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 A B S T R A C T

We explore the integration of foundation models, such as large language models (LLMs) and multimodal LLMs 
(MLLMs), into visual analytics (VA) systems through intuitive natural language interactions. We survey current 
research directions in this emerging field, examining how foundation models have already been integrated 
into key visualisation-related processes in VA: visual mapping, the creation of data visualisations; visualisation 
observation, the process of generating a finding through visualisation; and visualisation manipulation, changing 
the viewport or highlighting areas of interest within a visualisation. We also highlight new possibilities that 
foundation models bring to VA, in particular, the opportunities to use MLLMs to interpret visualisations 
directly, to integrate multimodal interactions, and to provide guidance to users. We finally conclude with 
a vision of future VA systems as collaborative partners in analysis and address the prominent challenges in 
realising this vision through foundation models. Our discussions in this paper aim to guide future researchers 
working on foundation model assisted VA systems and help them navigate common obstacles when developing 
these systems.
1. Introduction

Visual analytics (VA) emphasises an analytical partnership be-
tween the computer and the human analyst, combining computational 
methods with interactive visualisation in an iterative process. This 
human–computer collaboration is vital for uncovering insights into 
data through VA. However, effectively leveraging such systems requires 
expertise across analytical techniques, data visualisation principles, 
and domain-specific knowledge. This creates a high barrier to en-
try which can put powerful VA tools out of reach for many users. 
Moreover, analysing large, multi-faceted datasets typically involves 
iterative processes where visualisations and computational analyses 
have to be repeatedly configured and refined to probe new perspectives, 
hypotheses, and insights. The interactions needed to make this happen 
can often add significant overhead to the analysis process.

The emergence of foundation models, such as large language models 
(LLMs) and multimodal LLMs (MLLMs), presents an increasingly viable 
solution to alleviate these limitations and support analysts within VA 
systems. With their vast knowledge bases and advanced natural lan-
guage processing capabilities, these models can facilitate mode intuitive 
and expressive communication between user and system. VA tools have 
the potential to evolve from passive tools to collaborative partners 
in analysis, capable of adapting to users’ needs, thus reducing the 
technical and cognitive barriers required to engage with VA.
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Recent work has explored the intersection of VA and natural lan-
guage processing (NLP), recognising the potential benefits of integrat-
ing language-based interfaces with visualisation tools. Shen et al. [1] 
review Visualisation-Oriented Natural Language Interfaces (V-NLIs), 
systems that support natural language (NL) input to produce visualisa-
tions. Similarly, Voigt et al. [2] focus on the use of NL in visualisation, 
covering systems that use NL either as an input or output modality. 
Hoque and Islam [3] survey natural language generation for visual-
isation, outlining key tasks, challenges, and future directions. Wang 
et al. [4] and Wu et al. [5] explored the use of machine learning and 
AI techniques in visualisation. Ye et al. [6] examine how generative AI 
techniques apply across different stages of the visualisation pipeline. 
Yang et al. [7] survey the bidirectional interplay between foundation 
models and visualisations, highlighting how each can enhance the 
other.

In contrast to these existing reviews, in this paper, we explore 
the integration of foundation models into VA, specifically for visual-
isation. We examine their current applications, future opportunities, 
and potential challenges. We discuss their applications across three 
key visualisation-related VA processes: visual mapping, visualisation 
observation, and visualisation manipulation.

The remainder of this paper is structured as follows: Section 2 
provides the necessary background for this paper; Sections 3 to 5 ex-
plore the current state-of-the-art, highlighting examples of foundation 
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Fig. 1. Sacha et al.’s knowledge generation model for visual analytics. Image from Sacha et al. [15].
model-assisted VA systems and future opportunities; finally, Section 6 
concludes with a vision for foundation model-assisted VA systems as 
collaborative analytical partners, outlining key directions for future 
research and addressing challenges that must be overcome to realise 
this vision.

2. Background

In this section, we present the relevant background necessary for 
the discussions in subsequent sections. We begin by defining foundation 
models and highlighting their capabilities. We then outline the key VA 
framework we use, defining the processes that form the focus of this 
paper.

