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Abstract The paper focusses on seismic damage analysis of reinforced concrete (R/C) members,  

accounting for shear-flexure interaction in the inelastic range. A finite element of the beam-column 

type for the seismic analysis of R/C structures is first briefly described. The analytical model 

consists of two distributed flexibility sub-elements which interact throughout the analysis to 

simulate inelastic flexural and shear response. The finite element accounts for shear strength 

degradation with inelastic curvature demand, as well as coupling between inelastic flexural and 

shear deformations after flexural yielding. Based on this model, a seismic damage index is 

proposed taking into account both inelastic flexural and shear deformations, as well as their 

interaction. The finite element and the seismic damage index are used to analyse the response of 

R/C columns tested under cyclic loading and failing either in shear or in flexure. It is shown that 

the analytical model and damage index can predict and describe well the hysteretic response of R/C 

columns with different types of failure. 

 

Keywords reinforced concrete members;  distributed flexibility models;· shear-

flexure interaction;∙ damage indices 

 

1 INTRODUCTION 

The vast majority of existing R/C structures has not been designed according to 

modern seismic codes. These structures are very likely to experience brittle types 

of shear failure with grave consequences during a major seismic event. Therefore, 

a complete and reliable seismic assessment of these structures should account for 

inelastic shear effects. 

mailto:ajkap@civil.auth.gr
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The first step to perform a realistic seismic damage analysis is to develop an 

analytical model which is able to predict accurately nonlinear structural behaviour 

during a seismic event. Explicit modelling of inelastic shear may play a key role in 

this respect, especially in the case of gravity load designed (GLD) frame 

structures. 

 Relatively few researchers have attempted to explicitly include inelastic shear 

response in assessment of R/C structures (Takayanagi et al. 1979; Thom 1983; D’ 

Ambrisi and Filippou 1997; Ricles et al. 1998; Petrangeli et al. 1999; Pincheira et 

al. 1999; Lee and Elnashai 2001; Elwood and Moehle 2003; Cosenza et al. 2006; 

Marini and Spacone 2007). The limited number of such studies, compared to those 

dealing with predominantly flexural response, should be attributed to the fact that 

determination of shear strength of R/C members, and especially of shear 

deformation characteristics, are still controversial issues.  

The authors recently developed a new finite element (Mergos and Kappos 

2008) belonging to the class of phenomenological, ‘member type’, models. It 

consists of two sub-elements with distributed flexibility, representing inelastic 

flexural and shear response. The two sub-elements are connected by equilibrium 

and interact throughout the analysis to capture the shear-flexure interaction effect. 

Following this formulation, the proposed model is able to capture spread of 

flexural yielding, as well as spread of shear cracking, in R/C members. The model 

accounts for shear strength degradation with inelastic curvature demand (Priestley 

et al. 1994), as well as coupling between inelastic flexural and shear deformations 

after flexural yielding, observed in many experimental studies (Oesterle et al. 

1980; Saatcioglu and Ozcebe 1989). 

The second step for a complete seismic damage analysis is to quantify 

numerically the level of structural damage caused by an earthquake. A great 

number of seismic damage indices have been proposed in the literature (Kappos 

1997). The level of sophistication of the existing damage indicators varies from the 

simple and traditional displacement ductility to cumulative damage models which 

attempt to take into account damage caused by repeated cycling. 

 However, a major drawback of existing indices is that they have been 

formulated and verified almost exclusively on the basis of flexure damage 

mechanisms and possibly combining shear transfer mechanisms to the above, 

within the same constitutive law, e.g. moment-rotation (Park et al. 1987). 
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Williams et al. (1997) evaluated eight existing damage indices by comparison 

with a series of single-component tests using a variety of moment to shear ratios 

and stirrup spacings. They found that none of the proposed indices followed a 

clear shear-dependent trend.  

Garstka et al. (1993) have proposed, on the basis of nine test results involving 

beams with different shear spans, a shear-flexure interaction model, wherein the 

proposed damage index is expressed as a nonlinear combination of damage due to 

shear and flexure. Both components of the damage index are based purely on 

energy absorption, using a concept suggested by Meyer et al. (1988). However, the 

combined failure criterion of Garstka et al. (1993) has been calibrated with a very 

limited set of data, while further calibration becomes difficult since 

experimentally-measured dissipated energies of monotononically and cyclically 

loaded concrete members up to failure are required for various bending-shear 

combinations. 

Based on the finite element developed by the authors of this study, which is 

described briefly in the next section, a new seismic damage index considering 

inelastic shear-flexure interaction effects is presented in this paper. The proposed 

damage index is applied in the damage analysis of reinforced concrete column 

specimens failing either in shear or in flexure. It is found that the new damage 

index describes reliably the behaviour of both types of R/C members up to failure. 

 

2 FINITE ELEMENT WITH SHEAR-FLEXURE INTERACTION 

2.1 Flexural Sub-element 

The flexural sub-element is used for modelling the bending behaviour of an R/C 

member subjected to cyclic loading before, as well as after, yielding of the 

reinforcement. It consists of a set of rules governing the hysteretic moment-

curvature (M-φ) behaviour of the member end sections, and a spread plasticity 

model describing flexural stiffness distribution along the entire member. 

