

City, University of London Institutional Repository

Citation: Salimi, N., Soleimani, S., Rafe, V. & Khodadad, D. (2025). A Hybrid Approach for

Reachability Analysis of Complex Software Systems Using Fuzzy Adaptive Particle Swarm
Optimization Algorithm and Rule Composition. Mathematical and Computational
Applications, 30(3), 65. doi: 10.3390/mca30030065

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35437/

Link to published version: https://doi.org/10.3390/mca30030065

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Academic Editor: Leonardo Trujillo

Received: 25 April 2025

Revised: 31 May 2025

Accepted: 3 June 2025

Published: 10 June 2025

Citation: Salimi, N.; Soleimani, S.;

Rafe, V.; Khodadad, D. A Hybrid

Approach for Reachability Analysis of

Complex Software Systems Using

Fuzzy Adaptive Particle Swarm

Optimization Algorithm and Rule

Composition. Math. Comput. Appl.

2025, 30, 65. https://doi.org/10.3390/

mca30030065

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Hybrid Approach for Reachability Analysis of Complex
Software Systems Using Fuzzy Adaptive Particle Swarm
Optimization Algorithm and Rule Composition
Nahid Salimi 1, Seyfollah Soleimani 1,* , Vahid Rafe 2 and Davood Khodadad 3,*

1 Department of Computer Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran;
n.salimi.n@gmail.com

2 Department of Computer Science, City St George’s, University of London, London EC1V 0HB, UK;
vahid.rafe@city.ac.uk

3 Department of Applied Physics and Electronics, Umeå University, 901 87 Umeå, Sweden
* Correspondence: s-soleimani@araku.ac.ir (S.S.); davood.khodadad@umu.se (D.K.)

Abstract: Model checking has become a widely used and precise technique for verifying
software systems. However, a major challenge in model checking is state space explosion,
which occurs due to the exponential memory usage required by the model checker. To
address this issue, meta-heuristic and evolutionary algorithms offer a promising solution
by searching for a state where a property is either satisfied or violated. Recently, various
evolutionary algorithms, such as Genetic Algorithms and Particle Swarm Optimization,
have been applied to detect deadlock states. While these approaches have been useful, they
primarily focus on deadlock detection. This paper proposes a fuzzy algorithm to analyse
reachability properties in systems specified through Graph Transformation Systems with
large state spaces. To achieve this, the existing Particle Swarm Optimisation algorithm,
which is typically used for deadlock detection, has been extended to analyse reachability
properties. To further enhance accuracy, a Fuzzy Adaptive Particle Swarm Optimization
algorithm is introduced to determine which states and paths should be explored at each
step-in order to find the corresponding reachable state. Additionally, the proposed hybrid
algorithm was applied to models generated through rule composition to assess the impact
of rule composition on execution time and the number of explored states. These approaches
were implemented within an open-source toolset called GROOVE, which is used for design-
ing and model checking Graph Transformation Systems. Experimental results demonstrate
that proposed hybrid algorithm reduced verification time by up to 49.86% compared to
Particle Swarm Optimization and 65.17% compared to Genetic Algorithms in reachabil-
ity analysis of complex models. Furthermore, it explored 32.7% fewer states on average
than the hybrid method based on Particle Swarm Optimization and Gravitational Search
Algorithms, and 57.4% fewer states compared to Genetic Algorithms, indicating improved
search efficiency. The application of rule composition further reduced execution time by
35.7% and the number of explored states by 41.2% in large-scale models. These results
confirm that proposed hybrid algorithm significantly enhances reachability analysis in the
systems modelled via Graph Transformation, improving both computational efficiency
and scalability.

Keywords: fuzzy adaptive particle swarm optimization; graph transformation system;
model checking; reachability property; rule composition

Math. Comput. Appl. 2025, 30, 65 https://doi.org/10.3390/mca30030065

https://doi.org/10.3390/mca30030065
https://doi.org/10.3390/mca30030065
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-5541-8768
https://orcid.org/0000-0003-2960-3094
https://doi.org/10.3390/mca30030065
https://www.mdpi.com/article/10.3390/mca30030065?type=check_update&version=1

Math. Comput. Appl. 2025, 30, 65 2 of 30

1. Introduction
In recent decades, software systems have played a crucial role in software development

and security considerations. As software development techniques have evolved, they have
enabled the creation of increasingly complex software systems. Model-Driven Engineering
(MDE) leverages models to describe complex systems at multiple levels of abstraction [1].
Modelling systems allows for the application of model checking, a formal analysis technique
used to verify software and detect system errors during the design phase—an approach
that is both easier and more cost-effective than identifying issues after implementation.

