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1. Introduction

The international asset pricing literature has firmly established that globally-diversified

funds entail nontrivial exposure to the currency market (Brusa et al., 2014; Massa et al.,

2016; Karolyi and Wu, 2021; Chaieb et al., 2021; Demirci et al., 2022). The recent study by

Sialm and Zhu (2024) further reveals time variation in globally-diversified funds’ currency

exposure driven by their active adjustments. Along the line of this literature, an important

subsequent question is what economic rationale underlies globally-diversified funds’ active

adjustments of their currency exposure. The first contribution of this paper is to examine

empirically the validity of one potential explanation—these active adjustments may result

from funds’ responses to systematic (market-wide) currency liquidity movements, which we

call currency liquidity timing. Such explanation is motivated by the fundamental role of sys-

tematic currency liquidity in determining market efficiency (Ranaldo and de Magistris, 2022)

and trading frictions (e.g., price impacts, trading costs, and margin constraints) (Brunner-

meier et al., 2008; Mancini et al., 2013; Filippou et al., 2024). Thus, systematic currency

liquidity movements may be perceived by globally-diversified funds as signals of favorable

(or adverse) changes in market efficiency and trading frictions related to the currency mar-

ket. With the incentive to seek (or avoid) market-efficiency- and trading-friction-induced

gains (or losses), funds may adjust their exposure either toward or away from the currency

market,1 ultimately resulting in active adjustments of their currency exposure.

To formalize the concept of currency liquidity timing, we build on the Cao et al. (2013b)

model of liquidity timing, specifying fund currency exposure (which we call currency beta) as

a function of demeaned systematic currency liquidity within the multifactor model of fund

1This can be achieved, for instance, by rebalancing the portfolio between foreign-currency-denominated
and domestic-currency-denominated assets or by adjusting holdings of foreign currency derivatives (Sialm
and Zhu, 2024).
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return. We show that fund incentive to engage in a particular form of currency liquidity

timing is reflected in the significance, sign and magnitude of the relation between currency

beta and demeaned systematic currency liquidity, that is, the currency-liquidity-timing co-

efficient. Over time, globally-diversified funds may not engage in currency liquidity timing

or otherwise in positive or perverse currency liquidity timing with varying degrees of ag-

gressivity. This suggests the currency-liquidity-timing coefficient may manifest in multiple

states, distinguishable by its significance, sign, or magnitude. Moreover, funds’ timing de-

cisions may be affected by external market conditions or internal fund performance. This

suggests there might exist external or internal drivers affecting which state (and when) the

currency-liquidity-timing coefficient may manifest in. The second contribution of this paper

is therefore to propose a novel modeling framework for the currency-liquidity-timing coef-

ficient with likely state switching. The proposed framework adopts an N -state endogenous

Markov-switching model of Hwu et al. (2021), where the N states allow for the realization

of multiple states in which the currency-liquidity-timing coefficient possibly manifests, and

the endogenous Markov-switching mechanism flexibly accommodates external and internal

drivers influencing the state transitions.

Methodologically, the proposed N -state endogenous Markov-switching model for cur-

rency liquidity timing is to some extent optimal compared with the existing return-based

timing models.2 First, our model estimates the timing coefficient across different states over

the sample period, unlike conventional timing models with ordinary least squares (OLS) (see,

e.g., Treynor and Mazuy, 1966; Cao et al., 2013b; Bali et al., 2021; Zheng et al., 2024, among

many others) which estimate the timing coefficient for the entire sample period. Therefore,

we take into account the potential dynamics in funds’ timing behavior. Second, our model

2Holding-based timing models (see, e.g., Jiang et al., 2007; Elton et al., 2012) are beyond the scope of
this paper.
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enables the examination of multiple states with unknown switching dates underlying the tim-

ing coefficient, thereby encompassing a range of dynamic timing models that require either

a priori known states or predetermined switching dates (see, e.g., Siegmann and Stefanova,

2017; Li et al., 2020a).3 This, as shown in our empirical analysis (see Section 4.2), facilitates

an extensive model estimation and comparison, ensuring that the states and switching dates

inferred from the selected best-fitting model specification reflect the real data rather than

being based on subjective beliefs. Third, our model investigates timing from a new perspec-

tive that focuses on the external and internal drivers influencing the state transitions in the

timing coefficient. We show that external drivers can include certain indicators of external

market conditions, while internal drivers are naturally represented by the error term in the

proposed model (i.e., the idiosyncratic shocks to the modeled fund return series). In this way,

we not only avoid biases in the timing coefficient estimate caused by ignoring endogeneity

in state transitions (Hwu et al., 2021) but also explore the reasons driving funds’ timing

decision-making.

Our empirical analysis revisits the globally-diversified fund sample considered in Sialm

and Zhu (2024), which includes 382 international fixed income mutual funds sourced from

the CRSP Survivor-Bias-Free US Mutual Fund Database. In constructing the variables

in the proposed model, we use the well-known currency factors proposed by Lustig et al.

(2011)—the dollar factor and the carry-trade factor—to proxy the risk factors specific to

the currency market; we use a set of four factors in Sialm and Zhu (2024)—the hedged

global bond market factor, the emerging bond market factor, the term factor and the credit

factor—to proxy additional risk factors that may influence the sample fund return; we exploit

3The changepoint timing model in Siegmann and Stefanova (2017) limits state switching to at most two
dates, and the Markov-switching timing model in Li et al. (2020a) restricts state switching between two
predefined states—the non-timing and timing states. Both are grounded on subjective beliefs, not reflecting
the real data.
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the widely used measure—the proportional quoted bid-ask spread—to proxy the systematic

currency liquidity; we use a binary variable for relative liquidity conditions constructed in

Li et al. (2020a) as a potential external driver of state transitions. With the constructed

variables, the proposed model is estimated for an equally weighted monthly return series

of sample funds during the sample period from July 2001 to December 2020. As such, the

empirical usefulness of the proposed model is demonstrated by examining sample funds’

currency-liquidity-timing behavior at the aggregate level.

The empirical results from the proposed model are summarized as follows. First, we

find evidence of currency liquidity timing at the aggregate level for the sample funds. Inter-

estingly, funds’ currency-liquidity-timing behavior exhibits a state-switching pattern across

different market periods: funds on average engage in perverse currency liquidity timing (i.e.,

adjust their currency exposure in a direction opposite to the systematic currency liquid-

ity movements) during tranquil market periods, but in positive currency liquidity timing

(i.e., adjust their currency exposure in a direction aligned with the systematic currency

liquidity movements) with a stronger degree of aggressivity during more turbulent market

periods. This is indicated by the best-fitting model specification with three distinct tim-

ing states: tranquil market periods are dominated by the model-implied perverse timing

state where the currency-liquidity-timing coefficient estimates are negative; turbulent mar-

ket periods are dominated by the model-implied weakly positive timing and strongly positive

timing states where the currency-liquidity-timing coefficient estimates shift toward largely

positive values. Motivated by the findings in Sialm and Zhu (2024), we associate the observed

state-switching pattern of funds’ currency-liquidity-timing behavior with their portfolio re-

balancing and currency hedging practices. Second, we find the state transitions in funds’

currency-liquidity-timing behavior appear to be driven by deteriorating external currency

market liquidity conditions and negative shocks to internal fund returns. In particular, upon
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worsening currency market liquidity conditions and poor performance, funds that previously

engaged in perverse currency liquidity timing will be more likely to shift toward positive

currency liquidity timing. This is suggested by the best-fitting model specification, in which

both our constructed variable for relative liquidity conditions and the model’s error term

show minor negative effects on the probabilities of state transitions from the model-implied

perverse timing state to the weakly positive timing and strongly positive timing states. Third,

robustness checks reveal that while various controls appear to show some foreseeable impacts

on the estimates in the best-fitting model specification, the aforementioned empirical results

of currency liquidity timing are not explained away by funds’ other behaviors, such as cur-

rency return timing, currency volatility timing and currency liquidity reaction.

The remainder of the paper is organized as follows. Section 2 sets up the model. Section

3 discusses the data and variables construction. Section 4 presents the empirical results.

Section 5 conducts robustness checks. Section 6 concludes. Technical details and additional

material on the robustness checks are provided in the Internet Appendix.

2. Model

Our model for currency liquidity timing is developed from the pioneering work of Cao

et al. (2013b),4 who show certain form of liquidity timing can be understood within the

multifactor model of fund return. We exploit this insight from Cao et al. (2013b) to assume

the following multifactor model generates a globally-diversified fund return

Rp,t = αp + βCur
p,t f

Cur
t +

J∑
j=1

βj
pf

j
t + εp,t, (1)

4Cao et al. (2013b) model of liquidity timing adheres to the traditional general models of return timing
and volatility timing (see, e.g., Treynor and Mazuy, 1966; Ferson and Schadt, 1996; Busse, 1999), except
that the market conditions considered is liquidity.
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where p denotes a fund and t denotes a month; Rp,t denotes the excess return of fund p (risk-

free rate is proxied by the one-month Treasury bill rate); fCur
t denotes the risk factor specific

to the currency market, with βCur
p,t (hereafter currency beta) denoting the corresponding factor

loading and capturing the currency exposure of fund p; {f j
t }J

j=1 denote the J additional risk

factors, with {βj
p}J

j=1 denoting the corresponding factor loadings and capturing the additional

risk exposures of fund p; αp is the intercept, which captures the risk-adjusted abnormal

return of fund p; εp,t, assumed to be independent and identically distributed as normal with

a zero mean and variance σ2 (i.e., εp,t ∼ i.i.d. N (0, σ2)), is the error term and captures the

idiosyncratic shocks to return of fund p.

Let LCur
t denote systematic currency liquidity in month t, and L̄Cur its historical average

up to month t.5 Currency liquidity timing refers to funds’ active adjustments of currency

exposure (βCur
p,t ) in response to a timing signal measured as the difference between systematic

currency liquidity (LCur
t ) and its historical mean (L̄Cur), which according to Cao et al. (2013b)

can be formulated as

βCur
p,t = βCur

p + φp(LCur
t − L̄Cur), (2)

where βCur
p denotes the average currency beta of fund p without timing; φp denotes the

currency-liquidity-timing coefficient of fund p. An insignificant φp indicates no currency

liquidity timing: a fund maintains the currency exposure at the average level, that is βCur
p,t

= βCur
p , regardless of systematic currency liquidity movements. A significant positive φp

indicates positive currency liquidity timing: a fund increases (or reduces) currency exposure,

that is βCur
p,t > βCur

p (or < βCur
p ), in response to upward (or downward) systematic currency

liquidity movements. A significant negative φp indicates perverse6 currency liquidity timing:

5We compute L̄Cur using the time series mean of LCur
t over the previous 60 months as suggested by Cao

et al. (2013b).
6Timing the market negatively is commonly referred to as perverse timing (see, e.g., Ferson and Schadt,

1996; Boney et al., 2009; Busse et al., 2024).
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a fund reduces (or increases) currency exposure, that is βCur
p,t < βCur

p (or > βCur
p ), in response

to upward (or downward) systematic currency liquidity movements. A large (or small)

magnitude (i.e., absolute value) of φp indicates a fund strongly (or weakly) engages in positive

or perverse currency liquidity timing.

In rationalizing why funds may be incentivized to engage in positive and perverse currency

liquidity timing, previous literature suggests that systematic currency liquidity covaries pos-

itively with currency market performance due to its fundamental role in determining market

efficiency (Ranaldo and de Magistris, 2022) and trading frictions (e.g., price impacts, trad-

ing costs, and margin constraints) (Brunnermeier et al., 2008; Mancini et al., 2013; Filippou

et al., 2024). Positive currency liquidity timing therefore may occur when funds anticipate

persistence in currency market performance (see, e.g., Menkhoff et al., 2012), adjusting their

exposure toward (or away from) the currency market expected to perform better (or worse)

alongside upward (or downward) liquidity movements. Perverse currency liquidity timing,

on the other hand, may occur in two scenarios. First, funds might exploit liquidity-induced

gains to reduce currency exposure (e.g., through currency hedging) when upward liquidity

movements are perceived as indicating more mild trading frictions (e.g., lower hedging costs).

Second, funds might anticipate mean reversion in currency market performance (see, e.g.,

Taylor, 2002; Serban, 2010), adjusting their exposure toward the currency market expected

to revert in the long run even if it temporarily performs worse alongside downward liquidity

movements.

Over time, funds may not engage in currency liquidity timing or otherwise in positive

or perverse currency liquidity timing with varying degrees of aggressivity. This suggests the

currency-liquidity-timing coefficient φp in (2) may manifest in multiple states, distinguishable

by its significance, sign, or magnitude. Hence, we assume φp in month t manifests in one of

N distinct states, which can be indicated by a latent Markov state variable st. Formally, we
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express φp as a function of st as follows

φp,st =
N∑

n=1
φp,nI(st = n), (3)

where φp,st denotes the state-switching currency-liquidity-timing coefficient of fund p; φp,n

denotes the realization of φp,st in state n; I(·) denotes the indicator function which takes

value one if st indicates state n (i.e., st takes the value n from the set {1, ..., N} in month

t), and zero otherwise.