The M-φ relationship at each end section of the member is described by the 

primary curve and the rules determining its hysteretic behaviour. The primary M-φ 

relationship is derived using standard flexural analysis of the critical cross-section, 

with appropriate constitutive laws for concrete and steel. The relationship is then 
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approximated by a bilinear (elastoplastic with strain hardening) curve. The multi-

linear, ‘yield-oriented’ with slip, model of Sivaselvan and Reinhorn (1999) was 

adopted herein for describing the hysteretic M-φ behaviour. The hysteretic model 

was appropriately modified by the writers to be compatible with a bilinear skeleton 

curve (Mergos and Kappos 2008).  

     To capture the variation of the section flexibility along an R/C member, a 

spread plasticity formulation has to be developed. The flexural sub-element 

presented herein and shown in Figure 1 is based primarily on the model by Valles 

et al. (1996). In Figure 1, L is the length of the member; EIA and EIB are the 

current flexural rigidities of the sections at the ends A and B, respectively; EIo is 

the stiffness at the intermediate part of the element and αA and αB are the ‘yield 

penetration’ coefficients which specify the proportion of the element where the 

acting moment is greater than the end section yield moment (Mergos and Kappos 

2008).   

The flexural spread plasticity model presented in this work differs from the one 

of Valles et al. (1996) in that constant rigidity is assumed along the yield 

penetration lengths, and nonlinear moment distribution due to possible gravity load 

effects is taken into account in calculating the yield penetration coefficients (Fig. 

1); the latter feature is particularly important in the case of beam elements. 

 

2.2 Shear Sub-element 

The shear sub-element represents the hysteretic shear behaviour of the R/C 

member prior and subsequent to shear cracking. It consists of a set of rules 

determining V-γ (shear force vs. shear distortion) hysteretic behaviour of the 

member end regions, and a shear spread plasticity model defining shear stiffness 

distribution along the entire member. In this study, shear distortion, γ, is defined as 

the average shear deformation along the discrete regions (cracked or uncracked) of 

the shear sub-element.  

The V-γ relationship of each member end region is determined by the primary 

curve and the rules governing its hysteretic behaviour. Initially, the backbone 

curve is calculated without including shear-flexure interaction effects (initial 

backbone). Then, shear flexure interaction effects are modelled by assigning an 

appropriate analytical procedure.  
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The V-γ initial primary curve consists of three branches (Fig. 2), but only two 

different slopes, as explained later on. The first branch connects the origin and the 

shear cracking point, which is defined as the point where the nominal principal 

tensile stress exceeds the mean tensile strength of concrete. The shear cracking 

point is determined following a procedure proposed by Sezen and Moehle (2004) 

and assuming constant shear stiffness in this range of the response.  

The second and third branches of the initial primary curve have the same slope 

and connect the shear cracking point to the point corresponding to the onset of 

yielding of transverse reinforcement (Vuo, γu). The latter is taken as the ‘failure’ 

point in this study (Mergos and Kappos 2008). The second and third branches are 

separated at the point corresponding to flexural yielding (Vy, γy). This approach 

was adopted in order to distinguish hysteretic shear behaviour before and after 

flexural yielding (Ozcebe and Saatcioglu 1989).  

The mean shear distortion at the onset of transverse reinforcement yielding, γu, 

is estimated using the truss analogy approach proposed by Park and Paulay (1975) 

and Kowalsky and Priestley (1995). According to this approach, in a cracked 

member the shear deformation will arise from the extension of transverse 

reinforcement and the compression of the diagonal compression struts.  

Regression analyses by the writers (Mergos and Kappos 2008) showed that best 

correlation with experimental results was achieved when, in calculating γu from 

the truss analogy approach, the angle θ was taken equal to 35
o
 (unless limited to 

larger angles by the potential corner-to-corner crack) and the derived value was 

then multiplied by two modification factors. The first modification factor, κ, takes 

into account the influence of the axial load and the second modification factor, λ, 

represents the influence of the column aspect ratio.  Regarding shear strength, Vu, 

the approach proposed by Priestley et al. (1994) is invoked, which has been 

developed for both circular and rectangular columns. According to this approach, 

the concrete contribution to maximum shear strength is a function of a parameter k 

which decreases with maximum curvature ductility demand developed in the 

critical cross section. For the initial shear primary curve, Vuo is derived by setting 

the value of k corresponding to curvature ductility demand μφ≤3 (i.e. no strength 

degradation). In the finite element of this study, shear strength degrades based on 

maximum curvature ductility demand. This is achieved by using the procedure 

described in the following. 



6 

First, at each time step i of the analysis, maximum curvature ductility demand 

of the critical cross section j (j=A,B), μ
i
φj,max, of the flexural sub-element is 

defined. Then, the corresponding k
i
j factor is determined (Priestley et al. 1994) and 

this factor is used to calculate current shear strength, Vu
i
,j

 
; hence the shear strength 

degradation is 

, , ,

i i

u j uo j u j
DV V V     (1) 

This shear strength degradation is then modelled by reducing the ordinate of 

the backbone curve of the respective end-section of the shear sub-element, as 

shown schematically in Fig. 3. 

In order to re-establish equilibrium, the shear force increment at the next time 

step i+1, ΔVj
i+1

, is calculated by the total moment distribution at this time step 

minus the respective shear force of the previous time step, V
i
j. Assuming uniform 

gravity load distribution, the following equations are obtained 

 1 1

1
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i i

Bi i

A A

Mq L
V V

L

 


 

        (2) 
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 


 

       (3) 

Assuming that the end section of the shear sub-element still remains at the 

loading phase, the shear force increments calculated by Eqs (2)-(3) give rise to the 

respective shear strain increments, Δγj
i+1

, defined by Eq. (4) and shown 

schematically in Fig 3.  