Using a modelling language is essential for representing systems and verifying them
through model checking. Graph Transformation Systems (GTS) is a visual, graph-based
formal language used to model software systems with dynamic structures [2]. GTS employs
graphs to represent and analyse the structure of complex systems [3]. However, when
applied to large systems, GTS models can become enormous, leading to the well-known
state space explosion problem, which poses a significant challenge to model checking [4].
Various classical methods, such as symbolic verification [5], partial order reduction [6],
and symmetry model checking [7], have been introduced to reduce time and memory
consumption during the model checking process.

Several heuristic approaches have also been proposed to address the state space explo-
sion problem. These include Depth-First Search [8], Best-First Search [9], an adaptation of
the A* algorithm [10], Coverage-First Search [11], and an A* search algorithm for verifying
liveness properties in explicit-state model checking [6]. However, even with these methods,
exhaustive searches within the state space can still lead to memory limitations and reduced
computational speed.

In recent years, metaheuristic and evolutionary algorithms have gained attention
for their efficiency in addressing these challenges compared to classical and heuristic
approaches. These methods explore only a subset of the system’s state space rather than
the entire space, making them more practical for mitigating state space explosion. Several
metaheuristic approaches have been proposed to detect deadlocks and refute security
properties. For instance, the Ant Colony Optimization (ACO) algorithm has been applied
in this context [12,13]. Additionally, a novel approach utilizing the Genetic Algorithm
(GA) has been introduced to verify the correctness of communication protocols [14]. This
genetic validation technique has been tested on both a manually created protocol and the
Transmission Control Protocol (TCP).

In [15], two distinct learning algorithms were proposed to verify safety, reachability,
and liveness properties of systems whose state spaces can be expressed through regular
expressions. Another study presented an ACO-based approach to mitigate the state space
explosion problem when detecting deadlocks in complex networks modelled using the
Calculus of Communicating Systems (CCS) [12]. Furthermore, two other studies [16,17]
introduced an ACO-based model to refute safety and liveness properties in concurrent
systems. This approach applies the GA algorithm to generate several random paths
of a specific length starting from the initial state and identifies the first path leading
to a deadlock state. To assess its efficiency, this solution was implemented using the
GROOVE toolset.

Another proposed approach for addressing this problem utilizes the Particle Swarm
Optimization (PSO) algorithm to detect deadlocks in Graph Transformation Systems [18].
Additionally, researchers have developed a hybrid algorithm that combines PSO with
the Gravitational Search Algorithm (GSA) to overcome the issue of local optima (PSO-
GSA). In this paper, GSA was integrated to enhance PSO’s performance, and the results
demonstrated that combining PSO with GSA, along with other metaheuristic algorithms,
could significantly improve model checking analysis for problems defined through GTS.

Math. Comput. Appl. 2025, 30, 65 3 of 30

In [19], an efficient approach utilizing data mining techniques, called EMCDM, is pro-
posed to analyse complex software system models. These systems are designed according
to a specific architectural style and formally modelled using GTS. The EMCDM approach
is applied to verify the reachability property as a means of refuting the safety property.

In another study [20], a method based on the Bayesian Optimization Algorithm (BOA)
is introduced to detect deadlocks in systems specified through graph transformations.
The results indicate significant improvements in terms of both speed and accuracy. One
of the key properties verified in the model checking process is reachability, which can
serve as an alternative to refuting a similar safety property. The authors of [21] applied
machine learning techniques, such as the ensemble classification technique, for reachability
verification and model checking of systems modelled through GTS. This approach starts
with generating a small model and search the explored state space to find the paths
forwarded to goal states. Then, the ensemble classification technique was applied to extract
necessary knowledge paths and intelligently explore the state space of the bigger model.

