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‘We study a cylindrical plasmonic waveguide consisting of a magnetic Weyl semimetal embedded in a dielectric

medium. We determine the dispersion relation of the surface plasmon polaritons and show how it depends on the
plasma frequency, the radius of the semimetal core, and the separation between the nodes. We show that the band
structure, which modifies the electrodynamics in the medium, manifests itself through a pronounced asymmetry
in the dispersion curves and a giant splitting in the group velocity, with the orbital angular momentum as a

control parameter for the direction of propagation.
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I. INTRODUCTION

Surface plasmon polaritons (SPPs) are coherent excitations
of electrons and radiation, confined at the interface between a
metal and a dielectric. The possibility of confining the radia-
tion on subwavelength scales allows us to greatly enhance the
intensity of the electromagnetic field and its interaction with
matter [1]. A plasmonic waveguide, in particular, exploits the
SPPs to overcome the limitations in light confinement caused
by diffraction and to reduce the size of the device, which can
reach diameters down to tens of nm [2,3]. It is also the basic
component of a number of devices, e.g., SPP nanolasers [2,4].
Controlling the direction of SPPs is often necessary to reduce
noise and desirable for various applications, e.g., circulators
or amplifiers [5]. It requires, however, specially engineered
circuit elements [6,7] or interfaces [8].

In this work, we explore the possibility of using a Weyl
semimetal (WS) as constituent element of the waveguide.
WSs are topological materials, exhibiting nondegenerate band
touching points in an otherwise gapped Brillouin zone [9].
Since their discovery [10,11], a large number of compounds
have been shown to exhibit a WS phase [12-14], eliciting
intense theoretical and experimental interest. These materials
possess nontrivial transport properties [15,16], which can be
traced back to the presence of an axionic term in the emer-
gent electrodynamics [17,18], directly connected to a chiral
anomaly [19]. In our approach, we exploit these features to
propose a novel way to control the propagation of plasmonic
excitations. More in detail, the axionic term in a WS is quasi-
universal, in that it is fully determined by universal constants,
while the realization-specific structure of the electronic band
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only enters via the separation of the band-touching points.
This term encodes the anomalous Hall effect, the chiral mag-
netic response [20-22], and the optical activity [23,24]. The
giant nonreciprocity in magnetic WSs results in significant
magneto-optical effects, which can be exploited to design
plasmonic circuit elements, e.g., subwavelength optical insu-
lators [25].

At planar interfaces between WSs and dielectrics, unique
properties of the SPPs emerge from the strong coupling be-
tween light and the chiral surface Fermi arcs [26,27]. As a
consequence, SPPs exhibit an anisotropic dispersion in a half-
space geometry [28-30]. Analogously, the optical response of
thin films [31], hybrid layered structures [32,33], and mag-
netic domain interfaces [34,35] exhibits a strongly anisotropic
character [36]. Despite its potential technological impact, a
WS waveguide with a compact transverse section has not yet
been studied. Importantly, a compact section allows a previ-
ously overlooked effect, namely the nonreciprocity of light
propagation with respect to the orbital angular momentum
(OAM) quantum number.

To show this, we investigate a one-dimensional waveguide
with a circular section, in which a dielectric coating surrounds
a topological magnetic WS cylindrical wire, with the magne-
tization along the axis. This design exploits the fact that only
a portion of the energy is carried in the dissipative medium, so
that long-range SPPs are supported. In addition, the reduced
density of states and the electronic band structure enhance
the propagation of the electromagnetic field in this class of
materials [37]. Light beams can be characterized by a polar-
ization, or by an OAM index [38]. Such Laguerre-Gaussian
beams can be generated with a high degree of control [39]. In
this work, we show that the interplay between the transverse
confinement in the WS wire and the axionic term determines a
novel nonreciprocity of the dispersion in the OAM. Remark-
ably, plasmons with OAM equal in modulus but opposite in
sign propagate with a different, and in some regimes opposite,
group velocity. This previously overlooked phenomenon can

Published by the American Physical Society
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FIG. 1. Cylindrical waveguide scheme: a magnetic WS core sur-
rounded by a dielectric medium. The wave vector b along the z
direction describes the Weyl node separation in momentum space.

be exploited to control the signal propagation within the Weyl
semimetal plasmonic waveguide (WPW), providing an addi-
tional degree of freedom to the bands available for energy and
information transport [40,41].

