IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Deshmukh, R. (1981). Hierarchal computer control using multi-microprocessor
systems. (Unpublished Doctoral thesis, The City University)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35358/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

HIERARCHICAL COMPUTER CONTROL
USING MULTI-MICROPROCESSOR SYSTEMS

BY

HEMANT ANANT DESHMUKH

——00000--

THESIS SUBMITTED FOR THE AWARD
OF THE DEGREE OF DOCTOR OF PHILOSOPHY

——00000-~-

DEPARTMENT OF SYSTEMS SCIENCE
THE CITY UNIVERSITY
LONDON

OCTOBER 1981

70 MY LATE FATHER

CONTENTS

PAGE
bR e R e e e o e e R R NS i P T 7
TEEUSTERATTEONS . s et amla e, ot lsinns v b e oo oie efie e s wos aoe s enih 8
AUENOWLEDGEMENTS " 0 o o0 e 2 5he & sisie sis s « & sysloiaiala s & 3 isiis ianjagat s ‘silni'sils 13
BN B B Bl BT [e e e o e o e e (R - e A SN U B i R Nt 14
ABE TR AT BN L Sl et hsia s Dus sie dlnre s wle = v imi@imeyn = kb oo einiste o aigie 15
CHAPTER 1" — " INTROBDUCTEON. 0 & icie ate vis siviaraliolels s e inenis o & aliis 18
CHAPTER 2 - MICROPROCESSORS IN PROCESS CONTROL 24
il SIS R D et S e S e R e e Tt o 24
9.8 ' THE PROCESS CONTROL PROBEEM v . sasoinssnsnenionsssing 25
RS COMEUTER CUNT DL STCTEM o P o siseio ot SALY sio wio s iais o siovs 27
Bl T N DGR R e T s coas aan s vl e FANCTARE S £4 00 30
8852 T SUBCPDEROPY EORLIEL Siiise 4 s s 5 st s voifimetaa s v 9y 32
2a8e8 'Divect ALgrtal coltPOol .o hese vsinresaus sewmees peis 33
2.2 VPSP RFEUTEDSOONTROL SYSTEM oo daisiagans 4 S St 35
2o 1 TR MECY TP POCEBI0Y POLE <ocssssinmensodensssissy it 36
2.4.2 The process control requirementsecoueesss 39

2.4.3 Advantages of distributed control systems %1

2.5 DESIGN GUIDELINES FOR THE USE OF MICROPROCESSORS IN

A PROCESS CONTROL ENVIRONMENT «....oueeeennnoennnns 43
IR r e P Y o S SRR ol e W et 46
CHADIGR: 8 2\ SYSTEW DERFOEF M. b s 30 b oAt ss v wosis it b s 3 48
bl T R e o P Rl 48
3.2 GENERAL ASPECTS OF SYSTEM DESIGN w.vueevoveeneees o S
§.8:1 " Depigntng WLLH MICHODPOCEBEOTE iuvwiaiss sosiviesion e o

Sedal.l." SOFEWARE s iascgeasinsnnsssansossisssacssahas 52

R S G e b T % K T g R S e S S s o e s % s 89

CONTENTS continued PAGE

3.2.1.3 BSoftware/hardware integration ...eseeeooise 56
3.9 THE IMPACT OF MICROPROCESSORS ON USERS .cseeseseeins o7
3.4 MULPIPLE PROCESSOR SYSTEM <. ca-nie s LT T R 59
3.4.1 Review of multiple processor 8Ystem «...eeiuvesens 59

3.4.2 Problems of designing with multi-microcomputer

BUGLEHE 2 & Saiahe el & iale aiatninialohy SR S e v 1 R O TR 68
S . 207 FSystenm GreRTLCeCEUYE viaisnsiois s hsisisialsis o b bisdie 69
34,82 Communicaitton and CONEYOL ..ssscesscnssos 69
S.4.2.3 Distyributed processiig 'vevae s covecenineesos 72
Sidiz2.d "Diatyibuted dBla VUBE G vieeisis i s < siwis e v sidinls 74

3.4.2.5 System reliability, availability and

ERPVIVADLLTEY o Taes o v oibmvainin 8l sa' s ses o WS s
3.4.2.6 System development and testing 76
Oision, S BON G LU S TON G 4 0 ietole aia’ o sThakeisilonain shy 1 oot e i BT s e T

CHAPTER 4 - MODEL OF A PROCESSOR WITHIN A DISTRIBUTED

CON B NG SN BT B o st ainars v b el mtiakis To s baualiire ey % 5 SV sl by & skl 79
B G T I ERBDUC TG 5% v o n $1 ey al Ik (s i R a e T (6 5 il eVt o Lol 79
4.2 REAL TIME DISTRIBUTED COMPUTING SYSTEM ..vvveeennnn 80
4.8 v MODEL QF AT PROCESSING ELEMERE GUieii's s o s o' o' as 6o 82
4.4 TINFORMATION AND TASK HIERARCHY R T 87
4N5 - CONTROL. SISTEM, PHILQBOER T LW e 0 Weielaie oo a4 ina oo abedsigts 89
4.8 DUAL POBT MEMORY ULTELISATION % viscaiss e siaissrsis se vioe 92
S50 = AP PETCATTONT Saniaorsres ths 5 simeinras sl s o toiorabo) 5ia % o 0 48141415 95
$58 T CONCUIBTONS ol o sialaals sin8 srejars e A ST) 97

CHAPTER 5 - A HIERARCHICALLY STRUCTURED MULTI-MICRO-

220 B DIST) MU) Ty M e ol i e S O S S 98
5.1 INTRODYCEION » Juis s aln'e R i e sl)\ I s TS N 98
Bl T BN P T LS UPHY it e o h it o et st ibiie s o e ot & S At 100

CONTENTS continued PAGE

bed INFORMATTON BHOW «s s s s siesimisinss o 3k a7 Ve bl e s me lm e s Unie 101
S5ndn wSTRUCTURE _OF THE ITSMI wfv o vnns o viooisins s s=s siaivis G o o 104
S - COMMONESEEM IR s s via s sis e aaliata) e o oliaNalalisiiaral ety s s ate ieiets o misis 106
5.6 ~ HMSU ARCHITECTURE .eoeceas S R e AR e R 110
Sa2 BMSU STRUCEURLES <sieia ov s RS G e i PR SRS e e 112
5.8 CONCLUBITONS (25 o isiie sis s s s sialsisiais o 4 stalnieossis o atole omeime + o sis 113
CHAPTER 6 - CONTROL OF A TRAVELLING LOAD FURNACE 2
B e T R I T O e o) auniacy s wiefe-ullaie Sl WL W el et el 117
g2 RURNACE DESCRIPTTON . el e. v dales Sisn= Sheibies S 118
6,3 PR CONTROE SCHEME v+ vieesnios s v siats A i s e 120
6.3.1 Control requirements for the HMSUsicc0ue.. 125
B4 ELECTRONICT INTEREACE REGUIREMENTS aaicis o o sieissieiaio s s 129

6.5 MODIFICATION REQUIREMENTS TO EXISTING INTERFACE .. 131

bt O GO T S O SR S oo ra =ia e atnaaetalterin s T o S e i R 13%

CHAPTER 7 - SOFTWARE DEVELOPMENT FOR THE HMSU SYSTEM .. 138

ol INPRODNGCETON "3l oieie vis s a s o R 0 o e S T T S 138
702 S BORCHARE DEVELOEMENL ATD sisis vs s v oneioniasssosissss sy 139
Zos ASSUMPETONSLAND DEETNEFTONS < aie v siadrscers o sos ainuin s o 141
VFad NPROGHRAM DESCRIEREEIN. ot v iiiis sios ols RTINS A 1 e e 146
7. 4,1 VIRECPIYDT SLEHUCLULE v sivs viviseisishalsiooiarsie v olwin siks s 149
7858 SER Lt Lt BU L EORT Sunierein s i B S G A e« 152
72 d.8 " Whe WaALn DOOGPAM o eies's sisissiarosyias s viainiss s e sseioinsses 154
iy GO TN S s Sl ki e e v Vsl el s is uarmimta an s sv A S G 156

CHAPTER 8 - SOFTWARE DEVELOPMENT FOR THE PDP-11/10

M IR O UTER B s ans ot s mibie orn aanots n lecialiy 30y 5= e ta e & wihstere i@ 171
Bl CINTEOD U L OB st shaterers/s sSsknsatorprvio-sin B rrehale etk b » 171
8.5 CORTWARE DEVELOPUERNT AID "Siicthionie s o sianides o v oo eenss 172
88, SROACEAN [STEULHEIRE .« oiviinm v aition sin s v Ga@nin s o's she sl A 174

CONTENTS continued PAGE

8.8, 1V Conmmand 8trUeLUPE waieinr et se v ois S o Lo 1o e one et a e N s 177
Ged L CONCDU ST ON S i o et o« s sisian aice = sis = s siaiahe o v sieis Siatte R 181
EHAPTEREOEE S S 8 N e eiis s ok ads slietiaieiiniie = al= =i iabialiaretonata oia 190
R T e) L e s its a8 ot mike &) ST WAn EE L 5 Sad & aiahe ap s & bk 190
9.2 ° SIMULATION. OF MICROSWITCH INTERRUPTSe. ol M vl mei 190

9.3 TESTING OF INTERMEDIATE SCRATCHPAD MEMORY INTERFACFE 198

9.4 TESTING OF PRIVATE MEMORY AND COMMON MEMORY MODULES 202

Qe S ADTANCED N TESES FOFSTHE HMEU e o ol eie/s Sinls shaiaiaine sinial e s & ias 209

9.6 ' ASSEMBLY LANGUAGE SUBROUTINE TESTS ON PDP-11/10

MR P R, S S R s aas niyei are e o m e Salliar atte ata tailie:tar ey o)/s MEME oitle 214

9.6.1 Program IR and the NUMB macro subroutine 214

9.6.2 Program TRIAL and the SUB2 macro subroutine 215

9.7 SIMULATION OF DISPLAY OF PROCESS VARIABLES ON GT42

DESELAY, PROCESSUR. ole s « PR I St (S SR AP G 218

G O ONEET S T UD Rt s e e A AR o e s i a ds s iBie s A Ee Siege st ehs & acd 221

CHAPRER WO —SCUNCLIELONES 8o sl voe s oo o ais sisisie s ie s eun oo oialels 5 226

T A B O S SRR T AP O SO T R R 230

APPENDIX A - HARDWARE DETAILS OF THE F8 MICROPROCESSOR . 235

APPENDIX B - THE F8 PROGRAMMING FEATURES0.... 240
B LT E g A DA T ONSEIIE e s v ra e = % S i PR 240
B.2 = IMPORTANT PROGRAMMING FEATURES .. +aeaimsssos T 241
Boon BHELFE TNSTRUETIONS SELS 5 viaieie el ers I e S NEI eI T A Ta 6 e 244
APPENDIX C - THE HMSU'PROGRAM (U B UL RO T LR e O 248
APPENDIX D - THE DCHMSU PROGRAM LISTING 272

CHAPTER

TABLE 2.

CHAPTER

TABLE &.

CHAPTER

TABLE 4.

TABLE 4.

CHAPTER

TABLE 4.

CHAPTER

TABLE 6.

CHAPTER

TABLE 7.

CHAPTER

TABLE 8.

2
1
3

1

4

i

6
7
fii
1
8

i

TABLES

PAGE
PROCESS CONTROL TECHNIQUES AND SCHEMES 29
IMPACT OF MICROPROCESSORS ON USER
ENVIROEMENT i v v voovsiniom o6 anie S e A o B T L 58
ANALOGY OF INFORMATION HIERARCHY TO A
BROCESZING "BLEMBNTN v o Bciiaratin s b o st oo i 's % 90
INFORMATION PROTOCOL PRIMITIVES ...ieeee... 94
COMMUNICATION PROTOCOL FOR PROCESSORS OF
BIGURE 852 L i siaislsinints oiu s I oy o T RO T (i 105
N RO D S o e e et eas ey e 3 R AR h R e | 128
PORT ASSIGNMENT Avt gl S g e S b 145

SUBROUTINE MODULES FOR THE DCHMSU PROGRAM , 178

ILLUSTRATIONS

PAGE
CHAPTER 2
2.1 - GENERAL REPRESENTATION OF PROCESS VARIABLES 26
2.2 - BASIC CONVENTIONAL FEEDBACK CONTROL LOOP 26
g9 8 Yo NP G R ey s S e s e e AR s wee e e 31
2.4 - SUPERVISORY CONTROL SYSTEM .cveeeeeaneas e e 31
ROEA SR DIRECT DTGITAL CONTROB o0 daivsiiahs s gt Wl 34
2.6 - DISTRIBUTED CONTROL SYSTEM'S CHARACTERISTIC
Gl R RN R I . T e SR LA 37
87 ik ONCTTONAL LAYERS OF “HIBRABCHY s wrsls Liubns sbes sie 40
CHAPTER 3
3.1 - THE BASIC DESIGN TASK IN A MICROPROCESSOR-BASED
R NP RN SN SR e b R i NI e 4 e DB
3.2 - A GENERAL PROGRAM DEVELOPMENT PROCEDURE 54
<l STl iy Sl R o R N RN SIS e Sl 58
3.4 - FEATURES OF MULTIPLE PROCESSOR SYSTEMS 61
S50 b ITH PROCEBSOE & i et s s Sin e 5 & e Sy S 65
3.8 = MISH PROCESSOR: o Bty en S (FRNRELY - AP (i 65
GLiZ s "= BTMD PROCESS R S il <ia Bag NI i o s 66
8.8 = MIMD PROCESSORseisso R it S 66
3.9 - MEMORY FORMATIONS e 1 L Bt o BT
3210 =L TNTERCONNECTLON NETHORKSE Mk o va sala B sheginas & 5 oo ks 1
CHAPTER 4
4.1 - DESCRIPTION OF A DISTRIBUTED COMPUTING SYSTEM .. 81
4.2 - A MODEL OF A PROCESSING ELEMENT OF A DISTRIBUTED
COMPUTING SYSEEM viueenoes o s R st E TS, SR v, 4
4.3 - PHYSICAL IMPLEMENTATION OF THE INFORMATION
DISTRIBUTTION NODE Lo simsters siosiuisios + & i Taiatate S alad . 86

ILLUSTRATIONS continued PAGE

4.4 - PHYSICAL IMPLEMENTATION OF THE INFORMATION

ACCUMULATOR NOUE: oty » « sielnieivie a's sim s A A e RN 86
4.5 - AN EXAMPLE OF TWO CROSS-COUPLED TASK PROCESSORS

o = SRR T O e RS I Ol e 88
4.6 - SIMULTANEOUS SERVICING OF INTERRUPTS .e.veveen.. 96
CHAPTER 5
B TNPORMARTONELON e s isisalsion s o6 e » 102
5.2 = BIDIRECTION COMMUNICATION BETWEEN PROCESSORS VIA

AVFATRUOF TEMIE o &y S s o s s ol atute s «150ars L L 103
5.3 - 256 X 8 BIT INTER MEDIATE SCRATCHPAD AND MEMORY

TR TERBERCE Seis s vnise v iosin s ne custe e RS P -) 5 S RENE i
5.4 - MASTER SLAVE CONFIGURATION FOR COMMON MEMORY ... 109
5.5 ~— HIERARCHICAL MICROPROCESSOR SYSTEM UNIT (HMSU) . 111
a8 - — (B ERARCH Y CAT S T s R S ain 5o b Wen & 5 dve Gomidin m e 114
DIV = EPRR STRUGTHRE, o ohtos ot s s Dopasns wisr's RRC S | B 115
Sut SIBTHC BTRUCTURE . ions toa o alesielsts B e oih s e e s o A
CHAPTER 6
6.1 - THE TLF INTERFACED WITH THE HMSU AND THE PDP-11/

ZOVMINTCORPUBER o it as b ih ity ari's e atdi & S s o 2Ld
6.2 - A TYPICAL TEMPERATURE CONTROL LOOP OF A PROCESS

PRANT 3. v ip i R s e s o A v TR e, . 122
8.5 . = HEATING .SECTXONS OF THE TLE Nl se sien « o s sjoatrs v e 186
6.4 - INPUT/OUTPUT INTERFACE A AT IR | 130
6.5 - EXISTING COMPUTER/FURNACE INTERFACE RS L
8.8 = ANALOGUE MULTIPLEXER INTERFACE .ovai<viseoiinsss 135
6.7 - MODIFICATION TO DAC CHANNELSv.e... G 0 136
CHAPTER 7
7.1 ~- THE F8 CROSS-ASSEMBLER (MK-3) STRUCTURE 140

ILLUSTRATIONS continued PAGE

7.2 - MEMORY MAP OF THE MASTER PROCESSOR AND COMMON

MEMORY L. Sscvins Ay AT G k| e L L e 148
7ub SR ORANQHPAD MEMORY MAD . b et o e ate msatls e S, o swsivis 144
7.4 - ISMI MEMORY MAP - INPUT CHANNEL OF THE HMSU 147
7.5 - ISMI MEMORY MAP - OUTPUT CHANNEL OF THE HMSU ... 148
76 = TNTERRUPT STRUCTURE WITH PRIORITY «.oinfosions eass . 150
7.7 - EXAMPLE OF TWO LEVEL PRIORITY INTERRUPT

EERUCTUTIBSG v s #3 e 5 wiminss o s 500 nm siaie & mos ws oivi vn & 0876 sios 153
7.8 = MAIN PROGRAM OF THE MASTER PROCESSOR o el n N0
Cdh NEABTINERURENE. 7.y ifiie o ota s s Ste aiois MIOREN R R s « v Ninisidis 161

7.10 - INPU SUBROUTINE TO READ IN TEMPERATURE OF A LOAD 162

7.11 - OUTPU SUBROUTINE TO OUTPUT POWER TO A ZONE 162
Pad 2~ DEMECROUD T 0% Calhcn s e simioifosinin ae v i et ato e o N
Tud 3T=NISMT ROUTENE (CONTIBUED). vidooivis s sisiaioheisoe e st 164
7.14 - SUBROUTINE TO COPY ISMI DATA INTO PM AND CM 165

7.15 - TRMIT ROUTINE FOR DATA TRANSFER FROM THE MASTER
PR P TOMT CHANTBE 2 i caie e o itibe i I o 166
T B = R TMER TN SRR R UL ROUTTNE e ctoas Wity vic ool TR e

7.17 = EXTERNAL INTERRUPT ROUTINE FOR LOAD ADDRESS

DPDAEE o s s aroillai o siie sialeis ey o A RS sreie ., 168
7. 185 ="COMMON. MEMORY ROUTINE .4 .ooie oiooininss silsindnlyinsd 3 el 169
719, = CALL AND REDN. ROUTTINE oo v Bl de v, T O 170
CHAPTER 8
8.1 - SOFTWARE DEVELOPMENT ENVIRONMENT FOR THE PDP-11/

N OM B TEE s e it w s a s s eiesinate o - U 173
8.2 - A GENERAL FORTRAN SOURCE PROGRAM DEVELOPMENT

PRUCBBUEE o o em e s s o n e i el TR b 175
8.3 - SESSION RUN OF THE DCHMSU PROGRAM (INPUT/OUTPUT

APPEARING ON THE CONSOLE) 2 0 o S oLy 182

10

ILLUSTRATIONS continued PAGE

8.4 - SESSION RUN OF THE DCHMSU PROGRAM (CONTINUED) ... 183
8.5 - SESSION RUN OF THE DCHMSU PROGRAM (CONTINUED) ... 184
8.6 = SESSION RUN OF THE DCHMSU PROGRAM (CONTINUED) ... 185
8.7 - PRINT-OUT DURING THE SESSION RUN OF THE DCHMSU
UG (AT Mt R S o o e SEA R I L e o R sess 186
8.8 — PRINT-QUT DURING THE SESSION RUN OF THE DCHMSU
CROGEANM | CONTERUELY © oo 0 oidio oieis & & i o'elnisials o'd o o iaieinie s & 187
8.9 - PRINT-QUT DURING THE SESSION RUN OF THE DCHMSU
PROGRAM (CONTINUED) .. e.vese- B A sl e iall Brietatiuiia) s alle e alin el o e e 188

8.10 - PRINT-OUT DURING THE SESSION RUN OF THE DCHMSU

PROGRAM (CONTINUED) R T T i s O 189
CHAPTER 9
3.1 - SIMULATION SET-UP FOR MICROSWITCH INTERRUPTS

USING TWO IDENTICAL F8 EVALUATION KIT PROCESSORS 192
9.2 - PROGRAM 1 FOR THE F8 EVALUATION KIT PROCESSOR 1

OF \PIGURESY .1l e 8% vs sinia Sl e il S A e 193
9.3 - PROGRAM 2 FOR THE F8 EVALUATION KIT PROCESSOR 2

G LTS O S O e « = ik e nh b be novie aieelaea e o vimisie one 195
9.4 - SIMULATION OUTPUT FOR THE SET-UP SHOWN IN

FRGURI G I 5 s s saisio e SR e e e g e b T SRS, ++ 196

3.5 - ARRANGEMENT FOR TESTING ISMI USING TWO F8

BV LU ARG VE R TG BTSN L - s e stiohe ot sas el aite 500 | stailuile.aisen s 199
9.6 - 'TRANSMITTER' PROGRAM FOR PROCESSOR 1 OF

BUGURIEEGES 0 e i RS & o s a e sl s e ey blioimin v wiadieialaluie e 200
9.7 - 'RECEIVER' PROGRAM FOR PROCESSOR 2 OF FIGURE 9.5 201
9.8 - PROGRAM TO CLEAR 64 LOCATIONS OF RAM OF

FROGCEHSSORNE SOREWT GURE N9 o5 5 i S fve b 0 e b v o 18 8 201
9.9 - SET-UP USING A PART OF THE HMSU FOR TESTING PM

AND CM MEMORY MODULES i Lo o shenmitmion 4 W v e @ 2O

11

ILLUSTRATIONS continued PAGE

9.19

CHIP SELECT LOGIC DIAGRAM FOR THE EPROM, PM AND

CM MEMORY MODULES +veuvens- S s Vs 205
HAND-ASSEMBLED PROGRAM FOR THE PROM SIMULATOR OF
PICURE 9.8 sale erios v s A2 et AR A ves 206

SLAVE PROCESSOR'S OUTPUT FOR THE TEST SET-UP OF

HIGURE 92 @ i dieis s e e discanstaip e sinie T e T S OE ER A O 207
ADVANCED TEST SET-UP FOR THE HMSU e 211
MACRO ASSEMBLY OF THE NUMB SUBROUTINE 216

FORMAT OF ARGUMENT LIST USED BY REGISTER &5 (RS)
DURING FORTRAN SUBROUTINE LINKAGEccoecnnaen 216
FORTRAN IV PROGRAM IR WHICH CALLS THE NUMB SUB-
BOUPTNE S0 vie sintans s @ aie il i el ias opa e o e i e B 217
QUTPUT RESULT OF IR PROGRAM OF FIGURE 9.16 217
CONNECTION ARRANGEMENT BETWEEN DR11-C INTERFACE

AND ISMI MODULES +vcosvvas SO T G e v es Tee R 219
PROGRAM TRIAL, MACRO SUBROUTINE SUB2 AND OUTPUT
RESUNT OF TREALSPROGHAM. | .iismis s s s s nisisisiain e ses S akama i)
DS P LT PR OGRAME oo i ete ol ais auniieiais + sps’ sinistaisia s v v nieinis s i=is 222
SIMULATION OUTPUT OF DISPLY PROGRAM ON GT42

PSP LAY PR OGRS G ORN G s o s i aa s s s alsis o8t & +10 % nlaiiatshane 224

DATA FILE SHOWING PROCESS VARIABLES «e.cueaeanas 224

12

ACKNOWLEDGEMENT S

I would like to extend my thanks to my thesis super-
visor, Professor P. D. Roberts, for his advice, guidance and
interest throughout. I am also indebted to HN. HIE. Nt
for his valuable assistance during the development of the
work. I would also like to thank . . B. - B
B. B B for their helpful suggestions.

I am grateful to . . s of the Department of
Electrical Engineering and l}. . TN . BN - B
B . B Bl of Computer Unit for their helpful
suggestions and valuable assistance in the Microprocessor
Laboratory.

Finally, I would like to thank my wife for her enduring
patience and constant support. Thanks are also due to
BE. B- B for her proficient typing.

The work was supported by the Science Research Council

in the form of a grant.

13

DECLARAT ION

The work described in this thesis was carried out in
the Department of Systems Science, The City University,
London, under the supervision of Professor P. D. Roberts.
No part of this work has been submitted for any other
degree. All sources of information have been duly
referenced.

I grant powers of discretion to the University Librar-
ian to allow this thesis to be copied in whole or in part
without further reference to me. This permission covers
only single copies made for study purposes, subject to

normal conditions of acknowledgement.

October 1981

PUBLICATIONS

Part of this work was used as a basis of the follow-

ing papers:

1. A hierarchically structured multi-microprocessor
system, presented at the Fifth EUROMICRO Symposium on Micro-
processing and Microprogramming, held on August 28-30 1979

at GOteborg.

2. Model of a processor within a distributed computing
system, presented at the Seventh EUROMICRO Symposium on
Microprocessing and Microprogramming, held on September 8-10

1981 at Paris.

14

ABSTRACT

The recent advances in integrated circuits technology
and the consequent emergence of microprocessors have
increased interest in developing multi-microprocessor
systems. Microprocessors and microcomputers are being
coupled together in increasingly large numbers in a tightly
or loosely coupled manner as distributed computing
structures which include complex interconnection mechanisms
and interfaces to link these to an application. Super-
imposed on this hardware structure, software is written to
provide the communication protocols, synchronisation
between sequential processes and application programs and
so on. A microprocessor or a microcomputer, as a process-
ing element, is a major programmable component in these
distributed computing systems which share the primary
advantages over conventional large computer systems of low
cost, reliability and possibly speed of operation. The
main task of implementing a distributed computing system
interfaced to a real-time large-scale complex system is the
partitioning of the main control problem into smaller sub-
problems and identifying the interactions between them, so
that the subproblems and interactions can be programmed
into the processing elements.

This thesis is aimed at the study of hierarchical
computer control using multi-microprocessor systems. In
particular, it is concerned with the design and practical

application of microprocessors and a PDP-11/10 minicomputer

15

to on-line distributed and hierarchical control of a
laboratory-based pilot scale Travelling Load Furnace (TLF).
The basic processing module from which the system is con-
figured is known as a Hierarchical Microprocessor System
Unit and consists of a number of Fairchild/Mostek F38
microprocessor system chips, a common block of semi-
conductor memory and a bidirectional scratchpad memory
interface. The configuration is designed so that a single.
HMSU can be used either independently or as a building
block in an expandable hierarchical environment. The
hierarchical control scheme involves the use of three
processing units of the HMSU to implement three term
control action on the eight zones of the TLF. The eight
zones of the TLF are divided into 2, 3 and 3 heating zones
designated as the preheat, heat and soak sections respect-
ively. Any one section can be assigned to any one of the
processing units (e.g. a Master processor or either of the
two slave processors) of the HMSU. Operator communication
and overall co-ordination of the system is performed by a
host PDP-11/10 minicomputer.

The main outcome of the research reveals that it is
feasible to implement multi-microprocessor systems such as
the HMSU for real-time, on-line hierarchical computer
control of industrial processes such as the TLF. However,
in order to justify the cost-effectiveness of such systems,
the need for proper development tools such as Micro-
processor Development Systems (MDS) with in-circuit-

emulation capabilities, testing and debugging tools such as

16

Logic Analysers etc. is paramount. The experience gained
as a result of practical implementation of the HMSU for
the control of the TLF has been invaluable so far as the
insight into the problems of developing hardware, software
and that of partitioning of a control problem into smaller
subproblems and their interactions is concerned. The work
reported in this thesis will provide a useful foundation
for evaluating and extending further possibilities of

developing multi-microprocessor systems.

17

CHAPTER 1 - TINTRODUCTION

The impact of recent advances in Large Scale
Integrated (LSI) ecircuit technology towards low-cost
processors and memory modules has caused increased experi-
mentation with multiple processors, multi-microprocessors
and multi-microcomputer organisations. A variety of
multi-processor and multi-microprocessor systems have been
described which use similar hardware but which differ in
the way in which the components are interconnected. The
spectrum of these Distributed Computing Systems range from
networks of conventional computers, systems containing sets
of microprocessors and novel forms of highly parallel
computer architectures with greater integration of process-
ing and storage. The motivations and importance of research
into these distributed computing systems are many and

varied (SRC 1980). These include:

1. Performance: eventually it will be impossible to
increase the speed of a single processor and retain
commercial viability. Several processors, co-operating on
a single task, will be the only way to greatly enhance

performance.

2. Reliability: a fully distributed system should be
able to tolerate faults caused by either software or hard-
ware., Hardware faults might be tolerated by having more
than one of each critical element. Software faults might
be reduced by running different algorithms in parallel and

checking the validity of results.

18

3. Clarity: many problems are naturally parallel.
Some problems are inherently simpler if expressed as a set
of interconnected and communicating processes. If a
problem's solution is expressed in this way, it might be
easier to verify the correctness for the whole solution by
partitioning it into subproblem solutions of individual
processes and their interactions. This approach inherent-
ly gives a better insight into a large-scale complex

problem.

4, Distribution: in areas such as real-time control,
it is often important that processor power is available
where it is required in order to minimise the bandwidth

requirements of data paths.

5. Cost: the low cost of microprocessors and memory
systems will allow certain tasks to be performed more
economically on sets of microprocessors than on a single

mainframe processor.

In the Department of Systems Science at The City
University, a research program in computer control of
Travelling Load Furnaces (TLFs) and their application is
being carried out, with the object of finding improved and
more efficient control schemes to be applied in industry.
To this end, the design and modelling of an experimental
Travelling Load Furnace for computer control was under-
taken by R. Caffin in 1972 and subsequently, further
experimentation was performed by H. H. Sheena using a

digital Ferranti ARGUS 500 computer in 1977. Based on this

19

research, a project entitled '"Microprocessor control of a
Travelling Load Oven'" was successfully completed by the
author in 1977 using the Fairchild F8 microprocessor
evaluation kit. This work and the influence of the above
motivations has directed this research with the following

objectives:

1. To study parallel processing aspect of on-line

computer control.

2. To design a multi-microprocessor system to the on-
line distributed and hierarchical control of the laboratory-

based pilot scale Travelling Load Furnace in the department;

The options available for designing a distributed
computing system are enormous. A decision about the
distribution of hardware and software to go along with it
depends mainly on the application for which this distrib-
ution is sought in the first place. The distribution of
hardware for information processing where it is needed may
be limited by cost considerations whereas the distribution
of software to perform the desired processing may be
limited by storage capacity and software development costs.
The optimum choice for both the hardware and software
suggests a modular design approach for the distributed
computing system. In this approach, a processor is made
responsible for a particular task which is some fraction of
the overall distribution of the main problem task. When a
number of such processors, with their assigned tasks, are

interconnected as required by the co-ordination of

20

individual tasks, the overall system then accounts for the'
distributed solution of the main problem task. Thus the
main task of design and implementation of a distributed
computing system is the partitioning of the main control
problem into smaller subproblems and identifying the inter-
actions between them, so that the subproblems and inter-
actions can be programmed into the individual processors of
the distributed computing system.

The modular design approach is used for the develop-
ment of a multi-microprocessor system for on-line distrib-
uted and hierarchical control of the TLF. The basic
processing module from which the system is configured is
known as a "Hierarchical Microprocessor System Unit" (HMSU).
The hardware configuration of the HMSU required to control
the TLF consists of three F8 microprocessor systems, a
common memory block, analogue input and digital-input-
output interfaces and a bidirectional scratchpad memory
interface. Each processor has its own private memory but
the bulk of the memory is common to all processors. It is
the task of one particular processor designated the Master
processor to control access by any other processor (called
a slave processor) to the common memory. Apart from this
function, each individual processor acts independently,
performing a dedicated control function (i.e. three term
control action on different sections of the TLF) via its
own Input/Output channels. The three processors operate
asynchronously, all interprocessor communication being

conducted through the common memory under control of the

21

Master processor. The Unit as a whole communicates with
the outside environment, which may be another HMSU, a large
host computer, or any other processing equipment. In this
case, the HMSU unit is controlled by a PDP-11/10 mini-
computer. The master-slave relationship of processors
within the HMSU and on-line supervision of the HMSU by the
PDP-11/10 minicomputer accounts for the hierarchical
structure developed.

In the thesis, other structures using the HMSU as a
building block are discussed in Chapter 5. Since the
application undertaken is related to the control of
industrial processes, Chapter 2 discusses a role of micro-
processors in process control and its related instrument-
ation. A set of design guidelines for the use of micro-
processors in process control environment are also given in
this chapter. The applications which are based on a single
microprocessor based system are enormous and it is imposs-
ible to enlist them. However, the applications covered by
the use of multiple microprocessors in distributed comput-
ing systems are relatively few but the number of these
applications have been increasing rapidly. The Science
Research Council of the UK have co-ordinated a research
programme in distributed computing system and its annual
report outlines on current state of research on the
subject. Chapter 3 reports on the study of multiple
processor system, problems of designing with multi-micro-
computer system and general aspects of system design with

respect to distributed computing system.

22

In real-time large-scale complex system environment,
the use of distributed computing system is highlighted by
its interfacing issues. A new model of a processing
element of a distributed computing system suitable for such
interfacing is proposed in Chapter 4. The application of
the model in two hypothetical applications is also con-
sidered. Chapter 6 describes the Travelling Load Furnace,
the PID control algorithm and modifications required for
the existing interfaces to the department's TLF,.

Chapters 7 and 8 describe the software development for the

HMSU and the PDP-11/10 minicomputer and Chapter 9 discusses
methods used for testing the HMSU hardware and its related

software.

The full implementation of the complete HMSU system
for on-line distributed and hierarchical control of the TLF
was set back by the lack of proper development and debug-
ging tools. Despite this fact, however, the research
undertaken demonstrates practical problems of implementing
a multi-microprocessor system such as the HMSU. As such,
this thesis will provide a useful basis for evaluating and
extending further research on multi-microprocessor systems

and their applications.

23

CHAPTER 2 - MICROPROCESSORS IN PROCESS CONTROL

2.1 INTRODUCTION

The technology of applying digital computers to process
control has developed rapidly since the late 1950s. A
typical computer control system then comprised a centralised
minicomputer with backing stores (disks) and about 8 k or
16 k of 16 bit words. Such a system would interface with
the plant via 'backup' controllers which were essential
safeguards against computer failures. These safeguards were
needed because computer hardware was comparatively unreli-
able and catastrophic effects of the failures of a computer
which controlled perhaps 100 to 200 loops were intolerable.

In the 1970s, this centralised configuration has given
way to smaller computing units. These smaller units
individually control small sections of the process and
collectively form a plant-wide control system which is
interconnected by a digital communication system (Brown,
1979). This modern configuration, termed as a distributed
control system, has resulted directly due to the rise of
microprocessors.,

In this chapter, a review of the process control
problem and control techniques such as supervisory control
and direct digital control is made. The role of micro-
processors in a distributed control system is investigated
and some useful design guidelines as to the use of micro-
processor-based control systems in a process control

environment are also given.

24

2.2 THE PROCESS CONTROL PROBLEM

Many industrial processes have been reported to have
used successful computer control systems. These include
petroleum and petrochemical plants, blast furnaces, paper
machines, textile mills and glass industries (Smith, 18720
Each has its unique problems but the common feature is that
the energy is utilised to move and to convert raw materials
into final products. Control over the final output product
is achieved by computers which handle information aspects
regarding the process. 1In all of these processes, process
information is obtained or derived from process variables
which are divided into four categories as illustrated in

Figure 2.1.

1. Manipulated variables: These are variables such
as input raw material flow rate, steam pressure in a vessel
etc. whose values can be adjusted by the control system by

either analogue (conventional) or digital methods.

2. Controlled variables: The measure of the perform-
ance of the plant is determined from these variables whose
values are kept at some predetermined target values (set
points) by the control system. Examples include production

rate, product quality etc.

3. Disturbances: These are variables whose values
affect the operation of the process but which are not sub-
ject to adjustment by the control system. Examples include
composition of raw material, change in ambient temperature

ete. Some disturbances can be measured while others cannot.

25

manipulated

variables

FIGURE 2.1 :

disturbances

L] L] L]
—_— >
e PLANT .
OR confrolled
: PROCESS : variables
—_ —

intermediate
variables

General representation of process variables.

S S e & 3l
; ANALOGUE }
| CONTROLLER :
I
Sgi’rnf :+ CONTROL | L
LI varla;e
~—:—-O—> Pl ACTUATOR PROCRESS
| - I
SRR MR, eI T g
manipulated
variable
SENSOR
FIGURE 2.2 : Basic conventional feedback control loop

26

4. Intermediate variables: These appear at some
intermediate point in the process. The control system can
use these advantageously in determining appropriate control
action. Examples include temperature of the mix, mix

compositions etc.

The general control problem is to adjust the manipul-
ated variables so as to maintain the controlled variables
at their target set values in face of disturbances. The
control of a typical process plant which has several
variables in the above categories is no simple task. This
task is further complicated if a mathematical model is
required of the process characteristics. The process
characteristics depend firstly on the level of plant
operation (the plant is usually highly nonlinear) and,
secondly, even at a constant operating level, a plant's
characteristiecs often change with time (the plant is non-
stationary).

Supplementary to the above process control problem,
the most common question of primary concern is "How to use
a computer to generate larger economic returns from the
process?" The ability of the digital computer to acquire
large quantities of data from the process, analyse it and
make logical decisions based upon the results makes it most

attractive for such an application.

2.3 COMPUTER CONTROL SYSTEM

The computer control of a process plant can be

achieved in numerous ways. The various ways of control

27

depend upon the computer and the process plant configur-
ation, control techniques and control schemes. These are
summarised in Table 2.1.

In general, the control schemes are of a more theoret-
ical nature, whereas control techniques are more practic-
ally oriented. However, the choice of control scheme
depends upon the process to be controlled and this, in
turn, determines the control technique to be adopted.

Before looking into digital control systems, the
appreciation of the conventional approach to a process
control problem is a helpful background. The basic control
loop in a conventional (analog) system is the simple feed-
back loop illustrated in Figure 2.2. The control law
generates a change in manipulated variable so as to drive
the error between the set point and measured control
variable to zero. This controller output is imposed upon
the process by an actuator, which is an automatic position-
ing valve in many process control cases. The control law
commonly used is the proportional-integral-derivative (PID)
relationship or some simplification thereof.

In a typical plant, there may be anywhere from a few
of these controllers to upwards of a hundred or more.

Until the late 1950s, these controller devices were
invariably pneumatic. Most of these controllers and later
their counterparts, initially vacuum-tube and then solid
state electronic controllers, basically suffered from
inflexibility. This inflexibility imposed several burdens

upon the control system designer.:

28

COMPUTER AND PROCESS

62

PLANT CONFIGURATIONS CONTROL TECHNIQUES CONTROL SCHEMES
1. Off line - manual data collection 1. Data logging 1. Sequence control
- automatic data collection 2. Regulatory control
2. In line (real time) 2. Supervisory control - Feedback control
3. On line (real time) - Feedforward control
- open loop mode 3. Direct digital control - Ratio control
- closed loop mode - Cascade control
4. Time sharing 4. Distributed control 3. Multivariable control

4. Optimising control

TABLE 2.1 - PROCESS CONTROL

TECHNIQUES AND SCHEMES

1. The control strategy must be such that it can be

implemented with analog hardware.

2. Any subsequent modification to control strategy

requires modifications of the analog hardware.

In the mid-1950s, the digital computers began to play
a significant role in process control. This was due to the
fact that any control strategy is programmable and most
modifications in the strategy require simply program
changes and not hardware changes.

It is not the subject matter of this Chapter to dis-
cuss the control schemes outlined in Table 2.1, because
these are well documented elsewhere in textbooks (e.g. Lowe
and Hidden, 1971; Smith, 1972; Savas, 1965). The following
sections review some of the important features of control
techniques currently practised in process control

industries.

2.3.1 Data loggers

To record a large amount of process data manually is
slow, tedious and inaccurate, and may involve considerable
manpower expenditure. This suggests the value of automatic'
on-line data collection and computer control. However, as
illustrated in Figure 2.3, the data logger is not directly
active in the control or regulation of the process. It
simply records the values of important process variables at
regular intervals of time. During process modelling, care-
fully devised process tests generate a lot of necessary

data for which a data logger is wvital; however, data

30

PROCESS PLANT
Y Y
CONVENTIONAL CONVENTIONAL
ANALOGUE ANALOGUE
CONTROLLER CONTROLLER
Y Y v
DATA data
LOGGER
FIGURE 2.3 : Data logger
“\\
ST T measured
process
f———2 iabl
PLANT SR g
L]
-
A LS </
y 1
ANALOGUE
AC AC e o o AC
CONTROLLERS
Nl _ S/
set
points
OPERATORS COMPUTER
CONSOLE |

FIGURE 2.4 :

31

Supervisory control system

logging in itself is not adequate. 1In a few exceptions,
such as nuclear power plants, where the records must be
maintained, and laboratory automation systems, data logging

is of primary importance.

2.3.2 Supervisory control

Supervisory control systems are usually based on pro-
cess models where the basic objective is to optimise the
financial returns on investment. Typical input information

needed for a process model might include:

1. Cost of raw materials and utilities

2. Value of products

3. Composition of raw materials and products

4, Current values of process variables

5. Constraints on the process operation (e.g. safety
limitations, preventive maintenance etc.)

6. Specifications on products

7. Demands and market fluctuations for the products.

The operating strategies based upon these inputs and
the process models which are generated by the computer are
usually too complex to be handled by operating personnel.
Thus, in many cases, the control computer simply provides
the set points for the analog controllers, as illustrated
in Figure 2.4. 1In this configuration, a single centralised
computer is used which does not replace analog hardware.
The backup problem is not as critical, for in case of
computer failure the set points simply remain at their last

setting or can be manually adjusted.

32

The problems of supervisory control fall mainly into a
software category, and the main obstacle to the instal-
lation of supervisory system is that mathematical models of
plants are seldom available beforehand. Thus, the econ-
omics of supervisory systems are based on the prospect of
the system producing sufficient improvements in process
operation to justify the financial investment in the

computer control system.

2.3.3 Direct Digital Control (DDC)

The most basic form of Direct Digital Control (DDC)
involves the replacement of individual hardware elements
(analog controllers) wherever possible with the time shared.
components of a digital control computer. In the DDC
technique the computer calculates the values of the
manipulated variables directly from the values of the set-
points, measured controlled variables and the control
algorithm (e.g. discrete equivalent of conventional PID
relationship). The decisions of the computer are applied
directly to the process and hence the name DDC. The control
arrangement is shown in Figure 2.5.

Direct digital control has been a fundamental and major
step towards easy and economical application of modern
control technology. It introduces the flexibility of a
choice of specifying any control strategy that can be
programmed in a control computer system. Addition of
control loops to the existing ones, feedforward and combin-

ation systems can be used more widely when the only

components which must be added to the system are transducers

33

23

LT s s e e
i ———— T measured
man_lpulafed ; PROCRESS — controlled variables
variables 3 : |
. PLANT .
—_— 0
—_— e
\ J
MULTIPLEXER
DAC 2 AND ADC
A
COMPUTER {‘
WITH
OPERATOR ¥ S Feenchin COMMUNICATIONS e
CONSOLE CHANNEL :

FIGURE 2.5 : Direct Digital Control

computer if
used

and mathematical expressions. The design of a complex
process control system employing DDC allows the possibility
for redesign and 'customisation" after installation.

The economic justification of a process control system
employing DDC technique depends upon efficient computer
utilisation, computer down-time costs and the ingenuity of
operating personnel to make desired program changes. In
addition, if a supervisory computer is also used, then the
problems associated with it would be encountered as much as

with a DDC technique.

2.4 DISTRIBUTED CONTROL SYSTEM

A distributed control system is mainly a decentralised
control system where the individual subsystem control units
are distributed among the physical subsystems of the over-
all process. These systems have been developed, not
specifically for process control application, but also for
more commercial applications, such as banking, inter-
company, data-base centralisation, airline reservation
systems, military systems etc. In industrial computer
process control, the digital process control function is
distributed among the individual physical units, using
microprocessors for example, which permit control tasks and
physical location to be distributed in the plant; such a
system has benefits of improved control, reliability,
flexibility and reduced cabling costs (Roberts, 1979).

The distributed approach to control system designs can

be developed to exploit modularity in both the process

35

control units and the structure of the communication net-
work. These concepts can be pursued in both hardware and
software, and are key features in the production of reliable
and manageable systems (Holding and King, 1979):. The
flexibility of the resultant control system actually
increases overall systems integrity. Equally important, it
provides a system which can be easily implemented, adapted,
extended, or replaced, either in part or as a whole. The
characteristic features of such a distributed control
system can be given in a tree diagram, shown in Figure 2l
Although some of the features are categorised under soft-
ware in the diagram, they do have a close relationship withl
some of the features of hardware. For example, the
communication between the processors is very much dependent

upon how the processors are structured.

2.4.1 The miecroprocessor role

Although not impossible, it may not be useful to
develop a system that has all the features mentioned above.
This is because the flexibility and low cost of the micro-
processor allow it to be used in so many applications that
it is difficult to put any bounds on the areas of applic-
ation. Recent surveys of application to control illustrate
the wide range (e.g. Aspinall, 1978; Spencer, 1976; Barker,
1978). In no way is a particular software or a hardware
solution appropriate to all applications. That is why it
is essential to see the role of a microprocessor with some

distinctions in the type of application.

