. 1.37 into 1.21 results in the 

following relationships,

Bk

AO

= Ak - akA0

= E Ak k= 1 , 2 , . . . . n
( 1 . 38 )

where ak = 2Rk/(R1+...+Rn) (1.39)

and a
1 + a„+...+a = 2 2 n ( 1 . 40 )

These equations define a n-port serial adaptor. A 3-port 

serial adaptor is obtain by setting n=3 (Fig. 1.17b). As 

with the 3-port parallel adaptor, one of the adaptor 

coefficients, say , can be expressed in terms of the 

other two coefficients, using eqn. 1.40, to reduce the 

number of multipliers by one. Fig. 1.17c illustrates a 

possible realisation of a 3-port serial adaptor with 

port 3 being the dependent port.

- WDF Realisation [28]

In the previous sections, we developed various building 

blocks necessary to realise a WDF. When interconnecting 

the elements with the use of the adaptors, the following 

points need to be observed,

1) Interconnection has to be taken place port 

by port.

2) The waves must flow in the same direction at 

the interconnecting ports.

3) The resulting WDF must not contain delay- 

free loops.

An example of the transformation of a typical reference

-33



Fig.1.17

V2

b). Schematic representation of a 3-Port serial adaptor.

A1< ^A2

eB2BU

cl.One possible realisation of a 3-Port serial adaptor. 
( port 3 is the dependent port).
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filter, a lc-ladder filter, into a WDF is shown in Fig.

1.18. There are two inputs, A1 and A2, and two outputs, 

B1 and B2. Usually A2 is set equal to zero and B2 is 

taken as the filter output. In fact, output 81 is 

complementary to B2, therefore if B2 has a lowpass 

characteristic then B1 would have a highpass 

characteristic. Similarly, if B2 has a bandpass 

characteristic then B1 would have a bandstop. These 

effects will be considered in detail in chapter 5. As

mentioned before, there are three main analogue

reference filters which have the low sensitivity

properties These are unit element filters lattice

filters and lc-ladder filters. The design of each of

these filters will be considered in detail in chapters

three and four.

1.3.3- Theory and Design of WDFs (II)

In 1975 Lawson [27] introduced an alternative method 

for the design of WDFs. He treats each element of the 

reference filter as a 2-port network which is 

transformed into a digital block. The resulting blocks 

can then be connected directly to form a complete filter 

structure. The following is a brief review of his 

approach.

- Basic Theory

Given a passive 2-port network (Fig. 1.19), we can 

describe the network using the ABCD matrix as follows,
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a).

A1 &—k-

B1 a--------------------------------------------------------------------« B 2
C1 C3

Fig.1.18_ a) A typical LC-ladder filter.

b) Corresponding WDF derived from a).

V1

11
—>—
A1-

B1*

2- Port

Network

12

:aF

-►B2

A

Fig.1.19- General representation of a 2-Port 
Network.
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AV1 -

11 C

B

D

V2

I 2 (1.41)

It is also possible to describe the network using the

scattering parameters, i.e the wave quantities Ak and Bk ,

as follows

Ak 1 Rk Vk

Bk 1 Rk Ik k = 1 , 2 (1.42)

Using eqn. 1.41 and 1.42 and eliminating Vk and Ik, we

obtain

(A-CR1+BG2-DR1G2 ) / 2“3

(1.43)

and

It is

“4

G2

(A-CR1-BG2 + DR1G2) /2

1 /R2

preferred to express the output waves in terms of

the input waves such that

snB1 =

82

S 1 2 A1

By transforming

we obtain,

S11

S21 S22 A2 (1.44)

eqn. 1.43 in the same form as eqn. 1.44,

a /a
1
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and

where

S 1 2

s
2 1

S22

A

By applying

A/az

1 /a2

a /a1 ' 2

R 1 G2

bilinear transformation to eqn. 1.44, a

corresponding digital block can be formed.

Realisation of a series Impedence

The ABCD matrix of a series impedence Z is,

1
0

-Z
- 1 (1.45)

Substituting eqn. 1.45 into 1.44, we obtain,

S11 ( R2 R1 + Z ) /a2

S1 2 2R1/a2

S21 2R2/a2

Z

and S22 = (R1 - R2

where a2 = R2 + RI +

It is important to note

S11 + S12 = 1

a nd S21 * S22 = 1

that,

Now

+ Z ) /a2 (1.46)

(1.47)

and

substituting 1.47 into 1.44, we obtain,

B1

B2

This means

Si,(A1

S22(A2

A2) + A2

A1) + A1 (1.48)

that we only need to realise S and S22 to

define the series impedence Z.

Series Capacitor

For a capacitor in the series-arm, we have Z=1/Cs and

by applying the bilinear transformation, we obtain,
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11 + z
- — ------ --

C ( 1 - z“ 1 )

Substituting the value of Z into eqn. 1.46, we obtain

= (a1 + a3z~1)/(1 + a2z“1)

and S22 ~ ta3 “ a^’^/d ♦ a2z~1)

where = (R2 - R1 + 1/0/0

«2 = (1/C - R2 - R1 ) /0

a3 = (1/C ~ R2 + R1 )/P

and 0 = R2 + R1 + 1/C , ai + a3 * I +

To obtain a realisable digital filter, i.e a filter with 

no delay-free loops, one possibility is to set a^o. 

Thus we have,

S 1 1 = a3z 1/(1 - a2z 1)

S22 “ a3/(1 * a22’11

also a2 s a3 -1 = - R2/R1

By substituting these into (1.48), we obtain the digital 

structure for a capacitor in the series-arm (Fig. 1.20). 

This technique must be applied to every possible series 

and shunt elements which can be found in the reference 

filter. Fig. 1.21 shows a typical reference filter and 

its corresponding WDF structure.

This approach to the design of WDFs was later 

generalized by Lawson [3]. In Ref [3], he studies a 

general 2-port transformation on the classical doubly- 

terminated lossless ladder network. He derives a number 

of conditions which must be satisfied in order to result
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Fig. 1.20-Digital equivalant of a series capacitor.

(b)

Fig. 1.21— a) A typical analogue filter.

b) Corresponding WDF derived from (a).
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a WDF which is realisable, i.e it contains no delay-free 

loops.

1.3.4- Comments on WDF design approaches

In the previous section we briefly looked at the two 

possible approaches in which a doubly-terminated 

analogue filter is transformed into a WDF. In this 

thesis, we consider the approach introduced by Fettweis 

for the following reason. In the Fettweis approach, 

there are mainly three elements which have to be 

implemented digitally. These are the 2-port, 3-port 

serial and 3-port parallel adaptors. The other elements 

have a very simple digital structure such as a simple 

delay or etc.

In the second approach, we need to consider all the 

possible elements, such as series and parallel 

capacitor, inductor, tuned circuits, etc. Therefore 

there are quite a number of different digital structures 

which must be implemented (Fig. 1.21). In the practical 

implementation of WDF, it is very important to have 

regular and modular structures. This will be better 

appreciated when the VLSI implementation of WDFs is 

considered.

1.3.5- Review of Hardware Implementation 
of Wave Digital Filters

Since WDFs were introduced by Fettweis,

attention has been given to the design of

considerable

filters from

low sensitive analogue filters. The low sensitivity
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properties of WDFs to variations in the value of the 

coefficients allows the use of smaller wordlength for 

multipliers and also reduces the quantization error due 

to round-off or truncation of the coefficients. The main 

drawback however is the hardware complexity of WDF 

building blocks. In spite of this, there has been a 

great deal of work and research on the hardware 

implementation of WDFs [30,79]. The first known 

implementation of a WDF was given in 1974 [31]. The 

filter was a third order and the hardware was the size 

of a mini-computer. The other approaches in the hardware 

implementation of WOFs include, a 14th order lc-ladder 

bandpass WDF [32], microprocessor based implementation 

of a 7th order lc all-pole ladder filter [33], use of

distributed arithmetic [5] in implementation of WDFs

[34-36], general purpose DSP based WDFs [37-42], single

board WDFs based on cascaded unit element filters [38-

40], etc. These approaches are all based on the use of

MSI/LSI discrete components.

An approach to resolve the problem of ha rdwa re

complexity of WDFs would be to consider the VLSI

implementation of WDFs. In general, the hardware

implementation of WDFs depends on how efficiently 2 and

3-port adaptors

at Edinburgh by

can be implemented. The work carried out

Dr. Mavor’s group concerns the design of 

a universal WDF adaptor which allows the realisation of 

-42



either a parallel or serial 3-port adaptor. They only 

concentrate on one type of WDFs that is based on lc- 

ladder networks with inserted unit element [41-43]. 

Using FIRST [44], a silicon compiler, they have produced 

a single chip universal adaptor which may be cascaded to 

required filter order. A typical sampling rate for a

fifth order filter would be around 50 KHZ.

Research is also being carried out at the university o f

Louvain, Belgium on the development of a complete CAD

design tools for the VLSI design and implementation of

digital filters [45-47]. A third order WDF based on

lattice reference filters has been integrated on a

single chip which has a sampling rate of up to 100 KHZ

with a internal wordlength of 16-bits.

In all the VLSI approaches, the existing WDF structures 

are translated onto silicon. This however does not 

exploit the maximum potential of VLSI technology. To 

achieve this, the existing structures must be first 

transformed into new structures with certain properties 

which makes them suitable for VLSI implementation. These 

features are dealt with in the next section where we 

introduce the concept of VLSI array processing.

43-



1 .4.0- VLSI Array Processing

1.4.1- Introduction

As the scale of single chip integration increases, it is 

becoming increasingly apparent that potential problems 

of designing chips containing hundreds of thousands of 

transistors can only be overcome if some form of 

structured approach to integrated circuit design is 

adopted. The translation of the existing structures and 

printed circuit boards into VLSI circuit is 

inappropriate. This is mainly due to the fact that in 

VLSI technology the old concept that wires are cheap and 

components are expensive is not valid. Wires are now 

expensive not only in terms of the chip area occupied, 

but also in terms of the time delay. In general, in VLSI 

technology computation can be considered very cheap 

while communication is expensive and new algorithms and 

architectures should be designed accordingly.

To exploit the full potential of VLSI technology, it is

important that the new VLSI algorithms result in

architectures which take into account (a) the layout

constraint in terms of interconnection and

communication and (b) the overall cost in terms of 

silicon area, time delay and pin count. Therefore a 

suitable architecture for VLSI implementation must have 

the following properties.
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1) Regularity

In VLSI, it is important to reformulate the existing 

algorithm so that the computations can be split up into 

many simple and identical tasks or sometimes referred to 

as cell or processing elements (PEs).

2) Local Communication

As mentioned before, it is preferable to avoid any long 

distance communications or any global communications and 

minimize the communication to nearest neighbouring 

cells.

3) Modularity

Modularity is the same as regularity but on a larger 

scale. This means that a complex structure may be 

constructed from a number of smaller regular structures.

4) Pipelining

Pipelining simply means being able to process new data 

before the old ones have been processed completely. In 

other words. it means that the structure is designed in 

such a way that the processor elements are processing 

data at a maximum rate and there is no PE not active at 

a given time. In real time signal processing this 

becomes very important and pipelining at all levels 

should be pursued, i.e at structural and cell levels.

In this section, we describe a number of array

architectures which have the potential of being used for

VLSI implementation.
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1.4.2- Systolic Arrays [48]

One solution for the requirements needed by VLSI 

technology is the concept of systolic arrays. Systolic 

arrays are a new class of pipelined array architectures 

that consist of a set of interconnected cells, which are 

all identical and capable of performing some simple 

operations. According to Kung and Leiserson [49],"A 

systolic system is a network of processors which 

rhythmically compute and pass data through the system. 

Physiologists use the word 'Systole' to refer to the 

rhythmically recurrent contraction of heart and arteries

In a systolicwhich pulses blood through the body.

computing system, the function of a processor is

analogous to that of the heart. Every processor

regularly pumps data in and out, each time performing

some short computation, so that a regular flow of data

is kept up in the network."

Kung and Leiserson have demonstrated how a number of 

simple PEs (Fig. 1.22), referred to as ‘inner product' 

cells, can be locally connected to perform the pipeline 

computation of several important matrix and signal 

processing operations, such as matrix-matrix 

multiplication, matrix-vector multiplication, FIR 

filtering, convolution, etc. The systolic arrays by Kung 

and Leiserson use wordlevel operations in the cells. 

This however has the problem of I/O bandwidth when a



Aout(n) =Ajn(n-1)

Bout(n) =Binln’1)

Cout(n) = C in (n-1) 4- Ajn (n-1 )B in (n-1 )

Fig . 1.22_Inner - Product cell. 
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number of wordlevel cells are implemented on a single 

chip and word parallel communication becomes 

impractical. This may be one of the reasons why there 

has been no single chip wordlevel systolic arrays and 

systolic arrays at wordlevel have been implemented on 

multiprocessor computers [50,51].

As a solution to the above problem, McCanny and 

McWhirter developed systolic arrays at bit-level to 

implement the same signal processing operations [52-55]. 

Two examples of bit level systolic array chips are the 

8-bit serial convolver chip [56] and the correlator chip 

which have been developed at GEC Hirst Research Centre 

[57] .

One other important feature of systolic array 

architecture is that their regularity can be exploited 

for fault tolerance and yield enhancement [58]. However, 

one main problem with systolic arrays is the fact that 

they are synchronized structures. In other words, the 

movement of the data in the array is controlled with a 

global timing reference or clock. This may become 

intolerable for very-large-scale arrays.

1.4.3- Wavefront Arrays [59]

A solution to the above problem is to localize the 

data-flow control within the basic cells in the array. 

In other words, convert the synchronized systolic array 

into an asynchronized data driven multiprocessor array,
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referred to a s wavefront arrays. The execution of

instructions in the cells of a wavefront array i s

controlled by the neighbouring cells , i.e a cell will be

activated when all the inputs for the cell are available 

and the outputs of the cell are passed to the next cells 

when the cells are ready to receive the outputs. This 

would increase the hardware complexity of the basic 

cells but would eliminate the need for a global clock. 

As with the systolic arrays, wavefront arrays are highly 

regular and communication within the array is localized. 

The array can also be pipelined since the data from one 

cell will never intersect with the data from other 

neighbouring cells.

S. Y. Kung and his colleagues have developed a special-

purpose wavefront-oriented language [60] called Matrix 

Data Flow Language (MDFL). The language is used to 

describe wavefront or any other data flow algorithms 

which exhibit the recursion and locality properties. One 

other useful tool for the simulation of parallel array 

processors is the language OCCAM [61].

1.4.4- Programmable Array Processors

Systolic and wavefront arrays are special purpose 

arrays which are designed to map an algorithm into a 

VLSI architecture. When the PEs are designed then the 

array would be used for the design of chips dedicated to 

a fixed parallel processing function. In recent years, 



work has been done towards the design of programmable 

array processors. These are two dimensional arrays of 

identical PEs with nearest neighbouring connection which 

can be programmed to do different instructions at any 

clock cycle. At a given clock cycle the array is exactly 

the same as a systolic array but in the next cycle the 

PEs' operation can be changed. These arrays are some 

times referred to as SIMD (Single Instruction, Multiple 

Data). The earliest machine based on SIMD is the ILLIAC 

IV [57] and more recent ones include CLIP, developed at 

the University College of London, DAP, developed at ICL, 

GRID, developed at the Hirst Research Centre, and last 

but not least is GAPP which has been developed by NCR- 

Microelectronics and Martin Marietta Aerospace. GAPP is 

the most advanced SIMD machine and is organised as a 

6x12 array of 1-bit PEs each element comprises a bit-

serial ALU, 128 bits of RAM, four 1-bit latches and five 

multiplexers. The main application of these arrays are 

in the field of image processing and pattern 

recognition. Apart from programmable array processors 

there are other approaches for the VLSI implementation 

of digital signal processing algorithms. One good 

example is the silicon compiler developed at the 

University of Edinburgh and referred to as FIRST. FIRST 

allows the translation of signal processing algorithms 

onto silicon and implementing them on single chips [44].
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1.4.5- Comparison of Systolic and
Wavefront Arrays

In general systolic arrays and wavefront arrays are 

modular, regular, locally interconnected and highly 

pipelined processor arrays. The main difference however 

is that systolic arrays are synchronized while wavefront 

arrays are asynchronized structures. The global control 

of the data movement in the systolic array would mean 

that the cells are much simpler than the wavefront 

arrays, since no additional handshaking hardware is 

required for the cells, but on the other hand, it will 

be a potential barrier in the design of very-large-scale 

array processors. Wavefront arrays can be extended to 

any desirable size as long as the technology would 

permit since the data movement in the array is 

controlled locally by the PEs.
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1.5.0- Objectives in this Thesis

In the previous sections, we highlighted the good 

properties of WDFs and pointed out that the main 

drawback of WDFs is due to their hardware complexity. In 

this thesis, we resolve this problem (a) by considering 

the design of finite wordlength WDFs and (b) the VLSI 

implementation of WDF adaptors. Finite wordlength design 

of WDFs enables us to eliminate the errors due to 

quantization of the filter coefficients. Also due to the 

excellent low sensitivity properties of WDFs, we can 

design filters with short coefficients wordlength. This 

reduces the hardware complexity of the filter and in 

some cases the mutiplications can be replaced by 

arithmetic shifting since the coefficients can be 

expressed in powers of 2 m. The VLSI implementation of 

WOFs are achieved by designing systolic structures to 

implement the WDF adaptors.

Chapter 2 is divided into two parts. In the first part, 

the design of WDFs using optimization techniques is 

described. The finite wordlength design of WDFs may be 

achieved by using a direct search method for the 

discrete optimization. In this respect, the direct 

search method of Hooke and Jeeves [62] is described 

briefly and a subroutine has been developed to implement 

the algorithm. In the second part of the chapter, some 

basic systolic arrays are developed to implement some 
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general equations. These basic systolic arrays are used 

in later chapters to implement the WDF adaptors.

The 2-port adaptor can be used to design and implement 

WDFs based on unit element and lattice filters. In 

chapter 3, the finite wordlength and VLSI implementation 

of these two types of WDF are considered. Also in 

chapter 3, a single board model of the 2-port systolic 

adaptor is presented which has been constructed for 

experimental testing.

In chapter 4, the finite wordlength and systolic 

implementation of lc-ladder WDFs are considered. The 

systolic implementation of these filters is achieved by 

developing systolic arrays for the 3-port adaptors.

Design of frequency selective filters, i.e 

transformation of lowpass filters to other type of 

filters, is the subject of chapter 5. Finally in chapter 

6, other avenues of the research are outlined for 

further studies in this field.
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CHAPTER TWO

OPTIMIZATION AND SYSTOLIC TECHNIQUES

2.1.0- Introduction

In chapter one, we briefly reviewed the theory of 

digital filters and introduced the concept of Wave 

Digital Filters. It was shown that WDFs have many good 

properties but there is a major problem due to their 

hardware complexity. We propose to resolve this problem 

by considering (a) the finite wordlength design of WDFs 

and (b) the VLSI implementation of the WDF adaptors.

In this chapter, we present the bases on which these 

goals are achieved. The chapter is divided into two main 

parts. In the first part, the design of digital filters, 

in general, using optimization techniques is considered. 

Next the direct search method of Hooke and Jeeves [62] 

is briefly reviewed and a subroutine is developed to 

implement the search algorithm. This subroutine will be 

used in later chapters to design different WDFs with 

finite wordlength coefficients.

In the second part of the chapter, some basic systolic 

arrays are developed which are then used in chapter 3 

and 4 to implement the WDF adaptors. At the end of this 

chapter, a section has been devoted to the design of a 

universal systolic array. This array will be then
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modified in chapter 4 to implement a universal systolic

WDF adaptor. The universal systolic adaptor can 

programmed to realise any type of WDF adaptor.

be
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2 • 2.0- Use of Optimization Techniques in 
the Design of Digital Filters

2.2.1- Introduction

Filters play an important role in the design of 

communication systems and the filter design problem has

been treated in several different ways for many years.

In one approach, existing synthesis techniques are used 

to design filters which ensure a satisfactory solution. 

In other cases, a good design may be obtained by 

adjusting the parameters of the filter. This may be 

achieved either by building and testing a prototype or 

by analysing the filter structure on a computer. The 

foregoing methods have not been very successfull in the

past and a satisfactory design could have not been

guaranteed and also the analysis of complex filter

structures wa s not possible. Therefore synthesis

techniques were more commonly used in spite of the fact

that some filter design cases are unsolvable using

synthesis techniques, e.g modeling the effects of finite 

wordlength.

The advent of high-speed digital computers has provided 

the designer with an efficient tool which can be used to 

find the solutions of complex problems. In recent years, 

substantial effort has been devoted to developing 

programming techniques to solve filter design problems. 

Optimization is one such technique and is employed to 

solve these problems by successive approximation and
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repetitive adjustment of the filter parameters. Here, 

the design problem is stated as follows, ‘given a filter 

structure with a number of adjustable parameters, find 

the values of these parameters such that a prescribed 

specification is met'. There might however be some 

restrictions on the values that the filter parameters 

may have and usually in many cases the optimization 

algorithm is not allowed to change the filter 

configuration by adding more elements or changing their 

interconnections .

In this section, we shall first study the

characteristics of an optimization technique in general.

Although some of these explanations may appear trivial

it is important that they are clearly undestood. Next

the concept of error and minimization criterions are

introduced and some error functions are described.

Depending on the nature of the system under

consideration and the designer’s requirement, 

divide the optimization problem into different

we can

groups.

One group covers all the optimization techniques which 

are based on mathematical treatment of the problem. 