2.1. Foundation models

Foundation Models are deep learning models trained on a large 
amount of broad data and can be applied to a wide range of tasks [8]. 
The advent of foundation models marked a shift from task-specific mod-
els towards more flexible, general-purpose machine learning models.

A Large Language Models (LLM) is a type of foundation model 
developed to process and generate natural language [8]. LLMs are 
trained on massive corpora of text data, allowing them to learn com-
plex linguistic patterns, and thus perform a wide range of natural 
language processing tasks, including text generation, translation, ques-
tion answering, and summarisation. Examples of prominent LLMs in-
clude OpenAI’s GPT series [9] and Meta’s LLaMA [10], all of which 
have demonstrated remarkable capabilities across a range of natural 
language processing tasks.

Multimodal Large Language Models (MLLMs) are LLM-based models 
capable of processing and generating multimodal information [11]. In 
this context, multimodal information refers to multiple data modalities, 
such as images, text, and audio. In this work, we are mostly concerned 
with MLLMs that can interpret images alongside text. Examples include 
OpenAI’s GPT-4V, which extends GPT-4’s capabilities to process visual 
inputs, enabling tasks such as image captioning and visual question 
answering [12], and Google’s Gemini, designed to process and generate 
integrated text-image outputs [13]. These models are typically trained 
on datasets dominated by natural images and textual descriptions [11]. 
This training allows them to effectively align textual and visual modal-
ities. However, this focus on natural images presents challenges when 
applying MLLMs to visualisations, which differ significantly in structure 
and intent.

2.2. Visual analytics

Visual Analytics is broadly defined as ‘‘the science of analytical 
reasoning facilitated by visual interfaces’’ [14]. This field combines 
data analytics with interactive information visualisation to support 
complex decision-making processes.

In this paper, we adopt Sacha et al.’s knowledge generation model 
of VA as a central framework [15] (Fig.  1). The model emphasises that 
2 
knowledge is generated through an iterative process, modelling it as 
interlinked loops of exploration, verification, and knowledge genera-
tion. They separate parts of their model into ‘‘human’’ and ‘‘computer’’ 
components. We focus on the interactions at this human–computer 
interface. Fig.  2 shows a more detailed part of the model at the interface 
of the human and computer components, including action paths, which 
describe individual tasks taken by a human interacting with a VA 
system, and cognition paths, observations made by a human that result 
in a finding.

This model provides a structured lens to examine how foundation 
models can enhance VA. Specifically, we use the model to identify 
and address challenges across the three key visualisation-related pro-
cesses in Fig.  2: visual mapping, the creation of data visualisations; 
visualisation observation, the process of generating a finding through 
visualisation; and visualisation manipulation, changing the viewport or 
highlighting areas of interest within a visualisation.

VA systems have evolved significantly over the past decade, shifting 
from passive tools to active participants in the analytical process. To fa-
cilitate this transformation, researchers have explored the development 
of mixed-initiative, guiding, and adaptive VA systems. Mixed-initiative 
systems [16] are characterised by collaborative interaction between the 
user and the system, where both parties actively contribute towards 
a common analytical goal. Adaptive systems are designed to continu-
ously update their knowledge and behaviour throughout the analysis 
process [17]. This adaptivity allows the system to respond to the user’s 
actions, preferences, and evolving understanding of the data.

Guidance is a process that ‘‘aims to actively resolve a knowledge gap 
encountered by users’’ [18]. Initially, only system-to-user guidance was 
considered, but later work acknowledged that guidance can be a mixed-
initiative process, including guidance from the user to the system [19]. 
Sperrle et al. [20] further developed this idea, proposing a model of co-
adaptive guidance that emphasises the continuous adaptation of both 
user and system behaviour and knowledge throughout the VA process 
as they guide each other.

In parallel, research has explored the integration of multimodal 
interactions into VA systems. Multimodal systems leverage multiple 
input and output modalities, such as touch, gesture, gaze, and natural 
language, to enable more natural and intuitive interaction between 
users and the system [21]. By providing users with a variety of interac-
tion modalities, these systems aim to create a richer and more engaging 
analytical experience, facilitating the exchange of knowledge between 
the user and the system.