36

Distributed Control
System

|]

Hardware Software

Control Communication
| between processors

| > | G

| Control over Distribution of

Processor Structure of the entire dedicated
Architecture Processors system control function
operation

Combinations

Star Ring Hierarchical of these

—— SISD - Single instruction/single data stream processor

— SIMD - Single instruction/multiple data stream processor
— MISD - Multiple instruction/single data stream processor
—— MIMD - Multiple instruction/Multiple data stream processor

L Other architectures

| |

One to One to Many to
one at many at one (through
time a time suitable priority)

Many to
many

FIGURE 2.6: Distributed control system's characteristic features

37

The market for microprocessors in process control will
be in applications with standard programs with a limited
variation in functional response (Wilkie, 1979). In this
type, firstly, there will be replacement for existing units,

frequently with additional features. Some examples are:

1. Low-cost replacement for analog controllers

2. Intelligent alarm and acquisition systems
3. Intelligent instruments with communication
capabilities.

These applications are essentially at a component
level. The second type of more novel applications might be
regarded at component level because they depend on the

flexibility which surrounds the basic equipment, for example:

1. Sophisticated control strategies, such as self-
tuning controllers

2. High reliability systems.

These applications are important to the process control
designer and allow a variety of new features to be included
in the system (e.g. displays). The third type of applic-
ation, where microprocessors are of significant importance,
is an area previously covered by minicomputers, although not

always economically. These applications include:

1. Distributed control on a unit process basis
2. Sequence control

3. Mixed sequence and continuous control.

For pure sequence control, the existing dedicated PLCs

(Programmable Logic Controllers) provide an economic

38

solution especially for very high-speed work. However, the
inclusion of data logging, VDU display features or of
continuous control may prove that a microprocessor-based

system solution is more appropriate.

2.4.2 The process control requirements

Having considered the role of a microprocessor, it is
worth looking into the operational requirements of process
control within the background of distributed control
systems. A "top down'" design approach of a distributed
system for overall plant control and optimisation can be
considered to meet these requirements, which can be divided
into a number of hierarchical levels. This is shown in
Figure 2.7. The lowest level is usually concerned w ith the
detailed control of process plant. The next level is
associated with the co-ordination of plant controllers to
produce a unified overall system. The highest level serves
to provide plant optimisation and management information.
This hierarchical operational organisation has to be
implemented within the physical structure of the actual
distributed system during the design process.

Very often, in process control, time critical real-
time operations extend throughout all levels and their
execution is essential to correct plant operation. The
majority of real-time tasks, which are fundamental to the
design of a distributed control system, are associated with
detailed plant control. This may involve sequence or
continuous control operations with auxiliary monitoring and

alarm functions. The requirements are serviced in a secure

39

MANAGEMENT /
SELF ORGANISATION

o

ADAPTION /
OPTIMISATION

CO-ORDINATION

similar links
to other

process plants

CONTOLLERS

h

CONTROLLERS[e e e

Y

CONTROLLERS

PROCESS PLANT

FIGURE 2.7

40

: Functional layers of Hierarchy

and reliable way. The co-ordination of first-line control-
lers also needs to be carried out in real-time and this
imposes stringent requirements on communication handlers,
network and the various protocols of communication. It
should also be noted that the supervisory and management
system may also be involved in real-time scheduling,
logging and display functions, apart from their normal

decision-making.

2.4.3 Advantages of distributed control systems

A distributed control system as described above is
very similar to that of the team approach taken by
co-operating humans to solve a problem too large for one
individual (Bibbero, 1977). The advantages of such a
distributed control system are many and summarised as

follows:

1. It is more economical because of the low cost of
microprocessors. This makes the first-line controllers
relatively cheap so that it is economical to consider spare
controllers for use in the event of failure. Should a
failure occur, its effect will be limited to only a small
part of the process and in many cases this part can be
operated manually until the replacement controller is put
into service. Equally, a failure of a higher level com-
puter would not prevent plant operation but would merely

reduce efficiency until the failure was corrected.

2. The distributed control system in its functional

levels of hierarchical structure, which is very suitable

41

for process control application, has several advantages
over the use of a large central computer. The process
control can be built step by step and experiments in
control in various parts of the process can be made at
reasonable cost (Edgington, 1979). The advantages of step-

by-step approach to building up the control hierarchy are:

A. Sophisticated control: Computer-based control

leading to improved efficiency.

B. The implementation rate can be arranged to suit

subprocess requirements.

C. Technological: A greater flexibility in develop-
ing technical ability of process operators because the

system is implemented gradually.

D. Low risk: The effect of failure is localised to a

small area.

E. Future: The system can be expanded and changed to
meet changing requirements or increased understanding of

the process to be controlled.

3. The distributed control system also provides a
communications medium and processing facility which can be
used to provide non-critical information processing, data-
logging or display, using various peripherals distributed
about the system. In particular, it can support facilities
for the on-line editing of control programs for the various

units in the system.

42

4. With the recent advances in the theory of hier-
archical control on the one hand and multi-processor
technology on the other, the optimal or near-optimal
regulation of large processes in engineering, socio-
economics etc. is rapidly becoming a real possibility
(Billingsley and Singh, 1975). This is an enormous
advantage, taking into consideration the characteristics

that the distributed control system exhibits.

2.5 DESIGN GUIDELINES FOR THE USE OF MICROPROCESSORS IN A

PROCESS CONTROL ENVIRONMENT

Microprocessors are relatively new devices; their
potential needs to be well understood before being applied
to any desired application. A variety of questions should
be answered in the design process of a microprocessor-based
system. For a process control application, the following
set of design guidelines have been given for microprocessor

based systems (Weissberger, 1975).

1. The nature of application: It may be

(A) A programmable controller
(B) A dedicated processor

(C) An element in a distributed control system.

2. (A) What is the number of

(a) functional tasks involved?
(b) input/output points?
(¢) points to be controlled?

(d) loops to be controlled?

43

(B) What is the processing load?

(C) Is real-time response required?

3. A decision as to the functional task subdivision
and input/output signals assignments for processing
elements is needed. The data load and throughput rate for

processing element also needs to be determined.

4, Microprocessor selection: This can be very

critical and depends on several factors. These are:

(a) Availability

(b) Supplier reputation

(c) Software support

(d) Instruction set, word length

(e) Speed of operation

(f) Architecture - interrupt capability, registers
etec,

(g) Second source

(h) Memory capability

(i) Package count

(j) Number of power rails

(k) Power consumption

(1) Development system.

Also, in the selection processes the software design
needs careful attention; for example, programming flexibil-
ity, word size (data/instruction), address capacity,
addressing modes (indexed, indirect, relative, direct etc.),

instruction set (repertoire and speed), register compliment

44

(arithmetic,

etec.

index, status, accumulators, general purpose)

5. Environmental considerations: These include

(a)

(b)
(c)
(d)
(e)

Industrial noise, temperature, electrical
noise

Distance between process variables

Power dissipation, consumption and cooling
Input/output interfacing

Future expansion, space etc.

6. Interfacing: This is a very important stage in

the design process and this includes:

(a)
(b)
(c)
(d)
(e)
(f)

(g)
(h)
(i)

(3)
(k)
(1)

Transducers

Amplifiers

A/D converters

Multiplexers, demultiplexers

D/A converters

External event counters for real-time applic-
ation

DMA facilities

Line drivers, line receivers, moderns, UARTs
Cabling, twisted pairs, coaxials, ribbon,
optic fibres etc.

Displays

Consoles, telephone links etc.

Earth loops.

45

7. Distributing: As described earlier, distributing

can produce a cost-effective solution. This may include:

(a) Distribution of microprocessor/controllers
along the peripherals of the plant floor with

a centralised minicomputer

(b) Distribution of individual power supply.

(¢) Distribution of functional task by partition-

ing and software modularity.

A lot of cost savings can be made if the above guide-
lines are followed in the development of microprocessor-

based systems for process control application.

2.6 CONCLUSIONS

In process control, the computer has become one of the
primary instruments for control. The advent of large-scale
integrated circuits and microprocessors has radically
changed the capability and applicability of distributed
computer control systems. These systems can be applied to
a wide range of applications and trial installations have
been established in a number of industries (IEE Conference
publication, 1977). The modularity and flexibility of
these systems make them more reliable and manageable than
centralised systems. In many situations, they present a
more attractive and economic solution to the control
problem.

The review of the control techniques presented in this

chapter suggests how the changes have taken place over the

46

last two decades. A lot of further research, however, is
needed and the scope is enormous in areas such as distrib-
uted processing, architecture, operational attributes,
resource management etc. (SRC Annual Report, 1977). It has
been the experience of several years that the theory is
always ahead of its practical implementation. This is also
true in process control and the distributed control systems
attempt to bridge such a gap.

Another area which is of interest is that of communic-
ation between processors and the issues of the development
of a standard for communication between the intelligent
subsystems of a process control system (Lee, 1976). The
development of higher-level languages for distributed
control systems and the development of different architec-
tures for multiprocessors have been at the open end of the
research activities in the universities and industrial
research centres. The concept of a transputer (Aspinall,
1978), for example, falls into the category of such archi-
tectural developments. In general, the pressures for
change in computer system architecture are: (1) language
and programming based, (2) applications and systems based,
(3) reliability and technology based, or combinations of

these drives for change (Elliott, 1978).

47

CHAPTER 3 - SYSTEM DESIGN

3.1 INTRODUCTION

The process of system design is essentially a process
of translating the problem specification in a high-level
natural language into the problem solution in a lower-level
language notation. The human brain is unable to deal
completely with more than a certain amount of information
at any one time (Miller, 1956). Therefore, the only
natural way in which a large-scale task may be comprehended
and solved is by splitting it up into a set of smaller,
comprehensive subtasks in a logical manner. The trans-
lation of the problem specification, of a large-scale task
into the problem solution is usually too complex to be
performed in one stage (Dowsing, 1978). As such, it is
normally broken down into a number of smaller translation
steps, each step lowering the level of the language used
for the specification and the complexity of the system
needed to understand it.

It is true, in general, that design is an art and the
object of art is no simple truth but complex beauty and so
any design usually involves making personal choices and
trade-offs depending upon cost constraints and time limit-
ations. So far as designing with computers or micro-
computers is concerned, the lower-level language notation
typically ranges in complexity between a high-level

programming language and a hardware logic design language

which can readily be used by software and hardware

48

implementation systems respectively. Furthermore, the
advent of microprocessors has opened up a new design era of
multi-microprocessors or multi-microcomputers in which the
designer can think in terms of parallelism or concurrent
performing of smaller subtasks. A design solution result-
ing from the use of multi-microprocessors/microcomputers
may perhaps surpass the human brain capability of dealing
with only a limited amount of information at any one time!

In this chapter, the different phases of the system
design process are examined and the problems of designing
with microprocessors are outlined. An attempt to classify
a multiple processor system is made and a review of such a
system is also given. Finally, the design issues relevant
to a multi-microcomputer or distributed system are dis-

cussed.

3.2 GENERAL ASPECTS OF SYSTEM DESIGN

The process of design in general starts with an effort
to answer a simple question: '"What is it that we want to
achieve?" The answer usually attempts to establish the
goals or objectives about a system to be designed. A
defined set of goals or objectives results from a feasib-
ility study of the intended system. When such a system is
envisaged to be feasible under given cost constraints and
time limitations, the process of system design continues

with the following subtasks:

1. Problem specification: This first important step

involves an unambiguous, rigorous and detailed specific-

49

ation of the problem. The specification must be detailed
enough for a correct solution to be produced but not over-

specified with irrelevant information.

2. Logical design of the problem solution: The next
task is to decide on the method, the algorithm and alter-
natives for solving the problem. A designer has to harness
his skills to discover which is the "best" solution for the
particular problem in hand. The next logical task is to
produce a formal definition of the chosen problem solution
which may be implemented with the available implementation -
tools, either hardware or software or a mixture of the two.
This task involves a decomposition of the high-level
problem description into a lower-level description contain-
ing details which are more implementation dependent. This

forms a basis for the implementation subtask,

3. Implementation: A task of the implementation
phase is to map the logical design onto the implementation
system. This phase is typically constrained heavily by
costs, time and available resources. An experienced
designer may not have to pay any penalty for the constraints
heavily imposed on the implementation phase if these are
well anticipated and estimated in the feasibility study of

the system design.

4. Testing: The output of the implementation stage
takes the shape of the intended system but the behaviour of

such a system needs to be tested in this phase. This phase

requires testing tools and skills. Any errors, which have

50

occurred in the previous phases of design are revealed in
such a testing stage. Generally, it is best to mingle
implementation and testing in order to detect these errors,
because sooner the error is detected the easier it is to

correct and less effort is extended.

5. Optimisation: Optimisation stage is not strictly
a part of the design phase but is an important technique
for modifying the design so that the resource requirements
of the problem solution may be met. This phase also
avoids the necessity for complete redesign of the system

using a different approach or algorithm.

The design process is an iterative procedure based
around the subtasks outlined above with the specification,
testing and, if necessary, optimisation taking place at
each stage of the problem solution. The complexity and
likelihood of errors is reduced if the designer ensures to
take smaller steps at any stage of the system design.
Another important aspect of any system design is the
quality of its documentation (Fitzgerald and Fitzgerald,
1973). A full documentation of a system design should
provide the solution to the problem, the reasons why the
particular design decisions were taken, the underlying
strategies and their consequences on the rest of the

design.

3.2.1 Designing with microprocessors

Although applicable for any systems, the above general

aspects of system design can be followed for systems

51

incorporating microprocessors as well. However, there are
some important issues, described here, which make designing
with microprocessors a special case.

Microprocessors are a new technology and this technol-
ogy is revolutionising the way in which new electronics
based products are designed. It is creating a whole new
set of problems for designers. Part of this new design
philosophy results from the fact that in a microprocessor,
system functions are stored in memory instead of wired
into discrete logic devices, and the system designer has
the possibility of making modifications simply by changing
the program stored in memory instead of redesigning the
hardware. Hence the software now becomes as important a
part of the design process as the hardware. The basic
design task in a microprocessor-based system can be broken
down into three areas: software, hardware and software/

hardware integration. This is shown in Figure 3.1.

3.2.1.1 Software: The first step is to design the
program, a task which requires knowledge of the design
objectives and the microprocessor characteristics. The
design guidelines mentioned in Chapter 2 are very useful
for this purpose. For many practical programs, the use of
an assembler is necessary; this means coding the flowchart
into a source program and from this assembling into the
object code which will run on the actual microprocessor.
There are a number of ways of achieving an object code from

a source program. These are outlined in Figure 3.2.

52

SYSTEM

DEFINITION
HARDWARE r SOFTWARE
y
Y
DESIGN FLOWCHART
LOGIC WRITE
PROGRAM
¥ ;
BREADBOARD CODE
Y ¥
PROTOTYPE ASSEMBLE
OR COMPILE
TEST DEBUG
NO YES INTEGRATE YES NO
0K? ARD '
DEBUG

FIGURE 3.1: The basic design task in a microprocessor-based system

53

PROBLEM SPECIFICATION

I
FLOW
DIAGRAM
¥
¥ 4
WRITE WRITE
ASSEMBLY HIGH-LEVEL
LANGUAGE LANGUAGE
PROGRAM PROGRAM
HAND SELF CROSS Sl
ASSEMBLY ASSEMBLY ASSEMBLY COMPUTER
MACHINE CODE PROGRAM
RUN ON
RUN ON
DEVELOPMENT
SIMULATOR SYSTEM
'
PUT
CHECK OUT
PROGRAM IN
ROM/ EPROM PROTOTYPE
FIGURE 3.2: A general program development procedure

54

Coding a source program requires the use of a text
editor with the ability to enter text, modify, insert and
delete - plus a set of utilities for creating, loading and
manipulating text files and outputting to a printer or
terminal. For assembling into object code, the assembler
needs to be speedy and it must produce relocatable code so
that programs can be written in modules which are linked
together after assembly. A high-level language can be used
instead of an assembler, and the choice is very much
dependent on the application. However, with many micro-
processor systems, high-level language solution is not
fully available. In general, the high-level language
approach is best for quick design completion, low-volume
products and where data manipulation is important. The
assembler is better for high-volume products or real-time
control applications where speed is important.

Debugging of software consists of removing all program
errors. A certain amount of debugging can be done on an
emulator, but since the final operation is dependent on the
actual hardware, most debugging has to be done during the

critical software/hardware integration phase.

3.2.1.2 Hardware: The first step is logic design
which, like program design, can be done using information
on devices (data sheets) and a knowledge of the design
objectives. Breadboarding of the circuit modules is
carried out to obtain a prototype. This is a very typical

procedure followed by most electronic design engineers and

the tools involved are typically an oscilloscope, digital

55

voltmeter and, more frequently nowadays, a logic analyser.
Using such instruments, major hardware faults can be
detected but thorough debugging and testing is possible
only during software/hardware integration.

Another important point of consideration, while
designing hardware, is that of deciding the level at which
to start designing with microprocessors. There are three

basic levels of supply of microprocessor hardware:

1. Chip level: Starting from chip level can be
useful if large production is anticipated, where the design
costs are spread over many units. However, it does require

a large outlay in time and money to get started.

2. Board level: Standard functions available on
ready-made boards is a very convenient way of implementing
a system quickly and at reasonable cost, provided the
restrictions and limitations of the particular board are

understood and allowed for.

3. System level: Standard systems can be bought from
a number of suppliers. These are self-contained units or

microcomputers.

The choice of the level of hardware depends on the
application and such factors as flexibility, expandability

and maintainability.

3.2.1.3 Software/Hardware Integration: This is the

critical stage in completing any successful working design.

It is impossible to tell whether the software is working

56

correctly without using the hardware or vice versa. There-
fore, the task of debugging the original design becomes a
dynamic, interactive process; for example, one may overcome
a hardware problem by modifying the software or vice versa.
Tools such as in-circuit-emulators, logic analysers are

very useful at this design phase.

3.3 THE IMPACT OF MICROPROCESSORS ON USERS

Having seen some of the implications of designing with
microprocessors, it is worth noticeing the impact of micro-
processors on users. Microprocessors, as with main-frame
computers, have same attributes of association with peri-
pheral devices, the development environment and the user's
environment. Mainframe computers have been the case of
bedrock investments for a long time and still will be for
some time to come but now, it is the user of micro-
processors who has to make such huge investments in his own
environment. Furthermore, the user is allured by ever-
increasing cheapness of available microprocessors and new
announcements of more and more powerful microprocessor
architectures and their potential. The peripheral devices
for use with microprocessors and microcomputers are becom-
ing a medium-life phenomenon whereas the development
environment for microprocessors themselves is becoming a
long-1life one. This is all depicted in Table 3.1.

Carter (1978) has well reported a number of problems
of using microprocessors in areas such as technical, man-
power, commercial and sales and marketing. Although these

are documented from the viewpoint of a company producing

57

USER'S PROCESSORS
ENV IRONMENT } TRANSIENT { MICROPROCESSORS
DEVELOPMENT MEDTUM
ENV IRONMENT } LIFE { PERIPHERALS
LONG DEVELOPMENT
PERIPHERALS } LIFE ‘I: ENV IRONMENT
PROCESSORS BEDROCK USER'S
MAINFRAME COMPUTERS [INVESTMENT ENV IRONMENT

TABLE 3.1: Impact of microprocessors on user enviromment

its first microprocessor-based product, the technical and

manpower areas of problems are similar for any micro-
processor development project. Another problem area of
important consideration is that of the cost and the
benefits of a microprocessor-based project. Micro-
processor technology is changing rapidly and costs are also
changing quickly. It is important to repeat cost/benefit
analyses at regular intervals, especially if the project is
a longterm one. In the total costs of a microprocessor
project, the basic cost of the microprocessor chip is

indeed the tip of an iceberg as shown in Figure 3.3.

~—— MICROPROCESSOR

/e
AT

FIGURE 3.3: Total system costs

SOFTWARE

58

Working with microprocessors is initially expensive,
although these costs are not repeated for successive pro-
jects unless the choice of processor is changed.

Different considerations outlined in this section are
relevant to system design and should be considered as a
part of the design process while designing with micro-

processors.

3.4. MULTIPLE PROCESSOR SYSTEM

The concept of a multiple processor system is not new
and has been used in very large EDP (Electronic Data
Processing) systems for several years. But the use of
microprocessors in such systems is rather recent. There
are two basic reasons why a multiple processor system
should be envisaged using microprocessors. Firstly, the
microprocessors are very cheap and secondly, since they are
constrained in computing power by the physical limitations
of the chip capability, an extension of this power through
the use of a multiple processor system makes it viable to

produce large as well as small EDP systems.

3.4.1 Review of multiple processor system

A review of the literature (e.g. Searle and Freberg,
1975; Weissberger, 1977; Anderson and Jenson, 1975; Flynn,
1972; Thurber and Wald, 1975) reveals a considerable con-
fusion in the classification of multiple processor (com-
puter) system. The same name is given to different

computer organisations and different names are assigned to -

59

the same computer organisations. For example, Joseph (1976)
has reported some twenty-four different ways of referring
to distributed processing which emphasises a particular
architectural difference. He also further admits consider-
able confusion that exists as to the meaning of the term
"distributed processing'. However, Flynn (1972) has
suggested a basic classification scheme which describes the
method of operation based on the number of instruction
streams and data streams in the system. A brief mention of
this was included in the characteristic features of
distributed control system (Fig. 2.6, Chapter 2), but a
more elaborate tree diagram, shown in Figure 3.4, outlines
some other features associated with a multiple processor
system.

Since different system terms are used today, it is
important to give some definitions. A good review can be

found in Searle and Ferberg (1975).

A multiple processor system contains more than one

processor. Each processor may be a microprocessor or a

microcomputer executing a specific task. A microcomputer

is a microprocessor system with its own memory and peri-
pherals. Software considerations allow one to discern two

kinds of multiple processor system.

1. A distributed system, also called a multi-micro-

computer system or distributed intelligence microcomputer
system (DIMS) (Russo, 1977), in which each microcomputer
performs a dedicated function as part of a single

partitioned system. This static allocation of tasks allows

60

L9

Multiple Processor System

[
Independent processors
with no direct communic-
ation (SISD - Single
Instruction Single Data
Stream - see Fig. 3.5)
e.g. a standard uniprocessor,
or conventional computer.

Pipeline processors (MISD -

Multiple Instruction Single Data [

Stream - see Fig. 3.6) e.g.
IBM S/360 Model 91, CDC 7600,

STAR-100, ASC (Texas Instrument

Advanced Scientific Computer)

I

Multicomputer System

=

Array Processors

(SIMD - Single Instruction
Multiple Data Stream - see
Fig. 3.7) e.g. IELIAC IV

I
Multiple Processors (MIMD
- Multiple Instruction
Multiple Data Stream - see
Fig. 3.8)

Distributed system
(without any operating
system). Also: Multi-
microcomputer System.
Main feature: Static
task allocation

s

CDC

=
I |

Memory Formation (see Fig. 3.9) Interconnection
Networks
I (see Fig. 3.10)

I
Tightly

Loosely Team
Coupled Coupled Approach — Bus
— Star
—Ring
~ Hierarchy
| Combinations

of the above

FIGURE 3.4:

1
Multiprocessor (with
operating system). Main
feature: Dynamic task
allocation

I

Hardware System Organisation

Operating System Organisation

I |

Time shared/ Crossbar Multiport Separate Symmetric or
common bus switch memory executive anonymous
; for each treatment
Single bus Master-slave processor of all
Unidirectional Mode processors
buses

Multiple buses

Features of Multiple Processor Systems

the partition of software and is an attractive solution for
microprocessors. In such a multi-microcomputer system,
there is no integrated operating system as such, but there
exists some kind of communication protocol, either
implemented in software or hardware or the combination of
the two, in order to facilitate communication between a
number of processors. In a distributed system, individual
microcomputers may be locally distributed or there can be
geographical distribution of microcomputers depending upon

application.

2. A multiprocessor system implies a single

integrated operating system which is capable of dynamic
allocation of system tasks. Software is much more complex
for such a system than for a distributed system, but allows
balanced processing loads in real time and fail-soft cap-

ability.

The Figure 3.4 shows that a distributed system and a
multiprocessor system are in the same group of multi-
computer systems which are characterised by multiple
instruction stream operating on multiple streams of data
(e.g. see Fig. 3.8). Apart from this, two more categories
of multiple processor system need defining. These are as

follows:

1. An array processor is one in which multiple

streams of data are treated simultaneously by processing
elements in response to signals from a control unit,

decoding a single instruction stream. The only

62

qualification that distinguishes an array processor from a
multiprocessor is that the control of the number of
processing elements is always associated with one control
unit (e.g. see Fig. 3.7).

One example of an array processor is the ILLIAC IV
system (Feierbach and Stevenson, 1979). The ILLIAC IV has
a single control unit (CU) to direct the activities of
64 processing elements; these processing elements execute
the same instruction in parallel but on different data
fetched from their local memories. Information is
exchanged among the processors through a routing network;
processes are logically arranged in a ring but the
implementation allows routes of a distance of eight
processors to take the same time as routes of a distance of
one processor. All processors are required for array
operation; programs are written and compiled for execution
on 64 processors. When a processor fails, the entire
machine is unavailable until it is fixed. There is no run-
time error detection; failures are detected by periodic
confidence tests.

The ILLIAC IV architecture is also partially
reconfigurable via software so that each 64-bit processing
element could be partitioned into either two 32-bit or
eight 8-bit processors. The major application areas for
this type of array processors are the many large-scale
scientific problems in mathematics, numerical analysis and
engineering in which the nature of data to be processed is

in matrix form.

63

2. A pipeline processor can be regarded as a form of

functional partitioning of CPU microfunctions i.e. a
multiple instruction stream operating on a single data
stream fetched from memory (e.g. see TI'ig. 3.6).

The CDC STAR-100 system (named from the STring/ARray
data it is designed to process) is one of the best known
pipelined systems (Spencer, 1976). The CDC STAR has a
computer network consisting of nine computers which
execute the operating system, handle the files and deal
with the input/output equipment, and the very large
central computer which handles the processing on the string
and array data.

Multiprocessor systems, array processor systems and
pipeline processor systems have been well discussed in the
literature (e.g. Searle and Ferberg, 1975; Thurber and Wald,
1975; Feierbach and Stevenson, 1979). Most of these
systems have a clearly established modular nature in their
architecture. A computer architecture based on LSI modules
allows for a simple software controlled reconfiguration of
interconnections among modules. For example, processor
modules may be switched among several main memory modules,
I1/0 modules etc. This concept of reconfiguration of
architecture by software is not new; the LSI technology,
however, has enhanced it. The ILLIAC IV (Feierbach and
Stevenson, 1979), C.mmp (Wulf and Bell, 1972), Cm* (Swan,
Fuller and Siewiorek, 1977) are some of the examples of
multicomputer system with capabilities of reconfiguration

of architecture.

64

DATA

PROCESSING

UNIT

¥
|
1

CONTROL

faa UNIT

A
I INSTRUCTIONS

MEMORY <«

FIGURE 3.5 : SISD PROCESSOR

Y

PROCESSING UNIT

DATA

R RO e T O
I
I
|
|
I

|

\

Nl St
\

CONTROL
UNIT

INSTRUCTIONS

EREE—

MEMORY

DATA

FIGURE 3.6 : MISD PROCESSOR

65

CONTROL UNIT o
:
|
! ! : :
I ! I
L4 Y Y ;
PROCESSING PROCESSING | PROCESSING }
UNIT UNIT UNIT |
|
A |
l
h |
|
|
MEIA TR o S0t - SRy SRR T e :
FIGURE 3.7 : SIMD PROCESSOR
PROCE SSING PROCESSING Sy PROCESSING
UNIT UNIT UNIT
) \ A 1 A
| : :
] 1 |
i i :
CONTROL CONTIRAISE * IS = a CONTROL
Lol UNIT UNIT
X K A
| | !
‘ | [
| ; |
MEMORY
FIGURE 3.8 : MIMD PROCESSOR

66

CM

CM

L M

NOTE:- C(M=COMMON MEMORY , M=MOMERY , P= PROCESSOR.

FIGURE 3.9

67

: MEMORY FORMATIONS

TIGHTLY
COUPLED

LOOSELY
COUPLED

TEAM
APPROACH

A class of new multicomputer system which cannot be
placed under the classification of Figure 3.4 has been
envisaged by Kartashev and Kartashev (1978). This is a new
LSI multicomputer system with dynamic architecture which
allows one to reconfigure via software and in microseconds
all available hardware resources (widths of processors,
memories and I/0 units), each time forming in the system
new computers with different sizes. Based upon given cost
criteria, this system with dynamic architecture has been
comparatively evaluated for synchronous, asynchronous and
modular control organisations.

It is not the object of this chapter to discuss the
details of multiprocessor systems and their complex
operating systems because these research subjects are well °
treated elsewhere in the literature (e.g. White, 1976) and
basically there are many software problems associated with
operating system design and high-level programming language
design for such systems. As such, the following section
concentrates on the design issues of multi-microprocessor/

microcomputer systems or distributed systems.

3.4.2 Problems of designing with multi-microcomputer system

As outlined in Figure 3.4, one of the main features of
a multi-microcomputer system is a lack of an operating
system and the static nature of allocation of tasks among a
number of processors. This means that a system designer has
to use low-cost microprocessors to design a multi-micro-
processor system which is oriented towards an application

such that the application problem is carefully subdivided

68

for parallel processing or concurrent execution. The main
advantage of such a subdivided application problem is
modular software development. However, the design of such
a distributed system poses several interesting problems and

these are discussed subsequently.

3.4.2.1 System architecture: The system architecture

differs from a processor architecture and is usually
influenced by application requirements. The following

factors govern the system architecture:

1. Control and management of resources: The
resources, whether hardware or software, which are
distributed among various processing elements, should be
efficiently used. If a resource is made common or is
shared, then due consideration must be given to resolve

conflicts for its use.

2. Load balancing and reliability: The nature of the
application determines as to how the processing could be
balanced among various processing elements, This require-
ment may arise due to failure of any processing element.
The reliability specification determines whether the system
component failure is tolerable and, if so, how it degrades

the overall system performance.

3.4.2.2 Communication and control: This is an

essential feature of a distributed system and the quality
of performance of the entire system depends on communic-

ation and control of information and the complexity of

protocol used for it. The factors to be considered are;

69

1. Interconnection of processing elements (e.g. see
Fig. 3.10). The choice of interconnection depends upon
the nature of application, flexibility, reliability, cost
and complexity of control. A combination of various net-

works in Figure 3.10 is also possible.

2. Inter-process communication: The flow of control
and data information between various processes processed
in processing elements can be achieved by numerous commun-

ication protocols. These may be based on the following:

A. Serial communication using UARTs, Modems etec.
B. Parallel communication:
(a) port to port transfer using polling
techniques
(b) port to port transfer using interrupt
techniques
(c) DMA transfer
(d) transfer using buffer memory.

C. Synchronous/asynchronous communication.

3. Information transfer rates/capacity: The transfer
rate and capacity of a channel determines the number of

busses required and their bandwidths.

4., Message handling: If the communication is based
on messages between various modules, then the following

considerations are important:

A. Message format should include information
about source, destination, priority and error

checking information.

70

A

FIGURE 3.10 :

INTERCONNECT ION

NETWORKS

71

BUS

STAR

RING

HIERARCHY

NOTE:-
P=PROCESSOR

B. Length of message: It could be short or long
or of a fixed length.

Frequency of messages.

Error probability.

Acknowledgement delays.

=0 B = R = (e

Channel transmission rate.

5. System response time requirements: Normally
several modules use the same data channel and hence
sufficient data transfer rates should be maintained while
meeting timing and bus utilisation constraints, and
reduced queue lengths. Whenever the source generation
rate is low, techniques of buffering and multiplexing may

be used.

3.4.2.3 Distributed processing: Along with the static

distribution of an application task implemented into
various processors as individual subtasks, there exists
interactions between them. Efficient handling of such
interactions between modules depends on the design of the
system architecture and the communication and control
aspects of distributed processing. In addition, although
the distribution of subtasks into processors is static, the
actual processing and utilisation of these subtasks may be
of a dynamic nature. For these reasons, the following

elements of distributed processing need attention:

1. Task allocation: This consists of specifying
explicitly the disjoint tasks and their interactions

associated with a given problem. This may be possible only

72

for well-defined application areas where the requirements
are known in advance. Another method is to determine the
sets of individual tasks and allocate them in the local

memories of the individual processors.

2. Fail-safe capability: One of the motivations for
a distributed system is to provide a fail-safe system.
Therefore, distributed processing needs to incorporate a
detection mechanism for failures in the system and to
isolate them so that the errors will not be propagated
throughout the entire system. This feature is very useful

for maintaining the system.

3. Data association and synchronisation: In many
real-time, time-critical applications, the data to be
processed in various processors needs to keep track of its
source, when it was generated and how far and in which
processor it has been processed so as to make further
decisions for processing it or discarding it. This is
clearly a data association problem which depends on
synchronisation at various stages of distributed process-

ing.

4. Resource allocation: Just as task allocation,
software control of hardware resource (e.g. memory, data
bus etc.) allocation and deallocation is another important
task. Since there is no central scheduler in a distributed
system, sufficient intelligence should be provided at

various processors so that they can self-schedule and

handle resource allocation. This is achieved by providing

73

updated strategic information about the system status,
thereby allowing a particular processor to decide upon the
allocation of a resource for a given request at any given

time.

3.4.2.4.Distributed data base: It is a very common

requirement for a distributed system to have data distrib-
uted among various processing units as well as a common
data base which bears a functional relationship between
various processes residing at various mouldes of the
distributed system. This requirement is more prominent if
the system as a whole is working on a single overall
application problem. However, the structure of a data base,
whether distributed or common, depends on the application
at hand and the following points are important in this

respect:

1. Memory partitioning: The size of memory for data
and program should be determined carefully for each
processing module, allowing for expansion if necessary.
This basically depends on the application and the access

time requirements.

2. Nature of data: The data base may be static or
dynamic in nature. A static condition refers to data
segments or files that are not modified, while data which
gets modified and utilised either externally or internally
during discrete processing steps can be considered as

dynamic.

74

3. Data access time and throughput: For certain real
time applications, the data access time may be very critical
and hence a careful memory system design is needed to
satisfy the system throughput requirements. Holland (1980)
has described three ways of improving the system throughput
by separating the data in, data out and memory address
busses of the memory system. These are (a) address anticip-

ation, (b) pipelining, and (c) cache memory.

4. Access conflicts and deadlocks: When a data base
is shared between various processing elements, there may
exist conflicts in accessing certain data items and simul-
taneous access may not be permitted. Such conflicts should
be considered in conjunction with the allowable delays,
priorities for access and the cost associated with the
duplication of memory system hardware. Unresolved access
conflicts and/or the unavailability of critical data items
or control information can lead to a deadlock situation.
Hence deadlock prevention is important and provision must
be made to detect and backup in the case of a possible

deadlock.

3.4.2.5 System reliability,availability and surviv-

ability: It is very difficult to discuss quantitatively
concept of reliability, availability and survivability of
distributed systems because basically these systems are
application-oriented and faults leading to system break-
down are, in general, intermittent in nature. However,
these issues are very important if reliable system perform-

ance is required, which is generally the case. For this

75

reason, it is desirable to implement error detection and
recovery techniques within the system. If a detected error
fails to recover, then the system survival depends on the
operation of the critical processing modules and isolation
of the failed module. In such cases, it is necessary to
provide sufficient redundant information about the system
to be able to recover even after the total failure of some
subsystem. If the cost constraints allow, extra redundant
hardware may also be used to backup the system to improve

reliability.

3.4.2.6 System development and testing: When a

distributed system has been carefully designed, based upon
the considerations outlined above, the development and
testing of such a system can be a major problem. The
design issues mentioned earlier in Section 3.2.1, as applied
to the development of a system incorporating a single
microprocessor, are multiplied by the complexity of the
number of such systems, their interrelationship and inter-
connections which make up a single multi-microprocessor/
microcomputer system. The ease of development and testing
of such a system depends upon the fine description of the
details of the lowest level of language notation for system
architecture, hardware and software, and their integration,
The development of a single processing element or a
module which forms a subsystem of a distributed system can
be performed partially using design techniques outlined in

Section 3.2.1. However, the functional contribution of such

a subsystem towards the entire system is very difficult to

76

test because it can only be tested if the rest of the
system is present. That is why the integration of various
subsystem modules, developed and partially tested individ-
ually needs carefully programmed test procedures. This need
also arises due to the absence of a general purpose system
which can simulate a multi-microprocessor system environment
for real-time applications. The only way around this
problem is to develop and build a desired multi-micro-
processor system by a step-by-step approach. In this
approach, partially tested developed subsystem modules are
integrated one by one and testing is carried out with
modular test programs or built-in test procedures together
with externally generated signals which simulate the real-
time application environment. When such a distributed
system is developed and tested successfully, then the
simulated environment can be replaced by the actual real-

time application.

3.5 CONCLUSIONS

This chapter demonstrates that a trend towards system-
atic design of multiple processor systems is developing.
The classification issues for such systems are vague
because of their multi-dimensional attributes and complex-
ity and lack of acceptable common terminology. However, an
attempt to classify these systems, based upon easily
identifiable characteristics, have been made.

The problems of designing with microprocessor and

multi-microprocessor systems suggest that numerous design

77

issues need utmost attention even prior to undertaking a
microprocessor-based project. In particular, integrating
various modules of distributed systems can be a major
problem. The distinction between a distributed system and
a multiprocessor system, based upon the operating system,
is very weak because it is perfectly feasible to intermix
some powerful features of an operating system with the
flexibility and variety of characteristics offered by
distributed systems. For example, it may be possible to
build modular systems which include such features as
dynamic task allocation (i.e. reconfigurability) to suit a
variety of applications. However, this in itself is a

research area.

78

CHAPTER 4 - MODEL OF A PROCESSOR WITHIN A DISTRIBUTED

COMPUTING SYSTEM

4.1 INTRODUCTION

Distributed computing systems are still at the fore-
front of their evolutionary process. This evolution is
taking place at architectural design level, interprocess
communication design level, intercomputer communication
design level and application level. Consequently, there
are many and varied definitions and taxonomies of distrib-
uted computing systems (Jensen, Thurber and Schneider,
1979). However, these systems in general refer to the use
of multiple, quasi-independent processing modules whose
actions are co-ordinated to accomplish a large task or to
implement a large system. In general, a designer of these

systems is concerned with the following agenda:

1. Distribution of computing power both in hardware

and software.

2. Distribution of information processing in the form
of top-down distribution of tasks and bottom-up co-ordin-

ation of tasks.

3. Distribution of data. This has two categories:
(a) data generated as an output from a distributed task, and

(b) data required as an input to a distributed task.

A meaningful implementation of the above is usually
associated with a specific application that characterises a

distributed computing system.

79

The emphasis of this chapter is on issues, regarding
the interfacing of a distributed computing system to a
large-scale real-time complex system. A dual port memory
utilisation is reviewed on this background, and a realis-

ation of a hypothetical application is considered.

4.2 REAL-TIME DISTRIBUTED COMPUTING SYSTEM

Figure 4.1 shows our description of a distributed
computing system. The system is employed to serve the
needs of a large-scale complex real-time system for its
information processing. It is assumed that the large-scale
system already exists. This assumption is reasonable with
most practical systems. For example, one can think of a
large chemical processing plant, the throughput and perform-
ance of which needs improvement. A distributed computing
system can be a cost-effective solution for such a problem.

In the Figure, P1, P2, P3 etc. are microcomputers with
normal attributes of a conventional computer system. This
facilitates a desired task-oriented program development
environment for any processor to be accomplished independ-
ently under Phase I. The processors' interconnection inter-
face and their physical interconnection system bears a
close relationship which is exclusive to the processors
only. This relationship can be made adaptable for a variety
of microcomputer networks and communication protocols that
link the processors for the co-ordination of their individ-
ual functional tasks. A functional task may involve
numerous interactions of a processor with the large-scale

real-time system or it can be a task of micro-co-ordination

80

PHASE II
PERFORMANCE EVALUATION

AND MONITORING

PHASE I

APPLICATION PROGRAM

DEVELOPMENT

- P1 P2 [* s
[
It P3

s
|

[y PL PS5 |e

/N H\

INTERCONNECTION
INTERFACE

PHYSICAL
INTERCONNECTION

SYSTEM

LARGE SCALE REAL TIME

COMPLEX SYSTEM

FIGURE 4.1: Description of a Distributed Computing System

81

of other neighbouring tasks. An overall collective co-ordin-
ation of tasks executed by the processors is thus dispersed
amongst the processors, each one being a contributor to it

to some extent.

A separation of Phase II and I is quite arbitrary in
the system shown. The performance evaluation and monitoring
of the processors' behaviour and the large-scale systems'
behaviour in Phase II occurs as a result of successive
developments in Phase I. A gradual hand-over from a then
existing control scheme of the large-scale real-time system
to a new implementation of a distributed computing system is

thus possible with the following major advantages:

1. A modular development of the system, both at soft-

ware and hardware level,

2. A better insight into the system down to a smallest

subtask level.
3. A reduction in down time of the large-scale system.

4, Improved maintainability due to improved failure

detection.
5. Improved performance, throughput'and reliability.

4.3 MODEL OF A PROCESSING ELEMENT

A major element of a distributed computing system is a
processor. A task programmed into the memory of this
processor accounts for its information processing capabil-

ities. A processing task is performed on the input

82

information to produce the resultant output information. A
detailed description of a model of a processing element for
a distributed computing system is shown in Figure 4.2.

One of the main features of this model is that a
processor is assigned a task which is composed of a ''process'"
and "output information data'. The process may contain
several subtasks. The task of a processor is activated by
one or a number of sets of input information data which is
contained in the "Information Accumulator Node'" (IAN). The
output information data from the processor is deposited in
the "Information Distributer Node'" (IDN). The character-
istics of IAN and IDN are such that a processor avoids
direct interference with another processor's task and vice
versa. This facilitates the identification of a processor's
communication requirements with another processor or
processors.

Another interesting feature of the model is that a
processor receives its input information data without any
forced interruption of its task execution. Similarly, a
processor generates its output information data which is
made available to another processor to read it whenever it
is free to do so. Thus input information data received by
a processor is transformed into output information data by
a task. The output information data generated in this way
can flow through four different kinds of information links.

These are:

1. Feedback Information Link: As the name suggests,'

the output data is fed back as input to the same task. For

83

TASK OCCUPIED TO RUN IN
DEFAULT
INFORMATION A SINGLE PROCESSOR
INPUT
DATA
oUTPUT
ENTER IAN > PROCRESS —>{INFORMATION el
} DATA
INITIAL
INFORMATION
INPUT DATA
USE OF OUTPUT
FEEDBACK e
FIGURE 4 2: A Model of a Processing INFORMATION RMATION ~ DATA =<

Element of a Distributed LINK FOR THE SAME TASK

Computing System

¥8

INTERACTION OF

INTERACTIVE OUTPUT INFORMATION INFORMATION
FEEDBACK DATA WITH OUTSIDE :EEEHULATUR

INFORMATION LINK

REAL TIME SYSTEM

USE OF OUTPUT

INFORMATION DATA (=
FOR ANOTHER TASK

TO ANOTHER TASK
PROCESSOR

CASCADE INFORMATION
LINK

INFORMATION
@ DISTRIBUTOR
NODE

I AN

IAN
USE OF OUTRUT
IAN =< INFORMATION DATA ERNO;DCAST INFORMATION

FOR OTHER TASKS
IAN

TO OTHER TASK
PROCESSORS

: Ul::i? : rk.' [%
i i. < II.}i x . N

e
- , B
Jr _4
.'_:"_r. -
a™ [}
iy
e,

example, recursive type algorithms run in a monoprocessor

fall under this category.

2. Interactive Feedback Information Link: In this
type of link, the output data interacts with its outside
world which it is controlling, and the processor reacts to
the data presented to it by its controlling environment.
Direct Digital Control (DDC) of a process is a good example

to illustrate this.

3. Cascade Information Link: Using this link, it may
be possible to cascade a number of task processors. This
situation may arise if a single processor fails to accomm-
odate a single large task or, for example, it may be that a
processor after completing its task wishes to trigger

another task processor in cascade with it.

4, Broadcast Information Link: This link is basically
an extension of the cascade link in which output inform-
ation data is made available simultaneously to a number of
other task processors. This link is very useful if a number
of task processors execute identical tasks. This link may

also be useful in synchronising different task processors.

A physical implementation of IDN and IAN is shown in
Figure 4.3 and Figure 4.4 respectively. Each module of IDN
or IAN is made from dual port scratchpad buffer memory. The
roles of IDN and IAN are identical. In both of them,
information data is stored from one end and it is made
available at the other end. However, the way in which the

modules are grouped and connected makes them either IAN or

85

DUAL PORT SCRATCHPAD
BUFFER MOMERY

- TASK - 2
1DN12
TASK =1 > PROCESSOR
PROCES SOR
> TASK-3
IDN13
> > PROCESSOR
- TASK-4
IDN 14
5 PROCESSOR

FIGURE 4.3: Physical Implementation of the Information Distribution Node

DUAL PORT SCRATCHPAD
BUFFER MEMORY

TASK-1 > i <
PROCESSOR ¥ _ Lo
PROCESSOR
TASK-2 > ‘. <
PROCESSOR Al %
TASK-3
PROCESSOR i o2 .
TASK-4 > <
PROCESSOR . S 4
TASK-5 " <
PROCESSOR . LAN: 02 . =

FIGURE 4 _4: Physical Implementation of the Information
Accumulator Node

86

IDN. TFor example, in Figure 4.3 IDN13 represents that the
Task 1 processor distributes its output information data to
the Task 3 processor. Similarly, in Figure 4.4 IAN74
represents that the Task 7 processor accumulates its input
information data from the Task 4 processor and so on.
Figure 4.5 shows an example of two cross—-coupled processors

P1 and P2.

4.4 INFORMATION AND TASK HIERARCHY

A task processor may contain one or more information
links. The feedback and interactive feedback information
links are mainly associated with a monoprocessor, while
cascade and broadcast information links account strongly for
a distributed computing system. However, the smaller the
number of information links, then the more simple the task
becomes.

In order to derive some criteria for quantifying a
complex task, one can look at the information hierarchy used

in information theory. This includes:

1., Symbolic Information: At this level, messages are
transmitted (and data is stored) as a collection of symbols;
these symbols form basic building blocks from which all

higher forms of information hierarchy are developed.