II. MODEL

We consider a magnetic WS with a single pair of band
crossings, or Weyl nodes. Such a phase has been predicted
in various materials, e.g., EuCdyAs, [42-44], HgCr,Seq
[45], MnBi, Te4 [46], MnSn,Sby Teg [47,48], KoMn3 (AsOy)s,
XCrTe (X = K,Rb) [49], and Eu,Ir,O; [50], and manu-
facturing Weyl semimetal nanowires is within present-day
capabilities [51]. The universal low-energy Hamiltonian de-
scribing the electron dynamics in the vicinity of a Weyl node
atk = b is given by

Hy (k) = hvpo - (k — xb), x ==, ey

where 0 = (0¥, 07, 0%) are the Pauli matrices, Kk is the elec-
tronic crystal momentum, and vg is the Fermi velocity,
typically of order ~10° m/s. We denote the vector that sep-
arates the Weyl nodes as 2b and set its orientation along the &,
axis. A cylinder of radius R, with its axis along the z direction,
is considered; see Fig. 1. The semimetal is surrounded by
a cylindrical dielectric, with relative permittivity €; approx-
imately independent of radiation frequency and wave vector.
As we are interested in modes whose intensity decays radially
in the dielectric, we assume that the outer diameter of the
coating is much larger than all the other length scales.

The electronic states in this configuration have been stud-
ied in [52-55], but we will describe the SPPs via a different
approach, using the dynamics of the electromagnetic field.
When coupled to the Weyl electrons, the dynamics can be
reformulated in terms of a Dirac action; in doing so, the
electromagnetic part of the action acquires an additional term,
proportional to the chiral anomaly [20-22,56,57]. Such a 6
term is universal, i.e., independent of the realization of the
WS phase up to the separation between the Weyl nodes in the
Brillouin zone, and so are its observable consequences, e.g.,
the anomalous Hall and the chiral magnetic effects. It follows
that, neglecting the possible shift in energy between the Weyl

nodes, the classical dynamics of the electromagnetic field is
governed by the axion electrodynamics equations [17,58]

Pe 20

V.-E=—+4+ —b B, 2
€o T
V x E = —0,B, 3)
V-B=0, @)
1 . 20
VXB:—ZatE—i-;LOJe——bXE. (®)]
c TC

Here o = e?/4meghc ~ 1/137 is the fine-structure constant,
p. and j. are the total charge and current densities, while &g
is the permittivity of the vacuum. While the homogeneous
equations (3) and (4) are unaltered, the Weyl node separation
2b explicitly appears in the anomalous density in (2) and in
the Ampere-Maxwell law (5). These anomalous terms break
time-reversal invariance of Maxwell’s equations. Throughout
this paper, we consider a monochromatic mode of angular
frequency o, E(t, r) = e ' E(r), where E(r) is the complex
field amplitude, and we omit the frequency argument.

The interaction of light with the electrons in the semimetal
elicits a current density j, = [0 — iweg(ew — 1)]E. Here,
o (w) is the dynamical conductivity of a Dirac semimetal in
the long-wavelength limit, and ey is the static background
relative dielectric constant. While the conductivity o is di-
agonal, the vector b generates the off-diagonal terms, see
(5), which produce the quasiuniversal anomalous Hall effect
[20,59]. The electronic matter determines the functional form
of the relative permittivity £(w) = ey + io(w)/gow [60]. In
the local-response and low-temperature approximations, it
takes the form [30,61]

w? w? 4e?
— __r _r _ ¢ g _
E=¢ey (1 a)z) + 40)% |:ln ‘w2—4w,2:| +inO(w —2wr)|,
(6)

where finite lifetime effects are neglected. Here wf, =

e’*w? /3m ey eohvr denotes the squared plasma frequency in
the Drude-like (or single-band) approximation, in which one
retains only the first term in Eq. (6). Er = hiwp is the Fermi
energy, and E,. = fiw, is a cutoff energy, determined by the
range of energies in which a linear behavior is a good de-
scription of the electronic spectrum [23], and transitions to
other bands can be excluded. While the plasma frequency is
properly defined as the zero of the real part of (6), w, is a
very good approximation for realistic values of the cutoff and
Fermi energies. Interestingly, @, can be comparable to wr.
There are three relevant frequency scales. The plasma fre-
quency ), and the frequency cb associated with the separation
between the Weyl nodes are characteristic of the bulk. The
finite section introduces the scale c/R, associated with the
transverse size. The dispersions of the electromagnetic field
eigenmodes depend on the two dimensionless combinations

w,R ach
pP=—— ,3 = (7)
c T,
which parametrize the radius of the inner cylinder of the
WPW and the separation between the Weyl nodes.
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II1. SPP MODES

We now proceed to calculate the normal modes of the
modified Maxwell electrodynamics. We first solve the wave
equation in the bulk; then, we determine the dispersion re-
lation of the SPPs by imposing the appropriate matching
conditions for the fields at the interface between the WS and
the dielectric. We focus throughout on modes decaying on
both sides of the interface.