Building on the concept of richer, multimodal interaction, the use 
of natural language (NL) as an input modality in VA systems has seen 
significant research. Early work on integrating NL into VA systems 
focused on using classical NLP pipelines, which often struggled with 
the ambiguity and noise inherent in human language [22]. However, 
the emergence of LLMs has revolutionised the field of NLP, offering 
a more robust and flexible approach to language understanding and 
generation.
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Fig. 2. A detailed part of the knowledge generation model for visual analytics at the human–computer interface. Solid blue arrows represent actions leading directly to analytic 
elements, while dashed blue arrows indicate actions leading to their mappings. Red arrows show processes where system responses are observed by the user to generate findings. 
This figure also highlights the three key processes explored in subsequent sections: visual mapping (Section 3), visualisation observation (Section 4), and visualisation manipulation 
(Section 5).
Source: Image adapted from Sacha et al. [15].
Fig. 3. A demonstration of the rule-based V-NLI NL4DV integrated within a Jupyter Notebook, enabling users to generate visualisations by specifying natural language instructions 
in Python. Image from Narechania et al. [23].
Recent research in VA has explored the use of LLMs to support 
parts of the analytical process, leveraging their capabilities in under-
standing and generating NL. Some VA research has also examined the 
capabilities of MLLMs in understanding images alongside text. Section 3 
illustrates how foundation models have been used so far to enhance VA 
systems, discusses the limitations of these efforts, and motivates future 
research.

In the next sections we discuss current work across three key pro-
cesses from the knowledge generation model for VA [15] (Fig.  2): visual 
mapping, visualisation observation, and visualisation manipulation. In 
each section, we highlight the potential opportunities and challenges 
associated with leveraging foundation models in VA.

3. Foundation models for visual mapping

Visual mapping actions are those that create data
visualisations [15]. The creation of visualisations is central to VA, 
but requires the user both understand what they want to achieve and 
have the technical expertise to configure it. Foundation models have 
3 
demonstrated the potential to lower these barriers by facilitating visu-
alisation creation through natural language interactions, as discussed 
in the following section.

3.1. Existing systems

There has been significant research into NL as an input modality 
for visualisation creation before LLMs. One category is Visualisation-
Oriented Natural Language Interfaces (V-NLIs) that given data, go di-
rectly from NL queries to generating corresponding visualisations [23–
25, interalia] (Fig.  3). Shen et al. provide a comprehensive review of 
V-NLI systems [1]. Another related area is that of visualisation recom-
mendation systems and search interfaces that allow users to input NL 
queries and output ranked recommendations [26,27, interalia] (Fig.  4). 
These older rule-based systems are typically categorised based on the 
specific tasks they are designed to handle, as they require customised 
development for each task. Foundation models have the potential to 
unify these systems, as they possess capabilities across multiple tasks.
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Fig. 4. Overview of DEEPEYE, a rule-based visualisation recommendation system. Image from Luo et al. [26].
Fig. 5. Visualisations generated with Chat2Vis, an LLM-based system, compared with rule-based NL4DV. Image from Maddigan et al. [28].
Fig. 6. LIDA system outputs, showcasing its four core modules: data summarisation, goal exploration, visualisation generation, and infographic generation. Image from Dibia [29]).
While we typically think of a visualisation as an image, most 
successful work in visualisation creation to date relies on generating 
specifications to map data to visual attributes. Despite advances in 
foundation models, visualisation grammars or code continue to play a 
crucial role as a bridge between NL inputs and the rendering of visual-
isations. For example, Chat2Vis [28] demonstrates GPT-3, Codex, and 
ChatGPT to generate visualisations from user queries, first generating 
Python code based on the query, which is then used to produce the vi-
sualisation (Fig.  5). LIDA [29] works similarly, generating Python code 
to produce visualisations from user queries (Fig.  6). ChartGPT [30] 
4 
produces Vega-Lite specifications from user queries in a structured way, 
generating answers to sub-tasks defining the filter, mark, encoding, and 
sort, and combining them to form a visualisation.