2. Syntatic Information: This is contained in the
rules limiting the way in which various symbols can be

combined.

3. Semantic Information: This is contained in the

meaning which the recipient can perceive in a message.

87

[rm e mm e

88

BEE T

I

W
U

SR

N e e il et i e e e e e e e S g e i e P S 2 T
TASK 1 PROCESSOR P1 : : TASK 2 PROCESSOR P2
: [
L_-l - ROM i § ROM ff
- ! : = ;
110 CPU | : CPU /0
INTERFACES I | INTERFACES
1
%% I I
—~| RAM [: RAM C
- : i e~
i
E ;
_____________ B! B LT o M S el | : SR e e T T S e TR e ey e e S e e e e e [,
g ADDRESS !
TDATA 4
: IDN 1X C :> IAN 12 g D IAN 2X C IDN 2X :]
i ¢ = s %:; B i, S
& »)
IDN 1X IAN 1X v IAN 21 IDN 2X

L 1T

FIGURE 4.5: An Example of two cross coupled Task ProcessorsPl and P2

4. Pragmatic Information: This is concerned with the

practical use to which the recipient may make of a message.

5. Aesthetic Information: This describes the ability
of the message to affect the senses and decisions of the

recipient.

A processing element of a distributed computing system
bears an analogous relationship to the above information
hierarchy. This is shown in Table 4.1. Iﬁ a distributed
computing environment, we are mainly concerned with the
aesthetic level of task hierarchy where a task performed by
one processing element affects the decision of another or
several other processing elements. In other words, this is
concerned with the micro-co-ordination function amongst the
processing elements. This micro-co-ordination function is
responsible for minor decision-making based upon the out-
come from different neighbouring task processors and
information filtering. Information filtering relates to
the form in which a distributed computing system presents
the net quantified information about its controlling
environment to a human operator to perceive the perform-
ance of the controlled environment. This task of present-
ing information by a distributed computing system to human
perception represents the highest level in the information

hierarchy.

4.5 CONTROL SYSTEM PHILOSOPHY

The form in which a model of a processing element of a

distributed computing system is presented also reminds us

89

06

A PROCESSING ELEMENT

INFORMATION
HIERARCHY
SOFTWARE HARDWARE
1. Symbolic "O" and "1" Symbols Logic gates, registers, counters,
flipflops, decoders etc.
2. Syntactic Hexadecimal, octal numbers CPU, ROM, RAM etc.

3. Semantic

4. Pragmatic

Instruction set as

be perceived by a computer

Programming of a task or
an algorithm

implied to

Computer architecture

Interfacing a computer to a

real outside world

Integrated

5. RAesthetic

System

Ability of one integrated system to interact
with another integrated system

TABLE 4.1:

Analogy of information hierarchy to a processing element

of "signal flow diagrams' and '"block diagrams' from
classical control system theory. The terms 'feedback' and
"cascade" have been chosen deliberately to bring about a
philosophical analogy of a distributed computing system to
classical control systems theory.

In a distributed computing system we are concerned
with "information flow diagrams' similar to 'signal flow
diagrams' in a classical control system. A time constant,
for example, of a processor to run its task relates to a
delay in time after which output information data appears
when input information data is applied. This delay may not
be of a fixed duration; usually this will have maximum and
minimum limits on it depending on the volume, rate and
nature of input information data. This naturally leads to
stability consideration for task processors to be deter-
mined. For example, a stack overflow in task processor
will be clearly an unstable situation. A deadlock situ-
ation between two task processors is another unstable
condition and so on.

In order to identify such unstable conditions, inform-
ation flow in a distributed computing system should be
"observable'" and consequently ''controllable'. This feature
relates to the fact that each task processor should be
examinable for its task-handling and information-handling
attributes. Another possible outcome of this examination
is the identification of a "eritical path" along which
critical tasks are processed, This is analogous to a PERT
analysis in system design. This critical path can be very
important with regard to the '"micro-co-ordination'" or

"decision-making''ability of a task processor.

91

4.6 DUAL PORT MEMORY UTILISATION

A dual port scratchpad memory allows a data item to be
stored (written) into a location from one port and allows
it to be retrieved (read) from the location at another
port. These read and write operations can be performed
simultaneously. This type of memory acts as a buffer
storage medium for the communicating task processors and
serves to isolate the internal data, control and address
bus systems of these processors. Input/output information
data flow occurs through this medium denoted by IAN and
IDN in the model.

There are two ways in which the dual port scratchpad
memory may be connected to a task processor. If the
volume of information data flow is small, the processor's
parallel input/output ports may be used. However, this
means that there will be a smaller number of I/O ports
available for connecting other peripherals or interfacing
circuits. Another way is to connect the processor's
internal address and data bus to either the read or write
end of the dual port memory. This allows data storage and
retrieval operations to be the same as RAM. This type of
connection is suitable for a large volume of data transfer.

The size of the dual port scratchpad buffer memory
used in IAN and IDN is a function of the information trans-
fer needed between task processors. There are three kinds
of devices available to build IAN or IDN modules. These

are:

92

1. SN74LS670 MSI 16 bit TTL register files. These
files are organised as four words by four bit with on chip
address decoding for separate write and read functions,
thus permitting simultaneous reading from one location and
writing to another. The device is 16 pin DIN packaged. It
requires a combination of two such devices to implement

only four word bytes of storage locations (Deshmukh, 1979).

2. AM29705 is a 16 words by 4 bit 2 port RAM. This
device has two output ports each with separate output con-
trol and separate four-bit latches on each output port.

The device is 28 pin DIN packaged (AMD Data Sheet).

3. MC10806 is a dual access stack with 32 X 9 memory,
two address ports, two 9-bit data input/output ports, two
9-bit output registers, flipflops in a single MECL bipolar
LSTI circuit. The device is 48 pin QUIL packaged (Motorola,

1978).

The first two devices are simpler to interface with
most microprocessors while the third has rather special
characteristics. For the purpose of designing systems with
these devices, data sheets are available and so no further
discussion is given here.

The hardware utilisation of a dual port scratchpad
memory module such as IAN or IDN requires additional soft-
ware protocols for the purpose of information flow between
task processors. An outline of simple protocol primitives
that may be used is shown in Table 4.2. This set of
primitives is derived for two cross-coupled task processors

P1 and P2, as shown in Figure 4.5. Table 4.2 shows what

93

PROTOCOL PRIMITIVE PROTOCOL PRIMITIVE

NO FOR IDN12 = IAN21 FOR IDN21 = IAN12
(TASK PROCESSOR 1) (TASK PROCESSOR 2)
i Stop Read/Start Write Stop Write/Start Read

2 Number of bytes of information -

%] Block program Loading/Finish)
(a) Starting address (2 bytes)) Block Read

(b) Block number)

4 Task number)
(a) Task trigger/End) Task Status

(b) Repetition number

5 Read time information s
6 Data constants ——
7 Information set number Set accept information

TABLE 4.2: Information Protocol Primitives

94

information data Task Processor 1 intends to distribute to
Task Processor 2. This information storage is done in
IDN12 = IAN21. The Task Processor 2 on the other hand may
acknowledge its input information data via IDN21 = IAN12.
This coupling of the two processors for their information

exchange is entirely programmable and task-oriented.

4.7 APPLICATIONS

The applications mentioned in this section are hypo-
thetical and intended to show potential areas where our
model of a distributed computing element can be employed.

Two applications are considered:

1. Mathematical Modelling: Modern control philo-
sophy suggests that a real-time large-scale complex system
may be analysed and controlled by utilising its mathemat-
ical model which resides within a computer system. Any
interactions between the subsystems of such a large-scale
real-time system can be accounted for by implementing
these'subsystems within our model of a processing element
of the distributed computing system. The mathematical
model performance and the actual system's performance can
then be compared at a subsystem level. Additionally,
actual subsystem's parameters can be estimated and con-
sequently its model parameters can be updated for that
particular subsystem. Furthermore, different mathematical

models can be analysed and tested.

2. Simultaneous Serviceing of Interrupts: In some

situations with a real-time system, it may be difficult to

95

COORDINATING

MAIN TASK
PROCESSOR
MAIN STATIC DYNAMIC
PROGRAM DATA DATA
'

\ i 1]
ROUTINE 1 ROUTINE 2 ROUTINE 3 ROUTINE &
INTERRUPT INTERRUPT INTERRUPT INTERRUPT
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

1;NT

TINT

1INT

TINT

FIGURE 4.6: Simultaneous Servicing of Interrupts

96

determine the priority structure of a number of external
as well as software interrupts. In these circumstances,
different interrupt service routines can be implemented in
a processing element of a distributed computing system and
the overall co-ordination of these interrupt service
processors can be performed by another processor whose
task will be to run the main program and take care of any
static and dynamic data movements to and from the inter-
rupt service processors via IDNs and IANs. This is shown
in Figure 4.6. In the Figure, routines 1 and 3 depend on
static data from the main task processor whereas routines 2
and 4 depend on dynamic data. Hence, these two routines
interact with each other as well as with the main program.
The structure of the interrupt processors depends upon the
actual application and how it relates to the main program

in the co-ordinating processor.

4.8 CONCLUSIONS

A new model of a processing element within a distrib-
uted computing system is presented. The cost-effectiveness
of this model needs to be evaluated. The model provides
means by which new possibilities of communication protocols
may be implemented which are task-oriented. The model also
facilitates a clear partitioning of subtasks and a defin-

ition of their interactions.

97

CHAPTER 5 - A HIERARCHICALLY STRUCTURED

MULTI-MICROPROCESSOR SYSTEM

5.1 INTRODUCTION

As computers and processors have become smaller,
cheaper and more reliable, it is becoming more common to
design systems with more than one actual processor. A
large variety of computer interconnection structures has
been proposed covering the range from tightly to loosely
coupled networks and multiprocessors to array processors
(Anderson and Jensen, 1975; Enslow, 1974). The concept of
distributed processing had its origins in the data process-
ing field before the start of the microprocessor revolution.
Enslow (1978), in attempting to clarify the concept of
distributed data processing, claims that at least four
physical components of a system might be distributed:
processing logic, data, the processing itself and the con-
trol of the operation (e.g. the operating system). Research
in this area is continuing.

The advent of microprocessors has helped to enlarge
the concept of distributed processing beyond the confines
of data processing applications. Many types of system have
been described, ranging from a series of unconnected com-
puters each performing separate tasks through to a single
computer system within which a number of computing elements
are connected. Enslow (1976) has discussed systems class-
ified as multiprocessors which contain two or more central

processors of comparable capability. These processors

98

share access to a common memory, common input/output
channels and common control devices; the entire system is
controlled by a single integrated operating system.

Microprocessor technology, however, is often best
employed in systems which are constructed of processing
units each of which is independent in itself but which
communicates with some or all of a number of other process-
ing units in the overall system. Each processing unit may
have a number of dedicated tasks in normal operation; there
is, however, no integrated operating system, and the con-
trol of the system may be distributed among the individual
units.

This chapter describes such a system in which the units
are connected in a hierarchical structure. The basic pro-
cessing module from which the system is configured is known
as a "Hierarchical Microprocessor System Unit" (HMSU). The
system is designed for the control of a pilot-scale 8-zone
travelling-load furnace, but is sufficiently flexible to
have a wide variety of process control applications.

The HMSU structure consists of a number of Fairchild/
Mostek F8 family chips, a common block of semiconductor
memory and a pair of Intermediate Scratchpad Memory Inter-
face. The configuration is designed so that a single HMSU
can be used either independently or as a building-block in
an expandable hierarchical environment. In either case, it
will normally run dedicated programs which will be held in
ROMs .

Similar uses of microcomputers have been described by

other workers. Harris and Smith (1977) have analysed a

a3

number of multiprocessor architectures and have discussed
a multi-microprocessor architecture having a hierarchical
structure, Steinhoff (1976) concludes that the comput-
ational potential of minicomputers and a set of bipolar
microprocessors can be harnessed for solving some large
scientific problems that cannot otherwise be solved within
normal economic and practical constraints. It is not
necessary for all the processors within one system to be
of the same type; for example, Pathak (1977) describes a
configuration of one Intel 8080 and three SC/MP processors.
Hughes (1976) incorporates TI 9900 series microprocessors
and 990 computers for multiprocessor navigation systems.
Tanaka (1976) introduces a new type of hierarchical multi-
microprocessor system that includes nine microprocessors
operating in a system under the overall control of a host
ECLIPSE S/200 computer.

The objective in developing the HMSU is to make use of
the numerous advantages offered by distributed processing
in establishing a hardware basis for the implementation of

optimal control schemes for large-scale system problems.

5.2 HMSU PHILOSOPHY

The hardware configuration of the HMSU is designed on
the following basis. The unit consists essentially of a
number of individual processors and memory blocks. Each
processor has its own private memory, but the bulk of the
memory is common to all processors. It is the task of one

particular processor, designated the Master Processor, to

100

control access by any other processor to the common memory.
Apart from this function, each individual processor acts
independently, performing designated control functions via
its own I/O channels. The processors operate asynchronous-
ly, all inter-processor communication being via the common
memory under control of the Master Processor.

The unit as a whole communicates with the outside
environment via a special buffer known as the Intermediate
Scratchpad Memory Interface (ISMI). The outside environ-
ment may be either another HMSU or a larger host computer,
or indeed any other processing equipment as required by a

particular application.

5.3 INFORMATION FLOW

In designing multi-microprocessor systems such as HMSU,
it is important to consider the basic principles of inform-
ation flow. Microprocessors are intelligent devices capable
of acting as a source or as a sink of information.

Figure 5.1 shows an example of three units acting as sources
and sinks of information and the arrows indicate all the
possible ways of information flow that may occur. If these
three units are to communicate sensibly with each other,
then at any one time one unit must be transmitting inform-
ation and the other two receiving it. It will greatly help
the synchronisation problem if the data is transmitted by
the source to a temporary intermediate store, from which it
may be received by the sink or sinks when they are ready to
do so. This avoids the difficulty that can occur with
"handshake' systems when two processors may each be waiting

for the other.

101

SOURCE

SINK

SOURCE

SINK

FIGURE 5.1 : Information Flow

The Intermediate Scratchpad Memory Interface (ISMI)
that forms such a temporary store for the HMSU allows two
processors to use it to deposit or retrieve data or control
information. Asynchronous reading or writing of data can
be performed by the two processors simultaneously. In the
case of dedicated applications, the form of interprocessor
information flow is completely known and some simple
synchronisation schemes may be adequate. In our case,
where a pair of ISMIs is employed as intermediate inform-
ation storage media, simple software controlled synchronis-
ation primitives for block data transfer can be utilised.

For example, in Figure 5.2 two processors, Pl and P2, are

102

PROCESSOR-1

[Powv] [PorT] [ForT]

WRITE STROBE —
READ STROBE

1
- —
v O AT
WRITE \l ﬂ READ
ADDRESS L\ b READ 14l | aopRess
k) Rl
ISM1 ISMI
READ j S Py N | WRITE
ADDRE SS ‘\/L]’\. ADDRESS
A N Z\
e e iR
l 1
[
- le— WRITE STROBE
J’“L ~1 KL it stacks

]FDR"{ I l PORT I I PORT I

PROCESSOR -2

FIGURE 5.2 : Bidirectional Communication between processors via a
pair of ISMIs

103

linked by a pair of ISMIs. A and A; are the locations in
this pair which are periodically monitored by processors

P2 and Pl respectively. These locations can be used as
flags or codes for various sets of block data. The follow-
ing Table 5.1 shows how A and A; are used as flags for a
block data transfer between the two processors Pl and P2.
The only constraint on the software programmer is in the
assignment of individual ISMI locations to particular items
of data. If the functioning of a task residing with P2
depends upon the data generated by Pl, deadlock can occur.
However, in a dedicated system such as a HMSU, where
applications can be either homogeneous or heterogeneous
(Siewiorek, 1975), deadlock problems are certainly anticip-
ated by the very nature of hierarchy. The frequency of
deadlocks in a multi-microprocessor structure is an
important question open to experimentation.

The volume of data flow in the two directions need
not, of course, be the same. This is a necessary feature
for use in a hierarchical structure, where one processor
at high level may be receiving a great deal of data from a
lower-level processor but sending to it only a few command

signals at frequent intervals.

8.4 STRUCTURE OF THE ISMI

The Intermediate Scratchpad Memory Interface is built
from SN74LS670 MSI 16-bit TTL register files, These files
are organised as four 4-bit words: on-chip address decod-
ing is provided separately for reading and writing, thus

permitting simultaneous reading from one location and

104

S0L

A MONITORED BY P2

A! MONITORED BY P1

COMMENTS

-l

Pl

P1

P2

P2

P2

P2

P1

P1

starts writing for P2 .. P2
completes writing.’, P2 can
starts reading,’, P1 should
completes reading.. Pl can
starts writing for P1,°, Pl
completes writing,”, P1 can
starts reading ., P2 should

completes reading ., P2 can

should not read

read

not write

write

should not read

read

not write

write

X signifies don't care condition

TABLE 5.1

: Communication protocol for processors of FIGURE 5.2

writing to another. The SN74LS670 components can be organ-
ised into a memory of up to 512 words of any number of
multiples of 4 bits. The fast access time (typically
20 ns) and tri-state output makes this type of component
ideal for use in intermediate memories. The organisation
of an ISMI of 256 x 8-bit words is shown in Figure 5.3.
The scratchpad of this size requires 128 chips of
SN74LS670, ten multiplexers and four driver chips. For
communication in both directions between two processors, a
pair of ISMIs is required.

Several reasons can be numerated for the choice of an
ISMI to couple two processors. Although the use of DMA
channels can be envisaged for communication between two
processors, we find that DMA transfer requires extra
complex interface circuitry with synchronisation logic.
Compared to this, the use of ISMI avoids the need for such
a complex interface and also has the advantage of asynchron-
ous communication. The use of ISMI also frees the DMA
channels of the processors to be connected to peripheral
devices, for which they are more suitable. The use of ISMI
gives much more flexibility especially when designing multi-

microprocessor systems.

5.5 COMMON MEMORY

A Common Memory (CM) providing a data store which is
accessible by several processors at the same hierarchical
level is an important feature of the HMSU. Because the
processors are operating asynchronously, it is necessary to

ensure that only one processor attempts to access the

106

= @UC

TOLO Tmo cova
T4 154 " Ty 154 T 154 dbumﬁ

5 5 g B 3

€3

READ
ADDRESS

d\
GL b‘ 7 ARG

Ra
READ
DATA

i

Al
=

o

w
o

3

|
! “
_ _
! I
| |
- IﬂIIIIT v
|
|
|

"0
"

o
m

[

_

I

|

| |
A

|
I
I

I
|
I
E
L=t
_ | | [
_ _ _ [
_ 1 o _ ? “ S
_ _
_ ._l.ilLillll“..ll
| [
_ _ (_
e I T
i [
gelf N ALL-—-
2:95 919 3585 _
2382] 1 17
I | o
i $ |
0LISTL e 0L9SL L_-llll
TVY 2 9% 210
88 444 Foed _
iz AN
1
|
-4 P 2 1. 8
1

|

| S

q4——--

]

3]

I

U

N

)

+J

=

==

T | »f T P

[pr— 2

| Tl 2

8

S g

| 4 . = =

L~ #

R)

] 1 Mﬂ

_ aly o

e | S

i | =

i o

Tl =
__ |

| 3

_ m | o

“ " 3

s e D £

| I bt

| | o

[% .

I o | o

| o

Lt =
r |

| _ L

| O

| H | 7o

_ (o]

———— e — g il e e

FIGURE 5.3

Yo Y1 a V5
74L515¢

Wi

LL‘ ”awo
WRITE WRITE
RDODRESS

107

" DATA

memory at a time. This is achieved by a master-slave organ-
isation, the master processor having the task of allocating
access to the CM to slave processors as required. This type
of organisation is quite common; see, for example, Russo
(1976) and Witten and Jenkins (1978), although other poss-
ible structures have been described (Enslow, 1976). The
master-slave structure has been chosen for the HMSU because
of the simplicity of both hardware and software required,
and because of its applicability to asymmetric systems in
which the workloads of master and slave processors are
appreciably different.

Figure 5.4 illustrates a master-slave configuration in
which eight processors are used. In this particular design,
the processors are Fairchild/Mostek F8 chips, chosen
largely because of locally available software. The con-
figuration allows the master processor always to have
access to the CM by setting up its own address code on its
address port. When the master processor decides to grant
access to any of the slave processors, it will output the
address code for the particular slave processor on the
address port. This address code will link the CPU READ and
R/W lines of the slave to the CM via a multiplexer. At the
same time, the demultiplexer unit opens the appropriate
buffers to link the internal address and data buses of the
slave to the external address and data buses of the CM.

The demultiplexer unit also sets up an external interrupt
for the slave which will activate its common memory access

program.

108

601

7415138

—4»——LL

!

Y

MEMORY

S | Wz e [Pory 7 E LPoR
'&] 'r-(' =1 '-E nc‘ *;: o
zZ 2 g 2z e
g3 £s E s £
MASTER [JINT SLAVE [JINT SLAVE | aMess & 2ot SLAVE |_znT
F8-0 F8 -2 E& =1
[FORT]
{ A
EXTERNAL ADDRESS BUS
| & B %5 S] B il i
_* EXTERNAL BIDIRECTIONAL TDATA EUS
4 RS =T e
° 7 y
=HH 7415251 P
CPU READ
R/w COMMON

LT

FIGURE 5.4 : Master Slave Configuration for Common Memory

At the end of the CM access routine, the slave process-
or will signal to the master via the master's external
interrupt line. As an additional check, it is possible for
the slave to send an identification code to one of the
master's I/O ports. This will enable the master to recog-
nise which slave has finished a CM data transfer, which may
be useful if there is a queue of CM access requests. This
additional check is not necessary to the system, however.

The HMSU architecture is arranged so that all CM
access requests are generated by the master processor; the
slaves do not need to generate such requests themselves.
This avoids the problem of concatenation. When the master
does not need to ask for any slave to transfer data to or
from the CM, it can treat the CM as its own private memory,

transferring data in and out at any such time.

5.6 HMSU ARCHITECTURE

The hardware of the HMSU is very simple. It consists
of a master processor, a pair of ISMIs serving as a bi-
directional data transfer interface, a common memory as
described above, and a number of slave processors. The
organisation of the HMSU is shown in Figure 5.5.

The master processor performs the following sytem

functions:

1. Receiving of data from the supremal level host
computer via the ISMI and transfer of that data to the

Common Memory.

110

LLL

FIGURE 5.5 : Hierarchical Microprocessor

System Unit (HMSU)
o
POP-11
i HMSU |
! i
i |
F8 PROCESSOR

I ADDRESS CPU READ COMMON I
}] peMEy L] / | vEvory e MEMORY !
1 ey b INTERFACE |
: iR hodac 5::: RBN:; ‘:omsc:. UNES T | I
| 0 pres e —|-="}i.:_‘:_:_: R e e P —-——ﬂﬂ ———————— =
| > g i s i 11
| i EXTERNAL ADDRESS BUS : I
I H . 1 H H I ' I
: - 1 | j\l 1 _L | i R ExTERNAL ﬂ Loy
=t] . 1 BIDIRECTIONAL l |
: F8 [Ld L DATA BUS EE
I PROCESSOR F8 - Fg s | !
| 0 .PRO PRO PRO PRO I
| 1 2 3 7 i
: MASTER |
' Tinr r Z¢ S ! > ¥ ey
! |
E ﬁ 1/0 L“' I/0 Vv I/o Jv’ I/0 'L' 1/0 -j

TR NN P AR S N N0 W ey oW s ORI o ey tu £ e 2R (0 e i 1 P e cooll -, P

2. Generating CM access requests to allow the slave
processors both to receive data from the CM and to transmit

data gathered or generated by each slave to the CM.

3. Transmitting slave-generated data from the CM back

to the supremal computer, again via the ISMI.

In addition to these system tasks, the master process-
or may be assigned some user tasks if the processing load
allows. It is desirable, however, to share the total
processing load as equally as possible between all the
processors, otherwise the overall system performance may
become degraded.

The slave processors perform individual user tasks,
gathering process data and implementing control functions
via their own individual interfaces and I/O ports. The
proposed structure of the HMSU incorporates up to seven
slave processors. However, more than seven slave processors
can be used if desired, or alternatively, more than one HMSU
can be employed. This distributed processing structure
makes the system very flexible and easily expandable.

A further possibility offered by the HMSU architecture
is that the supremal computer may be used to change the
allocation of tasks amongst the slave processors in the
event of a hardware failure, a facility which makes the

system of very high integrity.

6.7 HMSU STRUCTURE

A variety of structures can be developed using HMSUs.
Since a pair of ISMIs may be used to link any two process-
ors operating asynchronously, we may use this interface to

link two HMSUs together via their master processors, or to
112

link a master processor to a particular slave processor
either within the same HMSU or in a different one. This
gives very great flexibility in the design of multi-
processor structures.

Figures 5.6, 5.7 and 5.8 show three different systems
constructed from HMSUs each of which has a master and
three slave processors. Figure 5.6 shows a hierarchical
structure using three HMSUs and a supremal host computer.
Figure 5.7 has four HMSUs in a star formation around the
host computer and Figure 5.8 shows five HMSUs and a host
computer in a ring formation. There are endless permut-
ations on these three structures: the decision as to what
type of structure to use is dependent entirely on the

application.

5.8 CONCLUSIONS

A hierarchical organisation of microprocessors, known
as the HMSU, has been described. This sytem may be con-
structed at low cost from standard LSI components. The use
of private memories for each processor combined with inter-
mediate memory for interprocess communication avoids the
synchronisation problems often associated with multi-
processor systems and allows great flexibility in designing
large-scale systems based on a number of basic HMSU blocks.

The main disadvantage of the system at present is a
rather high chip count. This would be considerably reduced
if the ISMI were implemented on a single LSI or VLSI chip,

which is technologically, if not economically, possible.

113

pLL

HM3U

Y

HOST

COMPUTER

¢ 1l

COMMON MEMORY ISMI | 1SMI
PRO-3 PRO-2 PRO-1 M:RSJ_%R
f1 |
COMMON MEMORY I?Ml ISMI ISMI | ISM1 COMMON MEMORY
PRO-3 | PRO2 | PRO-1 | ooTER o et PRO-1 | PRO-2 | PRO-3

rrcure 5.6 : HIERARCHICAL STRUCTURE

r1Gure 5.7 : STAR STRUCTURE

FIGURE 5.8 :

HOST
COMPUTER

HMSU

RING STRUCTURE

115

0 MASTER
§ e e PRO-1 | PRO-2
g3 b
=z i1sM1 | 1SMI | COMMON MEMORY b
2l J =
o g ‘
- X
by e
! w iy = o
Z2l'= HOST O |uo
0 ﬂ "o
1 — T
°2 8 L COMPUTER b s | £8
— i
4 >
t =
2| 3
o
o s a
< COMMON MEMORY | ISMI | 1SMI -
2 “a =) ~
- : MASTER o
PRO-2 | PRO-1 PRe . o S o

With the present trends of new technologies, increas-
ing reliability and falling costs, system integrity may be
enhanced by the use of multiple hardware, and the HMSU is
fully capable of providing a high integrity system once the
necessary diagnostic software has been developed. A
further advantage of the HMSU structure is that it allows
modular development of software for each individual pro-
cessor within the structure. The HMSU structure is
specially useful for large-scale systems where a large
system problem can be subdivided into smaller subsystem
problems. Individual processors in the HMSU can be
employed to these smaller subsystem problems and co-ordin-
ation for these problems can be achieved by a host computer,
Other potential applications for HMSU can be homogeneous or
heterogeneous.

There are several further research issues to be pur-
sued such as employing a hardware arbiter for allocating
common memory rather than total access control of common
memory by a master processor, deadlock problems associated
with the hierarchical systems and overall system perform-

ance.

116

CHAPTER 6 - CONTROL OF A TRAVELLING LOAD FURNACE

6.1 ' INTRODUCTION

The HMSU, as discussed in Chapter 5, was designed in
the first instance as part of a programme of work on the
control of an 8-zone travelling load electrical billet
reheating furnace. A travelling load furnace (TLF) con-
structed in the Department of Systems Science of The City
University is basically a laboratory version of industrial
TLFs designed to carry out computer control experiments
(Caffin, 1972; Sheena, 1977).

Various schemes exist which may be used to control the
TLF. Some are simple to implement and require minimal
amounts of information about the properties of the plant,
while some are sophisticated and optimal in performance but
require detailed knowledge of the process and the plant,
its inputs and disturbances. A simplified empirical model
was developed and tested for the heating of slabs of metal
in a multizone TLF (Caffin, 1972), whereas Sheena (1977)
implemented and tested the PID algorithm and the on-line
least square identification and control schemes.

This chapter briefly describes the TLF and discusses
an incremental form of PID control scheme with reference to
the control requirements needed to interface the HMSU to
the TLF. The design details of the electronic interface
and modifications to the existing interface needed for this

purpose are also given.

117

6.2 FURNACE DESCRIPTION

The TLF consists of a 2.7 metre long tunnel with a
number of separately controlled electrical heaters distrib-
uted along its length and a conveyor carrying blocks of
metal (loads) through it. The furnace is designed to heat
loads to temperatures up to SOOOC. The conveyor is driven
by a DC motor. Each of the eight heating zones is powered
by two banks of three 1 kw electric fire elements, giving a
total furnace power of 48 kw. The zone lining walls are
made of aluminium reflectors which are air-cooled and the
sections near the heaters (top and bottom surfaces) are
water—cooled. Detailed specification of the furnace and the
interface with the computer may be found in Caffin (1972).

A schematic diagram of the furnace interfaced with the
HMSU and the PDP-11/10 minicomputer is shown in Figure S
The hierarchical computer control strategy using HMSU and
the PDP-11/10 minicomputer is explained later in the chapter.
The normal operation of the furnace consists of the loads
travelling through the heating zones and recycling them
after suitable cooling. (A water shower is built outside
the furnace if forced cooling is required.) The positions
of the loads in the furnace are tracked using a set of six
microswitches that are closed by appropriately placed bolts
on the conveyor. The interrupt signal generated by the
closure of microswitches is processed by the computer.

The electric power input to each of the heating
elements in the eight zones or to the speed of the DC motor

is adjustable in small discrete steps from zero power to

118

HEATERS

LOADS \

T T T T]
%o:aon:[eoe| ouoi ooo_} ocoo 0| 000
| |
i o o v | v
000 ! ooo | 900 ; 00O 000 | 000 | o0 | 000
H I 1 | 1 1
. o T 7 = it —
-~ -
‘\.‘ \\\\ |" ; 7 ////
R LiNa
e '\\ 1 ! 7 ///
“L\\Il I S
MULTIPLEXERS
DC.
MOTOR

ADC
Jrier = ot W s B i T
: J -/ | POWER CONTROLLERS
! F8 F8 | |
: PROCESSOR-0 PRO || PRO | | e s
I MASTER 1 2 e
| — DECODER
| [T =
; —> LATCH INTERFACE
| <y Ly i a7,
l |
| | 1sMI||1SMI COMMON MEMORY i
g e 8 | :
| FeT4s |
e R 4
o “\CHMSU
PDP 11710 e MAR S
FIGURE 6.1 : The TLF interfaced with the EMSU and the PDP-11/10

minicomputer

118

full power or zero speed to maximum speed using silicon
controlled rectifier power units. The control signals to
these nine power units are generated by the computer and
transmitted via DAC units.

The temperatures of the loads are measured using
Chromal Alumel, stainless steel sheathed and magnesia
insulated thermocouples inserted inside each individual
load. However, this kind of arrangement for measuring
temperatures is rather uncommon as compared with industrial
practice. The analogue signals from the thermocouples are
multiplexed, amplified and sent to the computer via an A to

D converter.

6.8 PID CONTROL SCHEME

The most conventional form of controller used in the
process industry is the three-term controller with the con-
stituent terms: Proportional-Integral-Derivative action
control (PID). Although PID is the most tried-out method
of control, it was chosen for implementation within the
processors of the HMSU because of its simplicity and as an
experimental example.

The basic concept of PID feedback control is to use
the error, the integral of the error and its rate of change
between a measured variable and a set-point to generate a
signal that actuates the control devices to influence the
process so as to reduce this error to zero. The set-point
may be truly constant or it may be a programmed profile

generated by hardware or software. In the TLF, the zone

120

setpoints along the length of the furnace define the
temperature profile required for the loads. A typical
control loop for the measurement and control of temperature
within a process plant (or equivalent representative of the
TLF) is shown in Figure 6.2. The Figure shows that a set-
point setting, sampling of error signal, its filtering and
the PID algorithm implementation is performed in a digital
computer.

The discrete PID algorithm is derived from the contin-
uous form of the three-term control algorithm. For a con-
tinuously controlled process variable, the analogue control
signal is given by:

t

EyvLs 1 de (t)
p(t) = K(e(t) + 77 J e(t) at + 74 —]
o

dt

Il

where p(t) Control signal at time t

e(t) = Error between measured and set-point values
Ti = Integral time constant or reset time
Td = Derivative time constant or rate time

and K = Proportional gain,

Taking Laplace transform of the above equation becomes:

E (S)
P(s) = K(E(S) + == + TA(S E(S) - e(0))) 6.3:2

Assuming at t =0, e(0) = 0, equation 6.3.2 becomes:

b 1
BIS) = K(1 + —= + Ta SJE(s) 6.3.3

If the error signal is filtered before the control
signal is applied, the effects of noise originating from

the process or instrumentation are reduced. However,

121

écl

e e |

DIGITAL COMPUTER

i
|
1
i
i
i SET POINT
:
|
|
|

I
|
|
I
|
I
I
CONTROL !
NAL
ERROR i i
ek Pk 1
A PID S
= ADC =5 FILTER ALGORITHM =F——=—= DAC
1 H
! I
: |
! i
 Epla e AN Wims Y, o Sy, A SR e e ¥ =

A ANALOGUE
SIGNAL

//j PROCESS PLANT

TEMPERATUERE / \

SENSOR \

HEATER

FIGURE 6.2 : A typical temperature control loop of a process plant

filtering will reduce to some extent the effectiveness of
the derivative action. Using a simple first order filter

with a transfer function as:

E(S)

B8 =F% o 5

where E?S}

Laplace transform of actual error signal

]

E (8) Laplace transform of filtered error signal

and ii5E Filter time constant.

Combining equations 6.3.3 and 6.3.4, we get

il
75 * Td s} E@®) 6.3.5

1
e S)E(s) 6.3.6

P(S) + TESP(S) = K(1 +
The inverse Laplace transform of equation 6.3.6 gives:;

t

a 1 4
p(t) + T 2= p(t) = K(e(t) + Eé e(t) dt + Td z—e(t)} 6.3.7

For digital implementation, a discrete form of

equation 6.3.7 is:

i we SEBh=l) Lo+ 45 o vma B ost) g 38
r=0
where K = Sampling instant
e = Error signal at the Kth sample interval
Pk = Control signal at the Kth sample interval
T = Time interval between samples.

Equation 6.3.8 for the (K-1)th sample interval is:

B, o e et = Pl Gt el S0 5
1 T = K(ek—l + Hrzo ey + Td =) 6.3.9

123

Subtracting equation 6.3.9 from equation 6.3.8 and simplify-

ing gives:

TE
PELT

((ex-ex-1) + %% ex + 3?-{ek-2ek_1+ek_2)) +

APk = APy_1'6.3.10

KT
TE+T

where

Apy = Py - P, g 6311
Equation 6.3.10 may be written as:
Im;"k = Kl ey + Ko er-1 + K3 ex-2 + Ky &Pk_l e B
where
g g L
By = TE+T (1 Trrt] ;
)
3, KT 27d
Rz= = e (USR])
; 6.3.13
e
K3 = T8t ;
4 G o !
e 4 = TErt)

Equation 6.3.12 is simpler in arithmetic form than
equation 6.3.10 but a selection of the values of
Ki(i = 1,2,3 and 4) which will suit the process plant for
tuning of the PID algorithm is very difficult. However,
since these values of Ki are determined by equations 6.3.13,
the operator has a convenient choice for the values of K, T,
Ti, Td and Tf, with which he is much more familiar in terms
of a feel for process control. Equations 6.3.11, 6.3.12 and
6.3.13 are used for implementation in the software. It is
worth noting that all the control loops of the furnace share
the same PID algorithm but each control loop has its own set

of parameters, past errors and control signals.

124

6.3.1 Control requirements for the HMSU

One of the main objectives of implementing the HMSU to
interface with the TLF is achieved by splitting up the con-
trol task into smaller tasks so as to allow parallel process-
ing and distributed control. For this purpose, the furnace
has been considered as being divided into three areas having
2, 3 and 3 heating zones respectively and referred to as the
preheat, heat and soak sections. This is shown in
Figure 6.3. 1Initially, the master processor of the HMSU is
assigned to the preheat section which controls two control
loops for the zones 7 and 6, whereas the slave I and
slave II processors are assigned to the following heat and
soak sections which control each of the three control loops
for the zones 5, 4, 3 and 2, 1, 0 respectively. A temper-
ature profile is defined by the set-point temperatures for
each of the three sections.

The division of the control tasks for each of the pro-
cessors in the HMSU and the PDP-11/10 minicomputer are set

out as follows:

1. Equations 6.3.11 and 6.3.12 are used for implement-
ation in each of the processors of the HMSU, so that each

processor behaves as a PID controller for the TLF.

2. An individual processor of the HMSU is responsible
for measuring the load temperature by sampling at regular
intervals via its ADC interface channel and sending appro-
priate control signals to the zone heaters via its DAC inter-

face channel,

125

f«— zONE—>]

(=
o
2 X
e
o o
o o o
o o
R E R Sl o
o o =
x O
o — o AT
Ofl__
v o
o o 7
o o
o o~ o
o o
Y
o o
o m o
o o
e
o o =
=2
o =+ o o
=
o o v
o o
o n o
o o
Y
A
o o
o v o
2 = = Z
< O
il
||||||||||||| T
(TERW
o o &
o e~ o
o (=]
> o
o o'
<
o =
By e i

126

SLAVE-2

SLAVE-1

MASTER

: Heating sections of the TIF

FIGURE 6.3

3. The master processor, additionally, is made
responsible for data distribution to the slave processors
via the common memory module, while the data collection
(e.g. set-points, controller constants, sampling intervals,
motor speed etc.) is performed from the PDP-11 computer via
the ISMI module. The master processor also collects inform-
ation data on the current measured temperatures of each
billet and the power output to each zone of the furnace and
returns it to the PDP-11 host computer again via the common
memory and the ISMI. The master processor controls the

speed of the conveyor which is maintained constant.

4. The PDP-11 computer implements equations 6.3.13
with a check on the suitability of the steady-state gain
value which is derived from equation 6.3.12. Under the
steady-state condition APx = APy_1 and ey < ex-1 = ex-2. There-

fore the equation 6.3.12 may be written as:

APk = (K1 + K2 + K3) ek + K4APy

APy

The steady-state gain is defined as /Ek as t + o«

_ P - K1+ K3+ K3
KSG“ek_ 1 - K4

From equations 6.3.13, it can be shown that Kgg = Kt.
For steady-state value of the error to be zero, Kgg is
required to be positive. This control requirement for the
value of Ksg is verified by the operator before the con-
troller constants K1, K2, K3 and K4 are passed onto the

HMSU .

127

Another task of the PDP-11 computer is to communicate

with the operator and manipulate the input information data

in a suitable form and present it to the master processor

of the HMSU for its distribution.
generated data from the TLF is also performed by the PDP-11

computer via its GT42 display processor.

The display of process

More details of

the PDP-11 tasks are covered in Chapter 8.

5.

One important feature of a control requirement for

the HMSU is the operation of the controllers by selection

of a control mode from a set of three control modes. The

three control modes are outlined in Table 6.1.

The oper-

ator sets up a desired control mode which allocates

specific groups of zones of the TLF to be under the control

of specific processors of the HMSU.

control mode (v),

For example,

under a

the master processor controls zones 2,1,0

the slave I controls zones 7,6 and the slave II controls

zones 5,4,3 and so on.

Thus the three groups of zones of

the TLF are transparent to control action from the pro-

cessors.

a switching of a control mode may be necessary in the event
of a failure of a processor controlling a critical group of

zones (e.g.

a soak zone).

The importance of this feature is recognised when

CONTROL MASTER SLAVE T SLAVE II
M ZONES ZONES ZONES
u 7,6 5,4,3 23,0
v i o] 7,6 Bed
W 5,4,3 2l 0 7.6
TABLE 6.1 : Control modes

2

6. As the loads travel through from one zone to an-
other zone, the corresponding zone controllers need to
update the load addresses. A load update signal provided
by the closure of a microswitch is passed simultaneously
onto each of the processors of the HMSU as an interrupt
signal. A software routine implemented in each processor
of the HMSU accounts for updating the load address simul-

taneously.

6.4 ELECTRONIC INTERFACE REQUIREMENTS

In order to interface the hardware of the HMSU to the
TLF, a suitable electronic interface is required for each
processor so that it can transfer data to and from the
furnace. The data transfer is concerned with addressing
zones, addressing thermocouples for temperature measure-
ments and digital data representation of temperature
signals. This is achieved by the input/output interface
shown in Figure 6.4. It may be noted that since each
processor of the HMSU behaves as a controller for the TLF,
its input/output interface is identical to that shown in the
Figure.

As mentioned earlier in Section 5.5 of Chapter 5, the
processors of the HMSU are designed around the Fairchild/
Mostek F8 microprocessor chips set. The input/output inter-
face in Figure 6.4 uses three eight-bit bidirectional ports
(Ports 0, 1 and 8) of the F8 microprocessor. The port 0 is
used to input an 8-bit equivalent of a temperature measure-
ment, obtained via ADC82, unipolar analogue to digital

converter. The same port is also used to output an 8-bit

129

0€EL

I/0PORT O

1/0 PORT 1
F8 MICROPROCESSOR

o O O O A
> >
w2b ARRRRAAA |7ou
+ ¥
Q q
I ADC82. 7403
20 41038 o
19 5 H o
% 6 =
—tiz 7 la L~
i & e O—
ANALOGUE 15 q
1/p [ole =
22 it L M58
fuf J:;:Ef‘[;‘f T 12— M58 ==r B
% 16 1 SERIAL OUT = DDRESS
0 014F | 17 23 b STATUS ;_53 ,_LLI =2
= T T T d 2 23 CONY cMD < 7 y
ANALOGUE
GROUND T} 50nSec(min) 3 | 7404
= =200 o<t
= msec
o<}
: o<}
404 o}
+5V ¢+5V "*:14 l o<}
V. amvy ysv +5V oy
74124 s 74123 5
3 # Sl Vee A Vee
B v wefe = & Rice
A1 ”uc-e LR Cext
Az Cent ~ia Q
B gt 2@ d& 7f34-
Q Rint[e 0022 2Cext 2cuH] TS*
GND Nehe AUF 2Rt 28
‘ -I’_—GND 24 7406
J—Lfo,usec
FIGURE 6.4 : Input/Output interface

I/0 PORT 8

|

equivalent of a control signal (Px) to the TLF. A processor
acquires a temperature measurement by setting up a thermo-
couple address at Port 1 (bits 0 to 5). This causes 74121
(monostable multivibrator with Schmitt-trigger input) and
74123 (retriggerable monostable multivibrator) circuits to
generate a conversion command input for the ADC82. When the
ADC82 completes the conversion of analogue signal, it
generates a status signal which is input to 7474 (dual
D-type positive-edge-triggered flip-flop with preset and
clear inputs) via a 7406 (inverter). A change in the state
at bit 1 of Port 8 caused by 7474 accounts for informing the
processor to read the 8-bit equivalent of temperature via
its Port 1 by opening the 7403 gates via its Port 8. A
processor sends out 8-bit equivalent of a control signal
(Px) via its Port O prior to closing the 7403 gates and also
after addressing the appropriate zone via its Port 1 (using

bits 0 to 3 and bit 6},

6.5 MODIFICATION REQUIREMENTS TO EXISTING INTERFACE

The existing electronic interface allows for a single
computer connection to be made to control the TLF, irrespect-
ive of any control scheme implementation. An ARGUS-500
process control computer was used by Caffin (1972) and
Sheena (1977). This interface restricts the use of a multi-
microprocessor system such as the HMSU to implement a
distributed control scheme. Hence there is a need for inter-
face modification. There are two main areas where these

modifications are essential.

131

1. Firstly, since we want all the three microprocessors
of the HMSU to make simultaneous temperature measurements of
the load, a single ADC channel fails to satisfy this require-
ment. Hence, as pointed out in Section 6.4, three independ-
ent ADC channels are needed. In all 30 thermocouples,
signals are multiplexed and the output analogue signal is
passed onto the ADC unit (of the input/output interface)
before its necessary amplification. Thus, for the three ADC
channels, three analogue signals are required from three
independent multiplexer units. This requirement is quite
unique for this particular TLF because of the unconventional

way in which the temperatures are measured.

2. Secondly, since the three microprocessors of the
HMSU compute the actual power (control signal Pi) required
for the zones they are assigned to control, no two micro-
processors should be allowed to control a single zone via
its DAC channel. However, although the assignment of which
microprocessor will control which zone is done beforehand
(by an operator's choice) a flexibility of a control of any
of the eight zones by any of the three microprocessors is
desirable. This requirement leads to a major modification
in the existing interface.

