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ABSTRACT

In the first part of the thesis we consider steady

state flows in slender tubes. These tubes are characterised

by having walls whose equations are r = where (r,@,x)

are cylindrical polar co-ordinates is a small

parameter proportional to 1/R, where is the Reynolds

number. We obtain an approximation to the steady flow by

expanding the stream function in powers of z\ = £R. This

approximation is compared with the solutions of Daniels &

Eagles(1979) for exponential slender tubes (H = exp(acx))

and good agreement is found.

H (£x) ,

and Q.

R

We next consider stability of the Daniels-Eagles 

profiles, by a qua si-parallel theory. Both spatially 

growing and temporally growing modes are considered ,and, 

contrary to expectation we have found no evidence of 

instability. In the course of this work detailed agreement 

was found with the eigenvalues of Davey & Drazin (1969), all 

of which remain stable eigenvalues as the parameter %■= eaR 

varies in the range -6 < Y < +6.

In the second main part of the thesis we consider the 

stability of the flow in certain channels, taking into 

account non-parallel effects by means of a new method. Here 

the equations of the wall are y = ±H(ex), where is 

independent of R. The flow is obtained to order as in 

Blasius(1910) and the corresponding stability analysis is 

12



performed to same order. By comparison with earlier results 

of Eagles & Weissman(1975) we show that this non-parallel

theory appears 

stability curves 

that this method 

earlier methods.

to give good results for the neutral 

for values of eR upto about 3, and we claim 

is more satisfactory mathematically than
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1. INTRODUCTION

1.1 Early Studies in Fluid Dynamics

The phenomena of transition from laminar to turbulent 

flow which is fundamental to fluid dynamics was first 

investigated by Reynolds(1883). He studied experimentally 

the stability of flow of water in tubes of various radii 

using dye. In these experiments he observed that the 

transition from laminar to turbulent type of motion depended 

on a parameter, R, now called the Reynolds number. This 

parameter denotes the ratio of viscous forces to inertia 

forces in the Navier-Stokes equations. It is also used to 

determine whether or not different flows are similar.

Reynolds(1895) carried out theoretical work on the 

stability of flow in tubes and concluded that the laminar 

pattern being a solution of the differential equations of 

fluid dynamics always represents a possible type of flow. 

It becomes unstable above a definite limit of R (the 

critical Reynolds number). These theoretical investigations 

were based on the assumption that laminar flows are affected 

by certain small disturbances. In the case of tube flow the 

disturbances may originate from the inlet while in the case 

of a boundary layer on a solid body placed in a stream, they 

may also be due to wall roughness or to irregularities in 

the external flow. The value of the critical Reynolds

14



number was found experimentally to be about 1300. Later 

experiments by Ekman(1910) and others introduced finite 

amplitude effects and obtained the critical Reynolds number 

between 2000 and 40000.

The theory tries to follow up in time or space the 

behaviour of such disturbances when they are superimposed on 

the mean flow. The aim is to determine whether the 

disturbances grow or decay with time or space. If the 

disturbances decay, the mean flow is considered stable, on 

the other hand if the disturbances grow there exists the 

possibility of transition from laminar to turbulent flow. 

The process of transition from laminar to turbulent is a 

result of an instability in the laminar flow. The object of 

the theory of stability is to predict the value of the 

critical Reynolds number for a given flow.

Further efforts to clarify and explain theoretically 

the stability of flows to small disturbances were initiated 

by Rayleigh(1880). He published a great number of papers 

between 1878 and 1917 which laid a solid foundation of 

Reynolds hypotheses. In these studies he neglected viscous 

terms of the stability equation. This of course excluded 

the possibility of obtaining a critical Reynolds number but 

it was still possible to determine whether or not the 

laminar flow was stable.

15



He studied the inviscid stability of Poiseuille flow

between parallel walls and found that the flow was stable to

small disturbances, thus creating a paradox. Later he

conjectured that the flow might be stable to small

disturbances but unstable to finite ones or tha t the

inviscid theory might be completely inapplicable to this

problem. However, further work by Lin(1945) proved that

plane Poiseuille flow is unstable at sufficiently high

Reynolds numbers and showed that Rayleigh 's idea explains

the instability of plane Poiseuille fow.

Rayleigh also derived two important general theorems

concerning the stability of laminar velocity profiles by

inviscid theory. The theorems were later found to be valid

for the case when the the effect of viscosity is taken into

account. The first theorem states that the velocity

profiles which possess a point of inflexion are unstable

He proved that the existence of a point of inflexion

constitutes necessary condition for the occurrence of

instability. It was Tollmien(1936) who showed that this

constitutes also a sufficient condition for the

amplification of disturbances. These conclusions were

supported by exper imental investigations due to

a

Rosenbrook(1937) who reported complete agreement between 

theoretical prediction and measurement. The second theorem 

asserts that the velocity of propagation of neutral 

disturbances in a boundary layer is smaller than the maximum 

16



velocity of the mean flow. Rayleigh proved the theorem 

under some restricted assumptions whereas Tollmien proved it 

for more general conditions.

Tollmien’s work was made possible by Prandtl(1904 ) who

bridged the gap between theory and experiment. This was a

significant step forward in fluid mechanics. The

di screpancy between the results of classical hydrodynamics

and experimental results were due in many cases to the fact

that viscous terms were neglected The reason for

neglecting viscous terms wa s partly due to mathematical

difficulties of the time and to the fact that in water and

air viscous forces are very small. It was therefore

diff icult to understand how this could influence the motion

of a fluid to such an extent. Prandtl proved theoretically

and with several simple experiments that the flow about a 

solid body can be divided into two regions: a very thin 

layer(boundary layer) in the neighbourhood of a body where 

viscosity is important and the remaining region outside the 

layer where viscosity may be neglected. He further showed 

that the flow in the boundary layer can also be either 

laminar or turbulent and that the problem of separation and 

hence the problem of calculating the drag is governed by the

critical Reynolds number. 

Historically, the 

boundary-layer theory

first

was

application of Prandtl's

given by Blasius(1908) who

17



considered a boundary layer along a flat plate and obtained 

a series solution. Biasius(1910) also studied flows in

channels and tubes with slowly varying walls. Working from

first principles with the aid of the Navier-Stokes equations

he obtained series solutions for flow in channels and tubes.

In our notation the channel walls would be given by

y = +f(&x), where x and y are the usual Cartesian

co-ordinates , a small parameter. We shall consider the

case R fixed as 0. Blasius' s solution is given in

powers of £ He calculated the first two terms and used

the solution to predict the separation in an exponential

G is

channel. Patterson(1934,1935) set up experiments to test

Blasius's theory and found agreement with Blasius's work for

a limited range of low Reynolds numbers. Abramowi tz(1949)

extended a special case of

the third approximation. Some years later Lucas(1972) used

a computer to calculate the 13th approximation for the

general shape and additional terms for special shapes.

through the origin.

Further advances were made by Jeffery(1915) and

Hamel(1917) in the solution of flow in convergent and

divergent channels. Jeffery showed that the streamlines of

the motion were straight lines passing

Hamel generalised the solution and found an exact solution

for flow in a divergent channel.
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The stability of the Jeffery-Hamel velocity profiles 

was first investigated numerically by Eagles(1966) using the 

quasi-parallel approach. He obtained neutral curves and 

found fairly low critical Reynolds numbers. He also found 

negative wave velocities on the lower branch of the neutral 

curve for those profiles with regions of reversed flow. 

Eagles & Weissman(1975) tackled the same problem using the 

WKB method and obtained lower critical Reynolds numbers.

The quasi-parallel growth rate turns out to be the first

term in an asymptotic expansion. The method also

demonstrated the dependence of the growth rate, wave number

and other parameters on the cross-stream function. In an

effort to make theoretical predictions much more easily

amenable to experimental investigation and comparison,

Eagles & Smith(1980) studied numerically the stability of 

flow in channels whose walls are given by 

H = 1 + (l/2)tanhex using the WKB method. Their forward

first and second approximation to the solution of flow in an

ma rching scheme showed separation at £x q ^0.35 when

R 15.5 and extending over 0.2 < ex < 1.15 when eR ^18.

For flow in tubes the walls are defined by r = f(ex),

where r is the radial co-ordinate. Biasius(1910) found the

exponential tube. His solut

Manton(1971) who calculated

Kaimal(1979) ha s generalised

suspension of solid pa rt icles.

ion was extended to OCe7-) by

the third approximation.

Manton’s results to a dilute

Eagles & Muwezwa(1986) found

19



the fourth approximation and used the solution to compute 

velocity profiles up to GR = 10*

Sexl(1927) was the first to take account of the 

viscosity in considering the stability of axisymmetric 

disturbances of flow in a pipe by the method of normal 

modes. However, for reasons of mathematical simplicity he 

used artificial boundary conditions which makes his 

conclusions open to question, see Gill(1965). Sexi was 

unable to find any instability for Poiseuille flow nor was 

he able to prove the existence of stability for all Reynolds 

numbers.

However, Pretsch(1941) succeeded in proving that the 

analysis of the instability of these parabolic velocity 

profiles can be reduced to that of plane Couette flow. 

Since plane Couette flow is stable at all Reynolds numbers, 

the same applies to parabolic velocity profiles in a tube. 

The same conclusion was reached by Pekeris(1948) and finally 

confirmed by Sexi & Spielberg(1958). Pekeris also points 

out some of the shortcomings of Sexi’s work. Sexi 

determined stability in the cases R = 0 and R large ignoring 

earlier experimental evidence that the flow becomes unstable 

at intermediate values of R. Pekeris derived an eigenvalue 

relation for one class of modes.
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Using a different method, Corcos & Sellars(1959) 

confirmed earlier findings by Pekeris and obtained a similar 

eigenvalue relation and an additional relation for the class

of modes. Further theoretical and computational work by

Davey & Drazin(1969) has confirmed the results obtained by

these eigenvalue relations. They also found eigenvalues in

a similar pattern to that displayed by Corcos & Sellars. In

addition they also found a few other modes. All the modes

discovered were stable.
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1.2 Introduction to Present Thesis

1.21 Flow in Tubes

We shall be concerned with the stability to small 

disturbances of the Daniels & Eagles velocity profiles, 

which will be referred to as the the DE profiles. Daniels & 

Eagles(1979) studied viscous flows in exponential tubes of

varying radius. The flows were governed to a first

approximation by a nonlinear ordinary differential equation

G’ ' ’ + 1G’’
Q

- 1 G' + 4/GG' = 0

where

(1.1)

> = eR ,

H = exp(aZ) ,

Z — Qz x ,

H is the radius of the tube, x is the downstream coordinate, 

a is a constant, £ is a small parameter and R is the 

Reynolds number. The derivatives are with respect to *?

Under the basic assumption that = g R is of 0(1) as —* 0

and R —the velocity function G is shown (to first

approximation) to satisfy the Navier-Stokes equations.

22



For large values of Z the theory became invalid due to 

the exponential variation of the radius which was unbounded. 

This has since been modified and extended by Eagles(1982) so 

that the solutions may be applied to a wide variety of 

’locally exponential’ tubes. The modification made it 

applicable to tubes of infinite length and bounded radius. 

It is believed that the predicted flows can be attained 

experimentally, especially those represented by branch 1 of 

their solution which became Poiseuile flow when X = 0.

Eagles predicted that the DE profiles were good

approximations for more general slender tubes. To carry out

the investigation, the veloci ty profile was expanded in

terms of A . The results of the expansion were found to be

accurate for l/U 3.

in terms of A to

In Chapter 2

O(^). The results are compared with

the basic flow is expanded

the

exact solution. In addition to the exponential tubes for

which the DE profiles are exact, two other tubes are

examined whose walls are given by

Ht = 1 + ItanhZ and Ho
7 2

1tanh^Z.
7

(1.2)

Earlier studies by Eagles(1966), Eagles &

Weissman(1975) and Eagles & Smith(1980) showed that for

1 +

channel flow instabilities occurred at R = 215 for p< = 0.01 

and R = 40 for 0( = 0.1, where 0( is the semi-divergence 

angle of the channel. A similar pattern was expected for 

23



the DE profiles. The spatial stability of the DE profiles 

is presented in Chapters 3. In Chapter 4, the eigenvalues 

obtained by Davey & Drazin are confirmed and used as a basis 

for a search for eigenvalues with the DE profiles as the 

basic flow. The behaviour of the profiles is examined as Y 

varies, both by means of spatially growing modes and 

temporally growing modes, in both cases using quasi-parallel 

stability theory.

24



1.22 Flow in Channels

Eagles & Weissman(1975) have studied the linear

stability of a slowly varying flow in a divergent

straight-walled channel to a great detail using a

modification of the ’WKB’ method. In this study they

defined various growth rates based on the stream function, 

the kinetic energy density and the relative kinetic energy 

density. Similar growth rates are derived here by a 

different method and the results are compared with those 

obtained by Eagles & Weissman. The results for the 0(63) 

theory have an order of magnitude agreement with their 

results, where is a small parameter, approximately equal

to the semi-divergence angle of the channel.

The approach by Eagles & Weissman assumes a relation of

the form

= CR = 0(1) as G —> 0

for the basic flow, obtaining a class of Jeffery-Hamel

profiles, but treat G and R as independent parameters in the 

disturbance equation. The present approach is a 

reformulation of the same problem using a different method. 

No assumption is made about the relationship between 6 and 

R. Unlike Eagles & Weissman we expand the basic flow in 

terms of G with R = 0(1). The rationale behind the 

25



present approach is that it is mathematically satisfactory 

and straight forward. In Eagles & Weissman’s approach the 

term in 1/R in the disturbance equation was taken to be 

0(1) even though the base flow was derived on the basis 

1/R = 0(G ), thus leading to a mathematical doubtful scheme, 

although the results appear to be accurate since they have 

been checked by Allmen(1980) using a numerical approach. 

The present method also removes the objections raised by 

Smith(1979 ) .

In his study of the stability of flow in channels of 

small divergence angle Eagles(1966) used quasi-parallel 

theory. The limitations of this approach are well presented 

in Eagles & Weissman. The quasi-parallel theory is 

deficient in determining the growth rate as a function of 

the downstream co-ordinate and can only indicate whether a 

disturbance is growing or decaying at a particular point. 

To overcome this handicap, the slowly varying approach (WKB) 

was used to study flows in a diverging channel. Eagles & 

Smith(1980) applied the method to the stability of flows in 

curved wall channels. A similar approach was taken by 

Georgiou & Eagles(1985) in investigating the stability of 

flows in channels with small wall curvature.

The main objection to the work described above raised 

by Smith is about the way 1/R is treated in the limit as

0. He suggests an approach that would either solve the 
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complete set of partial differential equations

in Allmen(1980) or examine the behaviour of the

directly as

disturbance

when the Reynolds number is asymptotically large as in

Smith(1979). The method presented here is an alternative to

these approaches.

The stream function equation for channel flow is

discussed in Chapter 5. Here the basic flow is expanded in

terms of £ . The resulting equations are solved in order 

starting with the 0(1) equation which represents Poiseuille 

flow. In Chapter 6 the disturbance equation is derived. 

The 0(1) equation is the Orr-Sommerfeld equation appropriate

to strictly parallel Poiseuille flow which is solved 

numerically to obtain the eigenvalue, the eigenfunction and 

the adjoint eigenfunction. Solutions of higher order 

equations and growth rates are described in Chapter 6 and 7 

respectively.
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2. BASIC TUBE FLOW

2.1 Stream Function Equation

The stream function equation is derived from the

Navier-Stokes equations with zero external forces

au + u.vu = - ivp  + ^V^u, 
9t ’ ?

(2.1)

V-u = o (2.2)

where U, and P are the velocity, density and pressure of 

the fluid respectively, and A) is the kinematic viscosity. 