1

1

1

i

ji

j

V

G A







       (4) 

 Combining the analytical procedure shown in Fig. 3 and the relationship 

between curvature ductility demand and strength of concrete shear-resisting 

mechanisms proposed in Priestley et al. (1994), yields the modified shear primary 

curve shown in Fig. 4; in this figure hardening of the flexural primary curve has 

been exaggerated for illustration purposes. Furthermore, it is assumed that 

curvature ductility capacity of the critical cross section exceeds the value of 15 

(which is often not the case in old-type members) and that the element fails in 

shear after yielding in flexure. 
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 As can be seen in Fig. 4, by adopting the analytical procedure described 

above, coupling between inelastic flexural and shear displacements is also 

achieved. More particularly, it is observed that shear displacements increase more 

rapidly when curvature ductility demand exceeds the value of 3. This increase is 

sharper for 3<μφ≤7 and becomes smoother for 7<μφ≤15. Finally, for μφ>15, shear 

displacements tend to increase at the same rate as they do for μφ≤3. In all cases, by 

using this analytical procedure, shear deformation at shear failure will be equal to 

γu. These observations are in accordance with the truss analogy approach (Park and 

Paulay 1975; Kowalsky and Priestley 1995) as explained in Mergos and Kappos 

(2008). 

       Hysteretic shear behaviour (V-γ) was modelled using the proposals by Ozcebe 

and Saatcioglu (1989) as a basis, with several modifications and improvements. 

Although this hysteretic model has been calibrated against experimental results 

and was found to yield a reasonable match, it has not been designed with a view to 

being incorporated in a dynamic nonlinear analysis framework. The authors 

proposed appropriate modifications regarding the hysteretic rules of the unloading 

and reloading branches of the specific model which can be found in Mergos and 

Kappos (2008). 

To capture variation of shear stiffness along a concrete member, the authors 

proposed a shear spread-plasticity model formulation. In this model, shear rigidity 

distribution along a concrete member is assumed to have the form shown in Fig. 5, 

where GAA and GAB are the current shear rigidities of the regions at the ends A 

and B, respectively; GAo is the shear stiffness at the intermediate part of the 

element; αAs and αBs are the shear cracking penetration coefficients, which specify 

the proportion of the element where the acting shear is greater than the shear 

cracking force of the end section. Analytical information on the calculation of the 

shear cracking penetration coefficients, as well as the coefficients of the flexibility 

matrix of the shear sub-element can be found in Mergos and Kappos (2008). 

 

3 SEISMIC DAMAGE INDEX 

By definition, a seismic damage index is a quantity with zero value when no 

damage occurs and of value of 1 (100%) when failure or collapse occurs (Kappos 
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1997). However, an R/C member may fail either in flexure or in shear. Hence, an 

appropriate local seismic damage index, Dtot, for such a member should become 

equal to unity when the respective end of the member reaches its flexure or shear 

deformation capacity. A general mathematical relationship that satisfies the 

aforementioned limitations is  

   1 1 1
a

tot fl sh
D D D



        (5) 

where Dtot is the total local damage index of the concrete member (0≤Dtot≤1) 

representing total damage of the member; Dfl is the flexural damage index 

(0≤Dfl≤1), representing flexural damage of the member; Dsh is the shear damage 

index (0≤Dsh≤1) representing shear damage of the member; α is an exponent 

related to the importance of the flexural damage index Dfl to the total damage 

index Dtot, and γ is an exponent related to the importance of the shear damage 

index Dsh to the total damage index Dtot. 

In Equation (5), when no flexural or shear damage in the concrete element has 

occurred (Dfl=Dsh=0) the total damage index Dtot remains equal to zero. However, 

if flexural failure occurs (Dfl=1) then Dtot becomes equal to unity independently 

from the value of the respective shear damage index, Dsh. In a similar fashion, 

when shear failure occurs (Dsh=1), Dtot becomes equal to unity irrespectively from 

the condition of the member in terms of flexural behaviour. 

Calculation of Dtot, as given by Equation (5), may be strongly influenced by the 

values adopted in the analysis for the exponents α and γ. However, by assigning 

physically meaningful observations regarding structural damage in R/C elements, 

these values can be uniquely defined, as described in the following. 

Total damage in an R/C member can be considered as a combination of damage 

due to inelastic flexural effect and inelastic shear effect. Consequently, the total 

damage index Dtot should obtain greater values than the respective flexural and 

shear damage indices; nevertheless Dtot should not exceed 1 (that corresponds to 

member failure). Equation (5) satisfies the aforementioned limitation only when α 

and γ assume values greater than 1. 

Moreover, it is physically meaningful to assume that when one type of damage 

(flexure or shear) is negligible in the R/C member, the total damage in the member 

is due to the other mechanism (shear or flexure); i.e. if Dfl=0, it is rational to 
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assume that Dtot=Dsh, and vice versa. In equation (5) this can be achieved only 

when α=γ=1. 

Based on all the above considerations, Equation (6) is finally proposed herein 

for determining Dtot from Dfl and Dsh: 

     1 1 1
tot fl sh

D D D        (6) 

Figure 6 illustrates variation of Dtot for all the possible combinations of Dfl and 

Dsh. It can be seen that Dtot takes a zero value only when both Dfl and Dsh are equal 

to zero (no damage in flexure or in shear). Furthermore, it is obvious that when 

one of the damage indices (Dfl, Dsh) becomes equal to one (flexural or shear failure 

respectively) then Dtot becomes equal to one as well, irrespectively from the value 

of the other index. The physical meaning of this observation is that the R/C 

member has reached its lateral force capacity when either flexural or shear failure 

occurs. 