Figure 6.5 shows some relevant details of the existing
computer/furnace interface. Address lines 0 to 4 are used
for either thermocouple addressing or zone addressing. When
measuring a temperature, a thermocouple address and strobe
(on address line 5) is latched by 9308 8-bit latch and is

decoded by 9311 decoder (4 line to 16 line decoder/demulti-

132

omdEBReo

|

EEL

. DATA BUS
7 -
: {+sv
25.__1'5 24 1 > TO RELAY 0
4 g A .
& B
! 17 [>o G2 .
(SRR G & >TO RELAY 15
515 3is I J_
DELAY |_l & T+5?v Joee
TRIGGER L
7 24 { — TO REI.AY 16
r‘;—y A -
Tt Jrl“g 9311
= D %
2 9308 ’q’—J | 0 '
o m 62, 17 >TO RELAY 3
= di
215 314 3 =
DELAY u 9308 9308 .. 9308 9308
TRIGGER = |—— l_]—
o
1
5 DAC DAC DAC DAC
2« 9311 ; 845-U10
il e S 741
9308 74116 Dual &4bit lafche
T’f&g:g with clear.
CONTROLLER CONTROLLER CONTROLLER CONTROLLER

FIGURE 6.5 : Existing computer/furnace interface

plexer). The output lines of the decoder trip the appro-
priate reed relay for the temperature measurement. When an
8-bit equivalent of appropriate power (control signal Py) is
to be sent to a desired zone, that zone address and strobe
(on address line 6) are decoded to enable the 9308 data
latch of the DAC channel.

The reed relays used in the multiplexer unit are bulky
devices and introduce noise in temperature measurement. The
size of the multiplexer unit can be considerably reduced
when a set of four, 4051 (single 8 channel) analogue multi-
plexers are used for multiplexing thermocouple signals. The
proposed arrangement using these devices is shown in
Figure 6.6. The thermocouple (T/C) address and the T/C
strobe is latched by 74116 (Dual 4 bit) latch and is decoded
further to activate the appropriate 4051 analogue multi-
plexer. The analogue signal is further amplified by a
single stage 741 amplifier and passed onto the ADC. Three
such analogue multiplexer units are needed for the three
microprocessors.

Figure 6.7 shows a proposed (major) modification for
the DAC channels of the zone controlling interface that
would satisfy the second requirement. The Figure shows
three data bus channels from the three microprocessors and
the fourth data bus channel for the ARGUS 500 computer. All
bus channels are buffered by 74LS241 octal tristate buffers,
For every DAC channel there are four buffers, only one of
which is enabled when a zone address appears on 74154
decoder (4 line to 16 line) from the corresponding processor.

The output from the 7440 (NAND buffers) also enable the 9308

134

TA0 Te|T | 8 T 15 T/ 16 |23 T/C|124 Trcl|29

SEL

[3 [[+
1 Los 3 3 Los g 3 4051 : ﬁ;] 4051 =
. B) .
Y Y e Y
Ys |Ya |1 |Yo
74LS139
e |A
| Thermocouple
analogue signal
+15V
LHSV L—']SV
1K 1K "1 o MR 7
74116 From \K 5
B common NSVEQ ADC
TiC e Hey: 'Zlon
A, Ao ground o | N 20K 100Q 7509 10Q
4 A{ —1 Wr—‘.‘.‘-—"‘.“:‘ A
UJ Y S S
.Y.—.J
TIC TIC 7277
STROBE ADDRESS

FIGURE 6.6 : Analogue multiplexer interface

9€1

MASTER I/0 DATA BUS

SLAVE-1 1I/0 DATA BUS

SLAVE-2 1/0 DATA BUS

ARGUS-500 I/0 DATA BUS
MASTER 1/0 3 -
ADDRE §S . . Tk 0 3 a §
i st 1 0 w7 | |3 vl I T k| |3
e 4 Ne - [i o
v Y - 7 k| |§ &7 J2 moi g
o | I 3 - [- 4 =
B { 1 7 3 ¥ % maV4 Iﬁl 3
SLAVE-1 1/ | il y
ADDRESS 5 = A Ir‘? I —|r‘§' =V J?-t
BUS | — {
——a D
i
8l
SLAVE-2 1/0
ADDRESS ~ 49308 — 9308 I%E 9308
BUs 1
A<t 2
e =
: DAC DAC il T T e LS U DAC
ARGUS -500 1/0
ADDRESS -
BUS bl
o 2P 41 741 W1
R
ZONE-0 ZONE-1 MOTOR
CONTROLLER CONTROLLER CONTROLLER

FIGURE 6.7 : Modification to DAC channels

8 bit latches at the same time so that the buffered data is
latched for that particular DAC channel. Each DAC unit
converts the latched digital data into analogue signal
which is amplified by 741 operational amplifier and is
responsible for controlling the level of heating inside the

zone.

6.6 CONCLUSIONS

The TLF described in this chapter is a typical example
of the kind of application selected for employing hierarch-
ical computer control using a multi-microprocessor system
such as the HMSU. The application clearly establishes the
control requirements both at software level and hardware
interface level. The implementation of the control require-
ments for the HMSU is a subject matter for Chapters 7 and 8.
The overall control strategy used for the HMSU to control
the TLF requires a major modification of the existing inter-
face. This has remained in the proposal stage mainly
because of the lack of suitable development and testing
environment for the HMSU and hence is a topic of further

investigation.

137

CHAPTER 7 - SOFTWARE DEVELOPMENT FOR THE HMSU SYSTEM

7.1 INTRODUCTION

The software for the HMSU mainly consists of independ-
ently stored programs, residing in PROMs of individual
processors. For the purpose of this project, these programs
are designed such that each processor within the HMSU
behaves as a controller for the Travelling Load Furnace
(TLF) described in the previous chapter. The processors of
the HMSU execute their stored programs simultaneously. This
accounts for various interactions between (1) the processors
of the HMSU and the TLF, (2) the master and the slave pro-
cessors and (3) the master and the host PDP-11/10 mini-
computer. The software development for the HMSU to resolve
these interactions is indeed a complex task. Other features

of this software development task include:

1. the use of a low level programming language for the
Fairchild F8 microprocessor.

2. programming for real-time operation

3. programming with due care for software dependency
on hardware architecture

4. programming for a multi-level interrupt structure.

With reference to the above features, this chapter
describes a program for the master processor of the HMSU.
The program design is based upon the three major interactions

outlined above. The entry and exit points for the flow-

charts given in this chapter include, for ready reference,

138

the line numbers of the corresponding listing given in
Appendix C. Furthermore, some details of programming
features unique to the F8 microprocessor, and hardware
details of the master processor, are covered in Append-

ices B and A respectively.

7.2 SOFTWARE DEVELOPMENT AID

In order to develop an object code program from a
source code program, a need for a software development aid
is of vital importance. A general program development
procedure has been already outlined in Chapter 3. The
program described in this chapter was initially developed
on time-sharing, MAXI-MOP operating system for the
ICL 19053E mainframe computer system. The F8 cross-
assembler (Mk 3 version) made available by Davies (1977)
was used to produce an object code program. The cross-
assembler is a two-pass assembler and Figure 7.1 shows its
general structure for producing TAPE and STOR subfiles from
a source program subfile called PROG. The TAPE subfile may
be used to produce a paper-tape version of the object code
for loading into the target F8 microprocessor or for load-
ing and testing it on a simulator. The STOR file contains
the listing of the source subfile PROG and its correspond-
ing object code.

During the course of development of software for the
master processor of the HMSU system, the MAXI-MOP operating
system and the ICL 1905E mainframe computer system were
both withdrawn from service and, for this reason, a need

arose to transfer and create new files onto another

139

vl

------------ > PRINTER

[
|
]
!
CONSOLE ASSEMBLER ASSEMBLER :
1
I
KEYBOARD % PASS~I o PASS -II f
! ~-> SIMULATOR
I |
1 1
: F~==>1 PUNCH | |
: : i
| | !
: I :
: PO :
% = e VR i E o T ST i i 8 € TP v AT :/_ -:r /fi// A P L S e
(1 ! ¥ E i 4
g PROG SECO STOR TAPE /
/ ’
- /]
MAXIMOP AREA y
3 A
FIGURE 7.1 : The F8 cross assembler (Mk 3) structure

machine. The MOSTEK Z80 disk system (MDS Z80 system) was
made available in the Electrical and Electronic Engineering
Department and the F8 Assembler (F8XASM) available on this
system was finally used for the program development
described in this chapter. The program development was
found to be more efficient than the MAXI-MOP system because
the MDS Z80 system (1979) is a single-user system with
facilities such as Editor, F8 assembler (F8XASM), linker
ete. and a versatile operating system (0S). As the MDS Z80
system description and how to use it are given in the
reference manual, no further discussion is made here. The
object code of the master program called HMSU-SRC
(Hierarchical Microprocessor System Unit-SouRCe) is pro-
duced in Intel format which is intended for loading into
2708 PROMs. The HMSU-LST contains the F8 assembly language
source program and the corresponding object code generation,
an alphabetical list of labels and their cross-references

and the number of errors occurring during the assembly.

7.3 ASSUMPTIONS AND DEFINITIONS

Before continuing the discussion of the master program,
it is worth mentioning various assumptions and definitions

governing the program. The assumptions are as follows:

1. The hexadecimal number system is used to represent

temperatures, digital control signal output, constants etc.

2. Arithmetic calculations are performed using two's
complement so that H'00' to H'7F' represent the positive
integers from 0 to 127 and H'FF' to H'80' represent the

negative integers from -1 to -128.
141

3. Fixed point arithmetic is used.

4. The hexadecimal representation of temperatures is
such that for every byte change, a change of 2°C in temper-
ature is obtained. Thus, for example, H'1l9' represents

50°C, H'32' represents 100°C and so on.
The definitions used are as follows:

1. The PROM and RAM address ranges are defined as
shown in Figure 7.2. The memory map for the slave process-
ors is identical to that of the master while the memory map
of the common memory is common to all three processors of

the HMSU.

2. The 64 bytes of scratchpad registers available on
the CPU (i.e. the F8 microprocessor chip), for each of the
processors are defined to store transient data. The signif-
icance of this data carries specific interpretation and
this is shown in Figure 7.3. For example, the control
loop-1 in the Figure shows the use of eight registers (0'70'
to 0'77') for storing temperature measurements, error
signals, control signals etc. of the PID algorithm

described in the previous chapter.

3. Each of the master and slave processors provides
14 ports, out of which six are input/output and the remain-
der are write only. The ports assignment is defined as

shown in Table 7.1.

4. The zone addresses in term of hexadecimal numbers

range from H'40' to H'47' for Zone '0' to Zone '7' respect-

142

0000
1K
03FF
0400 2K PROM
1K
OTFF
0800 3
‘}64 BYTES (COPY OF ISMI INPUT CHANNEL)
083F
0840
}64 BYTES (AUXILARY DATA)
087F
0880
:}64 BYTES (COPY OF SLAVE-1 DATA) 1X
08BF > PRIVATE
08¢0 RAM
}64 BYTES (COPY OF SLAVE-2 DATA)
O8FF
0900
768 BYTES (RAM STACK AREA)
OBFF
S
0C00
}64 BYTES (COPY OF ISMI)
OC3F
0C40
}64 BYTES (SPARE)
och 1K
0Cc80
‘164 BYTES (SLAVE-1 WRTTTEN DATA) i ggﬁmon
oo |] MEMORY
0CcCo
:}64 BYTES (SLAVE-2 WRITTEN DATA)
OCFF
0DOO ‘L
768 BYTES (SPARE)
OFFF
/ 2
=
1000
>1K SPARE COMMON RAM MEMORY
13FF

FIGURE 7.2 : Memory map of the master processor and common memory

143

CONTROL LOOP-3 —-|

DEC OCT / DEC OCT %
o | oo |) : 32 | 40 |)
1 0l : 33 | 41
2 02 1134 | 42 SPARE
D[03 GENERAL 1|35 | 43 | » REGISTERS
4 | 04 PURPOSE 136 | 44
5 | 05 REGISTERS 1 37 | 45
6 | o6 1138 | 46
i m i[39 | 47 [)
8 10 1140 [50 | APk =1
J |9 1§ 41| 51 Pk = 1
gu |10 | 12 SPECTAL 142 | 52 | APk Upper
gL (11 | 13 | L PURPOSE E 43 | 53 | APk Lower
xy |12 | 14 REGISTERS : 44 | 54 ek=2
a [13] 15 ‘145 | 55 ek-1
ou |14 | 16 '| 46 | 56 ek
aL |15 | 1| 1147 | 5T Temperature
16 | 20 |) {48 | 60| Ark-1
17 | 2% SOPTWARE 1149 | 61 Pk - 1
18 | 22 | » sTACK : 50 | 62 /\Pk Upper
19 | 23 SPACE 'l51 | 63 | APk Lower
20 | 24 i[52 | 64 ek=2
2% |25 153 | 65 ek-1
22 | 26 i 54 | 66 ek
a3 R | : 55 | 67 Temperature
24 | 30 | TIMER COUNTER (253) : 56 | 70 ODPk = 1
25 | 31 |30 sec COUNTER FOR PID |'|57 | T1 Pk - 1
26 | 32 |10 sec COUNTER FOR ISMI| |58 | T2 /\Pk Upper
o ("33 '159 | 73 | APk Lower
28 | 34 {60 | T4 ek=2
29 | 35 ér] 15 olo-1
30 | 36 : 62 | 76 ek
3% | 3T 1163 | TT Temperature
\\\ f}
FIGURE 7.3 : Scratchpad memory map

|"—‘CONTROL LOOP-1—>}¢——CONTROL LOOP-2

CHIP PORT SLAVE I SLAVE II
TYPE NO MBETER BROCECECR PROCESSOR | PROCESSOR
3850 0 Input from ADC and output Same as Same as
CPU data to the TLF (ref. Fig. 6.4) master master
1 Zone and T/C addresses
—do- ~dg-
plus strobes (ref. Fig. 6.4)
3861 8 Bits 0 and 1 for I/O interface Same as Same as
PIO (ref. Fig. 6.4) master master
(MK90002)
9 Used for setting up slave Not used | Not used
addresses
A Interrupt control port))
(write only)) Same as)Same as
) master) master
B | Timer control port (write only) |))
3861 20 ISMI interface))
PIO))
(MK90003))Not used |)Not used
21 ISMI interface))
))
22 Interrupt control port))
(write only)) Same as) Same as
) master) master
23 Timer control port (write only) |))
3853 @ Interrupt vector address upper Same as Same as
SMI byte (write only) master master
D Interrupt vector address lower
J ~do- ~do-
byte (write only)
E Interrup? control port “Ap- C3oe
(write only)
F Timer control port (write only) ~do- —do-
TABLE 7.1 : Ports assignment

145

ively. Similarly, the loads which travel through the TLF
have address range from H'20' to H'3D' for Load 0 to
Load 29. The motor which controls the speed of the convey-

or has an address of H'50'.

5. The input and output channels of the HMSU which
consist of ISMI memory modules account for data collection
from and by the PDP-11 respectively. The 64 locations of
each of the ISMI memory modules have write and read
addresses. The read addresses range from H'40' to H'7F'
and the write addresses range from H'80' to H'BF'. The
memory locations of these modules are defined to store
particular items of data. The labels of these data items
and their storage locations are depicted in the matrix form
shown in Figures 7.4 and 7.5. The significance of the
labels used in these Figures and those used in the program,

given in Appendix C, is given at the end of this chapter.

7.4 PROGRAM DESCRIPTION

The master program is only a one-third part of the
overall software required for the three processors of the
HMSU. However, its development is critical because the
master processor behaves as a communicator with the slave
processors, via common memory, and with the PDP-11/10 mini-
computer, via ISMI memory modules. Thus, as far as the
slave processors are concerned, their communication with
the master via common memory is initiated by the master

processor using external interrupts, whereas the master

communicates with the PDP-11 at regular intervals using

146

DATA ENTRY

FROM THE PDP-11

WRITE ADDRESS
ot
BF BE BD BC BB @) B9 B8
Cl c2 C3 LA NS MS CM TRUN

TF TE (£ 7C B TA 19 78

BT B6 B5 B4 B3 B2 Bl BO
ISPl K11l K12 K13 K14 ST1

17 76 75 T4 13 T2 it 70

AR AR AD AC AB AKX A9 28
ISp2 K21 K22 K23 K24 SI2

6F 6E 6D 6C 63 6A 69 68

AT A6 A5 A4 A3 A2 Al AO
ISP3 K31 K32 K33 K34 SI3

67 66 65 64 63 62 61 60

9F 9E 9D 9¢C 9B 9A 99 98

5F 5E 5D 5C 5B 5A 59 58

97 96 95 94 93 92 91 90

o7 56 55 54 53 52 51 50

8F 8E 8D 8¢ 8B 8A 89 88

4F 4B 4D 4C 4B 44 49 48

87 86 85 84 83 82 81 80

RCPS RFPS WFPC WFPS
47 46 45 44 43 42 41 40
{} "N gm0 aooness
DATA COLLECTION BY THE
MASTER
FIGURE 7.4 : ISMI memory map - input channel of the HMSU

147

DATA COLLECTION BY THE PDP-1l

=

READ ADDRESS

gicd
&

40 41 42 43 44 46 17
RFMS RFCMS WFMS WFCHMS
80 81 a2 83 84 85 86 87
48 49 4A 4B 4C 4D 45 4F
LAS23 POWS23 | TEMPS23 | ZONAS23| SNOS23 LAS22 POWS22
88 89 8A 8B 8¢ 8D 8E 8F
50 51 52 53 54 55 56 57
TENPS22 | ZONAS22 SN0S22 LAS21 POWS21 TEMPS21 | ZONAS21 | SNOS21
90 91 92 93 94 95 96 97
58 59 5A 5B 5C 5D 5E 5F
LAS13 POWS13 | TEMPS13 | ZONAS13 | SNOS13 LAS12 | POWS12
98 99 9A 9B PAY 9D 9E 9F
60 61 62 63 64 65 66 67
TEMPS12 | Z0NAS12 SNOS12 | LAS1l POWS11 TEMPS11 | ZONAS11 | SNOS11
A0 Al A2 A3 A4 A5 A6 AT
68 69 6A 6B 6C 6D 68 6F
LAM3 POWM3 TEMPM3 | ZONAM3 SNOM3 LAM2 POWM2
A8 A9 AA AB AC AD AR AP
70 T1 T2 73 T4 ™ 76 17
TEMPM2 ZONAM2 SNOM2 LAM1 POWNML TEMPM1 ZONAM1 SNOML
BO Bl B2 B3 B4 B5 B6 BT
78 79 TA T8 TC D T8 TP
B8 B9 BA BB BC (/;;\) BE BF
MH‘RITE ADDRESS
DATA ENTRY FROM THE
MASTER
FIGURE 7.5 : ISMI memory map - output channel of the HMSU

148

fe——MASTER DATA ———+——SLAVE 1 DATA——f——SLAVE 2 DATA—*

real-time software interrupts. Thus the structure of the
master program is based on the processing of various
interrupts. Numerous routines are described in the follow-
ing sections which handle interrupts, communication aspects

of the master processor, its controller actions etc.

7.4.1 Interrupt Structure

The hardware architecture of the F8 processor provides
interrupt handling capability using a serial priority net-
work known as a "daisy-chain'". The details of this are
described in Appendix B. An interrupt structure with
assigned priorities used in the master program is shown in

Figure 7.6. The priorities are assigned as follows:

1% First prieorityy AjbGimey available of the first
PIO chip runs continuously and is used to count real time.
The timer port of this chip is loaded with a maximum count
of 253 so that this PIO chip pulls the INT REQ line low,
every 3.953 milliseconds. Using this timer, a PID algo-
rithm is entered after counting a time equal to the
sampling interval, required for the measurement of temper-
ature of the loads. The master processor also makes use of
this timer to see if the PDP-11 has sent any new inform-
ation for the controllers. This viewing process is per-
formed at regular intervals, using the timer, say every

10 seconds for example.

2. Second priority: An external interrupt line

available on the second PIO chip is used to inform the

processor the load position within the zone which is under

149

0§l

1st PRIORITY

[Internal Timer

2nd PRIORITY

EXT INT

[Microswitch]

3rd PRIORITY

EXT INT

[From other

Interrupt-used for processors]
PID & ISMI routines] \
3861 3861
PI
3850 CPU i P10 Fo_ Pl PIO B e S i
= [MK 90002] [MK 90003]
La--—-—
INT IRQ INT IRQ INT IRQ INT IRQ
Y Y ¥
FIGURE 7.6 : Interrupt structure with priority

control. A signal coming from a microswitch, indicating
the position of the load, pulls this line low to generate
the external interrupt. A microswitch interrupt routine
which is then entered allows the load addresses to be up-
dated as the loads travel through from one zone of the TLF

to the next.

3. Third priority: This priority level, which also
uses the external interrupt line available on the SMI chip,
is used for signalling the master processor that a partic-
ular slave processor has finished with the access of the
common memory. The master processor, having received this
interrupt, allows the next slave processor or itself to

have access to common memory.

The interrupts generated by the PIO and SMI chips with
the above-mentioned priorities need to be processed one at
a time by the CPU. However, a possible occurrence of a
higher priority interrupt causing a lower priority program
execution to be interrupted needs careful handling. This
issue is further complicated by the uncertainty with which
these multi-level interrupts occur. Although serviceing a
large number of interrupts with one CPU having a single
hardware stack is inefficient (Fairchild, F8 users' guide,
1976), this problem can be overcome by using entry and exit
protocols during interrupt serviceing.

In order to handle these multi-level interrupts, two
routines are implemented which use a RAM memory area. This

area 1is used as a stack to store contents of the accumul-

ator, ISAR (Indirect Scratchpad Address Register), status

151

register, and registers: DCO, DC1, KU and KL, when a
current program execution is interrupted by a higher prior-
ity interrupt. This storing process is performed by a
routine called CALL., When the execution of the higher
priority interrupt routine is complete, the contents of the
accumulator, ISAR, status register and registers: DCO, DC1,
KU and KL are restored by using the RETN routine, so that
the current program execution is resumed. A pointer is
maintained in the scratchpad buffer area of the CPU, to
point to the next empty stack area of the RAM memory. This
pointer is incremented by nine locations at the end of the
CALL routine and is decremented by nine locations at the
end of the RETN routine. Furthermore, interrupts are
enabled at the CPU after the CALL routine and disabled at
the beginning of the RETN routine, and re-enabled according
to the program execution which immediately follows. An
example of a two-level priority interrupt structure is
shown in Figure 7.7. The flow charts for the CALL and RETN

routines are shown in Figure 7.19.

£d. 2 'Inrtialisation

The master program is initialised at the beginning of
the main program execution. The initialisation procedure
is entered when the HMSU is switched on or by reset action.
The following list shows the actions performed during the

initialisation procedure:

1. Disable all interrupts

2. Clear all the input output ports

152

Main program

> 18t vectored interrupt

CALL ROUTINE:
ASSUME SP = 0

ACC, ISAR, STATUS,KU & KL
LOADED AT SSA+SP ie SSA+0
THEN SP=SP+5 = O+5

ROUTINE 1 EXECUTION

»>2nd vectored interrupt

Y

[GALL ROUTINE:

|Wow SP = 5

ACC, ISAR, STATUS,KU & KL
LOADED AT SSA+SP ie SSA+S
_THEH SP=SP+5 = 5+5 = 10

ROUTINE 2 EXECUTION
(say without interruption)

RETN ROUTINE:

SP = 10

ACC, ISAR, STATUS,KU & KL
RESTORED FROM SSA+SP-5

< | THEN SET SP=SP-5 = 10 - 5 = 5

ROUTINE 1 EXECUTION

RETN ROUTINE:

SP = §

ACC, ISAR, STATUS, KU & KL
RESTORED FROM SSA+SP=5

|THEN SET SP=SP = 5 = 5=5 = 0

A

Main program

NOTE: 1) SSA = Starting Stack Address
ACC = Accumulator
ISAR = Indirect Scratchpad Address Register
KU = Upper byte of K Register
KL = Lower byte of K Register

2) ROUTINE 2 is of higher priority
than ROUTINE 1

FIGURE 7.7 : Example of two-level priority interrupt structure

153

3. Clear the control loop buffers.

4. Switch off all the heaters of the TLF and switch
off the motor of the conveyor by using the SHUT routine.

5. Clear 256 bytes of the private RAM where the input
channel ISMI memory contents are to be copied.

6. Close the timer port and enable the external inter-
rupt port of the second priority PIO chip.

7. Load port H'OB' of the first priority PIO with a
253 count and enable timer interrupts at this chip.

8. Load the SMI vector address ports H'OC' and H'OD'
with H'0O1' and H'FO' (i.e. vector address H'O1FO') and
enable external interrupts at the SMI chip.

9. Load ISAR 30, 31 and 32 with counts 253, 30 and 10
respectively. These are the timer count, sampling interval
count of 30 seconds and ISMI scan count of 10 seconds.

10. The PIDFLG (i.e. PID flag) and SNO (sample number)

are cleared and ISMIFG (i.e. ISMI flag) is set.

7.4.3 The main program

The main program is basically a very short program in
which the master processor loops around, checking if either
the PIDFLG flag or the ISMIFG flag or the TRF flag is set.
This program is executed at the lowest priority. The
following tree structure shows how the main program is
related to other subroutines implemented in Appendix C.

The flow charts of some specific routines such as INPU,
OUTPU, COPY etc. are shown in the corresponding Figure

numbers shown in brackets. In addition, the main program

154

Subroutines:

Initialisation

Subroutine SHUT

Main Program
(Fig. 7.8)

PIDR
(Fig. 7.9)

ISMI
(Fig. 7.12 & 7.13)

subtraction

. BMPY - Binary
multiplication
. TRAN - Register
transfer

. BADD - Binary
addition

. RECORD - Record

control loop parameters
. STOP - Stop or end of
TLF run

. MODLZA - Modify Load-
zone addresses

Subroutines:

1. INPU (Fig. 7.10) 1. CLEAR - Clear Ports
2. OUTPU (Fig. 7.11) 2
3. BSUBT - Binary

COPY (Fig. 7.14)

is mainly interrupted by the following:

TRMIT
(Fig. 7.15)

Subroutines:

. CLEAR - Clear Ports
. WRITE - Write into

output channel of
ISMI

1. Timer interrupt routine (Fig.'7.16): This routine

155

as described earlier in the priority structure is respons-

ible for counting real time and setting PIDFLG and ISMIFG

when the corresponding sampling intervals and ISMI scanning

periods are completed.

2. External interrupt caused by the microswitch
(Fig. 7.17): This routine is responsible for updating each

load address as the loads travel through the TLF.

3. External interrupt caused by the other slave
processors (Fig. 7.18): This routine, as mentioned earlier,
facilitates access to the common memory by the processors

of the HMSU under the supervision of the master processor.

In support of the above three interrupt routines, the
interrupt structure demands the use of CALL and RETN sub-

routines, the flow-charts of which are shown in Figure 7.19,

7.5 CONCLUSIONS

The program described in this chapter applies to the
master processor only. Similar program development is
necessary for the Slave I and II processors except for the
inclusion of the ISMI routines. Although the master pro-
gram described here is produced with no assembly errors,
the logical testing and debugging of the program on the
actual hardware could not be performed due to lack of test-
ing and debugging facilities. The cross-software develop-
ment aid, such as using cross-assembler on the MAXIMOP
system, for program development has its limitations and is
inefficient for program development of multi-microprocessors.

The scope for further development of the program is enormous;

for example, performance evaluation, self-diagnosis of

156

hardware, failure detection and alarm condition signalling

(i.e. fault-tolerance mechanisms) etc. requires further

research.

LIST OF LABELS

FIGURE 7.4

Cl, ¢c2, ¢c3 = Status of controllers 1,

2 & 3. It may be either ON or COFF.

LA = Load address.

NS = Number of samples.

MS = Motor speed of the conveyor.

CM = Control Mode. It may be UUU, VVV or WWW.
IRUN = Integer run number for the TIF.

ISPl, ISP2)

ISP3)
K11, K12, K13, K14
K21, K22, K23, K24
K31, K32, K33, K34

I

Four

Four

I

= Integer set point temperature for controllers 1, 2 & 3.

Four controller constants for controller no, 1.

N 20

L1 n n no. 3 3

SI1, SI2, SI3 = Sampling intervals for controller no. 1, 2 & 3.

RCPS = Read count PDP set.

RFPS = Read flag PDP set.

WECPS = Write flag count PDP set.
WFPS = Write flage PDP set.

FIGURE 7.5

RFMS = Read flage master set.

RFCMS = Read flage count master set.
WFMS = Write flage master set.

WECMS = Write flage count master set.

SNOM1, SNOM2, SNOM3 = Sample number in
SNOS11, SNOS12, SNOS13 = Sample number
Slave I.

SNOS21, SNO0OS22, SN0OS23 Sample number
Slave II.

ZONAM1, ZCONAMZ2, ZONAM3

master.

control loop 1, 2 & 3 of the master.

in control loop 1, 2 & 3 of the

in control loop 1, 2 & 3 of the

Zone address in control loop 1, 2 & 3 of the

ZONAS11, ZONAS12, ZONAS13 = Zone address in control loop 1, 2 & 3 of the

Slave I.

157

ZONAS21, ZONAS22, ZONAS23 = Zone address in control loop 1, 2 & 3 of the
Slave II.

TEMPM1, TEMPM2, TEMPM3 = Temperature measurement in control loop 1, 2 & 3
for the master.

TEMPS11, TEMPS12, TEMPS13 = Temperature measurement in control loop 1, 2
& 3 for the Slave I.

TEMPS21, TEMPS22, TEMPS23 = Temperature measurement in control loop 1, 2
& 3 for the Slave II.

LAM1, LAM2, LAM3 = Load address in control loop 1, 2 & 3 for the master.

IAS11, LAS12, 1AS13 Load address in control loop 1, 2 & 3 for the
Slave I.

LAS21, LAS22, LAS23 = Load address in control loop 1, 2 & 3 for the

Slave II.
FIGURE 7.8
PIDFIG = PID control algorithm flag.
ISMIFG = ISMI memory (input channel) scan flag.
TRF = Transmit flage for data transmission to output channel
of the ISMI.
PIDR = PID routine entry point.
IsSMI = ISMI routine entry point.

TRMITT, TRMIT = Transmit routine entry point.

FIGURE 7.9

TSLA = Temporary starting load address.

SLA = Starting load address.

TSZONA = Temporary starting zone address.

SZONA = Starting zone address.

LZAC = Load-zone address counter.

El, 12, L3 = Entry points for control loop 1, 2 & 3,

CALCU = Calculation of control signal using PID algorithm
(entry point) .

RECCRD = Record routine that records the values of control loop
calculations and measurements.

MODLZA = Modify locad and zone addresses.

158

FIGURE 7.18

SPAO = Store of port address for the master.

SPAl = Store of port address for the Slave I.

SPA2 = Store of port address for the Slave II.

CMAR = Entry point for the common memory access routine.
uuu = Entry point for control mode UUU.

VA'AY = Entry point for control mode VVV.

WWW = Entry point for control mode WWW.

FIGURE 7.19

ISAR = Indirect scratchpad address register,
CALL = Entry point of CALL subroutine.

DCO = 16 bit data counter register.

DCl = 16 bit data counter stack register.
SP = Stack pointer.

SSA = Starting stack address in RAM memory area.
KU = Upper byte of K register.

KL = Lower byte of K register.

FIGURE 7.15

MTRF = Master transmit flag.

S1TRF = Slave I transmit flag.

S2TRF = Slave II transmit flag.

TREC = Transmit flage count.

FIGURE 7.17

MSCNT = Microswitch counter.

NOTE

It is important that the critical parts of the various programs
(eg. Figure 7.12) are made interrupt proof. For instance, important
flags should be tested before interrupts are enabled,

159

ENTER
BUY (128)

4

ENABLE
INTERRUPTS

AT CPU

T0
GOTO
PID / PIDR FIGURE:
7-9
GOTO
ISMI
GOTO
TRMITT / TRMIT

FIGURE 7.8 : Main program of the master processor

160

191

——e—{CALCU
(ENTER) ‘
PIDR (703) (
OUTPUT TSLA STORE
APk UPPER WAS™S y
AT PORT 1 IN ISAR OX2 THIS 2nd
DISABLE : LOOP?
INTERRUPTS)
At o READ TEMPERATURE STORE
BY INPU ROUTINE Pk-1 IN
‘ A, i
STORE
IN ISAR OX7 S
SET I \ LOOP -3
SLA=SLA
= CALCULATE ERROR CALCULATE !
Ek =SET PT.-MEAS Pk =8Pk +Pk-1 CLEAR PIDFLG
) TEMP AND
SET AND STORF IN ISAR INCREMENT
0X6’ ¥ SNO
r OUTPUT Pk TO ZONE
CALCULATE BY OUTPU ROUTINE gl
CONTROL K11 ¥ Ek ' (837)
| LOOP BEGINS i
St CALCULATE UPD\ATE ' |
077’ INCREMENT
K11%Ek -K12% Ek -1 Ek-1TO Ek-2 TRUNNO
e !
CONTROL |
| Loop BEGINS oA g UPDATE] I
AT ISAR TKI3EER 2 Ek TO Ek-1 RECORD \ALUES| | [RECORD VALUES
o OF CONTROL OF CONTROL
LOOP-1 LOOP -2
{ Y
CALCULATE
CONTROL APk =K11%Ek -K12%Ek-1 MODIFY MODIFY
LOOP BEGINS K 13%Ek =2 MODLZ A MODLZ A
AT ISAR
375 +K 4% APk -1
A

(ENDRUN)

FIGURE 7.9 : PID Routine

29l

ENTER OUTPU
ENTER g ROUTINE (893)
INPU ROUTINE
(932) STORE 0 IN ANSWER STORE CALCULATED
AND OUTPUT 0 Pk LOAD DELAY Pk IN |
READ VIA PORT 0 COUNT H50 ISAR OX1
PORT 8 IN REG 0]
3 Y #
OUTPUT CLEAR SHIFT LEFT AND
TSZONA VIA PORT 0 INCREMENT CALCULATED
N PORT 1 Pk FOR FULL
) RESOLUTION OF HEATER
SIGNAL
Y STORE CALCULATED ¥
OUTPUT 1 Pk IN ISAR OX1 STORE IT IN ANSWER
AT PORT 8 AND OUTPUT VIA
TO OPEN GATES \ < PORT 0
: DECREMENT b
READ TEMPERATURE REG 0 TS%%% }v’IA
AT PORT 0 AND
STOR IT IN
ISAR OXT' N
CLEAR Y
PORTS 1,880 T
e PORTS 021
(944)
RETURN (929)
FIGURE 7.10 : INPU subroutine to read in FIGURE 7.11 : OUTPU subroutine to output power to a zone

temperature of a load

ENTER
ISMI ROUTINE
147

READ INPUT
ISMI
LOCATION 40
1E. WFPS

GOTO
CMAR

O & @

VALUE OF
WFCPS HOIR
? uuu
N
COPY ISMI
INTO PRIVATE
AND COMMON GOTO
MEMORY VVYV
LOAD SI1
INTO _ISAR A
031 GOTO
! WWW

LOAD
SPAO WITH
1 SET
PIDFLG = 1
LOAD T 3
SPA1 WITH CLEAR
1 _(ISMIFG TO 0
LOAD \
RE
SPA2 WITH AN
, (298)

FIGURE 7.12 : ISMI Routine

163

79l

ENTER UUU
(209)

ENTER Www ENTER _VVV
(222) (251)

y SET
SET SET LZAC =3
LZAC=2 LZAC=3 !
SET
4 SLA=LA+5
SET SET
SLA= LA SLA=LA+2 SEiay
l SLA=H20
SET
SZONA= ZONO SET
SLA= H20 — SET
SLA=H21
SET
PIDFLG = 1 SR SET
SLA=H21 > SLA=H22
b
CLEAR
SET SET
ISMIFG TO 0 SZONA=ZON2 SLA=H23
~ > l
RE TURN SET
298) | SLA=H24
FIGURE 7.13 : ISMI Routine (continued) SET
SZONA=ZONS
R

)

ENTER COPY
(ROUTINE (301)
v
DISABLE

INTERRUPTS
AT CPU

SET
REMS =+1

v

OUTPUT HOO'
AT
PORT 9

SET DCO POINTER

TO PRIVATE MEMORY
ADDRESS H0800'

|

SET DC1 POINTER
TO COMMON MEMORY

ADDRESS HO0C00

SET COUNT 6&
IN REG O

i

SET I/P ISMI START
ADDRESS IN REG 1

FIGURE 7.14 :

READ I/P ISMI

IN PM AND CM AS

LOCATION AND STORE

POINTED BY DCO & DCY

h J
DECREMENT
REG 1
Y
DECREMENT
REG 0

165

CLEAR

RFMS FLAG
T0 0

3

St
RFCMS=WFCPS

\

ENABLE
INTERRUPTS

AT CPU

h |

RETURN
(344)

g

Subroutine to copy ISMI data into PM and CM

ENTER TRMIT
ROUTIE (406)

y

>

TRFC=TRFC+]
COPY PM LOCATIONS
Y H0870' TO HO87F :
TO OIP ISMI SET
HB7 TO HAS WFCMS
N =TRFC
COPY PM LOCATION CLEAR
i HO8BO' TO HO08BF'
TO O/P ISMI AES
HA7' TO H'98'
N !

CLEAR
COPY PM LOCATIONS TRF
¥ H08FO' TO HOBFF 3
TO O/P ISMI s
H97 TO H8®
N
<:;_ (475))

FIGURE 7.15

: TRMIT routine for data transfer from the master to
o/p ISMI channel

166

ENTER TIMER
@TE REEE]’I ROUTINE

A
SAVE DECREMENT
ACC—ISARA 10 SEC
I"; :é ISMI COUNT
Y
EXECUTE .
CALL
ROUTINE
Y
A
DECREMENT
TIMER COUNT re-RAD
STORED AT 10 SEC ISMI
ISAR 030° COUNT
N
SET
ISMIFG = 1
RELOAD A o
TIMER COUNT \
BY HFD'
IE_ 253 CALL
RETN
\ ROUTINE
DECREMENT SI1
(SAMPLING INTERVAL)
COUNT RESTORE
AT ISAR 031 ISARS - IS
Ji W
L »ACC
& ENABLE
INTERRUPTS
AT CPU
RESET
SIBY ITS
ORIGINAL RETURN
VALUE (533)
A
SET
PIDFG = 1
b

FIGURE 7.16 : TIMER Interrupt Routine

167

ENTER MICROSW
EXTERNAL INTERRUPT
ROUTINE(537)

Y

SAVE
ACC» &
W J
IS~ 5
r
EXECUTE
CALL
ROUTINE
ENABLE EXECUTE
INTERRUPTS RETH
AT CPU ROUTINE
\
DECREMENT RESTORE
IS
MSCNT b
B Al
\
> ENABLE
INTERRUPTS
AT CPU
RESET :
MSCN T RETURN
T0 6 (573)
L &
INCREMENT
SLA
SET
SLA H20 [
N

168

FIGURE 7.17 : External Interrupt routine for load address update

ENTER
CMR ROUTINE
(348)

9

{

SAVE
ACC—~14
W)
IS—>5
EXECUTE
CALL
ROUTINE
¥
ENABLE
INTERRUPTS
AT CPU
SET OUTPUT H02
b
SPA2=0 AT PORT 9
SET OUTPUT HOT s
SPA1=0 AT PORT 9
SET OUTPUT HOO
SPAO =0 AT PORT 9

EXECUTE
RETN
ROUTINE

RESTORE
515
J=W
L—sACC

{

RETURN
(403)

)

SET
TRF=1

!

COPY COMMON MEMORY
LOCATIONS
H0C80" TO HOCFF 1o

PRIVATE MEMORY

_ LOCATIONS
H0880'_ TO

HOBFF'

FIGURE 7.18 Common memory routine

169

ENTER
CALL ROUTINE
(623)

SAVE DCO

IN ISAR
40 2 &1

3

SAVE DC1
IN ISAR
42 & 43

SSA
= SSAtSP

{

ISARL —<<SSA>>

9 —<<SSA+T>=>
5 —=-<<SSA+ 2>

[SARU0> << SSA+3 >>
ble<<SSA+ 4>

4b2-<<SSA+5>>

{

KU > <<SSA+T>>
KL =»<<SSA+8>>

i

NEXT EMPTY STACK

(SP = SP+9)
IS STORED IN ISAR3

RETURN
(662)

FIGURE 7.19 :

ENTER
RETN ROUTINE

DISABLE

INTERRUPTS
AT CPU

SP=SP-9
SSA= SSA* SP

<<SSA>> —ISAR &
<<SSA+1>=>—+>9
<<SSA+2>>—5

\

<< SSA+3>>—ISAR 40
<<SSA+4>> 4]
<<SSA+5>> 42
<<SSA+6>> —>43

A

<< SSA+T>> —=KU
<< SSAt8§>=> —KL

A

RESTORE
DC1 FROM ISAR 428& 43
AND
DCO FROM ISAR 41 & 40

A

RETURN
(701)

CALL and RETN routine

170

CHAPTER 8 - SOFTWARE DEVELOPMENT

FOR THE PDP-11/10 MINICOMPUTER

8.1 INTRODUCTION

This chapter covers the software development carried
out on the PDP-11/10 minicomputer, which forms the
supremal control level of the Hierarchical Microprocessor
System Unit (HMSU), intended for controlling the Travel-
ling Load Furnace (TLF). The processors of the HMSU are
required to be activated by feeding them with the necess-
ary input information data (e.g. controller constants, set
points, control mode etc.) for controlling the TLF. This
function is performed by the PDP-11/10 minicomputer in
conjunction with the operator of the TLF. For this
purpose, the PDP-11/10 is programmed to accomplish the

following functional objectives:

1. To communicate with the operator in a suitable
language with which he is familiar concerning the control
process of the TLF.

2. To check on the validity of the operator set
information data.

3. To allow the operator to change any data which is
set either by default or by himself.

4. To display the operator set information data.

5. To convert the operator set information data in a
suitable form in order to pass it onto the master process-

or of the HMSU.

171

6. To display the process variables and control

signals in a graphical representation.

The implementation of the above objectives is based on

the following software development features:

1. Use of the RT-11 operating system for the PDP-11
/10 minicomputer system.

2. Use of the high-level programming language,
FORTRAN 1IV.

3. Use of a DR11-C input-output interface which
provides 16 output lines and 16 input lines.

4. Use of the assembly language of the PDP-11/10, to
write routines which handle data-flow through the DR11-C

interface.

With reference to the above implementation, this
chapter describes the program called "DCHMSU'". The listing

of this program is given in Appendix D.

8.2 SOFTWARE DEVELOPMENT AID

The software development aid provided under the
PDP-11/10 minicomputer system consists of the RT-11 single-
user programming and operating system with either single-
job operation or powerful Foreground/Background (F/B)
capabilities. The system also provides basic program
development aids such as Editor, Assembler, Linker,
Debugger, a librarian etc. A detailed description of these

is well documented in the manuals. A general layout of the

software development environment is shown in Figure 8.1.

172

ELL

PDP 117110
MINICOMPUTER

OPERATING
sysTem [RT11

PRINTER

GT42

DISPLAY
PROCESSOR

TEKTRONIX
TERMINAL

FLOPPY

DISK DRIVE SYSTEM

KEYBOARD

=}

==

SY:0 SY:1

FIGURE 8.1 : Software development environment for the PDP 11/10 minicomputer

For the purpose of this project, single-job operation
is chosen for simplicity. A general development procedure
for generating an executable object code module from a
FORTRAN source program is outlined in Figure 8.2. If a
modification to the FORTRAN source program is required, it
is made using the Editor and subsequent compilation and
linking operations are performed on the modified version of
the source program. The process of modification is repeat-
ed until the desired objectives are achieved when running

the final version of the object module.

8.3 PROGRAM STRUCTURE

The structure of the "DCHMSU" program is modular.
Each module is written in the form of a subroutine. These
subroutines implement the funectional objectives outlined in
the introduction. The program execution guides the operat-
or to set the following information as required by the

processors of the HMSU:

1. The gain (k), sampling interval (t), integral
action time (Tj), derivative action time (Td) and the filter
time constant (Tp), which are the main parameters which
determine the values of controller constants K1, K2, K3 and
K4 as given by the equations 6.3.13 of Chapter 6. The
program allows the operator to set these parameters

independently for each of the three controllers of the HMSU.

2. Additionally, the program asks the operator to set
the control mode (refer to Section 6.3.1), the address of a

load in 'zone 0', the conveyor speed, the status of a

174

Sl

l FORTRAN
FOR EDITED FORTRAN FORTRAN COMPILATION
TRAN SOURCE Y .| EpiToR | + ERRORS?
PROGRAM INPUT [SOURCE PROGRAM COMPILER DIGNOSTICS
ERRORS
N

1 EXECUTABLE OBJECT
SYSTEM
5 L INKER MODULE READY FOR
LIBRARY J RUNNING THE PROGRAM
OTHER
OBJECT
MODULES

FIGURE 8.2 : A general FORTRAN source program development procedure

controller (i.e. either ON or OFF), the number of hours the
TLF should run or the number of samples required to measure
and control the temperature of the loads and the set point

temperatures for the controllers.

Having set the above information, the program checks
on the validity of the parameters. For example, it solves
equations 6.3.13 and checks whether the steady state gain,
computed from the values of K1, K2, K3 and K4 is positive.
If it works out to be -ve, the program requests the operat-
or to change the values of the appropriate parameters for
that particular controller. The operator is also able to
alter the value of any wrongly set parameter. If no
information is set by the operator, the program assumes
normal operating conditions for the controllers and sets
the values of the various parameters by default determined
at the initialisation of the DCHMSU program.

Finally, the program works out the values of the para-
meters in integers, each integer being one byte (8 bits)
wide. This calculation is essential as these bytes, which
represent the values of the parameters, are passed onto the
master processors of the HMSU via the Intermediate Scratch-
pad Memory Interface (ISMI). Noting that the storage
locations in the ISMI can only store a byte per location,
the program also generates the appropriate addresses of
these locations where each parameter gets stored. In other
words, the program prepares the data for transmission as
requred by the ISMI memory map shown in Figure 7.4 of the

previous chapter.

176

Since the '"DCHMSU'" program is written in a high-level
language such as FORTRAN IV, it is easier to comprehend it
from its listing given in Appendix D. However, instead of
presenting flowcharts for the various subroutines, the next
section demonstrates a session run which describes the
actions taken by an operator and their countereffects as
produced by the program execution. Table 8.1 shows the
description of the various subroutines developed for the

program as a whole.