The solution of Egs. (2)—(5) in the frequency domain ex-
ploits the cylindrical symmetry of the system. In cylindrical
coordinates (7, ¢, z), one writes the electric field in the form

E(r, ®, Z) — Z eiqzz-i-imem(r), (8)

where ¢, is the wave vector along the axis, and m € Z is the
OAM label. The vector field E,,(r) is further constrained by
the cylindrical symmetry; see Appendix A. There, we show
that the dispersion relation is determined by seeking a solution
in the form (8) and subsequently imposing the consistency of
the axion electrodynamics equations. The presence of the ex-
tra term in the nonhomogeneous Maxwell equations modifies
the dispersion relation of the electromagnetic modes in the
bulk of the material. The latter is implicitly determined by the
equation

2ach

2
(W€ — )€ = < ) (0*E — ), 9

where g = ng + qi, and ¢, = Vq> + q% is the modulus of
the radial component of the wave vector.

In the presence of an interface at r = R, the wave vector in
the radial direction is not a conserved quantity, but is instead
determined from (9) as a function of the axial momentum and
the frequency. This yields real solutions, which correspond to
the waveguide modes, as well as imaginary solutions g, =
—ik, which decay exponentially from the interface toward
the axis and are associated with the SPP modes. These are
the object of this work and are characterized by the inverse
localization length

@ . 2 (ab\* 2ab ¢ ab\?

= |@g-—=c+2(=) = /E+(=).
=1k +g(n> nvg+<n5>
(10)

The interface delimits a compact section of material, so that
the light modes are labeled by the OAM [38], rather than
the wave vector perpendicular to the light propagation. In
Fig. 2 we show the dispersion relations for p = 0.1, 8 = 10.
To understand these curves, let us start by noting that, when
cq./w, — 00, they all tend to the asymptotic value

Poo _ /E—W’ an
wp €4+ ew
formally the same as for conventional metals [62]. However,

in a WPW, a novel scaling regime appears, in which the
longitudinal wave vector is coupled with the OAM,

1
12
qug)’ (12)

~ 1+

€qtew _ €
Wiy m'B ew 2 1
Weo €4+ €w Rq,

5/60
0.4

5 0.3

3
0.2
0.1

0 5 10 15 20
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FIG. 2. Dispersion relations of the SPP modes of the cylindrical
waveguide at small wave vector. For p = 0.1, 8 = 10, ./, = 10,
wr /w, = 1, the shown modes have OAM label between m = —10
(lowest purple line) and m = 10 (highest red line), with color or-
dering. Background: SPP penetration length in units of the metal
skin depth /8y for ey = €, = 10. The dashing in the dispersions
visible in the m = 1 line indicates a region where the modes do not
have a surface component. The dashed guidelines represent analyt-
ical expressions, which we compare to the numerical solutions. We
show the asymptotic lines (11) (orange) and (13) (green). We also
show in blue the boundary of the region with mixed surface and
bulk modes (14), as well as w, and the degeneracy line discussed
below Eq. (14). The formulas are more accurate away from w,, but
discrepancies always stay below 10%. All plasmonic dispersions end
on the dispersion of the light in the dielectric medium (black dashed),
on whose left they are not localized.

when Rg; > 1, mPw,/ws. The asymmetry of the dispersion
under m — —m in (12) quantifies the observed difference in
curves and shows that there are modes with negative group
velocity v = dw/dq,. Equation (12), rigorously valid in the
Drude approximation for the permittivity, is a good approx-
imation for the full SPP dispersions as well, because typical
SPP frequencies are around wy, < @,; see Eq. (11). The limit
m — =00 at a fixed value of ¢, identifies instead two distinct
lines,

@ w (13)

@p N \/GW(€W+€d)+.82:Fﬁ,

which are accumulation points for positive and negative
OAM. While the dispersion with m = 0 is always the lowest-
frequency mode in a metallic waveguide, this is not the case in
a WPW. The SPP dispersions are symmetric under g, — —gq,.
Our solution correctly reproduces the planar limit R — oo and
the normal metal limit » — 0, known in implicit form [63,64].