Fig. 7 presents variation of Dtot with Dmax for the two edge values of Dmin where 

Dmax and Dmin are the maximum and minimum values, respectively, of Dfl or Dsh. It 

is obvious that when Dmin=0, then Dtot=Dtot,min=Dmax, meaning that when one type 

of damage is negligible then the total damage of the member can be assumed equal 

to the other type of structural damage. When Dmin=Dmax, Dtot obtains its maximum 

values, Dtot,max which can be significantly higher than Dmax, as can be observed in 

Fig. 7. For all the intermediate values of Dmin (0<Dmin<Dmax), Dtot lies always 

between the continuous and dotted line of the same figure (Dtot,max and Dtot,min 

respectively) which can be considered as the upper and lower limit, respectively, 

of Dtot as a function of Dmax. In all cases, Dtot is equal or greater than Dmax.  

In all damage assessment procedures, for the calculation of the total damage 

index Dtot, determination of the individual damage indices Dfl and Dsh is first 

required. In general, damage in R/C elements is related to irrecoverable (inelastic) 

deformation. Therefore, any damage variable should preferably refer to a certain 

deformation quantity (Kappos 1997). 

By definition, the flexural damage index Dfl should refer to a local, purely 

flexural, deformation variable. The best choice for this case is the curvature φ 

developed at the respective end of the R/C member. Similarly, the shear damage 

index Dsh should refer to the shear distortion γ developed at the respective end 
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region of the member, as defined also in the shear sub-element described in 

Section 2.2. 

Following the basic definition of a seismic damage index, Dfl and Dsh must have 

a zero value when no flexural or shear damage takes place in the R/C member and 

they must become equal to unity when flexural or shear failure respectively occurs. 

Flexural damage in an R/C member occurs when the maximum developed 

curvature φmax at the respective end of the member exceeds a threshold value φο, 

below which virtually elastic behaviour occurs, in the sense that no permanent 

deformation is visible and therefore no damage is detected. In an analogous 

fashion, shear damage in an R/C member takes place when maximum shear 

distortion γmax becomes greater than the respective threshold value in shear, γο. 

Flexural failure develops in an R/C member when the maximum developed 

curvature φmax at the respective end of the member reaches available curvature 

capacity φu. Curvature capacity φu can be considered as the minimum value from 

those corresponding to hoop fracture due to a strain arising from the expansion of 

the concrete core (Priestley et al. 1996), fracture of the longitudinal reinforcement 

in the tension zone, and buckling of the compression bars (Papia and Russo 1989). 

Shear failure occurs when the maximum shear distortion γmax at the end region of 

the R/C member reaches or exceeds the respective available shear distortion 

capacity γu. As explained in Section 2.2, it is assumed in this study that γu 

coincides with the onset of yielding of transverse reinforcement. In general, this is 

a conservative approach; nevertheless, it is very realistic in the case of R/C 

members with non-ductile transverse reinforcement detailing which happen to be 

the members most amenable to shear types of failure. 

Two general relationships for the flexural and shear damage index, satisfying 

the aforementioned limitations, are the ones given in Equations (7) and (8). 

max
1 1

o

fl

u o

D



 

 

 
   

 

   (7) 

max
1 1

o

sh

u o

D



 

 

 
   

 

   (8) 

It is obvious that in Equations (7) and (8) when φmax<φο or γmax<γο then φmax=φο 

and γmax=γο respectively should be assumed to avoid negative values for Dsh and 

Dtot. 
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In the same equations, ξ and ρ are exponents determining the rate at which 

flexural or shear damage increases with the normalized ratios (φmaxφo)/(φuφo) 

and (γmaxγo) /(γuγo) respectively. It is worth pointing out, that these normalized 

ratios represent special cases of Equations (7) and (8) by setting ξ=ρ=1. 

Clearly, exponents ξ and ρ should be determined on the basis of available 

experimental data. However, until today, only limited calibration of the damage 

indices has been performed against observed damage in laboratory tests or post-

earthquake investigations. Since experimental data are either unavailable or 

inconclusive, it seems better to assign values to ξ and ρ that would provide the 

most reasonable values to the total damage index Dtot for the whole range of the 

possible combinations of the aforementioned normalized deformation ratios. By 

combining Equations (6), (7) and (8), the following equation arises for the total 

damage index, Dtot: 

 max max
1 1 1

o o

tot

u o u o

D

 

   

   

    
       

    

   (9) 

Until today, there exist no sufficient and reliable data on the relative importance of 

the flexural and shear deformations to the total damage of a concrete member; in 

fact, this relative importance is very difficult to quantify. It is worth noting in this 

respect that the issue here is not whether shear failure is more brittle than flexural 

one, but whether the amount of damage inflicted by either type of inelastic 

deformation (flexural or shear) is different when the value of the corresponding 

normalized deformation ratios of Equation (9) is the same. Therefore, it appears 

more logical, at least at this stage of research, to assume equal importance of the 

flexural normalized deformation ratio and the shear deformation ratio to the total 

damage index, Dtot. Hence, it is assumed in this study that ξ=ρ.  