The integration of foundation models into VA systems has opened 
up new possibilities for more intuitive and flexible visualisation de-
sign. The ability of LLMs to understand nuanced NL input allows 
users to communicate their preferences and requirements more expres-
sively, enabling the system to customise the visualisation accordingly. 
NL2Color [31] illustrates this capability by leveraging GPT-3 to inter-
pret user expressions and modify the colour scheme of the visualisation 
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Fig. 7. Examples of visualisation colour palette refinement from a user query using an LLM by NL2Color. Image from Shi et al. [31].
Fig. 8. Examples of pictorial visualisations created by ChartSpark using a text-to-image generative model. From [32].
based on the user’s input (Fig.  7). This approach highlights the potential 
for LLMs to help create more customised visualisation designs.

Image-based generative foundation models have also been applied 
to the design aspects of visualisation. LIDA [29] uses a text-to-image 
generation model to turn visualisations into stylised infographics based 
on user prompts (Fig.  6). ChartSpark [32] employs a similar approach 
to generate pictorial visualisations (Fig.  8). These systems demon-
strate the potential for leveraging generative models to create visually 
appealing artistic representations of data. Schetinger et al. [33] of-
fer a comprehensive review of previous work and opportunities for 
text-to-image generative models in data visualisation.

3.2. Opportunities and challenges

Existing approaches to support visual mapping with foundation 
models have made significant improvements on earlier rule-based sys-
tems by enabling more flexible NL input. However, these systems are 
still constrained in the types of visualisations they can produce, as they 
mostly rely on Python or Vega-Lite as a bridge between user input and 
visualisation, which have limited expressiveness. There is opportunity 
to develop more flexible visualisation systems using foundation models. 
5 
One possibility is to use a more versatile bridge, such as D3.js [34], 
which provides a wider range of capabilities for creating interactive 
visualisations.

Image-based generative foundation models provide another
prospect for overcoming the limitations of code as a bridge, as they 
could potentially generate visualisations directly without the need 
for an intermediary programming language. Such models have been 
primarily applied to general computer vision tasks on natural images 
and creative applications but could be extended to visualisation-specific 
stimuli. By enabling models to directly generate visual representations, 
rather than relying on intermediate text-based specifications, multi-
modal models could offer a more flexible approach to visualisation, 
moving beyond the expressivity of particular specification languages. 
This could expand the range of possible visualisations and allow for 
more natural and expressive interactions between the user and the 
system. While this approach is still in its early stages, we believe it holds 
promise for creating highly customisable and diverse visualisations.

However, this direction also presents significant challenges, partic-
ularly in interpreting and generating interactivity, which is a crucial 
aspect of VA. Generating static images may limit the user’s ability 
to explore and interact with the data effectively. Additionally, the 
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Fig. 9. A full-automatically generated visual data story created by Calliope, consisting of six data facts. Image from Shi et al. [35].
current state of reasoning capabilities in foundation models can make it 
difficult to specify exact requirements when generating images directly. 
These models may struggle to understand and incorporate complex 
constraints or design principles, leading to visualisations that may not 
effectively convey the intended information or insights.

4. Foundation models for visualisation observation

Visualisation observation is the process through which analysts 
make a finding about their data through visualisation [15]. Analysts 
can engage in this process either by examining the visualisation itself or 
by observing analytic input from the system. LLMs can facilitate visuali-
sation observation, as the system is able to provide more expressive and 
intuitive feedback to users, as they can generate flexible human-like 
natural language. There are also opportunities for MLLMs to support 
this process as they can directly observe the visualisation image them-
selves, potentially aiding the user in examining the visualisation to 
create a finding.

4.1. Existing systems

Prior to LLMs, NL was already being used as an output modality 
to communicate findings and explanations to users in VA systems. 
Early research exploited rule-based NL generation techniques to com-
municate insights to users. Systems like Calliope [35] (Fig.  9) and 
Voder [36] produce data facts, NL descriptions of statistical facts about 
the data used. These systems typically rely on a limited set of prede-
fined fact types and use template-based generation methods, limiting 
the diversity of language that they can produce. Similarly, some sys-
tems generate captions or titles for visualisations using template-based 
approaches [37].