Taking the curl of (2.1) leads to

a W - V a (U a W) = 5) V7 W 
■at ’

(2.3)

where W - S7 AU, is the vorticity vector.

For axisymmetric flows with cylindrical co-ordinates

(r’, 0 ,x' )

Y(r',x',t') may be

and U = (v',0,u’), a stream function

u' 1 52?',
r ’ ’

This satisfies the

variables are

defined by

equation of continuity (2.2). The

made non-dimensional as follows :

V = 1 
r ’ "a>r ’

=

M
x = x.’ ,

L
r = X_' , 

L
t = LLt’

L3

28



where L is the radius of the tube at x’ = 0 and M is half

the volumetric flow rate.

In terms of the non-dimensional co-ordinates equa tion

(2.3) becomes

i 1 d 27P + i ( ?< L 
r St r2-

^2_)d 2V
9-r3x

+ 1 (2 'Txx
r3

‘1d M/ - 2jXc+%r) <• 
r r2

_ r'T- 3 
r^ rV-

(2.4)1
R

where

R M.

is the Reynolds number and

The boundary conditions are

T = 0(r2 ) as r—* 0,

at the tube wall,

''T - 1. at the
2TT

tube wall.

The second condition is the no-slip condition while the last

29



condition follows from non-dimensionalising t with respect

to the volumetric flow rate.

The total stream function P7 is considered to be made 

of two parts, the steady-state and the time-dependent part,

i. e.

N7 (r,x,t) = F(r,x) + (r ,x,t).

The solution of (2.4) will be obtained from the solutions of
A,

the equations for F and . The steady-state equation

which is obtained when ~d = ‘0, will be considered first.
•at

Its solution will lead us to consider the DE profiles. The 

stability of these profiles will be investigated when the 

time-dependent solution is sought.

The steady-state equation is obtained by setting 

.|_= 0 and letting

'4'(r,x,t) = ^(r,x) = F(r,x)

Daniels & Eagles derived the steady-state stream function 

equation for flow in tubes of slowly varying radius by 

definig the boundary as r = H(Z), where Z = ex and £ is 

a small parameter. It is convenient to make
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the tube wall a co-ordinate line by letting

Q = r__
H(Z)

so that 7 = 1 on the wall.

follows :

The derivatives transform

e ( - •7 H’ 2. ),az H ^7

= liL • 
ar H 3*7,

This transformation introduces terms of 0(g ) which are 

dominant on the left hand side of the equation (2.4), while 

on the right-hand side the dominant terms are of 0(1) times 

1/R. In order to retain the nonlinear terms in the 

equations at the first approximation, Daniels & Eagles 

considered flows in which

£R = A = 0(1) ,

SO that the dominant terms on each side are of 0(£). Flows 

in which <£R - > is of 0(1) as t0 satisfy boundary 

layer equations, (see Smith(1976)).

The steady-state stream function V(^,Z) was expanded 

as follows,
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since the boundary conditions do not contain G ,

Substituting Y mto the steady-state equation and defining 

o = F(7,Z), the 0(1) equation for F becomes

cZ(F) = "A 4H'(1
H T

+ FZ ( ^F777 + ■ Vo
?3 <

"here 2l = eR and

» - it + 3
7 37^ 7*̂7 ’

The boundary conditions are

- 3 7>
73 37

F - 0(7’) as 7-0,

F = 1/27T at 7 - 1,

E, - 0 at 7. = 1.

(2.6)

The problem for 

will constitute 

problem later in

F is called the slender tube problem 

°ur basic flow. We shall return to 

section 2.3.

and

this

for exponential tubes with H=exp(aZ), where a=constant 

a solution independent of Z is allowable and wg 

nlmear ordinary differential equation
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G’ ' + 1G' '
7

1 G' + 4 YGG’ = 0 
7^

(2.7)

where / = z^a and G = IE-
7 L

G = 0( 7)

. The boundary conditions on G are

as 7 o,

[ 7Gd7

2T

G = 0 at 7= 1.

Equation (2.7) will be referred to as the DE equation and 

the associated solutions as the DE profiles, flows or 

velocities. The DE flows are not just small perturbations 

of Poiseuille flow, but the first constitute a family of 

flows containing not only Poiseuille flow but also flows 

with inflexion points and with regions of reversed flow. 

The case Y = 0 corresponds to Poiseuille flow, as / 

increases or decreases the flows change from Poiseuille flow 

to other flows. Daniels & Eagles found multiple solutions 

for both negative and positive values of The DE equation 

was solved numerically and several branches of the solution 

were given. We look at branch 1 of their solution and 

obtain an approximation by expanding F in terms of . The 

range of / restricted to IY| < 6 on branch 1.

2.2 Expansion Method

The equation (2.6) precludes exact analytical

solutions because it is nonlinear and has variable
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coefficients. However, a good approximation to the solution 

may be found by seeking a parameter perturbation expansion 

of the form

F = F(0) + 2)F(1) + ^F(2) + ^F(3) +

Substituting 

sequence of

this series into equation (2.6)

differential equations and the

leads to a

first four of

these are given below.

(2.8)

2>' : - IF(0)f (0) ^7 77

F ( 0 ) (i p ( 0 )
7 4F7?z 1 F„<0) )

Y 1Z-

- F^(IF^) - 3
2 7 77? 7?

3 F(0)
73 1

), (2.9)

+

+

X(F(2)) = 4H'
H

+

ip (1) )

(1Fnnj) 
q 7Q-Z

1
72

F7zj)) »

(-IF)■p77

p (0)
7

3 p(0) _+ (2.10)

<£(F(3)) = 4H’
H

(2 F7<2) - 1F172))7

+ - I",!1’’ - '
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The equations together with the appropriate boundary 

conditions were solved successively once the solution of 

(2.8) was obtained. Determining equations for F^ and F^ 

was relatively simple, but it was considerably more 

difficult to get F^) and even more laborious to derive 

f (3) .

2.21 Series Solution

The solution for equation (2.8) is considered first.

p (0 ) _
W

2F(°’ + 3 F<0) - 3 F(0) = 0, 
q ‘( I L 73 (2.12)

where F^^ - F^^(^,Z). The coefficients of this equation do 

not depend on Z and hence the equation allows solutions 

which are independent of Z. The boundary conditions on F^)

are

F(0) = 0( 7Z) as 1 > 0,

7=1,

at 1=1. (2.13)
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Equation (2.12) has a singularity at 7, = 0 and may be solved

by the method of Frobenius or the Euler transformation 

7 = exp( co ) which would reduce the equation to one with 

constant coefficients. A solution that satisfies the 

boundary conditions (2.13) was found to be

= 1_(2 72
27/

(2.14)

The solution for equation (2.9) is obtained by 

substituting this value of ‘F^^ into (2.9) and solving the 

resulting differential equation. We have after

simplification

ZfF'1’) = 4H'[1 (F<°>)2 - “I

H I1 7 7 J
= 4H'F„<0) (1 F(0) - 1F(O) ) 

H 7 V 77T.

The derivatives of F<°> with respect to Z are zero since F(0) 

is not a function of Z. The boundary conditions on F^1^ are

F(1) 0 as 7-^0,

F(1) =0 at 7=1,

=0 at 7=1.
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A solution that satisfies the boundary conditions was found

to be

F(l) = L_
9~irz

H
H

ipjd ) (2.15)

where f/ = f 2V + &1?6 - L?’ .
1 4 4 4

the equation for becomes

Having found F(0) and F (1) we can proceed to find

F(2) and F<3>. However, the (2 ) solutions Fv ' and f (3)

involve derivatives of H’/H and the algebra gets quite long

and tedious. When F (0) and F (1) are substituted into (2.10)

c^(F(2)) = 2 H_’2 (ft72 - f2’2^
3677z H2

+ m 6 ■

where ft = 352 - 72Q,

f2 = 1152 - 216Q,

f3 = 1056 - 192Q,

f4 = 256 - 48Q, 

Q = " d_fH \ .
dz \ H 7

The boundary
<2> are

conditions on F

F(2) = 0 at 7 = o,

f (2) = fJ2) = o at 7=1.
7. L
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The corresponding solution was found to be

F(2) = 331 S2E(2) - 13 S’F?(2) , (2.16)
10800H3 1800713

where S = H* ,
H

S’ = dS,
dZ

F.(2) = ? + 1__ (- 9807*  + 11007 - 600 7
331

+ us?10 - 16ih,

F,(2) = + 1_(- 1457*  + 1507^ - 75 7S

52

+ 20?'° - 2 ?'? ) .

The equation for F^2^ is obtained in a similar manner. 

Substitute values of F^^ , F and F^2^ into (2.11) to 

obtain

C^(F(3)) = 16___ H.'2 - f67*  * f776

86400rr¥ H3

- f8?s ♦ f97,o-f10Q'? ).

where f5 = 46256 + 1740E - 29768Q,

f6 = 230720 + 7140E - 129080Q,

f7 =4090600 + 10800E - 206000Q,
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f8 = 331200 + 7800E - 154800Q,

f9 = 121680 + 2760E - 55200Q,

f10 = 15616 + 360E - 7088Q,

E=2Q(1 + S2Q).

A solution satisfying the boundary conditions was found to 

be

+ 2.131217'° - 0.689317'* + 0.120597'*

F (3) = 2759 S3F.(3) + 281833 SS’F2(3)
29767571*  38102400H*

+ 1459 TF-,(3)
3175200"^

(2.17)

where T = d
dZ Ih /

f (3) _ 71 - 3.366167*  + 4.813537* - 4.001567S

- 0.008297 * ,

F2<3> = 7*  - 3.079597*  + 3.881647 - 2.805267

+ 1.343087° - 0.403717 * + 0.068557*  

- 0.00472 7*  ,

f /3) = 7*  - 3.011827*  + 3.65233 7^ - 2.497867®

+ 1.133487'° - 0.327457'*  + 0.055187'*

- 0.003867'*  .

Rational coefficients could not be conveniently retained in 

this case because the numbers involved tended to be very 
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large. For the special case H'/H = constant the 

coefficients of F2^ 2 \ F23^ and F^^) are zero. The 

remaining terms constitute an expansion in powers of 7\H’/H 

of the branch 1 solution of the DE equation with z\H’/H. 

Extensive checks were made on the accuracy of the analysis. 

One method of checking was to fix 7. at say 0.5 and 

calculate numerically both sides of the equation. This 

method may appear simple, but its efficiency can only be

( 2 ) ( 3 ) appreciated in verifying the solutions Fv and F

Having calculated F^^ , 

write the approximation to F 

solution

F = F^O) + zlF^1^ 

constitutes the basic flow in 

radius. In this case,

general and therefore it 

results with specific

E = exp(aZ) and other 

in the next section.

fd) p(2) anCj P ( 3 ) may

in terms of their values. The

+ ^F(2) +P?F(3) + ...

a tube with slowly varying 

shape function r = H(Z) is 

be possible to compare 

The exponential tube 

wall shapes are considered

the 

should 

cases.

interesting

2.3 Slender Tube Flow

2.31 Exponential Tube Approximation

When the radius of the tube varies exponentially we 

have H = exp(aZ) which may represent a converging or
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diverging tube depending on whether a is negative or 

positive. We shall confine ourselves to the case a > 0. 

Since H'/H = a, it follows that

Q = -
dZ\H’/

0.

The solutions (2.14) - (2.17) reduce to

F(0) = 1_ (2 <?2 - ?*  ) ,
2n

F(1) = a_ FJ(1} (7) ,
97|*

F(2) = 331a2 F.(2) (*7)  ,
108007T3

F ( 3 } = 2759a3 F.(3 } ( n ).
297675774

Writing F in terms of the velocity function G 

obtain

we

G(0)

G(l) a d.
97i27 di

5

g (2) 331a2 ± (f ,<2)
1O8OOJT5'! d?\ 1

= 2759a3 d [f ,(3)
29767571*7  di I 1

(2.18)
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and G = g '°> + ^G(1) + /g <2> + }3G<3> + ... •

In Table 2.1, the columns marked EM refer to our

results and the Daniels & Eagles results are entered in the

columns marked DE. The expansion method is shown to be

Quite accurate for in the range -3 < y < 3. These figures

indicate that we can expect accurate results from

calculations using the series JEor G provided 3. An

Aspection of the terms in the series shows that the 

coefficients of decrease rather rapidly with increasing 

n» and are numerically small. Thus a series might have a 

large range of usefulness. Since the highest derivative 

lies with the unknown function at each stage, the series has 

the general nature of a convergent series rather than merely 

asymptotic. For a particular value of if the moduli of 

the terms are decreasing steadily with n and if the last 

term is small, we may expect to have a good approximation. 

This has proved very useful in the flow in slender tubes and 

analysing the stability of the DE profiles.

2.32 DE Profiles as Approximations

The special case for which H = exp(aZ), became invalid 

at large values of Z due to the exponential variation of the 

radius, which is unbounded. The theory has since been 

m°dified and extended by Eagles(1982) so that the solutions

niay be applied to a wide variety of ’locally exponential'

tubes.

tube

The DE profiles are exact solutions for the slender

equations



G (0) G’ (1) G‘ ’ (0) /2

DE EM DE EM DE EM

-5.0 0.558 0.550 -1.550 -1.560 -0.319 -0.262

-3.9 0.583 0.532 -1.450 -1.450 -0.412 -0.-403

-1.0 0.616 0.616 -1.400 -1.340 -0.548 -0.546

1.4 0.673 0.673 -1.170 -1.170 -0.806 -0.905

3.0 0.730 0.727 -1.039 -1.040 -1.100 -1.030

5.0 0.851 0.822 -0.790 -0.826 -1.810 -1.600

6.0 0.871 0.884 -0.594 -0.706 -1.610 -1.940

Taole 2.1 . DE profiles and results EM F^om the expansion 
method.

43



The velocity function G(^)when ^H'/H = constant.

satisfies equation (2.7). In more general tubes with 

H * /H = fz) they have been shown to be the first term in 

an asymptotic series in powers of , the value of Y being 

taken as H'/H at each value of Z. Higher order terms are 

shown to be numerically small, leading Eagles to conjecture 

that the profiles are a good approximation in more general 

slender tubes.

We consider two tubes whose radii are

1 +ltanhZ
7

and H2 = 1 + ltanh^Z
7

and assess the accuracy of the approximation. The first 

tube, which we shall call Tube 1, is divergent and the 

second, Tube 2 is convergent for Z < 0 and divergent for 

2 > 0. In Fig. 2.1 we show the second derivative of the 

velocity profile as a function of Z at *7. =0 when = 6 

for Tube 1 and Tube 2. Also shown is Poiseuille flow. The 

Profiles differ considerably from each other and from 

Poiseuille flow.

In Table 2.2 for Tube 2 with /\ = 5, and selected values

7 and Z we show the separate contributions of the powers 

. The impression is of rapid convergence and we would 

e*pect  higher order terms to be negligible. This is overall 

f°r this case. Here the values of H’/H are smaller



^i(9- 2.1. Second de^ivat^ve oF velocity proFile as a 

Function oF Z at *1=0  when ?> = 6.
T1 : Tube 1; T2 : Tube 2; — Poiseuille Flow.

^5



z H’ /H .1 G(® ZGCO 2?Gci) ^Gc35

-0.6 -1.67 0.0 0.637 -0.0376 0.0058 -0.0004

0.3 0.579 -0.0237 0.0032 -0.0002

0.7 0.325 0.0091 -0.0013 0.0001

-0.2 -0.93 0.0 0.637 -0.0209 -0.0076 0.0036

0.3 0.579 -0.0132 -0.0043 0.0019

0.7 0.325 0.0051 0.00 i 7 -0.0008

0.2 0.93 0.0 0.637 0.0209 -0.0076 -0.0036

0.3 0.579 0.0132 -0.0043 -0.0019

0.7 0.325 -0.0051 0.0017 0.0008

0.G 1.67 0.0 0.637 0.0376 0.0058 0.0004

0.3 0.579 0.0237 0.0032 0.0002

0.7 0.325 -0.0091 -0.0013 -0.0001

Toole 2.2. The contributions oF separate powers oP 2l 
to the oxiQi velocity profile For the tube 
With H = 1 + < 1/2 )tanh2 Z when 2| = 5 .



than in Tube 1 and so the flow is closer to Poiseuille flow. 