 

By assigning the following definitions: 

max max

max
max ,

o o

u o u o

r
   

   

  
  

  

   (10) 

max max

min
min ,

o o

u o u o

r
   

   

  
  

  

   (11) 

Equation (9) can now be written as 
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   max min
1 1 1

tot
D r r

 

        (12) 

It can be inferred by Equation (12) that Dtot assumes minimum values, Dtot,min, 

as a function of rmax when it is rmin=0 and that Dtot reaches maximum values, 

Dtot,max, as a function of rmax when rmin becomes equal to rmax. For all the other 

values of rmin (0<rmin<rmax), Dtot remains between Dtot,min and Dtot,max. 

Fig. 8 illustrates variation of Dtot,min with rmax for four discrete values of ξ. It can 

be seen, that for ξ=1/3, Dtot increases from a value of 0.63 to 1.0 as rmax increases 

from 0.95 to 1.0. This abrupt increase in Dtot is contrary to both experimental 

evidence of damage and to engineering judgment. Thus, ξ=1/3 is not a proper 

value for determining Dtot. For the other values of ξ in Fig. 8, Dtot,min varies in a 

relatively smooth way as a function of rmax. 

Fig. 9 illustrates variation of Dtot,max with rmax for the same four discrete values 

of ξ. It can be seen, that for ξ=4/3, Dtot has become equal to 0.90 for rmax=0.60 

meaning that as rmax increases from 0.6 to 1 the additional damage is almost 

negligible. This also conflicts with available experimental evidence. The same 

occurs for ξ=1, in which case Dtot becomes equal to 0.88 for rmax=0.65.  

On the basis of the above, the solution deemed to provide reasonable values to 

both Dtot,min and Dtot,max is ξ=2/3. In figure 10, variation of both Dtot,min and Dtot,max 

with rmax for ξ=2/3 is illustrated. It can be seen that Dtot,min and Dtot,max curves are 

almost symmetric with respect to the 45degrees line. It is clear from this figure, 

that this solution assures in all cases smooth variation of Dtot with rmax permitting a 

clear differentiation of the various levels of damage. In all cases the values of Dtot 

lie between the Dtot,min and Dtot,max curves. For example, for rmax=0.5, Dtot varies 

from 0.37 (rmin=0) to 0.62 (rmin=rmax=0.5) which represents a 67% increase to the 

value of the total damage index. In order to obtain such an increase for the case of 

rmin=0, rmax must rise up to 0.77 representing a 54% increase in the respective value 

of rmax. The above show that the proposed formulation of the total damage index 

Dtot can represent the combined damage due to the simultaneous inelastic flexural 

and shear effect in R/C members. 

Another critical issue regarding the determination of Dtot is the actual definition 

of the threshold values φο and γο below which no damage is detected. Values 

corresponding to flexural and shear cracking or flexural and shear yielding may be 

adopted. However, due to the nonlinear, inelastic behaviour of R/C from the very 

early stages of response, definition of φο and γο is not always straightforward. 
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Furthermore, for a broad class of R/C members, the aforementioned values 

represent only a very small fraction of φu and γu respectively; hence, their 

inclusion in the determination of Dtot has only a minor influence on the results (see 

section 4). In this study, for simplification reasons, it is assumed that φο=γο=0. 

On the basis of the aforementioned observations, Equation (13) is invoked in 

this study for the calculation of Dtot.  

2 / 3 2 / 3

max max
1 1 1

tot

u u

D
 

 

   
       

   

    (13) 

Based on this equation, Fig. 11 illustrates variation of Dtot for all pairs of the 

normalized ratios φmax/φu and γmax/γu. In this figure, it can be seen that Dtot takes a 

zero value only when both maximum curvature and shear distortion demand have 

also zero values. Furthermore, when the R/C member reaches its deformation 

capacity in flexure (φmax=φu), Dtot becomes equal to unity regardless of the 

member state in shear; similarly for the case where maximum shear distortion 

demand γmax reaches γu. In both cases, the R/C member starts to lose its lateral 

force capacity and can be considered as ‘failed’ following a more or less 

conservative approach. 

It is important to note that Equation (13) can be incorporated only in a finite 

element, like the one described earlier in this study, which utilizes moment-

curvature and shear force – shear strain hysteretic relationships at the two ends of 

the member for the calculation of the element flexibility matrix. It cannot be 

applied for example to finite elements where all types of inelastic deformations 

along the member are lumped to zero length rotational springs at the member ends. 

Furthermore, it must be stated, that this equation may lead to erroneous results if it 

is applied in the nonlinear analyses of R/C structures where increase of shear 

deformations after flexural yielding (shear-flexure interaction) is disregarded, as it 

will be shown in the correlation examples of this study.  

A limitation of the proposed equation for Dtot is the fact that it does not account 

for cumulative damage effects due to repeated cycling. Kappos and Xenos (1996) 

assessed the importance of the energy term in the combined damage index of Park 

et al. (1987) considering realistic structures and hysteretic characteristics, realistic 

seismic inputs, and also a sufficiently rigorous dynamic inelastic analysis 

procedure. It was found that the contribution of the energy term to the value of the 

damage index was very low for the case of well-detailed R/C members. However, 
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for R/C members with poor detailing available data remain ambiguous since 

calibration against experimental evidence is still very limited. Further 

consideration should be given to the issue of whether cumulative damage effects 

should be considered in the case of non-ductile R/C elements. 