To specify further how the latent Markov state variable st indicates the N states over

time, we assume the transition probabilities that st indicates state n in month t − 1 and

state j in month t for n, j ∈ {1, ..., N}, denoted by pnj,t, is given by

pnj,t = Pr(st = j|st−1 = n, zt, εp,t), (4)

where zt (hereafter transition covariates) contains the variables expected to influence the

state transitions; εp,t is the error term in (1). (4) has several empirical implications and

intuitions which we highlight as follows. First, the transition probabilities pnj,t are assumed

to depend on transition covariates zt, implying that zt affects the realization of st and

ultimately informs which state (and when) the currency-liquidity-timing coefficient manifests

in (see (3)). Such an assumption is motivated by the existing evidence that state transitions

in funds’ liquidity-timing behavior tend to be driven by external market conditions. For

example, Siegmann and Stefanova (2017) show that transitions in funds’ stock-liquidity-

timing behavior from the perverse timing state to the positive timing state are triggered

by the market microstructure changes; Li et al. (2017) document that transitions in funds’

bond-liquidity-timing behavior from the non-timing state to the timing state coincide with

market crash. Thus, by choosing zt as certain indicators of external market conditions,
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(4) accommodates the external driver influencing the state transitions in funds’ currency-

liquidity-timing behavior. Second, the transition probabilities pnj,t are also assumed to

depend on the error term εp,t, that is the idiosyncratic shocks to fund returns (see (1)).

Such an assumption is motivated by the prior analyses of funds’ active adjustments of risk

exposure in relation to their performance. For example, Busse et al. (2023) suggest funds that

trail in recent performance could be sensitive to their risk exposure in the hope of making

up performance deficit or preventing themselves from falling further behind; Sialm and Zhu

(2024) demonstrate that funds’ active adjustments of currency exposure are sensitive to their

downside returns. Thus, by viewing εp,t as certain indicators of internal fund performance,

(4) also accommodates the internal driver influencing the state transitions in funds’ currency-

liquidity-timing behavior.

To model the dependences of transition probabilities pnj,t on zt and εp,t, we adopt an N -

state endogenous Markov-switching model of Hwu et al. (2021), in which st ∈ {1, ..., N} is

alternatively described as the outcome of the values of N − 1 mutually uncorrelated random

variables, s∗
1,t, s

∗
2,t, ..., s

∗
N−1,t, such that

st =



1 if 0 = max
{
0, s∗

1,t, s
∗
2,t, ..., s

∗
N−1,t

}
2 if s∗

1,t = max
{
0, s∗

1,t, s
∗
2,t, ..., s

∗
N−1,t

}
...

N if s∗
N−1,t = max

{
0, s∗

1,t, s
∗
2,t, ..., s

∗
N−1,t

}
(5)

where each of the N − 1 random variables is assumed to follow the normal distribution

s∗
i,t ∼ N (γ̄i,st−1 + z′

tγ
z
i,st−1 + ρiεp,t, 1 − ρ2

i ), (6)

for i = 1, .., N − 1; γ̄i,st−1 = ∑N
n=1 γ̄i,nI(st−1 = n), γz

i,st−1 = ∑N
n=1 γ

z
i,nI(st−1 = n), and ρi
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are parameters to be estimated (hereafter we collectively refer to as transition parameters).

The transition parameters γz
i,st−1 and ρi allow the external and internal drivers to indirectly

affect the realization of st through s∗
i,t. More specifically, with a significant positive γz

i,st−1 , a

higher value of transition covariate zt leads to a higher value of s∗
i,t. Thus, s∗

i,t is more likely

to become the maximum among all the N − 1 random variables, resulting in an increased

probability that the st indicates state (i + 1) in month t (i.e., st = i + 1 in (5)). Similarly,

with a significant positive ρi, a larger positive idiosyncratic shock to fund return εp,t leads to

a higher value of s∗
i,t, resulting in an increased probability of st = i+1. It is also worth noting

that the conventional class of exogenous Markov-switching models (see, e.g., Hamilton, 1989)

is nested when transition parameters γz
i,st−1 and ρi are insignificant (i.e., in this case state

transitions shown in (4) depend only on the realization of the previous state st−1).

Given (5)–(6), the transition probabilities pnj,t in (4) take the following form

pn1,t = Pr(st = 1|st−1 = n, zt, εp,t)

= Pr(s∗
1,t < 0, s∗

2,t < 0, ..., s∗
N−1,t < 0)

pnj,t = Pr(st = j|st−1 = n, zt, εp,t)

= Pr(s∗
j−1,t > 0, {s∗

j−1,t − s∗
m,t > 0 : m = 1, ..., N − 1,m ̸= j − 1})

(7)

for n ∈ {1, ..., N} and j ∈ {2, ..., N} (See the Internet Appendix A for the detailed deriva-

tion).

The final form of our proposed N -state endogenous Markov-switching model for currency

liquidity timing can be summarized as

Rp,t = αp + βCur
p fCur

t + φp,st(LCur
t − L̄Cur)fCur

t +
J∑

j=1
βj

pf
j
t + εp,t, (8)

which is derived by replacing φp in (2) with φp,st in (3) and then substituting (2) into (1);
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where st ∈ {1, ..., N} and the associated state transitions are formulated by (5)–(7).

3. Data and variables construction

To conduct an empirical analysis, we revisit the globally-diversified fund sample con-

sidered in Sialm and Zhu (2024), which includes international fixed income mutual funds

sourced from the CRSP Survivor-Bias-Free US Mutual Fund Database. Specifically, we se-

lect funds whose stated objectives indicate that they specialize in international fixed income

investments, and exclude passively-managed index funds and ETFs from the fund sample.7

The dataset on international fixed income mutual funds expands Sialm and Zhu (2024) as it

spans from July 2001 to December 2020 at the monthly frequency. Individual fund-level re-

turn is the average across its share classes returns using share classes’ total net assets (TNA)

in the previous month as the weight.8 Individual fund-level TNA is the sum of TNAs among

its share classes. Following the convention in fund timing studies (see, e.g., Siegmann and

Stefanova, 2017; Bali et al., 2021), we further restrict our sample to funds that have at least

two years of returns and a minimum of $10 million in TNA.9 The final sample consists of

7We select funds whose CRSP objective code (as identified by crsp_obj_cd) is IF, which cover six
Lipper objectives: Emerging Markets Debt Funds (EMD), Emerging Markets Local Currency Funds
(EML), Global High Yield Funds (GHY), Global Income Funds (GLI), International Income Funds
(INI), and Short World Multi-Market Income Funds (SWM). Among these funds, we exclude funds
whose CRSP identifiers “index_fund_flag” indicates a B, D or E or “et_flag” indicates an ETF or
ETN. According to the CRSP Survivor-Bias-Free US Mutual Fund Guide (https://www.crsp.org/research/
crsp-survivor-bias-free-us-mutual-funds/), EMD funds seek either current income or total return by invest-
ing primarily in emerging market debt securities, where emerging market is defined by a country’s GNP
per capita or other economic measures. EML funds seek either current income or total return by investing
at least 65% of total assets in emerging market debt issues denominated in the currency of their market
of issuance. GHY funds aim at high (relative) currency yield from both domestic and foreign fixed income
securities, have no quality or maturity restrictions, and tend to invest in lower-grade debt issues. GLI funds
invest primarily in US dollar and non-US dollar debt securities of issuers located in at least three countries,
one of which may be the United States. INI funds invest primarily in non-US dollar and US dollar debt se-
curities of issuers located in at least three countries, excluding the US, except in periods of market weakness.
SWM funds invest in non-US dollar and US dollar debt instruments and, by policy, keep a dollar-weighted
average maturity of less than five years.

8The share class’s missing TNA is imputed as with Ibert et al. (2018).
9We include a fund as soon as its inflation-adjusted TNA reached $10 million. Our inflation index is the

Consumer Price Index for All Urban Consumers (CPIAUCSL) series provided by the Federal Reserve Bank
of St. Louis’ FRED database. The data are available from https://fred.stlouisfed.org/series/CPIAUCSL.
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382 international fixed income mutual funds. All individual fund-level returns in the sample

are then equally weighted10 to construct Rp,t in (8), which provides a natural examination

of sample funds’ timing behavior at the aggregate level.11

Following the international asset pricing literature (Brusa et al., 2014; Massa et al., 2016;

Karolyi and Wu, 2021; Chaieb et al., 2021; Demirci et al., 2022), we construct fCur
t in (8)

by the well-known currency factors proposed by Lustig et al. (2011)—the dollar factor (RX)

and the carry-trade factor (HML_FX). Intuitively, RX is the return on an equally weighted

portfolio of long positions in major non-US dollar currencies, while HML_FX is the return on

a zero-cost strategy that goes long high-interest rate currencies and goes short low-interest

rate currencies. Thus the former mimics the currency market return available to the globally-

diversified fund with US dollar as their base currency, while the latter captures global risk

for which the globally-diversified fund earns a carry-trade risk premium. Both factors are

obtained from the authors’ website.12

As in Sialm and Zhu (2024), we construct {f j
t }J

j=1 in (8) by the following four factors

(J=4 in this case): the hedged global bond market factor (GMF), the emerging bond market

factor (EMF), the term factor (TERM), and the credit factor (CREDIT). The data for the

hedged global bond market factor, the emerging bond market factor, and the credit factor are

obtained from Bloomberg. The hedged global bond market factor is proxied by the return

10Here we do not consider the TNA (value) weighted return because the individual fund-level TNA is
unavailable for some funds in some months. Excluding these fund samples or imputing the missing fund-
month TNA observations could introduce biases in the resulting weighted return, which explains why many
fund timing studies rely on the equally weighted return for aggregate-level timing analyses (see, e.g., Boney
et al., 2009; Chen et al., 2010; Zheng et al., 2024). Besides, several studies considering both weighting
strategies show that the timing results derived from the equally weighted and value weighted returns are
qualitatively similar (see, e.g., Chen and Liang, 2007; Cao et al., 2013b).

11Given the detailed implementation of model estimation and comparison (see Section 4.2), this paper
demonstrates the empirical usefulness of the proposed model primarily through an analysis at the aggregate
level for all sample funds. This analysis is insightful for understanding general trends in sample funds’ average
timing behavior and the underlying state-switching pattern. Nevertheless, the proposed model is adaptable
to analyses at a more granular level, such as fund subgroups (e.g., categorized by fund performance or
characteristics) or an individual fund of interest. We leave these analyses as directions for future investigation.

12See http://web.mit.edu/adrienv/www/Data.html.
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of the Bloomberg Global Aggregate Bond Index USD hedged. The emerging bond market

factor is proxied by the return of the JPMorgan Emerging Market Bond Index Global. The

credit factor is the difference between the returns of the Bloomberg US Aggregate BAA Index

and the Bloomberg US Aggregate AAA Index. The data for the term factor is obtained from

the Board of Governors of the Federal Reserve System. The term factor is defined as the

difference between the ten-year Treasury return minus the one-month Treasury return.

Consistent with the expanding literature on systematic currency liquidity (see, e.g.,

Kessler and Scherer, 2011; Menkhoff et al., 2012; Karnaukh et al., 2015; Li et al., 2020b), we

construct LCur
t in (8) by the widely used measure—the proportional quoted bid-ask spread.13

Formally,

LCur
t = 1

Tt

Tt∑
τ=1

(1
I

I∑
i=1

−
PA

i,τ − PB
i,τ

PM
i,τ

)
, (9)

where t denotes a month and τ denotes a day; Tt denotes the total number of trading days

in month t; {PA
i,τ }I

i=1, {PB
i,τ }I

i=1, and {PM
i,τ }I

i=1 = {0.5(PA
i,τ + PB

i,τ )}I
i=1 denote respectively the

quoted ask price, bid price, and their midpoint for currency i (all against the US dollar) in

a basket of I currencies on day τ .14 The daily {PA
i,τ }I

i=1 and {PB
i,τ }I

i=1 for all the currencies

are obtained from Thomson Reuters’ Datastream. The monthly LCur
t , as shown in (9), is

calculated by first averaging all currencies’ daily negative bid-ask spreads and then averaging

these daily values up to the monthly frequency. Thus, the lower LCur
t , the more illiquid the

currency market. In addition, since currency spreads are small in magnitude, we further

13Although there are several other measures for systematic currency liquidity (e.g., those based on price
impact, return reversal, effective costs and price dispersion), evidence shows the proportional quoted bid-ask
spread is highly correlated with these measures. For instance, the correlation documented in Mancini et al.
(2013) is 0.853 for the proportional quoted bid-ask spread and price impact, 0.890 for return reversal, 0.954
for effective costs, and 0.949 for price dispersion.