Nevertheless, it is significantly different. There is a 

noticeable 'flattening' of the profiles in the convergent 

part of the tube and a 'sharpening' in the divergent part. 

We could expect reasonably accurate results for higher 

values of . In Fig. 2.2 we show examples of the velocity 

profiles calculated using the series for tube 2 with = 10. 

The profiles represent the velocity with respect to 7 at 

various values of Z in the range - 2 Z < +2.

From the general expansion for GC^jZ) we have

G = 1 D_F
7 27

= g (0)(7) + ^g (1)(7,z ) + ^g (2)(7,z )

+ a g (3) (7,z ) + ... .

« comparison with equation (2.18) shows that the difference 

between an exact solution and the DE profile at each stage 

°f Z is

E = 13 _ S'Gp’fl) + 281833 Y „ SS'gP)<7)
1800 6 381024007C^

+ 1459.X, z TG<3)(7) + ... , (2.19)
31752OO7T

where G^n) (7) = 1£
7^*7

The function E represents the series for the error which we
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0

1 -00

.80
* M

Fig. 2.2. Velocity proFxle For Tube 2 at various 
values oF Z when Z = 10. - Poiseuille 
Flow; — Z = -2; ++ Z = -0.6; * Z = -0.9.
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can write as

E = ^E(2)(^,Z) + 7)E(3)(^z ) + ...

The separate terms in this series have been calculated

numerically for Tube 1. The results are shown in Table 2.3 

for the case when = 3. It is apparent that for these 

tubes with = 3 the DE profiles are an extremely good

approximation. Even with = 5 the maximum difference 

between the velocity (at *2  = 0) of the DE profile and the 

exact solution can be estimated to be less than about 1.5Z 

and generally much less. The sligtly anomalous case in 

Table 2.3 at Z = -0.4 where the contribution is as high as 

the contribution arises from the fact that E^^(*2 SZ) 

contains S’ as a factor and this happens to be 

numerically small for negative Z of moderate size. It 

should not be taken as evidence of the non-convergence of 

the series. The case Z = 0.4 should be taken as a better 

indication of the convergent nature of the series.

Thus for quite a wide range of parameters it is 

Plausible that the DE profiles give good approximations to 

flows in slender tubes. We are therefore lead to consider 

the stability of the DE profiles as probably giving a good 

guide to the stability of flow in more general tubes.
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z 2\H ’ /H 7 DE 4e c 5)
-1.0 1.017 0.0 0.66185 -0.00163 -0.00047

0.3 0.22184 0.00040 0.00010

-0.4 1.584 0.0 0.67817 -0.00051 -0.00047

0.9 0.21726 0.00012 0.00010

0/ 1.078 0.0 0.66348 0.00169 0.00051

0.8 0.22137 -0.00040 -0.00011

1.0 0.456 0.0 0.64732 0.00107 0.00023

0.9 0.22602 -0.00026 -0.00005

Taole 2.3. DiPPerences between the DE approximation 
and exact solution. Contributions oF 
separate te^ms 2? E^ and Ef 5 For Tube 1 

With H = 1 + (1/2 )tanhZ when A - 3.
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3. SPATIAL STABILITY OF THE DE PROFILES

It is known that Poiseuille flow is stable to small 

axisymmetric disturbances for all Reynolds numbers, the 

observed instabilities being attributed to finite amplitude 

affects. Many slender channel flows have been shown to be 

unstable for sufficiently high values of the parameter 

z)H'/H. A similar behaviour would be expected for slender 

tube flows. Undertaken here is a study of the stability of 

the DE profiles.

3.1 Disturbance Equation

To study a small disturbance to the basic steady 

flow F we superimpose the disturbance on the basic flow so 

that the total stream function is given by

= F(r,x) + ^(rjXjt).

Substitute into equation (2.4). Since the basic assumption

rs that for small disturbances the equation may be

linearised, quadratic or higher order terms in the

disturbance and their derivatives may be neglected. The

resulting equation after substitution and simplification 

reduces to

d24i a_ + 1 f L M
r ^t r2 \ "^x
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The boundary conditions on are 

r 0, r^p = = 0 on the wall.

A

that is regular as

As before consider a general tube of 

(Z =Gx), and let 1 = r/H(Z). The 

transforms to

radius r = H (Z ),

stream function

'V = F(^,Z) + T(»^,z,t) .

The disturbance equation (3.1) becomes

H2 73 + H4 73 + 7 ^'^772. + H2 7? F^

+ 37Fn - 3F^)^ -

3^^ - •y2^

H2 75 ^t +

+

+ 6
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* «4 73

-2H2f^zz- 2 -3^1

where

a * - 7 K’ i
3Z H S'?

(3.2)

with boundary conditions

W.Z) - ^(1,Z) = 0

and Tp(O,Z) = ^(0,Z) = 0

Is the regularity condition at the centre. Note that the 

coefficients of the equation will now vary slowly with Z, in 

view of the slow variable Z = fcx. The coefficients of the 

disturbance equation are independent of time , it contains 

time only through derivatives with respect to t. Hence we 

look for constant frequency solutions of the form

"ip = (^,Z)ei(S(x) " £ t) + c.C. (3.3)

where
dS = K(Z), 
dx

C.C. is the complex conjugate and

I .(o') I CQ 2 LC^ 2 iG>
cp = cp + 6 <P + 6 <p + 6 <P + ...

Substituting this solution into (3.2) we obtain

R 1( i. - q2 )2 - iq](G - w/q)( £ - q2 )
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where
H

co = /3 H3 , 

q = KH,

are the local Reynolds number, frequency and wave number 

respectively;

Z = -13.
37*

^i and are operator functions of 7 » H and *34 • These 

have been derived, but the details are not needed here. The 

boundary conditions on are

= 0 at 7 = 0,

4 = = 0 at 7 - 1.

Equation (3.4) represents a sequence of differential

equations of which the 0(1) equation is the familiar 

Orr-Somerfeld equation. We shall be concerned mainly with 

the solutions of the
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Orr Sommerfeld equation written here as

iqR U)/q) ( / - q2 )

(3.5)

with boundary conditions

T = '

L(d)
-

0 at

0 at

? = 0 ,

(3.6)r = 1 .

In other words we shall be using the usual

quasi-parallel a ssumpt ion for studying the stability, and it

1s brought out here that to obtain this approximation we 

must treat R in the disturbance equation as 0(1), even 

though the base flow was derived on the basis of R = 0( . 

This feature is common in most quasi-parallel stability 

analysis but it is argued in Eagles & Weissman(1975) that 

the method is allowable, and produces accurate results at 

least for channel flows.

3.2 Orr-Sommerfeld Equation

The solution of the Orr-Sommerfeld equation for

specified real and R gives a complex eigenvalue q and a

complex eigenfunction. In general, the equation will have 

four linearly independent solutions, so that
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where are arbitrary constants and are independent 

solutions. A series solution of (3.5) enabled us to 

eliminate immediately those solutions which were not regular 

near the centre of the tube. A linear combination of the 

remaining solutions yielded

By applying the boundary conditions (3.6) we obtained two 

homogeneous equations for the constants A| and A2• For 

non-trivial solution to exist the determinant of the 

coefficients A| and must vanish, leading to

F(R,(o,q) - <4>(1) - 4>(1) ^(1) “ °-

The eigenvalues q must be determined for selected real 

positive values of R and co . If q = qr + iQ^s Qf determines 

whether or not the basic flow is stable to small 

disturbances. If q^ is positive the flow is considered to 

stable. If it is negative the flow is unstable. The case 

= 0 indicates neutral stability. In general a number of 

types of modes are possible each with a spectrum of 

eigenvalues, (See Drazin & Reid(1981)). Seaching for the 

least stable or unstable eigenvalue is by no means an easy 

task.
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On expanding equation (3.5) we obtain

' ’T'd 4 - 2’?3d 3 + (3 - A'Jt ’d 2 + (-3 + A72)7D

(B iqRU)7J 4’°> = 0,

where

+ +

D e d ,
d7

A = 2q2 + iqR(G - <X>/q) ,

B = q^ + iqR(G - cO/q),

(3.7)
to
7 ’

on the walls. The velocity function

with boundary conditions 4 » 4^ > regular at = 0 and
Jo)J°) Jo)

(1) = 4? (1) = 0 

? ) was defined in (2.18) for the DE profiles. The

following alternative 

the series solution in

form

powers

was more convenient

of *7  which will be

to use

used

for

for

small values of 7

8
G = 2 £ (-l)k+1 kgk12k'2 

j

where g^ are the coefficients of 7/2k in (2.18).

Equation (3.7) is an ordinary differential equation 

which may be solved by the Frobenius method. Let 
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On substituting the series into (3.5) we obtain a series 

solution with four arbitrary constants,

i fo) if. z
T = Ao(7 log1? +...)+ At( 7 + ... )

+ a 2(7 ■*■•••  ) + a ^(7 log7 + ...) .

The boundary conditions at the centre of the tube require 

that Aq and A3 are both zero. The appropriate solution that 

satisfies the boundary conditions is given by

(3.8)

where for small values of 7

7 - *2 a - + 1 (M - ipq )7? + .
192 1152 8

- 7*  + 6
8 P7 + 1 (P2 - Q - N)

P = 2q2 + iqR(2g1 - Co/q),

Q = q^ + iqR(2g1 - 6j/q),

M = 4iqR(g2 q2 - 12g3 ),

N = iqR(32g2 )•



This series was used to calculate starting values for the 

Runge-Kutta integration scheme. The fourth-order 

Runge-Kutta routine in double precision was used for all 

calculations to minimise both truncation and roundoff 

errors. A step lengh of 1/20 was used throughout with 

some numerical checks made on a step length of 1/40.

3.21 Numerical solution

The Orr-Sommerfeld equation was considered in the form

4>‘V = 2 ~

where

yi = 3 - AQ1,

Y2 = -Y1 >

y3 = (B + iqRU)1^.

The equation was integrated in double precision f rom

0«05 to 1 in view of the singularity at *7-0,  the series

solution (3.8) being used up to 7 = 0.05. For 

+ A2 4^, the computer considered 

initially to obtain two independent solutions.

the solution

two stages

The stages

are A1 = 1, A2 = 0 and At = 0, A2 = 1. Later an attempt

was made to satisfy the boundary conditions at 7.
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At each stage integration proceeded using a

fourth-order Runge-Kutta procedure evaluating 4*  5 

and until 7, = 1. These values were stored. The stored

values were used to obtain the eigenvalue relation

F(R,to ,q) = (1) 4^(1) - (D ^(D = °-

for fixed values R and co , the eigenvalues of q must be 

found by searching iteratively for the zeroes of F. In 

order to effect the procedure we needed values of R, co and 

needed a good estimate of q.

Although the above procedure is simple its numerical 

implementation can lead to serious difficulties especially 

when R is large. The difficulty arises from the fact that 

although the solutions and 4^ are numerically

satisfactory near 7. = 0, they both contain some multiple of 

the rapidly growing viscous solution and causes loss of 

linear independence near = 1. One of the methods of 

overcoming this difficulty, proposed by Nachtsheim(1964), is 

based on the method of matched intial-value problems. In 

this method, in addition to forward integration from *7=0,  

a backward integration is also made from *7,  = 1 and the 

eigenvalue relation is then obtained by matching the results 

at an interior point of the interval, e.g. the midpoint. 

Other methods for dealing with this difficulty include 

filtering as in Kaplan(1964).
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In the present study R was first kept reasonably low at 

R = 40 and the frequency was fixed at co = 1. The search 

was made by plotting contour lines Fr = 0, F^ = 0 in the 

complex q-plane, where Fr and F^ are the real and imaginary 

parts of F. Any intersection of the contour lines Fr = 0 

and F^ = 0 indicates the approximate location of a root. A 

typical contour plot is shown in Fig. 3.1 for the first and 

fourth quadrants. The approximate root found in this way 

was used as an estimate for the eigenvalue q. A more 

accurate value was obtained by a root finding routine based 

°n successive linear interpolation. In the range

< qr 10 and -4 s< q. x< 4 no unstable roots were found 

for R = 40 , co = 1 at both = 0 and Y = 6. Two stable 

roots were found in the first quadrant, of which the least 

stable root is shown in Fig. 3.1. The second root was also 

confirmed by an independent program used by Eagles(Private 

communication). The roots were determined by the root 

finding routine at X = 0, R = 40, = 1 as 

91 = (1.74912,1.32565) and q2 = (1.82435,3.34520). In the 

next section we look at the behaviour of the least stable 

eigenvalue as R, CO and / are varied.
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3.1 . Contour plot oF least stable eigenvalue por = 6,
R = 40 and co = 1 . - f~ j — F ,
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3.22 Least Stable Eigenvalue

We next considered values of X > 0. The contour plots 

and root finding routine found no unstable eigenvalues in 

the region -10 < qr < 10 and -4 < q^ < 4 for R = 40, 

to = 1 and various values of Y up to 6. This could mean 

there are actually no unstable eigenvalues which which would 

imply that the DE profiles are stable. It could also mean 

that our present techniques for finding eigenvalues are 

inadequate or are in error. However, extensive checks were 

made on the programs and the contour plots are quite 

reliable in revealing possible locations of the eigenvalues. 

The eigenvalues found in the first quadrant were also 

confirmed by an independent program, Eagles(private 

communication).

An alternative to finding an eigenvalue with q^ 

negative was to study the behaviour of the least stable 

eigenvalue as / , R and co are varied. In Fig. 3.2 we show 

the variation of the eigenvalue with Y at R = 40 and 

R = 60. The eigenvalue becomes less stable with increasing 

R and Y as expected. However, this trend slows down with 

increasing R and exhibits a tendency to level at about 

R = 400. This behaviour is well indicated in Fig. 3.4 where 

begins to level around R = 210. A scatter diagram of the 

eigenvalue at various values of R is given in Fig. 3.3. It 

is interesting to note that the least stable root remains 

stable at Reynolds numbers as high as R = 450 at Y = 6.6.
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Fig. 3.2. Vorlation oF with y at R 40 and R 

For oo = 1 .

= 60
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The variation of with CO is shown in Fig. 3.5. 

Despite that the changes are made at y = 6.6 for R = 200 

and R = 300, the eigenvalue remains stable. These results 

seem to indicate that even at higher values of R the 

root would remain stable. The results given are merely a 

section of an extensive study which was made on similar 

lines. No evidence was found of roots with negative q^ for 

0<R< 500, and 0 < CO 1.

At this point one is tempted to draw conclusions about 

the DE profiles. However, lack of comparable eigenvalue data 

at low Reynolds numbers makes it difficult to say with 

certainty whether q as obtained here is indeed the least 

stable eigenvalue. Consequently, further tests were 

necessary using known eigenvalues. The relevant eigenvalues 

are provided by Corcos & Sell ars(1959) and Davey & 

Drazin(1969). They tackled a temporal stability problem 

while the present problem is a spatial stability problem. 

Mathematically this means that the roles of time and 

distance downstream and the roles of wave number and 

frequency are in interchanged. In the next chapter we 

examine further the stablity of the DE profiles.
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4. TEMPORAL STABILITY OF THE DE PROFILES

Davey & Drazin(1969) have confirmed the various classes 

of modes found by Pekeris(1948) and Corcos & Sellars(1959 ) . 