Here, the parameters are not restricted by the 

optimization program and may take any real or complex 

values as long as they meet the designer's constraints 

The other group of optimization techniques is referred 

to as simple methods or discrete programming. Here, the 
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parameters are selected from a set of values defined by 

the designer and may not take any values outside the 

set. The second technique is suitable for the design of 

WDFs with finite wordlength coefficients, since after 

deciding on the number of bits for the representation of 

the filter coefficients, then there will be a finite set 

of values from which the coefficients may be chosen.

2.2.2- Characteristics of an
Optimization algorithm

As mentioned before, the aim of an optimization 

procedure is to adjust the parameters of the system 

until the performance of the system meets a given 

specification. Fig. 2.1 shows the features which every 

optimization procedure must possess.

First it is necessary that the performance of the system 

under consideration is obtained. In most cases, this is 

achieved by simulation. As in optimization methods this 

computation may have to be performed many times, this 

step should take as little time as possible. The box 

labelled 'algorithm*  (Fig. 2.1) is the heart of an 

optimization procedure which implements the algorithm 

suitable for one’s application. The next thing to 

consider is how the performance of the system may be 

judged. This brings us to the concept of an error 

criterion which is considered in the next section.
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Fig.2J_ Features of an optimization procedure.
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2.2.3- Error Criterion

In an optimization problem, an error criterion must be 

used with which we can associate a figure of merit. This 

error criterion will reflect the goodness of the design. 

This merit must be kept constant until the design 

specifications are met completely. In order to narrow 

down the discussion, we now consider the design of 

lowpass WDFs. The following symbols and definitions will 

be used throughout this chapter,

a = a. „
1 • ’*2  * ' ’.The set of adjustable filter 

coefficients .

* 
a The set of optimal coefficients.

w Desired frequency response at u)k.

w Measured frequency response.

% A weight function.

E(a) Error for a given set of coeffi-
cients, a.

There are many different error functions which can be 

used for a particular design problem. The following are 

three error functions which have been considered in this

thesis,

1 ) E(a) = (Wk/M)E|Rd(wk) - (2.1)

2 ) E(a) = (Wk/M)E|Rd(wk) - Rml“k>l (2.2)

3 ) E(a) = Max [WR|Rd(wR) - Rm'“k>|] (2.3)

k = 1,2,. . . ,m

where m is a set of extremal frequencies at which the

WDF will be analysed. In order to obtain a possible
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solution to the design problem, m must be larger than N, 

where N is the number of coefficients in the filter.

2.2.4- Statement of the Design Problem

In the previous section, it was shown that, by defining 

an error function, the optimization problem reduces to a 

search for a set of coefficients for the filter to 

minimize the error function. Now, let the error 

function. E(a), be as follows,

E(a) = Max [Wk |Rd(u,k) - Rm(u>k) | ] 

where the error is defined as the maximum difference

between the desired frequency response and the measured 

frequency response. Now if a lowpass filter is required 

then ,

fl w e I
= p

Io u) e I

where I and Is are the frequency points in the passband 

and the stopband at which the frequency response is 

calculated. A subroutine has been developed to evaluate 

the error function given by eqn. 2.3. The other two 

error functions have also been tried but it was founded 

that eqn. 2.3 produces faster results. The parameters

of this subroutine are as follows,

X An array of dimension N holding the current 
values of the coefficients.

N 
P

Number of points in the passband.

N 
a Number of points in the stopband.
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which calculates the frequency response of the filter at

N Number of filter coefficients.

a
P Maximum passband ripple.

a 
s Minimum stopband attenuation.

f 
P

Passband edge frequency.

f 
s Stopband edge frequency.

E
max Maximum error in the passband & stopband.

Flag A boolean variable which is set to true 
when the specifications are met.

This error function subroutine requires a subroutine

a given frequency point for the current values of the 

coefficients .

Having stated the design problem as an optimization 

problem, we now need to decide on what type of 

optimization technique to use. We can classify the 

optimization techniques into the following classes.

1) Gradient Methods : In which we need to obtain the 

first derivatives of the error function.

2) Second-order Method : In which higher order

derivatives are required.

3) Simple Methods : These donot require the

derivatives .

Many algorithms have been proposed for the design of FIR 

and IIR digital filters with finite wordlength 

coefficients [63-70], but there has not been enough work 

on the finite wordlength design of WDFs. One 

contribution towards this is by Wegener [22], but he 
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only considers the design of lattice WDFs. Claesen and 

his colleagues at the University of Leuven, Belgium, 

have developed complete VLSI tools for the design and 

implementation of arbitrary digital filters [45,46]. 

They have designed many lattice WDFs with applications 

in the design of transmultiplexors [71,72]. Their CAD 

tools contain discrete optimization algorithms [73-75] 

which are used to optimize the filter coefficient 

wordlengths. They employ bit-serial architectures and 

use CSD codes to represent the coefficients. Therefore 

the optimization methods are used to minimize the number 

of ones required to represent the filter coefficients. 

Thus, one coefficient may need 8-bits to be represented 

while another coefficient may need 3-bits.

Our approach in this thesis is different in the 

following points. First, we intend to develop a set of 

programs as a complete package for the design, analysis 

and simulation of WDFs only. This includes all the well 

known WDFs, i.e unit element. lattice and lc-ladder 

WDFs. Also the designer is allowed to include the 

required number of bits for the coefficients and all the 

final coefficients will be quantized to the required 

number of bits. These coefficients are suitable for both 

word-parallel and bit-serial architectures.

The optimization method we use can be classified as a 

simple method. In the next section, we briefly review
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this optimization technique and a 

developed to implement the algorithm.

subroutine is
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2.3.0- Direct Search Methods for
The Design of WDFs

2.3.1- Introduction

In a direct search method, the objective function, E(a), 

is minimized or maximized by evaluating E(a) at a given 

set of points a ~ ~
1.«2,...,, and comparing values to find

*
an optimal set a . These points are chosen from a set of 

points specified by the designer. There are many reasons 

for using direct search methods rather than the 

gradient methods,

1 ) If the function to be minimized or maximized is 

not differentiable.

2) If the derivatives of the function ares 

discontinuous or very difficult to evaluate.

3) If the solution set for the parameters is 

discrete, as is the case here.

4) Last but not least, direct search methods are 

very much simpler to implement than the gradient methods 

In the next section, we briefly consider the direct 

search method of Hooke and Jeeves. An example has also 

been given to illustrate the use of the search algorithm 

for the minimization of a function of 2-variables.

2.3.2 Hooke and Jeeves*  Method [62]

In 1961, Hooke and Jeeves reported an excellent method 

of optimization which is now one of the most widely used 

direct search methods. In their original paper, they 

reported that the method has been used successfully to 
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solve many curve fitting problems for which other 

methods had failed. This algorithm has also been used by 

other people for the finite wordlength design of digital 

filters [22,76,77]. The following is a brief description 

of the algorithm.

We wish to consider the problem of minimization of an 

error function E(a) of N variables. First we choose an 

initial base vector (a) and a stepsize A. The value of 

the function at a, i.e E(a). is evaluated and we proceed 

with a sequence of exploratory and pattern moves. If an 

exploratory move leads to a decrease in the value of 

E(a), it is called a success, otherwise it is a failure.

- Exploratory Moves

The purpose of an exploratory move is to acquire 

information about the objective function in the 

neighbourhood of the current base vector. This 

information is obtained as follows,

1) i=l;

2) Evaluate E(a^+A). If it is a success, replace

by (or+A). if it is a failure, evaluate ECa^-A). If it 

is a success, replace a. by (a.-A), otherwise resume the 1 i

initial value of a.;

3) i=i+1. Repeat from (2). This is done N-times, i.e 

for each coefficient.

4) If there is no success, replace A by (step*A),  

where (step) is a constant and less than one and repeat
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Fig. 2.2 _ Flow, chart of an Exploratory move.
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from ( 1 ) .

This would terminate when the stepsize, A, has been 

reduced to some prescribed level. Fig. 2.2 shows the 

flow-chart of an exploratory move.

- Pattern Moves

A pattern move utilizes the information acquired in the 

exploratory moves and accomplishes the actual

minimization of the function. Each pattern move is 

followed by a sequence of exploratory moves to find an 

improved direction of search in which to make another 

pattern move. The procedure of a pattern move from a 

new base vector a2 i3 as follows,

1) Move from c* 2 to a3 = 2a2~a1 and continue with a 

sequence of exploratory moves about

2) If the exploratory move contains a success then 

«3 would become the new base vector. In this case, 

return to (1) with all the suffices increased by one. 

Otherwise resume with a2 as the base vector and continue 

with a sequence of exploratory moves about a2.

Fig. 2.3 shows the flow-chart of a pattern move. The 

following is an example of how the Hooke and Jeeves*  

method may be used to minimize a function of 2- 

variables.

2.3.4- - Example

To illustrate Hooke and Jeeves*  method, let us consider 

the minimization of the function, f(x ,x ), given by,
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Fig. 2.3_ Flow-chart of a Pattern move.
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1 • x2 ) = 4x + 3x^2 _ 5/ + 3

Subject to

- Solution

X2 < 6 .

The initial stepsize, A, is 1 and the initial base

vector . b., is [0.0]. Also it is required to stop when

A<(1 / 4 ) . The value of the step with which the stepsize

is reduced is 1 / 2 .

and F denote a success and a failure respectively. First

Let E (_x ) and P(x) denote an exploratory and a pattern

move about a base vector (x) respectively. Also let S

base

we evaluate the value of the function at the initial

vector b<) ,

= [0.0] ; ftb^x: 3

Now we make a sequence of exploratory moves about Jb 

E (J^ ) 

E(b1 )

f ( 1 . 0 ) = 7
f ( -1 . 0 ) = 7
f ( 0 . 1) = -2
f ( 0 . -1) = 8

contains a success

F 
F
S
F

for [0.1], therefore we

make a pattern move and generate a new base vector from 

b>2 and b^ ,

b2 = [0.1] ; f(b2) = -2

P(b2)

b3 = 2b2 - b1 = [0.2] ; f(b3> = -17

Now we make a sequence of exploratory moves about b3. 

E%)
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f( 1 . 2 ) = -7 F
f ( - 1 , 2 ) = - 1 9 S
f (-1 . 3 ) = -53 S
f ( - 1 , 1 ) = - 1 F

Again E(t>3) contains a success for [-1 ,3] , therefore we 

continue with a further pattern move,

—3 = [-1,3] ; f(b3) = -53

P(b3)

b4 = 2b3 “ b2 = [-2.5] ; f(bj = -136

E(b4)

f (-1 , 5) = -133 F
f(-3, 5) = - 1 3 1 F
f(-2 , 6) = - 197 F

Since * should be less than 6.

f ( -2 , 4 ) = -85 F

E(b4) does not contain any success, therefore we set the 

stepsize, A, equal to (A/2), i.e 1/2, and carry on with 

a sequence of exploratory moves about k>. with new A,
*

E(b4>

f(- 1 . 5. 5) = -135.5 F 
f (-2.5, 5) = -134.5 F 
f(-2 ,5.5) = -165.25 S 
f ( -2 ,4.5) = -1 09.25 F

Now E(b4) contains a success for [-2,5.5]. We generate 

the new base vector by making a further pattern move,

b4 = [-2,5.5] ; f(b4) = -165.25

Hb4)

b5 = 2b4 - b3 = [-3.9] ; f(bg) = -447

The value of x2 is not in the range, therefore we need 

to reduce the value of the stepsize, i.e (A/2). The new
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value of A, i.e 1/4, is also not in the prescribed 

range. So the algorithm stops here and the final results 

are ,

x *
- = - [-2,5.5] ; f(b4) = -165.25

Now let us suppose that it is required to design a WDF 

with finite wordlength coefficients. First the initial 

coefficients are quantized to m-bits. Then the stepsize 

is set equal to 2 % where q is smaller than m. With 

these initial parameters we start the search. If there 

is no success in the exploratory moves then the stepsize 

is multiplied by 2 1. The search terminates when A=2-m. 

It is clear that the final coefficients will be given in 

m-bits or less. If at the end of the search the 

specifications are not met then the number of bits, m, 

is increased by one and we start all over again.

A subroutine has been developed which implements the 

Hooke and Jeeves*  direct search algorithm. The algorithm 

has been modified in such a way that if there is no 

success in a series of exploratory moves then more than 

one coefficient is changed simultaneously. This may 

reduce the speed of the algorithm but results in a 

smaller coefficient wordlength. The parameters of the 

subroutine are as follows :

N Number of filter coefficients.

Nsbit Number of starting bits for the coe-
fficients .
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Pcoeff An array of N-dimensions containing the 
initial coefficients before entering the 
subroutine, and contains the final coe-
fficients at the end of the algorithm.

SD The starting value of A.

NFE

Rstep

At the end of the algorithm this will 
contain the number of times the error 
function subroutine is called.

The value of (step) by which A is 
reduced .

This subroutine requires to call the subroutine which 

evaluates the error function for the current value of 

the coefficients. This optimization subroutine is used 

in chapters 3 and 4 to design finite word length WDFs 

based on different reference filters.
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2.4.0- Development of some Basic
Systolic Arrays

2.4.1- Introduction

In chapter one, it was pointed out that in order to gain 

the full potential of VLSI technology, it is necessary 

to translate our existing algorithms and structures into 

new architectures which are suitable for VLSI 

implementation. The main features of a VLSI structure 

are modularity, regularity, local communications and 

ability to be pipelined. In this respect, systolic 

arrays are good candidates for VLSI implementations. The 

initial systolic arrays, [49], were implemented at word 

level and recently bit level systolic arrays have 

attracted much attention, [52,53.78]. There are many 

reasons for considering systolic arrays at bit level 

[79], such as,

1) At bit level a systolic array is constructed from 

simple cells which consist of logic gates and a number 

of latches. Many cells of this type can be accommodated 

on a single VLSI chip and the circuits are easy to 

design.

2) Experience to date [55,80] suggests that the 

resulting structures exhibit high device packing 

densities.

3) Being pipelined at bit level, such circuits 

provide the maximum possible throughput rate.

4) The required component density of a word level 
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systolic cell would exceed the capabilities of existing 

processing technology, and the number of pins needed, 

when implementing many word level cells on a single VLSI 

chip, would be unmanageably large [57].

In this section, we develop a number of systolic arrays 

at bit level to implement equations of the form,

R 1 = P + Z 1 ( X1 - X 2 ) (2.5a) 
R2 = P <■ Z1(X1 - X2) + W1(X3 - X4) (2.5b) 
R3 = P - Z1(X1 + X2 + X3) (2.5c)

Later in chapters 3 and 4, these basic systolic arrays 

are used to implement the WDF adaptors. Finally in this 

chapter, we present a universal systolic array which can 

be programmed to implement all the three equations given 

above. It will then be used in chapter 4 to implement a 

universal systolic adaptor which can realise 2-port, 3- 

port serial and 3-port parallel adaptors. Throughout 

this chapter, it is assumed, without loss of generality, 

that all the inputs are expressed as 3-bit integers.

2.4.2- The Basic Systolic Arrays

In this section, we develop some basic systolic arrays 

to implement eqn 2.5, but first let us consider the bit 

level implementation of the basic operation of 

multiplication. This has also been considered in Ref 

[25,78] but is given here since it helps to understand 

how the other systolic arrays are developed.

Suppose we wish to multiply X and Y which are 3-bit 

integer numbers to produce Z which will be a 6-bit 
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integer number. We use lowercase letters x.y and z to

denote the individual bits of X, Y and Z respectively.

Therefore,

X =

Y =
Z =

The individual bits of Z, can be expressed in termsz .
□ ’

of x^ and y^ as follows,

zo ~ xoyo
Z1 - xoyi + xiyo + co
Z2 = X0y2 + x1y1 + X2y0 + C1
Z3 - Xiy2 + x2y, + C2

and
Z4 = X2V2 4- C3
Z5 = C4

where Ci is the carry resulting from the previous

also be expressed as,addition. The Zj bits can

z .
3

and 3 = 0,1..... 5

where c_1=0. It can be seen that the bit level operation 

of multiplication can be accomplished by some form of 

accumulation and addition. With this in mind. Fig. 2.4a 

illustrates a systolic array suitable for implementing 

eqn. 2.5a. The array is constructed by interconnecting 

24 identical cells. The interconnections are localized 

and there is no global communication except the system 

clock which synchronizes the movement of data in the 

array. Fig. 2.4b shows the block representation and the 

boolean equations of the basic cell. From Fig. 2.4b, it 

can be seen that the basic cell is very simple and we
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r17(n-l!)

Fig. 2.4-Systolic array to implement R1-

-77-



only need two full adders and a 2-input AND gate to 

construct the cell. There are 8-inputs and 8-outputs to 

each cell. The outputs are latched and passed to next 

neighbouring cells every clock cycle. The operation of 

the array is best understood if we first consider the 

implementation of R1=Z1(X1+X2). The operation of the 

basic cell can be described in two stages.

- Stage 1

First a 1-bit full addition is performed between bits 

x1 , x2 and c' resulting in a sum bit s and a new carry 

bit c , The sum bit s is a local variable which is used 
s

in the second stage of the cell operation.

- Stage 2

In the second stage, the s urn bit s is anded with z1 . i . e

one bit multiplication, and then added to c'v one bit

carried in from the previous cell, and r’ , one bit o f

the accumulating sum of the partial result. The

resulting values of r, the corresponding carry bits c 
r

and Cg and the inputs x1 . x2 and z1 are latched and

passed onto the neighbouring cells at the end of a clock 

cycle. One clock cycle is the time taken for one cell to 

complete its operation.

The kth bit of the result R1 can be expressed in terms 

of the Z1 bits and S bits, where S is given by X1+X2, as 

shown below,
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s = xi ® x2 ©

cs= (x1. x2) + (xl.cJJ + (x2.Cg)

r = r'e(z1.s)® Cp

cr=(r'.‘(z1.s)) + (r'.c'r) 4- ((zl.s).c')

c: 21 c'

b).

Fig .2.4 - b). Basic cell

• c). Evaluation
in Fig.2.4a. 

of n2.
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r1k - r 21k-i3i ‘2-7>

k = 0 , 1.....7 and i = 0 , 1 , 2

As an example, if we assume k = 2 then r12 will be given 

a s ,

r12 = zi2sfl ♦ 21,s, ♦ zl0s2

This is illustrated in Fig. 2.4c. The cells on the left 

hand side of the line AB in Fig. 2.4a are not used but 

they are included for the sake of regularity. The inputs 

are arranged in such a way that the least significant 

bits (LSB's) of X1 and X2 (i.e, x1Q and x2Q) and the 

most significant bit (MSB) of Z1 (i.e, z12) enter the 

array on the same clock cycle. In the next clock cycle, 

the second LSB’s of X1 and X2 and the second MSBof Z1 

enter the array and so on. This ensures that as each bit 

of Z1 moves across the array, it meets every bit of X1 

and X2. The LSB of the result (i.e, r1Q) is obtained 

after 4 clock cycles, the next LS8 after 5 clock cycles 

and so on until the final bit (i.e, r1?) emerges 11

clock cycles later.

The latches at the inputs of the cells are used to 

synchronize the movement of data in the array. This also 

increases the ability of the array to be pipelined. 

Therefore, it is possible to enter new input bits before 

the previous ones are processed completely.

When the circuit of Fig. 2.4a is used to implement 

Z1(X1*X2),  the carry bits C* and C‘ and the bits of P s r
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are set equal to 'O' when they enter the array. If we 

however initialize p^ to the kth bit of an arbitrary 

number P then R1 will be given as,

R1 = P + Z1 (X1 + X2 )

Further more, if the carry bits C‘ are set to ’1‘ and X2 
s

(i.e, inverse of X2) is used instead of X2, then R1 can 

be expressed a s,

R1 = P + Z1 (X1 + X2 + 1)

or R 1 = P + Z 1 ( X1 - X 2 )

since (X1+X2+1) is the 2’complement representation of 

(X1-X2). The circuit of Fig 2.4a is only suitable for 

unsigned numbers. In Ref (53], it has been shown that if 

A and B are two m-bit 2‘s complement numbers then,

A-B = am12m"1B + afn_12m“1 + A B (2.8)

where (a^ 2m~1) is the MSB of A (i.e, the sign bit of 

A) and A represent a positive number comprising the m-1 

LSB’s of A. Using eqn. 2.8, it is possible to modify the 

basic cell of Fig. 2.4b to allow signed numbers to be 

used as well as unsigned numbers. The modified cell is 

shown in Fig. 2.5b. This cell has an additional input d 

which controls its mode of operation. When d is ‘O' , the 

operation of the cell is identical to that of Fig. 2.4b, 

but when dis * 1 ' then the local variable s in the cell 

will be inverted before being anded with z1. The input d 

is set equal to ’ 1 ’ on each of the cells on the left-

hand boundary of the array and it is zero on the rest of
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Po(n-2) A

r\(n-3)

r17<n-1l)

s = x1 © x2ecs® d 

cs=(x1.x2) + (x1.Cs) + (x2-c$)

r = r'® (z1 •. s) ® Cp

cr=(r'.(z1.s)) + (r'.Cp) + (Cp.(zl.s))

Fig. 2.5 _a). Modified array to allow 

b). Modified basic cell.

signed numbers to be used.
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the cells. Furthermore, it is necessary to feed the MSB 

of Z1 to the MSB of the carry C’^ when entering the 

array (Fig. 2.5a).

Now let us consider the systolic

2.5b. Eqn. 2.5b can be rewritten

R2 R 1 + W1(X3 X4 )

implementation of eqn.

in the following form,

where R1=P+Z1(X1-X2). It can be seen that if the output

of Fig. 2.5a is fed as the P input to a second systolic 

array of Fig. 2.5a then R2 will be obtained. The second 

way of implementing R2 would be to use one systolic 

array with a modified basic cell (Fig. 2.Ba). The 

modified basic cell is shown in Fig. 2.6b. This cell is 

constructed by connecting two cells of Fig. 2.5b in 

cascade. The d input is used in the same way as for eqn. 