14For consistency, we consider a basket in Lustig et al. (2011), which covers currencies from the following
regions: Australia, Canada, Hong Kong, euro area, India, Indonesia, Japan, Kuwait, Malaysia, Mexico, New
Zealand, Norway, Philippines, Saudi Arabia, Singapore, South Africa, South Korea, Switzerland, Taiwan,
Thailand, and the United Kingdom. Since the currency of euro area was introduced in January 1999 (which
covers our sample period), the currencies of euro area countries, originally considered in Lustig et al. (2011),
are excluded and only the currency of euro area is retained.
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rescale LCur
t by multiplying 1000 to facilitate interpretability of the coefficient estimates

in the empirical analyses in Sections 4–5. Figure 1 plots the time path of the systematic

currency liquidity LCur
t . We observe a strong upward trend at the beginning of the sample

period, which is primarily driven by the introduction of electronic trading systems that

substantially increase liquidity (Li et al., 2020b). We also observe several downward spikes

line up with known liquidity events affecting the currency market, for example, the sub-

prime and the European sovereign debt crises between 2008–2009 and the COVID-19 crisis

in early 2020. Therefore, the constructed systematic currency liquidity LCur
t seems to capture

obvious times of currency market distress quite well.

In the spirit of Li et al. (2020a) who point out the nonnegligible effect of different market

liquidity conditions on changes in funds’ liquidity-timing behavior, we construct zt in (5)–(7)

as a binary variable taking the value one or zero based on whether the current systematic

currency liquidity LCur
t above/below its historical average L̄Cur

zt =


1 if LCur

t > L̄Cur

0 otherwise
(10)

such that zt represents the currency market relative liquidity conditions in month t.

Table 1 presents descriptive statistics. Panel A reports the statistics of sample fund

characteristics. The reported age is the number of years between fund’s last performance

date and fund’s first offer date, where fund’s last performance date is taken to be the latest

net asset values (NAV) date across its share classes while fund’s first offer date is taken to

be the earliest first offer date across its share classes. The reported TNA is the total net

asset in million US dollar, the reported expense is the annual expense ratio in percentage,

the reported turnover is the annual turnover ratio in percentage, and the reported return

is the monthly return in percentage. Except for the reported age which is averaged across
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all sample funds, other reported characteristics are first averaged over time for each fund,

and then averaged across all sample funds. Panel A shows that, on average, an international

fixed income mutual fund in the sample has TNA of $708 million, an annual expense ratio

of 0.82%, an age of around 13 years, an annual turnover ratio of 112.34%, and a monthly

return of 0.372%. Panel B reports the statistics of risk factors (monthly in percentage) and

systematic currency liquidity (monthly in bps). For instance, the average dollar factor (RX)

during the sample period is 0.185% per month with a standard deviation of 1.775%.

4. Empirical results

Given the variables constructed in Section 3, the empirical form of our proposed model

(8) is given by15

Rt =α + βHML_FXHML_FXt + µst(LCur
t − L̄Cur)HML_FXt + βRXRXt + λst(LCur

t − L̄Cur)RXt

+ βGMFGMFt + βEMFEMFt + βTERMTERMt + βCREDITCREDITt + εt,

(11)

where t denotes a month; st ∈ {1, ..., N} and the associated state transitions are formulated

by (5)–(7); Rt is the equally weighted return of all sample funds; HML_FXt and RXt are

the risk factors specific to the currency market—the carry-trade and the dollar factors;

GMFt, EMFt, TERMt and CREDITt are the additional risk factors—the hedged global

bond market factor, the emerging bond market factor, the term factor, and the credit factor;

LCur
t is the systematic currency liquidity and L̄Cur its historical average; µst and λst are

currency-liquidity-timing coefficients of interest.

15In (11), we drop the subscript p (that denotes a fund) from (8) for notational convenience.
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4.1. Preliminary analysis: currency liquidity timing without state switching

We begin our analysis of currency liquidity timing without state switching. We follow

conventional timing models (see, e.g., Treynor and Mazuy, 1966; Cao et al., 2013b; Bali

et al., 2021; Zheng et al., 2024, among many others) to implement OLS on the non-state-

switching variant of (11), where µst and λst are replaced with constant values µ and λ. The

results are in Table 2, showing that µ is negative and statistically significant at the 5% level

while λ is insignificant. Therefore, the main takeaway from this preliminary analysis is that

sample funds engage in currency liquidity timing—especially in a perverse way—only when

adjusting their currency exposure with respect to the carry-trade factor.

However, it is worth noting that the non-state-switching variant of (11) implicitly assumes

that sample funds engage in either currency liquidity timing or not over the entire sample

period, and thus what the OLS really estimates is funds’ currency-liquidity-timing behavior

averaged over the entire sample period under investigation. Consequently, when funds en-

gage in currency liquidity timing strategically and intermittently, rather than continuously

over the sample period of study, the evidence of the potential currency-liquidity-timing be-

havior during certain time periods may be averaged out, impacting upon the significance

of the currency-liquidity-timing coefficient estimates. In this aspect, even if OLS implies a

statistically insignificant λ, we can not rule out the possibility that funds may engage in

currency liquidity timing when adjusting their currency exposure with respect to the dol-

lar factor during a certain time period. We now explore this possibility using the original

state-switching form of (11) in the next subsection.

4.2. Model estimation and comparison: currency liquidity timing with state switching

We undertake an extensive model estimation and comparison to select the best-fitting

state-switching model specification from the variants of (11). These variants are labeled as

MR,N in that they differ along two dimensions—the state-switching restrictions R and the
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number of states N . Specifically, we first consider three different state-switching restrictions

(R = 1, 2, 3), leading to the following model specifications based on (11): (i) R = 1 (denoted

by M1,N): µst is replaced with a constant value µ, (ii) R = 2 (denoted by M2,N): λst is

replaced with a constant value λ, and (iii) R = 3 (denoted by M3,N): the original form of

(11). As such, M1,N and M2,N allow only one currency-liquidity-timing coefficient to be

state-switching while the other to remain constant; M3,N allows both to be state-switching

and thus is the model specification with the most stringent state-switching restriction. We

then consider three different numbers of states (N = 2, 3, 4). Overall, we have in total nine

state-switching model specifications M1,2, M1,3, M1,4, M2,2, M2,3, M2,4, M3,2, M3,3, and

M3,4.

To estimate a given state-switching model specification, we adopt a simulation-based

Bayesian inference procedure of Kim and Kang (2022) (see the Internet Appendix B for de-

tails), which offers computational advantages over Hwu et al. (2021)’s maximum-likelihood

inference procedure when estimating the class of N -state endogenous Markov-switching mod-

els with larger values of N . For state identification and interpretation purposes, we impose

the inequality constraints on the currency-liquidity-timing coefficients through the Bayesian

inference procedure.16 Particularly, for model specifications M1,N and M2,N with N =

2, 3, 4, we impose respectively λst=1 < λst=2 < ... < λst=N and µst=1 < µst=2 < ... < µst=N ;

for model specification M3,N with N = 2, 3, 4, we impose jointly λst=1 < λst=2 < ... < λst=N

and µst=1 < µst=2 < ... < µst=N .17

16Inequality constraints are imposed via rejection sampling, as with Kim and Kang (2022).
17For M3,N with N = 2, 3, 4, it would be possible to impose the inequality constraints on λst

and µst

separately rather than jointly. We therefore examine whether imposing the inequality constraints jointly
is too stringent. In the case of N = 3, we note the log marginal likelihoods (computed as in the Internet
Appendix B) of M3,3 with a constraint on λst

or µst
alone are 904.301 and 895.508, respectively. These

values are substantially smaller than that of M3,3 with constraints on λst and µst jointly, which is 920.402.
Similar results are observed in the cases of N = 2 and N = 4. Thus, imposing the inequality constraints
jointly for M3,N seems to be appropriate.
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To evaluate the in-sample fit of each estimated state-switching model specification, we

use the marginal likelihood—a natural output from the simulation-based Bayesian inference

procedure (see the Internet Appendix B for details). To formally compare the model speci-

fications’ marginal likelihoods, we use the pairwise log-Bayes factor, the ratio (in logarithm)

of the marginal likelihood of one reference model specification to the marginal likelihood

of each alternative model specification. With this definition, the log-Bayes factor of the

reference model specification versus itself equals zero. Kass and Raftery (1995) suggest in-

terpreting the log-Bayes factor between 0 and 0.5 as weak evidence in favor of the reference

model specification, between 1 and 2 as strong evidence, and greater than 2 as decisive evi-

dence. The negative log-Bayes factor of the same magnitude is said to favor the alternative

model specification by the same amount (Jiang et al., 2013). Table 3 presents the pairwise

log-Bayes factors in favor of the reference model specification M1,2
18 over itself and the

other eight state-switching model specifications considered. By looking at the log-Bayes fac-

tors column-by-column, model specifications are compared in terms of the state-switching

restrictions R = 1, 2, 3. In the case of N = 2, the log-Bayes factor of 4.0 indicates that

M2,2 is less preferred compared to M1,2. By contrast, the log-Bayes factor of -3.9 provides

substantial evidence in favor of model M3,2 against M1,2. Similar patterns are observed for

N = 3, 4. Thus, it is clear that log-Bayes factors tend to favor the model specification with

R = 3 where both currency-liquidity-timing coefficients are state-switching. By looking at

the log-Bayes factors row-by-row, model specifications are compared in terms of the number

of states N = 2, 3, 4. We observe that M1,3, M2,3 and M3,3 achieve the lowest log-Bayes

factor in their respective columns, meaning that N = 3 (i.e., three states) overwhelms the

other number of states. Combining these findings, M3,3 (i.e., the original form of (11) with

18Alternative choices of the reference model specification do not change the conclusions from our log-Bayes
factor comparison.
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three states st ∈ {1, 2, 3}) yields the lowest log-Bayes factor of -8.1 and thus is the best-fitting

state-switching model specification among all the nine variants of (11).

Table 4 presents the posterior summary of the best-fitting state-switching model spec-

ification M3,3, which includes the posterior means, standard errors, 95% highest posterior

density interval (HPDI)19 and convergence statistics (inefficiency factor and Geweke (1992)’s

p-value as in Kim and Kang (2022)) of the model parameters’ posterior samples. The ineffi-

ciency factors, when compared to those in Kim and Kang (2022), are generally in a similar

range to indicate low autocorrelation of model parameters’ posterior samples. The Geweke

(1992)’s p-values are all greater than 0.05, which are good signs of convergence of model pa-

rameters’ posterior samples (LeSage, 1999). Overall, these results indicate the well-mixing

and convergence properties of parameters’ posterior samples obtained from the best-fitting

state-switching model specification M3,3.

4.3. Model-implied states of currency liquidity timing

Panel B of Table 4 presents the posterior summary of the currency-liquidity-timing coef-

ficients µst and λst specific to the model-implied three states st ∈ {1, 2, 3}. We find evidence

of currency liquidity timing for the sample funds across all three states, given that both

coefficients’ corresponding 95% HPDIs are never centered on zero. Particularly, according

to the interpretation in (2), the model-implied state st = 1 is the state where sample funds

engage in perverse currency liquidity timing (hereafter perverse timing state), given that the

posterior means of µ1 and λ1 are negative and their corresponding 95% HPDIs completely

fall below zero. The model-implied state st = 2 is the state where sample funds engage

in positive currency liquidity timing with a relatively weak degree of aggressivity (hereafter

19The 95% highest posterior density interval (HPDI) contains 95% mass of the parameter’s posterior
distribution. Reporting the HPDI to indicate the statistical significance of the estimated parameters is a
common practice in the empirical Bayesian literature (see, e.g., Giaccotto et al., 2011; Chalamandaris, 2020;
Ulm and Hambuckers, 2022).
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weakly positive timing state), given that the posterior means of µ2 and λ2 are positive and

their corresponding 95% HPDIs mostly fall above zero. The model-implied state st = 3 is

the state where sample funds engage in positive currency liquidity timing with a relatively

strong degree of aggressivity (hereafter strongly positive timing state), given that the pos-

terior means of µ3 and λ3 are positive and their corresponding 95% HPDIs completely fall

above zero.

Panel D of Table 4 presents the posterior summary of the state differences in currency-

liquidity-timing coefficients µ2 − µ1, µ3 − µ2, λ2 − λ1,λ3 − λ2. We observe that all reported

95% HPDIs exclude zero, thereby confirming statistically that there are three distinct timing

states characterized by statistically different currency-liquidity-timing coefficients µst=1,2,3

and λst=1,2,3.