An incremental optimization framework for model checking GTS was proposed
in [22], focusing on deadlock detection using a novel metaheuristic algorithm called the
Raccoon Optimization Algorithm. Additionally, a new approach for solving AI planning
problems in systems specified via GTS, based on the Bayesian Optimization Algorithm,
was introduced in [23]. The authors of [24] proposed a deep reinforcement learning-based
algorithm utilizing a Double Deep Q-Network (DDQN) to search for reachability properties
in systems specified through graph transformation.

Reachability has become an essential aspect of verification, as other properties, such
as safety, can be analysed through reachability verification of states that refute safety
properties. Since safety and reachability are dual concepts, verifying the reachability
property “not p” serves as an alternative to verifying the safety property “p” [24].

Unlike prior metaheuristic approaches that focus narrowly on deadlock detection with
static parameters and generic fitness metrics, this study introduces a fuzzy-adaptive PSO
framework with a GTS-aware fitness function—filling the gap in accurate and scalable
reachability verification for complex transformation-based models.

Rule composition is also a fundamental concept in graph transformations. For example,
refs. [25,26] present two different types of composition: sequential and parallel (spatial).
Sequential composition is achieved through concatenation. Given two transformations,
p: G1→ G2 and p′: G2→ G3, the composed rule p′′: G1→ G3 is defined as their sequential
composition [26]. Parallel composition is realised through disjoint union or amalgamation:
In the simplest case, for given transformation p: L ← I → R and p′: L′ ← I′ → R′, the
transformation p′′: p + p′ = (L + L′ ← I + I′ → R + R′). Here, “+” denotes the binary
coproduct [27].

The increasing complexity of modern software systems has intensified the challenge of
verifying behavioural properties such as reachability, especially in systems modelled using
GTS. Reachability analysis—the task of determining whether a system can evolve from an
initial state to a defined goal state—is crucial for ensuring system correctness. However, in
the context of GTS, this process is hindered by the state space explosion problem, where
the number of possible system configurations grows exponentially with the number of
transformation rules and components.

Traditional verification methods, including symbolic model checking and SAT-based
approaches, are often insufficient in such contexts due to their requirement for exhaustive
exploration, leading to scalability limitations. Likewise, although metaheuristic algorithms
such as GA, ACO, and basic PSO have been employed to reduce computational load, these
techniques frequently focus on deadlock detection and do not generalize well to broader
reachability verification tasks. More importantly, they struggle with parameter tuning and

Math. Comput. Appl. 2025, 30, 65 4 of 30

often lack mechanisms for adapting to the dynamic nature of large state spaces, resulting
in suboptimal performance or premature convergence.

In this work, we address the specific need for an adaptive, efficient, and scalable
approach to reachability analysis in GTS. Our proposed Fuzzy Adaptive PSO (FAPSO)
method meets this need by integrating a fuzzy inference system to dynamically adjust PSO
parameters based on system diversity and search progression. This adaptability ensures
that the algorithm maintains an effective balance between exploration and exploitation,
even in large and irregular search spaces. Additionally, we introduce a domain-specific
fitness function that evaluates path validity based on graph structural similarity and
penalizes violations of Negative Application Conditions (NACs), ensuring that the search
remains both targeted and semantically sound.

The suitability of FAPSO for this domain stems from its ability to navigate complex,
high-dimensional search spaces without requiring exhaustive model exploration. Unlike
fixed-parameter or hybrid methods that assume static conditions, FAPSO continuously
adjusts its behaviour based on the evolving characteristics of the search space. This makes
it highly effective for scenarios where the state space is not only large but also dynamically
structured—a common trait in real-world GTS applications.

Therefore, FAPSO is not merely an alternative to existing algorithms; it is a necessary
and well-aligned solution for the challenges posed by reachability analysis in GTS. Its
adaptive behaviour, guided by system-specific feedback, ensures efficiency and accuracy in
settings where traditional methods falter.

This paper is organized as follows: the proposed approaches based on PSO and Fuzzy
PSO algorithms have been presented in Section 2. Section 3 briefly describes the necessary
background, such as model checking, GTS formalism, PSO algorithm, and Fuzzy inference
systems. Section 4 includes obtaining the experimental results based on several well-known
case studies. Moreover, a discussion of the observations is presented. The superiority of
the proposed approaches has been discussed in Section 5. Finally, Section 6 concludes the
paper and highlights the future works.