2.5a.

Finally, let us consider the implementation of eqn. 

2.5c. The cell configuration of the array is the same as 

Fig. 2.6a (Fig. 2.7a) and the basic cell is shown in 

Fig. 2.7b. The operation of the basic cell is best 

described if. we first consider the implementation of 

R3=P+Z1(X1+X2+X3). In the first stage of the cell 

operation, the bits of x1,x2 and x3 are added resulting

in a sum bit s2 and two carry bits c and cs2< In the

second stage, the sum bit s2 is anded with zl and added

tor*  and c’ r
The new values of r, c . c .. and c _ and r s 1 s 2

the inputs are latched and passed to the next
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Fig.2.6_ a).Systolic array to implement R2. 

b). Basic cell.

(n-2)
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sz = si © xJ©cs2©d

cs2=(s1.x3) + (s1.c$2) + (x3.c^2)

r = r'© (z1 . s2) © c'r ©S

cr= (r'.(z1. s2)J + (r'.c') + ((z1.s2).c' )

Fig. 2.7- a).Systolic array to implement R3.

b).Basic cell.
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neigbouring cells. When the array is used to implement

P + Z1(X1+X2+X3). is initialized to the kth bit of an

arbitrary number P. If we, however, invert P before

entering the array and also invert the final result then

R3 will be given as,

R3 = P - Z1 (X1 + X2 + X3 )

This is shown for two single bits A and B in T able 2.1.

With respect to this, the S input i s used to control

each cell in the array (Fig. 2.7b). When S is set to ' 1 *

in the cell , the output r from the cell will be

A B A B A
sum

+ B
carry

A +
sum

0 0 1 1 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 1 0 0 1 0 0

A - B

B + 1 A + B A + B
carry sum carry sum carry

1 1 0 0 1
0 0 1 1 0
1 0 0 1 1
1 1 0 0 1

A - B

Table 2.1
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inverted, and if S is set to ’0*  then r will not be 

changed. Since we wish to invert the final result (i.e, 

r3k, k = 0 , 1 , . . . , 1 2 ) then S is set to '1' on each of the 

cells on the right-hand boundary of the array and it is 

set to 'O' on the rest of the cells (Fig. 2.7a). The d 

input is also used to allow 2's complement numbers to be 

used as described above.

The schematic representation of the basic systolic 

arrays are shown in Fig. 2.8. These representations are 

simplified versions of Fig. 2.5a, 2.6a and 2.7a. and 

only show the inputs and the outputs of the arrays. The 

triangles in Fig. 2.8 represent a set of latches which 

are used to arrange the inputs before they enter the 

array (Fig. 2.8d ) .
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a).

R1 = P + ZKX1 - X2)

R2 = P+Z1(X1-X2) +W1( X3-X4)

0. .

R3= P-Z1(X1+X2+X3)
Xi

X3=#:

P Z14 i

R3

d).

Fig. 2.8 _a), b), c). Schematic representation of systolic arrays, 

d). Triangular arrangement of latches.

o
1

B

-88-



2.5.0- Universal Systolic Array

In this section, a universal systolic array is developed 

which can realise eqn. 2.5a, 2.5b and 2.5c. The cell

configuration is shown in Fig. 2.9a. The array can be 

used to implement equations of the form,

R = P A Z1(X1 + X2) ± W1(X3 + X4) (2.8)

by initializing the inputs before entering the array. 

The array is organized in such a way that Z1 and W1 are 

n-bit and other inputs are m-bit 2’s complement numbers, 

i.e an (nxm) array. The basic cell is shown in Fig. 

2.9b. As mentioned before the inputs of the array have 

to be initialized with different values before entering 

the array for each of the equations.

2.5.1- Initialisation of the
Universal Systolic Array

In this section, unless specified otherwise, k equals 

(1,2.....n) and 1 equals (1 ,2, . . . ,mnb) where mnb

equals the maximum number of bits required to represent 

the result.

- Equation 2.5a

Eqn. 2.5a is rewritten here for a quick reference,

R1 = P + Z1(X1 - X2)

The inputs and the coefficients to the universal 

systolic array have to be initialised as follows,

- Inputs

P1' x1l are Set eclual to the lth bit of arbitrary 

numbers P and X1 respectively.
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a).

Ak “ 'cr1k ,z^k'cs1k ,cr2k 'w1k'cs2k ]

Bk = [x1k ,x2k ,x3k,x4k ]

Fig. 2.9_a).Universal systolic array.
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b).

s1 = x1 © x2 © c'i © d

cs1 =(x1.x2) + (x1 .c^)*  1x2.^)

s2 = x3 © x4 © c'n ®d

cs2 = (x3.x4) + (x3 -t^2)+ (x4 .c^)

r'1 = r'® (z1 ,s1) ©

cr1 = (r'.(z1.sD) + (r'.c'r1) + ((z1 .s1).c^ )'

r = r'1 ® (w1. s2) © © S

cr2= (r'1.(w1.s2)) + (r'1.c'r2) + ((w1.s2).c'r2)

c).

R = P±z1 ( X1 + X2 ) ± W1 ( X3 + X4)

P Z1 W1

X3^
X4=#

0

R

Fig . 2.9_ b). Basic cell for universal systolic array.

c). Schematic 
array.

representation of universal systolic 
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x21 is set equal to 1th bit of an arbitrary number X2 . 

x31 and x4^ can take any values.

- Coefficients

- Carry bits

cs1k is set equal

Cs2k do not care-

- Control inputs

d(k,1) =

S ( k , 1) is set

Initialising the

will result in,

z1k is set equal to the kth bit of an arbitrary number Z1. 

wl is set equal to *0*.

to ' 1 * .

for k=n ; 1=1,2,...,nmb

otherwise

equal to ’O'.

universal array with the above values

R = P + Z1(X1 + X2 + 1 ) + □

or R = P + Z1 (X1 - X 2 ) = R1

- Equation 2.5b

R2 = P + Z1(X1 - X2) + W1(X3 - X4 )

- Inputs

P1# x1x and x3x are set equal to the 1th bit of 

arbitrary numbers P, X1 and X3 respectively.

x21 and x4± are set equal to the 1th bit of arbitrary 

numbers X2 and >C4 respectively.

- Coefficients

zlk and w1k are set equal to the kth bit of arbitrary 

numbers Z1 and W1 respectivily.
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- Carry bits

Cslk and Cs2k are set eclual to ' 1 ' .

- Control inputs

Fl for k = n ; 1=1,2,...,mnb
d(k.l) = J

0 otherwise

S(k , 1) is set equal to • o • .

These initial values result in ,

R = P + Z1(X1 + X2 + 1 ) <■ W1(X3 + X4 + 1 )

or R = P + Z1 (X1 - X2 ) + W1(X3 - X4) = R2

-Equation 2.5c

R3 = P - Z1 (X1 * X2 + X3 )

- Inputs

P1• * 11• x2^ and *3^^ are set equal to the 1th bit of

arbitrary numbers P, X1 . X2 and X3 respectively.

x4 is set equal to *0*  .

- Coefficients 

21k and w1R are set equal to the kth bit of an arbitrary 

number Z1.

- Carry bits 

cs1k and cs2k are set equal to ‘O’

Control inputs

d(k,1)
for k = n ; 1=1,2, . ,mnb

otherwise

for k=1 ; 1=1,2,. . ,mnb
S(k.l)

otherwise

These initial settings will result in ,
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R P + Z1(X1 + X2 ) + Z1 (X3 + 0)

R P - Z1(XI + X2 + X3) R3or

are set as follows,

C r1k and c r2k are set eQual to except for c rin=z1

and c* _ =w1 .
r 2n n

This universal array will be used in chapter 4 to 

implement a universal systolic adaptor. The universal 

systolic adaptor can be programmed to realise the 2- 

port, 3-port serial and 3-port parallel adaptors.
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2.6.0- Summary

In this chapter, we have seen how optimization can be 

used to solve filter design problems which are not 

solvable using direct synthesis techniques. There are 

many different algorithms which can be used to minimize 

an error function and there are many different error 

functions to use. In this chapter, we used the direct 

search method of Hooke and Jeeves and the error function 

was defined as the maximum error in the passband and the 

stopband of the filter. Two subroutines have been 

developed. The first one evaluates the error function 

for the current value of the coefficients and the second 

one implements the search algorithm. These subroutines 

are used in chapter 3 and 4 to develop a complete 

package for the design of finite wordlength WDFs.

We have also seen how the concept of systolic array at 

bit level can be used to implement a number of basic 

equations. The resulting arrays exhibit high regularity 

and modularity and the interconnections between the 

cells are localised. These features make the array 

suitable for VLSI implementation. In chapter 3 and 4, 

we express the WDF adaptor equations in the same form as 

eqns. 2.5a-c and these systolic arrays will be used to 

implement the adaptor equations.

Also in this chapter, we presented a universal systolic 

array suitable to implement eqns 2.5-c by initializing
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the inputs before entering the array. This array will be

used to develop a universal systolic WDF adaptor 

the basic cell of the universal array is more 

than the other arrays, the resulting universal 

can be very useful for experimental purposes.

Since

complex

adaptor

-96-



CHAPTER THREE

UNIT ELEMENT AND LATTICE WDFS

3.1.0- Introduction

As mentioned in chapter one, apart from the lc-ladder 

filters, unit element and lattice filters also have low 

sensitivity properties to variations in their component 

values. Threrefore they can also be used to derive

WDFs .

Unit element filters result in the simplest form of 

WDFs. They can be designed and implemented by cascading 

a number of 2-port adaptors. The only problem with the 

unit element WDFs (UEWDFs) is that only Butterworth and

Chebychev filters can be designed.

There are a number of ways that a Wave Digital Lattice

Filter (LTWDF) can be designed. One approach, which will

be adopted in this thesis, is to design the lattice

reactances using all-pass functions which can be

implemented using only 2-port adaptors (81 ] . The

resulting structures are more complex than the UEWDFs, 

but we can also design filters with Elliptic responses.

Usually analogue lattice filters exhibit higher 

sensitivity in the stopband than the lc-ladder or unit 

element WDFs, but surprisingly more attention has been 

given to the design and implementation of LTWDFs in 
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practice. This may be because of some properties of 

LTWOFs which make them suitable for communication 

systems such as the design of transmultiplexers [71.72]. 

In section 3.2 of this chapter, we consider the bit 

level systolic implementation of a 2-port adaptor using 

the concept developed in chapter two. A single board 2- 

port systolic adaptor has been constructed to prove the 

correctness of the design.

Next in section 3.3 and 3.4, we consider the finite 

wordlength design of unit element and lattice WDFs

respectively. Two subroutines are developed to evaluate 

the responses of the UEWDFs and LTWDFs for a set of 

coefficients at different frequency points. These 

subroutines plus the subroutines developed in chapter 

element and lattice WDFs.

two, i.e the error

subroutines, are used

package for the finite

function and optimization 

together to form a software 

wordlength design of unit 

In section 3.5, we consider

the hardware implementation of the UEWDFs and LTWDFs 

using the 2-port systolic adaptor.

In section 3.6, we briefly describe the design programs 

and how they can be used. The designed filters can be 

checked by either analysing the filters using a program 

called ANAWDF or simulating the filters using SIMWDF. 

SIMWDF also includes the systolic simulation of the 

WDFs .
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Finally in section 3.7, we consider a number of filter 

design examples. The examples are carefully selected in 

order to cover different types of specifications such as 

narrow band, wide band, sharp cutoff frequencies, etc. 

The filters are designed both with high precisions for 

the coefficients and also with finite wordlength 

coefficients. The filters are analysed and the

frequency responses of the filter for the ideal case, 

with quantized coefficients and with coefficients from 

the finite wordlength design program (FWLD) are plotted. 

Although WDFs have low sensitivity properties to 

variations in the multiplier coefficients, It will be 

shown that when the number of bits for the coefficients 

is small then the frequency response of the filter can 

not be guaranteed to meet the specifications. Using the 

FWLD programs, the response of the filter can be forced 

to remain within the specifications. The filters are 

also simulated using the ideal and the systolic 2-port 

adaptors.
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3.2.0- 2-Port Systolic Adaptors

In chapter two, we saw how equations of the form,

R1 = P + 21(X1 - X2) (3.1)

can be implemented using bit level systolic arrays. 

Here we consider the implementation of a 2-port adaptor 

by modifying the systolic array used to implement eqn.

3.1. Fig. 3.1a illustrates the schematic representation 

of a 2-port adaptor and the adaptor equations are given 

below,

B1 = A2 + a(A2 -- A1 )
(3.2)

B2 = A1 + a(A2 ■- A1 )

a).

Fig. 3.1- Schematic representation of,

a) a 2- Port adaptor.

b) a 2-Port systolic adaptor.
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where Ak’s are the inputs, Bk's are the outputs, a is 

the adaptor coefficient and k=1,2. From eqn. 3.2, there 

are two ways of implementing the adaptor equations. One 

obvious way would be to use two systolic arrays of Fig. 

2.5, i.e one for each equation. The term a(A2-A1) is 

common to both equations, therefore by using two 

systolic arrays this term is evaluated twice which is 

not necessary. Thus, an alternative method of 

implementing the adaptor equations would be to use one 

systolic array with the same cell configuration as in 

Fig. 2.5, and modify the basic cell. The logic diagram 

of the basic cell is shown in Fig. 3.2. The basic cell 

is constructed by overlapping two cells of Fig. 2.5b 

which was used to implement eqn. 3.1. The first stage 

of the cell operation is the same, therefore it is done 

only once.

The outputs of the basic cell in the systolic array of 

Fig. 2.5a, described in chapter two, are latched to 

enable the array to be pipelined. The 2-port systolic 

adaptor cannot however be pipelined when connected to 

more adaptors to form a complete filter. This is due to 

the fact that we need both the MSB’s and the LSB’s of 

the inputs A1 and A2 at the same clock cycle. Thus, we 

must wait until one adaptor completes its operation, 

i.e all the bits of the outputs B1 and B2 are ready, 

before feeding them as inputs to the next adaptor. This
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FA - Full Adder.

34 Gates/Cell.

20 ns Gate Delay

Fig. 3.2 _ Logic diagram of the Basic cell .

-102-



of course does not mean that the pipelining is not 

possible completely. As will be seen later in this 

chapter, pipelining will be possible at filter level, 

i.e when the adaptors are used to implement a complete 

filter.

The fact that the 2-port adaptor array can not be 

pipelined at adaptor level means that the latches at 

the outputs of the cells can be removed. This reduces 

the complexity of the basic cell and, in effect, the 

number of transistors needed to implement the array. 

Fig. 3.1b illustrates the schematic representation of a 

2-port systolic adaptor without the latches. In this 

case, the adaptor array can be considered to be a 

regular, modular and locally connected combinational 

logic array. The inputs are piped into the array and 

the output of the cells ripple across the array until 

the final bits appear on the rigth-hand boundary cells. 

The structure is no longer a true systolic array since 

there is no global clock controlling the movement of 

data in the array, but the concept of systolic array 

has been used to design the structure. For convenience 

we will still refer to these structures as systolic 

arrays .

3.2.1- A Single Board 2-Port Systolic Adaptor

In order to check the correctness of the design, it was 

decided to construct a single board 2-port systolic

- 1 03



adaptor. The basic cells are implemented using EPROM's.

Fig. 3.3 shows the photograph of the board. The array is 

organised as (4x4), i.e 4-bits for the coefficient and 

4-bits for the inputs. Switches are used to select the 

values of the inputs and the coefficient and the 

outputs are displayed using LED's. The board has been 

tested fully by connecting it to a Cromemco micro-

computer. The values of the coefficient and the inputs 

were set by the computer and the outputs of the array 

were fed back into the system. The outputs of the board 

were tested against the actual values and found to be 

working successfully. From the layout of the board, we 

can observe the high regularity of the array which is 

suitable for VLSI implementations.

The 2-port systolic adaptor has also been simulated by 

writing a Fortran program. Fortran is not a very 

efficient language for simulating parallel arrays, such 

as the systolic array, but it was sufficient to prove 

that the design was correct. The simulation of the 

systolic WDF was obtained by multiplexing the 2-port 

systolic adaptor to the required filter order. The 

simulation program will be described in more detail in 

section 3.6 of this chapter.

3.2.2- CMOS Implementation of a
2-port Systolic adaptor

In this section. we estimate how many transistors are 

required to implement a 2-port systolic adaptor using

-104-
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CMOS technology. In general, if n-bits are used to 

represent the coefficient and m-bits are used to 

represent the inputs, i.e an (nxrn) array, then the 

maximum number of bits required to represent the 

outputs B1 and B2 is given as,

mnb = (n + m + 2)

where mnb is the maximum number of bits required to 

represent the outputs of the adaptor.The number of 

cells in the (nxm) array is given by,

N c = n(n + m + 2)

and the number of clock cycles required for the adaptor 

to complete its operation is,

N = n + (n+m+2) =2n+m+2
cl

where one clock cycle is the time requried for one cell 

to complete its operation. From Fig. 3.2, we need 3- 

full adders, one 2-input AND gate and one 2-input EX-OR 

gate to implement a basic cell. In order to estimate 

the number of transistors required to implement the 

adaptor it is better if we first calculate the number 

of gates in terms of 2-input ANO gates. A full adder 

can be implemented using 10 2-input AND gates and an 

EX-OR gate can be implemented using 3 2-input AND 

gates. Therefore 34 2-input AND gates are required to 

implement the 2-port systolic adaptor. In CMOS 

technology a 2-input AND gate can be implemented using 

4 transistors [89]. Therefore we need 136 transistors 
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to implement one cell of the 2-port systolic adaptor. 

Now we can easily calculate the number of transistors 

required to implement one complete adaptor.

From Fig. 3.2, the time delay of the adaptor is equal 

to the time delay of 5 2-input AND gates in cascade. If 

we consider that the time delay of an AND gate to be 

4ns then the time delay of one cell will be equal to 

20ns .

This information is shown in tabular form in table 3.1 

for some typical values of n and m. From table 3.1, it 

can be seen that the number of transistors and the time 

delay of the adaptor are reduced exponentially when the 

number of bits for the coefficients, i.e n, is reduced. 

This emphasises the importance of WDFs where filters 

can be designed with short coefficient wordlengths.

No. of bits No. of No. of No. of No. of Delay

Coef Signal Cell Gate Tran Clock ns MHZ

4 8 56 1 ,904 7,616 18 360 2.7
8 8 144 4 , 896 19,584 26 520 1 .9
4 16 88 2,992 11,968 26 520 1 .9
8 16 208 7,072 28,288 34 680 1 . 4

-107-



3.3.0- Unit Element WDFs (UEWDFs)

3.3.1- Basic Theory

The first prototype filter we use to derive the WDF is 

made up of a cascade of transmission lines [29] 

terminated at both ends by resistances (Fig. 3.4). The 

line network of Fig. 3.4 can also be viewed as the 

cascade of N unit elements connected through N 2-port 

adaptors. In chapter one, we derived the WDF 

realisation of a unit element (table 1.1). Thus, the 

WDF representation of the line network of Fig. 3.4 can 

be obtained by connecting N unit elements using 2-port 

adaptors. The resulting WDF is shown in Fig. 3.5a and 

Fig. 3.5b shows the schematic representation of the 

WDF. It is to be noted that the two delays of z(-1/2) 

after each adaptor may be combined to form a delay of 

z“1 as shown in Fig. 3.6 [2,82]. This combination has

no effect on the magnitude response of the filter and 

causes a linear shift in the phase response.

The value of the adaptor coefficients, a in the WDF

of Fig. 3.6 can be expressed as follows,

“i = - z,)/(rs * z, ) (3.3a)

ak = (Zk+l " Zk)/(Zk+l - zk> (3.3b)

“n - ,R1 - ZN,/(R1 + ZN ) (3.3c)

a nd k = 2,3 , . . . ,N-1

where Zk is the kth characteristic impedances of the 

transmission line filter. Thus, once the transmission
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Fig.3.4_ Cascade Transmission Line filler.

Fig.3.5-a). Unit element WDF.

b). Schematic representation.
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line filter has been designed for a particular 

application then the conversion to a corresponding WDF 

may be achieved quite easily. There are two ways of 

designing distributed filters, (a) using the Quarter-

wave transformer and (b) using half-wave filters [83]. 

In the first case, the impedances of the successive 

sections in the line network increase monotonically 

from unity to an extremely large value, while in the 

second case, they oscillate about unity. Therefore in 

this thesis, we consider the design of half-wave 

filters with Chebychev equi-ripple response. In ref 

[12], Levy has tabulated the characteristic impedances 

for values of N from 2 to 21, Bandwidth (BW) and 

Voltage Standing Wave Ratio (VSWR). These parameters

are related to the passband ripple a the passband

edge frequency f and the sampling frequency f by the 

following,

BW = 4f /f (3.4)

and VSWR = 2e - 1 + 2/(e2 - e) (3.5)

where e is the ripple factor given in chapter one. 

Having decided on the values of BW and VSWR, a value 

for N can be estimated in order to give a minimum 

stopband attenuation of aQ as follows,

log(e ) - log(e-l) + log 4
N >---------------------------------- (3.6)

21og(2SinQ /SinO )

where e = (10as^10 -1) and 0 = ( it f /f), 0 = (irf /f) and
s s s p p
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Fig.3.6_UEWDF with full delay.

B2N + 1

A2N+r0

9

Fig.3.8_A 2_port network.
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is the stopband edge frequency.

response of the resulting filter is 

The amplitude

given by the

expression [12],

1
| H ( s ) | 2 = -------------------------- (3.7)

1 + h2l2N(Sin0/SinOp)

where denotes the Chebychev function of the first

kind of degree N and h is related to VSWR by the 

following,

VSWR = 1 + 2h2 + 2/(h2 + h4)

Fig. 3.7 illustrates a typical response of a 

transmission line filter.