There has also been research into rule-based Chart Question An-
swering (CQA) systems, which enable users to ask questions about 
charts. Kim et al. [38] developed a pipeline that interprets user ques-
tions referencing chart elements, translating them into table-based 
queries to retrieve answers. The system then generates visual expla-
nations for the user input by linking the queried data to corresponding 
visual elements (Fig.  10). They also produced a dataset consisting of 
52 charts and 629 questions relating to those visualisations. Hoque 
et al. provide a comprehensive review of rule-based CQA systems 
and datasets [39]. CQA systems have moved beyond rule-based ap-
proaches to leveraging (M)LLMs, but the corpora of visualisations and 
NL produced are still relevant to current and future research.

LLMs have the capability to generate more flexible and diverse NL 
compared to rule-based systems. Some recent systems have leveraged 
LLMs to generate individual facts or annotations to supplement visuali-
sations. For example, the InkSight [40] system uses an LLM to generate 
annotations from user sketches on visualisations (Fig.  11). LLMs have 
also been used to construct entire narratives. DATATALES [41] is a 
6 
prototype system that leverages an LLM to help users author data-
driven articles based on a given chart and user annotations. Hoque 
and Islam [3] offer a comprehensive review of systems using NLG 
techniques in visualisation.

4.2. Opportunities and challenges

While these LLM-based approaches demonstrate the potential for 
more flexible and contextually relevant NL in VA systems, they still face 
limitations. LLMs struggle with analytical reasoning and may generate 
text that is fluent but not always accurate to the underlying data. 
For this reason, many LLM-based NLG approaches in VA still rely on 
templates, limiting their ability to fully leverage the flexibility of LLMs. 
For example, the InkSight [40] system still relies on a template-based 
approach — the statistical facts about the data are generated separately, 
and the LLM is only used to generate more fluent NL.

These LLM-based techniques generally interact with the underlying 
code or data to generate findings. For example, InkSight is actually 
observing the underlying data related to the selected part of the vi-
sualisation, not the visualisation itself. MLLMs could be leveraged to 
interpret visualisations directly. MLLMs have not yet been integrated 
into a VA system for this purpose, but there has been research examin-
ing the visualisation capabilities of these models and fine-tuning them 
further for visualisation tasks. Bendeck and Stasko [42] evaluate the 
visualisation literacy of the MLLM GPT4-V using the Visualisation Lit-
eracy Assessment Test (VLAT) [43], a set of multiple choice questions 
about visualisations originally designed to assess humans. They also 
assess the model’s ability to answer questions about deceptive visualisa-
tions — for example with a truncated or inverted axis — using a custom 
dataset (Fig.  12). Similarly, Lo and Qu [44] benchmark the ability of 
MLLMs to detect misleading visualisations using a small dataset of real-
world visualisations. In both papers, it was found that these models 
have some capabilities in visualisation tasks but still face problems in 
tasks requiring analytical reasoning. To try and alleviate some of the 
problems these models have with visualisation tasks, Zeng et al. [45] 
use instruction fine-tuning, which does increase the performance of 
models on a dataset similar to the VLAT (Fig.  13).

There are limitations with the datasets used in current research 
to benchmark the visualisation literacy and reasoning of MLLMs. The 
datasets are often contrived and do not accurately represent real-world 
VA tasks. Previous research has explored reverse engineering both 
visualisation specifications and the underlying data from real-world 
bitmap visualisation images using pipeline and neural network-based 
techniques [46,47]. Benchmarking or training MLLMs on real-world 
visualisations like these — such as research paper figures and illustra-
tions in the news and popular media across a broad range of domains 
— could harness a large, untapped body of knowledge to link data, 
visualisation design, and the findings they supported.
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Fig. 10. Example questions from Kim et al.’s rule-based CQA pipeline, which interprets user questions about chart elements and generates visual explanations. Image from Kim 
et al. [38].

Fig. 11. A demonstration of the InkSight using a user-drawn sketch on a visualisation to generate corresponding natural language annotations using an LLM. Image from Lin 
et al. [40].