In addition they also found a few other modes not known 

before. The relationship between these classes of modes was 

displayed in a diagram, similar to Fig. 4.1.

Consider axisymmetric flow in a tube of radius H as 

before and let the transformed disturbance stream function 

be of the form

■^(^jZjt) = 4 <i>z)ei0((x ” ct) + c-c- (4,1)

where (X. is the real wave number and C is the complex wave 

speed. The disturbance function is similar to the spatial 

disturbance function (3.3) except that this formulation is 

convenient for treating temporal stability problems. On 

substituting the disturbance function into (3.2) we 

obtain a familiar equation

(4.2)

( X - 0^ )2
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with boundary conditions

= <bd) = o,
and are regular at 7 = 0. (4.3)

This is equation (3.5) with q replaced by Of and CO/q 

replaced by C. For real (X , C = Cr + iCi is the eigenvalue, 

where Cr and are the real and imaginary parts of the 

eigenvalue C. The eigenvalue relation is of the form

F( ,C,R) = 0 (4.4)

The eigenvalue determines whether or not the basic flow 

ls stable. If is negative the flow is considered to be 

stable. The flow is considered unstable if is positive 

ar>d the case = 0 represents neutral stability.

Davey & Drazin used G = 1 - for the basic flow using

a different non-dimensionalis at ion. Their eigenvalues will

therefore be

0. in

multiplied by 2/zf to get our results at

Fig. 4.1 we display our roots which will be

examined in this Chapter. Three branches labelled A, B,and 

are shown. These are the same branches obtained by Davey 

& Drazin in addition to two other branches which will not 

c°ncern us here. The branches A and B were also displayed 

by Corcos & Sellars.

On each branch we shall consider three roots which will 

ke referred to as A^, A2, A3 on A, B^, 63, B3 on B and Cp 
p
^2 » C3 on C. Branch A contains the least stable root A^
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which raises the possibility of instability for higher 

values of X . The values of these roots are given in 

Table 4.1. The table also includes the Davey & Drazin 

roots (DD) calculated from our results. The calculated 

roots (DD) compare very well with Figure 3.(b) of Davey & 

Drazin (1969), an indication that our results (EM) are 

reasonably accurate.

4-•1 Modification of Davey & Drazin Eigenvalues

for the DE Profiles

Our main interest in this study was to observe the 

stability of the least stable root and other roots as the 

DE profiles changed from Poiseuille flow to the flow with 

= If the root remained stable, then our earlier

°bservation would be confirmed.

The relation between our results and those obtained by 

Davey & Drazin was derived as follows. Let G be the basic 

flow used by Davey & Drazin and let G be our basic flow. 

Equation (4.2) is written in terms of G and G as follows



EM DD

A, 0.6047 -0.0321 0.9499 -0.0504

Ai 0.5410 -0.0959 0.8499 -0.1507

Aj 0.4567 -0.1953 0.7174 -0.3069

B, 0.2579 -0.0712 0.4032 -0.1118

% 0.2166 -0.1862 0.3402 -0.2924

b 3 0.3745 -0.2393 0.5883 -0.3758

C| 0.4302 -0.2952 0.6757 -0.4637

Ci 0.4283 -0.3506 0.6727 -0.5507

C3 0.4272 -0.4716 0.6711 -0.7408

TaDle 4.1. Values oF roots on branches A, B and C 
For <X = 1 , Y = 0 and R = 5000. DD a^e 
the Dayey & Drazin roots calculated 
From our results (EM).
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From the above system, we obtain the relations

/ A

0( RG = &RG , 

(XRC = (XRC

from which
A A

R = GR
G

and
A A

C = RC
R

= 20
71

eigenvalues were obtained at o<. = 1, Y = 0 and

5000 at which values the use double precision computing 

Was just sufficient to obtain accurate results. Note that 

^avey & Drazin also obtained the eigenvalues at C\ = 1 and

The roots on branch A were considered first. These are 

^splayed in Fig. 4.2. The eigenvalue A| becomes more 

stable as increases from -6 to +6. This was unexpected 

behaviour from the least stable root. Further tests were 

Carried out on &2 and A3. The behaviour of A2 was similar 

to that of A^ except that it becomes more stable faster. 

The root A3 as shown in Fig. 4.1 is much further down and
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hence more stable than the other two. It also becomes more 

stable with increasing An additional test was carried

°ut on A2 which seemed to change fast. The wave number 

was varied at / = 6, R = 5000. The results are displayed 

in Fig. 4.3. The eigenvalue became more stable with

increasing 0(

In spatial stability we observed in Fig* 3*2 that the

least stable root became less stable with increasing Y

even though it did not become unstable . The unexpected

results observed here needed further investigation to

confirm the trends so far observed

In Fig. 4.4 the variation of with Y on branch B is 

shown. The eigenvalue is the least stable on this branch 

and B^ is much further down. Both B^ and B^ become more 

stable with increasing Y , a pattern exhibited by branch A 

roots. However, the behaviour of B2 is different in that it 

becomes less stable with increasing X , although it does not 

become unstable. Varying CX at Y = 6 did not produce 

instability.

Branch C is much further down than either A and B. and 

therefore the roots on this branch are more stable. The 

r°ots on C are shown in Fig. 4.5. The eigenvalue Ct becomes 

^ore stable with increasing , while C2 becomes less stable 

UP to Z = 4 and then becomes more stable

76



0<

^ig. 4.3. v'a^iation oF with c< at Y - 6 and
R = 5000 For the eigenvalue A5 .
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with further increases of /. The eigenvalue C3 behaves as 

^2 although it never becomes unstable.

We note at this point that the eigenvalues selected on 

aH the branches are stable up to Y = 6.

4.2 Corcos-Sellars Eigenvalue Relation

Gill(1965) was critical of the method by which 

Corcos & Sellars(1959) obtained the eigenvalue relation. 

The formula itself is not in question. The formulae 

derived by both Pekeris and Corcos & Sellars give the 

correct eigenvalues for the centre mode, and that is what is 

relevant in our case here. The choice of the Corcos-Sellars 

eigenvalue relation is dictated by convenience.

The roots on branch A can be verified using the 

Corcos-Sellars eigenvalue relation. A slight modification 

to the formula also provides a check on the computational 

results so far obtained as / varies. For the centre mode 

when R is large the Corcos-Sellars equation approximates 

to

(1 - eQ )ep 5=^-1
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where

K2 = 1 - C,
(4.5)

G = 1 - r is the basic flow,

V = 4> (r)ei<*(x  - Ct) is the disturbance funtion,

is the wave number, R is the 

the eigenvalue. The term eP

Reynolds number and C is

grows very large as

So that

R —> cso

eQ= 1,

Q = -2-TTiN, N = 1,2,3, .. . (4.6)

follows from equations (4.5) 

C = 1 + 4^-0.25(3ni)
{ o<R

and (4.6) that

(4.7)

4.21 Modification of the Corcos-Sellars Formula

Equation (4.7) is the Corcos-Sellars formula that 

generates the roots on branch A. The formula becomes less 

accurate as N increases. For the DE profiles G is given 

below
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G = a - b1?1 + d1‘7* - d2‘f’ + ...

where, approximately, from section 2.31

a = 2 + 8 Z + LT^fi + 2__ TY3Ln ,
T 36T2 25 300'H

b = 2 + X + 4 TY?f? + 4  TY3L1 ,
TT T2 F5 2 30077 1

dl = X, + &_TXZf3 + 6___T¥3f7 ,
25 J 30077

(fl’f2’f3’f4’f5>f6’f7>f8’f9’f10’fll’f12) = <2648,7840,

8800,4800,1320,128,46256,230720,409600,331200,

121680,15611),

Table 4.2.

T = 1
34567T3

L0 = f7 - ^8 + 3_f9 - 4_f10 + 5_fll '■ h^fi2 ’
6 20 50 105 196

and

L1 - 2f? - 3fg + 4_f9 - 5_f10 + 6__f 11 f12 *
6 20 50 105 196

In making the modification to the Corcos-Sella rs

eigenvalue equation, a further approximation was necessary

facilitate evaluation of the integrals . This is

Justified since the coefficients d^ of 7 are small in

c°mParison with a and b. The largest of these is d| which

can be compared with b at selected values of *7 as shown in
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Table 4.2. Co^pa^ison between the coeFcicients oF 
b and d| .

r 1 a b d| bn1 d,^

0.1 0.1 0.6389 0.6487 0.0103 0.006^9 0.00000

0.5 • 0.16217 0.00350

2.0 0.1 0.6911 0.S963 0.3035 0.00396 0.00003

0.5 0.22405 0.01897

3.0 0.1 0.7271 1.03050 0.5555 0.01030 0.00006

0.5 0.27013 0.03472
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For

G = a - b?J ,let

hence

eS’ti/A

where

Q

K2 = (a ~ c)/b.

Since Q = -2t \ iN we obtain the formula

A t f *nrst sight this approximation might appear severe on the 

formula which is already restricted to small N. The

Vel°city function G was also shown to be accurate in the 

range -3 x< / x< 3. The estimates indicate to the contrary. 

Aspite these limitations, it does provide a good check on 

behaviour of the eigenvalues as Y varies from 

6 to 6. A program was written to evaluate C, a and b for N 

UP to 10, with N = 1 representing the least stable root. A 

c°mparison with the estimate and the root as calculated by 

the main program is shown in Tables 4.3 and 4.4, for

- 1, R = 5000.
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E1GENALUE ESTIMATE DlrrERENCE

-6.0 0.5253 -0.025018 0.5149 -0.016660 0.0104 0.00835

-5.0 0.5346 -0.025897 0.5292 -0.020495 0.0054 0.00540

-4.0 0.5451 -0.026871 0.5428 -0.023208 0.0023 0.00366

-3.0 0.5570 -0.027502 0.5563 -0.025406 0.0007 0.00250

-2.0 0.5706 -0.029162 0.5705 -0.027439 0.0001 0.00172

-1.0 0.5961 -0.030533 0.5863 -0.029549 0.0002 0.00098

-0.5 0.5951 -0.031305 0.5951 -0.030691 0.0000 0.000G1

-0.1 0.G028 -0.031951 0.6027 -0.021663 0.0001 0.00028

0.0 0.6048 -0.032116 0.6047 -0.031915 0.0001 0,00002

0.1 0.6069 -0.0322S7 0.6067 -0.032171 0.0001 0.00000

0.5 0.6153 -0.032997 0.6152 -0.033235 0.0001 0.00000

1.0 0.6269 -0.033954 0.G2G6 -0.034662 0.0002 0.00000

2.0 0.G544 -0.03CI44 0.6532 -0.037870 0.0012 0.00100

3.0 0.6991 -0.039909 0.G955 -0.041579 0.0026 0.00100

4.0 0.7330 -0.042159 0.7247 -0.045803 0.0083 0.00300

5.0 0.7979 -0.046745 0.7719 -0.050534 0.0259 0.00300

6.0 0.7959 -0.144205 0.9292 -0.055752 0.0323 0.08900

ToDle 4.3. Eigenvalues and estimates Por l in the ^ange 
-6 to 6 when N = 1 .
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N X EIGENALUE ESTIMATE DIFFERENCE

3 0.0 0.5410 -0.09594 0.5409 -0.09575 0.0001 0.0002

0.1 0.5426 -0.09634 0.5424 -0.09651 0.0002 0.0002

0.5 0.5492 -0.09802 0.5487 -0.09970 0.0005 0.0016

1.0 0.5533 -0.10030 0.5573 -0.10400 0.0010 0.0037

2.0 0.5902 -0.10530 0.5775 -0.11360 0.0027 0.0083

3.0 0.6074 -0.11120 0.6024 -0.12470 0.0050 0.0135

6 0.0 0/567 -0.19530 0/451 -0.19150 0.0116 0.0038

0.1 0.4577 -0.19560 0.4459 -0.19300 0.0118 0.0026

0.5 0/617 -0.19670 0/490 -0.19940 0.0127 0.0027

1.0 0/672 -0.19830 0/533 -0.20800 0.0139 0.0094

2.0 0/793 -0.20280 0/639 -0.22720 0.0154 0.0244

3.0 0.4911 -0.21190 0/776 -0.24950 0.0135 0.0376

ToDle . Eigenvalues and estimates For Y in the »~ange 
0 to 3 rfhen N = 3 and N = 6.
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The Corcos-Sellars eigenvalue relation was used to 

check on the various trends of the eigenvalues as / varied 

from -6 to +6. This was a necessary independent check since 

required confidence in the program’s ability to locate 

eigenvalues as varied. The main program uses the exact 

solution for the basic flow while the modified eigenvalue 

relation uses only a very approximate solution obtained by 

the expansion method. The results in both cases have been 

remarkably close as shown by the estimates in Tables 4.3 and 

4.4.

The investigations carried out so far in both spatial 

and temporal stability indicate that the DE profiles are 

stable to small disturbances for X in the range -6 4 6.

4.4 Link Between Spatial and Temporal Roots

We conclude this Chapter by considering the link between 

sPatial and temporal roots. We shall begin by considering 

the link between our least stable spatial root given by

qt = (1.74916,1.32567)

for Y= o, go  = (1,0), R = 40 and the least stable temporal 

root given by CO| = (0.518428,-0.671796) for / = 0, q = (1,0), 

R = 40. The temporal root was traced from the Davey & Drazin 

r°ot Ax given in Fig 4.1 and Table 4.1. The root was traced 

from R = 5000 to R = 40 by reducing R by small steps of
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= 10 and checked by drawing a continuous graph of the 

root as a function of R. Contour plots were also used 

to confirm the root obtained by tracing.

We pose the question: are these special values and

tOj consistent with a functional relationship of the form

q = f(CO) ?

T xr
so, then we would be able to change c<J by small steps to 

m°ve from one root to the other in such a way that q varies 

oontinuously and smoothly. In- the first case consider C0T 

fixed at (xj^-= 0.518428 while C0c varies in small steps, where 

and are the real and imaginary parts of 0?

respectively. The results are given in Fig. 4.6. As cdt 

Varies from 0 to - 0.671796, q changes smoothly to q =(1,0). 

Note that q attains the value q =(1,0) when kJ = CO| . In the 

Second case consider fixed at = - 0.671796 while is 

allowed to vary. In Fig. 4.7 cjy is reduced from 1 to 

0*517828  and again q = (1,0) when uj = u)[ . If instead we 

c°nsider a relationship of the form

= f(q)

We obtain the same result where co attains a value of

20 a (1,0) when q = qt . This is an indication that the two 

r°°ts are connected.
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Fig. 4.6. The spacial ^oot a as a Function oF OJ when cor 
is Pixed al C0r = 0.518^ and R - 40» / = 0.
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p.
19 • 4.7. The spatial *~oot  a as a Function oF co when cot 

is Fixed at = -0.6718 and R = -10, X = 0.
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Using similar methods it was possible to find 

continuous smooth connections between other temporal roots 

ar>d spatial roots. In Table 4.5 spatial roots are given 

with corresponding temporal roots. The roots Co represent 

the first root on each branch (A,B,C) being given by

= (0.9499,-0.0504)

= (0.4052,-0.1118)

and Ct = (0.6894,-0.3804) .

at R = 5000 and q = 1 on the Davey & Drazin Figure 3.(b). 

The pattern observed for roots at low Reynolds numbers is 

^iffferent from that which appears at high Reynolds numbers.

R°r instance , the roots A^, B^ and C| given by

Davey & Drazin in Fig. 4.8 (a) would appear as in Fig. 4.8

(b) at R = 40.