3.3.2- Finite Wordlength Design (FWLD)
of Unit Element WDFs (UEWDFs)

In the previous section, we saw how a WDF can be 

derived from a cascade of unit element filters. In this 

section, we develop a subroutine to evaluate the 

frequency response of the filter for a given set of 

coefficients at different frequency points.

Analysis of the WDF may be obtained by the use of Wave

Chain Matrix (WCM) [82],

defined as (Fig. 3.8),

The WCM of a network can be

A1

B1

A

C

From eqn. 3.8, we

relationships,

A1 = A.B2 + B.A2

B B2

D A2 ( 3 . 8 )

can obtain the following

( 3 . 9a )
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a nd B1 = C.B2 + D.A2 (3.9b)

If A2 is set equal to zero then,

A1 = A.B2 (3.10a)

and B1 = C . B2 (3.10b)

Sustituting eqn. 3.10a into 3.10b, we obtain ,

(B2/A1) = (1/A) (3.11a)

and (B1/A1) = (C/A) (3.11b)

Eqns 3.11a and 3.11b represent the transfer functions 

of the network at the outputs B2 and B1 respectively. 

Now, let us consider the transfer function of the WDF 

in Fig. 3.6. The difference equations of the kth

section in Fig. 3.6 are as follows,

B2k A1k

B1k A2k

♦ “klz''A2k

* “k(2’lA2k

A,k>

A’k>

(3.12a)

(3.12b)

From Appendix A1, we can write A1 and B,k in terms of

A2^ and B2^ as follows,

1A'k = K

B1u

-a
- 1 

k2 B2k

ak A2k (3.13)

where K=(1/1-a ). Eqn.
K 3.13 represent the ABCD matrix of

the kth section in the WDF of Fig. 3.6. In order to

evaluate the transfer function of the network at W0' z'1

is replaced by e_',u,oT and the ABCD matrix in eqn. 3.13

- 1 
z

must be calculated for every section in the network.

The resulting ABCD matrices are multipled together and 

the response of the network is evaluated using eqn.
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3.11a.

A subroutine has been developed to evaluate the 

frequency response of the UEWDF of Nth order using the 

above procedure (Appendix A1). This subroutine plus the 

error subroutine and the optimization subroutine can 

now be merged together to form a complete program for 

the FWLD of UEWDFs. The initial coefficients are 

obtained from the synthesis subroutine in the program, 

which is based on ref [84].

A listing of the program is included in Appendix B and 

a brief description of how the program can be used is 

given in section 3.6.
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3.4.0- Lattice WDFs 

3.4.1- Introduction

The second prototype we use to derive the WDF is a 

doubly terminated lossless symmetric lattice network 

(Fig. 3.9). It is well known that the number of 

distinct elements in the two canonic lattice impedances 

of a symmetric lc-filter is, in general, less than that 

of the ladder filter [85]. There also exists a lattice 

equivalent for every symmetric ladder filter. This 

reduction in the number of elements in a lattice filter 

results in fewer multipliers if the analogue lattice 

filter is used to derive a WDF.

Analogue lattice filters are known to have low

sensitivity properties in the passband, but the

stopband sensitivity is high and tuning of the

attenuation poles are required during the manufacturing 

process. This makes analogue lattice filters 

impractical to use. This disadvantage, however, does 

not exist for a Lattice Wave Digital Filter (LTWDF) 

since digital filters do not require tuning and are not 

subject to ageing. In fact, due to their simplicity and 

some other properties, LTWDFs are in some respect the 

most attractive structures available for use in 

communication systems [71,72,81].

The realisation of lattice filters depends on how the 

lattice reactances are realised. In the next section, 
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we briefly look at the basic theory of LTWDFs and how 

they can be realised.

3.4.2- Basic Theory

Fig. 3.9 illustrates a classical lattice filter

terminated between resistances R1 and R2. For our 

purpose, we assume that the 

equal, i.e R1=R2=R. Z
1

impedences for port one and 

In Appendix *C* , we derive 

the reflectances, transmittances,

termination resistances are

and Z2 are the lattice

two respectively.

the realationships between 

scattering parameters

and the incident/reflected wave vectors. In view of 

these realationships, we can consider that the analogue 

scattering matrix, S, is equal to that of the WDF, S .

since the termination resistances are chosen to be

equal (eqns A.7). Thus, the two scattering matrices can

replace each other without causing any confusion. Also,

from ref [86] , we can write,

S1 = S11 - S21 (3.15a)

and S2 - S11 ‘ S21 (3.15b)

where S 1 and S2 are the reflectances for port one and

two respectively and and are the scattering

parameters. From eqn. 3.15 and the symmetrical nature

of the lattice network, we can write,

S11 • S22 = (S1 <■ S2)/2 ( 3 . 16a )

and S12 ’ S21 = (S2 - S1) / 2 ( 3 . 1 6b)

Since the lattice filter is symmetric and also Z, and
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R1 Z>|

21

Fig. 3.9 _ Lattice analogue filter.

Fig. 3.10_ Wave realisation of Fig.3.9.

Fig.3.11- LWDF with A2= 0 .
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Z2 are all-pass functions, it implies that S1 and S2

are also all-pass functions. On substituting eqn. 3.16

in eqn . A2.5, one obtains.

281 = S1(A1 - A2 ) + S2(A1 + A2) (3.17a)

and 2B2 = S1(A2 - Al) + S2(A1 + A2) (3.17b)

Fig. 3 .10 illustrates the WDF realisation of eqn. 3

I f we substitute A2 = 0 in eqn. 3.17, then we obtain,

81 = ( 1 / 2 ) ( S + S 1 ) A1 (3.18a)

and 82 = ( 1 / 2 ) ( S - S 1 ) A1 (3.18b)

Fig. 3.11 shows the simplified WOF realisation of a 

LTWDF.

There are a variety of techniques which can be employed 

for WDF realisation of Sand S^. These techniques 

include the canonic Foster or Cauer ladder [87], 

cascade of unit elements or Quart's [2,88], the 

procedure discussed for the realisation of all-pass 

transfer functions [2] or using the IVR transformation 

[27]. Recently Gazsi has presented direct design 

methods with which most common types of filters can be 

designed.

3.4.3- Finite WordLength Design of LTWDFs

As with the UEWDFs, in order to use the subroutines 

developed in chapter 2, we must develop a subroutine 

to evaluate the response of the LTWDF at different 

frequency points for a set of coefficients. The LTWDFs 

designed using Gazsi's method require only 2-port
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adaptors. Fig. 3.12a shows a Nth order LTWDF realised

using 2-port adaptors only. The elementry sections in

Fig. 3.12a are the first and second degree all-pass

sections of Fig. 3.12b and 3.12c respectively. The

first degree all-pass section is a 2-port adaptor which

has its A2 inputs equal to z-1B2 (Fig. 3.12b) and the

respectively. From Appendix A2, we can write,

second one is the cascade of two 2-port adaptors as

shown in Fig. 3.12c. Let us call the first degree all-

pass section (Fig. 3.12b) APS^ and the second one APS2

and let G (z) and G2(z) denote their transfer functions

B1
= ---

A1
(3.19)

and
B1 z“2+a Z"1(a -1)-a

G2(z) = ---- = ------—------------  (3.20)
A1 1z 1(a -i)-a z-^

2 1 1

Now we can redraw Fig. 3.12a using APS and APS2 blocks

as shown in Fig. 3.13. The transfer fuction of the 

LTWDF. G(z), can now be evaluated using the following

relationships,

G(z) = (1/2)[S1(z) + S2(z)] (3.21 )

where S1 (2) = G (z) n Gk (z) k=1 .3 . (3.22)
k

and S2 ( z ) = IT G 2 ( z ) k = 2,4 , . . (3.23)
k

A subroutine has been developed to evaluate Gfe^k1"),

k=1,2,..., for a given set of coefficients. This
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Fig. 3.12

b). First degree all-pass section.
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subroutine has been merged with the other two

subroutines from chapter two to form a complete program 

for the design of LTWDFs. In section 3.6, we briefly 

outline the procedure of how to use UEFD.SO and LTFD.SO 

to design finite wordlength WDFs based on unit elements 

and lattice reference filters respectively. A listing 

of the program is included in Appendix 'B'.

Fig.3.13-LTWDF realisation using firstand second 

all-pass sections.
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3.5.0- Implementation of complete filters

3.5.1- Unit Element WDFs

As mentioned in section 3.3, the two port adaptor can 

be cascaded to form a complete filter by connecting a 

delay between every two adaptors (Fig. 3.6). The 

introduction of the delays enables us to pipeline the 

structure at filter level. From Fig. 3.6 and eqns. 3.2, 

it can be seen that at adaptor * 1 * , B2 a
1 and B11 can be 

computed since both A1^ and A2^ are known. Then at 

adaptor *2 ’, B2^ and B12 can be computed since A12 and

A22 are known. At this stage a new sample can enter the 

filter since the new value of A2.J has been evaluated. 

Therefore input samples can be fed into the filter 

every two clock pulses, where one clock pulse is the 

time taken for one adaptor to operate, irrespective of 

the order of the filter.

The same principle applies when the 2-port systolic 

adaptors are used to implement a complete filter. As an 

example, suppose the order of the filter is 3. We need 

A- 2-port systolic adaptors to implement the filter, 

as shown in Fig. 3.14. Let T^ denote one clock pulse 

and also suppose that the signal wordlength is 16-bits 

and the coefficient wordlength is 4-bits. From table 

3.1, we can write,

Tp = 1.9 MHZ

Therefore the sampling frequency of the filter can be

-12 1-



up to about 1.0 MHZ, i.e ^Tp/2). The number of 

transistors needed to implement the complete filter 

would be,

(4 X 11968) + NTd fc 100,000

where NT, denotes the number of transistors needed to 
d

implement the delays between the adaptors. Using a CMOS 

1.0p technology [89], this filter can easily be 

implemented on a single VLSI chip.

The other possible implementation would be to multiplex 

one 2-port adaptor to the required order. This will of 

course increase the hardware complexity, since more 

control is required, and also decreases the throughput 

of the structure. In refs [39,40], hardware has been 

designed to implement a unit element filter by

A1-| A2-j CC] Alz A22CC2 AI7A27OC7 A1gA2gCCg

Fig.3.14-7 th order UEWDF using 2-port systolic 

adaptors.
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multiplexing a 2-port adaptor. Use of this systolic 

adaptor in this hardware would reduce the complexity 

of the design significantly. Fig. 3.15 shows one 

possible arrangement for the implementation of a 

multiplexed unit element WDF based on a 2-port systolic 

adaptor.

3.5.2- Lattice WOFs

LTWDFs can also be implemented using only 2-port 

adaptors. The hardware implementation of LTWDFs are more 

complex than that of the UEWDFs. When the LTWDFs are 

implemented in a parallel form (Fig. 3.12a), then the 2- 

port adaptors can be replaced with the systolic 

adaptors. The sampling rate of the filter would be again 

irrespective of the filter order, since the delays 

between the adaptors enable the structure to be

filter.

pipelined. The sampling frequency would be Tp/2 since

every two clock pulses a new sample can be fed into the

LTWDFs can not be multiplexed as easily as the UEWDFs 

due to the complexity of their structure. However, if 

we use two systolic adaptors to implement the all-pass 

section of second degree (Fig. 3.12c) and one to 

implement Fig. 3.12b then the LTWDF can be multiplexed 

using the structure given in Fig. 3.13.

Depending on the specifications of the filter under 

consideration, one subclass of LTWDFs can be formed by

- 1 2 3 -



x(t)

Fig .3.15 _ Multiplexed UEWDF using a 2_port systolic adaptor.
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the filters with bireciprocal or self - reciprocal 

characteristic functions [90,91]. The resulting LTWOFs 

are much simpler than the usual LTWDFs and they require 

less than half the number of adaptors in their*  

implementation. The block diagram of a bireciprocal 

LTWDF is shown in Fig. 3.16 when the filter*  order is N. 

These filters can only be designed to give a 

Butterworth or an Elliptic response. Chebychev ox*  

Inverse Chebychev responses are not possible. Apart 

from the simplicity of bireciprocal LTWDFs, they also 

have some important advantages which make them suitable 

for the design of interpolators and decimators [72].

T
------- 4____J—* 

2T

5----

L

—— • « «

A1.----

■ R J__ I
44
L—i- 
2T

Fig. 3.16- N th order bireciprocal LTWDF.
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3.6.0- Description of UEFD.SO and
LTFD.SO Programs

Fig. 3.17a and 3.17b show the main menus of the UEFD.SO 

and LTFD.SO programs respectively. The procedures to 

design a finite wordlength filter in both cases are 

roughly the same. The design procedure can be 

summarized as follows,

1) First the filter specifications are entered, i.e f
P • 

ap* f3 and aa- The sampling frequency is normalised to 

1 HZ. The program will estimate the minimum value of N, 

the filter order. to meet the specifications. In the 

case of LTFD.SO, this value will be given for three 

types of filter responses. i.e Butterworth. Chebychev 

and Elliptic.

2) Next the filter is designed using the synthesis 

subroutines in the programs. At this stage the filter 

coefficients can be saved for further use, e.g when 

the filter is analysed.

3) Now we can move to the optimization routine for

Finite Wordlength Design (FWLD) of the filter. The

program requires a starting number of bits for the

coefficients and the number of frequency points at

which the filter will be analysed. The finite 

wordlength subroutine generates a report of how the

search algorithm is progressing by printing the values

of and a^ whenever the exploratory moves contain a

success. If the algorithm does not manage to design the
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Fig. 3.17

PROGRAM TO DESIGN WDFs BASED
ON UNIT ELEMENT REFERENCE FILTERS

MAIN MENU

1 ) ENTER SPECIFICATIONS.
2) DESIGN USING SYNTHESIS.
3) DESIGN FINITE WORDLENGTH FILTERS.
4) SAVE FILTER COEFFICIENTS.
5) READ INITIAL COEFFICIENTS.
6) ENO DESIGN PROGRAM.

a). Main menu of UEFD.SO program.

PROGRAM TO DESIGN WDFs BASED
ON LATTICE REFERENCE FILTERS

MAIN MENU

1 ) ENTER SPECIFICATIONS.
2) READ INITIAL COEFFICIENTS.
3) DESIGN BUTTERWORHT FILTERS.
4) OESIGN CHEBYCHEV FILTERS.
5) DESIGN ELLIPTIC FILTERS.
6) DESIGN FINITE WORDLENGTH FILTERS.
7) SAVE FILTER COEFFICIENTS. 
B) END DESIGN PROGRAM.

b). Main menu of LTFD.SO program.
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filter for the required number of bits, it increases 

the number of bits for the coefficients by one and 

starts all over again. If the specifications are met 

then the final coefficients, the final values of a
p and 

as and the number of times that the error function 

subroutine is called will be printed. At this stage the 

user can either save the coefficients and terminate the 

program or continue with a smaller number of bits.

There are also other facilities in the programs, such 

as the user entry of the initial coefficients for the 

WDF at the terminal. These values can be generated 

using a random number generator program. This option is 

useful when we wish to design the WDF directly in the 

discrete time domain.

When the filter has been designed, the response of the 

filter can be checked by using a program called ANAWDF.

This program has been developed to analyse any type of

WDFs based on unit element, lattice and

filters with inserted unit elements.The program

generates graphical outputs showing the different

frequency responses of the filter. Fig 3.18 shows the 

main menu of ANAWDF. Before the program displays the 

main menu, the user is asked to enter the type of WDF 

that is going to be analysed. From Fig. 3.18, the user 

is able to quantize the coefficients and investigate 

the effects of quantization on the response of the
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PROGRAM TO ANALYSE WDFs

1)
2)
3)
4)
5)
6)
7)

1)
2)
3)
4)
5)
6)
7)

MAIN MENU

READ WDFs COEFFICIENTS.
QUANTIZE COEFFICIENTS.
ANALYSE IDEAL FILTER.
ANALYSE FILTER WITH QUANTIZED COEFFICIENTS.
ANALYSE FILTER WITH FINITE WORDLENGTH COEFFICIENTS.
PLOT RESPONSES ON THE SAME AXIS.
END ANALYSIS PROGRAM.

Fig. 3.18- Main menu of ANAWDF program.

PROGRAM TO SIMULATE WDFs

MAIN MENU

READ COEFFICIENTS.
CHOOSE INPUT SIGNAL.
SIMULATE FILTER WITH 2-PORT ADAPTORS.
SIMULATE FILTER WITH 2-PORT SYSTOLIC ADAPTORS.
SIMULATE FILTER WITH QUANTIZED COEFFICIENTS. 
SAVE FILTER RESPONSES.
END SIMULATION PROGRAM.

Fig. 3.19- Main menu of SIMWDF program.
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filter. Also the three frequency responses, i.e the 

ideal case , with quantized coefficients and with FWLD 

program coefficients, can be plotted on the same axis. 

The other tool developed to check the filter designs is 

the simulation program called SIMWDF. Fig. 3.19 

illustrates the main menu of SIMWDF. Again before this 

menu the user is asked to eneter the type of filter 

under consideration. This program also includes the 

simulation of systolic WDFs using 2-port and 3-port 

adaptors. The program allows the user to select three 

different input signals. These are, an impulse, a step 

or a sinewave. Also the user can create input signals 

by adding sinewaves of different frequencies. This type 

of inputs are useful to check whether the filter can 

filter out the high frequency signals, assuming that 

the filter under testing is a lowpass filter. Again the 

filter coefficients can be quantized and the filter 

responses can be saved to be plotted using a general 

purpose plot routine developed by the author.
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3.7.0- Analysis and Simulation Results

In this section, we consider the performance of the FWLD 

programs and the systolic WDFs by means of several 

examples. The filter examples are designed using UEFD.SO 

and LTFD.SO programs. The designs are then analysied 

using ANAWDF program. The results from the ANAWDF 

program demostrate the effects of finite wordlength on 

the frequency response of the filters. The simulation of 

the systolic WDFs are obtained using SIMWDF program.

The procedure with which the filters are designed and 

checked is described in detail for the first two 

examples. For the other examples, we only present the 

results and detailed explanations are not given.

Table 3.2 illustrates 4 filter specifications which are

going 

plots

to be considered in these examples. In all the

curves markedobtained from the ANAWDF program the

Filter Pass band Stop band Max Ripple in Min Loss in
No. Edge Freq Edge Freq Passband Stopband

1 0.10 0.20 1 .0 50

2 0.10 0.30 0.5 55

3 0.25 0.35 1 .0 60

4 0.05 0.10 0.5 60

Sampling Frequency is Normalised to 1.0 HZ.

Table 3 . 2 
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by ’+' denote the frequency responses of the ideal 

filters, curves marked by ’x* denote the frequency 

responses of the filters with quantized coefficients and 

curves marked by 'o' denote the frequency responses of 

the filters with FWLD program coefficients. When we use 

the term number of bits, this does not include the sign 

bit and only represents the number of bits required to 

express the magnitude of the coefficients.

One measure of the speed of the design programs is to 

count the number of times that the error function 

subroutine is called, i.e to find what the variable 

NFUNC is. It has been exprienced that, for many cases, 

this number can be kept low if the number of bits for 

the coefficients is reduced gradually. This means that 

the initial coefficients are first quantized to a 

number of bits which is not very small, say 10 or 8- 

bits. If the algorithm succeeds in designing the filter 

for this then the number of bits is reduced by one and 

the program is run again.

3.7.1- Example 3.1

In the first example, we consider the design of a UEWDF 

for filter No.1. Using option (1) in the main menu of 

the UEFD.SO program (Fig. 3.17a) the specifications of 

the filter are entered. A 7th order UEWOF is required 

to meet the specifications. The filter was then 

designed using the synthesis subroutine, i.e option
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(2). These coefficients were saved and then fed into

the optimization routine using option (3). The

optimization routine managed to minimize the

number of bits for the coefficients to 6. The synthesis

coefficients and the FWLD program coefficients are

listed below,

Synthesis FWLD Coeff
Coef f 6-bits

1 ) -0.7481353 -0.6875
2 ) 0.92037 1 3 0.890625
3 ) -0.9425427 -0.921875
4 ) 0.9457231 0.9375
5 ) -0.945723 1 -0.9375
6 ) 0.9425427 0.9375
7 ) -0.92037 1 3 -0.890625
8 ) 0.7481353 0.640625

Fig . 3.20 shows the frequency responses of the filter

for (a) ideal filter, (b) with 6-bit coefficients and

(c) with 6-bit coefficients from FWLD program. As it

can be seen from Fig. 3.20, when the coefficients are

quantized to 6-bits the passband ripple of the filter 

is more than 1.0 DB. The passband ripple of the filter 

with FWLD program coefficients however is less than 1.0 

OB. The stopband attenuation in both cases is more than 

50 DB. The number of times that the error subroutine 

was called is 1352, i.e NFUNC=1352.

Next we look at the simulation of the systolic UEWDF. 

The synthesis coefficients were fed into the SIMWOF 

program using option (1) in Fig. 3.19. The input signal 

was chosen to be an impulse. Fig. 3.21a illustrates the 

impulse response of the systolic filter against the
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ideal filter. It must be noted that for the systolic 

filter the input signal is quantized to 16-bits and the 

coefficients are quantized to 8-bits. Therefore the 

slight difference between the ideal impulse response 

and the systolic one is due to quantization errors.

Fig. 3.21b shows the same response when the FWLD

program coefficients are used . As it can be seen , the

impulse response of the systolic WOF is exactly the

same as that of the ideal filter.