Figure 5 plots the shaded areas20 that highlight the periods of sample funds being in

a particular model-implied state. We find tranquil market periods are dominated by the

perverse timing state, while turbulent market periods are dominated by the weakly positive

timing and strongly positive timing states. The periods under the weakly positive timing state

are July 2001-August 2001, December 2002-May 2003, September 2004-December 2004, July

2011-February 2012, August 2013-January 2014, December 2014-May 2015, August 2015-

December 2015, August 2018-December 2018, and May 2020-July 2020, covering the early

2000s recession, several rounds of US Quantitative Easing (QE) programs from 2009 to 2015,

and the COVID-19 crisis in early 2020. The period under the strongly positive timing state

is May 2009-December 2009, covering the aftermath of the sub-prime crisis; for example, the

credit crisis with Greece’s Bailout taking place after 2009.

20The shaded areas highlight the periods during which the probability of each model-implied state is
greater than a threshold of 50%. Given the M posterior samples of st, the probability of each state in month
t can be easily approximated by 1

M

∑M
m=1 I(st = n), for n = 1, 2, 3. A threshold of 50% is extensively used in

empirical studies with Markov-switching models (see. e.g., Chan et al., 2011; Jutasompakorn et al., 2014).
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Taken together, the above findings suggest that sample funds’ currency-liquidity-timing

behavior exhibits a state-switching pattern across different market periods: they engage

in perverse currency liquidity timing during tranquil market periods, but engage in positive

currency liquidity timing with a stronger degree of aggressivity during more turbulent market

periods. In conjecturing the mechanism that interprets such state-switching pattern, we are

motivated by prior research of Sialm and Zhu (2024) indicating that portfolio rebalancing

and currency hedging are chief mechanisms through which sample funds actively adjust

their currency exposure. For instance, sample funds can switch from domestic-currency-

denominated to foreign-currency-denominated assets (i.e., more foreign holdings) or shrink

the short positions in foreign currency derivatives (i.e., less currency hedging) to increase

their currency exposure.

During tranquil market periods when currency exchange rate fluctuations are relatively

stable, funds possibly do not engage in frequent portfolio rebalancing because doing so is

costly (Opie and Riddiough, 2020) and the adverse depreciation of foreign currencies is rela-

tively short-lived. As a result, changes in funds’ currency exposure may mainly result from

currency hedging. When receiving upward (or downward) liquidity signals, funds perceive

these as indicators of low (or high) hedging costs to hedge more (or less), leading to a re-

duction (or an increase) in their currency exposure. This causes funds’ currency betas to

shift in a direction opposite to the systematic currency liquidity movements, resulting in the

observed preserve currency liquidity timing.

During turbulent market periods when currency exchange rate fluctuations are relatively

volatile, funds possibly engage in frequent portfolio rebalancing because the adverse depre-

ciation of foreign currencies is relatively persistent (which makes the potential loss from

re-denominating returns on foreign-currency-denominated assets to the domestic currency

unbearable). Funds tend to exhibit a stronger home-currency bias—reducing currency expo-
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sure whenever possible (Burger et al., 2018; Maggiori et al., 2020). This drives them to switch

back to domestic-currency-denominated assets (i.e., less foreign holdings). In such situations,

both portfolio rebalancing and currency hedging come into play. When systematic currency

liquidity moves downward further, funds become more risk-averse to switch more intensively

back to domestic-currency-denominated assets and hedge more aggressively, leading to a

further reduction in their currency exposure. Consequently, funds’ currency betas shift in a

direction more aligned with the systematic currency liquidity’s downward movements, result-

ing in the observed weakly positive currency liquidity timing and strongly positive currency

liquidity timing.

4.4. Model-implied drivers of currency liquidity timing

Panel C of Table 4 presents the posterior summary of γz
1,st−1 and γz

2,st−1 specific to the

model-implied three states st−1 = 1, 2, 3. From (6)–(7), these parameters reflect the effects

of the currency market relative liquidity conditions zt (defined in (10)) on the transition

probabilities of different timing states. Generally, we observe that the posterior means of

{γz
1,st−1=n}3

n=1 and {γz
2,st−1=n}3

n=1 are negative and their corresponding 95% HPDIs mostly

fall below zero. As further confirmed in Figure 2, though the distributions of {γz
1,st−1=n}3

n=1

and {γz
2,st−1=n}3

n=1 are assumed to be centered on zero a priori, their posterior distributions

appear to shift toward the negative region. These results, taken as a whole, indicate the minor

negative effects of the currency market relative liquidity conditions zt on state transitions in

sample funds’ currency-liquidity-timing behavior.

To explain in more detail, we compute the transition probabilities pnj,t = Pr(st = j|st−1 =

n, zt) for the model-implied three states (i.e., n, j ∈ {1, ..., 3}), which are variants of (7)

conditional on the information from zt alone (See the Internet Appendix A for the detailed

derivation). For the scenario where the currency market is relatively liquid (i.e., zt = 1 in

(10), the matrix that collects the transition probabilities pnj,t = Pr(st = j|st−1 = n, zt = 1),
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denoted by Pt(zt = 1), is

Pt(zt = 1) =


p11,t p12,t p13,t

p21,t p22,t p23,t

p31,t p32,t p33,t

 =


0.892 0.094 0.014

0.192 0.719 0.088

0.096 0.143 0.761

 . (12)

For the scenario where the currency market is relatively illiquid (i.e., zt = 0 in (10), the

matrix that collects the transition probabilities pnj,t = Pr(st = j|st−1 = n, zt = 0), denoted

by Pt(zt = 0), is

Pt(zt = 0) =


p11,t p12,t p13,t

p21,t p22,t p23,t

p31,t p32,t p33,t

 =


0.890 0.089 0.022

0.092 0.828 0.080

0.054 0.139 0.807

 . (13)

We first look at the self-transition probabilities {pnn,t}3
n=1 in (12)–(13). We observe

that a decreasing zt increases greatly p22,t and p33,t while nearly not affecting p11,t. Thus

among the model-implied three states, the weakly positive timing and strongly positive timing

states are more sensitive to the worsening currency market liquidity conditions than the

perverse timing state. Specifically, if samples funds previously were in the weakly positive

timing or strongly positive timing states (i.e., st−1 = 2 or 3), they will be more likely to

continuously stay in the same states (i.e., st = 2 or 3) under the worsening currency market

liquidity conditions. As such, falling systematic currency liquidity makes the weakly positive

timing or strongly positive timing states last longer. We then turn to the remaining non-self-

transition probabilities in (12)–(13). First, we can see a decreasing zt slightly reduces p12,t

but increases p13,t. This indicates if samples funds previously were in the perverse timing

state (i.e., st−1 = 1), they will be more likely to switch to the strongly positive timing state

(i.e., st = 3) than to the weakly positive timing state (i.e., st = 2) under the worsening
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currency market liquidity conditions. Second, we can see a decreasing zt slightly reduces

p21,t, p23,t, p31,t and p32,t. This, as suggested by the self-transition probabilities p22,t and p33,t,

is not surprising since worsening currency market liquidity conditions make sample funds

more likely to continuously stay in the weakly positive timing or strongly positive timing

states, which in turn means they are less likely to switch to other states.

Overall, the lower zt (i.e., the worsening currency market liquidity conditions) is some-

what associated with the realization of higher st (i.e., the weakly positive timing and strongly

positive timing states). This explains the observed minor negative effects of zt on state tran-

sitions in sample funds’ currency-liquidity-timing behavior. Such finding is consistent with

the observations in Figure 5 that turbulent market periods, known to be accompanied with

the currency market illiquidity, are dominated by the weakly positive timing and strongly

positive timing states.

Panel C of Table 4 also presents the posterior summary of ρ1 and ρ2. From (6)–(7),

these parameters reflect the effects of the idiosyncratic shocks to fund returns εt (defined in

(1)) on the transition probabilities of different timing states. Generally, we observe that the

posterior mean of ρ1 is negative, while that of ρ2 is almost zero. As further confirmed in

Figure 3, though the distributions of ρ1 and ρ2 are assumed to be centered on zero a priori,

the posterior distribution of ρ1 appears to shift toward the negative region while that of ρ2

appears to be around zero. These results, taken as a whole, indicate the negative effects of

the idiosyncratic shocks to fund returns εt on state transitions in sample funds’ currency-

liquidity-timing behavior to the weakly positive timing state, while negligible effects on state

transitions to the strongly positive timing state.

To explain in more detail, we compute the transition probabilities pnj,t = Pr(st = j|st−1 =

n, εt) for the model-implied three states (i.e., n, j ∈ {1, ..., 3}), which are variants of (7)
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conditional on the information from εt alone.21 The transition probabilities pnj,t = Pr(st =

j|st−1 = n, εt) against artificial realizations of εt ∈ [−10, 10] are plot in Figure 4. We first

look at the self-transition probabilities {pnn,t}3
n=1. We observe that a decreasing εt increases

p22,t but reduces p11,t and p33,t. Thus among the model-implied three states, the weakly

positive timing state is more sensitive to funds’ poor performance than the perverse timing

and strongly positive timing states. Specifically, if sample funds previously were in the weakly

positive timing state (i.e., st−1 = 2), they will be more likely to continuously stay in the same

state (i.e., st = 2) given funds’ poor performance. We then turn to the remaining non-self-

transition probabilities. First, we can see a decreasing εt increases greatly p12,t and p32,t

while nearly not affecting p13,t and p31,t. This indicates if sample funds previously were

in the perverse timing or strongly positive timing states (i.e., st−1 = 1 or 3), they will be

more likely to switch to the weakly positive timing state (i.e., st = 2) than to other states

given funds’ poor performance. Second, we can see a decreasing εt reduces p21,t and p23,t.

This, as suggested by the self-transition probabilities p22,t, is not surprising since funds’

poor performance makes sample funds more likely to continuously stay in the weakly positive

timing state, which in turn means they are less likely to switch to other states.

Overall, the lower εt (i.e., funds’ poor performance) is somewhat associated with the

realization of st = 2 (i.e., the weakly positive timing state). This explains why the estimated

ρ1 is sizable and displays a negative sign. Such finding points out two scenarios: sample

funds, given poor performance, are incentivized to (i) switch from the perverse timing state

to the weakly positive timing state or (ii) switch from the strongly positive timing state to

the weakly positive timing state. We conjecture that the first scenario occurs when sample

funds experience poor performance at the onset of market deterioration. In this scenario,

funds that previously paid little attention to their currency exposure may become more

21This can be computed by imposing zero values on transition parameters γz
1,st−1

and γz
2,st−1

in (6)–(7).
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concerned as they face increased outflows due to poor performance and worsening market

conditions (Chen, Q. et al., 2010). As a result, funds are likely to switch from leaving

their currency exposure unhedged (i.e., the perverse timing state) to possibly hedging their

currency exposure (i.e., the weakly positive timing) when systematic currency liquidity begins

to move downward. We conjecture that the second scenario occurs when sample funds

experience poor performance at the onset of market recovery. In this scenario, funds that

previously were highly concerned about their currency exposure may begin to calm down.

While still mindful of liquidity-induced losses due to poor performance, funds may develop

certain risk appetites. As a result, funds are likely to change the degree of aggressivity of

their currency-liquidity-timing behavior, switching from aggressive timing (i.e., the strongly

positive timing state) to more moderate timing (i.e., the weakly positive timing state).

5. Robustness checks

This section conducts robustness checks, which further test the aforementioned empirical

results obtained from the best-fitting state-switching model specification M3,3 (see Section

4.2). We discuss results in the following subsections and present supporting tables and figures

in the Internet Appendix C.

5.1. Controlling for currency return and volatility timing

Funds may engage in timing in various ways, such as return timing and volatility timing

(see, e.g., Chen and Liang, 2007; Bodson et al., 2013). Much of the studies suggest that

systematic (market-wide) currency liquidity is positively correlated with systematic currency

return and negatively correlated with systematic currency volatility (see, e.g., Melvin and

Taylor, 2009; Menkhoff et al., 2012; Mancini et al., 2013). Thus, it would be possible that

the evidence on currency liquidity timing can be partially attributed to funds’ currency-
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return-timing or currency-volatility-timing behaviors. To address this concern, we control

for currency return and volatility timing in the model specification M3,3.

Table C.1 in the Internet Appendix C presents the posterior summary of the model

specification M3,3 with controls for currency return and volatility timing. From Panel B,

we observe the evidence of perverse currency liquidity timing becomes relatively weaker in

the model-implied state st = 1, as the 95% HPDIs of µ1 and λ1 mostly, but not completely,

fall below zero. This is consistent with Cao et al. (2013a) who document that controlling

for market-return and volatility timing reduces the significance of perverse liquidity timing.