We notice that at low Reynolds numbers the roots are

sPaced out, whereas at high Reynolds numbers they are close 

together. The effect of raising the Reynolds number brings 

the roots close together in a small area. At very high 

Reynolds numbers most of the roots will lie within a square 

Unit close to the real axis. Thus we tend to have small 

eigenvalues at high Reynolds numbers and somehow larger 

eigenvalues at low Reynolds numbers. The process of tracing 

r°ots at high Reynolds numbers is
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Table 4.5. Spatial roots q at R = 40, OJ = 1 
X= 0 with corresponding tempo1''a 

^oocs at R = 40, q = 1, 7=0.

q OU

1.74916 1.32567

1.81368 3.31603

1.71517 5.67301

0.51843 -0.67180

0.46288 -1.77669

0.44614 -3.35712
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C^g. A.S. ( a > The temporal ^oots A| , B| and C, at 

R = 5000, a = 1. <b) The temporal roots 
A| , B| and C( at R = 40, a = 1 . 
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complicated by closeness of the roots so that root finding 

routines frequently converge to other roots. It then 

becomes necessary to check that the roots being traced are 

continuously connected by drawing graphs.

94



5. BASIC CHANNEL FLOW

We now turn to flow in channels and investigate the 

stability characteristics of flows in straight-walled 

channels whose widths vary slowly with downstream distance. 

These are the same kind of flows whose stability Eagles & 

We issman(1975) studied using a WKB method. The method 

adopted here is an alternative method, which retains the WKB 

method but drops the assumption that cR = 0(1) as € —* 0 

ln calculating the steady state flow, where € is 

approximately the semi-divergence angle.

In the present approach the restrictions imposed on the 

basic flow are dropped, i.e. we take £ * 0 with R fixed. 

Of interest here are the corrections to growth rates due to 

n°nparallel effects. Growth rates based on amplitude, 

kinetic energy and relative kinetic energy are defined as in 

Eagles & Weissman. Neutral curves corresponding to each of 

these quantities are used to compare with results obtained 

by Eagles & Weissman.

5.1 Stream Function Equation

The vorticity equation together with the equation of 

continuity were defined in Chapter 2 equations (2.2) and 

(^•3), They are recalled here for easy reference. The 

equations are

95



2jW - Va (U^W) = V2W,
"St'

(5.1)

V-u = o.

Consider a two dimensional flow with co-ordinates 

(x’sy’jO) and U = (u’,v’,0). We can define a stream 

function as before by

u’ = v' = -^ .
ay ’ ?x’

The equation was nondimensionalised as follows,

x - x* , y * x’ > ’ t • t iil
L L M Lz

u = u’M_, v = v’M,
L L

where L is half the channel width at x’ = 0, M is half the 

v°lumetric flow rate per unit thickness.

Substituting into the equations of motion (5.1) we 

obtain

2L - (5.2)

where R = M/^ is the Reynolds number and



The boundary conditions on are

V 0 at the
walls.

To transform equation 

channel with varying walls,

(5.2) into the

le t

equation for a

Z = G x

a slow variable as before and let y 

equation of the wall. Also define

= ±H(Z) be the

The derivates transform as follows:

3x

? = y/H(z).

c = 1^- .
H 2?

Equation (5.2) may now be expressed in terms of 7 and Z. Let

Th e various terms in the equation expand as follows.

^t

- 2qH’^z£ 
H '

+ 0(6? )
J
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dx H2

a~(v2V) =
ay „3 'ITl +

• ziu:2'*;,  
H2 • ->y + 0(65) ,

5

+ H' '
H H

W " L^n^? + i?
H*  H5

4g' %qz

- 2™'^Z +

+ ocd*). (5.3)

Consider the

t-ate and the time dependent

stream function "P to be made up of the steady

stream functions thus

T (^,Z,t) = F(7,Z) + ("] ,Z,t).

The aim of this investigation is to study stability of F in 

he presence of a small disturbance . We begin by solving 

he steady state equation, which is the equation for F and 

ater find the solution^.
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The basic flow F is obtained by setting s 0 and
c>€

equations (5.3) into (5.2). The~ 0, and substituting

resulting equation is

F +777*7 RH(Fz F?77

FT]

The

The

? +
772-

(1 + 62Q3H'2 )Fw

(SRHF^ +

+ £1h 2f wz

? +
TT1

CRHFX

+ 262(3H'2

462HH' )Fr2

+ 0(6*)  = 0

= 0,

^2L‘?(6H’2 - HH'

HH" H F^

boundary conditions on F are

E, - 0 ±1.

solution F is obtained by expanding in powers

» ) FJ 77?

(5.4)

of the

+ F7 F1?t >]

+

+

3 q2 r p +e h

7^ H ' 2 FL

+ +

+ p&RH'E;

262HH'qFrnz

F = + 1 at 7 =

at ?

±1 j

Parameter (L

F = p(0) + £F(1) + £2F(2) + .
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Substituting the series into (5.4) leads to a sequence of 

equations by equating powers of & . The equations are 

solved in order beginning with the 0(1) equation.

5.2 Series Solutions

0(1) Equation

The equation for F^) is

F(0) rTTTq

with boundary conditions

?(0) = 1 at 7 = 1,

r(0) = 0 at 1 - 1,

r (0) = - 1 at 7 = - 1,

r (0)
1 = 0 at 1 = - 1,

and the solution is

(5.5)

0( G ) Equation

The equation for F^ is

F (i )
TT'H

+ 2RH'F^0)F^0) + p(O)rp(O) 
n rTRRHCF^’e ,^’ ) = 0,
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with boundary conditions

F (1) = F^(1) =0 at 7 - i,

F (1) = Frj =0 at *? = -1.

We obtain

F (1) 
rnnqq - 9RH (q - q3)

and hence

F (1) = RH'(15? - 33?3 + 21‘7S - 377). (5.6)
280

0( e2- ) Equation

The equation for F(2) is

+ T’h '2^^ + RHCE^’e^’ + F^1’^’)

+ 1 (6H •2 - HH' ')F^ 

+ 2RH'(Fq(0)F^) + Fq(1)F^0))

+ 2(3H'2 - HH")F„(°) +

- 2HH"TE,(n°n’i - AHH'F^

- RH(Fq(0)F^ + f J1^^) - 0.

Wlth boundary conditions

F<2> =F^2) =0 at 7=1,

p (2)
*7 = 0 at 7 = - 1.
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Nence we find

- 3|( 19^ + 68^3 - 63^^ + 14>^7)

- a2(7T - 23-f + 2175 - 57’) + a397 

where

ai = 2R2H'2 ,
70

a2 = 9R2HH’',
70

a3 = 9(4H2 - HH’’)

the solution is eventually found to be

F - _ 1 .3,(28757 - 82227? + 8778?S - 44887
55440

+ 11557<’ - 98?")

- __ l_a2(12137 " 32797? + 323475 - 1518?7
55440

+ 385 7? - 357" )

+ _l_a?(4627 - 9247S + 4627S). (5.7)
55440

The growth rates will be evaluated to O(G^) and 
bi
erefore we only require the expansion for F to 0(€?). The 

°^ution to 0(€ ) was Blasius ' (1910) approximation who used 

to predict the separation in an exponential channel.
Q
raPhs of the first, second and third approximation to F are

§1 Ven in Fig. 8.1 together with

effery-Hamel profile. The t

•ls dealt with in the next

ime-dependent

Chapter.

the appropriate

stream function
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6. STABILITY EQUATIONS

6.1 Disturbance Equations

The steady state equation (5.4) was solved to 0( eQ) by 

expanding the base flow F in terms of 6 . A similar 

approach will be taken here in deriving the disturbance 

equation. As remarked earlier we look at a small two 

dimensional disturbance nr' from the base flow F. The 

assumption that the disturbances be small implies that the 

equations be linearised by neglecting quadratic and higher 

order terms in the disturbances and their derivatives. The 

total stream function was defined as

A

where F satisfies the steady state equation.

A

On substituting into equation (5.2) we obtain

2> V7(F + ^ ) +

- (F + rf7) F + ^ )

ax -&]

= IVpF + ). (6.1)
R

A

When quadratic terms in and its derivatives are neglected

the equation reduces to
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A

(6.2)

with boundary conditions

A *

"V = = 0 at the walls.

The variables *7  and Z were defined in section 5.1.

Let

fy = ^_ - 7H' .
az h 37

The various terms in equation (6.2) are defined below to 

0(£2), We set the steady state solution F(x,y) = F(’7,Z) and 

then find

- H' Fn - 27H'Fnz 
H J ( H

2 VZF - S. Tx H3

-ay

9

+

J
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7^2h '2 -

I"2 H
H
jFrt - 2HJF1Z - W-Hi

—
+ ’’eVH J

+ 1- + . .H3 777

Equation (6.2) may be written as 

tfxxt + ^0 * ( 'Vaxx ♦ )

- Fx < 'Rxm  + > * t i- V’F

3x

n-T- -> *- ^^_\7?F

A A A

= 1( XX + 2 + 'yj-jj ) • (6.3)

This equation together with boundary conditions governs 
A

the disturbance The disturbance here is a function of

time as well as the co-ordinates x,y. Hence we would expect 

the disturbance to grow or decay with time or distance or 

both along the channel. The type of small disturbance 

considered in this case is one which is travelling in the 

direction of flow having a stream function of the form

V = 4> + C.C. (6.4)

where C.C. is the complex conjugate,

cT = i (S (x) - oo t),

and dS = q(Z) .
dZ
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This may be termed the WKB method, as used by Eagles & 

Weissman and others. Remember here that Z = €x is a slow 

variable. We expand ^(^jZ) in the form

1 aS®Cp = dp + 6 + e ? +...

We now proceed to write equation (6.3) in terms of dp and 

the variables ,Z. We have 3 —* , D —* l_sl
3x By H ^1.

when applied to (*2,Z)  

and so

= (iqcp + 6<5^<^)ecr , 

tx - f- q24 + ei(2q^<£ 

A

= ^~iooq2<^ + 6&j(2q^$- + 

" iq3 4*  " €(3qq'4>

+ e3W2<+ q ' cp ) 

q’)<£ - C^ico^^

+ 3q2fy'4) )

+ ^i(q"4> + 3q’#4> + 3q^^) + C3

^xxx = [q44 ~ ^i<6q2q' + 4q3c^)4>

<r 
e ,

- (3q ’2 + 4qq ’ ’ + 12qq’^

ez £ (ty2
*7
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= q2<^ * )

(6.5)

On substituting the terms in (6.5) into equation (6.3) 

we get a sequence of equations as before with the 

Orr-Sommerfeld equation as the 0(1) equation. The important 

differences from the work of Eagles & Weissman(1975) and 

Eagles & Smith(1980) are that

(i) R is independent of G. in deriving the base flow, 

so that the first equation is the Orr-Sommerfeld equation 

with Poiseuille flow as the base flow. Eagles & Weissman 

took GR = in deriving the base flow, yet ignored this 

relation in deriving the disturbance equation.

(ii) The expansion is taken to 0(€^), whereas earlier 

work was only to 0( €■ ) in the disturbance equations,
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although terms €2R2
• • etc were implicitly contained

in the base (Jeffery-Hamel) flow.

Having obtained , F and their derivatives in terms 

of the variables 7 , Z we may substitute these into (6.3) to 

obtain the following disturbance equation to 0(62).

+ ^co(2q^ + q’ )

+ ' 2h 'F^ ’

+
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- 3q ’2 + 4qq ” + 12qq’^ + 6q2^2)

(6.6)

6.2 Orr-Sommerfeld Problem

From the equation (6 

eft , and required

6) we can obtain the equations 

in the stability analysis.

for

The

functions F and as indicated earlier are expanded in

terms of £ .

6.21 Equation for

By equating terms in in equation (6.6), we obtain

(6.7)

where

(D2 - K2)2 - iKR g/K) (D2 - K2)L =

(6.8)

D » S. ,
^7
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(i (Z) = GOH2(Z) ,

and

K(Z) = q(Z)H(Z).

The boundary conditions on
/Co)

s3 are

(6.9)

/Co)
4^=0 at 7 = 1,

dJ*
Tkl -0 at 7=0. (6.10)

These are the boundary conditions for a symmetric 

disturbance which is known to be the most unstable. The 

functions 0 and K as defined in (6.9) are called the local 

frequency and wave number. They are functions of Z and 

therefore for fixed Z (6.7) is the local Orr-Sommerfeld 

equation. For given co we have an eigenvalue problem to 

determine K as a function of fl and R.

The slow variable Z appears only as a parameter in the 

equation, so that a solution may be found of the form

, Co)
T = Ao (Z)g0 (17 ,Z ) (6.11) 

where gg is a solution of (6.7) at some fixed Z and Aq is an 

amplitude function associated with gg. The eigenfunction gg 

is normalised arbitrarily, a convenient choice is to let
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41 (^,Z) = 1 at ‘Z ~ 0

from which 4^ = 1 and g0(0,Z) = 1 so that

A0(Z) =1 at Z = 1.

The eigenfunction gQ is displayed in Fig. 6.1.

and = 1.

(6.12)

for R = 60

The Orr-Sommerfeld equation was solved numerically 

starting with a root traced from a known root obtained by 

Eagles(Private communication). The local frequency was 

defined as in Eagles & Weissman(1975) by

0(Z) = We2Z .

Using the Jeffery-Hamel profile as the basic flow he

calculated the root for equation (6.7) at Z = 0.92 for

R = 65 and W = 0.2 as K = (1.6025,-0.02055) . The root was

traced to Poiseuille flow at p = 1.2593 and fl was gradually 

adjusted to (3 = 1. As the parameter varies from 0 to 1 

the basic flow

F = (1 - /< )J(<T.) +AP(*p
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Fig. 6.1 Variation oF the eigenFunction g0 with *?_  
at R = 60, (3 = 1 and Z = 1 .
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changes from the Jeffery-Hamel(J)) flow to Poisueille 

flow, PC2). The roots at various values of R and are 

given in Table 6.1.

Two independent solutions and of (6.7) were

calculated by the Runge-Kutta method. Unlike the problem in 

Tube flow, the Orr-Sommerfeld equation here has no 

singularies at *2=0  and hence we may integrate forward 

from *2  = 0*  The starting solutions for the Runge-Kutta 

routine were taken to be

= 1, < - - $ - 0
5

and

= 0, - 2, 0.

so that they both satisfy the boundary conditions at = 0.

These solutions were checked against series solutions of 

(6.7) given by

(6.13)

Having solved for we can now proceed to find <0^

which is determined from the 0(£ ) equation obtained from

(6.6).
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Table 6.1 . Roots at various values oF R For ft - 1 and
1 .2593. K is the Poiseuille Flow root and JH
is the JeFFery-Hamel velocity proFile.

13 R K JH

1.2593 65.0 1.4888 0.2161 1.6025 -0.0205

64.0 1.4871 0.2174 1.6025 -0.0180

63.0 1.4854 0.2186 1.6026 -0.0546

62.0 1.4836 0.2199 1.6027 -0.0129

61.0 1.4819 0.2212 1.6028 -0.0102

60.0 1.4802 0.2226 1.6029 -0.0074

1.0 65.0 1.2745 0.2266

60.0 1.2661 0.2343
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6.22 Equation for

By equating the coeficient of Q in (6.6) we obtain

/(l)
L T = dAQfB^gQ + B2gQqq )

dz

+ A0(B1gQZ + + b 3) (6.14)

where

Bt = H(2£K - 3K2E?(0) - + 4iK3) ,

B2 = H(F} - 4iK) ,
1 R

B3 = g0(cl - iK3F?(1) - iKF^} ) + goq<C2}

+ ^0*71  ^3 + ) + gQ^^ (C^) ,

C1 =ftH2q’ - 3KH2q'E.(0) + 6iK2H2q’ ,
1 R

C2 = - 2^KrjH’ + 2K2*?H ’E7(0) - 2H’E^0)

+ K2HF7(0) + HE1S1^)) - 4iK37.H' ,
1 R

Co = - 2H’Fo(0) + 8iKH*  - 2iH2q' ,
‘ R R

C4 = " HF^0) + AiKQH’ . (6.15)
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ourselves to the case H(Z) = Z, the straight walled channel.