8.3.1 Command Structure

Communication between the operator and the PDP-11/10
minicomputer, when the DCHMSU program is executed, is per-
formed by different types of commands that are available to
the operator. 1In all five commands have been developed.
The information about these commands is depicted to the
operator at the console when the DCHMSU program is run.
This is shown in Figure 8.3. When the operator selects,
say a "PAR" command, more information about the parameters
of the controllers is printed out. Thus the effect of the
first command is shown in Figure 8.7.

When a particular input command and its action is
complete, the operator is required to press a "BREAK" key
on the console. This brings him to the command mode and
all the input commands available to him are displayed at
the console. An object code module called IBREAK.OBJ is
used during the linking procedure of all the object modules
required by the DCHMSU program. This IBREAK.OBJ module

accounts for the action of pressing a "BREAK'" key.

177

NAME DESCRIPTION

PROGRAM Under this title the following subroutines are compiled
'DCHMSU'
- 1. System library routine: "PRINT"

- 2. Subroutine: "Q" - A guestion-answer subroutine
that requires passing of two parameters:

l1st parameter - A question in guotes
2nd parameter - An answer as integer

= 3. Subroutine: "CONST" - Requires passing of five
parameters:

(a) Gain - GKX

(b) Sampling interval - TX

(c) Integral action time - TIX
(d) Derivative acting time - TDX
(e) Filter time constant - TFX

(where x = either 1 or 2 or 3)

- 4. Subroutine: "LIST" - This subroutine lists the
descriptions of the parameters and requires no
passing of any parameter.

SUBROUTINE | This subroutine prints out the operator set inform-
OPINFO ation. Makes use of the following common blocks:
- 1. Bleck 1 - €1, €2, €3, cM

- 2. Block 3 - GK1, GK2, GK3, Ti, T2, T3, TIl, TI2,
TI3, TD1, TD2, TD3, TF1, TF2, TF3

- 3. Block 4 - 1A, NS, MS, RH, ISPl, ISP2, ISP3
And it uses a system library routine: "CLOSE" for

closing output buffer for the printer.

SUBROUTINE | This subroutine allows the operator to change the
CHANGE value of any parameter described by the "LIST" sub-
routine. It uses the following common blocks:

- 1. Block 1 as described above
- 2. Block 2 - NOC1, NOC2, NOC3
- 3. Block 3 as described above
- 4. Block 4 as described above
Makes use of EQUIVALENCE statement.

SUBROUT INE This subroutine calculates the values of controller
CALCU constants given by equations 6.3.13. Requires input
parameters: GK, T, TI, TD and TF and output parameters:

XK1, XK2, XK3 and XK4.

(Note: This subroutine is compiled along with the
Program DCHMSU)

CONTINUED/,. .

TABLE 8.1 : Subroutine modules for the DCHMSU program.

178

TABLE 8.1 (continued from previous page)

NAME

DESCRIPTION

SUBROUTINE
SUBIR

SUBROUTINE
SEND

1. This is a number crunching subroutine. It uses
common block 5 - XK, IXK, makes use of equivalence
statements. It converts fractional values of con-
troller constants into binary (byte) fractionms,
their octal equivalents and integer equivalents and
prints them out. This subroutine is exclusively
used during development only.

2. This subroutine calls an assembly language sub-
routine called NUMB. This NUMB subroutine is mainly
used for assembling the decimal equivalent of a
binary fraction as 'O's and "1's.

3. This subroutine also calls a system library routine
called "CLOSE" to close the output buffer for the
printer.

This subroutine assembles various values of parameters
and their corresponding addresses (required by the
ISMI) into two integer arrays of 64 dimension (note:
the input channel of the HMSU i.e. ISMI has 64 memory
locations). The routine also prints out these integer
arrays. This feature is used only during the develop-
ment phase.

It uses the following common blocks:

- 1. Block 2 as described previously

= 2. Block 3. " s et

- 3. Blogk 4 ™ b y

= 4g Blocks b N

- 5, Block 6 - KCM, IRCPS, IRFPS, IWCPS, IWFPS
=~ 6. Block 7 - ISA, ISD, IRUN

It also makes use of EQUIVALENCE statements.

179

The second command in Figure 8.3 displays the default
values of the parameters as shown by its effect in
Figure 8.7. These default values may not necessarily match
with actual values required at run time. For example, the
load address in zone 0 may not be '0O'. Hence a "SET"
command is required which enables the operator to set the
different parameters. The effect of the "SET" command is
demonstrated in Figures 8.3 and 8.4. To check and compare
the new values of the parameters with their default values,
the operator makes use of "DIS" (fourth command in the run
sequence) comnand. Thus, changes made in the parameter
values may be compared from Figure 8.7 (i.e. effect of
second command) and Figure 8.8 (i.e. effect of fourth
command). Note that the status of controller no. 2 has
been changed to "OFF". However, its set point and default
constants are not altered.

In order to change an undesired value of a parameter,
the operator can make use of "CHA" command. This command
allows the operator to directly specify a particular para-
meter. When such a parameter is specified by its name, its
current value is displayed on the console and the operator
is asked to specify its new value. The operator is also
asked if he wants to change any more parameters; a '"Yes"
answer sets him in the "CHA" command loop and a "No" answer
brings him back into the general input command mode. The
effect of a "CHA" command (the fifth command in the run
sequence) is shown in Figure 8.5,

The sixth command used by the operator in the run

sequence is again a '"DIS" command, the effect of which is

180

shown in Figure 8.9. This may again be compared with the
effects of fourth and second "DIS'" commands.

Finally, the seventh command in the run sequence is a
"CON" command which continues the rest of the program.
This command is mainly included for development purposes,
in order to display the number-crunching process described
in Table 8.1. The effect of this command is to point
various computed values of controller constants (i.e. K1,
K2, K3 and K4), the steady state gain of the controllers

etec. This effect is shown in Figures 8.9 and 8.10.

8.4 CONCLUSIONS

This chapter illustrates the state of the program
developed on the PDP-11/10 minicomputer. There is plenty of
scope for further developments on this program. For
example, the functional objective no. 6 mentioned in the
introduction needs implementation, the "CON" command needs
modification so that the communication between the HMSU and
the PDP-11 is established via the ISMI Interfaces and the
DR11-C interface. The program development is not complete
for the reasons mentioned in the conclusion sections of the
previous two chapters. It may be possible to use the
Foreground/Background capabilities of the PDP-11 minicomputer
so that the operator's communication program is run as a
foreground job and the graphic display of process variables
and their control as a background job, with facilities for
displaying any desired zone-temperature profile in real time

operation. However, this requires further work.

181

-RUN DCHMSU

e 3k ok o oK oK ok ok o oK o K Sk o sk ok K K ok ok oK R ok K oK R K R s oK K o kR ke ok o ok ok oK ok ok K

THE FOLLOWIN3 INPUT COMMANDS ARE AVAILABLE

[1] "DIS"- PRINTS OUT OPERATOR SET INFORMATION

[2] "SET"- OPERATOR CAN SET THE PARAMETERS

[3]1 "CON'"- PROGRAM CONTINUES

[41 "CHA'"- OPERATOR CAN CHAN3ZE THE PARAMETERS

5] "PAR"- PRINTS OUT THE LIST OF PARAMETERS

= PRESS RETURN KEY AFTER ANY INPUT COMMAND

ok s ok 3k ok ok ok ok K ok oK ok oK ok sk ok ok ok K ok ke ok ok ok ok ok o ok sk ok o ok ok K ok o ok ok oK oK K K K KK ek
PAR =€ - 1st Command
DIS = <"®nd Command
SET - 3rd Command

SELECT THE CONTROLLER NO - (I.Es 1 OR 2 OR 3)
1

DO YOU WANT CONTROLLER-1 TO BE ON 2
Y

SPECIFY CONTROLLER-1 SET POINT

132

SPECIFY CONTROLLER~1 CONSTANTS
GAIN
2.03

SAMPLIN3 INTERVAL R
35.0 5 ; A\
INTEGRAL ACTION TIME Rifedh = =
93 .0 Command
DERIVATIVE ACTION TIME b % 5
3.7

FILTER TIME CONSTANT
37.0

DO YOU WANT CONTROLLER-2 TO BE ON ?
|
SELECT THE CONTROLLER NO - (I«E. 1 OR 2 OR 3)

=

3
DO YOU WANT CONTROLLER-3 TO BE ON ?
Y
SPECIFY CONTROLLER-3 SET POINT
222

Al

FIGURE 8.3 : Session run of the DCHMSU program (Input/output
appearing on the console)

182

SPECIFY CONTROLLER-3 CONSTANTS
SAIN
2.0875
SAMPLING INTERVAL
32.0
INTEGRAL ACTION TIME
93«0
DERIVATIVE ACTION TIME
30.0
FILTER TIME CONSTANT
37 .0 A
n11 (= 2 5 o » nE 2 r I
UJHAT IS THE CONTROL MODE FOR CONTROLLRRS? —
WHAT 1S THE INITIAL LOAD ADDRESS IN ZONE-37? Commaind
2
SPECIFY THE NUMBER OF SAMPLES _ Continued ,
130 5
SPECIFY THE MOTOR SPEEI
3
SPECIFY THE RUN TIME FOR THE FURNACE
IN HOURS - (INTEGER VALUE)
5
PRESS BREAK KEY NOW YV
***********#*****#***************************x****k___ﬁL___\
THE FOLLOWING INPUT COMMANDS ARE AVAILABLE Effect of
1] "DIS"- PRINTS OUT OPERATOR SET INFORMATION pressing
[2) “SET"- OPERATOR CAN SET THE PARAMETERS Break Key
C31 "CON'"- PRO3ZRAM CONTINUES
C43] "CHA"- OPERATOR CAN CHANGE THE PARAMETERS
[5] "PAR"- PRINTS OUT THE LIST OF PARAMETERS
- PRESS RETURN KEY AFTER ANY INPUT COMMAND
sk e e 3K ok Ok oK K K 3k K Ok KoK o sk ok ok sk o sk ok ok oK ok o ok ok ok ok ok o ok ok o sk ok ok ok oK oK ok
DIS ok 4th Command

FIGURE 8.4 : Session run of the DCHMSU program (continued)

183

CHA == ;51:11: Command

SPECIFY THE PARAMETER YOU WANT TO CHANGE if
RH

THE CURRENT VALUE OF RH = 5

SPECIFY THE NEW VALUE OF RH

4

DO YOU WANT TO CHANGE ANY MORE PARAMETERS?

Y
SPECIFY THE PARAMETER YOU WANT TO CHANGE
c2
THE CURRENT VALUE OF C2 = 0N
SPECIFY THE NEW VALUE OF C2
OFF
DO YOU WANT TO CHANGE ANY MORE PARAMETERS? p W
- .
& cre =) ——— Effect of
SPECIFY THE PARAMETER YOU WANT TO CHANGE 542y Command
G2 A ¥,
j(
THE CURRENT VALUE OF C2 =OFF
SPECIFY THE NEW VALUE OF C2
oN
DO YOU WANT TO CHANGE ANY MORE PARAMETERS?
¥
SPECIFY THE PARAMETER YOU WANT TO CHANGE
T2RX
THE CURRENT VALUE OF T22 =0N
SPECIFY THE NEW VALUE OF T22
oN
DO YOU WANT TO CHANGE ANY MORE PARAMETERS?
Y
SPECIFY THE PARAMETER YOU WANT TO CHANGE
T2
THE CURRENT VALUE OF T2 = 30.02292
SPECIFY THE NEW VALUE OF T2
35.00
DO YOU WANT TO CHANGE ANY MORE PARAMETERS?
N
PRESS BREAK KEY Y
3 e ok A o 6 ke ok ok o oK oK K o ok o o o ok ok ok 3R 3k ok ok 3 3k ok ok ok o ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok K o
THE FOLLOWING INPUT COMMANDS ARE AVAILABLE ‘Effect of *
(1] "DIS"- PRINTS OUT OPERATOR SET INFORMATION pressing
(2] "SET"- OPERATOR CAN SET THE PARAMETERS Break Key

[31 "CON"~- PROGRAM CONTINUES

(4] "CHA'"- OPERATOR CAN CHANGE THE PARAMETERS

{51 “PAR"- PRINTS QUT THE LIST OF PARAMETERS

= PRESS RETURN KEY AFTER ANY INPUT COMMAND

AR R R R R R KRR R R K R o ok Ok K K oK oK K K K R oK KR oK Kk ok ko ok K K

FIGURE 8.5 : Session run of the DCHMSU program (continued)

184

DIS - < 6th Command
K 3k 3K o ok ok o oK K o ok Kok ok ok o ok ok ok ok K K ok ok ok ok K oKk kR K ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok R ok ok

THE FOLLOWING INPUT COMMANDS ARE AVAILABLE , I

{11 "DIS"- PRINTS OUT OPERATOR SET INFORMATION Effect of
{21 "SET"- OPERATOR CAN SET THE PARAMETERS pressing
{31 "CON"- PROGRAM CONTINUES Break Key
{41 “CHA"- OPERATOR CAN CHANGE THE PARAMETERS

[5] “PAR"- PRINTS OUT THE LIST OF PARAMETERS

- PRESS RETURN KEY AFTER ANY INPUT COMMAND

3 3 K A 3 ok ok K o ok K K ok ok K R R K R sk sk sk ok K ok ok sk sk ok o o sk ok ok e e e ok ke ke o e o ok ok ok ok ok K
con & N — Tth Command
STEADY STATE GAIN SG 1= 3.331 Partial effect
STEADY STATE GAIN S3 2= B019 7-of Tth Command
STEADY STATE GAIN SG 3= 3327 appearing on
STOP -- console,

FIGURE 8.6 : Session run of the DCHMSU program (continued)

185

THE SYMBOLIC PRRAMETERS TO BE USED IN THE CHANGE SUBROUTINE RRE:
CH — CONTROL MODE
LA - INITIAL LORD RDDRESS IM ZONE B8

N= - MUMBER OF SRMPLES Effect
M= -~ COMYEYOR MOTOR SPEED of lst
C1,C2,C2 — CONTROLLER STATUS FOR CONTROLLERS 1: 2. Z2 Command

ISFL, ISP, I5P2 ~ SET POINTS FOR CONTROLLERS 1.2.23
Gk1, GK2, GK2 - GRIN CINSTANTS FOR COMTROLLERS 1.2, 2
T1. T2, T2 ~ SAMPLING INTERVALS FOR COMTROLLERS 1,2,3

TIil, TIZ, TIZ — INTEGRBL HCILOM T[IMES. | ..
Thd. T2, TDZ - DERIVATIVE RCTION TIMES. ..
TFL, TF2, TF2 = FLILIER TIME CUNSTHMTS.

s e o e e o e e s e sl s sl e sfe e e e e e e ek sl b ek st o ok b ok o o o ok o o o o o o ok o ok o ok o ok sk ok ok ok o ok o o ook o o L

DISPLAY OF OPERATOR SET INFORMAT I ON# ks bkkbbobhoh bbb bbbk ok b ohohok

CONTROL MODE S~ cu-due-—hu shoriis; U

INITIAL LOAD ADDRESS IM ZONE @---: 8

NUMBER OF SAMPLES-——m———— e e e D des

MOTOR SPEEDw—mmm = mmm e e e ; @

RUN TIME FOR THE FURNACE IN HOURS: &

ONTROLLER ND-—————c——x . NO-1 NO-2 NO-2 (EFTost

CONTROLLER STATUS-———- : ON ON oM Simiiia
u__ﬁf__J

SET POINTS——=mmmmmmmmm S0 5@ =6

CONTREOLLER CONSTAMTS

GRTN= == e : 8. 958 . a5 @, B5a
SAMPLING IMTERVAL---—- : TE, BEE 10, 689 1@, 66E
IN SECONDS

INTEGRAL ACTION TTME--: 90 668 96, DO 9@, 98E
DERIVATIVE ACTION TIME: 36, 888 38 B8 36, 660
FILTER TIME CONSTANT--: 28. 658 0. DoE 38, 294

b ek ok koo fokododod b dbodobobobolobod b ok ok ek eogedeobob e sk oo ok ok ok o kool ok el ol e ol ol e ok o ok o e o o ol ot o ol ok
EHD OF INFORMAT I OnSkdekiehpbdetbshigoh dok ok ook ook shfoho dol bbbk bl ook ok ol bk kol ok I

FIGURE 8.7 : Print-out during the session run of the DCHMSU program

186

bk o b e e R o S T R B R R A S e e Bk b e SRR R R R T T T o R O T R T e T :{:l:{:_* ok ok % K!
CISPLAY OF OFERATOR SET INFORMAT Toptskbkhomobb bbbk dobof o dokoh ok s soloshok ok b ook

CONTROL MODE=====—=—=mmesmmam——n : y

INITIRL LOAC RCODRESS

-
r
[i |
ot
I
(3a |
|
|
I
I3

S e 16\

i 1
-
1
r
W

HUMBER OF S

ok

MOTOR SPEED=———————— e : :
= Effect of
RN TIME FOR THE FURMBCE IH HOURS: = 4th
ONTROLLER MO--—=—--==- : NO-1 ND-2 NO-3

CONTROLLER STATUS-w——=- : 0N OFF OH

L5
m
-—
N
o
Lo]
-4
L

!

I

I

I

i

|

|

!

|

|

I
[
=
x|
(5]
Uon
]
s
{10]

CONTROLLER CONSTANTS |

)
n
(i}
()
0

1]

n

GAIN- == ; 8 asa 8, a50

SAMPLING INTERVAL-———- : 5. BE6 26, 865 22 BBE
IN SECONDS

IHTEGRAL ACTION TIME--: S8, BAB 28,

IV"‘
()
(8]
L
5
o
=i
Bt

=
Lin]
=

£ |
Y]
Lt]
=
L)

DERIVATIVE ACTION TIME: 6. BEE 20,

[
=
"‘“‘

FILTER TIME COMSTRMT--: I8 B6A 0. Z8. 968

$$$$$$$$$$$$$$$$$$$**$$$$*$$$*$$$$$*$$*$******$$$m********%’$*$***
EHD DF INFDRMHTIDH$$$*$$$$$$$*$$*$$$$$$$$$$*$w$$*$$$*$$$*$$$$ %$$$$$-

FIGURE 8.8 : Print-out during the session run of the DCHMSU program
(continued)

187

*+
-

CONTROL MODE === e o :
INITIAL LOAD ADDRESS IN ZONE @---:
HUMBER OF SAMPLES-—===n—mmm—mmeme :
MOTOR GREEDm o o :

RUN TIME FOR THE FURNACE IMN HOURS:

OHTROLLER Mijm=mmmmm—mm ; MO-1
COMTROLLER STATUS-—--- : w
SET POINTSmm—m—mmmm e : 188

CONTROLLER CONSTRNTS

Y
lex]

Ly
[y)

GRAIN-——=———m e : 8. 838
SAMPLING IMTERMAL-———— ; 25, B8g
IH SECONDS

THTEGRRL ACTION TIME--: 28 gaa
DERIVATIVE RCTION TIHME: 28 BaEn
FILTER TIME CONSTRANT-=: 28, Baa

e e b e shede s ook o b od sk bk s e e s o e sk o sttt stk koot o sk s o e s o o o ok o ok R s o o o o o
EMD DOF IMNEURFIET LR e sh g b skt sk s ook sk s of ok sk s b o sbe s o s ok ookt s s oo s ok sk o o sk ook e st

K1 (2
g, 837 -, 11/
g aci -8. 872

8. 982 -0 111
STERDY STATE GARIN
STERDY STRATE GRIN
STERDY STATE GAIN

HUMBER OF SHHPLES=

ELIN HUMEBER-IRLIN=

RCTUAL RUM TIME OF
8 FRACTI

K kg
5 5 A B 462
15 R 5 P 5 I 2
B BIE 4. 404
5G 1= 7 % 2
=0 2= g 91
S5 E= L TR E SO
X

NO-2

OFF

5
Lot]
[t |

THE FLURNACE WILL BE= 4HRS: Z3MINS

oM OF ACI>

5. 997 8. B97 98011800
-@ 447 @ 147 pEEii1ad
@ 0327 8. @I7 . BOAG1081
B 462 B, 462 B11158410
B 069 9 2s0 BeRA1111
-0, A7 5, A7 BEE10E10
8. 823 8. 923 BRGA0101
6, 462 8, 462 E1116410
@ 089 8, @8 2AR15110
-3 111 @ 144 Ba811168
@, B36 . B36 GEnE1ea1
8. 484 B. 484 g1114011
FINISH

FIGURE 8.9 :

BIMAREY FRACTION

OCTAL EQU

28
=5

iee

P
fu

RN
=g > G D3y
fo) B o 0 Oy A

o

NO-2
ON

200

o2
)
=J
o

1

(
Lot
Lot}
15

L
)
)
(e}

Command

stk okt R st R e sl e R R s s o e e A e e R AR R R Rk o
DISPLAY OF DOPERATOR SET IMEORMAT IO eckobhkioiundod dopshob ok s b o ok hokodok stk ohos 4

P o — .
Effect of

6th

U

sl
o

&

8. 88ag

e
Effect of
Tth l
Command,

IMTEGER EQU

O
RS el s

b
I'-\,‘l

—— et

Print-out during the session run of the DCHMSU program

(continued)
188

Address Parameter

-t

2 Pl [
4 LN n
Dol O N e |

o
(o |

s
A

(SRR

I...'l.
et

S T o T S v S TN Y OSSR s o o =0
(o] W T o O Y

P
=

g B M N [I e s o e M R R B 3 R o 2
B 0n

(BN
L

o RO e T 1

e el e el ot el ol el e el o e e e o e e e T e el e T &

v

7 4

]

& 5
& i
A =8
&= b7 170
R o
& S
& o
oS b
s %0
& s
o %)
= &
5 A
b &
" 5!
5

=

S OIS O s B R TR T o N R Y N ¢ R R e S g w0 S LI A Y |

e -
4

e ol e
(s s T % R S 0w S o o i I O 0

gt i e oy
Al B Wl

Lad

=
L

& FIGURE 8.10 : Print-out during the session run
5 of the DCHMSU program (continued)

189

CHAPTER 9 - DISCUSSION

9.1 INTRODUCTION

In a modular multi-microprocessor system development,
it is desirable to develop a piece of hardware and/or soft-
ware, which forms a small subsystem of the whole and to
test it for its behaviour and performance. The tests
generally reveal the correctness of the design of such a
small subsystem and any modifications necessary to improve
its design and performance. These individually tested sub-
system modules, when assembled to produce a complete
system, tend to create less problems during their
integration phase of the development.

This chapter is aimed specifically at this aspect of
testing. In particular, it discusses the testing of hard-
ware and software modules for the HMSU and the software
modules for the PDP-11 minicomputer. Each module under

test is described with the following common features:

1, The object of testing a particular module.
2. The experimental or test arrangement, circuit
diagram, program listing etec.

3. The outcome of the test.

The following sections describe various modules under

test with the above features.

9.2 SIMULATION OF MICROSWITCH INTERRUPTS

This simulation is carried out with the following
objectives:

190

1. To test for a parallel data transfer between the

two F8 processors via their bidirectional Input/Output

ports.

2. To test a sequence of F8 assembly language instruc-

tions that handle external interrupts.

3. To test a sequence of F8 assembly language instruc-
tions that handle the updating of load addresses as the
loads travel through the Travelling Load Furnace from one
zone to the next. A load address is changed after six

microswitch interrupts.

In order to achieve the above objectives, two identical
"F8 Evaluation Kits'" were employed and the simulation set-up
using these kits is shown in Figure 9.1. A brief descrip-
tion of the F8 Evaluation Kit is given in Appendix B. The
F8 cross-assembler available on the MAXIMOP system, mention-
ed in Chapter 7, is used to develop assembly language
programs shown in Figures 9.2 and 9.3. The paper tape
versions of the object code generated for these two programs
is loaded into the RAM memory of each processor. That is,
PROGRAM 1 is loaded in Processor 1 and PROGRAM 2 in Pro-
cessor 2 respectively.

The "PROGRAM 1" shown in Figure 9.2 makes use of the
external interrupt line available onthe SMI (Static Memory
Interface) chip. The program initialises the interrupt
control ports on this chip and loops into an idle loop,
enabling interrupts at the CPU. When an external inter-

rupt is received from Processor 2, the program reads in a

191

a6l

LN — | (=}
:l L Fg 0 >]é F8
S EVALUATION S| | S EVALUATION
= KIT a = 3 KIT
PROCESSOR-2 _ | PROCESSOR-1
INTERRUPT || (PROG 2) i | | (PROGH) =
FROM A oo BT S EAl S
INT ol INT &
MICROSWITCH

TTY

FIGURE 9.1 : Simulation set-up for microswitch interrupts using two identical F8
Evaluation Kit processors

“LIST STOR A R Nt ey

FIELD TRIAL: PLEASE INFORM DRs.A.C.DAVIES OF ANY ERRORS
DATE O0B/06/78 TIMFE 14.47.02

MOSTEK F8 CROSS ASSFMBLER THE CITY UNIVERSITY

LONDON, EXPERIMENTAL VERSION MK3

ORG H'0404"
PUNCH ON
TTYOUT EQU H*'035D"
**ADVICE: REPLACE LI BY LIS

0404 20 OF 1.1 "~ H'OF'
0406 53 LE 3,4
0407 67 LISU o
0408 6F LISL \ i
0409 54 LR 4, A
040A 1F INC
040B 56 LR 654
040C 75 LIS 5
040D BC OUTS H'0OC® |
040FE 20 80 LI H'80"
0410 BD OUTS H'OD'
0411 71 LIS 1
0412 BE OUTS H'0OE"
0413 1B _ LOOP F1
0414 90 FE BR L.OOP
~ ORG H'0580"
0580 70 LIS 0 ;
0581 BE OUTS H'0E' ;
0582 73 ; L1S 3
0583 B6 0UTS 6
0584 A0 INS 0
0585 50 LR 0sA
0586 14 SR 4
0587 24 30 ar H'30"*
0589 52 LR 258
0584 28 04 40 PI CHK
058D '42 LR Ay 2
058F 58 LR O 8,A
0S8F 40 LR A5 0
0590 15 SL "
0591 14 SR 4
0592 24 30 a1 H'30"
0594 52 LR 2,A
0595 28 04, 40 PI CHK
0598 48 LR As 8B
0599 5¢C { LR SsA
0%9A 1R RI
0598 28 03 SD PT TTYOUT
059E 42 LR As2
059F SC LR SsA
0540 1B EI.
05A1 28 03 5D PI TTYOUT
0544 20 20 1% 3 Hvon"
0546 SC SR LR S>A
05A7 1B rI
05A8 28 03 SD 23 TTYOUT
05AB 33 DS 3
05AC 84 03 Bz LOAD
NSAFE 90 12 BR = STOP 7 .
#¢ADVICF: RFPLACE LI BY LIS ' e e
gggg ig DA LOAD :",I. f'gﬁ processor 1 of Figure 9.1
1.0% ol 3
0583 1R EI ,
05B4 28 03 5D : PI SR TYDOUT

193

0SR7 20 0D Bane - 2% Gaenaae: - &0y 5

| D5B9 5C LR S.A
0SBA 1R < EI
OSERB 28 03 5D - PI TLYOUT
*kADVICE: REPLACE LI BY LI&
O5BE 20 OF LI H'OF"
N5C0 53 : LR 3,48
05%5C1 70 STOP LIS 0
05C2 BS NUTS 5 i
05€3 B6 ° P NUTS A
05C4 BO DUTS 0
O5C5 7.1 ! LIS 1
05CEé BE NUTS H'OR"
05C7 29 D4 13 : JMP LDOOP

ORG Hro440"

*CHX SUBROUTINE FOR CHECKING A TO F HEX NUMBERS

0440 08 CHK LR R, P
0441 42 LR A, 2
0442 23 3a X1 H3A
0a4us 84 1C BZ A
0446 42 LR a2
0447 23 3R X1 H*3R*
0449 84 1C BZ B
044B 42 LR a,2
044C 23 3¢ - X1 H'3C "
044F 84 1C BZ C
0450 42 LR A,2
0451 23 3D X1 H'3D"*
0453 84 1C BZ D

0455 42 LR a,2
0456 23 3F X1 HY3R"
0458 84 1iC BZ E
D45A 42 LE a,2
045B 23 3F X1 HI3FY
045D 84 IC B G5 o
045F 90 1D BR CouT
0461 20 41 A LI Heale
0463 52 LR 2,4
0464 90 18 BR COUT
0466 20 42 B L1 Hr4o
0468 52 LR 2,4
0469 90 13 BR COUT
046B 20 43 = ¢ LI H'a3"
046D 52 LR 2,4
046E 90 OF BR COuUT
0470 20 44 D 5 Hraar
0472 52 LR 2,8
0473 90 09 BR COuT
0475 20 45 E LI HY45"
0477 52 LR 2,8
0478 90 04 BR CouT
0474 20 46 F Ly Hra6"
047C S2 ' LR BN s :
047D 0OC CouUT PK RETURN

FND OF ASSEMBLY
NUMBER OF ERRORS= 0

a 0461 B 0466 C 046B CHK 0440 COUT
E 0475 F 0474 LOAD 05B0 LOOP 0413 STOP
TIME ELAPSED 1.05 MINUTES ' FIGURE 9.2 (continued)

CHANNEL 2 NOoW 40 BUCKETS
CHANNEL 7 NOW 10 BUCKETS

194

047D D 0470
05C1 TTYOUT=035D

2 90

04 |
05 10 NOMOD

LOAD

MOD

DA

_.Wt’UMBEB QF ERRORS= @

068!“ LOOP
.: X -"SEB

ﬁﬂﬂ

LR
DS+
B
R

END OF ASSEMBLY

ST
EBR

Lor
oty U
BR

JMP

LM

ERAC

DS
e
Rt
BZ

CPEY

LR
ST
BR:
1T
DET
ST

. LIS
- OUTS

DI
L
ouTs

ouTSs

NOP
NOP
LIS

QUTS
BR.

0510 MOD '

e ﬁﬂ MINUTES
40 BUCKET
210/ BUUKETS

LIS

A

ﬁ¥a7@a{tu

3 ﬂ'.

04
(0] -
LOAD ° ;
Ay @ ' = %
HYOT7 ﬂﬂ'

SED

6 T
H'0O700"

MOD
L,O0OR

0s 8 e

0

840" e
T na
i Silae
Hr0701°"

ﬂJO RPN

s

H10701°"
0

{3

HYOTO1*

l

STt
NOMOD

3¢

FIGURE 9.3 : PROGRAM-2 for the F8 Evaluation Kit Processor 2 of Figure 9.1

195

.E 404
£C38 38 38 37 37 37 3737 37 86 56 36 36 36

35 35 35 35 35 35 34 34 34 34 34 34 33 33 33
3533 33 32 32 32 32 32 32 31 31 3t 31 31 8
30 30 30 30 30 2F 2F 2F 2F 2F 2F 2E 2E 2F 2F
2E 2D 2D 2D 2D 2D 2D 2C 2C 2C 2C 2C 2C 2B 2B
2B 2B 2B 2B 2A 24 24 24 24 24 29 29 29 29 29
29 28 28 28 28 28 28 27 27 27 27 27 27 26 26
26 26 26 26 25 25 25 25 25 25 24 24 24 24 24
24 23 23 23 23 23 23 22 22 22 22 22 22 3F 3F
3F 3F 3F 3F 3E 3E 3E 3E 3E 3E 3D 3D 3D 3D 3D
8D 3C 3C 3C 3C 3C 3C 3B 3B 3B 3B 3B 3B 3A 3A

3A 3A 3A 3A 39 39 39 39 39 39 38 38 38
« 38 38

38 3737 37 37 37 37 36 36 3636 35 35 3535
35 34 34 34 34 34 34 33 33 33 33 33 33 32 32
32 32 32 32 31 31 31 31 30 30 30 30 2F 2F 2F
eF 2F 2F 2E 2E 2E 2E 2E 2E 2D 2D 2D 2D 2D 2D

aC 2C 2C 2C 2C 2C 2B 2B 2B 2B 2B 2B 2A 24 2A

WE 404

«2A 24 2A 29 29 29 29 29 29 28 28 28 28 28 28
27 27 27 27 27 27 26 26 26 26 26 26 25 25 25
25 25 24 24 24 24 24 24 23 23 23 23 23 23 22
22 22 22 22 22 3F 3F 3F 3F 3F 3F 3E 3E 3E 3E

3E 3E 3D 3D 3D 3D 3D 3D 3C 3C 3C 3C 3C 3C 3B

38 3B 3B 3B 3B 3A 3A 3A 3A 34 3A 39 39 39 39

39 39 : |

FIGURE 9.4 : Simulation output for the set-up shown in Figure 9.1

196

byte pattern on Port O and converts its lower and upper
four bits into ASCII characters, corresponding to the hexa-
decimal numbers and prints them out onto the TTY using a
TTYOUT routine available on the 3851 PSU (Program Storage
Unit) chip of Processor 1. The program execution thus
prints a hexadecimal number corresponding to each byte
received on Port O, per external interrupt received from
Processor 2.

The PROGRAM 2, shown in Figure 9.3, also makes use of
the external interrupt line available on the SMI chip of
Processor 2. After initialising the interrupt control
ports on this chip, the program loops into an idle loop,
enabling interrupts at the CPU. When a manually generated
external interrupt occurs, simulating an interrupt due to
the closure of a microswitch, the program generates a load
address and outputs it on Port 1 and also ouputs a
sequence: H'01l' followed by H'00' on Port 0. The output
sequence on Port 0 causes an external interrupt generation
which is linked to the external interrupt line of Pro-
cessor 1, The output load address is changed only when
Processor 2 receives six external interrupts. This is
because a load is assumed to pass through a heating =zone
of the TLF with six discrete positions (Caffin, 1972),.

During the testing procedure, PROGRAM 2 is initially
loaded into Processor 2 and set into execution using the
Execute command available on the F8 Evaluation Kit's DDT-1
(Designers Development Tool-1) program. Then the TTY is

switched to Processor 1 and its PROGRAM 1 is loaded and set

197

into execution. Then a manually generated external inter-
rupt at Processor 2 causes Processor 1 to print the load
address. The resulting output of the simulation set-up is
shown in Figure 9.4. Since there are only 30 loads, it may
be noted that the load address changes from H'30' to H'2F'

to account for the recirculation of the loads.

9.8 TESTING OF INTERMEDIATE SCRATCHPAD MEMORY INTERFACE

The Intermediate Scratchpad Memory Interfaces (ISMI)
used as a buffered communication medium between the HMSU
and the PDP-11/10 minicomputer are initially tested using
two identical F8 Evaluation Kits. The objective was to
test the hardware of the ISMI circuit boards. The test
arrangement is shown in Figure 9.5. In the Figure,
Processor 1 is used as a transmitter and Processor 2 is
used as a receiver. A teletype (TTY) is used to load and
execute the programs loaded into the RAM memory of each
processor.

During the testing procedure, a program shown in
Figure 9.8 is executed on Processor 2. This program clears
64 RAM locations (with address from H'0500' to H'0540'"') of
Processor 2. This clearing operation is performed because
the receiver program, shown in Figure 9.7, when executed
uses these locations to store data it receives from Pro-
cessor 1 via the ISMI interface. The TTY is then switched
over to Processor 1 and the transmitter program shown in
Figure 9.6 is executed. This program sends arbitrary data
via Port 1 to the ISMI. The 64 locations of the ISMI,

where this data is stored, are addressed via Port 0. The

198

661

PROCESSOR-1 [—F— | [=] PROCESSOR-2
F8 % £ il 64X 8 BIT [>foam % =
EVALUATION KIT J Tl T [EVALUATION KIT
(TRANSMITTER) el LAl (RECEIVER]
PROGRAM =l | ol MEMORY e [. PROGRAM
[PorT 5] [PorT4] = J —l— =] [PorT4] [PORTS]
'
!

T

FIGURE 9.5 : Arrangement for testing ISMI using two F8 Evaluation Kits

400
401
403
404
406
407
409
40A
40B
40¢C
40D
40E
4OF
410
111
412
413
414
415
416
417
419
41A
41B
41C
41D
41E

70

20 40
50

20 FF
51

20 FF
52

70 LOOP
BO

Bl

B4

71

B4

41

Bl

42

BO

31

32

30

94 F2
70

BO

Bl

B4

BS

29 00 00

CLR
LI

LT

LT

LIS
ouTsS
ouTs
OUTS
LIS
ouTS

ouTS

ouTS
DS
DS
DS

LIS

OUTS
ouTs
ouTS
ouTS

CLEAR ACCUMULATOR.

H'40" 64 COUNTS STORED IN
0,A REG O.

HYFF ARBITRARY DATA STORED IN
1,A REG 1.

HY'FF! ISMI ADDRESS STORED IN
2,A REG 2.

0 CLEAR PORTS

0 10!

1 e

4 AND' 4,

1 STROBE TO OPEN

4 BUFFERS OF ISMI.

A,1 MAKE DATA AVAILABLE

] AT PORT '1°7,

A,2 MAKE ADDRESS AVAILABLE
0 AT PORT '0°,

DECREMENT DATA,
DECREMENT ADDRESS,

0 DECREMENT COUNT.

LOOP IF NOT' ZERO; RETURN TO LOOP,.
0 CLEAR PORTS

0 101

1 1

4 141

5 151,

H'0000" RETURN TO DDT - 1.

FIGURE 9.6 : "Transmitter" program for Processor 1 of Figure 9.5

200

400
401
404
406
407
409
40A
40B
400
40D
40E
40F
410
411
412
413
414
415
416
418
419
41A
41B
41€
41D

FIGURE 9.7 :

600
602
603
606
607
608
609
60B

FIGURE 9.8

70

2A 05 00
20 40

50

20 TF

51

70 LOOP
BO

Bl

B4

T1

B4

41

Bl

A0

17

31

30

94 F3

70

BO

Bl

B4

B5

29 00 00

20 40

50

24 05 00

70

17 LOOP
30

94 FD

29 00 00

Figure 9.5

CIR
DCI
LI
LR
LI
LR
LIS
ouTS
oUTS
OUTS
LIS
OUTS
LR
oUTS
NS
ST
DS
DS
BNZ
LIS
OUTS
OUTS
OUTS
OUTS
JIMP

LI
LR
DCI
LIS
ST
DS
BNZ
JMP

H*'0500"
H'40"
0,A
H'FF!
1,A

o

o = b b HM~aHO
-
|

LOOP

L5 R S R e

H*'0000*

H'401
0,A
H'0500°"
0

LOOP
H'0000!

201

CLEAR ACCUMULATOR,
LOAD DATA COUNTER WITH 0500,
64 COUNTS STORED IN
REG O,

ISMI ADDRESS STORED IN
REG 1.

CLEAR PORTS

100

1]

AND *'4°.

STROBE TO OPEN

BUFFERS OF ISMI.

MAKE ADDRESS AVAILABLE
AT PORT '1°',

INPUT DATA AND

STORE AWAY,

DECREMENT ADDRESS.
DECREMENT COUNTER.

IF NOT ZERO, RETURN TO LOOP,
CLEAR PORTS

1ot

1

141

15,

RETURN TO DDT-1,

"Receiver" program for Processor 2 of Figure 9.5

64 COUNTS STORED IN

REG O.

POINTER AT 0500 .

CLEAR ACCUMULATOR.

H'00' STORED IN 1ST LOCATION
DECREMENT COUNTER.

IF NOT ZERO, RETURN TO LOOP.
RETURN' TO DDT-1,

: Program to clear 64 locations of RAM of Processor 2 of

TTY is then switched over to Processor 2 and the receiver
program is executed. This program reads the 64 locations
of the ISMI and writes them into locations from H'0500' to
H'0540'. Since the data generated by the transmitter pro-
gram is known, the same data should be output if the con-
tents of locations H'0500' to H'0540' are printed out using
the DDT-1 program. All the programs (i.e. Figures 9.6, 9.7
and 9.8) were fairly short. They were hand-assembled and
the paper tape versions of these were produced for testing
another identical ISMI circuit board. The test was success-
ful for both the ISMI circuit boards which proved the
correctness of the same. Since the test was fairly simple,

the results of the test are not included.

9.4 TESTING OF PRIVATE MEMORY AND COMMON MEMORY MODULES

Since the master and the slave processors of the HMSU
are built using the F8 microprocessor chip set, any applic-
ation software required for these processors is required to
be embedded into PROMs. Indeed it is difficult to test the
hardware of such a processor without any software. The
availability of the DDT-1 program on 3851 PSU ROM chip
allows some testing of the hardware of the processor. For
example, the read and write capabilities of a RAM memory may
be tested.

In case of the F8 microprocessor system, the CPU
executes its first instruction which is stored at H'0000',
after the reset action. Hence, any application program
must begin at this address. The DDT-1 program on the 3851

PSU ROM chip does start at H'0000'. However, this means

202

that this chip cannot be used in the final system as the
controller program stored in PROMs should also start at
H'0000'. This requirement makes the testing of the hard-
ware of the processor a complex task. However, this prob-
lem is overcome by using a PROM simulator. A test setup
using a PROM simulator for the master processor and the
DDT-1 program for one slave processor of the HMSU system is
shown in Figure 9.9. The objectives of the test are as

follows:

1. To test the chip select (T®) logic for the PROMs,

the Private RAM memory and the Common RAM memory.

2. To test the master I/0 interface which controls
the connection of external address and data buses of the
common memory to a particular processor's internal address

and data bus.

3. To test the read/write operation of the Private

RAM memory and the Common RAM memory modules.

The chip select (€8) logic that selects the PROMS for
read operation and the Private Memory and the Common Memory
for read and write operation is shown in Figure 9.10. This
logic is built on each processor board of the HMSU. The
Common Memory module, which contains its chip select
decoding logic, requires address bus, data bus, ﬁ?ﬁ signal
and CPUREAD signal of a particular processor that requires
the access of it. In Figure 9.10 the address bus, ﬁ?ﬁ

signal and the CPUREAD signal are the output signals of the

F8 processor and hence are buffered using the 80C97 hex

203

PROM PM PM
SIMULATOR

v0¢

MASTER SLAVE 1
PROCESSOR PROCESSOR
(PROM PROG) (DDT 1 PROG)
< - TTY
PORT 2
MASTER z
1/0 INTERFACE A\\D D
BOARD
C OMMON
MEMORY

FIGURE 9.9 : Set-up using a part of the HMSU for testing PM and CM memory modules

502

> (S (PROM-1, ADD-'0000 TO 03FF)

— (S (PROM 2,ADD-0400' TO 07FF)
> (S (PRIVATE RAM, ADD-'0800 TO 0BFF)

PRIVATE RAM 0/P

>DATA BUFFER

A $$ e 7400 80C97 %
o2 >
Bl = [3 #—{:/\ 4
= e CONTROL
o 2400 7404 80C97
- 7400 7404 BORW
RI'W o—>- 5
80C97 % 7604 } v \T
CPU READ o—>= II} i > =
COMMON MEMORY 5
BUFFER CONTROL o—s-
FROM MASTERS I/0
INTERFACE ADDRESS BUS DATA BUS
A0 $ 0 0 00Al5
AN o
80C97 V ENABLE EEE?;\"\\/ ol N e
TN . T

TO EXTERNAL ADDRESS BUS

L

RIW CPU READ

TO EXTERNAL DATA BUS

J

FIGURE 9.10 :

LTG COMMON MEMORY MODULE
Chip select logic diagram for the EPROM, PM and CM memory modules

0000 1A
0001 70
0002 BA
0003 BE
0004 27
0006 B9
0007 20
0009 51
000A 2A
000D 2¢
000E 2A
0011 41
0012 17
0013 2C
0014 17
0015 2C
0016 31
0017 94
0019 20
001B 51
001C 2A
001F 2C
0020 2A
0023 16
0024 18
0025 2¢
0026 17
0027 2C
0028 31
0029 94
002B 20
002D 51
002E 2A
0031 2¢C
0032 2A
0035 16

22

(3

0C 00

08 00

F9
TF

0D 00

08 00

TF

OE 00

0D’ 00

FIGURE 9.11

DI
CLR
ouTS
oUTS
ouT
0UTS
LI

DCI
XDe
DCI
LOOP LR
ST
XDC
ST
XDeC
DS
BNZ
LI
LR
DCI
XDC
DCI
LP LM
COM
XDC
ST
XDeC
DS
BNZ
LI
LR
DCI
XDC
DCI

LX LM

0036 18

0037 2¢
HOA! 0038 17
H'OE! 0039 2C
Ht221t 0034 31
H'09' 003B 94 9
H'TF! 003D 71
1,A 003E B9
H'0CO00" 003F 70

0040 2B RTN
H'0800"* 0041 90 FE
A,1
1
LOOP
H'TF*
1,A
H*'0DOO"
H'0800°*
it
LP
HY'TF?
1,A
H'OE0O"*
H'0DOO*

of Figure 9.9

206

COM
XDe
ST
XDC
DS
BNZ
LIS
ouTs
CLR
NOP

: Hand assembled program for the PROM simulator

LX

H'09?