023195-3
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IV. LIGHT PROPAGATION IN THE WPW

The SPP penetration in the WS bulk differs from that of
its metallic counterpart [65]. Indeed, the inverse penetration
lengths k4 in Eq. (10) have a finite imaginary part. More in
detail, our solution is a superposition of two waves, each ex-
pressed in terms of modified Bessel functions. These behave
approximately as an exponential, with a penetration depth
given by 61 = 1/Re[k+]. In Fig. 2, we compare the maximal
penetration depth § = maxy 61 with the metal skin depth
80 = c¢/w,. The shorter wavelengths, on the right, are more
localized. On the left, the localization length diverges on the
line identified by the condition k_ = 0; see Eq. (10). Using
the Drude form of the permittivity (6), one obtains the analytic
curve

2 42
= — Ew(ca)—qzZ +€W> +82-8 (14)

p

shown in the figure as a dashed blue line, also in good
agreement with the numerical results obtained using the full
permittivity. Between this line and the light dispersion, the
modes have mixed character, a superposition between SPPs
(exponentially localized) and waveguide (oscillating) modes.
Purely waveguide modes are present in the roughly triangular
region at the center of the figure, delimited by the plasma
frequency and the degeneracy line identified by the condition
k4 = k_. Outside of these regions, we have SPP modes. As
can be seen in Fig. 2, our analytical expressions (11)—(14)
are accurate approximations of the asymptotic behaviors as
long as their value is away from w,. The exact value can be
obtained by solving the pertinent asymptotic conditions nu-
merically; see Appendix B. We also observe from Fig. 2 that
the axionic term pushes down the frequency of the negative-m
modes. Compared to a metal, this makes more SPP modes
available at small wave vectors and frequencies.

The group velocity of the SPPs is computed as the deriva-
tive of the numerical dispersion. The axionic term generates a
giant nonreciprocity in the group velocities, controlled by the
OAM m, which is the main result of this work: modes with
opposite values of m propagate with opposite group velocity
in some regimes. The proposed device does not require a mag-
netic field to control the wave propagation [5]. We exemplify
this observation in Fig. 3. Noticeably, the group velocities of
the m = +2 modes have opposite sign. Moreover, the m = 1
mode exhibits a zero and the associated sign change, shown
in Fig. 3 around cg,/w, ~ 5, which signals the onset of the
short-wavelength regime; see Eq. (12).

V. DISCUSSION

Our results show a strong effect due to the Weyl nodes on
the SPP modes and a giant nonreciprocity under time-reversal,
which inverts the OAM quantum number m — —m. While the
occurrence of the splitting of the bands with opposite m may
be explained with the time-reversal symmetry breaking at a
microscopic level by an intrinsic magnetization, in this class
of materials the effect on the propagation velocity appears to
be giant, as large as the velocity itself. To understand this, we
underline that SPPs arise from the hybridization of electro-

0.12

0.10

0.08

0.06

v/c

0.04

0.02

0.00

m=2 —

-0.02

q,C/ Wp

FIG. 3. SPP group velocity for p = 0.1, 8 =10, o./w, = 10,
wr /w, = 1, for the modes between m = —10 (purple) and m = 10
(red), with color ordering (same color code as in Fig. 2). Inset: zero
of the m = 1 mode and opposite velocities of the lowest OAM. The
splitting due to the topological axion term is as large as the velocity
itself and determines the change in sign.