Fig. 12. Examples from Bendeck and Stasko’s deceptive visualisation design dataset, showing the control visualisation on the left, the deceptive visualisation on the right, and a 
simplified version of the question asked to GPT-4V underneath. Image from Bendeck and Stasko [42].
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7 



M. Hutchinson et al. Computers & Graphics 130 (2025) 104246 
Fig. 13. Sample results from Zeng et al.’s fine-tuned MLLM on deceptive visualisation chart question answering compared with existing state-of the art MLLMs. Image from Zeng 
et al. [45].
5. Foundation models for visualisation manipulation

A visualisation manipulation action involves interacting with an 
existing visualisation without altering how the data is mapped or 
creating a new visualisation, for example, zooming, highlighting, or 
filtering [15]. Observation and manipulation tasks are closely related, 
often working together in an iterative process — a user observes a 
finding and then uses this to inform their manipulation of the visuali-
sation. Some systems can also manipulate the visualisation themselves 
to convey an observed finding. This section explores how foundation 
model enhanced systems support visualisation manipulation.

5.1. Existing systems

Current systems highlight the coupling between observation and 
manipulation, with work demonstrating how foundational models can 
mediate this process. For example, the InkSight system [40] allows 
users directly manipulate a visualisation through sketching to highlight 
data they find interesting, and the system responds with an observation 
about the selected data (Fig.  11). As discussed, there are limitations in 
the observations created by this system as the system is actually using 
the underlying data selected by the sketch, rather than interpreting the 
visualisation itself. The manipulation is also limited as the only interac-
tion modality is sketching. There remains the opportunity to integrate 
more interaction modalities, allowing the user to communicate with 
the system more expressively. Despite these limitations, the InkSight 
system demonstrates how LLMs can be leveraged for both manipulation 
and observation support in VA systems.

There are also tools in which it is the system that manipulates 
the visualisation rather than the user. The HiChart system [48] high-
lights parts of a visualisation based on text input, such as a sentence 
or paragraph from a related article (Fig.  14). The system achieves 
this by first reverse-engineering the Vega-Lite specifications from the 
visualisation image and then using the specification to highlight ar-
eas related to the provided text span. Although the system uses the 
deep-learning-based ChartOCR [49] to recover the specifications the 
system is actually manipulating the visualisation mapping, not the 
visualisation itself. There remains the opportunity to leverage MLLMs 
to manipulate visualisations directly, without the need for a bridge.

5.2. Opportunities and challenges

The integration of foundation models into VA systems has led to a 
growing focus on conversational interfaces that rely primarily on NL 
input. While this approach has shown promise in enabling more intu-
itive and accessible interactions, manipulating a visualisation through 
8 
NL alone is sometimes not ideal due to the inherent ambiguity of NL. 
Users may struggle to articulate their intentions clearly, leading to 
misinterpretations or unintended outcomes. To address this, there is 
a significant opportunity to combine language-based input with other 
well-established interaction modalities, such as direct manipulation, 
touch, or gesture-based inputs. These modalities allow users to express 
themselves more precisely, offering greater control and specificity when 
manipulating visualisations.

Direct manipulation techniques which underlie WIMP (Windows, 
Icons, Menus, Pointer) interfaces have been fundamental to supporting 
interaction in VA systems to date and are likely to continue playing 
a significant role due to their effectiveness in supporting certain tasks. 
For example, selecting data points, zooming into specific regions of a vi-
sualisation, or adjusting parameters through sliders can be more easily 
accomplished through direct manipulation than with language alone. 
By integrating NL alongside these traditional interaction modalities, VA 
systems can offer a more powerful and flexible user experience that 
combines the best of both interaction paradigms.

As mentioned, some existing systems have already begun exploring 
the integration of various interaction modalities alongside natural lan-
guage input in LLM-based systems, such as the InkSight system (Fig. 
11) [40] which combines sketch-based input with natural language. 
Similarly, foundation models have demonstrated capabilities in speech 
recognition [50] and gesture recognition [51], opening up new possi-
bilities for integrating these modalities more widely into VA systems. 
By leveraging multiple input channels simultaneously, systems can gain 
a more comprehensive understanding of the user’s intent and level of 
understanding throughout the analysis process.

However, there are also limitations to consider when integrating 
multiple modalities alongside NL. One challenge is the complexity of 
processing multiple input modalities in real-time. Systems would need 
to be able to capture and interpret several different input modalities si-
multaneously, whilst also handling any conflicts or ambiguities in these 
different channels. Systems may need specialised hardware to capture 
certain types of inputs, which may not be feasible in application. 
Further research is required to explore how to effectively implement 
foundation model based multimodal interaction techniques and their 
impact on user experience.