RTN

o X

«T CO00,C7F

0C00 7F T7E 7D 17C
0. €10 B6F 6E 6D

Ceh SF SE 5D 5C

0 C30 4F 4E 4D

€48 3F 3E 3D 8C

CB0 2F 2E 2D 2C

Cém 1F 1E 1D 1C

C7@ 0F O0E 0D 0C

T BO00,D7F

0DOO B0 81 82 83
BIB" 90 91 92 .93

D20 A0 Al A2 A3

D300 BO Bl B2 R3

Dad CO0 C1 c2 C3

D50 D0 D1 D2 D3

D60 . E0 El E2 E3

D70 FO0O Fl1 F2 F3

1 BO0-ETF

0E@0 7F 7E 7D 7C
El10 6F 6E 6D 6C

E20 SF S5E 5D 5C

E30 4F 4E 4D 4C

E40 3F 3E 3D 3C

E50 2F 2E 2D 2C

E60 1IF 1E 1D 1IC

E70 OF 0E 0D 0C

FIGURE 9.12

7B 74 79 718

6C
SB

4c
3B
2R
1B
0B

8B4 85 86 87

94
A4
B4
C4
D4
E4
F4

B 174

6B
SB
48
3B
2B
1B
0B

6B
5A
4R
34
26
1A
0naA

95
AS
BS
C5
D5
E5
ES

6A
5A
44
3A
2a
14
0A

6A
59
44
39
29
19
09

96
A6
B6
cé6
D6
E6
Fé6

9 78

69
59
49
39
29
19
09

69
58
49
38
28
18
08

S
av
BY
C7
D7
E7
E7

68
58
48
38
28
18
08

10 76 15 74

68
57

48
37
27
1
07

88 B9 BA 8R

98
Al
B8
cs
DH
E8
F8

T
67
=
47
37
)
17
07

207

67
56
4%
36
26
16
D6

99
A9
B9
C9
D9
E9
F9

76 75 74

66
56
46
36
26
16
06

66
95
46
35
25
15
05

9A
AA
BA
ca
DA
EA
Fa

65
95
45
35
25
15
05

65
54
45
34
24
14
04

9B
AR
BB
CB
DR
EB
FB

64
54
44
34
24
14
04

ST e G|

64
53

44
33
23
13
03

8C 8D BE 8F

9C
AC
BC
cc
DC
EC
FC

73 12

63
53
43
33
23
13
03

63
52
43
32
22
12
na

9D
AD
BD
CD
DD
ED
FD

62
52
42
32
e2
12
02

62
51
42
31
21
11
01

Sk
AE
BE
CE
DE
EE
FE

&l

61
51
41
31
21
11
01

61
50
4]
30
20
10
FF

9F
AF
BF
CF
DF
EF
no

70

610
50
40
30
20
10
FF

60

40

: Slave processor's output for the test set-up of Figure 9.9

tri-state buffers. The data bus of the F8 processor is
bidirectional and hence is buffered using the 74LS245 octal
bus tranceivers. The direction-control signal for the tran-
ceivers is derived from the CPUREAD signal and the 74LS139
decoder logic. The master processor controls the access of
the Common Memory by a particular processor by lowering the
enable signal to these buffers and tranceivers via its
Input/Output interface.

In order to test the chip select logic of the processor,
the following procedure is used. The PROM simulator's RAM
memory is loaded with a small hand-assembled program shown
in Figure 9.11. The PROM compatible plug at the end of a
flat ribbon cable from the PROM simulator is placed in the
socket of the PROM-1 position of the master processor. The
processors of the HMSU, as shown in the arrangement of
Figure 9.9, are powered up and manually reset., The master
processor immediately executes its PROM simulator program.
The test program performs the following operations in

sequence:

1. It writes into 128 locations of the Private Memory
RAM with starting address: H'0800' and Common Memory RAM
with starting address: H'0CO0'. The beginning pattern
written is H'7F' which is decremented from one location to

the next.

2. It reads from the written patterns (128 locations)
of the Private Memory RAM (locations H'0800' to H'087F'),
complements each pattern and writes into the Common Memory

RAM with starting address: H'ODOO'.

208

3. Then it reads 128 locations from the Common
Memory RAM with starting address H'ODO0' and writes into

the Common Memory RAM with starting address H'OEOO'.

4., Finally, it sends H'01l' at its Port 9 and performs
an idle loop. Sending H'01' at Port 9 causes the Slave 1

processor to have the access of the Common Memory.

When the fourth operation of the above program is
complete, the DDT-1 program on the 3851 PSU chip of the
slave processor can be used to type out the contents of the
Common Memory. The teletype output of the above test is
shown in Figure 9.12. As expected, the Common Memory con-
tents of locations H'0C00' to H'OC7F' show the correct
write operation to the Common Memory, the locations H'ODOO'
to H'OD7F' show the correct read operation and the contents'
inversion from the Private Memory and hence the write
operation performed in the first sequence for the Private
Memory, and finally locations H'OE00' to H'OE7F' show the
correct read operation from H'ODOO' to H'OD7F', the
inversion of the contents read and the correct write oper-
ation to the Common Memory. The test thus proves that the
chip select logic shown in Figure 9.10 performs its

required function correctly.

9.5 ADVANCED TEST FOR THE HMSU

Based on the success of the previous tests, it was
decided that some means for testing the hardware of the
HMSU as a whole was necessary. The design of this test is

based on the same resources available as used for previous

209

tests. A schematic diagram with data and address paths
between various modules of the HMSU is shown in the test
setup of Figure 9.13. A sequence of steps in which various
modules are involved in data transfer for this test are as

follows:

Step 1

1. To begin with, a program execution in Slave 1 pro-
cessor causes some arbitrary data to be written into ISMI
(Module 1). Then this processor waits for an interrupt to
come from the master processor.

2. When the interrupt comes from the master processor,
the Slave 1 processor copies the Common Memory data into its
private memory, inverts this data and writes back into the
Common Memory in a different memory space and signals the
master processor that it has finished with its access to
the Common Memory,

3. The Slave 1 program ends its execution by return-

ing its control to the DDT-1 program.

Step 2

1. While the above events are taking place in Slave 1
processor, a program in the PROM simulator for the master
processor causes the master processor to wait until data
has been written into ISMI (Module 1) by the Slave 1 pro-
cessor.

2. When the data in ISMI (Module 1) is completely

written, the master copies this data from the ISMI into its

Private Memory and Common Memory and sends Slave 1 address

210

LLe

PROM
SIMULATOR

A
ISMI %
MODULE -1 —7::D
a{] 1o [
SLAVE-1
(] masTer \\\\ TEST PROGRAM
_ DDT-1 PROGRAM
Al l \}D
M A Al ¢ D
ISMI
MODULE -2
J NN VY
AV4
TERS
MA%,O COMMON
INTERFACE MEMORY MODULE

SLAVE -2

+
DDT-1 PROGRAM

TEST PROGRAM } TTY

NOTE : A-ADDRESS LINES
D —DATA LINES
C —CONTROL LINES

FIGURE 9.13

: Advanced test set-up for the HMSU

to its I/O interface so that Slave 1 processor can have
access to Common Memory.

3. The master processor then waits for an interrupt
to be received from Slave 1 processor.

4, When this interrupt is received, the master pro-
cessor then sends the Slave 2 address to its I/O interface
so that the Slave 2 processor can have access to Common
Memory,

5. The master processor then waits for an interrupt
to be received from the Slave 2 processor.

6. When this interrupt is received, the master pro-
cessor sends the master address to its I/0 interface so
that it itself can have the access to the Common Memory.

7. The master processor then copies the Slave 1
written data from the Common Memory and writes it into the
ISMI (Module 2).

8. The master processor then performs an idle loop.

Step 3

1. VWhile the events in the first two steps are taking
place in the master and Slave 1 processor, a program exec-
ution in the Slave 2 processor causes it to wait for an
interrupt to come from the master processor.

2. When this interrupt is received, the Slave 2 pro-
cessor copies the master written data from the Common
Memory into its Private Memory and signals the master pro-
cessor that it has finished with access to the Common

Memory.

212

3. The Slave 2 processor then waits until data has
been written into ISMI (Module 2) by the master processor.

4., When the data in ISMI (Module 2) is completely
written, the Slave 2 processor then copies this data from
the ISMI (Module 2) into its Private Memory.

5. The Slave 2 program ends its execution by returning

its control to the DDT-1 program.

The above steps explicitly define the tasks required
to be performed by each processor. The arbitrary data
referred in Step 1 corresponds to 64 bytes as a block of
data. Since all the block data movements are through ISMI
modules, Common Memory module and the master processor,
these are recorded by Slave 1 and Slave 2 processors
indirectly in their respective Private Memories. The con-
tents of these Private Memories can be output to a TTY using
the DDT-1 program. The implementation of the tasks in the
form of programs required for the three processors in this
test are not given here. The reason for this was that
another test of ISMI modules, not mentioned in this chapter,
indicated a hardware fault on one of the ISMI modules. This
particular ISMI module showed an error on the most signific-
ant bit of alternate locations of its 64 memory locations.
The investigation of this fault with limited testing
resources caused this test to be suspended. However, this
test clearly shows the complex nature of hardware and soft-
ware integration design phase as related to a multi-micro-

processor system development.

213

9.6 ASSEMBLY LANGUAGE SUBROUTINE TESTS ON PDP-11

- MINICOMPUTER

In this section, two assembly language subroutines,
which are called by the high-level language program written
in FORTRAN IV, are discussed. The assembly language sub-
routines are developed using the MACRO assembler of the
PDP-11 minicomputer. The object modules produced as an
output from the MACRO assembler are linked with the object
modules of their main FORTRAN IV programs. The subroutines

and their main programs are as follows:

9.6.1 Program IR and the NUMB macro subroutine

The program IR reads ten real numbers from the console
and stores them in a real array A(I). The integer part of
the real number is removed and the fractional part of the
number is converted into a binary fraction, that is, using
270 where n = 1,8. Thus, for example, 0.04 is represented
as 00000001 and 0.999 is represented approximately as
11111111. The binary point (equivalent to a decimal point)
before the binary fraction is assumed. The NUMB subroutine
converts the binary fraction into its corresponding integer
value which is required to be sent to the HMSU via the ISMI
memory modules. The objective of testing this IR program

is thus twofold:

1. To test the calling of the assembly language pro-
gram such as NUMB by correctly passing the required para-
meters from the high-level language program, such as program

IR, and

214

2. To test the correctness of the NUMB macro sub-
routine which converts a string of 'O's and 'l's of eight

bits width into the equivalent integer number.

The listing of the NUMB macro subroutine is shown in
Figure 9.14. The register R5, as used in any autodecrement
deferred mode, contains the address of an argument list
having the format shown in Figure 9.15. The register R1l is
used as a temporary register and after its initialisation,
the argument contents are added to it and an arithmetic
shift left operation is performed on it until all the argu-
ments are added. Thus an integer is formed in R1 from a
string of '0's and 'l's of eight bits width. The IR pro-
gram listing is shown in Figure 9.16 and the corresponding
output result of the program execution is shown in
Figure 9.17. It may be noted that the NUMB subroutine is
used in the DCHMSU program described in the previous chap-

ter.

9.6.2 Program TRIAL and the SUB2 macro subroutine

In the DCHMSU program, the operator set information in
its final form is assembled by the SEND subroutine. Each
element of the address array and the corresponding element
of the data array needs packing into a 16 bit word which
can be output to the Input ISMI channel of the HMSU, via
the DR11-C interface. The necessary connection arrangement
between the DR11-C interface and the ISMI modules is shown
in Figure 9.18. The packing process of two independently

stored bytes to form a 16 bit word is performed by the SUB2

215

e
FIGURE 9.14 : MACRO Assembly of the NUMB subroutine
REGISTER 5 (RS)ﬁ
UNDIFINED # OF ARGUMENTS
ADDRESS OF ARGUMENT # 1
ADDRESS OF ARCUMENT # 2
i
l
ADDRESS OF ARGUMENT # W
FIGURE 9.15 : Format of argument list used by Register 5 (R5) during

FORTRAN subroutine linkage

216

Bfy 1F<Tﬂ<~3335,29,29
845 25 IACLN)=@" Gl
BE1E i BT e e :]

. BRITN 29 IACI,Ni=1 g :
@818 . BA=TACNY & : SR L5
8813 |2 - CONTINUE | L Y
BB2B, 2 | CONTINUE 0
@gzd - DO 58 I=1,48 o Zadeie
g8z CALL NUMB CIACIL. 43 IACL, 295 1ACT, 33 zﬂﬁi}-
Bl 1 IACI, 75, TACL, 83, NAFKT))
BE24= . WRITEXE, z08)

HEZS 38R FGRMHTﬁiH 445 ﬁ(I)’;4E;*FRHCTI@M BF
C 04 4% “0CTAL EaU’, 4% < INTEGER EGUZY |
2826 L D028 I=1,19
Q8237 . % WRITECS, 1425AC T3 ARCT Yy CRATL, NY, H=: gp
8828 142 FORMATCAH . 2% F7. 2, 6%, F6, 2, 12K, S¢I43,)
2029 20 - CONTINUE |

s WRITE(E, 288)
2831 288 FORMATC(AH ., “FINISHY)
8832 _ . ERALL CLOSE<E) ¥
8833 - - STOR

auis : (END.

FIGURE 9.16 : FORTRAN IV program IR which calls the NUMB subroutine

R —

' ACIY FRACTION OF ﬁ<1> BINARY FRACTION |
J 180, 884 2004 58040801 ,
| - 939, 9398 SR e T
8. 983 - aieaa L 111949
@ 580 - B5Eg 1Gaaaa00
| 7 @258 2.258 81893958
B e _ 8135 GH1BAEEA
56,249 8. 213, - B@11de88
Sy N BE- - T , 68111085
g 815 8815 BE0028LL
158 8. 150 © BB1EHL1E
FINISH : iy

FIGURE 9.17 : Output result of IR program of Figure 9.16

217

macro subroutine. The objective of a test program called
TRIAL is to test the correctness of the SUB2 macro sub-
routine which performs the packing of two bytes into a
16 bit word. The TRIAL program, the SUB2 program and the
output result of the TRIAL program is shown in Figure 9.19.
The TRIAL program reads two sets of four integers and
stores them into arrays K and L. The corresponding elem-
ents of these arrays are packed side by side and the result-
ing integer is stored in Array N. Array K corresponds to
the data byte and Array L corresponds to the address byte.
Thus, when a packed element of Array N is sent out via the
DROUT output register, the upper byte will contain the data
and the lower byte will contain the address. The output
result of the TRIAL program shows the correct packing

process.

9.7 SIMULATION OF DISPLAY OF PROCESS VARIABLES ON GT42

DISPLAY PROCESSOR

The main objective of this simulation exercise is to
indicate to the operator of the TLF, the process variables
such as set point temperature, actual temperature profile,
level of controlled power output to the heaters in a
particular zone etc. in a graphical representation. The
program called DISPLY which performs this simulation is
shown in Figure 9.20. The program uses a variety of sub-
routines, described in the VT-11 Graphic Support manual, and
the real-time TIMR subroutine. A file containing sample
numbers, sampling times, measured temperatures and normal-

ised power levels for the heaters is produced and called as

218

6le

{./
"&
15 - | DATA TO HMSU FROM
B PDP11
=
—— DATA [> (INPUT ISMI CHANNEL OF HMSU)
———
=% =l
B | I e
L /\ WRITE ADDRESS
——> ADDRESS
—
DR C 0 o
INPUT OUTPUT
INTERFACE 4ol
OF POPM 0 [——
== \/ READ ADDRESS
- [[5
i =] DATA FROM HMSU TO
e PDP 11
—— DATA
[< (OUTPUT ISMI CHANNEL OF HMSU)
pe—
0 ==
H___I -

FIGURE 9.18 : Connection arrangement between DR11-C interface and ISMI modules

10

200
100

BUR2?S

FROGRAM TRIAL

THIS FROGRAM CALLS FOR A SUBROUTINE WRITTEN IN ASSEMRLY
LANGUAGE AND FRINTS THE RESULTS ON THE FRINTER.
DIMENSION K(4)sL(4)sN(4)

COMMON KsLoN

CALL FRINT(’ TYFE THE VALUES OF K’)

READ (5s100) (K(I)sI=1s4)

CALL FRINT(’ TYFE THE VALUES OF L‘)

READ (52100) (LCI)»I=1s4)

00 10 I=1s4

Call. SUB2(RK(IXsLC(I)sNC(I))

CONTINUE

WRITE(S62200) (K(I) s LC(I)sNCI)yI=1v4)

FORMATC(IH »3Xy14,3X»1453Xs14)

FORMAT(I4)

STOF

ENID

+TITLE SUR2

LGLOBL SUR2

oHCALL 0+U20{!0REEDEF
+REGDEF

NRCSR=164020
DROUT=DRCSR+2
DRIN=DROUT+2

CLR DRCSR sCLEAR DR11-C STATUS REGISTER
Al F29RE
CLR F1 iCLEAR REGISTER 1
MOV RIRS)+2R1 sLOAD R1 WITH DATA
SWAR K1 sSHIFT DATA TO HIGHER EBYTE
ADD B(RS)+sR1 sFILL THE LOWER RYTE OF R1 BY ADDRESS
MOV K1 DROUT FOUTFUT DATA & ADDRESS TO ISMI
MOV Rir»@(RS)+
RTS FC s RETURN
+END
8 il 5|
5] 1 1
g e 2
@ K 2
1 5 256
& & 51z
3 5 TES
= a 1G24
FIGURE 9.19 : Program TRIAL, MACRO subroutine
1 a 256 SUB2 and output result of TRIAL program.
1 i@ 268
1 26 pirg
1 28 286
1 Lol i 2BT
Py 2 514
2 2 s
4 4 41828

220

a DATA file. Each sample from the DATA file is fed as an
input to the DISPLY program and the DISPLY program displays
graphically the data contained in each sample in real time.
Thus it simulates the real-time process variable changes
influenced by the control algorithm. The results of the
simulation output are shown in Figure 9.21 and simulated
test samples of a set of data are shown in the DATA file of
Figure 9.22. The dash-dotted line in Figure 9.21 shows a
set point temperature of 20000, the bottom rectangular
curve shows the level of power required and the smooth
curve which meets the set-point line shows the variation of
temperatures. It should be noted that the simulation pro-

gram DISPLY is not implemented into the DCHMSU program.

9.8 CONCLUSION

This chapter indicates one of the transient states of
a typical experimental environment under which the project
was performed. This phase of experimentation was found to
be very important in order to investigate capabilities of
the hardware and software developed. The methods of testing
and simulations outlined in this chapter point to areas
where improvements and further testing is needed. For
example, one critical area might be located in the third
test (i.e. Section 9.4) where a failure of tristate buffers
or 74LS245 tranceivers could create unpredictable problems
such as a data bus contention during the memory access.
The hardware fault found before an advanced test on the
HMSU as a whole could be performed, needs further investig-

ation. In such circumstances, what measures or diagnostic

221

FORTRAN IY

BaHL
BER2
BEEZ
GR04
BaES
BABE
Baa7
GAEE
2609
G610
Ba11
GEl12
BE13
a4
BE1S
BELE
aa17
Ba1S
aR1e
GA26
ae21
BE22
BAZE

o
L}

R B o T ot T Oy o O S O B0 T e
B B G el) Gal) el gl Gl gl N P B

e I D R

=
L%

(R I s v I

KN
L

Jx

) T B 00 00 g LN g ek P B GG

Uit
o
o+
I

8358
aBs1
8852
5o
Ba54
BESS

168
288

YA1C-832R TUE 84-DEC-V2 B88:A3: 48

PROGRAM LISPLY

DIMENSION IBUFCE88, TOE8Y, THPC(EA), POEED, K(S@)

CHLL ASSIGHO1E, “DRTR . 8

I=1

K{dr=H

TiAr=0 &

PiBI)=E B

THPCE =8 @&

CALL PRINTCWHART IS THE SET FPOINT TEMP 272
RERD{S, 1582 SP

FORMATCFS. 32

ERLL FREE

CALL IMITCIBUF, 283

CALL SCAL(-4@. , -28 , 348, , 688 >
CALL APNTCA. , 4. ,8, -3, 8. 1}

CRLL LVECT(Z44. .4 ,&, %,u,is
CHLL APNT(®, .8 .,8,-5,2,1>

CRLL LUECTiB.JSB@.,u,E B. 12
CALL APNTc(-18. . 558 .8, -5.8, 13
CALL TEXT{ " TEMP" 2

CALL APMT(-15..8 ,8; -5,
CRLL L?ECT(B,,SBQ.JaJh;
CHLL HPHTﬁ-4B,JSES,,B,-5
CALL TEXT{ POWER”?

CHLL RAPMT(Z8. ,-15 .8,-5.8,1>

CALL TEXT(“TIME IN MINS >

CALL RAPNT(®. , 5P, &, s e 5 R

CRALL LYECT(348. .8 . 8,5, 8,47

CRLL HEET(-i@B s =28, 8, -5, 8,13

CHRLL HMBR(4.SPF. “F35. 3’3

CHLL HPHT(@.;' 28, =-5,8, 17

CALL PRINTC N T THF Fooa
READCS, 288N, TCI 2, THPCI X, PCIy, JNG
FORMATCIZ, 3F9. 3, 122

IFCING. ER. 8X50T0 566

TD=TCI)-TCI-12

TON==TD

THPD=THMP{I»-THP{I-12

THPN=-THMPL

THPP=THMP{I=-12

THPPH=-THPF

PP=P{I-41>

PD=PLI>-PCI-1)

PN=-PCI) :

CRALL YECT(B. , THPP. 8. =5, 8, 1)

CALL VECTCTD: THMPEL B, 5,8, 173

CALL YECTC(TDN, THPM, 8, -5, 8,12

CALL YECTC(®. ., TMPFN, 8, -5, 8,13

CALL YECT(&. ,PP. B, -5,8,13

CALL VERTC<TD. 8. 48,5, 8,13

EHLL ".JECT':I'B] P[:': "3) SJ E‘J l:’

CALL VECT(B ,PH. 8. -5,8,1>

CALL TIMECLS%EE)

CALL TIMRCIES

|E| n‘f"l

@»-»~

1)

FIGURE 9.20 : DISPLY program

222

PRGE Bai

FORTRAM IV MR1C-A3ER TUE B4-REC-79 B5: 89: 45 PARGE @B&a2
BE5E IECIE NE. 22G0OTO ZES

HE5E WRITEC13, 2083M, TCIX, THMPCI), PCI), ING

BESS 2 KLli=N

HREH I=1+1

BEEL IFCI. GE. 610G0TO S84

BEEZ GO T2 188

HEEd S00 CARLL TIMECG:

Baa5 CRLE 5T0P

HEEE HWRITE(E, 245 X5F

HEE?Y 245 FORMRTCAH . < SET POINT TEMP=<,F3. Z/3

AEES HRITEC(E, 2582

BAE3 258 FORMATC4HG, - M - THP P
B FE HRITECE, 2352 CCKCIN, TCI2, THRPCI 2, PCI)), T=1, NY

@avi 285 FORMATCAH . 12, 2X. F9 3,24, F9. 2, 2% F9. 2

BE72 CHLL CLOSEC418)

1515 e STOP

GE 74 END

FORTEARN I¥ STORAGE HMAP

FIGURE 2,20 : DISPLY program (continued)

223

FIGURE 9.21 : Simulation output of DISPLY program on GT42 Display
processor

FIGURE 9.22 : Data file showing process variables.

224

procedures or failure detection methods or devices should
be used must be carefully considered. Furthermore, the
actual application program testing in the integration phase
certainly needs sophisticated tools which are available on
the Microprocessor Development Systems (MDS). The PROM
simulator used for the tests, allows the simulation of a
PROM for only one processor. The need of hardware and
software testing tools required in a multi-microprocessor
environment may surpass the cost-effectiveness hoped to be
achieved by a multi-microprocessor system. These are just

a few areas where further investigations are needed.

225

CHAPTER 10 - CONCLUSIONS

The research has shown that it is feasible to apply
microprocessors for on-line parallel processing of inform-
ation. Any application involved in using a multi-micro-
processor system requires analysing the application so that
the overall control problem is subdivided into smaller sub-
problems which are suitable for parallel execution on indiv-
idual microprocessor-based systems, and any interactions
between these subproblems are handled by communication
links., The organisations of such systems range from locally
distributed to geographically distributed microprocessor and
microcomputer systems and a variety of applications range
from homogenous to heterogenous applications. The communic-
ation links range from serial links to parallel links and
man-machine to interprocess communications. It should be
emphasised that a designer of such systems is required to
balance, firstly, the distribution of hardware and software
for the chosen application. Secondly, the application is
required to be broken down into its information processing
needs in the form of a top-down distribution of tasks and a
bottom-up co-ordination of these tasks. Finally, since the
hardware, software and tasks are distributed, the distrib-
ution of data and its flow to and from various tasks is of
paramount importance.

A model of a processor within a distributed computing
syétem which is proposed in this thesis specifically dis-

cusses its interfacing issues within a large-scale, real-

226

time complex system environment. It outlines the import-
ance of application program development and its performance
evaluation and monitoring. The four information links
described in the model account for a variety of ways of
data and control information distribution amongst the pro-
cessors of the distributed computing system. The use of
dual port memory modules as IANs and IDNs for data and
control information distribution serve also as a buffered
communication medium and provides new possibilities for
communication protocols to be designed which are task-
oriented.

The design of the Hierarchical Multi-microprocessor
System Unit (HMSU) combines the IAN/IDN concept developed
in the model and the resource sharing concept in the form
of a master-slave relationship with respect to the access
of common memory. A modular structure of the HMSU and its
use as a building block allow other structures such as
hierarchical, star, ring and combinations of these to be
configured. The hardware design of the HMSU presented in
the thesis is particularly organised using a Fairchild/
Mostek F8 microprocessor chips set mainly because of local
software development facilities, such as a F8 cross-
assembler on the MAXIMOP system, and F8 Evaluation Kits
were available. However, since software development
facilities are not included or superimposed on the process-
ors of the HMSU, the task of application program develop-
ment, its performance evaluation, monitoring and testing
becomes particularly difficult. These problems are very

vivid in the thesis when the HMSU is employed to implement

227

hierarchical control of the department's Travelling Load
Furnace (TLF). If the luxury of providing a highly inte-
grated and fault-tolerant system is to be envisaged, for
example one processor taking control over the other in case
of the failure of the second, the interfacing issues of the
controlled process by the processors of a distributed pro-
cessing system, such as the HMSU, requires special atten-
tion. The ability of a master processor or either of the
slave processors to control any one section of the TLF not
only requires modifications to the existing interfaces but
also requires software diagnostic procedures or failure
detection mechanisms to be implemented. A design proposal
for modifying existing interfaces of the TLF and a simple
mechanism of control mode selection procedure have been
described for this purpose.

The research as a whole encompasses design of electronic
circuits for input/output interfacing, design of F8 process-
ors of the HMSU and the HMSU architecture, programming of
control tasks for the processors of the HMSU in the F8
assembly language, programming of man-machine communication
with respect to the control of the Travelling Load Furnace
in a high-level language using the PDP-11/10 minicomputer
and testing integration aspects of hardware and software
developed. The last phase, namely the testing for
integration of hardware and software closes a loop of the
overall design cycles and the outcome begins to emerge in
the form of problems encountered during practical implement-
ation. These problems are highlighted and discussed in the

thesis. 1In particular, the need for proper development

228

tools both at software and hardware level are vital to the
development of the project. The suitability of the F8 pro-
cessors for the HMSU, for example, can be questioned. The
high chip count used in the design of ISMI could be mini-
mised by the use of VLSI technology. Although the costs of
CPUs and memory components are reducing the cost of putting
these together in a multi-microprocessor system and the
cost of writing software for such systems really brings up
the cost-effectiveness issue, especially when the applic-
ation involved is just one-off. These are some of the
areas which may be in the realms of research for some time
to come. As such, it is difficult to establish a direct
relationship of the work undertaken to immediate industrial
usage. However, this research will provide a useful
benchmark for developing multi-microprocessor systems for

hierarchical control of industrial processes.

FOOTNOTE: Further consideration is needed within the programs of the
HMSU and the PDPll/lO minicomputer to ensure that critical parts are

made interrupt proof, possibly through the implementation of Dijkstra's
semaphore techniques (Dijkstra, 1968).

229

REFERENCES

AMD Data Sheet.
AMD Semiconductor Products, Data Sheet.
ANDERSON, G. A. and JENSON, E. D. (1975).
Computer Interconnection Structures: Taxonomy, Characteristics and
Examples. ACM Computing Surveys, Vol. 7, no. 4, pp.197-213
(Dec. 1975).
ASPINALL, D. (1978) (Editor).
The microprocessor and its application. An advance course.
Cambridge University Press, Cambridge.
BAILEY, W. N., GAYLER, J. R. and ROBERTS, P. D. (1979).
Introductory guide to using the department's PDP11/10 computer system,
The City University, DSS/WNB-JRG-PDR/178 (Feb. 1979).
BARKER, H. A. (1978).
The microprocessors in control. IEE Control and Automation Division,
Cha rman's Address.
BIBBERO, R. J. (1977).
Microprocessors in Instruments and Control. John Willey and Sons,
New York.
BILLINGSLEY, and SINGH, M. G. (1975).
On-line hierarchical control of large scale systems using multi-
processors. IEE - 2nd Conference, Vol. 127, Part 21/25 (April 1975).
BROWN, T. J. (1979).
Elements of distributed control systems. Trends in on-line computer
control system. IEE Conference, Vol. 172, Part 27-29 (March 1979).
CAFFIN, R. (1972).
The design and modelling of an experimental travelling load furnace.
PhD Thesis: The City University, Department of Systems Science, London.
CARTER, J. W. (1978).
The problems of using microprocessors. Measurement and control. Vol.ll,
pp.81-97 (Feb. 1978).
DAVIES, A. C. (1977).
F8 Microprocessor User's Guide. The City University, Department of
Electrical and Electronic Engineering, London.
DESHMUKH, H. A. (1977).
Microprocessor control of a Travelling Load Oven. MSc Thesis. The

City University, Department of Systems Science, London.

230

DESHMUKH, H. A., SCOIT, R. G. F. and ROBERTS, P. D. (1979).
A hierarchically structured multi-microprocessor system. Micro-
processors and their applications. Fifth EUROMICRO Symposium on
Microprocessing and Microprogramming, Goteborg (Aug. 1979).

DATA SHEET for ADC82 (1979).
General Catalog, Burr-Brown.

DOWSING, R. D. (1978).
Introduction to system design. The microprocessor and its applic-
ation. An advance course. Edited by ASPINALL, D., Cambridge
University Press, pp.93-117.

EDGINGTON, J. H. (1979).
Control in the glass industry and future automation: PART 1.
Measurement and Control, Vol. 12 (July 1979).

ELLIOTT, I. and ORGANICK (1978).
New directions in computer systems architecture. Large scale
integration. EUROMICRO Symposium, Munich (Oct. 1978).

ENSLOW, P. H. ed. (1974).
Multiprocessors and parallel processing. John Wiley, New York.

ENSIOW, P. H. Jxr. (1878).
What is a 'Distributed' Data Processing Systems? Computer pp.13-21
(Jan. 1978).

ENSLOW, P. H. Jr. (1978).
Multiprocessors and other parallel systems: An introduction and
overview. Infotech State of the Art Report. Multiprocessor Systems,
pp-219-262.

F8 USER'S GUIDE, Fairchild Microsystems (1976).

FEIERBACH, G. and STEVENSON, D. (1979).
The ILLIAC IV, Super Computers, Infotech State of the Art Report.

FITZGERALD, J. M. and FITZGERALD, A. F. (1973).
Fundamentals of Systems Analysis. John Wiley, New York,

FLYNN, M. J. (1972).
Some computer organizations and their effectiveness. IEEE Trans on
Computers. Vol. C-21, no. 9, pp.948-960 (Sept. 1972).

HARRIS, J. A. and SMITH, D. R. (1977).
Hierarchical multiprocessor organisations. Fourth Symposium on
Computer Architecture, University of Maryland.

HOLDING, D. J. and KING, P. J. (1979).
Experience with a distributed microprocessor control system in an
industrial enviromment. Trends in on-line computer control system.

IEE Conference. Vol. 172, Part 27-29 (March 1979).
231

HOLLAND, P. M. (1980).
Memory system design. IEE Colloguium on Hardware Design Techniques.
Digest no. 1980/11, pp.4/1-4/5 (March 1980).
HUGHES, J. M. (1976).
Multiprocessor Navigation Systems. Digest of papers. Fall Compcon 76,
Pp.264-68.
IEE CONFERENCE PUBLICATION (1977).
Distributed computer control systems. IEE Conference Publication
Vol. 153 (Sept. 1977).
JENSEN, E. D., THURBER, K. J. and SCHNEIDER (1979).
A review of systematic methods in distributed processor interconnec-
tion; Tutorial: Distributed Processor Communication Architecture;
First International Conference on Distributed Computing System.
Huntsville, Alabama (Oct. 1979).
JOSEPH, E. C. (1976).
Distributed processing architecture - past, present and future trends.
Distributed Systems. Infotech State of the Art Report, pp.319-333.
KARTASHEV, S. I. and KARTASHEV, S. P. (1978).
Selection of the control organisation for a multicomputer system with
dynamic architecture. Large Scale Integration EUROMICRO Symposium,
pp.346-357 (oOct. 1978).
LEE, J. L. (1976).
Intersubsystem communications for process control. Instrumentation in
the chemical and petroleum industries. Vol. 12. Proceedings of the
1976 Computer Interface Instrumentation System.
LOWE, E. I. and HIDDEN, A. E. (1971).
Computer Control in Process Industries. Peter Peregrinus Ltd.
MDS Z80 SYSTEM (1979).
MDS Z80 System reference manuals.
MILLER, G. A. (1956).
The magical number seven plus or minus two: Some limits on our
capacity for processing information. Psychol. Rev. Vol. 63, pp.81-97.
MOSTEK, F8 Microprocessor hardware support.
Application Note, F8 Evaluation Kit.
MOTOROLA (1979).
Microcomputer Components, Motorola Semiconductors.
PATHAK, J. (1977).
Software setup eases traffic flow for multiprocessors. Electronics

pp-108-112 (March 1977).

232

PDP-11/10 FORTRAN IV.
Language reference manual.
PDP-11/10 FORTRAN IV.
User's Guide.
PDP-11/10 System Reference Manual.
ROBERTS, P. D. (1979).
Introduction to large-scale control system. IEE Computing and Control
Division. Specialist Seminar on Optimal Control of Large Scale
Systems (Sept. 1979).
RUSSO, P. M. (1976).
An interface for multi-microprocessor systems. Digest of papers,
Fall Comp. Con. pp.277-282.
RUESO, PB. M. (1977},
Interprocessor communication for multi-microcomputer systems.
Computer Vol. 10, No. 4, pp.67-75 (April 1977).
SAVAS, E. S. (1965).
Computer Control of Industrial Processes. McGraw-Hill, New York.
SEARLE, B. C. and FREBERG, D. E. (1975).
Tutorial: Microprocessor application in multiple processor systems.
Computer, pp 22-30' (oct. 1975).
SHEENA, H. H. (1977).
Computer control of a travelling load furnace. PhD Thesis: The City
University, Department of Systems Science, London.
SIEWIOREK, D. P. (1975).
Process co-ordination in multi-microprocessor systems. Euromicro
Workshop, Nice (June 1975).
SMERH S CLuIet (L7200
Digital Computer Process Control. Intext Educational Publishers.
SPENCER, J. P. (1976) (Editor).
Distributed Systems. Infotech State of the Art Report. Infotech
International Ltd.
SR (L977).
Distributed computing systems. Annual report. The Computing Science
Committee of the Science Research Council (Sept. 1977-Sept. 1978).
SRC (1980).
Distributed computing systems. The Computing Science Committee of the
Science Research Council (Sept. 1979-Sept. 1980).
STEINCHOFF, J. and McGILL, R. (1976).
An approach solving scientific problems using multiple-microprocessors.

EUROMICRO Symposium, Venice, pp.285-293 (Oct. 1976).
233

SWAN, R. J., FULLER, S. H. and SIEWIOREK, D. P. (1977).

Cm* - A modular multimicroprocessor. AFIPS Conference Proceedings,
AFIPS Press, Vol. 46, pp.637-643.

TANAKA, Y., MIYASHITA, K., KOYAMA, S., MIYAMOTO, E. and TSUDA, T. (1976).
HARPS - A new hierarchical array processor system. EUROMICRO
Symposium, Venice, pp.91-98 (Oct. 1976).

THURBER, K. J. and WAID, L. D. (1975).

Associative and parallel processors. Computing Surveys Vol. 7, Neo. 4,
pp.215=-255 (Pec, 18975).

THE TTL DATA BOOK FOR DESIGN ENGINEERS,
2nd Edition.

VT-11 GRAPHIC SUPPORT.

PDP-11 Reference Manual.

WEISSBERGER, A. J. (1975).

Microprocessors simplify control system. Canadian Electronic
Engineering (June 1975).

WEISSBERGER, A. J. (1977).
Analysis of multiple microprocessor system architectures. Computer
Design, pp.151-163 (June 1977).

WHITE, C. H. (1976) (Editor).
Distributed Systems. Infotech State of the Art Report.

WILKIE, J. D. F. (1979).

A microprocessor philosophy for process control systems. Trend in
on-line computer control system. IEE Conference Publication, vol. 172,
pp.27-29 (March 1979).

WITTEN, J. H. and RICHARD, L. J. (1978).

Processor-processor dialogue through existing input-output channels.
Computer and Digital Techniques, Vol. 1, No. 4 (Oct. 1978),.

WULF, W. A. and BELL, C. G. (1972),

C.mmp - A multimini processor. Fall Joint Computer Conference, AFIPS

Proc., Vol. 41, Montvale, N.J.: AFIPS Press.

DIJKSTRA, E. W, (1968).

Co-operating sequential programming. Programming Languages.
Genuys, F. (Editor). Academic Press, London,

234

APPENDIX A - HARDWARE DETAILS OF THE F8 MICROPROCESSOR

The three F8 microprocessor boards built for the HMSU

are identical. Each board consists of the following:

1. One - 3850 CPU (Central Processing Unit)

2. Two - 3861 PIO (Peripheral Input/Output) Chips
(i.e. versions MK 90002 and MK 90003)

3. One - 3851 PSU (Program Storage Unit)

4. One - 3853 SMI (Static Memory Interface)

5. Two - 2708 EPROM chips (i.e. 2 kilobytes of PROM
memory)

6. Eight - 2102 Static RAM chips (i.e. 1 kilobyte of

static RAM memory).

A detailed circuit diagram for the F8 microprocessor
board is shown in Figure Al. The inclusion of 3851 PSU in
which the DDT-1 (Designer's Development Tool 1) program
resides, allows the testing of the F8 microprocessor circuit
board. However, this PSU chip cannot be used when EPROM
chips containing the HMSU control program are used. The
reason for this is that the DDT-1 program and the HMSU
control program both start at H'0000' address. Thus, only
one program can be run at a time. Additionally, when the
HMSU control program is to be used, the PRIORITY OUT line
from the 3861 PIO (MK 90003 version) chip is directly con-
nected to the PRIORITY IN line of the 3853 SMI chip. The
3850 CPU chip is provided with manual reset (switch S1) and
automatic ""Power ON'" reset inputs. These input lines are

connected to EXT RESET input of the CPU through 7432 OR

235

+5V

Voo oo TVW PORT 8 PORT 9 PORI 20 PORIZ1 IN914
g T PRAARNGEINAARAL I 2“"“"&/;
e D> 80K : —Em p;i*l— ' Eum 7406 opur] ¥
. PE N S n 22700
1 g r|—~ww—1_—'l' | :T i\’&s MK 90002 3861 PIO L:Pmow o—1Vse MK 90003 3861 PIO L PRIOUT _,L__
st o % 1) =
.32 +5V O—qu SU“US EE O NC G—HS,VDI:I "'"'"{',‘3' u =30 NC B
= +12V O cum N or-% & $E5 g|f € c‘—mm~.1-m~oc-~§ £13 g g = il .
371 3] 41220 g et I oB0R [ETRRREEanl i aResk fooane 6|1012] 3|
918 iV Ve 815 AN 0 SO o i el 21 =l19] 0, |
"1 2 BY 20
o—0 D2 Alls, Bl
PORT 0 < o 38 3850 Bz‘gs 3% 3851 [0 ~PORT 4
—3l CPU DEE 305 Psu
a2 07126 m, 217
Foa b Rcmgg,? i 1 01053
s rRomc 18 18 romct - 5BIT
o—08] ROMC2 2% ROMC2. ° >PORT S ta
RT 1 13l el R i) -
| & 7 @ 23 Do_:wv_,-o
‘#_ R e
~ e +5Y
> X C
38(39|40| 24 M% DBB‘E 18] 4 3 7406 80 TI¥
A% 3,08 8, 5.8 = | H2v
Z‘ﬁHHZ ey | oloeekeiminoc o | 172 lSimlolrlol o?rMS&”FP;Q+ & +5V
1grrﬁ: _r10pp 33K ﬁﬂ'OFSSEESEQ ggggﬂ‘g E:':g 133k 85883885883 g 85883838553 é
4 et il 2708 PROM 1 2708 PROM 2 g
* +12V — vﬁ(‘r 3353 SMI RERAD F;; v sa‘\
Sl LI RLe 28 3 222 L 4R 222 &"&:ggwﬁ =EESLEE ‘_‘Es&&:‘lu:‘-" 2
= h‘qumfpmmmgl&ﬁ Ol cojr~{\o|Lnf—+ "—'Nfdgq @© qu B
= = o
8]
]
-
(4]
o
0]
L}
[
3
b
0 M- A [m - - Ad [Ag - Py -- - Aol [Aq - --- A [pq---- A g --- - g [Aq- - - Ad ?'
| 2102 ¢ .| (2102 & .| [2102 : g 2102 & .| [2102 2102 210 2102
Aﬁ"% 1 ﬁmgé;{cﬂga & {w aamgé awgf“m§§amgﬁ &= R’w £ -E
3 & [2] 1 1 I 1 | .
cH
23 F“g? l'??w . 5 s»;lni_x B W 57 sejx_g;;v 33K o
E e i on e o = 7 — =3 = i =
=
T804 7400 gpcoy 5
g
[[E 80C97 B
J400 i>j£(_0;+ N
COMMON MEMORY o
BUFFER CONTROL 7400
FROM MASTER'S BOC&J 7404 L__S 7404 80C97
- M DR E
ISOCW Fleocer [2 L 2 hisas
RIW CPU RIIEIIIIR I Y LEXT INT LILELLTL

TO EXTERNAL ADDRESS BUS TO EXTERNAL DATA BUS

236

gate. The F8 microprocessor board mainly provides six
8-bit Input/Output ports, three external interrupt lines,
sixteen external address lines (i.e. address bus) and eight
bidirectional external data lines (i.e. data bus). All the
IC chips use wire-wrap sockets which are mounted on the DIP
vero board (No. 10-0154L). One of the F8 microprocessor
circuit boards is shown in Figure A2. Figure A3 illustrates
the two sides of ISMI circuit board and Figure A4 shows the

HMSU on the background of the Travelling Load Furnace (TLF).

237

FIGURE A2 : The F8 microprocessor circuit board

FIGURE A3 : The ISMI circuit boards

238

6€¢

FIGURE A4

: The

HMSU on the background of the TIF

APPENDIX B -~ THE F8 PROGRAMMING FEATURES

This appendix covers a brief description of the F8
Evaluation Kit, some important programming features unique

to the F8 microprocessor and the F8 instruction set.

Bl THEFE F8 EVALUATION KIT

The F8 Evaluation Kit built by MOSTEK consists of mini-
mum hardware system containing 3850 CPU, 3851 PSU, 3853 SMI
and 1 kilobyte of static memory RAM and a Teletype inter-
face (20 mA loop). The Designer's Development Tool 1 (DDT-1)
program resides in the 3851 PSU which is located in the low
order 1 kilobyte of memory space (i.e. H'0000' to H'O3FF').
The RAM address space range from H'0400' to H'O7FF'. All
eight bits of Port 0, Port 1 and Port 4 are available to
the user, providing 24 I/O lines. A selection 110 or 300
baud Teletype rate is available from Port 5.

The DDT-1 program serves a convenient means for evalu-
ating the F8 and the debugging of application programs. A

summary of the commands accepted by the DDT-1 is as follows:

1. B - Breakpoint (software) address.
Format: B aaaa, where aaaa is a breakpoint address,
2. C - Copy memory arrays.

Format: C ssss, ffff, dddd, where ssss = start

address, ffff = finish address and dddd

destin-
ation address

3. D - Dump memory onto paper tape.
Format: D ssss, ffff, where ssss = start address

and ffff = finish address.
240

4. E - Execute at specific address.
Format: E ssss, where ssss = start address.
5. H - Hexadecimal arithmetic operations.

Format: H a + b = result or H aaaa + bbbb - cccc

result.

6. L - Load memory from paper tape.

7. M - Memory content display and modify.
Format: M aaaa, where aaaa = address of memory
location.

8. P - Port content display and modify.
Format: P pp, where pp is the port address to be
examined or modified.

9. T - Type memory content array.
Format: T ssss, ffff, where ssss = start address
and ffff = finish address of the memory block to

be printed.

B2 IMPORTANT PROGRAMMING FEATURES

1. When power is turned on, all PCO (program counter
registers) in the F8 microprocessor system are set to 0.
Therefore, the first instruction executed is located at
memory byte 0. Thus, the first program to be executed must

be originated at H'0000'.

2. A subroutine linkage is associated with calling
from and returning to the main program. There are two
instructions used to call a subroutine into execution:
(a) Instruction PK saves the contents of the program

counter (PCO) in the stack register (PCl), then loads the

241

subroutine starting address from the K register into the
program counter.

(b) Instruction PI saves the contents of the program
counter in the stack register. It then loads the subroutine
starting address (which is in the two bytes of object
program following the PI op code byte) into the program

counter.

Similarly, there are two ways to return from sub-
routines:
(a) Instruction POP moves the contents of the stack
register back to PCO.
(b) Instruction Pk may also be used to return from a sub-
routine by having the return address in the k registers.
If, for example, subroutines are nested two deep, the

following steps show the call and return sequence:

Initially, outer routine start address is put in k: <k> = p

Outer Call Pk <PCO> + PC1 geser, PET

K20 i PCO D= PCO

Save PC1l in k in preparation for inner call:

LR K,P SPELs &' k &> K
Inner Call PI <PC0> » PC1 ci~ PCL
(ol Y E2) > PeD e > PCO
Inner Return POP <PCl1> > PCO c = PCO
Outer Return Pk <pC0> +» PC1 d - PCi
<K> =+ PCO a > PCO

where a, b, ¢, d and e are 16 bit addresses.
For nesting to greater depth, a stack for return

addresses is required to be set up.