magnetic and electronic modes. The semiclassical dynamics
of the electrons in WSs is largely influenced by the Berry
curvature [15,66]. As there is a net flux of Berry curvature in
the region of the Brillouin zone between the Weyl nodes, one
finds a nonzero expectation value of the electron angular mo-
mentum [67]. This is inherited by the radiation and determines
a preferential sign of the OAM in the SPP dispersion [68]. The
origin of the effect lies in the anomalous term proportional
to b in (5) and in its macroscopic manifestation, the anoma-
lous Hall effect. This term enters the off-diagonal permittivity
and is responsible for the gyrotropic responses. To quantify
the role of the node splitting, we can directly compare the
anomalous Hall responses of a well-studied nontopological
ferromagnet, Fe [69], with that of a well-studied topological
Weyl semimetal, Co3Sn,S, [70]. Using the values provided
in these references for the AHE, we expect an enhancement
of at least 50% in the latter material. We also point out
that various electronic scattering mechanisms may destroy
these surface plasmon features in ordinary ferromagnets. Con-
versely, the effect may be observable in Weyl semimetals, in
which the band topology, the surface states, and the associated
anomalous Hall effect are robust against weak scattering, e.g.,
with phonons [71,72]. The effect studied in this work differs
qualitatively from previously noted asymmetries in SPP dis-
persions, as it does not require changing the orientation of the
incoming beam, nor the configuration of the guide [30,73-76].
Conversely, a compact transverse size is essential. In infinite
slab geometries, depending on the propagation direction, one
would instead observe either reciprocal dispersion or opposite
nonreciprocities on the opposite interface, leading to a cancel-
lation of the net effect of the nodes. The SPP nonreciprocity
qualitatively differs from the Faraday (Kerr) rotation [23] in
that it relates the beam OAM and its propagation, as opposed
to its polarization. Our analysis exploits the long-wavelength
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approximation of the dielectric function, which is valid for
w K wr [28]. While we do not expect qualitative changes
in the discussed regimes, inclusion of the g-dependence in
the permittivity would allow us to obtain quantitatively more
accurate dispersion curves and to explore larger wave vectors
[27,28].

Our result does not rely on a specific material in which
the Weyl semimetal phase is realized. A way of testing
our predictions is to excite the different SPP modes via
Laguerre-Gaussian beams, which carry definite OAM [77-79]
or illuminated metal tips [16]. Detection may exploit the
strong coupling of the SPP modes to quantum dots [80] or
that the waveguide can filter out one sign of the OAM. Alter-
native platforms for realizing the SPP nonreciprocity, as well
as the light-induced phenomena in OAM-filtered light, are a
few of the many interesting open questions. The proposed
plasmon waveguide can be scaled down to nanometer size
and operate down to THz frequencies while retaining the
described efficient control mechanism. Such a device is cen-
tral to many applications, including nanocircuits, holography,
nanosensors, and nanophotonics [3,81-85], and it may find
use in classical communication between quantum architec-
tures and on-chip isolation [86]. The ability to control SSP
propagation at the nanoscale holds significant promise for
advancing both classical and quantum technologies.
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APPENDIX A: SOLUTION OF AXION
ELECTRODYNAMICS

In this appendix, we provide some detail about the solu-
tion of the set of axion electrodynamics equations (2)—(5) in

J

cylindrical coordinates. It is useful to manipulate the latter and
bring it to the form

2
VxB=—iZeE-2bxE.
c? e

Taking the curl of Eq. (3) and using Eq. (5), one obtains the
wave equation

(AD)

2
0=V(V-E)— AE — 0°E + io—b x E, (A2)
TC

where Q% = % Choosing the z axis along the main axis
of the material, the wave-vector component ¢, parallel to the
Weyl node separation vector 2b is conserved. Moreover, the
cylindrical symmetry implies that the electric field can be
chosen as an eigenstate of the generator of rotations around
the z axis,

0O —i O
J.=—id, + 2, =i 0 O (A3)
0O 0 1

It follows that it must have the dependence ~e™¢ on the
angular variable ¢, and its components must take the form

E.(r) = f(r) +g(r),
E,(r) =if(r) —ig(r),
E.(r) = h(r),

(A4)

where f(r), g(r), h(r) are complex functions of the radial co-
ordinate r. Guided by the solution in the metallic limitb = 0,
one can make the ansatz

E, = AmIDmfl(qJ_r) + BmDerl(qJ_r)a
E(p == iAmDm—l(QLr) - iBmD111+](qu)a
EZ = CmDm(qJ_r)s

(AS5)

where D,, denotes any Bessel function of the first kind of
order m, and ¢, is a parameter, generally complex, that is
to be determined. In the bulk problem, ¢, is the modulus

of the radial component of the momentum, ¢, = vq; + g;.
With the above ansatz, the modified Maxwell equations yield
algebraic equations in the unknown coefficients A,,, By, Cy,-
In particular, Eq. (2) becomes

—q.(1 — bo)Ay + q1(1+ by)By, + ig,Coy = 0, (A6)
having defined the frequency-dependent dimensionless con-
stant b, = 2abc/mwE. We then write (A2) as the linear
system

0>~ ¢ —b,(0* - %) b, 0 \/a) (o
ibwq14; ibuq.1q: *—q*) "
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To find a nontrivial solution to (A7), the determinant of the
matrix above must vanish. This directly leads to the con-
dition (9) in the main text, which implicitly determines the
dispersion relation of bulk modes [29]. One finds two linearly
independent electric field eigenmodes whose components are
determined from the solution of (A6) and (A7). They can be
written in the form

mp. D,
qLr im
E, = an lD:,n + by, ED’” (A8)
_ 19:91
0 02— Dm

in which the coefficients a,, = A,, + B,,, b,, = A,, — B,, are
constrained by (A6) and (A7).