3.7.2- Example 3.2

Here a LTWDF is designed for filter No . 1 . The

specifications were entered using option ( 1 ) in the

main menu of the LTFD.SO program (Fig. 3.16b). Next a 

5th order LTWDF with Chebychev response was designed 

using option (4). The WDF coefficients were saved and 

then fed into the optimization routine. The number of 

bits for the coefficients was minimized to 6-bits and 

NFUNC was 244. The LTWDF coefficients and the FWLD

program coefficients are listed below,

Synthesis 
Coef f

FWLD Coeff
6-bits

1 ) 0.8280498 0.78125

2 ) -0.74581 48 -0.703 125

3) 0.9 132857 0.875

4 ) -0.8999829 -0 . 890625

5 ) 0.81 1 0378 -0.765625

Fig. 3 .22 shows the frequency response of the LTWDF.

From Fig. 3.22, when the coefficients are quantized to

6-bits the passband speciefications are not met by the
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filter, while the response of the filter with FWLD

program coefficients

3.23 shows the impulse

meets the specifications. Fig.

response of the systolic filter

against the ideal filter using the synthesis

coefficients.

Fig. 3.24d shows the output of the systolic WDF when

the input (Fig. 3.24c) is obtained by adding two

sinewaves ( Fig . 3.24a and 3.24b) of different

frequencies . F rom Fig. 3.24d, the high frequency

sinewave has been filtered out and the frequency of the

output is equal to that of Fig. 3.24a. The input signal

had to be scaled down in order to prevent overflow and

this is why the amplitude of the output is less than

that of input.

3.7.3- Example 3.3

A 7th order UEWDF was designed for the filter No . 2 . The

synthesis and the FWLD program coefficients are as 

follows,

FWLD Coeff
6 - bit s

Synthesis 
Coef f

1) -0.6963367 -0.640625
2 ) 0.9127353 0.859375
3 ) -0.9403536 -0.828125
4 ) 0.9444614 0.765625
5) -0.9444614 -0.828 1 25
6) 0.9403536 0.90625
7 ) -0.9127353 -0.875
8 ) 0.6963367 0.59375

and NFUNC=2744. Fig. 3.25 illustrat the frequency

responses of the filter. Fig. 3.26a and 3.26b show the

impulse responses of the systolic WDF and ideal filter
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XI0“*
1.80

Fig. 3.23_ Impulse responses for example 3.2 with synthesis 

coefficients.
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with synthesis coefficients and the FWLD program 

coefficients respectively.

3.7.4- Example 3.4

A 5th order LTWDF with Chebychev response has been 

designed to meet the same specifications as in example 

3.3. The synthesis coefficients plus the FWLD program 

coefficients are listed below,

Synthesis FWLD Coeff
Coef f 6-bits

1) 0.7 893492 0.75
2 ) -0.6929720 -0.6875

3) 0.904 1 569 0.875
4) -0.87690 1 5 -0.90625

5) 0.8028565 0.78125

and NFUNC=103. Fig. 3.27 illustrates the frequency

responses of the filter. Fig. 3.28 shows the impulse

response of the systolic WDF against the ideal filter

with synthesis coefficients . Fig. 3.29 shows the output

of the systolic and ideal filters when they were

excited by a step input.

3.7. 5- Example 3.5

A 5th order Elliptic LTWDF has been designed to meet

the specifications for the filter No.3. The

coefficients of the filter are as follows,

Synthesis FWLD Coeff
Coef f 6-bits

1 ) 0.5224633 0.5

2 ) -0.5207588 -0.515625
3 ) 0.3570393 0.328125

4 ) -0.8562697 -0.859375
5 ) 0.00399 1 8 0.015625
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and NFUNC=152. The frequency responses of the filter 

are shown in Fig. 3.30 and Fig 3.31 shows the impulse 

responses of the systolic and ideal filter with 

FWLD program coefficients. As it can be seen, the 

systolic impulse response is exactly the same as that 

of the ideal filter.

Two sinewaves of frequency 0.2 HZ and 0.4 HZ (Fig. 

3.32a and 3.32b) were added to form the input signal of 

Fig. 3.32c. Fig. 3.32d shows the output of the systolic 

WDF. As it can be seen, the high frequency sinewave has 

been filtered out and the output frequency is about 0.2 

HZ. The input signal had to be scaled down to prevent 

overflow.

3.7.6- Example 3.6

Finally a 7th order Elliptic LTWDF was designed to meet 

the specifications for filter No.4. The coefficients of 

the filter are as follows,

Synthes is 
Coef f

FWLD Coeff
8-bitS

1 ) 0.9165015 0.91015625

2 ) -0.8609902 -0.84375
3 ) 0.98584 1 0 0.984375

4 ) -0.9110628 -0.89453125
5 ) 0.9646757 0.96484375

6 ) -0.969858 1 -0.96484375

7 ) 0.9503505 0.94921875

and NFUNC=236. Fig. 3.33 shows the frequency responses 

of the filter. The impulse responses of the systolic

WDF and the ideal filter are shown in Fig. 3.34a and

3.34b with synthesis coefficients and the FWLD program
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Fig. 3.31__ Impulse responses for example 3.5 with FWLD 

program coefficients .
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coefficients. The error between the impulse responses 

is reduced when the FWLD program coefficients are used.
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3.8.0- Discussion and Comments

In this chapter, we demonstrated how the 2-port WDF 

adaptor can be used to design WDFs based on unit 

element and lattice analogue filters. The UEWDFs have 

simpler structure which results in less hardware 

complexity. However, the llEWDFs can only have 

Butterworth and Chebyshev responses and usually the 

filter order for a UEWDF is greater than that of a 

LTWDF for the same specifications. The LTWDFs are on the 

other hand more complex but Elliptic responses can also 

be obtained.

From the examples in the previous section, it can be 

seen that for a given set of specifications a LTWDF 

requires less 2-port adaptors and also the optimization 

routine converges much faster than for a UEWOF. The 

saving in the number of 2-port adaptors can be 

increased by choosing Elliptic filters rather than 

Butterworth or Chebychev filters.

The example s show that although WDFs have low 

coefficient sensitivity properties, the response of the 

filtei' can not be guaranteed to remain within the 

specifications for very short coefficient wordlengths. 

With the aid of the optimization programs the response 

of the filters are forced to remain within the 

specifications.

In all the example, the initial coefficients were
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obtained using the synthesis routines within the

programs. The package has the options with which the

user can enter the initial. coefficients and move

straight to the optimization part of the programs to

dsign the WDF directly in the discrete-time domain.

The 2-port systolic array in this chapter is designed 

by interconnecting regular and simple one-bit processor 

cells. The interconnections are localized to the 

nearest neighbouring cells. This is becoming more 

important as we move towards the VLSI implementation of 

digital signal processing hardware. The single board 

prototype 2-port systolic adaptor has been tested 

completly to verify the correctness of the design. The 

results from the simulation of the systolic WDFs also 

show good agreement with the ideal filter responses 

for different types of filters and excitations.
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CHAPTER FOUR

LC-LADDER WDFS

4 . 1 . 0- Introduction

In the previous chapter. we considered the design and 

VLSI implementation of WDFs which only need 2-port 

adaptors in their realisations. In general. it is 

possible to model LC-ladder analogue filters using 2 and 

3-port adaptors. In this chapter, we consider the design 

and systolic implementation of LC-ladder WDFs (LCWDFs).

We start by developing systolic arrays for the 

realisation of 3-port serial and 3-port parallel 

adaptors using the systolic arrays developed in chapter 

two. Also the basic cell of the universal systolic array 

in chapter two is modified to implement a universal 

systolic WDF adaptor. This adaptor can be programmed to 

realise 2-port. 3-port parallel and 3-port serial 

adaptors. In section 4.2.4, we estimate the number of 

transistors required to implement the adaptors in CMOS 

technology.

The design of LCWDFs is considered in section 4.3.0. 

There are many different methods by which a WDF can be 

derived from a LC-ladder reference filter. These methods 

are briefly reviewed and in section 4.3.2, we describe 

in detail the use of Kuroda Transforms [92] in the 
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design of LCWDFs with inserted unit elements. A 

subroutine is developed to derive a WDF from a LC-ladder 

reference filter. The reference filter can be designed 

using either filter design tables or explicit formulas.

In section 4.3.3, we develop a subroutine for analysis 

of LCWOFs which is then merged with the two subroutines 

developed in chapter two to form a complete program for 

the design of finite wordlength LCWDFs.

In section 4.4.0, we briefly consider the hardware 

implementation of LCWDFs using 3-port systolic adaptors. 

The SIMWDF and ANAWDF programs are used to simulate and 

analyse the LCWDFs and in section 4.5.0 we outline how 

the LCFD.SO program can be used to design finite 

wordlength LCWDFs. Finally in section 4.6.0, we present 

a number of filter examples to illustrate the 

performance of the design program and the systolic 

LCWDFs.
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4.2.0- 3-Port Systolic Adaptors

In Chapter two, we saw how equations of the f orm,

R2 = P + Z1(XI - X2 ) + W1(X3 - X4 ) (4.1a)

and R2 = P - Z1(X1 + X2 + X3) (4.1b)

can be implemented using bit-level systolic arrays. In

this section, we illustrate how these basic systolic 

arrays can be modified to implement 3-port adaptors.

4.2.1- 3-port Parallel Systolic Adaptors

The symbolic representation of a 3-port parallel 

adaptor is shown in Fig. 4.1 and the adaptor equations 

are given below,

Bk = AO - Ak K = 1,2,3 (4.2a)

where AO = E a±Ai i = 1.2.3 (4.2b)

and 2 = “l * “2 * “3 (4.2c)

Using eqni . 4 . 2c one of the adaptor coefficients, say

<*3  , can be expressed in terms of the other two

coefficients. Therefore,

“3 - 2 - a1 - a2 (4.3)

Expanding eqn 4.2b and substituting eqn 4.3 for a3, we

obtain,

AO ~ o^AI + a2A2 + (2-a1-a 2 ) A3

or AO = a1 (A1 - A3) + a2(A2 - A3) ♦ 2A3 (4.4)

Now we substitute eqn. 4 .4 into eqn. 4.2a and set

k=1 ,2,3 . This results in,

B1 = (A1 - A3) + a2(A2 - A3) + 2A3 - A1

B2 = a1(A1 - A3 ) + a (A2 - A3) + 2A3 - A2
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F ig.4.1 - Schematic representation of,

*

ala 3-port parallel adaptor.

A3 cc1 oc? B-]

A 21=>

A3c=O

O B3

O B2

O B1

B1 = oc1 - 1 , B? - °C? “ 1

b)a 3-port parallel systolic adaptor.
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a3 a1a3 a2

Fig. 4.2 _ Logic diagram of the basic cell in a 3_ port

parallel systolic adaptor.
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and 83 = a
1 ( A1 - A3 ) + a2(A2 - A3) + 2A3 - A3

or B 1 = A3 + (a
1 1)(A1 - A3) + a2(A2 - A3 )

B2 = A3 + ( A1 - A3) + (a2 - 1)(A2 - A3 )

and B3 = A3 + ( A1 - A3) + a2(A2 - A3)

Now substituting = (a1- 1 ) and 0 =(a2-1), we obtain

B1 = A3 + Pl ( A1 - A3 ) + aa 2 ( A2 - A3 ) (4.5a)

B2 = A3 + *1 ( A1 - A3 ) + a2(A2 - A3) (4.5b)

and B3 = A3 + a1 ( A1 - A3 ) + a2(A2 - A3) (4.5c)

Equations 4.5 are now in the same form as eqn. 4.1a and 

therefore we can use the systolic array developed in 

chapter two (Fig. 2.6a) to implement the equations. Of 

course, as with 2-port adaptor, we can either use 3 

systolic arrays or one with a modified basic cell. This 

would avoid evaluating the common operations more than 

once. Fig. 4.2 shows the logic diagram of the basic 

cell to implement a 3-port parallel adaptor. The 

schematic representation of the systolic adaptor is 

shown in Fig. 4.1b. It must be noted that the latches 

at the outputs of the cells in Fig. 2.6a are removed as 

explained in the previous chapter.

4.2.2- 3-port Serial Systolic Adaptors

Let us now consider the bit-level systolic 

implementation of a 3-port adaptor. Fig. 4.3a shows the 

schematic representation of a 3-port serial adaptor and 

the adaptor equations are given below,
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Fig.4.3-Schematic representation of,

3 ) a 3-port serial adaptor.

-16 1

b) a 3-port serial systolic adaptor.



Fig. 4.4- Logic diagram of the basic cell in 

a 3_port serial systolic adaptor.
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Bk = Ak - a
kAO 

where AO = E A k_
k K“

By expanding eqn. 4.6b and 

the outputs of the adaptor 

the inputs as follows,

B1 = A1 - a1(A1 +

B2 = A2 - a^(A1 +

and B3 = A3 - ( a 1 +

These equations are now in

(4.6a)

1.2,3 (4.6b)

substituting into eqn. 4.6a, 

can be expressed in terms of

A2 + A3) (4.7a)

A2 + A3) (4.7b)

A2 + A3) (4.7c)

the same form as eqn. 4.1b

and therefore can be implemented using the systolic 

array of Fig. 2.7a. The term (A1+A2+A3) is common to 

all the three equations and therefore we avoid 

evaluating this term 3-times by using one systolic 

array. The logic diagram of the basic cell is shown in 

Fig. 4.4 and Fig. 4.3b shows the schematic 

representaton of the 3-port serial systolic adaptor.

4.2.3- Universal Systolic Adaptor

In chapter two, we developed a universal systolic array 

to implement equations of the form,

R = P ± Z1(X1 + X2) ± W1(X3 + X4) (4.8)

The universal systolic array can be programmed to 

realise the other equations by initializing the inputs 

before entering the array. The basic cell of this array 

(Fig. 2.9a) can be modified so that the array implements 

a set of equations of the form,

R1 - PI ± Z1(X1 + X2) ± W1(X3 + X4) (4.9a)
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FA -Full Adder

101 Gates/Cell

2 8 ns Gate De lay

F i g . 4.5-Log ic diagram of the basic cell in a universal

adap tor.
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P2 ± Z2(X1 + X2) ± W2(X3 + X4 ) (4.9b)R2

and R3 = P3 ± Z3(X1 + X2) ± W3(X3 + X4) (4.9c)

The logic diagram of the modified cell is shown in Fig

4.5. The inputs of this array must be initialized in the 

same way as described in chapter two to allow the 

realisation of a 2-port, a 3-port serial or a 3-port 

parallel adaptor. The schematic representation of the 

univeral systolic array is shown in Fig. 4.6.

Three programs have been developed to simulate the 3- 

port and the universal adaptors. The simulation results 

from these programs are included in section 4.6.0.

Fig. 4.6-Schematic representation of a 

universal adaptor.
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4.2.4- CMOS Implementation of the Adaptors

Let us now estimate how many transistors are required 

to implement the 3-port parallel, 3-port serial and the 

universal adaptors. It is assumed that CMOS technology 

is used. In general, if we use n-bits to represent the 

adaptor coefficients and m-bits for the signals, then 

mnb-bits are required to represent the outputs of the 

adaptors, where mnb is given by,

mnb s (n+m+3)

The cell configurations are the same for all the three 

adaptors and the number of cells in an (nxm) array is 

given by,

Nc=n(n+m+3)

and the number of clock cycles required for the 

adaptors to complete their operations is,

Nck = n + (n+m+3) = 2n + m + 3

From Fig. 4.2, we need 8 full-adders, 4 2-input AND 

gates and 2 2-input EX-OR gates to implement the basic 

cell of a 3-port parallel systolic adaptor. If we 

convert the full-adders and the EX-OR gates into 2-input

can calculate the number of transistors required to

AND gates, then we need 90 2 -input AND gates to

implement the basic cell. In the same wa y , we need 65

and 101 2-input AND gates to implement the basic cell of

a 3- port serial adaptor (Fig. 4.4) and the basic cell of

the universal adaptor (Fig. 4.5) respectively. Now, we
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implement the adaptors.

From Fig. 4.2, 4.4 and 4.5, the time delay of the basic 

cells in all the cases are equivalent to the time delay 

of 7 gates in cascade. If we assume that the time delay 

of an AND gate is 4 ns then the time delay of the basic 

cells are 28 ns.

This information is shown in a tabular form in Table 4.1 

for some typical values of n and m. As with the 2-port 

adaptor, the number of transistors and the time delay of 

the adaptors decrease exponentially when the number of 

bits for the coefficients is reduced slightly. In Table 

4.1, column (1) represents the 3-port parallel adaptor, 

column (2) represents the 3-port serial adaptor and 

column (3) is the universal adaptor.
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4.3.0- LC-Ladder WDFs (l.CWDFs)

4.3.1- Introduction

Using 2-port and 3-port adaptors, it is possible to 

derive a WDF from a lc-ladder reference filter. There 

are different techniques which can be used to derive the 

WDF. Each technique results in a structure which is 

different from others in terms of number of multipliers, 

hardware complexity, etc. In this section, we briefly 

review some of these techniques .

4.3.2- Direct LC-Ladder WDFs

In principle, a WDF can be realised by direct connection 

of the parallel and serial adaptors which model the 

interconnections of the inductors and the capacitors in 

the reference filter. The series and parallel tuned 

circuits may be implemented using either 3-port adaptors 

or 2-port adaptors [2]. As an example, consider the 3rd 

order lc-ladder filter of Fig. 4.7a. The corresponding 

WDF is shown in Fig. 4.7b. Each 3-port adaptor requires 

3 multiplications, therefore there are 9 multiplications 

all together. As explained in chapter one, it is 

possible to express one of the adaptor coefficients in 

terms of the other two coefficients and reduce the 

number of multipliers needed in one adaptor by one. This 

will result in 6 multipliers for the 3rd order LCWDF of 

Fig. 4.7b. Thus, the number of multiplications is not 

canonic since we need 2N multipliers for an Nth order
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Fig.4.7

a—►—_ AV '

@-------------

L2
■--------------------------- V
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----- --------- 9
3

a) 3 th order LC-ladder filter.

b) Corresponding WDF.
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filter.

A further saving in the number of multipliers can be 

achieved by realising the WDF using the matched-port 

technique [87]. The resulting WDF corresponds to the 

true ladder filtei' in the strictly conventional sense. 

The following is a brief review of the matched-port 

technique.

The adaptor equations of a 3-port adaptor are given in 

chapter one. Now, let us assume that the resistance of 

one of the ports in the adaptor, say port 3, is fixed 

and is given by,

G3 = G2 + G1

Substituting G3 into eqn. 1.35, we obtain,

a3 = 2(G1 + G2)/(2G1 + 2G2)

Thus a3 = 1 (4.10)

Substituting eqn. 4.10 into eqn. 1.36, we obtain,

a, + a2 = 1

Now, one of the adaptor coefficient, say a2, can be 

express in terms of the other coefficients as follows,

The wave realisation of eqn. 4.12 is shown in Fig. 4.8a.

«2 = 1 - a 1 (4.11)

Now, substituting eqn. 4 . 10 and 4..11 into eqn.1 .3 4

obtain •

B1 = (A1 - A2 ) + A2 + A3 - A1 (4.12a)

B2 = ai(A1 - A2 ) + A3 (4.12b)

and B3 = ai(A1 - A2 ) + A2 (4.12c)
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As it can be seen from Fig. 4.8a, only one multiplier is 

required to implement the adaptor. A similar approach 

can be taken in order to reduce the number of 

multipliers in a 3-port serial adaptor to one. The final 

adaptor equations, when is set equal to 1, are given 

below,

B1 = A1 - a^AI + A2 + A3) (4.13a)

82 = — (A1 + A2 - a^(A1 + A2 + A3)) (4.13b)

and B3 = -(A1 + A2) (4.13c)

The wave realisation of eqn. 4.13 is shown in Fig. 4.8b. 

Eqns. 4.12c and 4.13c suggest that the reflected waves 

at port 3, B3, in both the adaptors are independent of 

the corresponding incident waves, A3. Thus, the port 3 

of these adaptors may be connected directly to any port 

of another adaptor to form a complete WDF without 

introducing any closed loop into the structure.

Now let us consider the WDF structures obtained in this 

section from an implementation point of view. If we wish 

to use the WDF structure in Fig. 4.7b to implement a 

lowpass filter, then A1^ win be the input, B33 will be 

the output and A3^ will be set equal to zero. At adaptor

• B31 can be calculated since all the inputs are 

known. Next at adaptor ,2‘, B32 can be calculated since 

the new value of A1^ has just been evaluated and also 

A22 and A32 are Known. Finally at adaptor ‘3*  , 63^, the 

filter output, can be calculated since A1 , A2 and A3
3 3 3
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Fig. 4.8

a) 3-por t parallel adaptor with one multiplier.

b) 3-port seril adaptor with one multiplier.
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are known. These operations must take place 

sequentially. Therefore, we cannot process any new 

samples until the old sample is processed completely and 

the output is evaluated. Thus, the sampling frequency of 

the filter depends on the order of the filter, i.e the 

number of adaptors. This is not very efficient both for 

a parallel or a multiplexed hardware implementations of 

the filter. However, by introducing unit elemnets (UEs) 

into the lc-ladder filter. it is possible to derive a 

filter structure in which the adaptors are separated by 

delays. The resulting structures have higher throughputs 

and also can be multiplexed quite easily. This leads to 

the design of LCWDFs using Kuroda Transformations.

4.3.3- LCWDFs with inserted Unit Elements

In Ref [92], Fraiture has shown that any number of unit 

elements (UEs) with characteristic impedance equal to 

one can be introduced in cascade at the input or the 

output of a 2-port network without affecting the overall 

amplitude response of the network. This is not true for 

the phase response of the network. By Kuroda’s identity, 

it is possible to transform a series arm element into a

shunt element and vice versa by shifting these UEs

through the network. Table 4.2 illustrates 

transformation of a shunt and a series inductor

the

and

capacitor using Kuroda's transforms. The process of

inserting and shifting the UEs into a lc-ladder filter
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__ M__
UE

L

— r
UE

Z1
— c

Z2

ZiC

1 + Z]C

Z-|(Zi + L)

Z2= Zi + L

Table 4.2-Kuroda's transforms.
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is best described with the aid of an example.