242

3. The basic interrupt handling capacity is a micro-
programmed function of the 3850 CPU. The sequence of
events surrounding an interrupt is as follows:

(a) For interrupts to be processed, interrupts must be
enabled within the 3850 CPU and at the chip receiving the
interrupt request signal (i.e. 3861 or 3851 or 3853 chips).
(b) When more than one device simultaneously request to
interrupt the 3850 CPU, priorities are determined on the
basis of 'daisy-chaining'. The daisy-chain sequence is a
hardware feature of an F8-microprocessor system.

(¢) When a valid interrupt request signal is detected by
the 3850 CPU, it ceases current program execution at the
conclusion of the instruction currently being executed.
However, an interrupt will not be acknowledged at the con-
clusion of the following privileged instructions:

Pk

PI

POP

JMP

OUTS (except 0,1)

ouT

EI

LR W,J
(d) The 3850 CPU SENDS out an interrupt acknowledge signal.
It is the way in which this signal is trapped that imple-
ments interrupt priority, when more than one interrupt
request line is true, as described in step (b).

(e) When the 3850 CPU sends out an interrupt acknowledge
signal, it clears the interrupt enable status within the

3850 CPU thus disabling all subsequent interrupts.
243

(f) The chip that traps the interrupt acknowledge signal
output in step (e) responds by transmitting the contents of
its interrupt address register as the next contents of PCO

register. These interrupt addresses are as follows for

different chips:

INTERRUPT ADDRESSES
CHIP
TIMER EXTERNAL
3851 PSU Non-programmable mask option
3861 PIO (MK 90002) H'0340' H'03CO'
3861 PIO (MK 90003) H'0320' H'03A0'
3853 SMI Programmable option

(g) The PSU or SMI logic moves the contents of PCO to PC1
and then loads the address from step (f) into PCO. Thus, a

program dedicated to the acknowledged interrupt request

line is executed.

B3 THE F8 INSTRUCTION SET

The following pages describe the F8 instruction set.

244

The F8 instruction set
(p.245-247)

has been removed
for copyright reasons

The following HMSU program is for the master processor

APPENDIX C -

THE HMSU PROGRAM LISTING

of the HMSU:

ADDR

OCESSOR
>0800
»0801
»0802
»0803
»0804
»08095
»0806
»0807
»0808
»0B09
#0804
~0B0R
~080C
»080D
>0B10
»>0811
»0812
»0813
0814
»0815
»0818
»081%9
»0814A
»081EB
»081C
»081D
>083C
»>083D
»0B3E

SET
*083F
»0040
»0041
»0042
0043
»0044
>0045
»0046
0047
>0050
»0840

NTER
»0841
»0842

ESS
0843

R SET
»0844
»>0845
»0844
»0B47
>0848
»0849

ESS
20844

UNTER
>087F

TER
>0BEBF

VE1
»0BFF

VEZ2
>084C
»>084F

T
»0850
»087E

OBJECT FLAG ST #
0001

o002
0003
0004
0005
00064
0007
ooo8
0009
0010
0011
0012
0013
0014
0015

00355
0056

0057
0058

MOSTEK 3870/F8 CROSS ASSEMBELER FAGE 0001

SOURCE STATEMENT

$TITLE-HMSU-AN ASSEMELY

C1 EQU H'0BOO"
c2 EQU H’0801’
C3 EQU H'0BO2
LA EQU H'0803"
NS EQU H'0804"
MS EQU H 0BOS
CM EQU H'0806"
RUNND EQU H’0BO7
ISF1 EQU H’0B80B"
K11 EQU H’0B80%"
Ki2 EQU H’0BOA
K13 EQU H’0BOB"
K14 EQU H’0BOC”
SI1 EQU H*oBOD!
ISF2 EQU H 0810
K21 EQU H'0B11”
K22 EQU H’0B812'
K23 EQU H 0813
K24 EQU H'0B14"
8§12 EQU H/ 0815
I5P3 EQU H 0818’
K31 EQU H'0B19"
K32 EQU H'0B1A’
K33 EQU H'0B1B’
K34 EQU H'0B1C’
813 EGU H’081D"
RCFS EQU H*0B3C”
RFPS EQU H’ 083D
WFCFS EQU H’O0B3E’
WFFS EQU H 0B3F
ZOMNO EQU H”40°

ZON1 EQU H" 41"

ZON2 EQU H 42’

ZON3 EQU H' 43"

Z0N4 EQU H 44"

ZONS EQU H" 45"

ZON& EQU H 46"

ZON7 EQU H’47’

MOTA EQU H S0’

LZAaC EQU H 0B40"
SZONA EQU H 0B841"
TSZONA EQU H 0B42
RFCMS EQU H"0B43"
FIDFLG EQU H'0B844"
ISMIFG EQU H 0845
MSFLG EQU H'0B46"
CHFLG EQU H 0847’
SLA EGU H' 0848
TSLA EQU H'084%
TLZAC EQU H'0B4A’
SFAD ERU H/Q87F
SFA1 EQL H’OBEF *
SPA2 EQU H’08BFF”
RFMS EQU H'0B4C "
WCMS EQU H’0BAF *
WFMS5 EQU H 0B850
MTRF EQU H'0B7E"

248

DATASET = DKOIHMSU

+8RC

LANGUAGE FROGRAMME FOR MASTER PR

+READ COUNTER PDP SET
tREAD FLAG FDF SET
FWRITE FLAG COUNTER PDP

iWRITE FLAG FDP SET
JHEATING ZONE ADDRESSES!

#CONVEYOR MOTOR ADDRESS
iLOAD & ZONE ADDRESS COU

iSTARTING ZONE ADDRESS
FTEMF STARTING ZONE ADDR

iREAD FLAG COUNTER MASTE
iFID FLAG

$ISMI FLAG

iMICRD SWITCH FLAG
iCOMMON MEMORY FLAG
FSTARTING LOAD ADDRESS

s TEMF STARTING LOAD ADDR
$TEMP LOAD & ZONE ADD CO
iSTORED FORT ADD FOR MAS
iSTORED' FORT ADD FOR SLA
fSTORED FORT ADD FOR SLA

iREAD FLAG MASTER SET
fWRITE CDOUNTER MASTER SE

tWRITE FLAG MASTER SET
iMASTER TRANSMITT FLAG

OBJECT FLAG ST #

ADDR
+08BE
>0BFE
>0851
»0852
ER
>0A00
>0853
»>08354
>0855
EDl FOWER
»0856
»0870
0875
0874
>0000
0000
‘0000 1A
AT CFU
‘0001 70
‘0002 BO
‘0003 Bl
‘0004 BB
‘0005 B9
‘0006 EBA
‘0007 2720
‘0009 2721
‘000B 2722
‘000D &7
ER
‘000E 280407°
‘0011 66
‘0012 2804077
‘0015 &5
‘0016 2804077
‘0019 2B8040E’
TINE
‘Q01C 240800
‘001F 20FF
‘0021 S50
Q022 70
0023 17
‘0024 30
‘0025 RAFD
‘0027 20FF
‘9029 2723
‘002 71
2
‘002C 2722
‘002E 20FD
DED IN
‘0030 EB
‘0031 73
0-1
‘0032 BA
‘0033 71
0C’-H’'OD’
‘0034 BC
0035 20F0
‘0037 EBI
‘0038 71
‘0039 BE
‘003Aa 43
‘DQ3B &8
“003C 20FD
“003E 5D
‘003F 201E
‘0041 5D

0059
0040
0061
0062

0063
00564
0065
0064

0067
00s8
00469
0070
0071
0072

0073

0074
0075
0076
0077
0078
0079
0080
0081
oog2
0083

0084
0085
0086
0087
0088
0089

00%0
0091
0092
0093
0094
0095
0096
0097
0098
0099

0100
0101

0102
0103

0104
0105

0106
0107
0108
0107
0110
0111
0112
0113
0114
0113
0116

S1TRF
S2TRF
TRF
TRFC

SSA
MSCNT
SNOD
ANSWER

TRUNND
RECD1
RECO2
RECO3

FINITIALIZATION

AGA

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0002
SOURCE STATEMENT

= DKOIHMSU ,SRC

EQU H*0BRE"’ iSLAVEL1 TRANSMITT FLAG

EQU H’'OBFE’ 1SLAVE2 TRANSHMITT FLAG

EQU H’0B51” i TRANSHISSION FLAG

EQU H’0BS2 i TRANSMISSION FLAG COUNT

EQU H’0A00" iSTARTING STACK ADDRESS

EQU H 0853" iMICRO EWITCH COUNTER

EQU H 0BS54 iSAMFLE NUMBER STORE

EQU H’ 0BS5S iTEMF STORE FOR CALCULAT

EQU H’ 0856 iTEMP STORE FOR RUNNO

EQU H 0B70 iLOOF1 RECORD ADDRESS

EQU H"0B75" iLOOF2 RECORD ADDRESS

EQU H'0B7A" iLOOF3 RECORD ADDRESS
FROCEDURE STARTS HERE. ' vossvsvasassvas

ORG H 0000 iFROGRAM-HMSU STARTS AT

nI #DISABLE ALL INTERRUFTS

CLR iCLEAR 1/0 FPORTS

ouTs 0 iND-0

ouTs 1 FiND-1

ouTs =] iND-B

outs o iNO~-9

ouTsS H’0A’ iND-A

ouT H 20 FNO-20

ouT H’21' iNO-21

ouT Ht 227 iND-22

LISU 7 iCLEAR CONTROL LOOFP BUFF

FI ZERO 26 ol dr s | Bl ¢

LISU & i0767°-060"

Pl ZERD

LISU S $0°97°=07%0"

FI ZERD

PI SHUT FJUMP TO SHUTDOWN SUBROU

necr c1

LI HiEE

LR 0sA

LIS 0

ST

ns 0

BNZ AGA

LI HEEE:* sCLOSE TIMER AT FPIO-2

ouT H 23

LIS 1 SEXT INT ENABLED AY PID-

ouT H/227

LI H'FD’ $253 TIMER MAX COUNT LOA

ouTs H’ OB’ iFORT-B OF PID-1

LIS 3 s TIMER INT ENABLED AT PI

ouTs H 0/’

LIS 1 $SMI VECTOR ADD PORTS H’

ouTs H'oC” FARE LOADED WITH H’0280°

g HFO*

ouTs HOoD"

LIS 1 sEXT INT ENABLED AT SMI

ouTs H’QE’

LISU 3

LISL 0

LI H'FD’

LR IrA

LI 30

LR 1:A

249

ADDR

‘0042
‘0044
‘0045
‘0046
‘0049
‘0044
‘004D
‘004E
‘0051
‘0052

‘0053
‘0054
Q057
‘0058
‘005A
‘005C
‘Q05SF
‘0060
‘0062
‘0064
‘0067
‘0068
‘006A
‘006C
‘DOSE
‘0071
‘0073
‘0078

‘0078
‘007A
‘007C
‘O07E
‘0080
‘0082
‘0083
‘o0BE
‘00BA
‘00BC
‘00BE
‘00BF
‘0091
‘0094
‘0095
‘0096
‘0099
‘0094
‘00%E
‘00%D
‘00A0
‘00A3
‘00A4
‘00As
‘00AB
‘00AA
‘00AaD
‘00AE

OBJECT FLAG ST # SOURCE STATEMENT

2501
8413
2A08B45
14

2501
8415
2A08B51
16

2501
8408
F0ES
290489
?0E1
290248°
gonc

2040
2720
2621
2501
BAFE
2A0B3E
2804007
2041
2720
2621

=2
8400
280171

0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0147
0150
0151
0152
0153
0154
0155
01356
0157
0158
015%
0160
0161
0162
0163
0164
0165
01464
0167
0168
0169
0170
0171
0172
0173
0174

BUY

FID
TRMITT

i ISHI
ISMI
STAY

FULL

SAME
TEST1

SETE

MOSTEK 3870/F8 CROSS ASSEMELER PAGE 0003
DATASET = DKOIHMSU ,SRC

LI H QA"
LR S»A
LIS 0
ncI FIDFLG
ST
nCI SNO
ST
DCI ISMIFG
LIS 1
ST

tHAIN FROGRAM - LOWEST FRIORITY ROUTINE STARTS HERE.....
EL
DICI FIDFLG
LM
CI 1
BZ FID
ncI ISMIFG
LM
(o ¢ 1
BZ ISMI
DCI TRF
LM
CI 1
BZ TRMITT
BR BUY
JMF FIDR
BR BUY
JMP TRMIT
BR BUY
ROUTINE LOOKS FOR MNEW DATA INFUT FROM POP-11.,...
LI H 40
ouT H’20
IN H*21°
CI 1
BZ STAY
ncr WFCPS
PI CLEAR
LI H 41"
ouT H7 20
IN H221¢
CM
BZ SAME
FI COFPY
LISU 3
LISL 1
DCI SI1
LM
LR SsA
BR TEST1
JMF BUYOT
OCI Cc1
LM
CI HeEE"
BZ SET1
ER X1
DCI SPAO
LIS 1
5T

250

ADDR

‘00AF
‘00R2
‘00B3
‘00B3
‘00RB7
‘00BY
‘00BC
‘O0BD
‘O0BE
‘00C1
‘00C2
‘00C4
*00Cé
‘Q0CY
00CC
‘00CD
‘00CE
‘00D1
‘oonz2
‘o004
‘o0Ds
‘Q0n9
‘o0DC
00DD
‘00DF
‘Q0E1
‘O0E4
‘O0ES
‘00E7
‘00E?
‘QOEC
‘O0ED
‘O00EF
‘00F1
‘O0F4
‘DOF7
‘00F8
"O0F%
'00FC
‘O00FD
‘0100
‘0101
‘0102
‘0103
‘0106
‘0108
‘0109
‘910C
‘010F
‘0110
‘0111
‘0114
‘0115
‘0118
‘0119
‘011B
‘011C
5 B

OBJECT FLAG ST #

2A0801
16
25FF
8403
7006
2A0BEF
71

17
2A0802
146
25FF
8404
290184
2A08FF
71

17
240800
16
25FF
8404
2901F0’
2A0806
16
2501
8414
2A0806
16
2502
8455
2A08B06
16
2503
841C
2901847
2A0840
72

17
2A0848
2C
2A0BO3

A

A

A

0173
0176
0177
0178
0179
0180
0181
0ig2
0183
0184
0185
0184
0187
0188
0189
0170
0171
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
022

0230
0231
0232

X1

SET2

X2

SET3

TEST2

ON

uuL

WWW

DCI
xpc
ncr
LM
XDC
ST
DCI
=1
ST
JMF
ncI
LIS
ST
ICI
Xone
DCl
LM
Al
LR
CI

MOSTEK 3870/F8 CROSS ASSEMELER FAGE 0004
SOURCE STATEMENT

DATASET = DKOI!HMSU .SRC

c2

H'FF?
SET2
X2
SFPAl
1

c3

HFF
SET3
BUYOUT
SFA2

1

Ci

HFF "
ON
CMAR
cH

H’01"
uuu
CM

H02”
QALY
CHM

H/03’
WWW
BUYOUT
LZAC

2

SLA

LA

SZONA
ZONO

BUYOUT
LZAC

3

SLA

LA

H' D2
0sA

H’3E"
LAD

251

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0005

ADDR OBJECT FLAG ST # SOURCE STATEHMENT DATASET = DKOIHMSU .SRC
‘0120 40 0233 LR A0
0121 253F 0234 CI H*3F
‘0123 B40C ; 0235 BZ LAN
‘0123 2C 0236 Xonc

‘0126 40 0237 LR ArQ
10127 A7 0238 ST

‘0128 900R 0239 ER BUY1
‘012A 2020 0240 LAOD LI H' 20"
7012C 2C 0241 Xne

‘012D 17 0242 ST

"012E 9005 0243 BR BUY1
‘0130 2021 0244 LAN LI H*21"
‘0132 2C 0245 xoc

‘0133 17 0246 ST

‘0134 2a0841 0247 BUY1 DCI SZONA
‘0137 2042 0248 LI ZON2
‘0139 17 0249 ST

‘013A 290033’ A 0250 JMF BUY
‘013D 240840 0251 VWV DCI LZAC
‘0140 73 0252 LIS 3
‘0141 17 0253 ST

‘0142 240848 0254 ncI SLA
‘0145 2C 0255 Xpc

‘0146 2A0BO3 0256 DCI LA
‘0149 16 0257 LM

‘0144 2405 0258 Al H’05’
‘014C 50 0259 LR 0sA
014D 253E 0260 CI Hf3E’
‘D14F BA4alA 0261 BZ LAO
‘0151 40 0262 LR Ar0
0152 253F 0263 CI H*3F*
‘0154 BALY 0264 BZ LAl
‘0156 40 02465 LR ArD
‘0157 2540 0266 CI H’ 40"
‘0159 8418 02467 BZ LA2
‘015B 40 0248 LR A0
‘D15C 2541 0269 CI Lt 5 1
‘015E B417 0270 BZ LA
‘0160 S50 0271 LR 0sA
‘0161 2542 0272 CI H 42"
‘01463 BAlS 0273 BZ LA4
‘0165 2C 0274 Xonc

‘0146 A0 0275 LR A0
0167 X7 0276 8T

‘01468 9015 0277 BR BUY2
‘0164 2020 0278 LAO LI H*20°
‘016C 900F 0279 BR BUY3
‘016E 2021 0280 LA1L X H* 214
‘0170 900B 0281 BR BUY3
‘D172 2022 0282 LA2 £l H?22"
‘0174 9007 0283 BR BUY3
‘0176 2023 0284 LA3 LI HY237
‘0178 2003 0285 ER BUY3
‘0174 2024 0286 LA4 LY H’24’
ro17E 2C 0287 BUYZ xpc

‘017D 17 0288 ST

‘017E 240841 0289 BUYZ OCI SZONA
‘0181 2045 0290 LI ZONS

252

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0006

ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOIHMSU SRC
‘0183 17 0291 ST
‘0184 2A0844 0292 BUYOUT DCI FIDFLG
‘0187 71 0293 LIS :
‘0188 17 0294 ST
‘0189 2A0845 0295 RUYOT DCI ISMIFG
‘o18C 70 0296 LIS 0
‘o18n 17 0297 ST
“018E 290033° A 0298 JMF BUY
0299 FCOFY SUBROUTINE COFPIES ISMI INTD MASTER’S FRIVATE MEMOR
i
0200 3AND COMMON MEMORY OF THE HMSU SYSTEM.
‘0191 OB 0301 COPY LR KsF
‘0192 1A 0302 DI
‘0193 71 0303 LIS 1
‘0194 2721 0304 ouT K121
‘0196 2080 0305 LI H'BO’
‘0198 2720 0306 ouT H” 20
‘0194 70 0307 LIS 0
‘019B B? 0308 ouTs ?
‘019C 2720 0309 ouT H 20
‘019E 2A0C00 0310 OC1 H*QCO0O”
‘01A1 2C 0311 Xpc
‘01A2 2A0800 0312 nCI H’ 0800
‘01AS 2040 0313 LI H'40° sCOUNT 64 LOADED IN REG
0
‘01A7 50 0314 LR OrA
‘01A8 207F 0315 LI L 4 i fREAD ADD LOADEDIN REG 1
‘01AA 41 0316 REPT LR Arl
‘01AB 2720 0317 ouT H*20’
‘01D 2621 0318 IN a8
‘018aF 17 0319 ST
‘01B0 2C 0320 xone
‘01B1 17 0321 ST
‘01B2 2C 0322 Xnc
"01B3 70 0323 LIS 0
‘01B4 2720 0324 ouT H 20
‘01B6 2721 0325 ouT H* 21
‘01B8 31 0326 ns 1
‘01B9 30 0327 ns 0
‘O1BA P4EF 0328 BNZ REFT
‘01BC 2A083E 0329 DCI WFCPS
‘O1BF 70 0330 LIS 0
0100 2721 0331 ouT H 21"
‘01C2 2080 0332 LI H"80"
‘01C4 2720 0333 ouT H 20
‘01C6 70 0334 LIS 0
‘01€7 2720 0335 ouT H* 20
‘01C%? 16 0336 LM
‘01CA 2721 0337 out H’21
‘01CC 2081 0338 Ll H'B81"
*Q1CE 272 0339 out H 20
0100 70 0340 LIS 0
0101 2720 0341 ouT H"20°
‘01n3 272 0342 ouT H" 23"
‘0105 1B 0343 EI
‘0106 oOC 0344 FK fRETURN
0345 ;COMMON MEMORY ROUTINE MAKES COMMON DATA AVAILAELE TO 0T
HER SLAVE
0344 FFROCESSORS.
#01F0O 0347 ORG H 01FO
‘01F0 08 0348 CHAR LR KsP

253

MOSTEK 3B870/F8 CROSS ASSEMELER FAGE 0007

ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOIHMSU .SRC
“01F1 54 0349 LR 450
‘01F2 1E 0350 LR NEY
‘O01F3 0A - 0351 LR AsIS
‘01F4 55 0352 LR S A
‘O01F5 2B0435° A 0353 F1 caLL
“OiFe 1B 0354 El
‘01F9 2A08FF 0355 ICI SFA2
‘O1FC 16 0356 LM
‘01FD 2501 0357 CI 1
‘Q1iFF 8413 0358 BZ sLv2
‘0201 2A08BBF 0359 DCI SFAlL
‘0204 14 0360 LM
‘0205 2501 0361 CI 1
‘0207 8414 0362 BZ SLV1
70209 2A087F 0363 DCI SPAOD
‘020C 16 0364 LM
‘020D 2501 0365 CI 1
‘020F 8413 0366 BRZ SLVO
0211 902D 0367 BR ouTT
‘0213 2A08FF 0348 SLVZ2 DCI SPA2
‘0216 70 0369 LIS 0
ST 17 0370 ST
‘0218 72 0371 LIS 2
‘0219 BY 0372 ouTs ?
‘0214 9024 0373 ER ouTT
‘021C 2A08BF 0374 SLV1 DCI SPA1
‘021F 20 0375 LIS 0
Q220 17 0376 ST
G221 71 0377 LIS 1
‘0222 B9 0378 ouTs 9
0223 2A0B7F 0379 SLVO IcI SFAD
‘0226 70 0380 LIS 0
Q227 17 0381 ST
‘0228 BRY? 0382 ouTs 9
‘0229 2A0851 0383 bcI TRF
r022C 71 0384 LIS 1
0220 17 0385 ST
“022E 2080 0386 ek H'BO"
‘0230 50 0387 LR 018
‘0231 2A0880 0388 nCI H’08807
‘0234 2C 0389 Xoc
‘0235 2A0CBO 0350 DCI H0CBO "
‘0238 16 0391 REFP LM
0239 2C 0392 xnc
‘023 17 0393 81
“0238. 2L 0394 Xpc
rp23C 30 0395 Ds 0
‘023D 94FA 0396 BNZ REF
‘023F 2804460 A 0397 OUTT FI RETM
‘0242 45 0398 LR ArS
‘0243 OB 0399 LR ISyA
‘0244 1D 0400 LR Wsd
‘0245 44 0401 LR Ard
‘0246 1B 0402 EX
‘0247 OC 0403 FK FRETURN

0404 FTRMIT-THIS SUBROUTINE TRANSMITS MASTER»SLAVE1l 2
0405 $SLAVE2 GENERATED DATA TO POP-11 VIA ISMI
‘0248 2042 0406 TRHIT LI H a2

254

ADDR

0244
‘024C
{024k
‘0250
10252
0255
0237
0259
‘0258
"p25C
"O25E
‘0261
‘0264
0265
‘0267
‘0269
‘Q26B
"026E
‘026F
0271
‘0273
‘0276
Q277
‘0279
‘0278
‘D27E
"027F
‘9281
‘0283
‘0285
‘0287
‘0288
‘028aA
‘028B
‘02BE
‘0291
0293
‘0295
‘0296
‘0298
‘0299
‘029C
‘029F
‘02A1
"02A3
"02A4
‘0246
‘0247
“02AA
"02A0
‘02RO
‘02B3
‘02B4
*Q2B7
‘02EB8B
‘02EB9
‘02EA
‘02RE

OBJECT FLAG

2720

2621

2501

84FE
2A0B4F
2043

2720

2621

8D

8404
290053 A
280400 A
71

2721

2082

2720
2A0BYE

16

2501

8413
2A08BEE

16

2501

84179
2A0BFE

16

2501

841F

9029

2010

S0

20B7

51

2A087F
2802037 A
90E1

2010

50

2047

51

2A0BEF
280203 A
90DE

2010

50

2097

51

2A0BFF
280203° A
2804007]
2A0852

2C

2A0852

1é6

1F

2C

1/

2723

ST # SOURCE STATEMENT

0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0440
0461
0462
0463
0464

TRY

SEND

TRO

TR1

TR2

MTR

S1TR

NEW

ouT
IN
CI
BZ
necr
50 ¢
ouTt
IN
CH
BZ
JHP
FI
LIS
ouT
LI
ouTt
DCI
LM
CI
BZ
DCI
LM
CI
BZ
DCI
LK
€I
BZ
ER
Bl 4
LR
LI
LR
ncI
i
BR
LI
LR
LI
LR
nCI
Pl
BR
LI
LR
LI
LR
OCI
FI
FI
ncI
xne
pcI
LM
INC
XDC
ST
ouT

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE
DATASET = DKOIHMSU ,SRC

H’ 20"
1 B 54
1

TRY
WCHMS
H” 43"
H" 20"
H 21"

SEND
BUY
CLEAR
1

H 21°
H'B2’
H 20"
MTRF

1
MTR
S1TRF

1
S1TR
S2TRF

i

S2TR
NEW

H 10’
Orh
H'B7”
irA
H’OB7F
WRITE
TR1

H 10*
0vA

H A7
1s4
H‘O0BEF
WRITE
TR2

H 10"
OrA

| i A7
194
H’'O08FF
WRITE
CLEAR
TRFC

TRFC

255

0008

MOSTEK 3870/F8 CROSS ASSEMELER PAGE 0009

ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOIHMSU .SRC
‘02BD 2083 0465 LI H'B3’
‘O2BF 2720 ‘0446 ouT H 207
‘02C1 280400 A 0467 33 | CLEAR
‘02C4 70 0468 LIS 0
‘02C5 2721 04469 out Hi21"
‘02C7 2082 0470 5 ¢ H'82°
L02LY 2720 0471 ouT H 207
‘02CE 2A08351 0472 ncI TRF
‘D2CE 70 0473 LIS 1]
‘Q2CF 17 0474 ST

‘0200 2900537 A 0475 JMFP BUY

0476 SWRITE-SUEROUTINE COFPIES PM DATA INTO
0477 31SMI WHICH IS USED EBY PDP-11 FOR DISPLAY

‘0203 08 0478 WRITE LR KsP
‘0204 70 0479 W1 LIS 0
‘02Ds 2720 0480 out H'20"
‘o207 2721 0481 ouT H' 21"
‘0209 16 0482 LM

‘02DA 2721 0483 ouT H*21*
‘020C a1 0484 LR Arl
f020D 2720 0485 ouT H 20"
‘02DF 30 0486 ns 0
‘O2EQ0 94F3 0487 BNZ Wi
‘02E2 OC 0488 PK RETURN

0489 FTIMER INTERRUPT ROUTINE STARTS HERE«ssvssossssnsnss
0490 iTOF FRIORITY ROUTINE - FID-1-%0002 - VECT ADD H 0340

>0340 0491 ORG H’ 0340
‘0340 08 0492 LR KsFP
‘0341 G54 0493 LR 4rA
‘0342 1E 0494 LR Jrl
‘0343 0A 0495 LR ArIS
‘D344 55 0496 LR 52A
0345 280435 A 0497 PI CALL
‘0348 63 0498 LISU 3
‘0349 48 0499 LISL 0
‘0344 AC 0500 LR ArS
‘0348 24FF 0501 Al H*FF’
0340 9427 0502 BNZ EXIIT
‘034F 20FD 0503 L i
‘0351 5D 0504 LR I:h
‘0352 4C 0505 LR ArS
‘0353 24FF 0506 Al H'FF’
‘0355 8409 0507 BZ SETP
‘0357 4A 0508 XP LISL 2
‘0358 4C 0509 LR ArS
‘0359 24FF 0510 AL HIFF "
‘035E 8410 0511 BZ SETI
0350 9017 0512 BR EXIIT
‘O35F &9 0513 SETF LISL 1
‘0360 2A080D 0514 DCI SI1
‘0363 16 0515 LM

‘0364 &C 0516 LR SsA
‘0365 2A0B44 0517 DCI PIDFLG
‘0368 71 0518 LIS 1
‘0369 17 0519 817

‘0364 SOEC 0520 ER XP
‘034C A 0521 SETI LISL 2
‘0360 200A 0522 LI H’0A’

256

MOSTEK 3870/FB CRDSS ASSEMBLER FAGE 0010

ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOIHMSU .SRC
‘034F 5C 0523 LR SsA

‘0370 240845 0524 ncI ISMIFG

‘0373 71 0525 LIS 1

0374 17 0526 ST

‘0375 2B0440’ A 0527 EXIIT FI RETN

‘0378 45 0528 LR ArS

Q379 OB 0529 LR I1SsA

‘0374 1D 0530 LR Wrd

‘D378 44 0531 LR A4

‘037C 1B 0532 EI

‘0370 oOC 0533 PK FRETURN

0534 SEXTERNAL MICROSWITCH INTERRUFT ROUTINE STARTS HERE....
0535 $FPID-2-VECT ADD H‘03A0°

>03A0 0536 ORG H'03A0’
‘03A0 08 0537 LR KsP
‘03A1 54 0538 LR 41A
‘03Aa2 1E 0539 LR JrlW
‘03A3 0OA 0540 LR ArIS
‘03A4 55 0541 LR S0
‘03A5 2B0435° A 0542 Pl CALL
‘03A8 1R 0543 EL

‘03AT 2A0BS3 0544 DCI MSCNT
‘03aC 2C 0545 xnc
‘03AD 2A0853 0546 DCI MSCNT
‘O3B0 16 0547 LM

‘03B1 24FF 0548 Al H'FF"*
‘0383 2C 0549 Xpc

‘03B4 17 0550 ST

‘O03BS 8403 0551 BZ SETé
‘03B7 9022 0552 BR QUIT
‘03B? 2A0853 0553 SETé DCI MSCNT
‘Q3BC 746 0554 LIS -]

‘O3BD 17 0555 ST

‘O3BE 2A0848 0556 ilog | SLA
f03C1 16 0557 LM

“Q3C2 1F 0558 INC

‘03C3 2A0848 0559 DCI SLA
‘03Cé 17 0560 81

‘03C7 253E 0561 cI H*'3E’
‘Q3C? B403 0562 BZ NVAL
‘O03CE %00E 0563 BR aulT
‘Q3CDh 2020 05464 NVAL LI H*20*
‘Q3CF 2A0848 0565 DCI SLA
‘o3D2 17 0566 ST

*03D3 28B04460° A 0567 PI RETN
‘0306 45 0568 LR AsS
‘0307 OR 0569 LR IS+A
‘0308 1D 0570 LR WeJ
‘030% 44 0571 LR Ard
‘03DAa 1B 0572 QUIT EI

‘03DE 0OC 0573 FK i RETURN

0574 $CLEAR-SUBROUTINE CLEARS 1/0 FORTS 20 221

»>0400 0575 ORG H’ 0400
‘0400 0B 0576 CLEAR LR KsP
‘0401 70 0577 LIS 0

r0402 2720 0578 ouT He 20’
‘0404 2721 0579 ouTt H!21:
‘0406 OC 0580 FK {RETURN

257

ADDR

‘0407
‘0408
‘0409
‘0404
‘040R
‘040D

‘040E
‘040F
‘0411
‘0412
‘0413
‘0414
‘0415
‘0416
‘0417
‘0419
‘041B
‘041C
‘041D
‘041E
‘041F
‘0420
‘0422
‘0423
‘0424
‘0425
‘0426
‘0427
‘0428
‘0424
‘042E
‘042C
‘0420
‘042F
‘0430
0431
‘0432
‘0434

‘0435
‘0434
‘0437
‘0438
‘0439
‘0434
‘Q4A3R
‘0D43C
Q043N
‘043E
‘DAZF
‘0440
‘0441
‘0442
‘0445
‘0444

OBJECT FLAG ST # SOURCE STATEMENT

08
&F
70
SE
BFFE
oC

08
2050

2050
50
78
51
40
Bl
2047
52
70
EO
42
B1
30
F4FE
70
Bl
EO
2050
30
32
31
F4F 0
ocC

&4
68
0E
02
oo
03
5D
2C
OE
02
ab
03
DE
2A0400
43
BE

0581

- 0582

0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0574
0595
0576
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
06079
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
062%
0630
0631
0632
0633
04634
0635
0636
0637
0638

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0011
DATASET = DKOIHMSU .SRC

ZERO SUBROUTINE CLEARS THE CONTROL LOOF BUFFERS

ZERD

LUF1

LR
LISL
LIS
LR
BR7
FK

KeP
7

0
DsA
LUF1

i SHUT SURROUTINMNE STOFPS THE CONVEYOR AND
iSWITCHES OFF ALL THE HEATERS OF THE FURNACE

SHUT

WAIT1

CLOSE

WAIT

CaLL

LR KsF
LI H*50
LR OrA
LIS 0
ouTs 0
LR Ar0
ouTS 1
DS 0
BNZ WAIT1
LI H*S0*
LR 0rA
LIS 8
LR 1+4
LR Ar0
ouTs 1
LY H 47"
LR 27A
LIS 0
ouTs 0
LR Ar2
CUTsS 1
s 0
ENZ WAILT
LIS 0
ouTs 1
ouTsS 0
LI H'S0
LR 0rA
ns 2
ns i
BNZ CLOSE
FK $RETURN
iCALL SUBROUTINMNE STORES WORKING REGISTORS IN RAM STACK
LISU 4
LISL 0
LR Q,0C
LR ArQU
LR I8
LR Ay QL
LR I8
XDC
LR Qs0C
LR Ay QU
LR I+A
LR Ar QAL
LR S1A
ncI SSA
LR A3
ADC

258

ADDR

10447
‘0448
*0449
‘0444
‘0448
‘044C
* 044D
‘044E
‘0 44F
10450
‘0451
40452
‘0453
40454
£0455
‘0456
‘0457
£0458
10459
*045A
' 0ASE
10450
*04SE
*0ASF

STACK
‘04560
‘0461
‘0A64
‘0465
‘0467
‘0468
‘04469
‘046A
‘048R
‘046C
‘046D
‘044E
‘046F
‘0470
‘0471
‘0472
‘0473
‘0474
‘0475
‘0476
‘0477
‘0478
‘0479
‘0474
‘047B
‘Q47C
‘0470
‘047E
"047F
‘0480
‘DAB1
‘0482
‘0483

OBJECT FLAG ST # SOURCE STATEMENT

44
17
49
17
45
17
64

1A
2A0A00
43
24F 7
53

0639
0640

0641

0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
04652
0653
0654
0655
0656
0657
0458
0659
0660
0661
0662
0663

0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
04689
0690
0691
0692
0693
0674
0695
04696

RETN

MOSTEK 3870/F8 CROSS ASSEMELER FAGE 0012
DATASET = DKOIHMSU .SRC

LR Ard
57
LE ArY
ST
LR ArS
ST
LISU 4
LISL 0
LR Al
8T
LR Arl
87
LR Arl
8T
LR ArS
ST
LR ArKU
8T
LR ArKL
ST
LR Ar3
al H'O09"
LR 3rA
FOF

JRETN SUBROUTINE RETURNS THE WORKING REGISTERS FROM RAM
DI
DCI S8A
LR Ar3
AL H*'F7*
LR 31A
ADC
LM
LR 49 A
LM
LR P8
LM
LR SrA
LISU 4
LISL 0
LM
LR IrhA
LM
LR IrA
LH
LR IrA
LM
LR SrA
LM
LR KUs @
LM
LR KL+A
LR AsD
LR QLA
LR AsD
LR QU A
LR nc-Q
A0
LR ArD

259

ADDR

‘0484
‘0485
‘0486
‘0487
‘0488

‘0489
‘0484
s
‘048D
‘048E
‘0491
‘0492
‘0493
‘0494
8
‘0497
‘0498
‘049B
‘04%9C
‘049D
‘04%E
‘04A1
‘04a2
‘04A4
‘0446
‘0447
‘04AA
‘044C
"04AE
‘04AF
“04E0
‘04B2
‘04R3
‘0A4EA4
‘04RBS6
‘04B7
‘04B8
‘04BE
‘04BC
‘O4RD
‘04C0
‘04C3
‘04C4
"04CS
‘04C6
‘0AC7
‘04C8
‘04C9
TURE
‘0ACA
‘04CD
"DACE
"‘D4CF
‘04ADO
‘0401
‘0404
‘040D
‘04Né
‘0409
‘04DA

OBJECT FLAG ST #

07
4E
06
OF
iCc

1A
2408479

2C
240848
16
2C
17
2A0842

2C
2A0841
16

2C

17
2A0840
16
2503
8409
240840
16
2502
8405
&7

&F
2007
-1

&6F
2003
&5

2A0809
16

o1
2806347
44

3A

06797
0698
06799
0700
0701
0702
0703
0704

07035
0706
0707
0708
070%
0710

0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743

0744
0745
07464
0747
0748
0749
0750
0751
0752
0753
0754

MOSTEK 3B70/F8 CROSS ASSEMEBLER FPAGE 0013

SOURCE STATEMENT DATASET = DKOIHMSU .SRC
LR QLA
LR ArD
LR AU A
LR nesQ
FOFP
FPID -~ ROUTINE STARTS HEREssss e v
PIDR DI
ncI TSLA FOETERMINES STARTING LOAD ADDRES
xnc
ncI SLA
LM
xpc
87
ncI TSZONA FDETERMINES STARTING ZONE ADDRES
Xuc
ncI SZONA
LM
xnc
ST
DCI LZAC
LM
B ¢ 3
BZ L1
ncI LZAC
LM
CI 2
BZ 1.2
L1 LISU 7
LISL 7
BR CALCU
L2 LISU 6
LISL 7
BR CAaLCU
L3 LISU 5
LISL 7
CALCU DCI TSLA
LM
ouTs 1
PI INFU
ncI ISP1
LM
LR 10r4A
LS 0
LR 11+4 sREG 11 CONTAINS ZERD
LR 1s4 FREG 1 CONTAINS ZERO
LR ArS
L.R [EY) fREG O CONTAINS MEASURED TEMPERA
Pl BSURT
LISL &
LR Arl0
LR SrA $STORE AWAYERROR EK
LR 244 iLOAD EK IN REG 2
ncI K1t jK11 IS LOADED IN REG 1
LM
LR 18
FI BMPY iK11XEK
LR Ard
LR 10+4

260

ADDR

‘040B 70

‘DALC SR

040D 4D

‘Q4DE 4C

‘04DF 52

‘04EQ 2A080A
‘D4E3 16

‘D4E4 51

'O04ES 2B043A° A
‘D4EB 2B0LFS’ A
"O4ER 280619’ A
HL

'O4EE 6C

‘0AEF 4C

‘04F0 52

‘04F1 2A08B0B
‘04F4 16

‘04FS 51

‘04F 6 2B063A° A
‘O4AF9 2B0&95° A
‘04FC 2BOSFD’ A
HU.HL

‘04FF 68

‘0500 4C

‘0501 52

‘0502 2A080C
‘0505 16

‘0506 51

‘0507 28B063A° A
‘0S0A 2806957 A
‘050D 2B805FD’ A
K14¥DEL(FK-1)
‘0510 bA

‘0511 4A

Q512 &5C

‘0513 68

‘0514 ©5C

“0515 4B

‘0516 4B

‘0517 5C

‘0518 6%

‘0519 4C

‘051A S0

‘051B 70

“051C 51

‘051D 2BOSFD” A
‘0520 2B05SBR’ A
‘0523 64D

‘0524 A4E

‘0525 SC

‘0326 6E

0527 AE

‘0528 BC

‘03279 0A

‘0524 18

‘08528 2138

0520 B843F

‘052F 0A

‘0530 18

‘0531 2130

‘0533 8445

0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765

0766
0767
07468
0769
0770
0771
0772
0773
0774

0775
0776
07277
0778
0779
0780
0781
0782
0783

0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812

LIS
LR
LISL
LR
LR
DCI
LM
LR
FI
FI
PI

LISL
LR
LR
DCI
LM
LR
PI
FI
FPI

LISL
LR
LR
ICcI
LM
LR
FI
PI
FI

MOSTEK 3B70/F8 CROSS ASSEMBLER FAGE 0014
OBJECT FLAG ST # SOURCE STATEMENT

0
11yn
S
ArS
2:A
K12

18
BMPY
TRAN
BSUET

ArS
214
K13

14

BMPY
TRAN
BEADD

ArS
2+4
K14

1A

EMPY
TRAN
BADD

Arl0
SrA

SrA

Arll
Srh

ArS
O

ir8
BADD
OUTFU

A D
Srh

AsD
SrA
Ar IS

H*38"*
CcL2
ArIS

H"30"
CL3

261

DATASET = DKO!HMSU .SRC

$POINTER AT EK-1

+EK-1 IN REG 2

iK12 IS LOADED IN REG1

FK12%EK-1

FRK11%EK-K12XEK-1 = RESULT IN HU.
iFOINTER AT EK-2

FEK-2 IN REG 2

iK13 IN REG 1

FK13XEK~-2

FK11%EK - K12¥EK-1 + K13XEK-2 =

JDEK(PK-1)U IS MOVED TO REG 2
iK14 IN REG 1

FK14%DEL(FPK-1)U
iK11%EK - K12XEK-1 + K13XEK-2 +

FOINTER AT DEL(FK)U

$FOINTER AT DEL(FPK-1)

sFOINTER AT DEL(FK)L

fFOINTER AT PK-1

iPK=DEL(PK) + FK-1 = HU.HL

$FOWER IS OUTFUT TO HEATERS

sUPDATE EK-1 TO EK-2

iUFPDATE EK TO EK-1

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0015

ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKO:IHMSU SRC

‘0535 2A087aA . 0813 ncI RECO3

‘0538 280599 A 0814 PI RECORI

‘OS3B 2A0844 0815 DCI FIDFLG

‘053E 70 0816 LIS 0

"OS3F 17 0817 ST

‘0540 2A0854 0818 ICI SND

‘0543 16 0819 LM

‘0544 1F 0820 INC

‘0545 2A0854 0821 nCI SNO

‘0548 17 0822 Sl

‘0549 2A0B04 0823 ncI NS

‘054C 8D 0824 CH

‘0540 B404 0825 BZ TSTRUN

‘054F 2900537 A 0B26 JHP BUY

‘0552 2A0856 0827 TSTRUN [DCI TRUNNO

‘0555 16 0828 LM

‘0556 2A0807 0829 DCI RUNNO

‘0559 BD 0830 CH

‘055A 840D 0831 BZ ENDRUN

‘055C 2A08B56 0832 1154 TRUNND

‘OS5F 16 0833 LM

‘0560 1F 0834 INC

‘0561 2A0856 0835 ICI TRUNNO

‘0564 17 0836 ST

‘0565 290053° A 0837 JMF BUY

‘0568 28049B° A 0838 ENDRUN FPI STOP

‘0568 90FC 0839 BR ENDRUN

‘0560 2A0870 0840 CL2 nciI RECO1

‘0570 280599° A 0841 PI RECORD

‘0573 280585’ A 0842 FI MODLZA

‘0576 2904B2° A 0843 JHP L2

‘0579 2A0875 0844 CL3 nCiI RECO2

+Q57C 280599’ A 0BAD PI RECORD

‘0S57F 2B0585° A 0844 6 MODLZA

‘0582 2904B6’ A 0847 JMF L3
0848 ;MODLZA SUBROUTINE MODIFIES LOAD & ZONE ADDRESS FOR THE
0849 $NEXT CONTROL LOOFP OF THE FID ALGORITHM

‘0585 0B 0850 MODLZA LR KsF

‘0586 2A0849 0851 DCI TSLA

‘0589 16 08352 LM

rosea 1F 0853 INC

‘058RB 2A084°9 0854 DCI TSLA

"0S8E 17 0855 ST

‘058F 2A0842 0856 DCI TSZONA

10592 16 0857 LM

0593 1F 0858 INC

‘05%4 240842 0859 ICI TSZONA

ro5%7 17 08460 ST

‘0598 OC (0=2-%§ FK $RETURN
0862 FRECORD SUBRDUTINE RECORDS SAMFPLE NUMBER, ZONE ADDRESS»
0863 $LOAD TEMFERATURE, FOWER TO THE ZONE & LOAD ADDRESS

‘0599 08 0864 RECORD LR Ks+F

‘0594 2C 0865 xpc

‘0S?E 2A08B54 0886 ICI SNO

‘O5%E 16 0867 LM

“O9YF 2E 0868 xnc

‘O05A0 17 08&% ST

‘05A1 2 0870 xoc

262

ADDR

"Q5A2
‘05AS
‘05Ab
‘QTA7
‘OSAB
‘05A7
‘05AA
‘OGAE
‘O5AC
'0SAF
"OSEO
‘05K
‘0582
‘O05EB3
"OSES
'05R7
‘05EB
"OSRBY
*OSHA

‘OSEE
‘QSRBC
‘0SBE
"QSEF
‘Q3CO
‘0SC1
‘0ac2
"05C4
‘05Cs
r0SCHe
‘O5C7
‘05CC
"OSCD
"O5CE
‘0501
‘08Dh2
‘0sD3
‘o5Eha
‘oSDe
‘05Dé
‘0ohe
ro5ne
‘05Da
‘0SDE
‘o50C
‘oshD
‘OSEQ
“ObEl
"OBE2
'OSES
‘DBES
“QHR7
‘OSES
"OSEA
"OSEER
"OSEC