2. Background
2.1. Model Checking

Model checking is a fully automated technique used to verify the correctness properties
of various systems. This method assesses whether a specific correctness property applies
to a given system by exploring the potential transitions between different states. Some
of the properties that can be verified during model checking include safety, reachability,
liveness, and fairness. A safety property ensures that “no undesired situation should
occur” or that a “desired event” must always happen within the system. This property is
considered satisfied when all finite and infinite paths in the model meet this condition. If a
finite path leads to a goal state that violates the safety property, the property is deemed
violated. Regarding the reachability property, model checking determines whether a
specific configuration will be reached within the system. If a finite path reaches a goal state
that satisfies this property, the system is verified to meet the reachability condition. The two
properties—safety and reachability—are dual in nature. In fact, verifying the reachability
property as the negation of the safety property can serve as a counterexample that violates
the safety property [28].

2.2. Graph Transformation System

Using model checking to verify a system requires that the system be described using a
formal language. To model systems with dynamic structures, graph transformation can be
employed as a graph-based visual formal language [29]. One of the fundamental features

Math. Comput. Appl. 2025, 30, 65 5 of 30

of a graph transformation system is its formal and precise mathematical foundation [3].
An attributed GTS is represented as a triple: AGT = (TG, HG, R), where TG is the Type
graph, HG is the host graph, and R is the ruleset. The Type graph (TG) defines the system’s
overview and meta-model, while the host graph (HG) represents the initial configuration
of the system as an instance of the Type graph. Different configurations of the system can
be generated by applying transformation rules to the host graph. A graph transformation
rule set, R, on a Type graph (TG) can be defined by a triple (LHS, RHS, NAC). The left-hand
side (LHS) and right-hand side (RHS) specify the rule’s preconditions and postconditions,
respectively. The NAC (Negative Application Condition) is a specific configuration used to
ensure that no subgraph exists in the rule.

2.3. Particle Swarm Optimization Algorithm

The PSO algorithm is one of the most widely used optimization techniques for solving
multi-dimensional problems. Initially, the algorithm randomly generates an initial pop-
ulation of candidate solutions, represented as particles. The position of the ith particle is
described by the vector xi. In each iteration, the algorithm calculates the fitness of each
particle, which measures how optimal the particle is as a potential solution. This process
continues until a termination criterion is met. During the iterations, the “personal best”
(p-best) and “global best” (g-best) values are updated for all particles. The velocity (vi) and
position (xi) of the particles are then updated, as shown in Equations (1) and (2):

νi(t + 1) = W ∗ νi(t) + C1 ∗ (p-besti − xi(t)) ∗ R1 + C2 ∗ (g-best − xi(t)) ∗ R2 (1)

xi(t + 1) = xi(t) + νi(t + 1) (2)

C1 and C2 represent the “cognitive coefficient” and “social coefficient”, respectively,
which specify the influence of personal experience and collective experience on par-
ticle behaviour. These coefficients are real-valued and typically fall within the range
0 ≤ C1 + C2 ≤ 4. The momentum weight, denoted by W, determines the extent to which a
particle’s velocity at the current step influences its velocity at the next step. Additionally, R1
and R2 are two random factors, each containing a diagonal matrix of random real numbers
within the range (0, 1) [30]. The iterative process of calculating fitness and updating the
global best (g-best), personal best (p-best), position, and velocity of all particles continues
until a termination condition is met. The pseudo-code related to the algorithm can be seen
in Algorithm 1.

Algorithm 1. Pseudo Code for PSO Algorithm

1. Initialization
a. Initialize the particle’s position xi(t) for (t = 0, i:1. . .N)
b. Initialize the particle’s best position to its initial position pi(t) = xi(t) for (t = 0, i:1. . .N)
c. Calculate the fitness of each particle f (xi (t)) for (t = 0, i:1. . .N)
d. if f (xi (0)) ≤ f (xj (0)) then Initialize the global best as g-best = xj(t) for each i,j:1. . .N,
i ̸=j)
2. while a stopping criterion is not met repeat the following steps:

Update the velocity vi for each particle: vi(t + 1) = W*vi(t) + C1(p-besti − xi(t)) R1 +
C2(g-best − xi(t)) R2

Update the position xi for each particle: xi(t + 1) = xi(t) + vi(t + 1)
Evaluate the fitness f (xi(t + 1)) for each particle.
if f (xi(t + 1)) ≥ f (p-besti) then Update personal best: p-besti = xi(t + 1)
if f (xi(t + 1)) ≥ f (g-best) then Update personal best: g-best = xi(t + 1)

At the end of iterative process, the best solution is represented by g-best.