The boundary conditions on

7 -

7 -

are

C -«

< -0

at

a t

0 ,

1. (6.16)

The functions B^, B2, b 3> C2, C3 and are the

functions determined by Eagles & Smith(1980) • They

considered a channel whose walls are given by

H(Z) - 1 + (l/2)tanhZ. In the present study we confine

i(0
The equation for p5 is inhomogeneous with an unknown 

amplitude function. It has a solution if and only if a 

certain solvability condition is satisfied. This is supplied 
ji

by the adjoint function to . Let L be the adjoint

operator and 5) the adjoint to P3 . The governing equation 

and boundary conditions are

= 0 , (6.17)

D~^ = D3 = 0 at 7 = 0 ,

= DS) = 0 at 7=1

where

L - R-1 (D2 - K2)2 - iK (B,(0) - 0/K) (D2 - K2)
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Provided that satisfies the boundary conditions,

the required orthogonality condition is that

From (6.14) we obtain the ordinary differential equation

H^q + Hq  dAq = 0 
dZ

(6.19)

where

H1(Z) =

H2(Z) =

H(b180Z +

Jo
b 2§OZ,Q'7 + B3)d‘7

'l

+ B2gO‘l‘7 *
■'D

9

It follows from the normalisation (6.12) that

dAg = - H-i at Z = 1. 
dZ H2

The required solution is given by

(6.20)

where g^ is a particular integral and A^ is the amplitude

function associated with g^. The particular integral g^ may 

be written in the form

the solutions of the homogeneous
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equation (6.7), A and B are arbitrary constants and is a

solution of (6.14) that satisfies boundary conditions

4^ = 1 at 7 = 0

The boundary conditions (6.16) require that

A <£ (1) + B cb (1) + (1) = o,
I <

A (1) + B <^(1) + 4^ (1) = 0,

which represent a system with a unique solution for A and B 

provided

4>(d  4/(1) - <d  (i) 0.

However, this quantity is zero here by the eigenvalue 

relation. The equations are not independent and hence 

produce an infinite number of solutions provided (6.19) is 

satisfied. A particular solution was obtained by setting 

one of the arbitrary constants to zero, say B = 0, so that

a  = - 4^ (i) = - did) .
<+> tn

The normalisation (6.IZ) yields

<=P (0,1) = 0
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so that

gt(0,Z) = - A1(Z)g0(0,Z)

=-A^(Z) at Z = 1.

The amplitude function A^(Z) may be chosen arbitrarily 

without affecting the growth rate, for details refer to 

section 7.4. Similarly, different choices of particular 

integrals will lead to different amplitude functions A^ but 

will not affect the growth rate. Without loss of generality 

we may choose A^ = 0 at Z = 1 so that equation (6.20) 

reduces to

at Z = 1

and hence

The solution of the 0( G^) equation for r will be

obtained in a similar manner and this is done in the next

section.

6.23 Equation for

By equating coefficients of G1 in (6.6) we obtain

■ G2)
L= dAj(Bjgp + B2gpqq) 

dZ

+ A1(B1gOz + B2gOz>qq + b3 )
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+ (D-^Aq + D2Aq + D^AgJgg

+ (D4Aq + D5a 'q )gQ^

+ (D6Aq + D7Aq - 2H2Aq )gOq^
R

+

+

+

+

+ <d 8a o 2HH^A'o)gonr)9+

+ (D2Aq + 2D3AQ)gQZ

D3A0S0ZZ + D5A0§0Z7 + (D7A0 _
R

( 2H2Aq  ) + 2HH^A0g0z?K]r?
R R

1K3F7(1) - IKF^l’jg! + C2gn(C1 "

(C3 + iKE? + £481'7’77 + Bi^iz

+ B2S1Z7*7  ’ (6.21)

where

D1

R

iH3q’ 'F^(0) - iKH ' 2 (2*7  F^0 } + ^F^b

- iK(2H’2 - HH')(F^0) + lQFr^0)) - 3KH2q'F7(1)

+ k 2hf 2(1) - iK3Fn(2) - iKFn(2)

+ K3(3Hq'2 + 4Kq ” ) ,

d 2 - 3K2HF7(1) - HF^’ 3iH3q'F(O) + 12KH3q' ,
R

d 3 H2( - + 3iKE?(0)

+

+ 6K2) ,
R
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D4 = i/ZH2H 'q ' Fn(0 > - 2H'E|<|1) + HE,^’ + 27H'K2E?(1)

-l|1KH2H'q' - D?^HH" - H'j - 2iq H' 2KF^° >

D5 = - D3^H' + 2iKHH"?E?(0) ,

D6 = iKF<2) - 2H'F„(1) - 2iK'?H'2F„(0) + A(HH" - H') ,
1 R

D? = H(F_(1) + 4H' ) ,
R

Dg = 27(HH’' - H') - HF* 1’ . (6.22)
R

The boundary conditions on 4^ are

^77 = 0 at 7=0,

■r. < =0
at 7=1.

As a check on the algebra note that the coefficients of 

Aq and A^ are equal and so are the coefficients of Ag and 

A-p In the coefficients of gg , gg^ and ggqq are

equal to the coefficients of g-p g^ and g^q .

To obtain the equation for A|, we use the orthogonality 

condition (6.18) and obtain

H2dA1 + H3At + H4 = 0 
dZ

where

H3(Z) =

(6.23)

H(b180Z + B28ozl77 + B3)d7 >
Jo
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H4(Z) =

<»6A0

+ D2Aq + D3AQ)g0

5A0)§07

+ + D7A0 * 2H2Ao)g0^7
R

+ + 2*?HH ’ 
R

+

(°8A0

(D2A0 + 2D3A'Q)goz + D3A0gQZZ

+ D5A080Z7 + (d 7a 0 - |h 2a 'o ) goz^

where

2
2H Aogozz^

+ f B4 + B1glz + B

'o -

+ 2HH’ 
R

d^

d»2 ,

B4 = (Ct - 1K3F?(1) - iKF^’ )gl + C2gn

+ (C3 + iKE^l))gpr^ +

The amplitude equation (6.23) is given by

dAt = - H4 
dZ H2

at Z = 1 from the normalisation.

The information so far obtained is adquate for 

calculating corrections to the Poiseuille flow growth rates 

to 0(e*).  This is dealt with in the next chapter.
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7. GROWTH RATES

Eagles & Weissman(1975) defined three measures of 

growth rate, namely the growth rates based on the stream 

function, the mean kinetic energy and the relative mean 

kinetic energy. Similar growth rates will be defined here 

to 0(e). It will be shown that for the straight-walled 

channel, H(Z) = Z the growth rate is a function of f(g)/H. 

We will also show that different choices of particular 

integrals will lead to different amplitude functions, but 

will not affect the growth rate. These results are very 

useful in making numerical checks to the growth rate.

7.1 Growth Rates Based on the Stream Function

The disturbance equation was defined by

(7,Z)ei(S(x) " wt) + C.C. (7.1)

The physical amplitude in terms of the stream function 

is given by

amp °P = e^ ~ CO t )

- 2141 e"S‘

where S = Sr + iS^.

The growth rate based on Tp in the x space is defined as

Gx(qP) = 1___ (amp^PO
amp'if dx
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It is easy to show that

which to 0( £2) is equivalent to

complex number. Using equations (6.11) and (6.20) this may 

be rearranged as follows:

Gx(Tp) = - ^ + £REAL AQgQ * AOgOZ
A0§0

+ AUREAL + 81Z ' 8l^k—
A0§0 \A0A0§0 A0§0§0/

In general we may write the growth rate as

Gx(Tp) = G0(R) + G Gt(R) + £2G2(R) + 0(C>) 

(7.2)

(7.3)

where Gq (R) is the qua si-parallel growth rate and higher 

order terms are the corrections to the growth rate.

Equation (7.2) was used in computing the growth rate 

Gx(^) used in obtaining the Figures and Tables given in 

Chapter 8. This was computed for the straight-walled 

channel H(Z) = Z at Z = 1 and with = 1. Theoretical 

results to be shown in section 7.3 show that these results 

should be the same and this was checked numerically.
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7.2 Growth Rate Based on Energy

The kinetic energy density E will be defined as in

Eagles & Smith(1980) by

(7.4)

where P is the fluid density, u and v are the velocity 

components of the disturbance. For the disturbance function 

(7.1), let

< = i(S(x) - ^t) .

The velocity components of the disturbance will be given by

= I 3. ( 4> eff) + C.C. 
H 37

A

Note that the velocity components of the disturbance are 

2 9real, and so are their squares, u^ and vr .
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Squaring each component and summing up, we obtain after

simplifying

2 2 u^ + v£
W) 12

+ i(q 4* Tz

+ $G)

+ 4?^

- q <
)

)

)

Using equations

1(0) l Co)- q 4 4, + 0(€5).

(6.11) and (6.20) this may be written as

+

follows to 0(6)

2 2 u + v e"2S< 2 + lKgOf )

+ e
H

+ Aq ^O^I^ + Ik |2§o S1) + AO(£oqSl'7+ lR|2 gQ^l)

+ i |g0|2 (KA0A0Z ■ KAo Aoz ) + ilAol (K£oz£o K§0§0Z)

+ i1? H'|Aq \2 (KgQgQq KgQgQ^)jJ .

The energy equation (7.4) can be conveniently written as

E = £ Me"2St
2 H

(7.5)

where
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M = Mt + GM2

and the functions and M2 are given by

r I
Mi = Mol2 Jg < I§ot |2 + Kf >d? >

M2 = | F(AOA1 + A0Al)( |8o,']|2 + /KSo|2 )

<9
+ + |K( gOgp + Ao^go^Sl^ + lKl2go§i)

+ 1 |ggl (KAq Aqz  ” KAq Aq z )

+ i|Aq ! (KgQZgQ - KgQgQZ)

+ iQH -2. _lAol (k §080T ■ KS0§0'l) d1 • (7 .6)

7.21 Growth Rate Based on Kinetic Energy Density

The growth rates based on kinetic energy density is 

defined as in Eagles & Weissman(1975) by

G„(E) = 12.|£Me"2S< \ .
Edx\2H /

Substituting the value of M given in (7.6) and using 

definitions (6.4) and (6.9) we have

G (E) = - 2K. + g (- H.' + M7 (7.7)
H \ H M J

where K^ is the imaginary part of the complex eigenvalue K 

and Mz is the partial derivative of M with respect to Z.
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Equation (7.7) can be written in terms of , M2 and 

their derivatives with respect to Z, so that

GX(E)

2K± + £
H

(7.8)

where

M1Z

+ 2lK§o||Kgo|z d^ .)

The partial derivative M2z is quite long. This is not 

surprising considering that M2 contains a number of products 

which are functions of Z. Nevertheless, it will be given 

here for completeness. Hence, we have for M22

A1 + A0 A1Z + AOZA1

+ (Aq At + A0A1)(2|g0zj| |gOq|z + 21 Kg0| |Kg0|z )

+ Aoz(§or]giT + W gOgi )

+ Ao soz^ £1^ + + 2IKI MzSoSi

+ lKl2goz§i + lKl So^Pz 1
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+ (A0)z(g0^gi + |K|2gogl)

*of(8o‘?)zgl7 + So^Siz'J + 2 |KI lKlzgoSi

+ lRl (go’zSl + lK|3g()81zj

+ 1^2 lgO I |so( 2^ *■  KAO^OZ “ KAq Aoz ’

___
+ |g0| (KzAq AOz + KAq zAq z + KA0(A0z )z

(K)zAq aoz - K(Aq )zAOz - KAOAOZZ

+ 2lAol IAoM (KgOSOZ “ Kgogoz)

+ Mol (Kz£o§oz + K£oz£oz + K§o^§oz^z

(K)zgogoz - K(go)zgoz - Kg0g0zz )

+ i^H’^Agl | Aq |^ (KgQgQ^ - KgQgOk? )

+ |A0| ((K)zgOgO^ + K(g0)zg0^ + Kg0g0Z7

Kz8o 8O7 KgOzSO'Y KgQ^O^z)

The last term involves the second derivative of H(Z), which 
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is zero in this case since we are considering the 

straight-walled channel H(Z) = Z. Note that we have made a 

distinction between the derivative of the complex conjugate, 

e.g. ,(K)z and the complex conjugate of the derivative Kz. 

This was merely convenient for the purpose of this analysis, 

the derivatives are equal.

7.22 Growth Rate Based on Relative Kinetic Energy

The growth rate based on relative kinetic energv E is 

defined in terms of E in equation (7.5) and Eq , the kinetic 

energy density of the basic flow so that

(7.9)

For the basic flow we have

"T - F(-1,Z)

and

u = 1_Fq , 
H 1

v = -6(F2 - QH'fy ) . 
H ‘

The sum of the squares of the velocity components gives

we obtain for EqFrom equation (7.4)

u^ + )Hd^
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( 1 (F^(o))2 + 2eE1(0)Fr)(1)

Jo H "

This will be conveniently written as

(7.10)

where

N = Nt + £ N2 ,

N1 = / (Fn(0) )2 d<] ,

N2 - 2 I d^ .
Jq

From definitions (7.5) and (7.10) we have

A

E = E
E0

= e”2Si m

N

which in terms of , M2, and N2 becomes

(7.11)

The growth rate based on relative energy may now be defined.

2

It is convenient to let

P = Pt + ^p2

where

P1 = Ml ,
N1
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so that (7.11) becomes

E = e Si p

Therefore

GX(E) = lKe’^P)

= - 2K- + 
H

where Pz is the partial derivative of P with respect to Z. 

Writing this in terms of M and N, and grouping similar terms 

together we have after simplifying

GX(E) = - 2K
H

1 + &M1Z
M1

• ■ W2 (7.12)

Equation (7.12) was used in computing the relative energy

growth rates GX(E) presented in Chapter 8. In the next 

section we look at the growth rate as a function of f(& )/H, 

where f ( (3 ) means function of $ .

7.3 Growth Rate as a Function of f(#)/H

At a given point Z for fixed R the growth rate is

funtion of and K only. However, K can be expre ssed as a

function of and so can all other quantities such as

eigenfunctions and amplitude functions, that appear in the 

growth rate equation. By expressing the growth rate in the 
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form f(0)/H it was possible to make numerical checks on the 

computed growth rate at different values of Z. This form is 

only applicable when H(Z) = Z i.e. for the straight-walled 

channel.

In order to show that the growth rate is a function of 

f(3)/H, we need to calculate the derivates of the various 

terms that are contained in the growth rate equation. This 

will be done here for the growth rate based on the stream 

function. The results derived here apply to all growth 

rates. The symbols f (£), f (p,

etc are functional notations standing for functions of or 

of /3> an<j *2 as the case may be. The resulting equations 

such as

^0 = A0(Hi,H2),

or C3 = f + H2q'f(|3,7)

are to be understood in this context. They are only meant to 

show that a given variable e.g. C3 is a function of the 

given quantities P , 7 the forms shown.

The local frequency was defined as

fi(Z) = COH2(Z) .