Despite that, there is virtually no difference between most results in Table C.1 and those

in Table 4. As shown in Figure C.1 (a) in the Internet Appendix C, the periods of sample

funds being in a particular model-implied state are highly comparable to those depicted in

Figure 5. Overall, though the evidence of perverse currency liquidity timing is not as strong

as previously observed, both currency return and volatility timing do not severely affect the

state-switching behavior of currency liquidity timing among the sample funds.

5.2. Currency liquidity timing versus currency liquidity reaction

Cao et al. (2013a) argue that funds may also adjust their factor exposure based on

lagged values of liquidity. If funds use observed liquidity in time t−1 to derive a predictable

component of liquidity and adjust their factor beta accordingly, they do not engage in timing

but simply react to public information (Ferson and Schadt, 1996). Given this conjecture,

it would be possible that the evidence on currency liquidity timing might rather reflect

funds’ responses to lagged systematic currency liquidity. To distinguish currency liquidity

timing from currency liquidity reaction, we follow Cao et al. (2013a) and extend the model

specification M3,3 to include both liquidity timing and liquidity reaction terms.

Table C.2 in the Internet Appendix C presents the posterior summary of the model

specification M3,3 with controls for currency liquidity reaction. From Panel A, we observe
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significant evidence of currency liquidity reaction as the 95% HPDIs of the liquidity-reaction

coefficients ψHML_FX and ψRX completely fall below zero and above zero, respectively. The

results in Panels B–C of Table C.2 are again highly similar to those in Table 4, though

the effects of the idiosyncratic shocks to fund returns εt on state transitions in sample

funds’ currency-liquidity-timing behavior are marginal in this case. As shown in Figure

C.1 (b) in the Internet Appendix C, the weakly positive timing and strongly positive timing

states occur less frequently than those depicted in Figure 5, implying that some periods of

positive currency liquidity timing are partly results of funds’ responses to previous systematic

currency liquidity. Overall, there is a certain level of currency liquidity reaction among

sample funds, but funds’ state-switching currency-liquidity-timing behavior cannot be fully

attributed to liquidity reaction.

5.3. Discussions

We draw several conclusions from the robustness checks. First, various controls appear to

show some foreseeable impacts on the model-implied three states and the endogenous state

transitions. Specifically, we observe the weakening evidence of the three distinct states in

various robustness checks. Moreover, we observe the diminishing evidence that idiosyncratic

shocks to fund returns εt affect state transitions in sample funds’ currency-liquidity-timing

behavior when controls are in place. These observations are expected in robustness checks

because a number of extra controls which are added to the model specification M3,3 tend to

capture part of the explanatory power of the variables already included. Thus, it is natural

to anticipate a reduction in the significance of currency-liquidity-timing coefficients22 as well

as the significance of transition parameters associated with the error term.

22Similar observations have been reported, for instance, by Chen et al. (2010) where the timing coefficients
which are significantly negative in the original model are found to appear neutral to weakly positive when
augmenting the model with several controls for nonlinearity.
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Second, the empirical results previously obtained from the model specification M3,3 in

Section 4 remain largely unchanged under all the robustness checks: (i) the evidence on cur-

rency liquidity timing among sample funds is not explained away by funds’ other behaviors,

such as currency return timing, currency volatility timing and currency liquidity reaction.

This is supported by the observations that both currency-liquidity-timing coefficients’ cor-

responding 95% HPDIs are never centered on zero; (ii) the state-switching pattern that

funds’ currency-liquidity-timing behavior switches from the perverse timing state toward

the weakly positive timing and strongly positive timing states remains robust under differ-

ent controls. This is evidenced by the observations that for both timing coefficients, their

95% HPDIs which cover a larger negative region in the model-implied state st = 1 appear

to move toward the positive region in the model-implied states st = 2, 3; (iii) systematic

currency liquidity continues to show minor negative effects on state transitions in sample

funds’ currency-liquidity-timing behavior. This is reflected by the overall negative estimates

of γz
1,st−1 and γz

2,st−1 .

6. Conclusions

In this paper, we examined if globally-diversified funds’ active adjustments of currency

exposure may result from their responses to systematic currency liquidity movements, which

we call currency liquidity timing. A novel currency-liquidity-timing model embedded with

an N -state endogenous Markov-switching mechanism was proposed to capture the potential

dynamics in funds’ timing behavior, as well as the external and internal drivers influencing

such dynamics. Using a sample of 382 international fixed income mutual funds from July

2001 to December 2020 as a testing ground, the empirical usefulness of the proposed model

was demonstrated by examining sample funds’ currency-liquidity-timing behavior at the

aggregate level. The empirical results showed evidence of currency liquidity timing at the
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aggregate level for the sample funds. Interestingly, funds’ currency-liquidity-timing behavior

was found to exhibit a state-switching pattern across different market periods: funds on

average engage in perverse currency liquidity timing (i.e., adjust their currency exposure

in a direction opposite to the systematic currency liquidity movements) during tranquil

market periods, but in positive currency liquidity timing (i.e., adjust their currency exposure

in a direction aligned with the systematic currency liquidity movements) with a stronger

degree of aggressivity during more turbulent market periods. We explained that this state-

switching pattern is possibly attributed to funds’ portfolio rebalancing and currency hedging

practices. The model also indicated that the state transitions in funds’ currency-liquidity-

timing behavior appear to be driven by deteriorating external currency market liquidity

conditions and negative shocks to internal fund returns. Under the robustness checks, while

various controls appeared to show some foreseeable impacts on the model estimates, the

aforementioned empirical results of currency liquidity timing were not explained away by

funds’ other behaviors, such as currency return timing, currency volatility timing, currency

liquidity reaction, and holding illiquid assets.
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Table 1: Descriptive statistics

Mean Std. Dev. P25 P50 P75

Panel A: Fund characteristics
TNA ($ mil.) 708 1,392 46 202 630
Expense (%) 0.82 0.33 0.63 0.83 1.03
Age (years) 13.3 8.8 6.5 10.4 18.1
Turnover (%) 112.34 114.71 52.18 78.91 124.12
Return (%) 0.372 0.248 0.238 0.381 0.497

Panel B: Risk factors and systematic currency liquidity
GMF (%) 0.277 0.798 -0.285 0.328 0.834
EMF (%) 0.575 2.581 -0.390 0.788 1.865
TERM (%) 0.153 0.091 0.082 0.163 0.221
CREDIT (%) 0.193 1.646 -0.385 0.267 0.778
HML_FX (%) 0.434 2.247 -0.823 0.501 1.888
RX (%) 0.185 1.775 -0.830 0.239 1.237
LCur

t (bps) -6.862 1.808 -7.709 -6.594 -5.302

Notes: This table presents descriptive statistics, including the means (Mean), standard deviations (Std. Dev.), 25th percentiles
(P25), medians (P50), and 75th percentiles (P75). Panel A reports these statistics of sample fund characteristics, including the
total net asset in million US dollar (TNA), annual expense ratio in percentage (Expense), age in years (Age), annual turnover
ratio in percentage (Turnover), and monthly return in percentage (Return). Except for the reported age which is averaged
across all sample funds, other reported characteristics are first averaged over time for each fund, and then averaged across all
sample funds. Panel B reports these statistics of monthly systematic currency liquidity in bps (LCur

t ) and monthly risk factors
in percentage, including the hedged global bond market factor (GMF), the emerging bond market factor (EMF), the term
factor (TERM), the credit factor (CREDIT), the carry-trade factor (HML_FX) and the dollar factor (RX). The fund sample
consists of 382 international fixed income mutual funds sourced from the CRSP Survivor-Bias-Free US Mutual Fund Database.
The sample period spans from July 2001 to December 2020.
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Table 2: Estimation results of the non-state-switching model specification

α (%) βGMF βEMF βTERM βCREDIT βHML_FX βRX µ λ Adj R2

-0.05 0.38*** 0.24*** 0.34 0.29*** 0.01 0.43*** -0.10** -0.05 0.97
(-1.13) (11.91) (14.99) (1.42) (13.73) (1.10) (27.59) (-2.19) (-0.95)

Notes: This table presents the estimation results of the non-state-switching variant of (11). The model specification is given
by

Rt = α + βHML_FXHML_FXt + µ(LCur
t − L̄Cur)HML_FXt + βRXRXt + λ(LCur

t − L̄Cur)RXt

+ βGMFGMFt + βEMFEMFt + βTERMTERMt + βCREDITCREDITt + εt,

where t denotes a month; Rt is the equally weighted return of all sample funds; HML_FXt and RXt are the risk factors specific
to the currency market—the carry-trade and the dollar factors; GMFt, EMFt, TERMt and CREDITt are the additional risk
factors—the hedged global bond market factor, the emerging bond market factor, the term factor, and the credit factor; LCur

t is
the systematic currency liquidity and L̄Cur its historical average; µ and λ are currency-liquidity-timing coefficients of interest.
Results are based on ordinary least squares (OLS). The t-statistics are reported in parentheses. The adjusted R-square (Adj
R2) is reported in the last column. ***, ** denote significance at 1% and 5% levels, respectively. The sample period spans
from July 2001 to December 2020.

Table 3: Pairwise log-Bayes factors of the state-switching model specifications MR,N

R = 1 R = 2 R = 3

N = 2 0.0 4.0 -3.9
N = 3 -2.6 3.0 -8.1
N = 4 -1.7 4.6 -7.0

Notes: This table presents the pairwise log-Bayes factors of the state-switching model specifications MR,N developed from the
variants of (11), for three different state-switching restrictions R = 1, 2, 3 and number of states N = 2, 3, 4. The value reported
in each cell is the log-Bayes factor in favor of the reference model specification M1,2 over the alternative model specification
MR,N with R and N labeled as the cell’s column and row. The log-Bayes factor of the reference model specification versus
itself equals zero. Kass and Raftery (1995) suggest interpreting the log-Bayes factor between 0 and 0.5 as weak evidence in
favor of the reference model specification, between 1 and 2 as strong evidence, and greater than 2 as decisive evidence. The
negative log-Bayes factor of the same magnitude is said to favor the alternative model specification by the same amount (Jiang
et al., 2013).
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Table 4: Estimation results of the selected state-switching model specification M3,3

st/st−1 Mean s.e. 95% HPDI Ineff p-val

Panel A: Non-state-switching coefficients
α (%) 0.083 0.011 [0.082, 0.124] 68.900 0.816
βGMF 0.054 0.009 [0.052, 0.091] 68.467 0.718
βEMF 0.065 0.003 [0.065, 0.074] 61.332 0.922
βTERM 1.479 0.071 [1.195, 1.496] 70.630 0.691
βCREDIT 0.108 0.009 [0.105, 0.144] 69.826 0.679
βHML_FX -0.001 0.005 [-0.019, 0.000] 68.773 0.783
βRX 0.179 0.007 [0.150, 0.180] 71.379 0.717
σ 0.004 0.000 [0.004, 0.005] 1.932 0.296

Panel B: Currency-liquidity-timing coefficients
µst

1 -0.076 0.018 [-0.136, -0.072] 69.515 0.672
2 0.086 0.038 [-0.032, 0.096] 71.740 0.669
3 0.633 0.117 [0.283, 0.663] 71.959 0.674

λst
1 -0.813 0.091 [-0.836, -0.544] 69.586 0.677
2 0.874 0.246 [-0.072, 0.939] 73.790 0.658
3 1.767 0.269 [0.834, 1.838] 72.721 0.662

Panel C: Transition parameters
γ̄1,st−1 1 -1.342 0.198 [-1.719, -0.938] 6.355 0.730

2 1.150 0.199 [0.770, 1.550] 5.190 0.693
3 -0.136 0.208 [-0.535, 0.278] 1.203 0.942

γz
1,st−1

1 0.026 0.255 [-0.487, 0.514] 2.453 0.846
2 -0.445 0.271 [-0.951, 0.104] 5.983 0.693
3 -0.179 0.295 [-0.759, 0.395] 1.439 0.896

γ̄2,st−1 1 -2.001 0.220 [-2.430, -1.575] 3.508 0.533
2 -0.645 0.200 [-1.035, -0.252] 2.209 0.677
3 1.295 0.211 [0.895, 1.718] 2.218 0.650

γz
2,st−1

1 -0.167 0.278 [-0.694, 0.394] 2.409 0.733
2 -0.199 0.278 [-0.766, 0.330] 1.653 0.842
3 -0.277 0.281 [-0.824, 0.264] 1.450 0.758

ρ1 -0.431 0.251 [-0.780, 0.218] 52.937 0.676
ρ2 0.009 0.208 [-0.390, 0.428] 14.468 0.624