 

4 CORRELATION WITH EXPERIMENTAL RESULTS 

The proposed member-type finite element model was implemented in a 

computer program (IDARC/2D) for the nonlinear dynamic analysis of 2D R/C 

structures (Valles et al. 1996). Bond-slip effects in this study were taken into 

account indirectly as described in Mergos and Kappos (2008). To validate the 

model, the program was used to simulate the hysteretic response of several R/C 

members tested under cyclic loading; results for a flexure-critical member, a 

member failed in shear after flexural yielding, and a shear-critical member, are 

presented herein. 

Based on the analysis results, the proposed seismic damage index was 

implemented to describe inelastic damage behaviour of the specific R/C members. 

Participation of the individual damage mechanisms (flexure and shear), as well as 

their interaction to the total damage of the R/C elements were investigated. 

Finally, the proposed index was compared with a well-documented seismic 

damage index (Park et al. 1987) in order to investigate its capacity in describing 

evolution of damage in R/C members. The basic findings for each individual R/C 

column element are presented in the following. 

 

4.1 Flexure-critical R/C member 

Lehman and Moehle (1998) tested five circular R/C bridge columns, typical of 

modern construction, under uniaxial displacement-controlled lateral load reversals. 

Herein, the specimen designated as 415 is examined; detailed information 

regarding the experimental variables of the specimen can be found in Mergos and 

Kappos (2008). This specimen was dominated by flexure, exhibiting stable 

hysteretic behaviour until failure. 

      Fig. 12(a) shows the experimental and analytical lateral load vs. total 

displacement relationship of the specimen. It is seen that the proposed analytical 
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model predicts well the experimental behaviour up to maximum response.  

      Fig. 12(b) presents the evolution of the structural damage index Dtot with the 

experimental load step. Contributions of the flexural and shear inelastic 

mechanisms are also included. It can be observed that the flexural damage index 

Dfl prior to flexural yielding, which occurs at step 540, assumes very small values 

(less than 5%). However, after flexural yielding, Dfl gradually increases up to 87% 

a value very close to 100% that corresponds to complete failure of the element. 

Similarly, prior to shear cracking, which takes place at loading step 370, Dsh takes 

values smaller than 1%. After shear cracking, Dsh increases more rapidly but its 

final value remains relative small (37%) emphasizing the fact that shear is not 

critical for this element. It is worth noting that Dsh continues to increase after 

flexural yielding as a result of the shear-flexure interaction procedure adopted by 

the finite element of this study. 

      For the entire range of response, Dtot, due to its formulation, envelopes the two 

component damage indices. It can be inferred from the figure that immediately 

after shear cracking, Dtot is governed by Dsh. However, after flexural yielding, Dfl 

gradually obtains the vital role in the determination of Dtot and at the end of the 

analysis these two damage indices almost coincide. The final value of Dtot is 92%, 

which is very close to failure. The small differentiation may be attributed to the 

fact that the specific R/C member, as can be inferred from Fig. 12(a), fails finally 

due to repeated cycling at maximum displacement. It is recalled that the proposed 

damage, in its current formulation, cannot take into account cumulative damage 

effects. 

        Fig. 12(c) compares the values of the total and shear damage index when 

increase of inelastic shear deformations after flexural yielding is taken into account 

in the finite element model (D1) and when this phenomenon is totally ignored in 

the analysis (D2). It can be seen that considering inelastic shear-flexure interaction 

effect leads to an increase of Dsh from 12% to 37% at the end of the analysis. 

Hence, modelling this effect is a crucial issue in a seismic damage analysis 

considering inelastic shear mechanisms. The respective differentiation in the 

values of Dtot is more important during the intermediate steps of the response 

where Dsh is still significant for the total damage of the member. Nevertheless, at 

the final stages of the response, D1tot and D2tot are almost identical due to the fact 
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that their values are governed by the flexural damage index. 

Finally, in Fig. 12(d) the proposed total damage index is compared with the 

Park-Ang damage index, which has the general form (Park et al. 1987): 

m ax

u y u

M d
D

M




 
  




    (14) 

where the first term is the ratio of maximum recorded rotation to the rotational 

capacity of the member under monotonic loading conditions and the integral term 

is the energy dissipation normalized by the product of the yield moment and 

rotational capacity and scaled by an empirical factor, β determined on the basis of 

a large number of test results. For this example, the typical value of β=0.05 was 

used as proposed for well-detailed R/C members. Rotational capacity θu was 

calculated by using the equivalent plastic hinge length approach with the formula 

proposed by Priestley et al. (1996). 

It can be observed in Fig. 12(d) that the two indices show similar trends and 

almost identical values at maximum response. This means that both of them are 

able to describe evolution of structural damage for this flexure-dominated R/C 

member, however the Park-Ang index provides no indication as to which 

mechanism is the prevalent one with respect to failure. It is also worth reporting 

that the Park-Ang damage index failed to predict failure due to repeated cycling of 

the loading. This fact could be attributed to underestimation of the empirical β 

factor or overestimation of θu following the aforementioned semi-empirical 

procedure, or a combination of both. 

 

4.2 Flexure-shear critical R/C member 

Lynn et al. (1996) tested 8 full-scale columns, representative of old type 

construction, having widely-spaced perimeter hoops with 90 degree bends, with or 

without intermediate hoops, and longitudinal reinforcement with or without lap 

splices. Herein, the specimen designated as 2CLH18 is examined; experimental 

variables can be found in Mergos and Kappos (2008). 