There also remains a significant opportunity to enhance user vi-
sualisation manipulation actions through guidance. Existing VA sys-
tems primarily react to user manipulation in a direct and task-specific 
manner. In Ceneda’s model, guidance in VA incorporates interaction 
history [18]. Foundation models have the potential to transform VA 
systems by leveraging this rich history — encompassing user queries, 
interaction behaviours, and the dataset itself — to provide tailored 
guidance. Systems could proactively suggest relevant action or even 
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Fig. 14. Examples of visualisations highlighted by HiChart in relation to user-selected text. Image from Yang et al. [48].
conduct exploratory analyses on the user’s behalf. They could adapt 
the level of guidance provided based on the user’s knowledge gap and 
the complexity of the task at hand, rather than reactively following user 
instructions.

Some recent systems are beginning to move in this direction by 
explicitly considering users’ analytical goals. For example, LEVA [52] 
incorporates LLMs to support users across different stages of analysis, 
from onboarding and exploration to summarisation, aiming to align 
system behaviour with the user’s broader analytical intent. Similarly, 
PhenoFlow [53] leverages LLMs within a VA interface to reduce cogni-
tive load and help clinicians iteratively refine their analysis goals in 
complex clinical data spaces. By moving beyond reactive support in 
this way, future VA systems could offer more intelligent, context-aware 
proactive guidance.

Sperrle et al. [20] explore the concept of co-adaptive guidance 
in mixed-initiative VA systems, incorporating guidance from the user 
to the system. With their ability to both generate and understand 
language, LLMs have the capability to facilitate this two-way guidance. 
Through asking questions, providing options, and eliciting user feed-
back, LLMs can learn from users and adapt their behaviour accordingly. 
This bi-directional communication can lead to a more collaborative 
and adaptive VA experience, where both the user and the system 
continuously learn from each other. Systems need to strike the right 
balance between proactive guidance and user autonomy.
9 
6. Discussion and conclusion

We have presented an exploration of how foundation models have 
the potential to enhance visualisation-related processes in VA: visual 
mapping, visualisation observation, and visualisation manipulation. 
This paper has examined existing systems that integrate these models, 
discussing their strengths and limitations. We have also identified 
opportunities for future advancements, particularly in enabling more 
guiding, adaptive, and multimodal systems that support users in their 
analytical tasks.

Visual mapping, visualisation observation, and visualisation manip-
ulation do not happen in isolation but are interconnected, iterative 
processes that form part of VA [15]. Leveraging natural language 
capability could enable future VA systems to facilitate seamless transi-
tions across these processes. Multimodal models could enhance this by 
allowing systems to interpret and interact with visualisations directly, 
as humans do. This would create a shared visual context between the 
user and the system, fostering collaboration in analysis. Intuitive in-
teractions spanning text, visualisations, and other modalities facilitate 
rich, collaborative exchanges between users and systems.

While the integration of foundation models into VA systems offers 
opportunities, there are still significant challenges that need to be 
addressed. These models often lack alignment with domain-specific VA 
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expertise, leading to outputs that fail to adhere to established visual-
isation principles or best practices. Future research should focus on 
developing approaches to align model outputs with human preferences 
and established VA principles.

Evaluating these systems also presents difficulties. Traditional NLP 
metrics are effective for automatic evaluations but fail to capture the 
nuanced requirements of VA tasks, such as user experience [44]. Con-
versely, design-focused evaluations and human studies provide rich in-
sights but lack scalability. There is a need for scalable evaluation frame-
works tailored to VA that balance automatic and nuanced assessments 
of system performance and user experience.

Additionally, foundation models often struggle with complex ana-
lytical reasoning, which limits their ability to effectively support VA 
workflows [54]. To address this, future research should prioritise the 
development of robust benchmarking datasets to assess and enhance 
reasoning capabilities in VA-specific contexts. These datasets should 
reflect real-world tasks and challenges, providing a foundation for 
improving model capabilities and enabling a more realistic evaluation 
of their reasoning processes in context.

The integration of foundation models into VA presents a significant 
opportunity to transform how users engage with data. We hope that 
the directions and opportunities highlighted in this paper will inspire 
further research, advancing the development of VA systems that act as 
collaborative analytical partners.
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