Panel D: State differences in currency-liquidity-timing coefficients
µ2 − µ1 0.163 0.021 [0.104, 0.168] 70.000 0.683
µ3 − µ2 0.547 0.080 [0.315, 0.567] 71.530 0.678
λ2 − λ1 1.687 0.332 [0.472, 1.775] 73.535 0.658
λ3 − λ2 0.893 0.052 [0.899, 0.906] 57.614 0.869

Notes: This table presents the posterior summary of the best-fitting state-switching model specification M3,3, including the
posterior means (Mean), the posterior standard errors (s.e.), 95% highest posterior density interval (95% HPDI), inefficiency
factor (Ineff) and Geweke (1992)’s p-value (p-val) of the obtained parameters’ posterior samples. The model specification is
given by

Rt = α + βHML_FXHML_FXt + µst (LCur
t − L̄Cur)HML_FXt + βRXRXt + λst (LCur

t − L̄Cur)RXt

+ βGMFGMFt + βEMFEMFt + βTERMTERMt + βCREDITCREDITt + εt,

where t denotes a month; st ∈ {1, 2, 3} and the associated state transitions are formulated by (5)–(7); Rt is the equally weighted
return of all sample funds; HML_FXt and RXt are the risk factors specific to the currency market—the carry-trade and the
dollar factors; GMFt, EMFt, TERMt and CREDITt are the additional risk factors—the hedged global bond market factor,
the emerging bond market factor, the term factor, and the credit factor; LCur

t is the systematic currency liquidity and L̄Cur its
historical average; µst and λst are currency-liquidity-timing coefficients of interest. Results are based on a simulation-based
Bayesian inference procedure with 12,500 iterations. The sample period spans from July 2001 to December 2020.
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Figure 1: Time path of the systematic currency liquidity LCur
t . This figure plots systematic currency

liquidity LCur
t over time, calculated by first averaging all sample currencies’ daily negative bid-ask spreads

and then averaging these daily values up to the monthly frequency. Thus, the lower LCur
t , the more illiquid

the currency market. The sample currencies include 21 currencies considered in Lustig et al. (2011) against
the US dollar. The sample period spans from July 2001 to December 2020.
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Figure 2: Prior-posterior distributions of the transition parameters {γz
1,st−1=n}3

n=1 and {γz
2,st−1=n}3

n=1
obtained from the best-fitting state-switching model specification M3,3. Each plot displays the posterior
distribution (solid line) against the prior distribution (dashed line) of a given transition parameter. Results
are based on a simulation-based Bayesian inference procedure with 12,500 iterations.
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Figure 3: Prior-posterior distributions of the transition parameters ρ1 and ρ2 obtained from the best-fitting
state-switching model specification M3,3. Each plot displays the posterior distribution (solid line) against
the prior distribution (dashed line) of a given transition parameter. Results are based on a simulation-based
Bayesian inference procedure with 12,500 iterations.
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Figure 4: Transition probabilities pnj,t = Pr(st = j|st−1 = n, εt), n, j ∈ {1, ..., 3}, against artificial
realizations of εt ∈ [−10, 10] computed from the best-fitting state-switching model specification M3,3. Each
plot displays a given transition probability (solid line) conditional on the information from the error term
εt alone. The x-axis measures alternative values of εt ∈ [−10, 10]. The y-axis measures alternative values of
transition probabilities pnj,t ∈ [0, 1]. Results are based on a simulation-based Bayesian inference procedure
with 12,500 iterations.
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Figure 5: Time path of the model-implied three states obtained from the best-fitting state-switching model
specification M3,3. This figure plots the shaded areas that highlight the periods of sample funds being in a
particular model-implied state. Specifically, the light gray, dark gray, and black areas highlight respectively
the periods of sample funds being in the perverse timing (the model-implied state st = 1), the weakly positive
timing (the model-implied state st = 2) and the strongly positive timing (the model-implied state st = 3)
states. The white area highlights the periods during which the model-implied states can not be determined
as the probability of each state is less than a threshold of 50%. The sample period spans from July 2001 to
December 2020.
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Throughout the internet appendix, the following notations are adopted. Consider the N -

state empirical form of our proposed model (11) and its variants in the paper, we let yt = Rt

and Yτ :t = (yτ , ..., yt)′ collect the modeled fund return series between time τ and t; let Xτ :t =

(xτ , ..., xt)′ collect the input variables between time τ and t;1 let β collect the coefficients2

except the error term’s variance σ2; let Sτ :t = (sτ , ..., st)′ collect the latent Markov state

variable between time τ and t; let S∗
τ :t = (s∗

τ , ..., s∗
t )′ collect Hwu et al. (2021)’s random

variables between time τ and t, with s∗
t = (s∗

1,t, s∗
2,t, ..., s∗

N−1,t)′ (see (5) of the paper); let Zτ :t =

(zτ , ..., zt)′ collect the transition covariates between time τ and t; let γ = {γi,n}N−1,N
i=1,n=1, with

γi,n = ({γ̄i,n}N−1,N
i=1,n=1, {γz

i,n}N−1,N
i=1,n=1) collecting the transition parameters (see (6) of the paper);

let ρ = {ρi}N−1
i=1 collect the transition parameters (see (6) of the paper); let θ = {β, γ, ρ, σ2}

collect all model parameters to be estimated (i.e., coefficients, transition parameters and

error term’s variance) in model specification (11) and its variants in the paper.

Appendix A. Transition probabilities

This section generalizes Hwu et al. (2021, Appendix B) for transition probabilities in the

case of N states.

For pn1,t in (7) of the paper, we have

pn1,t = Pr(st = 1|st−1 = n, zt, εt)

= Pr(s∗
1,t < 0, s∗

2,t < 0, ..., s∗
N−1,t < 0)

=
N−1∏
i=1

Φ
−γ̄i,st−1 − z′

tγ
z
i,st−1 − ρiεt√

1 − ρ2
i

 ,

(A.1)

1For example xt = (1,GMFt,EMFt,TERMt,CREDITt,HML_FXt,RXt, (LCur
t −

L̄Cur)HML_FXt, (LCur
t − L̄Cur)RXt)′ in (11) of the paper.

2For example β = {α, βGMF, βEMF, βTERM, βCREDIT, βHML_FX, βRX, {µn}N
n=1, {λn}N

n=1} in (11) of the
paper.
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for n ∈ {1, ..., N}; where Φ(·) denotes the cumulative density function (CDF) of the standard

normal distribution. For pnj,t in (7) of the paper, we have

pnj,t = Pr(st = j|st−1 = n, zt, εt)

= Pr(s∗
j−1,t > 0, {s∗

j−1,t − s∗
m,t > 0 : m = 1, ..., N − 1, m ̸= j − 1})

= F (0(N−1)×1|cj−1,t, Vj−1),

(A.2)

for n ∈ {1, ..., N} and j ∈ {2, ..., N}; where F (·|cj−1,t, Vj−1) denotes the CDF of the multi-

variate normal distribution with mean cj−1,t and variance-covariance Vj−1. We derive Vj−1

as follows

Vj−1 =



1 − ρ2
j−1 1 − ρ2

j−1 · · · 1 − ρ2
j−1

1 − ρ2
j−1 2 − ρ2

j−1 − ρ2
1

...
... . . . 1 − ρ2

j−1

1 − ρ2
j−1 · · · 1 − ρ2

j−1 2 − ρ2
j−1 − ρ2

N−1


,

and cj−1,t is given by

cj−1,t =



−γ̄j−1,st−1 − z′
tγ

z
j−1,st−1 − ρj−1εt

γ̄1,st−1 − γ̄j−1,st−1 + z′
t(γz

1,st−1 − γz
j−1,st−1) + (ρ1 − ρj−1)εt

...

γ̄j−2,st−1 − γ̄j−1,st−1 + z′
t(γz

j−2,st−1 − γz
j−1,st−1) + (ρj−2 − ρj−1)εt

γ̄j,st−1 − γ̄j−1,st−1 + z′
t(γz

j,st−1 − γz
j−1,st−1) + (ρj − ρj−1)εt

γ̄j+1,st−1 − γ̄j−1,st−1 + z′
t(γz

j+1,st−1 − γz
j−1,st−1) + (ρj+1 − ρj−1)εt

...

γ̄N−1,st−1 − γ̄j−1,st−1 + z′
t(γz

N−1,st−1 − γz
j−1,st−1) + (ρN−1 − ρj−1)εt



.
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For variants of (7) of the paper, which are conditional on the information from zt alone

(see (12)–(13) of the paper), we have

pn1,t = Pr(st = 1|st−1 = n, zt)

= Pr(s∗
1,t < 0, s∗

2,t < 0, ..., s∗
N−1,t < 0)

= F (0(N−1)×1|γ̄st−1 + z′
tγ

z
st−1 , Ω)

pnj,t = Pr(st = j|st−1 = n, zt)

= Pr(s∗
j−1,t > 0, {s∗

j−1,t − s∗
m,t > 0 : m = 1, ..., N − 1, m ̸= j − 1})

= F (0(N−1)×1|c̄j−1,t, V̄j−1),

(A.3)

for n ∈ {1, ..., N} and j ∈ {2, ..., N}; where γ̄st−1 and γz
st−1 are defined in (B.8); Ω is defined

in (B.9); the mean c̄j−1,t is given by

cj−1,t =



−γ̄j−1,st−1 − z′
tγ

z
j−1,st−1

γ̄1,st−1 − γ̄j−1,st−1 + z′
t(γz

1,st−1 − γz
j−1,st−1)

...

γ̄j−2,st−1 − γ̄j−1,st−1 + z′
t(γz

j−2,st−1 − γz
j−1,st−1)

γ̄j,st−1 − γ̄j−1,st−1 + z′
t(γz

j,st−1 − γz
j−1,st−1)

γ̄j+1,st−1 − γ̄j−1,st−1 + z′
t(γz

j+1,st−1 − γz
j−1,st−1)

...

γ̄N−1,st−1 − γ̄j−1,st−1 + z′
t(γz

N−1,st−1 − γz
j−1,st−1)



,
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and the variance-covariance V̄j−1 is formulated as

V̄j−1 =



1 1 − ρ1ρj−1 · · · 1 − ρN−1ρj−1

1 − ρ1ρj−1 2(1 − ρ1ρj−1)
...

... . . .
1 + ρN−1ρN−2

−ρN−1ρj−1 − ρN−2ρj−1

1 − ρN−1ρj−1 · · ·
1 + ρN−1ρN−2

−ρN−1ρj−1 − ρN−2ρj−1

2(1 − ρN−1ρj−1)



.
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Appendix B. Simulation-based Bayesian inference procedure

This section provides the computational details (i.e., priors, conditional posterior distri-

butions, sampling algorithms, and marginal likelihoods) of the simulation-based Bayesian

inference procedure used to estimate the empirical form of our proposed model (11) and its

variants in the paper.

B.1. Priors

In Table A.1, we specify a standard set of independent priors on model parameters

θ = {β, γ, ρ, σ2} as with Kim and Kang (2022).

Table A.1: Priors

Parameter Priors Hyperparameters

β N (β̄, V̄β) β̄ = 0K×1, V̄β = IK

γ N (Γ̄i, V̄Γi
) N = 2: Γ̄1 = (γ̄1,1, γ

z
1,1, γ̄1,2, γ

z
1,2)’ = (-1.5, 0, 1.5, 0)’,

V̄Γ1 = IN ⊗ diag(0.05,0.1)
N = 3: Γ̄1 = (γ̄1,1, γ

z
1,1, γ̄1,2, γ

z
1,2, γ̄1,3, γ

z
1,3)’

= (-1.5, 0 1.5, 0, 0, 0)’, V̄Γ1 = IN ⊗ diag(0.05,0.1)
Γ̄2 = (γ̄2,1, γ

z
2,1, γ̄2,2, γ

z
2,2, γ̄2,3, γ

z
2,3)’

= (-2, 0, -0.5, 0, 1.5, 0)’, V̄Γ2 = IN ⊗ diag(0.05,0.1)
N = 4: Γ̄1 = (γ̄1,1, γ

z
1,1, γ̄1,2, γ

z
1,2, γ̄1,3, γ

z
1,3, γ̄1,4, γ

z
1,4)’

= (-2.5, 0, 1.5, 0, -1.5, 0, 0, 0)’, V̄Γ1 = IN ⊗ diag(0.05,0.1)
Γ̄2 = (γ̄2,1, γ

z
2,1, γ̄2,2, γ

z
2,2, γ̄2,3, γ

z
2,3, γ̄2,4, γ

z
2,4)’

= (-2, 0, 0.5, 0, 1.5, 0, -0.5, 0)’, V̄Γ2 = IN ⊗ diag(0.05,0.1)
Γ̄3 = (γ̄3,1, γ

z
3,1, γ̄3,2, γ

z
3,2, γ̄3,3, γ

z
3,3, γ̄3,4, γ

z
3,4)’

= (-1.5, 0, 0, 0, -0.5, 0, 1.5, 0)’, V̄Γ3 = IN ⊗ diag(0.05,0.1)
0.5 × (ρi + 1) Beta(a0, b0) a0 = 4, b0 = 4
σ2 IG(ν0, R0) ν0 = R0/ŝ+ 1, R0 = ŝ(ŝ2/σ2

ŝ) + 1

Notes: This table presents a standard set of independent priors on model parameters θ =
{

β, γ, ρ, σ2
}

as with Kim and Kang
(2022). N (a, b) denotes the Normal distribution with mean a and variance b; Beta(a, b) denotes the Beta distribution with
shape parameters a and b; IG(a, b) denotes the Inverse Gamma distribution with shape parameter a and scale parameter b.
The priors depend on the set of hyperparameters (β̄, V̄β , {Γ̄i}N−1

i=1 , {V̄Γi
}N−1
i=1 , a0, b0, ν0, R0).