The first and the second derivatives of /3 are given by
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d0 = 2<x)H
dZ

=

2 0
H

1 f(f3) , for H = Z , 
H

d2/3 
dZa

= 1 f(^).
Hz

The derivatives of the local eigenvalue can also be 

expressed as functions of 3 as follows.

dK = dKd£
dZ d|3dZ

= 2|3dK
H d£

<£_K = 1 f (13) 
dZa H2

d_q = 1 f (^) .
dZ H2-

(7.13)

The eigenfunctions and their derivatives are functions

of as well as 7 so that we can express them as

go = G(^K,?) ,

§07 = GdK + 2_Gd^
c>KdZ ^3dZ
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= Gklf(&) + G^lf(^)
H H

The functional relations for gg^ jgg^^ >gi> gl*7  > gp^? and 

are similar to that of gg, while those of ggz^j S0Z*?7  

and g|2 are similar to that of ggz«

The amplitude functions Ag and are a little more

involved in that they contain most of the variables in the 

stability equations. It will be easier to follow the various 

variables when the amplitude functions are expressed 

functionally as follows :

Ag = Ag(H|,H£)

A^ = A-^(H2 > H3 , H4)

where
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H1 “ H1 B1’B2’B35&0Z’^OZ^q ^»*Z^

H2 = H2 (B15B2jgo,gQ^

H4 = H4(B4,D.,A0 ,Aq ,Aq >go>goi7>gOT?’SOZ’

SOZl’BOZ?? ’ SOZT7*7  ,gOZZ ’gOZZ7*7  ,gl’glZ’

BlZT? H ’

and i = 1,2,3,4, 5,6,7,8.

The functional relation for H3 equals that of . These are 

the coefficients of A^ and Aq respectively, which were shown 

to be equal.

We begin by analysing each function to show how it 

depends on f(£>)/H. The functions ,B2,B3,C|,C2, C3 and C4 

are defined in section 6.22, page 115 and the following may 

be deduced

Bt = Hf(p,7) ,

b2 = Hf(M) ,

b3 = cxf (3,*?)  + £(^,*7)  + c2f (0,7) + c3f (0,7)
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+ £(£,•?) «• c4f(g,Q) ,

Cx = H2q'f(6,7)

and using the result for q' in (7.13) we see that

Cx = f(£)f(M)

- f(g,7) ,

C2 = f<M> ,

C3 = f(M> + H2q'f (0,7 )

= f(IM) ,

and = f(0,7) .

It follows from this analysis that

b3 = f (0,7 )

Having obtained we can deduce H^ and H2 in (6.19)

Ht = f ((?>)

H2 = Hf(£)

and hence

as
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Ao = If(&) ,
H

Ao = 1 f(B>) . 
H2

(7.14)

The variables for are defined in section 6.23 page 

120. The analysis for and is similar to that already 

carried out in the case of and C^.

b4 = f(0,T) ,

D1 = H3q"ff?) + + H2q'f(0,7) + (H2q’)2

+ H3q''f(&)

- f(M) >

d 2 ■= Hf (6,7 ) ,

D3 .= H2f(6,7) ,

D4 ’

d 5 .■ Hf(M) ,

°6 ’■ f(M> ,

d 7 .= Hf(£) ,
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and Dg = ft1?) .

The function H^ can now be expressed in terms of and H by 

substituting the functional terms into the expressions for 

H4 given on page 136. Note that all H’s cancel out leaving

H4 = f( £> ) .

From the amplitude equation we obtain

dA. = If (£) . 
dZ H

(7.15)

The growth rate based on the stream function is defined 

by equation (7.2). We can express the growth rate as

function of |?> to 0(€2) using the same procedure. Consider

the growth rate based on the stream func

Gx(^) = - Kj + £REAl /Aq + goz \
H \ 80 J

r
+ 6 REAL A1 + 11Z

80

a 'o + Joz = If(^) ,
so H

A + 81Z = If(£)
80 H

tion as follows :

and = lf(£) .
H

Hence G ('’?') = If (£) .
H

(7.16)
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7.4 Particular

The particular integral g^ for which

A3 = gt(7,z) + A1(z)g0(7,z) (7.17)

was shown to be associated with a stream fuction growth rate 

given by equation (7.2). The normalisation at *2=0  was 

chosen to be (6.12) which lead to

gt(0,Z) = - At(Z) .

It follows that different normalisations would lead to 

different amplitude functions. For instance, if we choose 

instead

then g^ = - A^(Z)gQ .

In general we could

and ask whether this

consider any particular integral gp 

makes any difference to the growth

rate. It turns out that different normalisations and hence

different particular integrals do not alter the growth rate.

Let gp be some particular integral given by

gp = 81 + M(Z)g0 (7.18)
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so that

i(0 A
% = 8p + A^ZJgg

- §1 + |m(Z) + A1(Z)g0
(7.19)

A glance at equations (7.17) and (7.19) tempts one to deduce

that

and hence = M + A^, but this is wrong. It is worth 

remembering at this point that in equation (7.17) all we 

know about A^ is that it satisfies the amplitude equation 

(6.23), which is

dA-i + Hq A>| + Ha = 0 . 
dZ H^ H2

(7.20)

The function A^ satisfies a similar equation. However, 

from equation (6.17) we note that A-^ is only determined to 

within an additive multiple of the function Aq , so  that

4‘° - * 0

but = Aogo

where <X is a constant. It then follows that
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= A1 - (M - At) ,

and A-l = A| - M - (XAq (7.21)

Equation (7.21) is consistent with equation (7.20) as 

the following analysis shows. In defining a new particular

integral gp, the terms which 

definition in the equation for

will be affected

. * are :

by the
j

f and 4^
(7.22)

(M +In each case A^ is replaced by 
/G?)

A
At)

A
A|). The equation for 

remains the same except that Aq is replaced by (M +

The orthogonality condition yields

d_(M + A-i ) + Ho(M + Aj ) + Ha =0. (7.23)
dZ h 2 H2

Hence

A| + M = A| + c Aq

which is equation (7.21) with an arbitrary constant c.

The growth rate is not affected by different 

normalisations. We can show this in equation (7.2) by
A

replacing A^ by A-^ and g| by gp. The resulting equation 

equals equation (7.2). In the growth rate as defined by 

(7.2) it can be seen that the 0( £ ) terms will not be
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affected in view of (7.22). We can therefore look more

closely at

4’\ 4”,
the notation

0(62)

T and

the

of (7.3)

terms.
. fl)

in the

G2(r ) = A'lg0 + Algoz + glz
A0§0

- (gl + AlgQ)(A0 A+
A0A0§0

gpz )
Ao£o£o

(7.24)

If At
A 

and are now replaced by and gp we obtain

G2(R) = (4 - M’ - CXA0

A0
) + (A^ - M - 0( Aq  ) gQz

AQgQ

+ g1z + M'gp + Mgoz
A0^0

Mgn + (Ax - M -«A0)g0 (Ap + 
° J A0S080

gQZ }
Aogogo

which can be rearranged as

Go(R) = + A-| gQ/ + 8iz_
A0 ^0^0 ^0

(gl + Alg(P( A0a *
\AoAoSo

|oz___
a08080/

°<A0 " MgQZ
A0 A0§0

- (Mg0 - Mg0 - ^Aogo) Po__ +

MJ
A0

o< g_oz 
gQ

M.' + Mgoz
A0

Ao£oso;

+

and cancellation of terms involving M gives the 0( <*)

contribution as
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G2(R) - A + AlgOZ + flZ.
A0 A080 A080

(gl + A180’(A0 +

= 4i+ §iz. W 4^ +
AO AO§O 'A0A0§0

^08080) A1AO •

A
which is the same as (7.24). Therefore G2(R) = G2(R)

Hence the growth rate has remained unchanged. This result 

is useful in making numerical calculations for growth rates. 

Different ways of defining the particular integral used in 

calculating lead to different amplitude functions ,

but do not affect the growth rates.
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8. NUMERICAL METHODS AND RESULTS

We now turn to the formidable task of the computing 

involved, numerical checks made and the difficulties 

encountered during the course of this work. The results on 

channel flow will also be presented here.

Most of the numerical results on channel flow were 

computed in single precision on the Cray-lS Computer. This 

is equivalent to double precision on the Honeywell or Amdahl 

Computer. Some results were checked by double precision on 

the Honeywell. The accuracy estimated will be described as 

we proceed.

8.1 Numerical Methods

The methods used and the checks that were carried out 

will be discussed as they arise. It is convenient to start 

with the Orr-Sommerfeld equation (6.7) which gave rise to 

earlier programs.

8.11 Orr-Sommerfeld Problem

The main program was designed to solve the

Orr-Sommerfeld equation

P/K)(D2 - K2) 

■ Fw s
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with boundary conditions

4’=<^=0 at 1-1,

4> = - 0 at 1 = 0 .

Note that we shall require subroutines to generate the basic 

flow F with its derivatives and also with its

derivatives. The next problem was to find K, for fixed 

values of P , R and Z. Once the eigenvalue K is available, 

obtaining an eigenfunction that satisfies the boundary

conditions is simple.

The following form of the Orr-Sommerfeld equation was 

found more convenient to use for the purpose of numerical 

integration.

4>IV/+ <^4^ + c2^ = 0 (8.1)

where

Ct = - 2K2 + iR(P - KF)

and C£ = K^ + iKR(F^K2 + F^^ - Kp).

The constants and C£ were calculated by a subroutine. A 

fourth order Runge-Kutta routine was used to calculate 

and its derivatives. We used a step length of 1/20 and step 

length of 1/40 for checks.
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The Runge-Kutta routine requires starting points for 

and its derivatives, these were obtained from the series 

solution (6.13). Two even independent solutions 4'j’ and 

which satisfy boundary conditions at >7 = 0, are given by

- 1 -xc.c2r +_i__ (Co - c^c?)‘7s+ ...
1 24 720 40320

and

'k = q2~ 1 + 1 (Cj - Cn)1?^

12 360

+ _l _(2c 1c 7 - cTt  + ... . 
20160

The series solutions including the term containing ^ID was 

used to check the computed values of <4^ , 4> , s 4^ and 

for small values of 7. at R = 40, = 1, Z = 0.85 and Z =

1. In Table 8.1 we give values of 4^ and 4^ computed by 

the Runge-Kutta (RK) and those calculated from the series 

(S). It is evident that the results are close for small 

values of *2 . The solutions 4[ and 4^ were also required 

to satisfy equation (8.1), which was also a check on the 

calculated values of C| and By applying the boundary

conditions (6.10) on the solution

<$> = + A2<^ (8.2)

we obtain a set of homogeneous equations for the arbitrary 

constants and A£ as in section 3.5. The requirement for

a non-trivial solution to exist leads to the
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Table 8.1. The solutions and obta1ned by using the 
Runge-Kutta routine < RK) and the series <S> 
For R = 40, f = 1 at various values oF *2 and Z.

z .J2 RK/S ± ±
0.8^ 0.05 RK 0.9999 0.0000 0.0024 0.0000

S 0.9999 0.0000 0.0024 0.0000

0.10 RK 0.9999 0.0004 0.0098 0.0002

S 0.9999 0.0004 0.0098 0.0002

0.15 RK 0.9998 0.0021 0.0217 0.0012

S 0.9995 0.0019 0.0216 0.0010

1.0 .05 RK 1.00000 0.0000 0.0249 0.0000

S 1.00000 0.0000 0.0249 0.0000

0.10 RK 1.00005 0.0004 0.0988 0.0002

S 1.00000 0.0004 0.0986 0.0002

3.15 RK 1.00026 0.0022 0.0218 0.0014

S 0.9998 0.0022 0.0217 0.0012
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familiar eigenvalue relation

F(R,|3,K) = (1) 4/ (1) - (1) c£>Z (1) =0 .

This relation was our object function in the root finding

routine and also in the contour plot programs.

Setting up the subroutine for the basic flow F was

straight-forward except that it was worth remembering that

the Runge-Kutta routine requires intermediate values of F.

Therefore if N is the number of steps for the Runge-Kutta,

the required number of steps for the base flow is 2N. Once

the routines for the Runge-Kutta and base flow were ready

the next important task was to get an accurate value for K,

the eigenvalue. This is dealt with in the next section.

8.12 The Eigenvalue K

The solution of the Orr-Sommerfeld equation depends on

a good estimate of K. It was therefore important that we

obtain as far as possible a good estimate of K. A simple

root finding routine R00TATZ was designed to locate roots at

various values of Z, R and . The routine uses the method

of successive linear approximations. Convergence is not

guaranteed, or in some cases the routine may converge to a

different root Despite these limitations of the method of

successive approximations, the routine R00TATZ worked

remarkably well in locating roots which were revealed by

contour plots or in tracing a given root.
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An estimate for K was traced from a known root obtained 

by Eagles(Private communication). This root is believed to 

be the most unstable, or least stable root. The root was 

also revealed by contour plots and picked up by ROOTATZ. 

This was an important check on the program itself. The root 

obtained by tracing was further checked by plotting graphs 

of the eigenvalue against R or (3 at fixed Z to ensure 

that the root was continuously connected. Table 6.1 gives 

the root traced by ROOTATZ and also shows numerical 

agreement to four decimal places.

Problems were encountered when the eigenvalue was 

allowed to vary with Z at step lengths of about 1/10 or 

more. The routine converged to other roots more frequently. 

At smaller step lengths of about 1/20 or 1/40, the routine 

was more reliable. However, it was still necessary to check 

graphically whether the root was varying smoothly.

When the Orr-Sommerfeld equation was replaced by its 

adjoint the results for the eigenvalue K and the adjoint 

eigenavlue KA were equal to four decimal places being given 

by

K = (1.266141,0.234261)

and Ka = (1.266062,0.234324)
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at R - 60, - 1 and Z = 1. This was an encouraging 

result since theoretically K and KA are supposed to be 

equal.

The eigenfunction can easily be obtained from (8.2) 

by setting one of the arbitrary constants to unity, e.g. 

A| = 1. Applying the boundary condtions at 7 = 1 we obtain 

for the constant A2

a 2 = - (i) .

The adjoint eigenfunction is obtained in a similar manner. 

Checks were made on both the eigenfunction and its adjoint 

by using different step lengths and also ensuring that the 

boundary conditions are satisfied.

8.13 Numerical Differentiation

In considering the computing involved in the 

non-parallel theory, it is necessary to recall the equations
.(0 JX)

for and 4? which are given by (6.14) and (6.21). For 

the solutions of (6.14) and (6.21) we require knowledge of 

the first and second derivatives of g0 with respect to Z, 

other functions requiring only first derivatives.

A subroutine FINDIF consisting of finite central 

difference formulae was used to obtain the derivatives. We 

used 8 points with step length of 1/20. In this way we were
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<gble to find the second derivative with respect to Z at 

the centre point(usually Z = 1) . The variable Z was usually 

varied from 0.85 to 1.2 so that the point Z = 1 lies 

somewhere close to the centre. An increase in the number of 

points to 10, for instance would would increase the size of 

program considerably due to the complex matrices required to 

hold the finite differences. Even with 8 points it was not 

possible to run the program on the Honeywell Computer. An 

additional subroutine was required to find the derivatives 
of gi>grpgiqq >A0’ M’ lg0^l and W- The reason for this 

was that these functions were required later in the program 

and the subroutine required for them was very small compared 

with FINDIF.

This was a very important stage which required a lot of 

care to ensure that the derivatives are reasonably accurate. 

The computed derivatives were manually checked for accuracy 

using the computer generated table of differences and a 

calculator. The program was also checked against the 

derivatives of a known polynomial.

8.14 Amplitude Functions and Growth Rates

The equation for the amplitude function Aq is given by 

(6.19). The functions H-^(Z) and H£(Z) are integrals with 

respect to . These were integrated using Simpson's

Rule with a step length of 1/20. The numerical
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ratio H^/H2 was checked against equation (7.14) at Z = 0.9

for R = 40 and 60. There was agreement to four significant 

figures. The growth rate results checked against (7.16) 

agree with the theory to three significant figures. 

From equation (6.9) we have

g (z) = <z >h 2(z )

so that CO can be chosen to ensure that & = 1 at selected 

values of Z. It was then possible to use the theory given 

in Section 7.3 to check the numerical results obtained for 

the growth rate. Some results for the growth rates are 

displayed in Table 8.2, and with H(Z) = Z this confirms (to 

three figures) the expected relation that the growth rate is 

a function of f(£)/H, which is a useful check on the 

consistency of the numerical work. The frequency (3 = 1 was 

chosen for the purpose of comparison since it lies somewhere 

near the critical frequency for 6 = 3.57 of the 

Eagles & Weissman(1975) neutral curve. Time did not allow 

computation with other values of (3 .