Analytic continuation g, — —ix allows us to describe
modes that are exponentially localized at the WS-dielectric
interface. For this class of solutions, the electric field is written
as E, =Y _, a"™E,,,, where the modes labeled by s = %
are

%Im(’csr) ilr/n(KSr)
Em,x = —Ir/n(er) + Vs —%Im(lﬁvr) , (A9
7 0 S L (k1)

in which the Bessel functions of the second kind 1,, are regular

in the origin and
2
— B
“+ (%)
NS

Here and in the following, we denote the wave vectors in units
of wy/casq, = q.c/w, and 0= QOc/w,. In the two solutions,
the index s appears in the argument of the Bessel functions and
determines the localization length as discussed in the main
text. The magnetic field is readily computed via Eq. (3) in the
frequency domain as

LB

Y+ = 5 ﬁ + (A10)

1, (kesr) I"(L_':Im(/csr)
Bm,s = %Im(KJr) + — il,,n(Ksr) (All)
e Ly ’ 0

Because of the chosen parametrization, our solution contains
a curve, identified by the condition x; = k_, in which the two
modes with s = = are not linearly independent. The degener-
acy curve is defined from Eq. (10) by the condition

GE+p*=0. (A12)
Using the single-band approximation, i.e., retaining only the
first term in the permittivity (6), one finds

Veéwwp
\ Ew +ﬂ2/§?

This is a good approximation as long as wgeg K @p.
The field in the outer region is well known [63,64]. Again,
we focus on evanescent solutions in the radial direction

Wdeg(qz) =~ (A13)

and write it as the superposition E(®") = b(l’”)Em,] + b;’")Em,z,
where

iw %Km(’(dr)
E,1=—| iK,(kqr) |,
q: 0
K, (kqr)
%Km(’cdr)

i;_fil(m(’(dr)

(A14)

E,.= (A15)

Here the functions K, are regular as » — oo and, in fact,
exponentially decaying, with inverse decay length «; =
Vg2 — 03 and Q; = w,/é;/c. The corresponding magnetic
field is computed by means of the usual Maxwell-Faraday
equation as

K, (kar)
%Km(’cd r )
l:;_i/Km(Kd r )

oK (kar)

iK) (kqr)
0

B, = , (A16)

_ %

B,

(A17)

APPENDIX B: BOUNDARY CONDITIONS
FOR THE METAL-DIELECTRIC INTERFACE

1. Derivation of the boundary conditions

We now provide some details about the manipulations
of the modified electrodynamics equations. The modified
Ampere-Maxwell law follows:

2
V x B = —i2E + jigj. — —b x E. B1)
C TC

It is customary to divide the current in the source term into the
contributions from free and bound charges

je=Js+jp=0FE — iwP. (B2)

As we are considering a magnetic WS, no magnetization cur-
rent is present in this expression. In general, it can be present
in the dielectric and handled in a standard way. For a linear
material, the polarization is proportional to the applied field
P = gy x.E, and (B1) becomes

2
VxB=—i2fE - bxE (B3)
C TC

with £0& = gpey + io /w.

Let us consider an interface at » = R. Following the view-
point of [88], we derive the boundary condition on the
macroscopic fields to lowest order in a gradient expansion.
The localized contributions to charge and current density have
been considered in [24] and found to be not relevant for this
class of problems in the small wave-vector regime. Integrating
Eq. (B3) across the interface, one establishes the continuity of
the components of the magnetic field. This does not exclude a
static uniform magnetization of the material; see [89]. We note
that the contribution of the magnetization current is neglected
throughout the paper, V x M ~ 0. In symbols,

B”(r = R+) = BH(V = R_). (B4)
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We approximate the corresponding magnetic constant as
Ha =~ pno. The above equation is therefore equivalent to the
continuity of the magnetic field parallel to the interface, while
straightforward modifications are necessary in the most gen-
eral case. Using V - P = —p;,, with p, the density of bound
charge, one writes the total charge density as the sum of free
and bound contributions,

io
Pe=pp+pr=-—V- <80XeE + ZE) (BS)
Defining the electric displacement in the WS as
20c8
D=|(gfE+ —DbxE (B6)
wiw

and in the dielectric as D = ¢;&0E, Eq. (2) can be cast in the
form

V-D=0. (B7)
Integrating the previous equation across the interface, one
obtains the continuity of the component perpendicular to the
interface,