Fig. 13(a) shows the experimental and analytical lateral load vs. total 

displacement relationship for the aforementioned specimen. It can be seen that the 

analytical model is able to represent very well the experimental results. The 
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specific R/C member exhibited a rather complex behaviour, yielding in flexure and 

then failing in shear due to drop of its shear capacity caused by shear-flexure 

interaction. It is important to note that the analytical model was able to capture this 

response and predict the shear failure of the member at a displacement of 38mm.  

Fig. 13(b) shows the evolution of structural damage indices Dfl, Dsh and Dtot 

with the experimental load step. It can be observed that the flexural damage index 

Dfl prior to flexural yielding, which occurs at step 165, obtains very small values 

(less than 8%). After flexural yielding, Dfl gradually increases up to 79% which 

means that flexural damage is pretty important for this member. Nevertheless, it is 

clear that no flexural failure is predicted. Prior to shear cracking, occurring at 

loading step 150, Dsh takes values smaller than 3%. After shear cracking, Dsh 

increases sharply and finally becomes equal to unity in accordance with the 

analytical finite element model which predicted shear failure at the final stage of 

the response. The total damage index is able of describing the entire history of 

damage evolution in this column specimen. It can be seen that a first sharp 

increase of Dtot takes place after shear cracking and another one shortly after, due 

to flexural yielding. Afterwards, Dtot is influenced similarly by the two component 

damage indices but at the final steps of the analysis Dtot becomes equal to Dsh 

emphasizing the fact that, since shear failure occurred, the member as a whole has 

reached its lateral force capacity. 

Fig. 13(c) compares the values of the total and shear damage index when 

increase of inelastic shear deformations after flexural yielding is taken into account 

in the finite element model (D1) and when this phenomenon is totally ignored in 

the analysis (D2). It can be seen that neglecting inelastic shear-flexure interaction 

effects, results in a value of Dsh=22% leading to a totally erroneous picture for the 

shear damage behaviour of the specific column element. The respective value of 

Dtot is 84% since now the total damage index is governed by Dflex. Obviously, no 

failure of the R/C member is predicted. 

Finally, in Fig. 13(d) the proposed total damage index is compared with the 

Park-Ang seismic damage index. A value of β=0.25 was assumed based on the 

respective literature for poorly detailed R/C members. It can be observed that 

although the Park-Ang index assumes high values at the last steps of the response 

(84%), it is not able to predict failure of this member. This is clearly because of the 

fact that no separate treatment of shear is made in this damage index. 
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4.3 Shear-critical R/C member 

Aboutaha et al. (1999) tested eleven large-scale columns to examine the 

effectiveness of various types of steel jackets for improving the strength and 

ductility of columns with inadequate shear resistance. The shear span ratio of the 

columns was equal to 1.33. All columns were tested without axial load. Three 

columns were tested as basic unretrofitted specimens. Herein, the unretrofitted 

specimen designated as SC9 is examined; experimental variables can be found in 

Mergos and Kappos (2008). The specific squat R/C member was almost totally 

dominated by shear, experiencing a brittle type of shear failure prior to flexural 

yielding (Aboutaha et al. 1999). 

Fig. 14(a) shows the experimental and analytical lateral load vs. total 

displacement relationship of the aforementioned specimen. It can be seen that the 

analytical model is able to capture adequately the pre-peak experimental response. 

Overestimation of the initial stiffness may be attributed to the fact that rotations 

due to inelastic bond-slip effects are not taken into account in this version of the 

model and to possible overestimation of the shear stiffness prior to shear cracking, 

which is assumed to be equal to the uncracked (GA) shear stiffness in this study. It 

is very encouraging that the analytical model was able to predict accurately the 

displacement at which shear strength starts to degrade rapidly. This was achieved 

by the correct prediction of γu using the modification factors κ and λ (Mergos and 

Kappos 2008). 

Fig. 14(b) shows a comparison of the analytical prediction and the 

experimental behaviour when shear is not modelled explicitly. It is clear from this 

figure that ignoring inelastic shear behaviour may lead to totally erroneous results 

regarding both strength and deformation. 

Fig. 14(c) presents the evolution of damage indices Dfl, Dsh and Dtot with the 

experimental load step. It is obvious that Dfl is characterized by very small values 

(less than 12%) over the whole range of response. This is due to the fact that no 

flexural yielding occurs during the analysis. On the other hand, Dsh, subsequent to 

shear cracking occurring at load step 35, increases steadily up to unity at the load 

step where shear failure was predicted by the analysis. Dtot is almost totally 

dominated by Dsh and the two damage indices become equal at the time of shear 
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failure. It is worth noting that inelastic shear-flexure interaction was not an issue 

for this specimen since no flexural yielding occurred during the experimental 

process. 

Finally, Fig. 14(d) illustrates a comparison of the proposed total damage index 

Dtot and the Park-Ang damage index. It can be seen that the Park-Ang damage 

index largely underestimates structural damage of this R/C member providing a 

value of 48% at the time of shear failure. This result clearly shows its weakness to 

take into consideration inelastic shear effects reliably in a seismic damage 

analysis. Nevertheless, its final value is significantly greater than the respective 

value of the flexural damage index, Dfl (calculated using the proposed model). 

This can be attributed to the fact that the total maximum rotation of the member, 

θmax, is significantly increased by the influence of inelastic shear effects (see Eq. 

14) and also to the fact that cumulative damage effects are taken into account by 

this index. 