The prior on β is assumed to be Gaussian with mean β̄ and variance V̄β. We set the

hyperparameters β̄ and V̄β to be weakly informative such that the impact of the prior on the

6



posterior distribution is limited. Specifically, we set β̄ = 0K×1 and V̄β = IK , where 0K×1 is

a K-dimensional vector of zeros, IK is a K × K identity matrix and K denotes the number

of coefficients collected in β.

The priors on γ = {γi,n}N−1,N
i=1,n=1 are assumed to be Gaussian. Specifically, for i =

1, 2, ..., N − 1, we assume the vector (γi,n=1, γi,n=2, ..., γi,n=N)′ is normally distributed with

mean Γ̄i and variance V̄Γi . In our empirical analysis where N = 2, 3, 4 is considered (see

Section 4.2 in the paper), we set the hyperparameters Γ̄i and V̄Γi in each case of N to be

uninformative as in Kim and Kang (2022).

The priors on ρ = {ρi}N−1
i=1 are assumed to be Beta with shape parameters a0 and b0.

The hyperparameters a0 and b0 are set to allow the prior mean of ρi (transformed from

0.5 × (ρi + 1)) to be zero, which is uninformative as suggested by Kim and Kang (2022).

The prior on σ2 is assumed to be Inverse Gamma with shape parameter ν0 and scale

parameter R0. The hyperparameters ν0 and R0 are formulated to allow the prior mean of σ2

to be concentrated around the OLS estimate of the error term’s variance, i.e., ν0 = R0/ŝ+1,

R0 = ŝ(ŝ2/σ2
ŝ) + 1, where ŝ2 denotes the error term’s variance estimated from OLS and σ2

ŝ

denotes the variance of ŝ. We set σ2
ŝ to 0.25, which seems to reflect an ex ante plausible

range for the values of ŝ.

B.2. Conditional posterior distributions and sampling algorithms

Let θ−β denote the collection of model parameters, excluding β. Similarly, let θ−γ, θ−ρ,

and θ−σ2 denote the collections of model parameters except γ, ρ, and σ2, respectively. To

obtain posterior samples of the latent variables S1:T and S∗
1:T as well as the model parameters

θ = {β, γ, ρ, σ2}, we adopt a simulation-based Bayesian inference procedure that iterates

between the following steps

Step 1: sampling S1:T given Y1:T , X1:T , Z1:T , θ.

Step 2: sampling S∗
1:T given S1:T , Y1:T , X1:T , Z1:T , θ.
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Step 3: sampling β given S1:T , S∗
1:T , Y1:T , X1:T , Z1:T , θ−β.

Step 4: sampling γ given S1:T , S∗
1:T , Y1:T , Z1:T , θ−γ.

Step 5: sampling ρ given S1:T , S∗
1:T , Y1:T , X1:T , Z1:T , θ−ρ.

Step 6: sampling σ2 given S1:T , S∗
1:T , Y1:T , X1:T , Z1:T , θ−σ2 .

Throughout the paper, we conduct 150,000 iterations of the above sampling procedure.

To mitigate the dependence on the initial posterior samples and reduce the serial correlation

among the posterior samples, we discard the first 25,000 iterations as burn-in and thin the

remaining 125,000 iterations at an interval of 10. This finally leaves 12,500 posterior samples

from which we derive the posterior summary of the estimated model parameters. We now

provide the details of each step as follows.

Sampling S1:T . We sample the whole path S1:T from its conditional posterior distribution

based on a forward-filtering backward-sampling (FFBS) algorithm. The FFBS algorithm

consists of two stages. In the first stage, we carry out a forward recursion to obtain the

filtered probability. In the second stage, we compute the conditional posterior distribution

of S1:T using the filtered probabilities, and randomly draw S1:T from its conditional posterior

distribution through a backward recursion. We implement the FFBS algorithm following

Kim and Kang (2022, Appendix A.1).

Sampling S∗
1:T . We sample each s∗

t collected in S∗
1:T from its conditional posterior dis-

tribution p(s∗
t |st, st−1, Y1:T , X1:T , Z1:T , θ) independently for t = 1, ..., T . Recall that s∗

t =

(s∗
1,t, s∗

2,t, ..., s∗
N−1,t)′, each of which is mutually uncorrelated according to Hwu et al. (2021).

Thus, the conditional posterior distribution p(s∗
t |st, st−1, Y1:T , X1:T , Z1:T , θ) is simply given

by the product of
{
p(s∗

i,t|st, st−1, Y1:T , X1:T , Z1:T , θ)
}N−1

i=1
, which following (5)–(6) in the pa-
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per is proportional to

N (s∗
i,t|γ̄i,st−1 + z′

tγ
z
i,st−1 + ρiεt, 1 − ρ2

i )×

[I(s∗
i,t > s∗

h,t|st) Pr(I(s∗
i,t > s∗

h,t|st)) + I(s∗
i,t ≤ s∗

h,t|st) Pr(I(s∗
i,t ≤ s∗

h,t|st))],
(B.1)

for h = 0, 1, ..., i − 1, i + 1, ..., N − 1; where s∗
0,t = 0; I(·) is an indicator function. From

(5) in the paper, (B.1) has different functional forms depending on the realization of st.

Consider the case that st = 1, all random variables are negative. This reflects in (B.1) that

I(s∗
i,t > s∗

0,t|st) = 0, Pr(I(s∗
i,t > s∗

0,t|st)) = 0, I(s∗
i,t ≤ s∗

0,t|st) = 1, and Pr(I(s∗
i,t ≤ s∗

0,t|st)) = 1

for i = 1, 2, ..., N − 1. Thus, (B.1) for any given random variable s∗
i,t can be rewritten as

N (s∗
i,t|γ̄i,st−1 + z′

tγ
z
i,st−1 + ρiεt, 1 − ρ2

i ) × I(s∗
i,t ≤ s∗

0,t|st), (B.2)

and indicates that s∗
i,t can be sampled from the truncated normal distributions over (−∞,0]

s∗
i,t ∼ T N (−∞,0](γ̄i,st−1 + z′

tγ
z
i,st−1 + ρiεt, 1 − ρ2

i ). (B.3)

Consider the case that 2 ≤ st = i + 1 ≤ N , the i-th random variable s∗
i,t is positive. Thus,

(B.1) for s∗
i,t can be rewritten as

N (s∗
i,t|γ̄i,st−1 + z′

tγ
z
i,st−1 + ρiεt, 1 − ρ2

i ) × I(s∗
i,t > s∗

0,t|st), (B.4)

and indicates that s∗
i,t can be sampled from the truncated normal distributions over (0, ∞]

s∗
i,t ∼ T N (0,∞](γ̄i,st−1 + z′

tγ
z
i,st−1 + ρiεt, 1 − ρ2

i ). (B.5)

Besides, the i-th random variable s∗
i,t should be larger than the other random variables.

9



Thus, given the sample of s∗
i,t, (B.1) for the remaining random variables can be rewritten as

N (s∗
h,t|γ̄h,st−1 + z′

tγ
z
h,st−1 + ρhεt, 1 − ρ2

h) × I(s∗
h,t < s∗

i,t|st), (B.6)

for h = 1, 2, ..., j−1, j+1, ..., N −1, and indicates that s∗
h,t can be sampled from the truncated

normal distributions over (−∞, s∗
i,t]

s∗
h,t ∼ T N (−∞,s∗

i,t](γ̄h,st−1 + z′
tγ

z
h,st−1 + ρ′

hεt, 1 − ρ2
h). (B.7)

This completes the sampling of each s∗
t collected in S∗

1:T .

Sampling β. We sample β from its conditional posterior distribution, which is given by

β|S1:T , S∗
1:T , Y1:T , X1:T , Z1:T , θ−β ∼ N (B1A, B1), (B.8)

with B1 = (V̄ −1
β +∑T

t=1 Xt(σ(1−ρ′Ω−1ρ)σ′)−1X ′
t)−1, A = (V̄ −1

β β̄+∑T
t=1 Xt(σ(1−ρ′Ω−1ρ)σ′)−1y∗

t )

and Xt = [(I(st = 1) I(st = 2) · · · I(st = N)) ⊗ x′
t]

′; where y∗
t = yt − σρ′Ω−1(s∗

t − γ̄st−1 −

z′
tγ

z
st−1), γ̄st−1 = (γ̄1,st−1 , γ̄2,st−1 , ..., γ̄N−1,st−1)′, γz

st−1 = (γz
1,st−1 , γz

2,st−1 , ..., γz
N−1,st−1)′ and

Ω =



1 ρ1ρ2 · · · ρ1ρN−1

ρ2ρ1 1 ...
... . . . ρN−2ρN−1

ρN−1ρ1 · · · ρN−1ρN−2 1


. (B.9)

Sampling γ. For each i = 1, 2, ..., N − 1, we sample (γi,n=1, γi,n=2, ..., γi,n=N)′ from its
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conditional posterior distribution, which is given by

(γi,n=1, γi,n=2, ..., γi,n=N)′|S1:T , S∗
1:T , Y1:T , Z1:T , θ−γ ∼ N (Bi,1Ai, Bi,1), (B.10)

with Bi,1 = (∑T
t=1(1 − ρ2

i )−1ItI′
t + V̄ −1

Γi )−1, Ai = (∑T
t=1(1 − ρ2

i )−1It(s∗
i,t − ρiεt) + V̄ −1

Γi Γ̄i) and

It = [(I(st−1 = 1) I(st−1 = 2) · · · I(st−1 = N)) ⊗ x′
t]

′.

Sampling ρ. We sample ρ from its conditional posterior distribution, which is proportional

to p(S∗
1:T , Y1:T |S1:T , X1:T , Z1:T , θ) × π(ρ). Since p(S∗

1:T , Y1:T |S1:T , X1:T , Z1:T , θ) is not stan-

dard, we implement a Metropolis-Hastings (MH) algorithm similar to Kim and Kang (2022,

Algorithm 4).

Sampling σ2. We sample σ2 from its conditional posterior distribution, which is propor-

tional to p(Y1:T |S1:T , S∗
1:T , X1:T , Z1:T , θ)×IG(σ2|ν0, R0). Since p(Y1:T |S1:T , S∗

1:T , X1:T , Z1:T , θ)

is not standard, we implement a Metropolis-Hastings (MH) algorithm similar to Kim and

Kang (2022, Algorithm 5).

B.3. Marginal likelihoods

The marginal likelihood (in logarithm) of a given model specification MR,N in Section

4.2 of the paper, denoted by log p(Y1:T |MR,N), is computed as

log p(Y1:T |MR,N) = log p(Y1:T |θ̂, MR,N) + log π(θ̂|MR,N) − log π(θ̂|Y1:T , MR,N), (B.11)

where θ̂ = (β̂, γ̂, ρ̂, σ̂2) is the posterior mode. According to Kim and Kang (2022), the calcu-

lation of the likelihood log p(Y1:T |θ̂, MR,N) and prior density at the mode log π(θ̂|MR,N) is

straightforward. In contrast, the log posterior density log π(θ̂|Y1:T , MR,N) is computation-

ally challenging, because this is not analytical. Here, we follow Chib and Jeliazkov (2001)

11



and decompose the log posterior density into four log conditional densities, as

log π(θ̂|Y1:T , MR,N) = log π(β̂|Y1:T , θ̂−β, MR,N) + log π(γ̂|Y1:T , σ̂2, ρ̂, MR,N)

+ log π(ρ̂|Y1:T , σ̂2, MR,N) + log π(σ̂2|Y1:T , MR,N),
(B.12)

and compute each of them in parallel. We now provide the computational details of each

term in (B.12) as follows.