Consider the 3rd order lc-ladder filter of Fig. 4.7a. 

The UEs may be inserted from the left or the right hand 

side of the filter. In order to separate the elements in 

the filter by one UE. we need to insert two UEs, i.e one 

less than the order of the filter. Fig. 4.9 illustrates 

the process of shifting these UEs and Fig. 4.9d shows 

the final lc-ladder filter which is suitable to be used 

to derive the WDF. This filter can now be transformed 

into a WDF by using three 3-port parallel adaptors for 

the capacitors and two delays between the adaptors (Fig. 

4.10).

cck= G k/( G1+G2+G3 ) , G k = 1 / Rk

Fig.4.10-WDF corresponding to Fig.4.9d.
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It is easy to show that no matter what the order of the 

filter is, the UEs can be inserted in such a way that 

the resulting WDF contains only 3-port serial or 3-port 

parallel adaptors. Fig. 4.11 illustrates the process of 

Kuroda’s transformation for a 4th order lc-ladder filter 

and Fig. 4.11c shows the corresponding WDF. In general, 

if the order, N, of the reference filter is even, it is 

necessary to insert one UE from right hand side of the 

filter while the other N-2 UEs are insearted from left 

hand side of the filter.

A program has been developed to derive LCWDFs using the 

technique described above. The resulting WDFs contain 3- 

port parallel adaptors only. The filter is described 

using ‘0*  and '1' to represent capacitors and inductors 

respectively. The reference filter can be designed using 

filter design tables. In this case, the element values 

of the reference filter are entered from the terminal. 

Also, the element values can be calculated by explicit 

formulas [9] using a subroutine in the program. Fig. 

4.12 shows the input and the output of the program when 

the 3rd order lc-ladder filter of Fig. 4.7a was used to 

derive the LCWDF. This program only allows Butterworth 

and Chebychev filters to designed.

In the filter structure of Fig. 4.9 and 4.10, the UEs 

are made redundant and have no effect on the filter 

response. This means that if we start with a Nth order
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PROGRAM TO DESIGN WDF'S BASED ON THE 
LC LADDER STRUCTURES.

THE LC LADDER FILTER SHOULD BE DESCRIBED BY
USING ,O*  FOR AN INDUCTOR AND *1 ’ FOR A CAPACITOR.

E.G 0,1 FOR A 111 INDUCTOR AND
1,1 FOR A 1F CAPACITOR.

ENTER THE FILTER ORDER :-
= 3

ENTER VALUES OF THE SOURCE AND LOAD RESISTORS :-
= 1.1

ENTER THE COMPONENTS AND THEIR VALUES ( 1 , CAP-0,IND) :

=1,5.898
=0,4.55
=1,8.472

THE WDF COEFFICIENTS ARE AS FOLLOWS :-

BLOCK 1
1 1.0000000
2 0.4609253
3 0.5390747

BLOCK 2
1 0.1449696
2 1.7977515
3 0.0572790

BLOCK 3
1 0.0439843
2 1.7495106
3 0.2065050

TYPE <CR> TO CONTINUE !!!

Fig. 4.12- Sample example from the synthesis program
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filter, then the order of the resulting LCWDF would 

still be N while 2N multipliers are required to 

implement the filter. Thus, the filter is not canonic in 

terms of the number of multipliers.

It is desirable to consider filter design techniques in 

which the UEs do contribute to the performance of the 

LCWDFs [42,98,99],

4.3.4- Finite Wordlength Design of LCWDFs

In previous sections, we illustrated the different 

methods with which LCWDFs can be derived. In this thesis 

we use the Kuroda's transforms to derive the LCWDFs. The 

program developed in the previous section can be used as 

the first step for the finite wordlength design (FWLD) 

of LCWDfs. This program is used to calculate the initial 

values of the WDF coefficients. Here, a subroutine is 

developed to evaluate the frequency response of a LCWDF 

for a set of coefficients at different frequency points. 

This subroutine plus the synthesis subroutine and the 

two subroutines developed in chapter two can be merged 

to form a complete program for the FWLD of LCWDFs.

The analysis of LCWDFs can be carried out using the wave 

chain matrix (WCM) method described in chapter three. 

The structure of the LCWDF of Fig. 4.10 is the same as 

that of a UEWDF except that the difference equations of 

the adaptors are not the same. Therefore, the same 

technique can be used to obtain the transfer function of
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the filter. From Appendix ' A3 1 , the input/output

1 82-

relationship of the kth section of a LCWDF is given by,

where

A1 
k =

B 1 
k (4.14)

A = (1-a3) + (a - 1 )z

B = 1 + (+a3- 1 ) z 1

C = z"1 + (ai+a3- 1)

D = (al- 1 ) + 2"1 (1-a3)

This ABCD matrix can be multiplied with the ABCD matrix 

of the other sections to form the total ABCD matrix of 

the filter. The transfer function of the filter can then 

be calculated using the method described in Appendix 

* A3‘ . A subroutine has been developed to analyse a LCWDF 

for a set of coefficients at different frequency points. 

In Appendix *C ‘ a complete listing of the design 

program, LCFD.SO, has been included and in section 

4.5.0, we berifly outline how it can be used for the

FWLD of LCWDFs.



4.4.0- Hardware Implementation of
Systolic LCWDFs

The structure of a LCWDF is very similar to that of a 

UEWDF. The basic blocks, i.e the adaptors, are separated 

by delays which enables us to pipeline the filter. As 

mentioned in the previous section, the LCWDF can be 

designed in such a way that only 3-port parallel or 

serial adaptors are required to implement the filter. 

The resulting structure will be much easier to be 

multiplexed. As with the UEWDFs, the 3-port parallel 

adaptors can be replaced by the corresponding systolic 

adaptors if the filter is implemented in parallel (Fig. 

4.10). The sampling frequency of the filter in parallel 

form would be around (1.3/2) MHz for 16-bit signals and 

4-bit coefficients (Table 4.2). The sampling frequency 

of the filter is independent of the order of the filter.

The number of transistors needed to implement an Nth 

order filter is,

(N x 33120) + NT ,
d

where NT^ is the number of transistors required to

implement the delays beteween the adaptors.

It is also possible to implement the filter by

multiplexing one 3-port parallel systolic adaptor to the 

required filter order. The filter structure of a 

multiplexed LCWOF is roughly the same as that of a UEWDF 

given in Fig. 3.15 in chapter 3. The sampling frequency 

of the filter now depends on the order of the filter.
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4 ■ 5 • 0- Description of LCFD.SO program

Fig. 4.13 illustrates the main menu of LCFD.SO program. 

The procedure to design a finite wordlength LCWDF is 

very much the same as in UEFD.SO and LTFD.SO program. 

The following is a brief outline of how the program may 

be used,

1) First we must decide on how the reference filter 

is going to be designed. One way would be to use filter 

design tables to obtain the element values of the 

reference filter for a given set of specifications. In 

this case, the reference filter is described by the 

method shown in Fig. 4.12. Then the WDF coefficients are 

calculated using the KUroda's transforms. The other 

approach to the design of the reference filter would be 

to use explicit formulaes to evaluate the element 

values. This can be achieved by choosing option ‘2* in 

the main menu. The filter can be designed with a 

Butterworth or a Chebyshev response.

2) Having designed the reference filter, the next 

stage is to calculate the LCWDF coefficients. This is 

done by choosing option *3'. At this stage the 

coefficients can be saved in a file using option '4' for 

later use. The initial coefficients can also be entered 

directly from the terminal using option '5*.

3) Now, we can enter the optimization routine and 

design finite wordlength filters using option ‘4‘. As
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with UEFD.SO and LTFD.SO programs, if the algorithm is 

successful then the final coefficients from FWLD 

routine will be quantized to the required number of 

bits. If however the specifications are not met then the 

number of bits is increased by one and the algorithm is 

run again. The final coefficients can also be saved 

using option *5 ‘ from the main menu.

The frequency response of the filter designed can be 

checked using the ANAWDF program.
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PROGRAM TO DESIGN LC-LADDER WDFS

MAIN MENU

1) READ INITIAL COEFFICIENTS.
2) DESIGN LC-LADDER FILTERS.
3) DESIGN LC-LADDER WDFS.
4) DESIGN FINITE WOROLENGTH WDFS.
5) SAVE COEFFICIENTS.
6) ENO PROGRAM.

Fig. 4.14- Main menu of the LCFD.SO program.

FILTER PASS BAND STOP BAND MAX RIPPLE IN MIN LOSS IN
NO. EDGE FREQ EOGE FREQ PASSBAND STOPBAND

1 0.10 0.20 1.0 50

2 0.20 0.30 0.5 60

3 0.40 0.45 0.5 60

Sampling frequency is normalised to 1.0 HZ.

Table 4.3.

-18 6 —



4.6.0- Analysis and simulation Results

In this section, we present a number of examples to 

illustrate how the LCFD.SO program can be used to design 

finite wordlength LCWDFs. Also results from the 

simulation of the 3-port and the universal adaptors are 

included to prove the correctness of the designs.

Table 4.3 illustrates the specifications of the filters 

to be designed. In all the plots obtained from the

design program, the following symbols are used for

different frequency responses,

(a) '+' Frequency response of the filter with

synthesis coefficients.

(b) 'x‘ Frequency response of the filter with

quantized coefficients.

(c) ’o' Frequency response of the filter with FWLD 

program coefficients.

From eqn. 1.35 and 1.39, the LCWDF coefficients are in 

the range of 0<a^<2. Therefore there is no need to use a 

sign bit when the coefficients are represented in 

binary form. Instead one bit has to be allocated to the 

real part of the coefficients and the rest of the bits 

to the decimal part. Here, when we use the term number 

of bits, it does not included the real part of the 

coefficients and only represents the number of bits 

required to express the decimal part.
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4.6.1- Example 4.1

In the first example, we consider the design of LCWDF 

for filter No. (1), Table 4.3. In all the design, the 

initial coefficients are obtained using explicit 

formulas. Using option '2‘ from the main menu of the 

LCFD.SO program, Fig. 4.13, it was estimated that in 

order to meet the specifications the filter order has to 

be greater than 4. Thus a 5th order chebychev LC-ladder 

filter was designed. Next, the element values of the LC- 

ladder filter were used to derive a LCWDF with inserted 

UEs using option '3'. The resulting coefficients were 

then used as the initial coefficients for the 

optimization program. The optimization program managed 

to minimize the coefficients wordlength to 6-bits and 

the number of error function calls was 695, i.e 

NFUNC = 695. The synthesis and the FWLD program 

coefficients are as follows,

Synthesis
Coe f f

FWLD Coeff
6-Bits

1) 1 . 0000000 0.984375
2 ) 0.2408364 0.250000
3 ) 0.6827608 0.703125
4 ) 0.9460297 1.078125
5) 0.1002782 0.093750
6 ) 1 .8305648 1 .843750
7 ) 0.0580506 0.062500
8 ) 1 . 88306 1 4 1 .87 5000

9 ) 0.0734 825 0 . 062500
1 0 ) 1 . 6720402 1 .546875

Fig. 4.14 shows the frequency responses of the filter

with ( a ) synthesis coefficients, (b) quantized
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coefficients and (c) FWLD program coefficients. As it 

can be seen, the frequency response of the filter is no 

longer within the passband specifications when the 

synthesis coefficients are quantized to 6-bits. It must 

also be noted that the loss of the filter with 6-bit 

coefficients is negative for some frequencies in the 

passband. Theoretically, this is not possible due to the 

passivity of the structure. The FWLD program has been 

written in such a way that it never allows the loss of 

the filter to become negative in order to preserve this 

fundamental property.

4.6.2- Example 4.2

Next, we consider the design of a chebychev LCWDF for 

filter No. (2). The same procedure was used to derive 

the synthesis and the FWLD program coefficients. The 

LCWDF and the FWLD program coefficients are listed 

below,

Synthesis 
coe f f

FWLD Coe
6-bits

1) 1.0000000 1.093750
2 ) 0.1558068 0 . 1 40625
3 ) 0.81 54370 0.781250
4 ) 0.5513635 0.53 1 250
5 ) 0.5526625 0.578125
6 ) 1.0989629 1.125000
7 ) 0.2127180 0.203125
8 ) 1.5441308 1 .54687 5
9 ) 0.2052737 0.203125

1 0 ) 1.5869409 1.578125
1 1 ) 0.2084537 0.218750
1 2 ) 1.5708108 1.546875
13 ) 0.2598022 0.265625
1 4 ) 1.2270431 1.140625
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Fig. 4.15 shows the frequency responses of the filter. 

Again, the passband specifications are not met when the 

synthesis coefficients are quantized to 6-bits. Also, 

the loss of the filtei' is negative at some frequencies 

in the passband. The FWLD program coefficients however 

has forced the filter response to remain within the 

specifications for 6-bits coefficient wordlength. For 

this design, NFUNC was equal to 1456.

4.6.3- Example 4.3

Finally, let us consider the design of a wideband LCWDF , 

filter No. (3). In order to meet the filter 

specifications, a 7th order LCWDF with a chebychev 

response is required. The filter was first synthesised 

in the same way as before and the synthesis coefficients 

were fed into the optimization program. The optimization 

program managed to design the filter with only 40bits 

for the coefficients. This was achieved by reducing the 

coefficient wordlength gradually and in total 3487 error 

function calls were required. The synthesis and the FWLD 

program coefficients are listed below,

Synthesis 
Coe f f

FWLD Coeff
4-bits

1) 1 . 0000000 0.8750
2 ) 0 . 1 286760 0.3125
3 ) 0.8523231 0.7500
4) 0.4 1 66365 0.5000
5 ) 0.7020883 0.6875
6 ) 0.5919554 0.5625
7) 0.7514318 0.7500
8 ) 0.5433666 0.5625
9 ) 0.6099947 0.6875
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10) 0.5860907 0.5625
1 1 ) 0.6643630 0. 7500
12) 0.7584272 0.5000
13) 0.8074642 0.8750
1 4 ) 0.4302789 0.2500

In fact more than half the coefficients only need 3-bits 

to be represented. Fig. 4.16 illustrate the

corresponding frequency responses of the filter. Again, 

the los3 of the filter with the qunatized coefficients 

is negative for some frequencies in the passband. It 

must be noted that in all the design examples considered 

here, the stopband responses of the LCWDFs are much less 

sensitive than that of the passband. Therefore, when the 

FWLD program was used, more attention was given to the 

passband than the stopband. In other words, the number 

of points in the passband at which the filter was 

analysed was much greater than that of the stopband.

4.6.4- 3-Port and Universal Adaptors
Simulation Results

In this section, we present some simulation results, in 

the form of computer outputs, to illustrate the 

performance of the 3-port and the universal adaptors. In 

all the computer outputs, nbs and nbc represent the 

number of bits for the adaptors’ signals and 

coefficients respectively. The maximum value of nbs is 

16 and nbc is 8. Fig. 4.17 and 4.18 illustrate the 

input/output of the programs simulating the 3-port 

parallel and the 3-port serial adaptors respectively. 

The inputs to the adaptors have to be integers and are
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Al A2 A3
=-1098 2987 -109

ALPHA1 ALPHA2
=109 -100

NBS NBC
= 16 8

ADAPTOR OUTPUTS ARE :-

B1 = -416521
B2 = -420606
B3 = -417510

SYSTOLIC ADAPTOR OUTPUTS ARE :-

B1 = -416521
B2 = -420606
B3 = -417510

DO YOU WISH TO STOP?(Y/N)
= N

Al A2 A3
=5 -10 6

ALPHA1 ALPHA2
= -5 7

NBS NBC
= 6 4

ADAPTOR OUTPUTS ARE :-

Bl = -100
B2 = -85
B3 = -101

SYSTOLIC ADAPTOR OUTPUTS ARE

81 = -100
B2 = -85
B3 = -101

DO YOU WISH TO STOP?(Y/N)
= Y

Fig. 4.17- Sample examples from the 3-port parallel 
systolic WDF adaptor program.
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A1 A2 A3
=-19 9 -14

ALPHA1 ALPHA2 ALPHA3
= -9 -16 10

NBS NBC
= 16 8

ADAPTOR OUTPUTS ARE :-

Bl = 255
B2 = -375
B3 = 226

SYSTOLIC ADAPTOR OUTPUTS ARE :-

Bl = 255
B2 = -375
B3 = 226

DO YOU WISH TO STOP?(Y/N) 
= N

A1 A2 A3
=-12 5 -18

ALPHA1 ALPHA2 ALPHA3
= -6 7 5

NBS NBC
= 6 4

ADAPTOR OUTPUTS ARE :-

B1 = -168
B2 = 187
B3 = 112

SYSTOLIC ADAPTOR OUTPUTS ARE :-

B1 = -168
B2 = 187
B3 = 112

DO YOU WISH TO STOP?(Y/N)
= Y

Fig. 4.18- Sample examples from the 3-port serial
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converted to binary in the programs. The arrays must be 

first initialized with the values of the inputs, i.e the 

carry bits and the P bits.

Fig. 4.19 shows the input/output of the program 

simulating the universal systolic adaptor. A number of 

examples have been given to illustarte the use of the 

array for realising different adaptors. Listing of these 

programs are included in Appendix ’B' .
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UNIVERSAL SYSTOLIC WDF ADAPTOR

MENU

1) 2-PORT ADAPTOR.
2) 3-PORT PARALLEL ADAPTOR
3) 3-PORT SERIAL ADAPTOR.
4) END PROGRAM.

ENTER YOUR CHOICE NUMBER :- 
= 2

ALPHA1 ALPHA2 A1 A2 A3
= -3 7 120 -34 28

NBS NBC
= 16 8

TYPE <CR> TO CONTINUE !!!

THE ADAPTOR OUTPUTS ARE :-

Bl »
B2 =
B3 =

: -774 
: -620
: -682

THE SYSTOLIC ADAPTOR OUTPUTS ARE :-

B1 :
B2 :
B3 :

= -774
• -620
: -682

Fig. 4.19b- Sample result from the universal systolic WDF 
adaptor simulating a 3-port parallel adaptor.
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UNIVERSAL SYSTOLIC WDF ADAPTOR

MENU

1 )
2)
3)
4)

2- PORT ADAPTOR.
3- PORT PARALLEL AOAPROR.
3-PORT SERIAL ADAPTOR. 
ENO PROGRAM.

ENTER YOUR CHOICE NUMBER 
= 3

ALPHA1 ALPHA2 ALPHA3 A1 A2 A3
=98 -109 120 1098 -1987 16540

NBS NBC
= 16 8

THE ADAPTOR OUTPUTS ARE :-

Bl = -1532700
B2 = 1703972
B3 = -1861580

THE SYSTOLIC ADAPTOR OUTPUTS ARE :-

Bl = -1532700
B2 = 1703972
B3 = -1861580

TYPE <CR> TO CONTINUE !!!

Fig. 4.19c- Sample result from the universal systolic WDF 
adaptor simulating a 3-port serial adaptor.
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4.7.0- Discussion and Comments

In this chapter, we considered the design and systolic 

implementation of LCWDFs. These filters can be designed 

in many different ways. Each method results in 

structures which differ from the others in terms of 

complexity, number of multipliers, etc. A number of 

different techniques for the design of LCWDFs have been 

described briefly and the design of LCWDFs with inserted 

UEs have been considered in more detail. A computer 

program has been developed to design these filters and 

the element values of the LC-ladder reference filter are 

obtained using explicit formulas. This method of 

design results in a LCWDF which can be realised using 3- 

port parallel adaptors only. These structures can be 

implemented easily by multiplexing one adaptor to the 

required filter order.

The systolic implementation of the 3-port parallel and 

3-port serial adaptor have been achieved using the 

systolic arrays developed in chapter two. Also, a 

universal systolic adaptor has been developed which can 

realise 2-port, 3-port serial and 3-port parallel 

adaptors. The results from the simulation programs of 

these systolic adaptors illustrate the correctness of 

the designs.

The filter examples have illustrated how the 

optimization program can be used to minimize the 
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coefficient wordlength of the LCWDF. In some cases, the 

resulting FWLD program coefficients are very simple and 

require small number of bits for their representation, 

example 4.3.

Theoretically, it is not possible for the frequency 

response of a WDF to be negative. This is due to the 

fact that WDFs are derived from passive analogue 

filters. From the design examples, it can be seen that 

in all the cases the loss of the LCWDFs are negative at 

some frequency points in the passband. In the 

optimization program, this fundamental property of WDFs, 

i.e the passivity of the filter, is preserved by not 

allowing the loss to become negative.

The design of the filter No. (1) has also been 

considered in chapter three. From examples 3.1, 3.2 and 

4.1, we need either a 7th order UEWDF, a Sth order LTWDF 

or a 5th order LCWDF to meet the specifications. In all 

the cases, the coefficient wordlength of the filters has 

been minimized to 6-bits. In terms of the number of 

multipliers, we need 8, 5 and 10 multipliers for a 

UEWDF, LTWDF and a LCWDF respectively. Therefore, LTWDF 

require less multiplications than the other two filters. 

The UEWDF and LCWDF can however be multiplexed much 

easier than the LTWDF. Also, the stopband of a LCWDF is 

extremely insensitive to variations in its multiplier 

coefficients. Therefore, for a set of specifications and 
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a particular application, one must choose a WDF which 

meets his requirements.
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CHAPTER FIVE

FREQUENCY TRANSFORMATIONS

5.1.0- Introduction

In the previous chapters, we have discussed different 

techniques for the design of lowpass WDFs. The aim of 

this chapter is to briefly consider the existing 

techniques for the design of highpass, bandpass and 

bandstop WDFs and present the results whhich have been 

obtained.