 

5 CONCLUSIONS 

A distributed shear and flexural flexibility model with shear-flexure interaction for 

seismic assessment of R/C structures has been developed. The model is able of 

capturing shear strength degradation as well as increase of inelastic shear 

deformations subsequent to flexural yielding. Based on this finite element model a 

combined damage index is proposed for the seismic damage analysis of R/C 

structures. This damage index accounts for both inelastic flexural and shear 

deformations as well as their interaction. 

The proposed finite element and seismic damage index were implemented into 

the nonlinear static and dynamic analysis program IDARC/2D. They were then 

used to simulate and describe the nonlinear response of flexure-critical, flexure-

shear critical, and shear-critical R/C columns subjected to cyclic lateral loads. 

Good agreement between the finite element model and the experimental results 

was generally observed. Based on these results, the proposed total damage index 

was found to be able to describe accurately in qualitative, as well as quantitative, 

terms the evolution of structural damage in R/C members failing either in shear or 

in flexure. 
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The simplicity and computational efficiency of the proposed finite element 

model and seismic damage index, as well as their ability to reasonably capture the 

behaviour of actual R/C members with different failure modes, make them a 

valuable tool for the seismic assessment of R/C structures, especially those with 

non-conforming detailing. 
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FIGURE CAPTIONS 

Fig 1 Flexural sub-element 

Fig 2 Primary curve without degradation for shear force vs. shear deformation 

Fig 3 Shear-flexure interaction procedure 

Fig 4 Derivation of shear primary curve after modelling shear-flexure interaction effect: (a) 

Flexural primary curve in terms of member shear force and curvature ductility demand of the 

critical cross section; (b) shear (V – γ) primary curve after modelling shear-flexure interaction 

Fig 5 Shear sub-element: (a) Prevailing gravity loading; (b) Prevailing seismic loading 

Fig 6 Variation of Dtot for the various combinations of Dfl and Dsh    

Fig 7 Variation of Dtot with Dmax , for Dmin=0 or Dmax 

Fig 8 Variation of Dtot,min with rmax 

Fig 9 Variation of Dtot,max with rmax 

Fig 10 Variation of Dtot with rmax for ξ=2/3 

Fig 11 Variation of Dtot for the various combinations of φmax/φu and γmax/γu 

Fig 12  Lehman et al. (1998) specimen 415: (a) Lateral load vs. total displacement; (b) Variation of 

Dtot, Dfl and Dsh with the experimental load step; (c) Influence of the inelastic shear-flexure 

interaction effect on Dsh and Dtot; (d) Comparison of the proposed index Dtot with the Park-Ang 

seismic damage index. 

Fig 13  Lynn et al. (1996) specimen 2CLH18: (a) Lateral load vs. total displacement; (b) Variation 

of Dtot, Dfl and Dsh with the experimental load step; (c) Influence of the inelastic shear-flexure 

interaction effect on Dsh and Dtot; (d) Comparison of the proposed index Dtot with the Park-Ang 

seismic damage index. 

Fig 14  Aboutaha et al. (1999) specimen SC9: (a) Lateral load vs. total displacement; (b) Lateral 

load vs. total displacement relationship, without modelling shear; (c) Variation of Dtot, Dfl and Dsh 

with the experimental load step; (d) Comparison of the proposed index Dtot with the Park-Ang 

seismic damage index. 
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FIGURES 

 

Fig 1 Flexural sub-element 

 

 

 

 

 

 

Fig. 2 Primary curve without degradation for shear force vs. shear deformation 
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Fig 3 Shear-flexure interaction procedure 

 

 

 

 

Fig 4 Derivation of shear primary curve after modelling shear-flexure interaction 

effect: (a) Flexural primary curve in terms of member shear force and curvature 

ductility demand of the critical cross section; (b) shear (V – γ) primary curve after 

modelling shear-flexure interaction 
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                              (a)                                                                      (b) 

Fig 5: Shear sub-element: (a) Prevailing gravity loading; (b) Prevailing seismic 

loading 
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Fig 6 Variation of Dtot for the various combinations of Dfl and Dsh  
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Fig 7 Variation of Dtot with Dmax, for Dmin=0 or Dmax  
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Fig 8 Variation of Dtot,min with rmax 
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Fig 9 Variation of Dtot,max with rmax 
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Fig 10 Variation of Dtot with rmax for ξ=2/3 
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Fig 11 Variation of Dtot for the various combinations of φmax/φu and γmax/γu 
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Fig 12  Lehman et al. (1998) specimen 415: (a) Lateral load vs. total displacement; 

(b) Variation of Dtot, Dfl and Dsh with the experimental load step; (c) Influence of 

the inelastic shear-flexure interaction effect on Dsh and Dtot; (d) Comparison of the 

proposed index Dtot with the Park-Ang seismic damage index. 
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Fig 13  Lynn et al. (1996) specimen 2CLH18: (a) Lateral load vs. total 

displacement; (b) Variation of Dtot, Dfl and Dsh with the experimental load step; (c) 

Influence of the inelastic shear-flexure interaction effect on Dsh and Dtot; (d) 

Comparison of the proposed index Dtot with the Park-Ang seismic damage index. 
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Fig 14 Aboutaha et al. (1999) specimen SC9: (a) Lateral load vs. total 

displacement; (b) Lateral load vs. total displacement relationship, without 

modelling shear; (c) Variation of Dtot, Dfl and Dsh with the experimental load step; 

(d) Comparison of the proposed index Dtot with the Park-Ang seismic damage 

index. 
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