Integration of the homogeneous Maxwell equations (3) and
(4) across the interface determines the continuity of the com-
ponents of the electric field parallel to the interface,

EH(V = R+) = E||(r = R_) (B9)
and of the magnetic field perpendicular to it,
B.(r=R")=B,(r=R"). (B10)

2. Imposing the boundary conditions

Let us now consider the WS-dielectric interface at r =
R. We have established that the electric field inside the
semimetallic cylinder is a linear superposition of the modes
(A9), with coefficients ai"), while in the dielectric out-
side it is a linear superposition of the modes (A14), with
coefficients b .

As the Maxwell equations completely determine the mag-
netic field once the electric field is known, three conditions are
needed at the dielectric-WS interface. A more compact form
is obtained by instead imposing four conditions and requiring
that they are compatible among them [64]. The continuity
of the tangential components of the electric field and of the
magnetic induction, in particular, results in a linear system
for the four unknown coefficients ¢, = (a(f), a™, b(l’"), b(zm)).
After an appropriate rescaling of the coefficients, the system

— R = — R . . .
D (r=R")=D.(r=R"). (B8 can be cast in the form B,.¢,, = 0, with the matrix
|
) | yem L) | ym o K m
Ln(uy) uy Ln(u-) u- Kin(v) v
w 4 w g 0 v
B, = Ve 07 o . (B11)

I (uy) 4 m I (u_) 4 m m Q_ﬁK,,,,(U)

Yilay) ' uy oy L) T ou v 42 Kn(v)
uy u_ v 0

[
The arguments of the Bessel functions are denoted as of g, but become nonreciprocal with respect to the angular
momentum m.
o = 282 28 [, B
Ur = kiR = o0+ =+ P+ = (BI2
+ =Kt p\/ q. — 0 SRR 7+ 7 (B12)
d APPENDIX C: ASYMPTOTIC REGIMES
an
=kiR=p\G -0, B13
v=KaR = p\q; — Oy (B13) a. Metallic limit

The boundary conditions can only be consistently satisfied if
the determinant of this matrix vanishes, which amounts to the
condition

det B,(w, g;) = 0. (B14)

This equation implicitly determines the dispersion curves w =
wm(q;). As for the metallic waveguide, it must be solved
numerically in the general case. In the next section, we pro-
vide useful starting points for the root-finding routines. The
solutions with —10 < m < 10 are illustrated for sample pa-
rameters in Fig. 4.

We note that the SPPs obtained by solving Eq. (B14) prop-
agate along the direction of the separation between the Weyl
nodes. This situation corresponds to a Faraday configuration,
where, in a planar slab, the modes are reciprocal [30]. In
our case, the dispersions remain symmetric under inversion

We check now that the limit b — 0 (or, equivalently, 8 —
0) correctly reproduces the plasmonic dispersion of the metal-
lic waveguide. In such a limit, the arguments of the Bessel
functions in (B12) tend to the same expression uy — u =
R./q?> — Q?, which is the corresponding value in a metal
[64]. In the same limit y+ — £y, where y = ,/q2/0>. The
determinant of (B11) is most easily computed by replacing
the first two columns by linear combinations, namely semisum
and semidifference, so that one arrives at the matrix

K@)

L ym m
Ln(u) Kn(v) v
0 L 0 v
BY = 70 Cl1
m m 1, (u) m 2; K, () €D
u Y 1n(u) v 72 Kn(v)
u 0 v 0
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0 50 100 150 200 250
cq,/wp

FIG. 4. Crossover in the SPP dispersions for 8 = 10, p = 0.1,
w./w, =10, wp /w, = 1. The vertical order of the negative-m solu-
tions as g, — oo is inverted with respect to the order at g, — 0. The
green dashed lines are the m — 0o asymptotes from (C16), the
blue dashed lines are the plasma frequency computed from the full
permittivity (6) and the degeneracy line k, = x_, while the orange
dashed line is the large-wave-vector limit computed from (C13).