In general. there are two main approaches to the design

of highpass bandpass and bandstop digital filters .

These design procedures are summarised in Fig. 5.1a and

5.1b. In the first approach, Fig. 5.1a, a lowpa s s

prototype filter is first designed. Next , a suitable

frequency transformation is used to transform the

lowpass filter to a highpass, bandpass or a bandstop 

filter. Finally, the analogue filter is mapped into a 

corresponding digital filter with the use of a suitable 

transformation (e.g, bilinear transformation).

In the second approach, Fig. 5.1b, the analogue lowpass 

filter designed is first transformed into a lowpass 

digital filter. Next, a suitable frequency 

transformation is carried out in the discrete-t ime 

domain to obtain a highpass, a bandpass or a bandstop
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digital filter.

In chapter one, it was mentioned that any WDF has two 

inputs, A1 and A2, and two outputs, B1 and B2 (Fig. 

5.2). The outputs of the WDF are complementary, i.e if 

the filter is designed to have a lowpass characteristics 

and if B2 is the output of the filter, then B2 will have 

lowpass characteristics while B1 has a highpass 

characteristics. Similary, if the filter is designed as 

a bandpass filter, then B2 will have a bandpass 

characteristics while B1 has a bandstop characteristics. 

This is the simplest and the cheapest way with which 

highpass or bandstop filters may be designed. However, 

it is known [27] that the sensitivity of the output B1 

is much higher than that of B2.

In section 5.2, we consider the design of highpass WDFs. 

We examine the behaviour of the complementary outputs of 

different WDFs. Also, other approaches to the design of 

highpass WDFs are considered.

In section 5.3 and 5.4, we consider the design of 

bandpass and bandstop WDFs respectively. Finally, in 

section 5.5 a synthesis procedure is briefly described 

which enables one to design any frequency selective 

WDFs based on lc-ladder referenece filters with inserted 

unit elements [42]. Here, the UEs do contribute to the 

response of the filters while in the method described in 

chapter four, they were redundant.
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5.1- Two procedures for the design of frequency 
selective digital filters.

Fig.

Fig. 5.2- General block representation of a WDF.
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5.2.0- High-Pass WDFs

5.2.1- Complementary Outputs

In this section, we consider the design of highpass WDFs 

by using the complementary output of the filter. Fig. 

5.2 shows the block representation of a WDF. A1 and A2 

are the inputs and B1 and B2 are the outputs. In the 

case of a UEWDF or a LCWDF, A1 is the filter input, A2 

is set equal to zero and B2 is the output of the filter 

and B1 is the complementary output. Therefore, if B2 has 

lowpass characteristics then B1 will have higpass 

characteristics. This is shown in Fig. 5.3a and Fig. 

5.3b for a UEWDF and a LCWDF respectively. For a LTWDF, 

A1 is the input, A2 is set equal to zero and B1 is taken 

as the output while B2 is the complementary output. Fig. 

5.3c shows the characteristics of B2 and B1 when the 

filter is designed as a lowpass filter. This approach is 

very simple and requires no extra cost since B1 and B2 

can be made available simultanously. The main drawback 

of this method is the fact that B1 is much more 

sensitive to variations in the multiplier coefficients 

of the filter than B2.

5.2.2- Frequency Transformation

The simplest lowpass to highpass transformation may be 

obtained by replacing z~l by -z"1 [93.94] in the WDF 

structure. This is a special case of a more general 

lowpass to highpass transformation which is given as,
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z-1 -> - (-----
1 -

>
az '

(5.1)

where
cos { [ (u> c - uju ) / 2 ] T 1

(5.2)
cos { [ (u> c - wu)/2]T}

and w
c is the cutoff frequency of the lowpass filter

and wu is the desired highpass cutoff frequency. It can 

be seen that if a = 0 in eqn. 5.1, then the transformation

- 1 - 1simplifies to z —-- > -z . In this case, the cutoff 

frequency of the highpass filter would be given by,

% = - wJ/2 (5.3)

where is the sampling frequency in Rad/Sec. The

effect of this transformation has been investigated on a

UEWDF. Fig. 5.4a shows the frequency response of a

lowpass UEWDF with the following specifications,

Passband edge frequency, f =0.10 HZ
Stopband edge frequency, f^ = 0.20 HZ

Max ripple in the passband, a = 1.00 DB
Min loss in the stopband, a P = 50.0 DB

Sampling frequency, f = 1.00 HZ

The delays in the filter structure were replaced with 

-z_1 and the filter was analysed with the same 

coefficient values. Fig. 5.4b shows the resulting

frequency response of the filter. Now, the filter has a

highpa s s characteristic with the following

specification,

f 
fp 
s 

a 
ap 
s

= 0 . 40 HZ
= 0 . 30 HZ
= 1 . 00 DB
= 50 . 0 DB
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This approach to the design of highpass WDFs is much 

better than the previous method since all the properties 

of the WDF, such as pseudo-lossless, low sensitivity, 

etc, are preserved.

The replacement of z~1 -1 . , .M by -z can be applied to the 

other types of WDFs, i.e LTWFD and LCWDF. One 

alternative approach to the design of highpass LTWDFs 

and LCWDFs is to start with a highpass LC-ladder 

reference filter. The analogue lowpass to highpass 

tra n s forma tion can be obtained by replacing every 

capacitor with an inductor and vice versa in the filter. 

Fig. 5.5a shows a 3rd order LC-ladder filter and Fig. 

5.5b illustrate the corresponding highpass filter. The 

highpass reference filter can now be transformed into a 

WDF using one of the techniques described in the 

previous chapter. For example. unit elements (UEs) can 

be inserted into the LC-ladder structure and. by using 

Kuroda's transforms, a LCWDF can be derived which only 

requires 3-port parallel or 3-port serial adaptors for 

its realisation. Fig 5.6 and 5.( show the LCWDFs 

corresponding to the LC-ladder filter of Fig. 5.5b.
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Lk-1/WuC

__

C2
II •

A______

II •

-3

L1 L3

(b)

, ck=i/wui

Fig . 5.5_ a) 3rd order Low pass LC_ladder filter.

b) Corresponding 3rd order High_pass LC_ladder filter.

3rd order Highpass filter with UEs.

Fig. 5.6 - Highpass LCWDF using 3-port parallel adaptors.
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3rd order Highpass filter with UEs.

Fig. 5.7 - Highpass LCWDF using 3-port serial adaptors.
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5.3.0- Band-Pass WDFs

Suppose that it is required to convert a lowpass digital 

filter into a bandpass filter with a centre frequency 

f
q. The digital frequency transformation needed is given 

by the following relationships [93,94],

(5.4)

where a = cos 2TrfQT

a)

The wave realisation of eqn. 5.4 is shown in Fig. 5.8. 

Therefore, in order to transform a lowpass WDF into a 

bandpass WDF, the delays in the filter structure must be 

replaced by this new block. This block is in fact 

equivalent to the wave realisation of a parallel tuned 

circuit [2 ] .

0C
T

Fig.5.8 -Wave real isat ion of eqn. 5.4.
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This transformation is done for the UEWDFs and Fig. 5.9a 

and 5.9b show the transformation of a lowpass UEWOF into 

a bandpass UEWDF with ^Q=o.2O HZ. A simple form of this 

lowpa s s to bandpass transformation can be obtained by 

setting a equal to zero in eqn. 5.4. This form of 

transformation is particulary important since the loss 

characteristics of the resulting bandpass filter is 

arithmeatically symmetrical about the centre frequency 

of f/4, where f is the sampling frequency of the filter. 

In this case, the transformation simplifies to,

z"1 --- > — z-2 (5.5)

Fig. 5.10a shows the bandpass filter obtained by appling 

the transformation given by eqn. 5.5 to the lowpass 

filter of Fig. 5.4a.

-1 - 2 . .The effect of replacing z by -z in a digital filter 

is to reduce the sampling frequency by a factor of 2. 

In fact, if z 1 is replaced by -z 2m, then the frequency 

response of the resulting bandpass filter would contain 

m bands in the range of zero to half the sampling 

frequency. This is illustrated in Fig. 5.10b for a

- 1 -4multiband UEWDF when z is replaced by -z

The lowpass to bandpass transformation given in eqn. 5.4 

is not an efficient way of designing bandpass LTWDFs or 

LCWDFs. This is due to the fact that after the 

transformation from lowpass to bandpass the resulting 

structures would become very complex since every delay

-2 17-
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in the lowpass filter has to be replaced by the new 

building block given in Fig. 5.8. In these cases, it is 

easier to apply the frequency transformations in the 

continous-time domain and obtain a bandpass reference 

filter before deriving the WDF. Table 5.1 shows the 

effects of lowpass to bandpass transformation on the 

basic elements of a LC-ladder filter. Fig. 5.11a shows a 

3rd order lowpass LC-ladder filter and Fig. 5.11b shows 

the corresponding bandpass filter. This bandpass filter 

can now be used to derive a bandpass LCWDF or a LTWDF.
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cI L

•------AV---- • ,---- 0-------- /°\----- 1|-----.
2,

L=l/B ; C = 1/W0L

I

2
C = c/B L = 1/W0C

B is the Bandwidth of the Band-pass filter.

Table . 5.1-Effects of LP—►BP iransformation on inductors 

and capacitors.

Fig. 5.11

*
l2
A

a). 3rd order Lowpass LC_ladder filter.

»
l 2 c 2 

/n------

>

C1 L1 C3
-----------a
l 3

b) Correspond ing 6th order Bandpass filter.
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5.4.0- Band-Stop WDFs

transformation is

where a = cos 2trf

Finally, let us consider the transformation of a lowpass 

WDF into a bandstop WDF. The general form of the 

given below,

z"1(z_1 - a)

---------------- (5.6)
1 - az-1

T

and is the centre frequency of the resulting bandstop 

filter. The wave realization of this new block is 

equivalent to that of a series tuned circuit [2] and is 

shown in Fig. 5.12.

A1

B1

Fig. 5.12-Wa ve realisation of eqn. 5-6.
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Fig. 5.13b show the frequency responses of a bandstop 

UEWDF filter when the lowpass UEWDF of Fig. 5.9a is used 

for the transformation. The simple form of eqn. 5.6 may 

be obtained by setting a equal to zero. This results in 

the transformation of,

z"1 --- > z-2 (5.7)

and the loss characteristics of the resulting bandstop 

filter would be symmetrical about the centre frequency 

of (f/4). Fig. 5.14a shows the frequency response of the 

bandpass UEWDF when the transformation of eqn. 5.7 is 

applied to the lowpass UEWDF of Fig. 5.4a. Reducing the 

power of z by a factor of 2 results in an increase in 

the number of bands in the frequency response of the 

bandstop filter. Fig. 5.14b shows the frequency response 

of the bandstop filter when z~1 is replaced by z~4.

Bandstop Lattice and LC-1adder WDFs can be obtained by 

using these transformations, but the resulting filter 

structures would become very complex and it may not be 

possible to implement them easily. Therefore, it is 

preferable to apply the frequency transformations in the 

continous-time domain before deriving the WDFs.

One other approach to obtain bandstop WDFs would be to 

use the complementary output of the filter when a 

bandpass filter has been designed. The sensitivity of 

the resulting bandstop filter would not however be as 

good as that of the bandpass filter.
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5.5.0- Synthesis of WDFs

In the previous chapters, it was shown how WDFs can be 

designed from cascade of transmission lines (Unit 

Elements, UEs) and from LC-ladder analogue filters. The 

WDFs derived from cascade of UEs give lowpass responses 

but do not contain any zeros of transmissions, i.e 

Chebyshev or Butherworth responses. The response of a 

LC-ladder WDF however contains zeros of transmission 

but, when derived directly from the LC-ladder reference 

filter. result in complex hardware structures. In 

chapter four, we saw how UEs can be inserted into the 

LC-ladder filter and use Kuroda’s transforms to derive 

the WDF. The resulting WDF structures are much easier to 

implement and also it is possible to pipeline the 

filter. However, the UEs inserted only simplify the 

timing of the structure and do not affect the loss 

characteristics of the filter. This results in a filter 

which is not canonic in the number of multipliers.

A suitable transfer fuction, which uses the filtering 

properties of the UEs in the structure, is given below 

[42] ,

|S21 (Q2) |2 = 1/[1 + e2f2(X,Y.Z)] (5.8)

where

f(X Y.Z) = coshlNcosh 1 (X) + Kcosh 1(Y) + Lcosh (Z)]
(5.8)

X2 = [1+Q2 ) (Q1-Q2)1/((«1-«2) (1+Q2)1 (5.9a)

Y2 = [Q2(Q1-Q2)1/CQ2(«1-Q2)1 (5.9b)
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Z2 (5.9c)(Q1-q2)/(Q1-q2)

and = tantcp^) , $2 = tan(q>2) (5.10)

and N is the number of UEs, K is the number of zeros of 

transmission at DC and L is the number of zeros of 

transmission at the Nyquist frequency, and <p2 are the 

lower and the upper cutoff frequencies of the filter 

respectively.

This transfer function can be used to synthesise any 

frequency selective WDFs based on LC-ladder WDFs with 

inserted UEs. Lowpass and highpass filters can be 

obtained by setting K = 0 and (p1 = o“ for a lowpass filter 

and L = 0 and m>2 = 0“ for a highpass filter.

As an example, Fig. 15a shows a 12th order LC-ladder 

filter with inserted UEs [42]. As can be seen, the UEs 

now contribute towards the order of the filter since 

there are 3 capacitors, 3 inductors and 6 UEs in the 

structure which make the filter order equal to 12. This

LC-ladder filter can now be transformed into a WDF as 

shown in Fig. 15b. The 2-port adaptor at the right hand 

end of the structure is needed due to the nature of the 

bandpass filter [42]. The detailed explanation of the

procedure with which this type of WDFs can be

synthesised is given in Ref[43].
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5.6.0- Summary

The main objective of this chapter was to illustrate how 

highpass, banpass and banstop WDFs can be designed. The 

simplest way of obtaining highpass or bandstop WDFs is 

to use the complementary output of the filter when the 

filter is designed to have a lowpass or bandstop 

characteristic respectively. We also considered various 

frequency transformation techniques for the design of 

these filters and results of the transformation were 

presented for UEWDFs.

Digital lowpass to bandpass or bandstop frequency 

transformations result in very complex lattice and lc- 

ladder WDFs. In this case, it is more efficient to apply 

the frequency transformation in the continuos-t ime 

domain before deriving the WDF.

In section 5.5, we reviewed an approach to the direct 

synthesis of WDFs based on LC-ladder filters with 

inserted UEs. This technique allows the direct design of 

any frequency selective WDFs. Also, in this method the 

UEs add on to the order of the filter and the filter 

will be canonic in terms of the number of multipliers.
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CHAPTER SIX

CONCLUSIONS AND COMMENTS

6.1.0- Summary

This thesis presented methods with which finite 

wordlength WDFs can be designed and illustrated 

techniques for the translation of the traditional WDF 

adaptor structures into bit-level systolic arrays which 

are suitable for VLSI implementation.

The basic theory of WDFs was considered in chapter one. 

Also, the concept of VLSI array processing was 

introduced and a number of different parallel arrays 

were described.

The main basis of the thesis were presented in chapter 

two. Two subroutines were developed. One was to find an 

error function for a given set of specifications and 

filter coefficients and one to implement the direct 

search method of Hooke and Jeeves. Also three basic 

bit-level systolic arrays were developed. Finally a 

universal bit-level systolic array was presented which 

can be programmed to implement the other three systolic 

arrays.

The design and the systolic implementation of unit 

element and lattice WDfs were the subject of chapter 

three. Using the systolic array developed in chapter 

two, a 2-port systolic WDF adaptor was designed. The 2-
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port systolic adaptor was then constructed using 

discrete components to prove the correctness of the 

design. The number of transistors required to implement 

the adaptor using CMOS technology and the time delay of 

the adaptor were estimated. The subroutines developed in 

chapter two were used to construct complete set of 

programs for the synthesis and finite wordlength design 

of unit element and lattice WOfs. The hardware 

implementation of the systolic UEWDFs and LTWDFs were 

also considered briefly. Finally, a number of examples 

were presented to illustrate the performance of the 

design programs and also the simulation of the systolic 

WDFs .

The design and systolic implementation of LC-ladder WDFs 

were considered in chapter four. Systolic structures 

were developed to implement 3-port serial and parellel 

WDF adaptors. Also, using the universal systolic array 

of chapter two, a universal systolic WDF adaptor was 

designed which can be used to realise 2-port, 3-port 

parallel and 3-port serial adaptors. There are many 

different approaches for the design of LCWDFs. These 

approaches were briefly discribed. In this thesis, the 

design of LCWDFs was achieved by inserting unit elements 

into the reference LC-ladder filter and using the 

Kuroda's transforms. A complete program was developed 

for the synthesis and finite wordlength design of
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LCWDFs. The performance of this program was illustrated 

with the aid of a number of examples. Also, the results

from the simulation of the systolic adaptors were

presented.

Finally, in chapter five . a number of method s were

described for the design of High-Pass , Band-Pass a nd

Band-Stop WDFs. Some of the methods have been examined

and the results of the investigations were presented.

Also, in chapter five, a synthesis procedure wa s

described for the direct design of LCWDFs. This 

procedure allows the design of any frequency selective 

WDFs .

All the arrays described in this thesis are designed by 

interconnecting regular and simple one-bit processor 

cells. The interconnections are localized to the nearest 

neighbouring cells. This is becoming more important as 

we move towards VLSI implementation of digital signal 

processing hardware.

A complete set of programs has been developed for the 

design of WDFs and the simulation of systolic WDFs. The 

design programs enables one to design finite wordlength 

WDFs based on Unit-Element, Lattice and LC-ladder 

filters. Also, it is used to minimize the number of bits 

for the filter coefficients. From Table 3.1 and 4.1, it 

can be seen that a small reduction in the number of bits 

for the coefficients would exponentially reduce the 
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complexity, and consequently the number of transistors, 

of the systolic WDFs.

From the examples given, it can be seen that the 

frequency response of the filters cannot be guaranteed 

to meet the specifications for very short coefficient 

wordlength, but with the use of the optimization program 

the responses can be forced to remain within the 

specifications. Also, the results from the simulations 

of the systolic WDFs show good agreement with the ideal 

filter responses. It must be noted that the responses of 

the systolic WDFs are much closer to the ideal responses 

when we use the FWLD program coefficients as compared 

with the direct synthesis coefficients. The single board 

2-port systolic adaptor has been tested fully and proved 

that the design principle is correct.
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6.2.0- Further jj.ork

Given below are a list of suggestions for the 

developement of the ideas presented in this thesis.

1) It would be useful to use a work station, e.g 

Whitechapel MG . 1 , to merge the design programs and the 

analysis programs so that the designer can quickly check 

the frequency responses of the filters designed. Also, 

it would be possible to use the windowing facilities of 

the work station to plot the frequency response of the 

filter on the screen while changing the parameters of 

the filter. This would help to investigate the 

sensitivity of the frequency response of the filter with 

respect to different filter parameters.

2) It is known that multiplication is the most costly 

and time consuming operation in a digital filter. It is 

possible to replace multiplication by arithmatic 

shifting if the filter coefficients are expressed in 

terms of powers of 2-Q, where Q is an integer. The 

finite wordlength design technique presented here has 

illustrated that in some cases, e.g example 4.3, it is 

possible to design WDFs with very short coefficient 

wordlength. Therefore, it would be a good exercise to 

investigate whether the filter coefficients of WDFs can 

be expressed in terms of powers of 2~Q. Already work is 

in progress at Syracuse University [95] for the 

fabrication of a single chip 2-port adaptor with 

-23 4-



programmable shifting facilities. Also, at the City 

University work is in progress for the design of WDFs 

with coefficients of powers of 2~Q

3) In some cases, when the coefficient wordlength of the 

filter is very small, it is not possible to meet the 

requirement. It would be useful to investigate the 

effect of increasing the filter order rather than the 

coefficient wordlength.

4) In all the design programs presented in this thesis, 

we have been approximating the magnitude response of the 

filters. In some applications, it necessary to 

approximate the phase or both phase and magnitude 

responses. The existing programs can be easily modified 

to cover phase and phase/magnitude approximations.

5) It is known [28] that WDFs are very stable and will 

remain stable if the coefficients are kept in a fixed 

range depending on the type of reference filter used. 

Therefore they can be used for adaptive signal 

processing.

6) In chapter three and four, we stated that it is not 

possible to pipeline the systolic arrays at adaptor 

level. This is due to the fact that at the input of the 

systolic adaptor we need both the LSBs and the MS B s of 

the inputs. Therefore the delays at the outputs of the 

cells were removed. It is possible to rearrange the 

basic cells in such a way that we only need the LSBs of 
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the inputs at the input of the adaptors [96]. This 

allows us to pipeline the adaptors at the adaptor level 

when used to implement a complete filter*

*It must be noted that if the adaptors are pipelined at the cell 

level then the data rate of one adaptor would be equal to the 

time delay of only one basic cell.

7) One major drawback of systolic arrays is the global 

clock required to synchronise the movement of data in 

the array. This would cause problems when we consider 

the implementation of large number of the cells on a 

single VLSI chip. The concept of wavefront arrays has 

been introduced in chapter one to resolve this problem. 

However, it is known that wavefront arrays are more 

complex than the systolic arrays since extra hardware 

is required for the handshaking between the cells. It 

would be useful to consider the wavefront implementation 

of the WDF adaptors and compare them with the arrays 

designed in this thesis.