OBJECT FLAG ST # SOURCE

240842
16
2c
17
&F
4C
17
2e
240855
14
2C
17
2c
ZA0OBAT
14
20
17
ot
2B

0871
0872
0873
0B74
0875
0876
0877
0878
0879
0880
0881
0882
0883
0B84
0BES
0884
0887
0888
0889
0890
0891
0892
0893
0894
0895
0894
0897
0898
0899
0900
0901
0902
0703
0704
0905
0906
0907
0908
0909
Q910
0911
0912
0913
0914
0915
0514
0917
0918
0919
0920
0921
0522
0923
0924
0925
096
0927
ow2g

STATEMENT

eI
LM
ADC
ST
LLYBL

FHK
NOF

MOSTEK 3B70/F8 CROSS ASSEMELER FAGE 0016
DATASET = DKOIHMSU .SRC

THLZONA

7

e

ANSWER

TSLA

FRETURN

$OUTFU SUBROUTINE OUTFUTS A BYTE OF ABSOLUTE FPOMER
iVIA FORT O FOLLOWED BY 150 MICRO SECONDS DELAY AND
i THEN THE ZONE ADDRESS IS SET UP ON FORT 1

QUTFU

NIL

COMT

LR
L1
LR
LIS
ouTs
LR
X1
BF
ER
LIS
eI
8T
ouTs
nel
LM
auTs
LIS
LR
LR
ER
LI5L
LE
LR
8L
INC
DeT
ST
ouTs
ner
L
ouTs
Bs
BNZ
LIS
ouTs
ouTs

K+F
H 50"
Orh

4]

4]
Arlo
H*BO’
NIL
CONT
Q
AMSWER

Q
TSIONA

1

1
Al
Sy
157
7

fr 10
Srh
1

ANSUER

0
TSZONA

263

ADDR

“OSED

‘QSEE
*O5EF
‘OSF0
‘O5F2
‘05F4
‘QOS5F3
"O5F &
‘O5F7
‘05F8B
'OSF9
‘OSFA
‘OSFEB
‘QSFC

‘OSFD
‘OSFE
“O5FF
‘0600
‘0601
‘0602
‘0803
ANS
‘0604
‘0806
‘0607
‘0608

‘0609
‘060B
‘060C
‘040E
‘0610
‘0612
‘0613
‘0615
‘0617
‘0618

‘0619
‘0614
‘061E
‘061C
‘061D
‘D461E
‘061F
‘0620
‘0621
0623
ORDER
‘0624
‘0625
‘D626
‘0627
‘0628
‘0629
‘0424

OBJECT FLAG ST #

oc

0929
0930
0931
0932

* 0923

0934
0935
0936
0937
0938
093%
0940
0941
0942
0943
0944
0945
0946
0947
0748
0949
0250
0951
0952
0953

0954
0955
0956
0957

0958
095%
0940
0961
0962
0963
0964
0965
0966
0967
0768
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979

0980
0981
0982
0983
0784
0985
0986

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0017
SOURCE STATEMENT DATASET = DKOIHMSU .SRC

FK iRETURN
i INFU SUBROUTINE INPUTS A BYTE OF DATA VIA FORT 0O

+POLLING ON STATUS BIT 1 OF FORT 8
INFU LR KsP
LOOF2 INS 8
NI H'02' iMASK BIT 1
BZ LOOFP2
LIS 1 sOPEN GATE
ouTs 8 iVIA PORT 8
INS 0 iREAD DATA VIA PORT 0O
LR SrA FAND STORE IN 0777
LIS 0
ouTs 1
ouTs 8 $CLOSE GATE
ouTs]
PK FRETURN
i BADD SUBROUTINE-16 BIT BINARY ADDITION IN
JREG(HU) .REG(HL)+REG(0) ,REG(1)=HU,HL

BADD LR KsP
LR DCyH #MOVE AUGEND TO DCO
LR Arl sLOAD LOWER ORDER BYTE OF ADDEND
ALDIC FADD TO AUGEND
NS 1
LR H:DC JRESTORE PARTIAL SUM TO H
LR Ar10 $LOAD HIGH ORDER BYTE OF PARTIAL
EFP BAD
INC
RAQD AS 0 $ADD HIGH ORDER BYTE OF ADDEND
LR 10:A fRESTORE TO GIVE COMFPLETE ANS IN
BND FINISH
LR Ar0
XI H’80"
BP NEGT
s ¢ H‘7F’
LR 10+A
ER FINISH
NEGT LI H'80"
LR 10+A
FINISH PK SRETURN

s BSURT SUBROUTINE-16 BIT BINARY SUBTRACTION IN
FREG(HU) .REG(HL)-REG(0) .REG(1)=HU.HL

BESUBT LR KeP

LR Ar10

LR BrA

LR DC+H iMOVE SUBTRAHEND TO DCO

LR Arl iLOAD LOW ORDER BYTE OF MINUEND

COM i COMPFLEMENT IT

INC # INCREMENT IT

ADC FADD TO SUBTRAHEND

BF RS0 $IF BIT 7 = 1440

ns 0 iCOMFENSATE BY DECREMENTING HIGH
BRSO LR HsDIC fRESTORE FARTIAL SUM TO H

LR Ar0 iLOAD HIGH ORDER BYTE OF MINUEND

com SCOMPLEMENT

INC § INCREMENT

AS 10

LR 10r4 iSTORE ANSWER IN REG(10)

END DONE

264

OBRJECT FLAG ST #

ADDR

‘062C 48
‘062D 2380
‘D&62F B1O6
‘0631 207F
‘0633 GSA
‘0634 9004
‘0636 2080
‘0638 O5A
‘0639 OC
TIFLICAND)
‘0634 0B
‘0638 41
‘063C E2
‘0630 58
R

"063E A1
‘063F 2380
‘0641 8108
‘0443 42
‘0644 2380
‘0646 B109
‘0648 FO00B
‘064A 41
‘04648 18
‘064C 1IF
‘064D 51
‘064E 90F4
‘0650 42
‘0651 18
0652 1F
0653 52
‘0654 78
‘0655 55
‘0656 70
‘0657 56
‘0658 57
‘0659 70
‘065A C1
‘045F B107
‘065D 42
‘065E Cé
‘065F 5é
‘0660 A7
‘0661 19
‘0662 57
‘0663 41
‘0664 13
‘04665 51
‘0666 AT
‘06467 B840C
‘0669 46
‘064A C6
‘066B 56
‘066C 1E
‘0660 47
‘D66E 13
‘0646F 1D
‘0670 19

0987
0988
0989

0970

0991
0992
0993
0994
0995
09964

0997
0798
0999
1000
1001

1002
1003
1004
1005
1006
1007
1008
1009

MOSTEK

SOURCE STATEMENT

NFOS

DONE

LR
XI
BF
LI
LR
BR
LI
LR
FK

ArB

H*B0"
NMFPODS
H'7F "
10sA
DONE
H*BO"
10+4

3870/F8 CROSS ASSEMBLER PAGE 0018

DATASET = DKOIHMSU .SRC

FRETURN

i BMPY SUBROUTINE - 8 BIT(REG1:MULTIPLIER)%E8 BIT(REG2:MUL

i=16 BRIT FRODUCT IN REGZ7(INT).REG&(FRA)

BMFPY

NEXT

NEG1

NEG2

MULT

EMF1

EMFP2

LR
LR
XS
LR

LR
XI
BF
LR
X1
EF
ER
LR

K P
Arl
2

8r+4

Arl
H'80"
NEG1
Ar2
H’ 80"
NEG2
MULT
Arl

irhA
NEXT
Ar2
2rA
SrA
b A
71A
BHMP2
Ar2

b
Ar?

A
Arl

1rhA

BMF3
Ard

brA
Jrl
A7

Wed

265

FSET MARK IN REG 8 FOR -VE ANSHE

$TEST FOR -VE NUMBER IN REG 1

$TEST FOR -VE NUMBER IN REG 2

BRANCH TD MULTIPLICATION

iREG1 NUMEBER IS +VE NOMW

$REG2 NUMBER 1S5 +VE NOW
FINITIALISE COUNTER TO B

§INITIALTSE PARTIAL PRODUCT

1S SIGN RIT OF MULTIPLIER SET 7
iNO! THEN SHIFT PARTIAL PRODUCT

FYES! ADD MULTIFLICAND TO
iPARTIAL PRODUCT

sSHIFT THE MULTIFLIER LEFT 1

FDECREMENT THE COUNTER
FEXIT IF DONE

$SAVE STATUS FOR CARRY

ALDR

‘0671
‘0672
‘0674
‘0675
‘0677
‘0879
‘0678
‘Q&7C
‘067E
‘0&7F
‘0681
‘0683
‘0685
‘0686
‘0687
‘o488
‘0489
‘048A
‘0468C
‘068BE
‘04690
06791
‘0692
‘0693
‘0694

REG1=0
‘0695
‘0696
‘0697
‘04698
‘0699
‘0694

EATING

‘06FB
‘06%C
"069E
"06%9F
‘08A0
‘06A1
‘08A2
‘06A3
‘06A4
‘06A6
‘06A8
‘06A%
‘06AC
‘0&6AD
‘06AE
‘06B1
‘06R2
‘06B3
"O6B4
‘O4B5S
‘O&B6
‘0&6B7
‘06RB
‘O6BA

OBJECT FLAG ST #

57
F0E6
47
2300
B406
207F
56
2o00C
46
2380
8103
2005
446
18
iF
56
48
2380
8103
?005
44
i8
iF
56
oc

08
446
50
70
S1
oc

2A0841
16

52

70

EQ

42

Bl

30
F4FE
2050

1045
1044
1047

. 1048

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

1071
1072
1073
1074
1075
1076
1077

1078
1079
1080
1081
1082
1083
1084
1088
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0019

SOURCE STATEMENT DATASET = DKQOI!HMSU .SRC
LR 71 A
BR EMP1 $60 BACK FOR NEXT
BMF2 LR A7
X1 H'00" fTEST FOR ALL ZEROS IN REG 7
BZ TEST
LI L erd 2
LR b A
ER ANS
TEST LR Ard
XI H'B0"
BF TWos
ER ANS
TWOS LR Ard
COM
INC
LR bsA
ANS LR Ar8
X1 H'80" sCHECK FOR -VE ANSUWER
BP NEGA
BR EXIT
NEGA LR Arh
COM
INC
LR 6rA
EXIT PK $RETURN
s TRAN SUBROUTINE TRANSFERS THE CONTENTS OF REG & TO 0 &
TRAN LR KPP
LR Asrh
LR 0sA
LIS (4]
LR 1:4
PK iRETURN

#STOP SUBROUTINE STOPS THE CONVEYOR AND CLOSES ALL THE H

FZONES ASSOCIATED WITH CONTROLLER NO-1

STOFP LR KsP
LI H’50’
LR 0:8
LIS 0
ouUTS 0
LR ArD
ouTs 1
T8T2 ns 0
BNZ T8T2
LI H’S50"
LR 0sA
ICI LZAC
LM
LR 1A
LCI SZONA
LM
LR 25A
TURN LIS 0
ouTs 0
LR Asr2
ouTsS 1
T8T1 ns 0
BNZ TST1
LI H'50"

266

MOSTEK 3870/F8 CRDOSS ASSEMELER FAGE 0020

ADDR ORJECT FLAG ST # SOURCE STATEMENT DATASET = DKO:!HMSU .SRC
‘04BC 50 1103 LR Osh

‘04BD 32 1104 ns 2

‘04BE 31 1105 ns 1

‘04BF 94F3 1106 BNZ TURN

‘046C1 OC 1107 FK FRETURN

‘>04C2 1108 END

MOSTEK 3B870/F8 CROSS ASSEMBLER FPAGE 0021

ANDR OBRJECT FLAG ST # SOURCE STATEMENT DATASET = DKOIHMEU +SRC
AGA 0023 ANS 068% ANSWER 0855 BADD OSFD
BAD 0607 BMF1 0659 BMF2 0663 BHF3 0674
BMFY 063A BSO 0624 BSUBT 0619 BUY 0053
BUY1 0134 RUY2 017E BUY3 017C BUYOT 0189
BUYOUT 0184 C1 0800 C2 0801 C3 0802
CaLCU 04EB8 CALL 0435 CL2 056D CL3 0579
CLEAR 0400 CLOSE 0423 CM 0806 CHAR 01F0
CMFLG 0847 CONT 0508 COPY 0191 DONE 0639
END 06C2 ENDRUN 0568 EXIIT 0375 EXIT 0694
FINISH 0618 FULL 0082 INFU 05EE ISMI 0078
ISMIFG 0845 ISF1 0808 ISP2 0810 ISF3 0818
Kil 0809 K12 080A K13 0B0E K14 ogoc
K21 0811 K22 0812 K23 0813 K24 0814
K31 0819 K32 081A K33 081B Ki4 o08icC
L1 04AE L2 04B2 L3 04B46 LA 0803
LAD 01é6A LAL 016E LAZ 0172 LA3 0176
LA4 017A LAN 0130 LAO 012A LOOF2 OSEF
LUF1 0404 LZAC 0840 MODLZA 0585 MOTA 0050
MS 0805 MSCNT 0853 MSFLG 08446 MTR 0285
MTRF 0B7E MULT 0654 NEG1 064A NEG2 0650
NEGA 0690 NEGT 0615 NEW 02AD NEXT 0643
NIL 05C8 NFOS 0634 NS 0804 NVAL 03CD
ON 0009 OUTFU 0SEB OQUTT 023F FID 006E
FPIDFLG 0844 PIDR 0489 QUIT 03DA RCPS 083C
RECO1 0870 RECOD2 0875 RECO3 087A RECORD 0599
REF 0238 REPT 01AA RETN 0460 RFCMS 0843
RFHS 084C RFFS 083D RUNNO 0807 S1TR 0293
S1TRF OBBE S2TR 02A1 S2TRF OBFE SAME 007D
SEND 0261 SET1 00AA SET2 00BY SET3 00cC?
SETéS 03B% SETI 036C SETF 035F SHUT 040E
811 ogoDn SI2 0815 SI3 081D SLA 0848
SLVO 0223 SLV1 021C SLV2 0213 SNOD 0854
SFAO 087F SFPA1l 08EBF SFAZ 08FF SSA 0A00
STAY 007C STOFP 049B SZONA 0841 TEST 067E
TEST1 00A0 TEST2 00CE TLZAC 0844 TRO 026B
TR1 0273 TR2 0278 TRAN 0695 TRF 0851
TRFC 0852 TRMIT 0248 TRMITT 0073 TRUNND 0856
TRY 024C TSLA 0849 TST 0SE7 TST1 06B7
1872 06A3 TSTRUN 0552 TSZONA 0842 TURN 06B3
TWoS 0485 UULU 00F4 YWY 013D Wi 02D4
WaIT 0427 WAITIL 04146 WCMS 084F WFCFS 083E
WFMS 0850 WFFS 083F WRITE . 0203 WWW 010C
X1 00AF X2 00BE XFP 0357 ZERD 0407
ZONO 0040 ZON1 0041 ZONZ2 0042 ZON3 0043
Z0ON4 0044 ZONS 0045 ZON& 0046 ZON7 0047

267

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0022
ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOI!HMSU LSRC

CROSS REFERENCE LISTING
SYMBOL VALUE TYFPE STHT STATEMENT REFERENCES

AGA 0023 0094 0096

ANS 0689 1061 1056 1052
ANSWER 0855 0066 0918 0903 0879
BADD OSFD 0947 0797 0783 0774
BAD 0607 0956 0954

BMF1 0659 1023 1046

BMF2 0663 1032 1025

BMF3 0674 1047 1034

BMFPY 0634 0998 0781 0772 0763 0752
BSD 0624 0980 0978

BSUBT 0619 0970 0765 0744

BUY 0053 0128 0837 0B26 0475 0417 0298 0250 0145 0143 0141
BUY1 0134 0247 0243 0239

BUY2 017E 0289 0277

BUY3 017cC 0287 0285 0283 0281 0279
BUYOT 0189 0295 0166

EUYOUT 0184 0292 0221 0208 0187
Cc1 0800 0002 0191 0167 0090
cz2 0801 0003 0175

cC3 0802 0004 0183

CALCU 04EB 0732 0729 0726

CALL 0435 0623 0542 0497 0353
cL2 056D 0840 0808

CL3 057% 0844 0812

CLEAR 0400 0576 0467 0456 0418 0153
CLOSE 0423 0607 0620

CH 0806 0008 0204 0200 0196
CMAR 01F0 0348 0195

CHMFLG 0847 0048

CONT 0SD8 0913 0901

COFY 0191 0301 0159

DONE 0639 0995 0992 0986

END 06C2 1108

ENDRUN 0568 0838 0839 0831
EXIIT 0375 0527 0512 0502

EXIT 0694 1069 1064

FINISH 0618 0967 0944 0958

FULL o082 0152

INFU 0SEE 0932 0735

ISMI 0078 0147 0134

ISMIFG 0B45 0046 0524 0295 0133 0124
ISP1 osoe 0010 0736

ISFP2 0810 0016

ISF3 0818 0022

Ki1 0809 0011 0749

K12 080A 0012 0760

K13 080OR 0013 0769

K14 osoc 0014 0778

K21 0811 0017

K22 0812 0018

K23 0813 0019

K24 0814 0020

K31 0819 0023

K32 0814 0024

K33 081E 0025

K24 081C 0026

268

MOSTEK 3870/F8 CROSS ASSEMELER FAGE 0023

ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DBKOIHMSU JSRC
11 04AE ; 0724 0719

L2 04B2 0727 0843 0723

L2 04E6 0730 0847

LA 0803 0005 02546 0227 0214
LAO 016A 0278 0261

LAl 0146E 0280 0264

LAZ 0172 o282 0267

LA3 0176 0284 0270

LA4 017A 02864 0273

LAN 0130 0244 0235

LAD 0124 0240 0232

LOOF2 OSEF 0933 0935

LUF1 0404 0585 0586

LZAC 0840 0041 1090 0720 0716 0251 0222 0209
MODLZA 0585 0850 0846 0842

HOTA 0050 0040

MS 0805 0007

MSCNT 0853 0064 0553 05446 0544
MSFLG 0B46 0047

MTR 0285 0436 0426

MTRF 087E 0058 0423

MULT 0654 1018 1008

NEG1 0644A 100% 1004

NEG2 0650 1014 1007

NEGA 06790 1065 1063

NEGT 0615 0945 0961

NEW 02AD 0456 0435

NEXT 0643 1005 1013

NIL 05C8 0902 0900

NFOS 0636 0993 0989

NS 0804 0006 0823

NVAL 03CD 0564 0562

ON 0009 0156 0194

OQUTFU OSER 0893 0798

auTT 023F 0397 0373 0367

FI1D 004E 0142 0132

PIDFLG 0B44 0045 0815 0517 0292 0129 0120
FIDR 0489 0703 0142

auIT 03DA 0872 0563 0552

RCFS 083C 0028

RECO1 0870 0068 0840

RECD2 0875 0069 0844

RECO3 087A 0070 0813

RECORD 0599 0864 0845 0BA1 0814
REF 0238 0391 0396

REPT 01AA 0316 0328

RETN 04460 0&64 0567 0527 0397
RFCMS 0843 0044

RFMS 0B4acC 0055

RFFS o830 Q0279

RUNND 0BO7 0009 0829

S1TR 0293 0443 0430

S1TRF OBBE 0059 0427

S2TR 02a1 0450 0434

S2TRF OBFE 0060 0431

SAME 0090 0166 0158

SEND 0261 0418 0416

SET1 00AA 0172 0170

269

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0024

ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOIHMSU .SRC
SET2 00R? 0180 0178

SET3 ooce 0188 0186

SETé 03B9 0553 0551

SETI 036C 0521 0511

BETP 035F 0513 0507

SHUT 040E 0590 00B?

SI1 080D 0015 0514 0142

812 0815 0021

SI3 081D 0027

SLA 0848 0049 0706 05465 0559 0556 0254 0225 0212
SLVO 02232 0379 0366

SLV1 021C 0374 0362

SLV2 0212 0368 0358

SNO 0854 0065 0B&é& 0821 0818 0122
SPAO 087F 0052 0379 0363 0172

SFAl 08EF 0053 0374 0359 0180

SFA2 08FF 0054 0368 0355 0188

S5A 0a00 0063 0665 0636

STAY 007¢C 01479 0151

STOP 0469E 1079 0838

SZONA 0B41 0042 1093 0712 0289 0247 0218
TEST 067E 1053 1049

TEST1 00A0 0167 0165

TEST2 00CE 0191

TLZAC 0B4A 0051

TRO 026B 0423

TR1 0273 0427 0442

TR2 027k 0431 0449

TRAN 0695 1071 0782 0773 0764

TRF 0851 0061 0472 0383 0137

TRFC 0852 0062 0459 0457

TRMIT 0248 0406 0144

TRMITT 0073 0144 0140

TRUNNO 0856 0067 0835 0832 0827

TRY 024C 0408 0410

TSLA 0849 0050 0884 0854 08L1 0732 0704
TST 05E7 0924 0925 0912

TST1 0&6B7 1100 1101

T8T2 06A3 1086 1087

TSTRUN 0552 0827 08235

TSZONA 0B42 0043 0921 0%06 0871 0859 0856 0710
TURN 0&6B3 1096 1106

TWosS 0685 1057 1055

uuu 00F4 0209 0199

vy 013D 02351 0203

Wi 0204 0479 0487

WAIT 0427 0611 0612

WALIT1 0416 0597 0598

WCMS 0BAF 0056 0411

WFCFS 0B3E 0030 0329 0152

WFMS 0850 0057

WFFS 08B3F 0031

WRITE 02D3 0478 0455 0448 0441

WWw 010C 0222 0207

X1 00AF 0175 0171

X2 00BE 0183 0179

XF 0357 0508 0520

ZERD 0407 0582 0088 0086 0084

270

MOSTEK 3870/F8 CRDSS ASSEMBLER FAGE 00235

ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKO!HMSU .SRC
ZONO 0040 / 0032 0219

ZON1 0041 0033

ZON2 0042 0034 0248

ZON3 0043 0035

Z0ON4 0044 0036

ZONS 0045 0037 0290

ZONS 0046 0038

ZON7 0047 0039

ERRORS=0000

271

APPENDIX D - THE DCHMSU PROGRAM LISTING

The following DCHMSU program listing for the PDP-11/10

minicomputer system:

FROGRAM DCHMSU

i

THIS IS A COMMUNICATION FROGRAM BETWEEN A OFPERATOR AND THE
SUFREMAL LEVEL FDF-11/10 MINICOMPUTER. THE INFIMAL LEVEL
CONSISTS OF THREE CONTROLLERS USED FOR CONTROLLING THE
TRAVELLING LOAD FURNACE IN THE DEPT OF SYSTEMS SCIENCE.

THE THREE CONTROLLERS ARE IMPLEMENTED IN THE HIERARCHICAL
MICROFROCESSOR SYSTEM UNIT (HMSU) USING THREE F8 MICROFROCESSORS.

oonanns

DIMENSION XK(4:3)sAC12)sARC123,8F(B) ' NAACLZ2) s TACLI2+8)y
1 IXK(4:3)+86G(3)+1SAC64)180(64)
INTEGER RHs IRUN
DIMENSION S51(4):82(15)53(7)»54(2)»811(4),822(15),183(7),1C(3)
COMMON /BLK1/C1,C2,C3,CM
COMMON /BLK2/N0O1C,NO2C»NO3IC
COMMON /BLK3/GR1sGR2sGK3»T1s T2 T3+ TI1»TIZ»yTIZ»TO1,TH2,TO3»
1 TF1sTF2+TF3
COMMON /BLKA/LAYNS»MSsRHyISF1,ISFP2,1I5F3
COMMON /BLKG/XKe ITXK
COMMON /BLK&/KCMy IRCPS» IRFFSy IWCFS s IWFFS

“ COMMON /BLK7/1SA» IS0 IRUN
DATA ON/’ON’/sOFF//0FF*/sDIS/'DIS /»SET/'SET’/+CON/‘CON"/
DATA CHAZCHA'/»FPAR/ ‘FAR‘/
LATA FX/0.004/:U7°U /2 VWV /W70 /

L THE DEFAULT VALUES OF THE CONTROLLER FARAMETERS ARE i

CH=U
L.A=0
NS=100
MS=0
RH=0
C1=0N
C2=0N
C3=0N
ISF1=50,0
18F2=50.0
18F3=50.,0
GR1=0.05
GR2=0.,05
GR3=0,05
T1=30.,0
T2=30.0
T3=30.0
TI1=90.,0
T12=20.,0
TIZ3=90.0
Thi=30,0
Th2=30,0
ThE=30,0
TF1=30,0
TF2=30.0
TF3=30.,0
NO1C=255

NOZC=255
GOTO 700

no CALL FRINT(’SELECT THE CONTROLLER ND ~ (I.E. 1 OR 2 OR 3))
READN(S 1001) ICNO

1001 FORMATC(I2)

IFCECNDLEQ.1)BOTO 40
ITF(ICND.EQ.2)G0TO 2
IFCICNDLWEQ.3)GOTO §

272

51 GOTO S50
H0 CaLl Q(p0 YOU WANT CONTROLLER-1 TO RE ON 77y INOL1C)
IF(INDLE)Y1»2,3
1 NOLC=0
C1=0FF
GOTO 51
3 NO1C=255
C1=0N
CALL FRINT(’ SFECIFY CONTROLLER-1 SET FOINT?)
READ(S,1111)IGF1
CALL FRINT(Y SFPECIFY CONTROLLER-1 CONSTANTS”)
CALL CONST(GK1»T1,TIL1TD1:TF1)
CALL QC'DD YOU WANT CONTROLLER-2 TO BE ON 77.INO2C)
IFCINO2CY A5 6

i NO2C=0
C2=0FF
GOTO 51

& NO2C=255
C2=0N

CALL FRINT(‘’ SPECIFY CONTROLLER-2 SET FOINT’)
READ(S,1111)ISF2
CALL FRINT(‘ SPECIFY CONTROLLER-2 CONSTANTS‘)
CALL CONST(GR2:T2»TI2»TD2»TF2)

] CALL QC‘D0 YOU WANT CONTROLLER-3 TO BE ON 77, IND3C)
IFC(IND3C)7+,8,9

7 NO3C=0
CI=0FF
GOTO 51

9 ND3C=255
C3=0N
CALL PRINT(’ SPECIFY CONTROLLER-3 SET FOINT’)
READ(S»1111)ISP3

1111 FORMAT(I4)
CALL FRINT(‘ SFECIFY CONTROLLER-3 CONSTANTS’)
CALL CONST(GRZ»T3sTI3»TO3»TF3)

B CALL FRINT(’ WHAT IS THE CONTROL MODE FOR CONTROLLRRS??)
READ(S» 500)CM
w00 FORMAT (AL)

CALL FPRINT(’ WHAT IS THE INITIAL LOAD ADDRESS IN ZONE-07')
READ(S,S01)LA

G501 FORMAT(I2)
CALL PRINT(’ SPECIFY THE NUMEER OF SAMPLES’)
READ(S»S02)NS

502 FORMAT(T4)

CallL FRINT(’ SFECIFY THE MOTOR SFEED’)
READ(S,»S03)ME

503 FORMAT(I4)

CALL FRINT(’ SPECIFY THE RUN TIME FOR THE FURNACE’)

CALL FRINT(’ IN HOURS - (INTEGER VALUE) ‘)

READ(S+503)RH

CALL FRINT(’ FRESS BREAK KEY NOW)

IF CIBREAK () +NE,0)GOTO 700

GOTO 25

700 CALL PRINT O RRORSORRK R R OR A ORI IOKORCKIOR R AOKOK RO ORI RO ORICIORK K 7)
CALL PRINT(‘ THE FOLLOWING INPUT COMMANDS ARE AVAILABLE’)
CALL FRINTC(” L11 *DIS*"~ FRINTS OUT OFERATOR SET INFORMATION’)
CALL FRINT(‘ [21 “SET"- OFERATOR CAN SET THE FARAMETERS?)
CALL FRINTC(Y L33 “CON'- PROGRAM CONTINUES’)
CALL FRINT([41 "CHA"-~ OFERATOR CAN CHANGE THE FARAMETERS?)
CALL FRINTC(Y [S51 *PAR"— PRINTS OUT THE LIST OF PARAMETERS‘)
CALL FRINT(’ - FRESS RETURN KEY AFTER ANY INFUT COMMAND”)
CALL FRINT O o0k Ak R KR HOKROKRORR ORI OKKKOR KRR OO 7)

of9 READICE» 4000 COMD

AHO0 FORMAT (A4)
IFCCOMDLEQ,DISIGOTO 701
IF CCOMDLEQ,SET)BOTO 702

bF
o

273

IF(COMDL,EQ.CONIGOTOD 703
TF(COMDLEQ,CHAYBOTD 704
ITFLCOMDLEQ.FARIGOTO 705
CALL PRINT(® “ERROR®*-INVALID COMMAND, TYFPE COMMAND AGAIN)

BOTO 599

705 CALL LIST
GOTO 25

701 CALL OFINFO
GOTD 25

702 6OTO 50

704 CALL CHANGE
CONTINUE

CALL Q(” DD YOU WANT TO CHANGE ANY MORE FARAMETERS?yIR)
IF(IR)311,311,704

311 CALL PRINT(‘ FRESS BREAK KEY’)
GOTO 25
703 CONTINUE

CALL CALCUCBRLT1sTIL»TIL TFL1pXK(Ls1) pXK(251) s XK(B9 1) s XK(4r1))
CALL CALCUCGKZ2yT2,TI2»TD2,TF29XK(192) s XK(252) »XK(Z52) s XK (452))
CALL CALCUCGK3s T3> TIZ»TDZsTFZsXK(193) s XK(2,2) s XK(323) s XK (453))
DO 1010 I=1+3

D0 1011 J=1+4

IF(XKCJ»I)oBT4140,0RXK(JrI)EQ.1.0)60TO 1012

1011 CONTINUE
1010 CONTINUE
GOTO 10195

1012 CALL PRINT(’..,INVALID CONTROLLER CONSTANTS.ssssansseenseosss’)
WRITE(S,1013)1
1013 FORMAT(1H 5. .,8ELECT NEW PARAMETERS FOR CONTROLLER NO‘»Iis’,.°/)

GOTO 1016
1015 WRITE(&s39)
39 FORMAT (1X/1H »7 K17,8Xs* K27:8Xs’ KI‘18Xs’ K47)

L0 1005 I=1,3
WRITECAy A0 XK(LsI) s XK (29 I) 9 XK(Z9 1) s XK(451)
40 FORMAT(1X/1H +F7.3»4XsF7.394XsF7.374%:F7.3)
1005 CONTINUE
DO 1006 I=1.3
Z=XKOL» I AXKR (22 II+XK(3 1)
Y=1,0~XK(4»1)
SG(I=Z/Y
IF(SG(I))BR2,B2,83
B3 IF(SG(I).LT,.FX)BOTO B2
WRITE(S 84)I»86(1)
GOTO 1006
82 CALL PRINTCY .o JUNSTARBLE STEADY 'STATE BB8IN e ss e v osesrsssosd
CALL FRINT(’,..SELECT NEW VALUES FOR KeTeTIveesoinsssssssrsas’)
WRITE(S,85)1
85 FORMATC(IH » .. 0F CONTROLLER NO “»I2)
1016 CALL FRINT(’FPRESS BREAK KEY AND USE *CHA® COMMAND’)
GOTD 25
£4 FORMAT(1H » ¢ STEADY STATE GAIN SG/»I2y'='31XyE7.3)
1006 CONTINUE
0o 1007 I=1,3
WRITE(6yB4)T+86(1)
1007 CONTINUE
TRUN=0
BIG=AMAXI(T1,T2,T3)
IF(RH.LE,0)G0TD 31
TIM=FL.OAT (RH)%3600.,0

GOTO 2001
31 IF(NS.EQ.0)GOTO 999
TIM=FLOAT(NS)%EIG
2001 SAM=TIH/RIG

IF(SAM.GE,240,0)60T0D 100
NE=TNT (SAM)
IRUN=0

274

GOTO 331

100 NG§=240
RUNNO=SAM/240,0
ITRUN=INT (RUNND)

331 RNS=FLOAT (NS}
TH=(RNSXEIG) /34600.,0
REP=FLOAT (IRUN)
ATIM=TMR (1. 0+REF)
IHRG=INT(ATIM?
FATIM=ATIM~FLOAT(IHRS)
AMIN=FATIMXA0,0
IMIN=INT (AMIN)
WRITE(&4s101)NS

101 FORMAT(1H » "NUMBER OF SAMPLES=’,14)
WRITE(&s102) IRUN

102 FORMATC(1Hy ‘RUN NUMBER~IRUN=‘,14)
WRITE(As»103)IHRS» IMIN

103 FORMATC(1IH » "ACTUAL RUN TIME OF THE FURNACE WILL RE=‘,I2y "HRS17y
1 12y "MINS.)
GOTO 998

Po9 CALL PRINT(’ .. .ERROR~ NS=0 IS5 INVALID...")
CALL FRINT(’ USE "CHaA" COMMAND’)
GOTO 700

9?8 CALL SUBIR
CALL SEND
sTop
END
SUBROUTINE Q{AI)
REAL NsNC
DATA Y/1HY/Z s N/L1HN/ s NC/2HNC/
CALL PRINT(? ")
CALL FRINT(A)
READ(S, 1000)ANS

1000 FORMAT(A4)
I=0
IF (ANS.EQ.NC)GOTO 92
IF (ANG.EQ,Y)GOTO 90
IF(ANS.EQ.NIGOTO 91
GOTO 92

90 I=1
GOTO 92

1 I==1

92 CONTINUE
RETURN
END
SUBROUTINE CONST(GRyT»TIsTD:TF)
CALL FRINT(‘ GAIN‘)
READ(S 2000) 6K
CAlL PRINT(’ SAMFLING INTERVAL’)
READC(S,2000)T
CALL FRINT(‘ INTEGRAL ACTION TIME’)
REAL(S 220000 TI
CALL FRINT(’ DERIVATIVE ACTION TIME?)
READCS,2000)TH
CALL FRINT(’ FILTER TIME CONSTANT’)
READCS» 20000 TF

2000 FORMAT(F? . 3)
RETURN
END
SUBROUTINE CALCUCGE ToTLe TOr TF ¢ XK1 s XK2» XK3y XK4)
F1=6GKXT
F2=TF+T
AKI=(PL/P23 k(1 OH(TZTIYH(TD/T)
XRZ==C(FL/F2)% (1. 0+ (2., 0%TIN/T)))
XKZ=(GRRTIN /P2
Ki4=TF/F2

275

F000

RETURN

END

SUBROUTINE LIST

WRITEC(&»3000)

FORMATC(IH »"THE SYMBOLIC FARAMETERS TOD RBRE USED IN THE CHANGE
1 SUBRDUTINE ARE:! "/,

1 ‘CHM — CONTROL MODE’/»

1 ‘LA — INITIAL LOAD ADDRESS IN ZONE O‘/»

1 “NE& - NUMBER OF SAMPLES /s

1L ‘M& — CONVEYDR MOTOR SFEEDY/»

1 ‘C1,C2yC3 ~ CONTROLLER STATUS FOR CONTROLLERS 1+2s37/»
1 “ISP1»IGF2:15F3 —~ SET POINTS FOR CONTROLLERS 1,2:37/»

1 “GR1sGR2ZyGK3 - GAIN CINSTANTS FOR CONTROLLERS 1+2+37/»
1 “T1eT2,T3 ~ SAMFLING INTERVALS FOR CONTROLLERS 1:2:37/»
1 'TI1»TIZ:TI3 ~ INTEGRAL ACTION TIMES:+ess’ />

L ‘TOLsTO2,TIN3 ~ DERIVATIVE ACTION TIMES.:s’/»

1 “TF1¢TF2sTF3 — FILTER TIME CONSTANTS.ssss’)

CALL CLOSE(&)

RETURN

END

276

400

10

L

12

20

21
300

301

302

30
23

4P
303

304
305

306
510

SUBROUTINE CHANGE

INTEGER RH

DIMENSION S51(4)982(15)»83(7):584(2)511(4)»822(15)»183(7)»IC(3)
COMMON /BLK1/CM»,C1,C2,C3

COMMON /BLKZ2/NO1C,NO2CyND3C

COMMON /BLR3/GK1GK2yGRI»T1pT2TE»TI1»TIZ»TIZ»TO1TO2,TD3
1 TF12TF2+TF3

COMMON /BLKA/LAYNSsMS»RH»ISF1,1ISF2,ISP3
EQUIVALENCE (CM»S11(1))

EQUIVALENCE (IC(1)sNOL1C)» (ICC2),NO2C)» (IC(3)»NOIC)
EQUIVALENCE (GK1,822¢1))

EQUIVALENCE (LAsIS3(1))

DATA B1/°CM 72 ’C1» €27, 'C3"/

DATA S2//6K17» “GK27» 'GRI“ 9 ‘T1 » T2 'T3 9 'TI1 »'TI2'»“TI3'»
1 CTHE TR D3t TEL TER 0 TES 4

DATA S37LA‘» /NS’ » /M8’y “RH’ s "ISF1’ s 'I8F2, ISP/
DATA S4/°0N’» ‘0OFF‘/

CALL PRINT(‘ SPECIFY THE FARAMETER YOU WANT TO CHANGE’)
READ(S»400)FARA

FORMAT (A4)

IF(FARA.ER.CM)GOTO 20

N0 10 K=2,4

IF(FARA.EQ.S1(K)IGOTO 21

CONTINUE

D0 11 I=1,15

IF(PARA.EQ.B2(I))GOTO 22

CONTINUE

DO 12 Jd=1,7

IF(FPARA.EQ.53(.)))60TD 23

CONTINUE

WRITE(S,300)FARA,S11(1)

WRITE(Sy301)FARA

READ(S,302)611(1)

GOTO 310

WRITE(S»300)FARAYS1L(K)

FORMAT(* THE CURRENT VALUE OF ‘“yAd4y’ =':A4)
WRITE (5,301)FARA

FORMAT(’ SFECIFY THE NEW VALUE OF “rA4)
READ(S» 302811 (K)

FORMAT (A4)

IF(S11(K).EQ.54(1))GB0OTO 30
IF(S11(K).EQ.54(2))60TD 31

GOTO 310

IC(R)=256

GOTO 310

IC(KY=0

GOTO 310

WRITE(SsZ03)FARALS22(1)

FORMAT(’ THE CURRENT VALUE OF ‘sA4y’ ='3F7.3)
WRITE(S,301)FARA

READ(S » 204)622(1)

FORMAT(FZ . 3)

GOTO 210

WRITE(S:305)FARA» 1S3 ()

FORMAT (Y THE CURRENT VALUE OF “yA4s’ =7,14)
WRITE(S»301)FARA

READ(Sy306) 183¢.0)

FORMAT(I4)

CONTINUE

RETLRN

END

277

149

160
161
162
1463

Lé&a

SUBROUTINE OFINFO

INTEGER RH

COMMON /BLK1/C1,C2,C3,CHM

COMMON /BLK3/GR1yGR2»GRKIsT1s T2y T3+ TI1»TI2TIZ»TO1,TD2»TD3

1 TF1sTF2,TF3

COMMON /BLK4A/LAYNS»MSsRH» ISF1I8F2,I8F3

WRITE(&y149)

FORMAT (7 SRR RORAROR KKK K KKK AOROKAOK IR KKK KK R sKokok KOk ok ok kR ook skokok
LRRRARRKKIOOKKX KKK /7 DISFLAY OF OFERATOR SET INFORMATIONKK¥kkkk
SRR ROROR BOROKCROIOR R OIOKORRRROR IRk 7)

WRITE(S:150)CH

FEOEMATEXAT CONTROL- MODE —--s=inm o ressenman o en o oo 1 rAXrAL)
WRITEC(62151)1A

FORMAT (1X/7 INITIAL LODAD ADDRESS IN ZONE Q---1:2X,14)
WRITE(S5,152)NS

FORMAT (1 X/* NUMBER DF SAMPLES-—rr——-so——neeas 172X, 14)
WRITE (692 153)M8
FORMAT L1X/2 MOTHR BSPEED———— =i retr o P 2% 1I4)

WRITE(S6»165)RH

FORMAT(1X/’ RUN TIME FOR THE FURNACE IN HOURS:’,2X:14)
WRITE(6,154)

FORMAT(1X/CONTROLLER NO-==-==m=—m~- $8Xr ‘NO-17PX» ‘NO-27,9X»
1 “HD=3%)

WRITE(6,155)C1,C2,C3

FORMAT(1X/’ CONTROLLER STATUS--—--- 1 99%sA3 10Xy AT 10X A3)
WRITE(&:156)I5F1:ISFP2y ISF3

FERMAT (13X, SET POINTS-————r=c=s 192X I3510X213,10X»13)

WRITE(&,157)
FORMAT(1X/* CONTROLLER CONSTANTS‘)
WRITE(&9158)GK1»6GK2,G6K3

FORMAT LYY BALNS o mme e sore i o 126X F74306XsF74326X2F7.3)
WRITE(AH»159)T1sT2yT3

FORMAT(1X/* SAMPLING INTERVAL-———- 32 XrF7.316XF7,:396X2F7.4:3)
WRITE(&62160)

FORMAT (Y IN SECONDS‘)

WRITE(61461)TI1»TIZ»TI3

FORMAT(1X/* INTEGRAL ACTION TIME-—1 26XrF7.316XrF7.316XyF7.3)
WRITE(A»162)TDL, TO2,TD3E

FORMAT(1X/’ DERIVATIVE ACTION TIME:’»6XsF7,396XsF7,356XsF7,3)
WRITE(H6+143)TF1sTF2,TF3

FORMAT(1X/ FILTER TIME CONSTANT==3 16XsF7,396XsF7.316XsF7.3)
WRITE(&r164)

FORMAT CLX /7 R80R 0K OKOK R K 3R HOK KK KK R IOKOK R AOKKCHKK KO AR 30K K HOKK KRR HOK
DRk KRR RO KR RRK /¢ END OF INFORMATI ONARRKOKERKRRKOREIORKKRIORKK
220K AOROR AOK K R R OKOK K R KKK KKK KOKOIOR KR)

CalLL CLOSE(&)

RETURN

END

278

50

300

113
20

200

SUBROUTINE SURIR

DIMENSTION XK(4:3)sAC12)»ARC12),SF(8) yNAACL2) 1 TAC12:8))
1 IXK(4,3)

COMMON /BLKS/XK»y IXK

EQUIVALENCE (XK(1,1)yA(1))

EQUIVALENCE (IXK(1»1)sNAACL))

DATA SF/0.5:0,25:0,12550,0625,0.03125,0,015625

1 0.0078125,0,00390625/

Do 2 I=1:12

F(I)=ABS(ACL))

IFP=IFIX(F(I))

AR(I)=F(I)-FLDAT(IF)

BA=AR(I)

Do 3 N=1.8

TAIN)=BA-SF (N)

IF(TACNIIZS 29229

IACIsN)=0

GOTO 3

IACIyN)=1

BA=TA(N)

CONTINUE

CONTINUE

DO 50 I=1,12

CALL NUME (IACI»1)sIACI»2)»TACIF3)2IACIs4),1A(I+5)»IAI6)
1 IACIs7)sIACI8) s NAACL))

CONTINUE

WRITE(&»300)

FORMAT(1H »4Xy ACI)‘ 94Xy 'FRACTION OF A(I)’»4Xs BINARY FRACTION'»
1 4Xs’DCTAL EQU’ 44X, " INTEGER EQU’)

Do 20 I=1,12
WRITE(Hy112)ACI)sARCI) » CTACTI+N) s N=1+8) s NAACI) +NAACT)
FORMATC(LIH »2XsF7.316X2F6.3,12X,8(11),8X+03,8X»13)
CONTINUE

WRITE(6,200)

FORMAT(1H » “FINISH")

CALL CLOSE(&)

RETURN

ENI

279

SUBROUTINE SEND

INTEGER RH

DIMENSION ISACA4)» ISD(44) sNL1(4) s N2(4) s NI(4)»Z(12)
DIMENSTION XK(4,3) IXK(4:3)
COMMON /BLKZ2/NO1C, NOZC, NDIC
COMMON /BLE3/GK1sGR2sGR3yTLo T2 T3 TIL»TIZSTIZ»THL TO2STOE
1 TF1+TF2+TFD

COMMON /BLKA/LAsNSsMSsRH» ISP Ly ISFE, IGF3
COMMON /BLES/XK s IXK

COMMON /BLK&/KCHM» IRCPSy IRFFS, IWCFSy TWFFS
COMMON /BLKZ7/1ISA» 150y TRUN
EQUIVALENCE (XK(1»,1)»Z(1))
EQUIVALENCE (IXK(1,1)sN1(1))
EQUIVALENCE (IXK(1,2)yN2(1))
EQUIVALENCE (IXKC(1s3)N3(1))
IS5A(64)=1.8

KCM=1

IRCPS=10

IRFFS=11

IWCPES=12

IWFFS=13

DO 1 N=1:63
ISAC64-N)I=18A(64)+N
CONTINUE

ISDCL)=NOLC

ISDC2)=N02C

ISDCE)=N03C

ISD(4)=LA

ISN(S)=NE

IS0(6)=M8

ISD(7 y=KCH

18D (8)=TRUN

I1SD(9)=1I8F1

ISDCL14)=INT(TL)

ISN(17)=16F2

ISDC22)=INT(T2)

ISD(25)=18P3

ISD(30)=INT(T3)

0o 4 J=1.2

ISD(144J)=0

I8D(22+))=0

ISH(30+.0)=0

CONTINUE

0o 5 K=1:28

ISD(32+K) =0

CONTINUE

no 7 M=1.4

ISDCPHMI=NL (M)
ISDCL74M) =N2 (M)
ISNC25+MI=NI (M)

CONTINUE

I8N &1)=1IRCFS

I5D(62)=1RFFS

ISD(&H3)=TWCFS

ISH{6A)=TWFFS

DO 3 N=l,64
WRITEC(S22) THAIN) » ISDIN)
FORMAT (2 (T4»3X))

CONTINUE

RETURN

ENTI

280

	Blank Page