The condition det B”) = 0 is exacly the one that implicitly
defines the frequencies of the SPP modes in a metal [63].

b. Planar limit

To make contact with known results [29,30,61], we now
discuss the planar limit of the cylindrical waveguide. We set
the wave vector in the angular direction g, = m/R and take
the limit R — oo and |m| — oo, while keeping their ratio g,
fixed. Then the factor ™ directly maps into the plane wave
€Y, with y = Re. The radial and azimuthal versors 7 and @
are mapped into the versors x and ¥y, respectively. Next, we
need to calculate the limit of the ratios

I («k+R) K, (k4R)
Im(K:I:R)’ Km(KdR)

(€2

We focus on the first ratio above; for the second, the cal-
culation is essentially the same and we only give the final
result. Omitting for notational simplicity the index =+, we set
v = |m| = Rlqy|,t = «/|q,| and write

I' «R) T
I ®B) _Bon _1d 0o, (©3)
I|m‘(KR) I,(vt) vdt

We also define

pe =+, pa=./g*+xg,

which are inverse decay lengths in the x-direction, corre-
sponding to the evanescent waves e*+* and e~ #<* of the planar
geometry. We recall the homogeneous expansions of the mod-
ified Bessel functions [90],

e’
I,(vt) ~ s C4
OO~ G A+ ) €
me v
K, (vt) ~ (C5)

Qrv)2(1 4 12)1/4°

where
t
=V1+2 4 — (C6)
G 1+ /11122
1
= (C7)
b=y e

These expansions hold uniformly for 0 <t < oo as v —
~+o00. Using (C4), we obtain

I&R) _dn O EE )

— ’

1, (kR) dt K
KR dy, B YK )
K (kqR) dt kg

Restoring the label s = =+, the matrix encoding the interface
conditions becomes

i s AR
—Ki+4y)4; —HoH4 )4 2 2
B,,— V+Q2) y-0? 0 Mé2+ 4y
qyj%2 qyz—i_/;_:z qu 2 _q_glud
i taqy —uZ+qy —ugtay 0
(C10)

This matrix coincides with the one obtained for the half-space
geometry, with the WS with b = bZ in the region x < 0 and
the dielectric in the region x > 0 [29].

c. Limit of large wave vector

We provide here some detail about the large-wave-vector
limit (12). We make use of the asymptotic expansions of the
Bessel functions of the second kind for large argument z [90],

L@ 1

1——, (C11)
Im(z) 2z
K' (2) 1
B~ -] — —. C12
K@) % (C12)
Expanding (B12) and (B13), one arrives at the expression
mab
det M, ~ —4q.R(Q* + 03) +2(Q° — Q) + 80——.
avE
(C13)

Substituting the definitions of Q and Q, and solving the
vanishing condition of the determinant in « with the
high-frequency, single-band approximation for the dielectric
function, one finds Eq. (12). The asmptotic limit as computed
from Eq. (C13) is shown as an orange dashed line in Fig. 4.

d. Limit of large angular momentum

We consider now the limit m — 400 at fixed wave vector.
We need the identities
Lw ml K, |m]
L)  u’ Ku(v)
for the order of the Bessel functions m — +o00. After some
algebra, one obtains Eq. (B14) in the form

[@(eq + €) — 2sgn(m)B[g; — @°E — 2sgn(m)Bw] = 0,
(C15)

(C14)
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apart from an overall factor, different from zero. (We use
the notation @ = w/w),.) Requiring that the solutions have
a nondiverging localization length and reproduce the results
for the metallic cylinder in the limit 8 — O implies that the
m — F00 asymptotes must satisfy

w(eg + &) —2sgn(m)p = 0. (C16)

In general, this has to be solved numerically, but a good
approximation is obtained when retaining only the first term in
Eq. (6), which yields the w4 in Eq. (13) of the main text. The

numerical solutions of Eq. (C16) are instead shown in Fig. 4
as green dashed lines.

APPENDIX D: PARAMETERS

As an example, we consider the set of parameters Ep ~
0.04eV, vp =10°m/s, wp ~ 6.1 x 103 Hz, E. ~0.2eV,
w, ~ 5.8 x 10'3 Hz, modeled on EuCd, As, [42-44]; see also
[13,14,91]. One finds w./w, ~ 5, wp /w, ~ 1 and B ~ 7. The
parameter p = 0.1 used in the main text corresponds to a
cylinder of R &~ 0.5 um. The high-frequency skin depth is then
estimated as §p ~ 5 um and reference wave vector w,/c ~
2 x 10° m~'. The minimal wavelength in Fig. 3 is therefore
in the visible range.
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