Computing π(β̂|Y1:T , θ̂−β, MR,N). This can be approximated numerically as

π(β̂|Y1:T , θ̂−β, MR,N) ≈ n−1
1

n1∑
g=1

N (β̂|B(g)
1 A(g), B

(g)
1 ), (B.13)

with B
(g)
1 = (V̄ −1

β + ∑T
t=1 Xt(σ̂(1 − ρ̂′Ω−1ρ̂)σ̂′)−1X ′

t)−1, A(g) = (V̄ −1
β β̄ + ∑T

t=1 Xt(σ̂(1 −

ρ̂′Ω−1ρ̂)σ̂′)−1y
∗,(g)
t ), and Xt = [(I(st = 1) I(st = 2) · · · I(st = N)) ⊗ x′

t]
′; where Ω is defined

in (B.9); y
∗,(g)
t = yt − σ̂ρ̂′Ω̂−1(s∗,(g)

t − γ̄
s

(g)
t−1

− z′
tγ

z

s
(g)
t−1

); the superscript (g) denotes the g-th

posterior sample and n1 denotes the number of iterations; (β, S1:T , S∗
1:T ) are sampled but

(γ, ρ, σ2) are fixed at their mode, (γ̂, ρ̂, σ̂2).

Computing log π(γ̂|Y1:T , σ̂2, ρ̂, MR,N). This can be approximated numerically as

π(γ̂|Y1:T , σ̂2, ρ̂, MR,N) ≈ n−1
1

n1∑
g=1

N (γ̂|B(g)
i,1 A

(g)
i , B

(g)
i,1 ), (B.14)

with B
(g)
i,1 = (∑T

t=1(1 − ρ̂2
i )−1ItI′

t + V̄ −1
Γi )−1, A

(g)
i = (∑T

t=1(1 − ρ̂2
i )−1It(s∗,(g)

i,t − ρ̂iε
(g)
t ) + V̄ −1

Γi Γ̄i)

and It = [(I(st−1 = 1) I(st−1 = 2) · · · I(st−1 = N)) ⊗ x′
t]

′; where ε
(g)
t = σ̂−1(yt − x′

tβ
(g)
s

(g)
t

);

(γ, β, S1:T , S∗
1:T ) are sampled but (ρ, σ2) are fixed at their mode, (ρ̂, σ̂2).

Computing π(ρ̂|Y1:T , σ̂2, MR,N). This can computed from the MH output in a multiple-

block sampling framework, using the method similar to Kim and Kang (2022, Appendix

12



B.3).

Computing π(σ̂2|Y1:T , MR,N). This can computed from the MH output in a multiple-block

sampling framework, using the method similar to Kim and Kang (2022, Appendix B.4).

13



Appendix C. Additional material on the robustness checks

This section presents supporting tables and figures discussed in Section 5 of the paper.
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Table C.1: Estimation results: Robustness 1

st/st−1 Mean s.e. 95% HPDI Ineff p-val

Panel A: Non-state-switching coefficients
α (%) 0.093 0.056 [-0.013, 0.209] 67.796 0.616
βGMF 0.094 0.025 [0.027, 0.122] 62.741 0.601
βEMF 0.059 0.013 [0.019, 0.069] 57.632 0.607
βTERM 1.581 0.247 [1.129, 2.079] 66.398 0.614
βCREDIT 0.106 0.034 [0.053, 0.184] 67.802 0.541
βHML_FX 0.033 0.021 [-0.008, 0.047] 70.074 0.072
βRX 0.140 0.018 [0.130, 0.182] 65.711 0.217
ψHML_FX -1.422 0.349 [-1.653, -0.516] 64.826 0.574
ψRX -0.216 0.516 [-1.254, 0.171] 65.589 0.351
δHML_FX -0.113 0.145 [-0.448, 0.049] 64.781 0.465
δRX 0.033 0.199 [-0.095, 0.469] 69.850 0.093
σ 0.004 0.000 [0.004, 0.005] 12.100 0.950

Panel B: Currency-liquidity-timing coefficients
µst 1 0.075 0.081 [-0.107, 0.120] 65.196 0.230

2 0.142 0.087 [-0.026, 0.311] 63.225 0.695
3 0.544 0.205 [0.087, 0.798] 69.615 0.306

λst
1 -0.870 0.427 [-1.130, 0.118] 71.188 0.149
2 0.610 0.254 [0.035, 1.009] 63.467 0.892
3 1.264 0.407 [0.714, 2.497] 62.678 0.628

Panel C: Transition parameters
γ̄1,st−1 1 -1.366 0.212 [-1.780, -0.957] 12.591 0.120

2 1.178 0.199 [0.789, 1.567] 4.546 0.526
3 -0.134 0.208 [-0.532, 0.275] 2.053 0.618

γz
1,st−1

1 0.102 0.288 [-0.481, 0.652] 17.813 0.202
2 -0.301 0.274 [-0.846, 0.227] 9.110 0.772
3 -0.165 0.292 [-0.739, 0.403] 2.130 0.647

γ̄2,st−1 1 -1.974 0.223 [-2.399, -1.530] 6.009 0.462
2 -0.637 0.203 [-1.016, -0.225] 3.691 0.053
3 1.270 0.213 [0.846, 1.680] 3.210 0.470

γz
2,st−1

1 -0.093 0.292 [-0.665, 0.473] 4.841 0.139
2 -0.237 0.277 [-0.771, 0.319] 4.293 0.320
3 -0.305 0.288 [-0.889, 0.240] 2.622 0.097

ρ1 -0.315 0.252 [-0.717, 0.221] 44.187 0.193
ρ2 0.011 0.238 [-0.469, 0.444] 16.746 0.363

Panel D: State differences in currency-liquidity-timing coefficients
µ2 − µ1 0.067 0.057 [0.029, 0.211] 61.949 0.425
µ3 − µ2 0.402 0.183 [0.033, 0.679] 70.899 0.383
λ2 − λ1 1.481 0.433 [0.486, 1.762] 70.342 0.088
λ3 − λ2 0.654 0.403 [0.113, 1.498] 66.065 0.548

Notes: This table presents the posterior summary of the best-fitting state-switching model specification M3,3 with controls for currency return and
volatility timing, including the posterior means (Mean), the posterior standard errors (s.e.), 95% highest posterior density interval (95% HPDI),
inefficiency factor (Ineff) and Geweke (1992)’s p-value (p-val) of the obtained parameters’ posterior samples. The model specification is given by

Rt =α + β
HML_FXHML_FXt + µst (LCur

t − L̄
Cur)HML_FXt + β

RXRXt + λst (LCur
t − L̄

Cur)RXt + ψ
HML_FXHML_FX2

t

+ ψ
RXRX2

t + δ
HML_FX(σCur

t − σ̄
Cur)HML_FXt + δ

RX(σCur
t − σ̄

Cur)RXt +

4∑
j=1

β
j
f

j
t

+ εt,

where t denotes a month; st ∈ {1, 2, 3} and the associated state transitions are formulated by (5)–(7) of the paper; Rt is the equally weighted
return of all sample funds; HML_FXt and RXt are the risk factors specific to the currency market—the carry-trade and the dollar factors;
{fj

t
}4

j=1 = {GMFt,EMFt,TERMt,CREDITt} are the additional risk factors—the hedged global bond market factor, the emerging bond market

factor, the term factor, and the credit factor; LCur
t is the systematic currency liquidity and L̄Cur its historical average; σCur

t is the systematic
currency volatility constructed in Menkhoff et al. (2012) and σ̄Cur its historical average; µst and λst are currency-liquidity-timing coefficients;
ψHML_FX and ψRX are currency-return-timing coefficients; δHML_FX and δRX are currency-volatility-timing coefficients. Results are based on
a simulation-based Bayesian inference procedure with 12,500 iterations. The sample period spans from July 2001 to December 2020.

15



Table C.2: Estimation results: Robustness 2

st/st−1 Mean s.e. 95% HPDI Ineff p-val

Panel A: Non-state-switching coefficients
α (%) 0.049 0.007 [0.044, 0.049] 53.281 0.937
βGMF 0.110 0.014 [0.071, 0.113] 71.062 0.750
βEMF 0.065 0.008 [0.067, 0.071] 72.798 0.776
βTERM 1.495 0.045 [1.497, 1.504] 66.598 0.751
βCREDIT 0.098 0.008 [0.070, 0.100] 69.139 0.703
βHML_FX 0.020 0.014 [0.016, 0.067] 73.609 0.586
βRX 0.146 0.006 [0.145, 0.145] 69.095 0.827
ψHML_FX -0.071 0.038 [-0.199, -0.065] 71.733 0.822
ψRX 0.107 0.019 [0.050, 0.112] 66.746 0.625
σ 0.004 0.000 [0.004, 0.005] 20.831 0.540

Panel B: Currency-liquidity-timing coefficients
µst 1 0.033 0.349 [-0.930, 0.154] 74.053 0.542

2 0.238 0.270 [-0.394, 0.328] 72.121 0.566
3 0.382 0.098 [0.352, 0.677] 70.956 0.598

λst
1 -1.136 0.104 [-1.145, -0.807] 64.076 0.882
2 -0.060 0.297 [-0.154, 0.753] 72.767 0.586
3 2.086 0.371 [0.831, 2.210] 73.605 0.559

Panel C: Transition parameters
γ̄1,st−1 1 -1.531 0.211 [-1.936, -1.106] 3.903 0.589

2 1.299 0.205 [0.912, 1.708] 2.071 0.631
3 -0.134 0.207 [-0.532, 0.280] 0.964 0.998

γz
1,st−1

1 -0.036 0.285 [-0.598, 0.517] 3.023 0.826
2 -0.272 0.281 [-0.823, 0.273] 2.023 0.867
3 -0.129 0.289 [-0.684, 0.452] 1.031 0.951

γ̄2,st−1 1 -1.921 0.214 [-2.339, -1.505] 2.843 0.627
2 -0.585 0.204 [-0.981, -0.190] 1.428 0.797
3 1.218 0.210 [0.827, 1.645] 2.979 0.706

γz
2,st−1

1 -0.052 0.291 [-0.622, 0.521] 2.126 0.788
2 -0.165 0.279 [-0.701, 0.392] 1.446 0.919
3 -0.315 0.288 [-0.870, 0.248] 1.357 0.099

ρ1 0.183 0.253 [-0.292, 0.667] 8.403 0.399
ρ2 -0.196 0.190 [-0.545, 0.186] 18.487 0.603

Panel D: State differences in currency-liquidity-timing coefficients
µ2 − µ1 0.206 0.119 [0.174, 0.537] 70.373 0.651
µ3 − µ2 0.144 0.347 [0.024, 1.071] 73.253 0.546
λ2 − λ1 1.076 0.287 [0.991, 1.560] 71.958 0.618
λ3 − λ2 2.146 0.655 [0.077, 2.365] 73.820 0.562

Notes: This table presents the posterior summary of the best-fitting state-switching model specification M3,3 with controls for currency liquidity
reaction, including the posterior means (Mean), the posterior standard errors (s.e.), 95% highest posterior density interval (95% HPDI), inefficiency
factor (Ineff) and Geweke (1992)’s p-value (p-val) of the obtained parameters’ posterior samples. The model specification is given by

Rt =α + β
HML_FXHML_FXt + β

RXRXt + µst L̃
Cur
t HML_FXt + λst L̃

Cur
t RXt + ψ

HML_FX(LCur
t−1 − L̄

Cur)HML_FXt

+ ψ
RX(LCur

t−1 − L̄
Cur)RXt +

J∑
j=1

β
j
f

j
t

+ εt,

where t denotes a month; st ∈ {1, 2, 3} and the associated state transitions are formulated by (5)–(7) of the paper; Rt is the equally weighted
return of all sample funds; HML_FXt and RXt are the risk factors specific to the currency market—the carry-trade and the dollar factors;
{fj

t
}4

j=1 = {GMFt,EMFt,TERMt,CREDITt} are the additional risk factors—the hedged global bond market factor, the emerging bond market

factor, the term factor, and the credit factor; LCur
t−1 is the one-month lagged systematic currency liquidity and L̄Cur its historical average; L̃Cur

t

is the innovation in systematic currency liquidity, obtained from an AR(2) process and represents the unpredictable component of systematic
currency liquidity; µst and λst are currency-liquidity-timing coefficients; ψHML_FX and ψRX are currency-liquidity-reaction coefficients. Results
are based on a simulation-based Bayesian inference procedure with 12,500 iterations. The sample period spans from July 2001 to December 2020.16
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Figure C.1: Time path of the model-implied three states obtained from the best-fitting state-switching
model specification M3,3 with different controls. Each figure plots the shaded areas that highlight the
periods of sample funds being in a particular model-implied state. Specifically, the light gray, dark gray, and
black areas highlight respectively the periods of sample funds being in the model-implied states st = 1, 2, 3.
The white area highlights the periods during which the model-implied states can not be determined as
the probability of each state is less than a threshold of 50%. The sample period spans from July 2001 to
December 2020.
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