Math. Comput. Appl. 2025, 30, 65 6 of 30

2.4. Fuzzy Inference System

Fuzzy logic is a mathematically based framework for representing human knowledge
and experience. A Fuzzy Logic Controller (FLC) consists of a Knowledge Base that encodes
expert knowledge through a series of IF-THEN rules. An IF-THEN rule is a conditional
statement structured as follows: If a specific set of conditions is met, then a corresponding
set of consequences can be inferred.

A fuzzy system comprises three main components: fuzzification, the Fuzzy Inference
System (FIS), and defuzzification:

• In the fuzzification process, the linguistic variables (for both inputs and outputs)
are defined.

• The FIS defines the rules that describe how the system works and maps inputs
to outputs.

• In the defuzzification process, the outputs are calculated.

To design a fuzzy model, the following elements must be defined:

1. The input and output variables.
2. The fuzzy membership functions.
3. The fuzzy rules.
4. The parameters used in defining the membership functions and rules.

3. The Proposed Approaches
In this paper, two approaches are proposed to manage the state space explosion in

systems formally defined by GTS for verifying the reachability property: one based on
PSO and the other on a fuzzy adaptive PSO. Although metaheuristic algorithms, such as
PSO, are widely used to address optimization problems, the proposed approach leverages
these algorithms to search for the reachability property within a potentially vast state space,
which may even be infinite.

This study aims to overcome key limitations in existing metaheuristic model checking
methods by introducing a fuzzy-adaptive swarm optimization framework tailored for
GTS-based systems. It addresses both the algorithmic rigidity of traditional PSO and the
structural blind spots of generic fitness functions.

The integration of a fuzzy system into the PSO algorithm is justified by the need
for context-sensitive control of swarm behaviour in highly dynamic state spaces. Rule
composition supports this by simplifying the transformation rules, reducing the branching
factor, and accelerating convergence.

3.1. Problem Formulation

Most prior metaheuristic-based methods—such as GA, ACO, and basic
PSO—primarily address deadlock detection or safety refutation. These approaches do not
generalize well to the broader reachability analysis tasks needed for verifying dynamic
systems specified by GTS.

Previous algorithms often suffer from premature convergence due to fixed parameter
settings (e.g., C1 and C2 in PSO), especially in complex, high-dimensional state spaces
typical of GTS.

Conventional methods apply general heuristics (like path length minimization), which
are agnostic to the semantics and structure of graph-based models.

To overcome these gaps, we propose a novel Fuzzy Adaptive Particle Swarm Opti-
mization (FAPSO) algorithm that introduces:

• A fuzzy inference system for dynamic adjustment of PSO parameters based on iteration
progress and particle diversity, improving exploration and convergence.

Math. Comput. Appl. 2025, 30, 65 7 of 30

• A domain-specific fitness function that evaluates graph similarity and penalizes viola-
tions of Negative Application Conditions (NACs), allowing more precise navigation
of GTS-based state spaces.

• Integration with rule composition to reduce model complexity and the number of
explored states.

These innovations advance the state of the art by enabling more accurate, efficient,
and scalable reachability analysis, particularly in systems modelled using graph transfor-
mations, where exhaustive approaches are computationally infeasible.

In the context of verifying software systems modelled using Graph Transformation
Systems (GTS), reachability analysis involves determining whether a system can evolve
from an initial configuration to a target state that satisfies a specific property. This task
becomes computationally intractable as system complexity increases, due to the exponential
growth of the state space, a phenomenon known as state space explosion. The core problem
addressed in this study is:

Given a system SSS modelled by a GTS triple (TG, HG, R), and a reachability property
graph Gp = (Vp, Ep) along with associated Negative Application Conditions (NACs), find
a sequence of transformation rules r1, r2, . . ., rn ∈ R that, when applied to the initial host
graph HG, results in a state Gh such that:

1. Gh maximally matches the structural and semantic features of Gp;
2. No NAC conditions are violated in Gh;
3. The number of explored intermediate states and computational time are minimized.