It was shown in Section 7.4 that different ways of 
iCO 

defining the particular integral used in calculating T 

lead to different amplitude functions but did not affect the 

growth rate. A subroutine RHSI was used to calculate the 

particular integral of equation (6.14) with starting value 

(1,0,1,0). A different starting value like (0,0,2,0) for 

instance, defines another particular integral and hence a 

different amplitude function. This was checked numerically 

for R = 40, 50 and 60 at = 1,
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Table 8.2. The stream Function and relative energy growth 
rates at various values oF R, & and Z For /g =1 .

R G Z (E) HGa HG-^(E)

40 0.0 0.9 -0.307120 -0.614400 -0.276480 -0.552960

1.0 -0.276480 -0.552950

0.0125 0.9 -0.287410 -0.562840 -0.258670 -0.506560

1.0 -0.258800 -0.506910

60 0.0 0.9 -0.260290 -0.520580 -0.234260 -0.468520

1.0 -0.234260 -0.468200

0.0083 0.9 -0.235280 -0.462480 -0.211840 -0.416230

1.0 -0.212120 -0.416820

154



Z = 1 and GR = 0.5. Numerical results agree completely

with the theory. The results are given in Table 8.3, where 

P1 and P2 represent particular integrals (PI) corresponding 

to the starting values (1,0,1,0) and (0,0,2,0) respectively.

8.2 Numerical Results

A brief summary of the numerical results on channel 

flow will be presented here. We begin with the base flow 

discussed in chapter 5 and complete this section with a 

discussion on growth rates.

8.21 The Basic Flow

Recall that the stream function for base flow F was 

expanded in terms of £ to 0(£2'). The second and third 

approximations are functions of 7 , R and the shape function 

H(Z) for fixed G . Since we are mainly concerned with the 

straight-walled channel, H(Z) = Z in this case. In Fig. 8.1 

we show the second and third approximation to the velocity 

profile as a function of *7  at Z = 1. The approximations 

will be denoted by

and

where F2 and F3 are the second and third approximation

respectively
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Table 8.3. The stream Function and relative energy growth 
rates with particular integrals FJ and 
at R = 40, 50, 60 For = 1 and Z = 1 .

R G PI Gx(^) GX(E)

40 0.0125 p. -0.258733 -0.506906

Pi -0.258733 -0.506906

50 0.1 1? -0.231965 -0.455199

Pi -0.231965 -0.455199

60 0.0083 p. -0.212125 -0.416824

Pi -0.212125 -0.416828
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rig. 8.1. Comparison oF the second and third 
approxima11 on For the velocity proFile 
with the appropriate JeFFery-Hamel 
proFile J(Z> at R = 35, £ = 0.1 and

Z = 1 . “ 5 — i ++
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The approximations are compared at R = 35, £ = 01

and Z = 1 with the appropriate Jeffery-Hamel (J(T)) profile 

at Y= 3.5. Note that the approximations get better with 

higher order terms. We would expect the fourth 

approximation to get even closer to the Jeffery-Hamel 

profile. This should imply better approximation to the 

growth rate in straight-walled channel flows.

8.22 Growth Rate Terms

The growth rate based on the stream function was 

defined in equation (7.3) to 0( £2) as

Gx(^) = Gq (R) +6Gt(R) + £?G2(R) + ...

at Z = 1. The following notation will be used for the 

second and third approximation to the growth rates. Let

G2(^) = G0(R) + £GX(R) ,

G3(V) = Go (R) +^G1(R) + 62G2(R) ,

be the growth rates based on the stream function. The 

relative energy growth rate is given by

GX(E) = H0(R) +6H1(R) + e2H2(R) + ...

so that the second and third approximations may be defined

as
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H2(E) = H0(R) + eH1(R)

and H3(E) =Hq (R) +GH1(R) + ^H2(R).

In Table 8.4 the terms Gq (R), G^(R), and G2(R) for the

stream function growth rate are given together wi th

corresponding eigenvalues K at various values of the

Reynolds number. The associated graphs with G^fR) as a 

function of R are also presented in Figures 8.2, 8.3 and 

8.4. The function Gq (R) is the Poiseuille flow growth rate 

which is negative and increases smoothly with R but remains 

negative. On the other hand the functions G^(R) and G2(R) 

both increase with R. However, G2(R) increases much more 

rapidly and at higher values of R (R 170) the program 

converges to some other root. It was not possible to 

compute results for R > about 170 because the basic most 

unstable Poiseuille flow root was not reliably picked out by 

the root finding routine. This seems to indicate that as R 

increases there are a number of other Poiseuille flow roots 

in existence, fairly close to the most unstable one. Time 

did not allow an exhaustive investigation of this 

phenomenon.

8.23 Growth Rates

In order to assess the accuracy of the present method,

it was necessary to compare the second and third
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Table 8.4. Values oF the Functions Go- G( ond G^ For the 
stream Function growth rate with the corresponding 
Poiseuille Flow eigenvalues K at va^oius values 
oF R For = 1 and Z = 1 .

R K Go 6.

50 1.2497 0.2516 -0 .2516 1.7747 18.7215

60 1.2661 0.2343 -0 .2343 2.4105 29.4890

70 1.2825 0.2193 -0 .2193 3.0330 39.5743

80 1.2968 0.2060 -0 .2060 3.5820 49.0837

100 1.3198 0.1844 -0 .1844 4.5854 69.3896

120 1.3380 0.1684 -0 .1684 5.6056 92.9291

140 1.3536 0.1561 -0 .1561 6.6702 119.4171

150 1.3607 0.1509 -0 .1509 7.2134 133.5622
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R

G0(R)

Fig. 8.2. The Poiseuille Flow stream Function growth 
rate as a Function oF R at (i = 1 and Z = 1 .
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Fig. 8.3. The Function G,<R> in the stream Function growth 
rate as a Function oF R at /3 = 1 and Z = 1 .
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140

Fig. 8.4. The Function Gi<R) in the stream Function growth 
rate os a Function oF R at 6 = 1 and Z = 1 .
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approximations to the growth rate. The approximations as a

function of £ are displayed in Figures 8.5 and

In

and

Fig. 8.5

G3(^)

the stream function growth

are given at R = 60, p> = 1

The approximations for R = 150 have also

in order to show the

rates

and

been

trend as R increases

8.6.

g 2(^)

included

The

Z 1

approximations to the relative energy growth rate G (E) 

given in Fig. 8.6.

are

If the Jeffery-Hamel velocity profiles are any guide 

for better approximation to the base flow, we would expect 

the fourth and higher order approximations to the growth 

rate to give better corrections to the growth rate. This is 

true for both the stream function and relative energy growth
A

rate. There is no doubt that (y ) is a correct asymptotic 

approximation to the stream function growth rate Gx('^/) with 

an error of 0(e) as G —> 0 with R fixed, which clearly 

shows the destabilising effects in the divergent channel. 

Whether or not this approximation is accurate in predicting 

the position of zero growth rate cannot be easily estimated, 

but there is no a priori reason why the asymptotic 

approximation for £ —■> 0 should not be used to predict 

zeros in a numerical sense.

The critical Reynolds number as a function of G for 

the second and third approximation at = 1 and Z = 1 is 

displayed in Figures 8.7 and 8.8. In Fig. 8.8 we also give 

the Eagles & Weissman(1975) neutral curve based on mean 

relative energy using Jeffery-Hamel profiles as the base
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0.3

Fig. 8.5. The second ( — ) and third <-> approximat 1 on For 
Fo^ the stream Function growth rate 
as a Function oFG at R = 60 and 150.
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Fig. 8.6. The second (—> and third (-) approximation For 
the relative energy growth growth rote GXCE), 
as a Function oF 6 at R = 60 For =1 and Z=1.
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Fig. 8.7. The critical Reynolds number as a
Function oF G For the second ( —) and 
third <-> approximation to the stream 
Function growth rate at /3 = 1 and Z - 1 .
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Fig. 8.9. The critical Reynolds number as a
Function oF G. For the second (—) and 
third <-) approximation to the relative 
Function growth rate at P = 1 and Z = 1 .
FW is the Eagles & WeissmanC i975) mean relative 
energy growth rate.
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flow. It is worth remembering at this point that the

Eagles & Weissman growth rates were calculated using

Jeffery-Hamel profiles (in the first approximation) which 

effectively include the terms 6-R, C2R2, £?R^ etc.

Unfortunately this did not give results for lower

plane

values of R. Our approximation to the base flow is

only to 0(

Note that the trend of the neutral curves in the R— G

agree with the Eagles & Weissman curves for both the

stream function and relative energy growth rates. However, 

the curves are considerably different as shown by the 

differences in the critical Reynolds numbers. The 

differences are essentially due to the present method in 

which G and R are treated as independent and also to the 

base flow approximation to 0( £ ).

A n I ''A

The approximations Gi(T) and H^CE) get closer together 

at lower values of G. as expected. Better estimates of the 

critical Reynolds number would be found at these values, 

since the difference between the second and third 

approximation is smaller at low values of G . It would have 

been more satisfying to be able to obtain neutral curves for 

higher values of R, but for reasons given earlier about the 

method of successive approximations it was not possible to 

obtain reliable results beyond R = 150.
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The second and third approximations to the critical 

Reynolds number are also given in Table 8.5. These were 

estimated from the graphs in Figures 8.7 and 8.8. A similar 

notation to that of growth rates was used, so that if RC^) 

and T(E) are the critical Reynolds numbers for the growth 

rates based on the stream function and relative energy 

respectively, the the corresponding second and third 

approximations to the critical Reynolds number are given 

by R^ (ip) and T^(E) where i = 2,3. Table 8.5 also shows 

that the critical Reynolds numbers for the relative 

energy growth rate are lower for both approximations 

than those given by the stream function growth rate. 

This trend is confirmed by Eagles & Weissman(1975).
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Table 8.5. The second and third approximation to the 
critical Reynolds number at £> = 1 and Z = 1 
For the stream Function and relotive energy 
growth rate. FW is the Eagles & Weissman (1975) 
mean relative energy growth rate.

r 2 c 'V) R3(V)
A A

T2(E)
A A
T3(E) EW

0.02 130.0 100.0 J 22.3 98.0
-

0.05 90.0 65.0 80.0 60.0

0. i0 60.0 43.0 53.0 41.5 35.0

0.15 48.2 33.5 41.8 31.1 25.0

0.20 41.5 27.5 33.0 25.0 20.3

0.25 35.2 23.4 26.7 20.5 16.8

0.30 31.7 20.8 22.6 14.5
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9. CONCLUSIONS

We looked at axisymmetric flows of a tube whose radius 

varied slowly with the streamwise coordinate. The radius was 

given in terms of a general shape function r = H(Z) where Z 

is a slow variable. The basic flow was expanded in terms of 

to 0(xv ) and a solution to the steady state equation was 

obtained to 0(?> ). Getting the solution to higher order is 

a laborious task. An alternative approach would be 

necessary to extend the steady state solution and determine 

the solution as a general series such that given terms up to 

n - 1, the nth ^erm can be calculated. A similar attempt

was made by Lucas(1972) who successfully calculated the 13th 

approximation for the general shape in a channel by 

computational methods, but did not give analytical forms so 

that it is difficult to reproduce.

Nevertheless, for the exponential tubes, the solution 

obtained by the expansion method is in good agreement with 

the exact solution for 3. Outside this range the 

expansion method tends to under estimate the value of the 

velocity. This is an indication that more terms are 

required to make a contribution to the velocity profile.

The approximate solution obtained by the expansion 

method was used to advantage in the slender tube problem. 

Here the DE profiles were shown to be good approximations 

for more general slender tubes as anticipated by 
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Eagles(1982). In Table 2.3 the approximation for Tube 1 

when 3 is shown to be extremely good. The 

approximation for Tube 2 is expected to be even better since 

the flow is closer to Poiseuille flow.

The stability of the DE profiles was next considered by 

quasi-parallel theory. Contour plots were used in the 

search for eigenvalues in the complex q-plane. In the range 

-10 4 qr 4 10 and -4 4 q^ 4 4, no unstable eigenvalues were 

found. The least stable eigenvalue was found to be 

(1.7492,1.3257 ) at X= 0, R = 40 and co = 1. Stability tests 

were carried out on q by varying Y ,R and co . The 

eigenvalues remained stable to all the changes as shown in 

Figures 3.2, 3.3, 3.4 and 3.5.

The DE profiles were further tested for stability on 

the eigenvalues obtained by Davey & Drazin(1969). Tests 

were carried out on 9 eigenvalues that include the least 

stable eigenvalue. As Y , R and 00 were varied the 

eigenvalues remained stable to all these changes. The 

various trends of the eigenvalues as shown in Figures 4.2, 

4.3, 4.4 and 4.5 were checked against the modified Corcos & 

Sellars eigenvalue relation for centre modes. These results 

indicate that the DE profiles are stable for -64 Y < 6. 

They also confirm one of the additional modes found by Davey 

& Drazin.
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The link between our spatial and temporal roots was

established. It was then possible to show that the least

stable root in the spatial problem was linked continuously

to the least stable root in the temporal problem. Using the

same idea we obtained a link between the root confirmed by

Eagles(Private communication) and the Davey-Drazin root

We also showed that the temporal root corresponds to the

spatial root q^. This restored our confidence in q^ as

being the least stable root and hence in our conclusions

concerning the stability of the DE profiles.

We next considered the stability of slightly

B .

non-parallel flow in a wedge. The special relation between 

R and G. assumed by Eagles & Weissman, i.e. £ R = 0(1) for 

the basic flow was removed. Instead, the basic flow was 

expanded in terms of to 0(G ) with R independent of G . 

This mathematical procedure was not only satisfactory but it 

also removed the objections raised by Smith(1979).

Eagles & Weissman(1975) obtained their growth rate 

results to O(^) using the Jeffery-Hamel profiles as the 

base flow which effectively contain terms £R, £.2R2, £?R2 

etc. In the present procedure it was necessary to go on to 

0( £2) in order to obtain adequate contribution from the 

basic flow. The third approximation to the basic flow as 

indicated by Fig. 8.1 is considerably closer to the 

Jeffery-Hamel profile than the second approximation so that
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a better approximation to the growth rate is expected.

However, our results for the relative energy growth rate

given in Fig. 8.8 indicate that higher order terms would be

required to get comparable results as in

Eagles & Weissman(1975). This implies that our growth rate

is under-estimated and consequently the critical Reynolds

numbers are higher than those given by Eagles & Weissman as

shown in Table 8.5. The difference could still be

attributed to the present method in which Q- and R are

treated as independent of each other and 

flow approximation to 0(6 ).

also to the basic

Despite the differences, the trends of the neutral

curves in the R-6 plane agree with the Eagles & Weissman

curves for the stream function and relative energy growth

rates. In both cases the approximations to the critical

Reynolds number are lower for the relative energy growth

rate than those given by the stream function growth rate.
A _-r-. A AnT/ A AThe approximations and H^CE) get closer together

lower values of £=■

at

so that we expect better estimates of the

critical Reynolds number at low values of G . These trends 

and Table 8.5 only indicate that we have an order of 

magnitude agreement with the Eagles & Weissman results.

Since the present method is mathematically consistent, 

it is worth considering what effect higher order terms would 

have in narrowing the differences between our results and 
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those obtained by Eagles & Weissman. This would not only be 

an improvement on the 0(C ) theory it would also shed more 

light on the two methods. Nevertheless, the alternative 

method is viable and could provide a satisfactory 

confirmation of the results obtained by Eagles & Weissman.
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