8) One major development in the field of systolic WDFs 

is to consider the VLSI implementation of the systolic 

adaptors. One adaptor can be fabricated on a single chip 

and multiplexed to implement a complete filter. The 

fabrication of the universal systolic adaptor would be 

useful for experimental purposes.
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6.3.0- Practical Applications of WDFs

Digital filters have been used in many different areas 

of communication. In most cases, they are implemented 

using general purpose digital signal processors. 

Therefore a single chip digital filter can be used to 

replace these digital signal processors. One good 

example of a single chip digital filter is the FAD 

(Filter And Detect) chip developed by British Telecom 

(BT) [97]. The FAD chip is now used in several BT 

systems such as System X. A single chip systolic WDF is 

a potential candidate to replace the FAD chip in BT 

systems since the reduced coefficient sensitivity of 

WDFs makes them particular'; attractive. Also, due to the , 

systolic nature of the adaptors, it is possible to 

implement a large number of adaptors on a single VLSI 

chip.

Lattice WDFs have been used extensively for the design of 

transmultiplexers [18,19,44-47]. Other areas of interest 

include channel simulation, channel equalization, audio 

applications, etc.

One other obvious area in which WDFs may be used is to 

replace RLC filters in the traditional communication 

systems. This is due to the fact that WDFs are modelled 

On these filters and all the properties and the specifications of 

the RLC filters are preserved after the transformation.
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APPENDIX 'A

ANALYSIS OF WAVE DIGITAL FILTERS

A1.0- Unit Element WDF Transfer Function

Consider the kth section of a UEWDF as shown in Fig.

A1 .1 . We can write the difference equations of the

s e c t i on as follows.

B2k = A1k + ®'k(z"1A2k - Alk) (A1 .1a)

and Blk = A2k + «k(z"1A2k - A1k) (A1 .1b)

o r (1/1-«k)B2k = A1k + (erk/1-erk)z“1A2k (A1.2a)

and (1/erk)Blk = -A1 k + (1+efk/erk ) z~^ A2 k (A1.2b)

Substituting A1 k from Al.2a into Al.2b, we obtain,

Blk = (1/1-efk)z“1A2k - (* k/1-* k)B2k

B2k = (ark / 1 - t/k ) A 2 k + (1 11 - a<k ) B 2 k

Using matrix notation, we have,

A1k = K 1 “®kz”1 B2k

B1k -«tk Z”1 A2k (A1 .3)

where K - (1 11 - efk). Eqn. A1 .3 represents the ABCD matrix 

of the kth section in a UEWDF. Now, if N + 1 sections are 

connected together to form an Nth order UEWDF (Fig. 

A1.2), then the ABCD matrix of the filter, CABCD-j-l, can 

be expressed as,

CABCDt 1= EABCD1 n...CABCDkJ...CABCDN + 13 (A1.4)
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B1

Fig. A1.1- K th section of a UEWDF.

A1 B2

A2

Fig. A1.2-Nth order UEWDF.
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Therefore the input/outputs of the f i Iter can be

exp ressed by,

(A1 .5)

A1 = CABCDj-] B2 = at bt B2

B1 A2 CT »t A2

Therefore

and

But

and

A1

B1

At B2 +

Ct B2 +

A 2 = U , therefore.

A1 A t B2

B1 Ct B2

Dividing eqn

B2

A1

B1

Bt A2

DyA2

A1.7a by A1 . 7b, we obtain,

(A1

(A1

(A1

(A1

6a)

6b)

7a)

7b)

8a)
AT

CT
(A1 8b)

1

A1

Eqns. Al.8a and

at

Al.8b represent the transfer function of

the filter at outputs B2 and B1 respectively.
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A2.0- Lattice WDF Transfer Function

Consider the first degree all-pass section of Fig.

A2.1a. The transfer function of the section can be 

obtained by substituting A2 = B2 in eqn. A1.3. By doing 

so,we obtain,

A1 = K(1 - tfz"1)A2 (A2.1a)

and B1 = K(-< + z“1)AZ (A2.1b)

Dividing eqn. AZ.1 a by A2.1b, we obtain,

B1 -ft + z"1

G^z) = ---- =--------—-- (A2.2)
A1 1 - erz~‘

Now consider the second degree alt-pass section of Fig.

A 2.1 b. The ABCD matrix of the section can be obatin as

follows (using eqn. A 1.3),

A1 = K1 1 -«1Z_1 k2 1 -a2z“^ B2

B1 z-1 -ft2 A2

o r

But A2=B2, therefore,

A1 = K, k 2 1 + eq «2 z *"  1 “ ft2 Z ~ “ ft-j z B2

B1 -1
“d"] -ft 2 z -1 -2

eq <sq z + z A2

and

A1 = K1K2(1 + tf1a2z“1

B1 = K1 K2 (-tzq - ©q 2 ~

eq z“2)B2

+ z"2)B2

(A2.4a)

(A2.4b)+
er2 z ”1 -

«f1«2z“1

By dividing eqn A2.4a by A2.4b, we obtain the transfer

function of a second degree all-pass section,
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(a)

lb)

Fig.A2.1- a) First degree and b) second degree 

all-pass sections.

ft*.

Q1 r2g 2
—• • •J L J L

AU----

—
I I —>— __r » *•

r1 g 2 r3G2

Fig.A2.2- LTWDF realisation using Fig.A.2.1

(a) and (b).
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(A2.5)G2 <z)
B1 z “ + et2z 1 C “ 1 > _er1

A1 1 + t*2Z~1  (erq ~ 1 ) “ ®/-| z “

Fig. A2.2 shows an Nth order LTWDF realised using first 

and second degree all-pass sections. The transfer

f u n t i o n of the f i Iter can now be evaluated using eqns

A2.3 and A2.5 as follows,

G (z) = (2) + S2(z)3/2 (A2.6)

where

S-j (z) = G1(z) TT Gk2<z> k = 1,3, . . .

and S2 < 2 > = 7TGk2 (z) k = 2,4, . . .
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A3.0- LC-Ladder WDF Transfer Function

The kth section of a LCWDF is shown in Fig. A3.1.

equations of the 3-port adaptor are as follows.

The

Bk - AO - Ak (A3.1 a)

AO = 51 *kAk K = 1,2,3 (A3.1b)

and 2 = eq + *£  + *3 (A3.1c)

Using eqn. A3.1a, we obtain.

B1 = AO - A1 (A3.2a)

B2 = AO - A2 (A3.2b)

B3 - AO - A3 (A3.2c)

Also from Fig. A 3.1 , we have,

A2 = z’1B2 (A3.3)

Now subtracting eqn. A3.2c form A3.2b results in,

B2 - B3 = A3 - A2 (A3.4)

Substituting eqn. A3.3 into eqn. A3.4, we obtain,

B2(1 + z’1) = A3 + B3

or B2 = (A3 + B3)/(1 + z“1) (A3.5)

Substituting eqn. A3.5 into eqn. A3.3, we obtain,

A2 = z“1(A3 + B3)/(1 + z"1) (A3.6)

Expanding eqn. A3.1b results in,

AO = er^Al + (*2^2  + etjA3 (A3.7)

eqnNow substitute eqn. A3.6 into eqn. A3.7 and then

A3.7 into eqn. A3.2a and A3.2c, we obtain,

B1 = eq A1+«2z“1 (A3 + B3)/(1+z "1 ) +* 3 A3-A1 (A3.8a)

and B3 = eq A1+er2z“1 (A3 + B3) / (1+z "1 ) +ec3A3-A3 (A3.8b)
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Subtracting eqn. A3.2c from A3.2a, we obtain,

B1 - B3 = A3 - A1 (A3.9a)

or A1 = A3 - B1 + B3 (A3.9b)

Substituting eqn. A3.9b into A3.8a, we obtain,

B1 -(eq-1 ) (A3-B1 +B3) +

ar2z'1 <A3 + B3) / (1+z“1 )+a3A3 (A3.10)

or eqBl = C (eq-1 ) + (ec2z“1 ) / (1+z“1 )+* 33 A3 +

£(eq-1 ) + (k 2z“1 ) / (1+z“1 ) JB3 (A3.11 a)

Also from eqn. A3.8b, we can write,

eq A1 = C (1 -er3 ) - (er2z"1 ) / (1 + z“1 ) 1 A3 +

C1 - (er2z“1 ) / (1 +z“1 ) 3B3 (A3.11b)

E q n s . A3.1 1 a and 11b can b e

shown below,

A1 = K A B

B1 C D

where K = 1/Ctq (1+z** 1)l

A = (1-er3) + z"1 (1-

B = 1 + z ~1 (1-g 2)

(eq +er3_1) + z -1

and ) = < eq -1 ) +■ z 1 (eq

written in matrix form as

A3

B3 (A3.12a)

(A3.12b)

3-«2> (A3.12c)

(A3.12d)

etr »• er2 + et3 -1 ) (A3.12e)

*2 -1 ) (A3.12f)

Using eqn. A3.1c, one of the coefficients, say a2z can 

be expressed in terms of the other two coefficients.

Therefore the ABCD terms of the matrix simplif y to,

A - (1-et3) + (eq -1 ) z ~ (A3.13a)
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B = 1 + (etq+aj-Dz"1 (A3.13b)

C = z + (et-| + et3“1) (A3.13c)

and D = (esj-1) + (1-tr3)z"1 (A3.13d)

As with the UEWDFs, the transfer function of a complete 

filter can now be found by using the wave chain matrix 

method.

Fig. A3 .1 - Kth section of a L£WDF.

-255-



APPENDIX 'B*

PROGRAM LISTINGS

B1.0- Systolic Adaptors Programs

In this Appendix, we present the programs which have

been developed for the simulation of the systolic WDF

adaptors. The program listings are as follows,

B1 .1- 2-po rt systolic adaptor.

B1 .2- 3-port parallel systolic adaptor.

B1 .3- 3-po rt serial systolic adaptor.

The uni versa I systolic adapto r.B1 .4-

In all the programs,NBS represents the number o f bits

for adaptor signals,NBC represents the number o f bits

for adaptor coefficients and MNB is the number of bits

needed to represent the outputs of the adaptors.
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B2.0- WDF Design Programs

This Appendix presents the programs used for the design 

of the three WDFs considered in this thesis. Each 

program includes the synthesis routines plus the 

optimization routines for the finite wordlength design 

of the filters. The programs need a number of files to 

be created before running which will be used to store 

the WDF coefficients. These files are defined using the 

’OPEN’ command in Fortran at the begining of the 

program. The program listings are as follows,

B2.1- UEFD.SO, Unit Element Filter Design.Synthesis 
Opt i mi zat i on.

B2.2- LTFD.SO.

B2.3- LCFD.SO.

It was intended to merge all these three programs 

together to form a complete software tool for the design 

of WDFs but due to lack of computer facilities this was 

not achieved.
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B3.0- Analysis Program

This program has been developed as a tool for the 

analyses of the WDFs designed using the design prorams 

in the previous sections. It covers the analysis of the 

three different WDFs. The program is menu deriven and 

very easy to use. The WDF coefficients can either be

entered a t the terminal o r they can b e read from the

files used and created by the d e s i gn programs. The

outputs are presented graphically and i t is possible to

plot the responses of the filter for 3 different cases, 

i.e the ideal filter (i.e using the synthesis 

coefficients), with quantized coefficients and with FWLD 

coefficients (i.e coefficients from the Finite 

WordLength Design program). The plots can be obtained 

for each individual response or the responses can be 

plotted on the same axis.

-290-



U- 
u. 
UJ 
o 
o

UD 
GO 
cn

o 
Z 
UJ

< 
rsi 
dc

X

DC

QC
O
X

z 
o

< *- 
x vo 
oc oc

uj  o
c*
»-> UJ 
z x 
u j >- 
o

UJ 
X

03 
X 
o 
>

o 
UJ

z 
o 
o 
z 
o

a
VO

a. a.

m

z z

dc ck

X*
• <

• DC
VO o
U. . o 
Q • DC
3 ka  a.

• U-
F- • CD VO 
Z U_ 3 —4 
u j  o vo
X 3 a >- 
UJ UJ J 
-j u j a < 
uj  o cd  z 

»- < < 
h- H- _j 
*—< >— I CD
z < o z 
ZD _J _J UJ

CM (1 >-*

a: 
UJ 
CD
X
ZD
X

UJ 
o

o 
x 
o

QC 
ZD 
CD

o

z z z z z z

DC 
UJ 
h-
Z 
UJ

o 
m

CD 
CM

CD 
UJ
KA<
CD

a a a a a a: 
a. a. a. a. a. q .

o o
< H o 
uj  o H 
a □ >-<

CD

< 
o

MO

O a. 
h - 0 o 
cd  h- z 
o vo u j

CM
CD 
n

CO 
ZD 
KA

UJ

o
DC

UJ 
z

29 1

00000000000



r
>-
LJ
X



CX • 
UJ VO 
Q. VO 
ex o
3 -J

ex 
UJ
3
O

VO 
VO 
o

Ct 
O

UJ o

ex 
z

co

u j  < a
-J —- z
u u. u j
o < >
»-* ex UJ x
CX O Q O Z

• ex 
—J —J —J O 23
—J -J _J < »— a
< < < UJ UJ z
cj O u ex ex uj

CX
UJ o
3 UJ 
O CX

z z z

ex ex ex 
ex ex ex

ex
UJ o 
ex uj  
ex ex 
o u.

cx

X 
o

o 
-<
UJ 
ex

o 
CM

o u» o

o o 
»- CM

z 
X 
ex
IM

• U.
-*  VO 
CM

• U.
CM 23

o u.
O -J o
CD - CM
< ex

- Z o~ • »-
CM U O

• . o
CM CO

CO X CM O 
< Z cn UJ 
a < uo •

u> 
X CM

X 
-J ** 
ex o 
X uj  
< ex 
VO u.

U- VO 
O h- 

z

o o
z ex

u. *~ 
VO »

- ex 
ex Z 
z *-*

23 U-

UJ Z r- > 
-JO • >- 
ex x tn ~ 
X X H 
o o u. 
o o ex ~

z z

ex ex
ex ex

H- ►- h- 
z z z

ex ex ex 
ex ex ex

z z Q — 
< •« 
UJ u. 
ex o

ex ex 
ex ex

UJ 
Z) 
z

o 
o

C3 O □
-~r in 03

-293-



o 
o





UJ 
X

UJ 
o 
UJ

o ~ 
X IM

X 
-J 
Q- O 

— X UJ
O < ch
CO VO U-
m

X • 
O in

CH 
a uj  
uj  k— 
VO -J 
-X 
CO u.

m 
>- 
< 
CH
CH
<

>-

CH
CH
<

o 
X
UJ

m

£3 
UJ 
m
<
03

in 
u.
Q
3

UJ 
UJ 
X 
UJ
CH 
UJ
U. 
UJ
CH

CH
UJ
O

U>

in 
ca 
cn

O
ZJ
<

UJ 
X

X 
o

UJ 
in 
>-

o

u u u u j u

u: 
o 
o

co

CH
UJ 
o
UJ 
k-
X

CH CH 
Q- Q_

O 
UJ 
DC 
U.

UJ 
UJ
X 
UJ
CH 
UJ
U- 
UJ
CH

X 
< 
CH 
CD 
O 
CH 
a.

Z
UJ
X

o tn

UJ
X

X C0

k- X 
»- X UJ 
3 O X

o
3
o
<
UJ
CH

UJ
CM

CH m z 
u j u j »-« 
k- in < 
-J X X 
»- o
u. a- o 

<n >- 
UJ uj  
in ch z 
>- CH 
-J k- □ 
-X O k- 
Z -J UJ 
< O- CH

»- c m m in to r—

CH
UJ
CO
X
z j
X

UJ 
UJ

DC 
ZJ 
CD

o 
to

m

o

o
m

o
CM

O

k~k~k— >— k-k-k-k-k-k-k-k-k— k~k“k-k- - k- —' 
xxxxxxxxxxxxxxzxxoxo

CHCHCHCHCHCHCHCHCHCHCHQCCHCHCHCHCHUJCHCD *1  
a.a.a.oa.a.a.a.a.a.a.ua.a.a.a.Q.aou) —

in

O

CD 
k- 
O 
CD

O
X UJ
o • •

- k- X 
Q X U> 
<X —

UJ CH U. 
O Ct M

X 
CH 
ZD 
k—
UJ 
CH

Q 
X
UJ

O O
n

in 

o
k—
O
IO

in 
r-« in 
X k- 
k- CH

CD
•• a. 

i
U. CM 
in
X o
< 3
CH k—

CM 
rsi

U. CD rM r-
in • i
X c m —
< cm  •- <
CH • I «-*
k- r- *

IM < CM 
UJ CM - — <
X < CD * ♦
»-» • CMr-
k- — x< — 
ZD < UJ * *- X
CD -J N e- 0 a
CH -J a. cm  o * ZD
CO < X •• M CD k- O
XUJO — •— n UJ X
vo qc uj oo oq cu j

UJ UJ UJ o

296







B4.0- Simulation Programs

This program was used to simulate the WDFs designed. As 

with the ANAWDF program, this is also menu d riven. The 

program includes the simulation of WDFs using the 

traditional adaptors and the systolic adaptors. It is 

also possible to see the effects of quantization on the 

simulation results by quantizing the coefficients and 

the signals to the required number of bits. The inputs 

to the filters can be chosen to be an impulse, a step, a 

sinewave or a combination of sinewaves. The simulation 

results, i.e the inputs and the outputs of the filters, 

can be stored in a file which can be plotted using a 

general purpose plot program developed by the author.
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APPENDIX 'C'

SCATTERING MATRIX

In this Appendix, we present some relationships between 

the reflectances, transmittances, scattering matrix 

parameters and the wave quantities of a 2-port network. 

Fig. C.1a shows a 2-port network terminated between 

resistances R1 and R2 and the voltage sources E1 and E2. 

Let the corresponding wave network of N be N' (Fig.

c1b). Also, let and Sj denote the scattering matrices

and N'correspondi ng respectively The entries oft o N

S,

S1 1 S12

are known to

S11

S21

s22

S12

where Z1 and

S21 s22

be given by C86],

(Z1 R1)/(Z1 +

2-CR1/R2) V2/E1

(Z2 - R2)/(Z2 +

2-(R1/R2) V1/E2

R1 )

R2)

Z2 are the input impedences at port one and

S

two respectively. Also, according to eqn 1.21, we have,

A1 V1 + R1.11 A2 = V2 + R2.I2

and B1 V1 R1 .11 B2 = V2 - R2.I2

Therefore, from Fig C.1 and Ref E283, we obtain,

A1 E1 A2 = E2
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Fig.C.1

a) General 2-port network,

A1< • A2

B1>

N'
*B2

4

►

b) Corresponding WD F.
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and B1 | = 2V1 B2 | = 2V2
| E1=O |j E2 = 0

B1 and B2 can be expressed in terms of A1z A2 and the 

entries of Sj as shown below,

B1 = S'nAl + S'12A2 (C.2a)

and B2 = S’2iA1 + S’22A2 (C.2b)

Using eqns. C.2 and C.1 and ref C283, we can write,

s ' 11 = S11

s*22  = s22

s’21 ~ S21 /K

S'l2 = K.S12

and K = -(R1/R2)

Therefore,

S • = r <1/2).s _ R(-1/2) (C .3)

where

R = | R1 o I
~ I I

I
I o

I
R2 | (C.4)

From eqn . C. 3 , if R1=R2 then,

s' = s (C.5)
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APPENDIX 'D1

LIST OF AUTHOR'S PUBLICATIONS

1) Title : "Systolic Wave Digital Filter Structures 

suitable for VLSI implementation."

Source : Proc, of IEE Saraga Colloquium on Electronic

Filters, London, pp 9/1-9/7, May 1985.

Abstract : The excellent Low sensitivity of Wave 

Digital Filters (WDF’s) to variations in multiplier 

coefficients makes them very attractive for speech and

communication applications The main drawback is the

hardware complexity of WDF’s. Thi s paper i I lust rates how

a WDF based on the cascaded uni t elem ent fi Iters can be

transformed into a regular and 1 - b i t systolic

architecture which is suitable for VLSI implementation

2) Title : "Bit-Level Systolic Adaptors for Wave Digital

m o d u I a r

Filters."

Source : Proc. IEEE ISCAS, San Jose, California, pp 

853-856, May 1986.

Abstract : The main drawback of Wave Digital Filters 

(WDF’s) is the hardware complexity. In general, the 

hardware implementation of WDFs depends on how 

efficiently two and three port adaptors are implemented. 

This hardware complexity can therefore be resolved by 

considering the VLSI implementation of WDF adaptors.

This paper illustrates how two and three port adaptors 
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can be t r a n s f o r m e d into regular and modular 1-bit 

systolic architectures which are suitable for VLSI 

implementation.

3) Title : "Finite Wordlength Design of Wave Digital 

F i Iters."

Source : Electronics Letters, Vol-22, No. 16, pp 851- 

853, July 1 986.

Abstract : The letter illustrates some examples from 

a software package for the desgin of finite wordlength 

wave digital filters (WDFs). Given a set of initial 

coefficients, the program generates a new set of 

coefficients which are quantised to the required number 

of bits. Some filter design examples have been 

considered to illustrate this for three type of WDFs, 

i.e unit element, lattice and LC-ladder WDFs.

4) Title : "Software Tools for the Design and an 

approach to the VLSI implementation of Wave Digital 

Fi Iters."

Source : Submitted for publication in the Special 

Issue of the IEEE Proc, on "Hardware and Software for 

Digital Signal Processing."

Abstract : In spite of the excellent low sensitivity 

of Wave Digital Filters (WDFs) to variations in the 

multiplier coefficients, the practical applications of 

WDFs are limited due to their hardware complexity. In 
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this paper, we resolve this problem by considering the 

bit-level systolic implementation of WDF adaptors. Also 

a complete software package is described which enables 

one to design finite wordlength WDFs based on three well 

known reference filters, i.e unit element, lattice and 

Ic-ladder filters.
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