This problem formulation encompasses both correctness (via semantic matching and
NAC compliance) and efficiency (via minimization of state exploration and computation
time). The solution space consists of all possible paths through the state transition graph
generated by applying rules in RRR to the host graph HG. However, exhaustive traversal
of this space is impractical for large systems.

To overcome these challenges, the search for valid transformation sequences is re-
framed as an optimization problem, where each candidate solution (i.e., a sequence of
rule applications) is evaluated based on its fitness in reaching a goal state resembling Gp

and avoiding NAC violations. Traditional Particle Swarm Optimization (PSO) methods,
while useful, suffer from premature convergence and static parameter settings that limit
adaptability to the dynamic structure of GTS-based state spaces.

Therefore, this paper proposes an enhanced approach, Fuzzy Adaptive PSO (FAPSO),
to address the reachability verification problem more effectively by dynamically tuning
search parameters based on search progress and diversity, thereby maintaining a balanced
and targeted exploration of the solution space.

Let a software system be specified using a Graph Transformation System (GTS),
defined as the triple G = (TG, HG, R), where:

• TG is the Type graph, specifying the meta-model of the system;
• HG is the host graph, representing the initial configuration of the system;
• R = {r1, r2, . . ., rk} is the rule set, where each rule ri = (LHSi, RHSi, NACi) defines a

transformation on graphs.

The reachability verification problem is defined as follows:
Given a target graph Gp = (Vp, Ep), representing the state that satisfies a desired

reachability property, determine whether there exists a sequence of transformation rules
π = [ri1, ri2, . . ., rin] ∈ Rn such that:

1. Applying π\piπ to HG yields a graph Gh = π(HG);
2. Gh maximally matches Gp in structure and labels;
3. Gh does not violate any NACs defined for Gp;

Math. Comput. Appl. 2025, 30, 65 8 of 30

4. The path length |π| and the number of explored states is minimized.

Mathematically, this can be viewed as an optimization problem:

Maximize Similarity (Gp, Gh) − PenaltyNAC (Gh, NACp)
Subject to Gh = π(HG), π∈Rn Gh satisfies all structural constraints of TG

where:

• Similarity (Gp, Gh) is a domain-specific function measuring graph isomorphism or
structural resemblance (e.g., node/edge label matches);

• PenaltyNAC penalizes configurations that violate the Negative Application Conditions
associated with Gp.

Concrete Example: Dining Philosophers Problem
Let us consider a simplified instance of the dining philosophers problem with

five philosophers and five forks. Each philosopher may transition through the follow-
ing states:

• Thinking, Hungry, HasLeft, Eating, HasRight.

Let the transformation rules be:

• r1: GoHungry;
• r2: GetLeft;
• r3: GetRight;
• r4: ReleaseLeft;
• r5: ReleaseRight.

The reachability property we wish to verify is a deadlock state, where all philosophers
are in the HasLeft state, each waiting for their right fork. This state is represented by a target
graph Gp with labelled nodes indicating each philosopher in HasLeft and corresponding
fork usage constraints.

Thus, the goal is to find a rule sequence π∈Rn that leads the system from the initial
Thinking state to a configuration where all philosophers satisfy the HasLeft state condition,
while ensuring that:

• No forks are shared (NAC);
• All graph transformations are valid under the GTS semantics.

In this specific case:

• The similarity function Similarity (Gp, Gh) counts matched philosopher states labelled
HasLeft and correctly allocated forks.

• The penalty function PenaltyNAC ensures no philosopher has picked both forks,
which would violate the deadlock property.

3.2. Particle Encoding

A reachability property p can be verified by finding a state where p occurs, through
exploring the system’s reachable state space. In the proposed algorithms, the output is
the path that starts from an initial state and ends at the state that satisfies the reachability
property. As mentioned, particles represent candidate solutions, and their positions are
defined by a sequence of numbers that represent a path. Each number corresponds to a
transition at each stage, with a minimum value of 0 and a maximum value equal to the
highest number of possible outgoing transitions in the state space. For example, the path
‘1 0 2 1’ in Figure 1 represents the position of a particle. This position can be encoded as the
path “r1 r0 r2 r1” where ri denotes the applied rule.

Math. Comput. Appl. 2025, 30, 65 9 of 30

Figure 1. A solution encoded by the path <1,0,2,1>.

3.3. Fitness Function

Fitness is a measure of how suitable a particle is as a potential solution to the goal.
In this approach, each particle represents a path of specific length, starting from the
initial state and ending at another state in the state space. The goal is to find a state
that matches the defined reachability property. It can be assumed that the more similar
the final state of the path is to the reachability property, the more likely the path is to be
a promising candidate. Therefore, the similarity between the path’s final state and the
specified reachability property is used to define the fitness function.

In this paper, the system is modelled using GTS, and the associated states and proper-
ties are represented by graphs using the GROOVE toolset. As mentioned earlier, a GTS is
represented as a triple (TG, HG, R), where TG, HG, and R correspond to the Type graph,
host graph, and graph transformation rule set, respectively. Additionally, R can be specified
by the triple (LHS, RHS, NAC), where LHS and RHS represent the left- and right-hand
sides, describing the pre- and post-conditions of the rules, respectively. NAC stands for
Negative Application Condition, which defines a configuration that must not exist for the
rule to be applied.

In the GROOVE toolset, LHS, RHS, and NAC are represented as individual graphs,
with colours used to distinguish the original LHS, RHS, and NAC graphs. If the blue
dashed edges and nodes appear in the LHS, the rule can be applied to the host graph, and
they can be removed after the rule is applied. The bold green solid edges and nodes belong
to the RHS, which should be created after rule application [31]. In the graph, NACs are
represented by red, bold, dashed edges and nodes, indicating configurations that must not
be present for the rule to apply.

Each node and edge in the graph can have labels, which can be defined by self-loop
edges named after the node’s label. The fitness function takes two inputs: a particle and
the reachability property under study. The fitness value is calculated as follows:

1. Identify pairs of nodes where the first node belongs to the given property graph
(excluding NAC nodes) and the second node belongs to the last state of the path
specified by the particle, ensuring that they have the same labels.

Math. Comput. Appl. 2025, 30, 65 10 of 30

2. Count the total number of pairs found in the first step.
3. Count the total number of each NAC node and edge for the given properties occurring

in the graph that represents the path’s last state, encoded by the given particle.
4. The fitness value is the difference between the total calculated in step 2 and the total

from step 3.

Let Gp = (Vp, Ep) be the goal property graph (the reachability target), and
Gh = (Vh, Eh) be the final state graph reached by a particle.

Let NACp = (Vnac, Enac) denote the NAC subgraphs associated with the property.
1. Node and Edge Matching Score:
Let matchn(v) = 1 if node v in Vp has a matching node in Vh (based on label), otherwise 0.
Let matche(e) = 1 if edge e in Ep has a matching edge in Eh with the same source,

target, and label.
Then, the matching score is defined as:
M (Gp, Gh) = ∑v∈Vp matchn(v) + ∑e∈Ep matche(e)
2. NAC Penalty:
Let violn(v) = 1 if node v in Vnac is found in Vh, otherwise 0.
Let viole(e) = 1 if edge e in Enac is found in Eh, otherwise 0.
The penalty function is defined as:
P (Gh, NACp) = ∑v∈Vnac violn(v) + ∑e∈Enac viole(e)
3. Final Fitness Function:
The fitness value F for a particle is computed as:
F (Gh, Gp, NACp) = M (Gp, Gh) − P (Gh, NACp)
This function rewards paths that end in goal-like states and penalizes paths that

contain NAC violations.
The pseudo-code for the fitness function can be seen in Algorithm 2.

Algorithm 2. Fitness Function for PSO and FAPSO Approaches

1. Input and Output:
a. Input: h: a particle and p: a given reachability property to be checked
b. Output: the fitness value of h

2. Initialization:
a. Initialize NodeList member Npi with node ith of Gp (i: 0 to Number of nodes Gp)
b. Initialize EdgeList member Epi with edge ith of Gp (i: 0 to Number of edge Gp)
c. Initialize NodeList member Nhi with node ith of Gh (i: 0 to Number of nodes Gh)
d. Initialize EdgeList member Ehi with edge ith of Gh (i: 0 to Number of edge Gh)
e. Initialize BooleanList member hVisitedij with false
f. Initialize BooleanList member pVisitedij with false
g. Initialize BooleanList member Visitedij with false

(For part e, f and g: i: 0 to Number of nodes Gh and j: 0 to Number of nodes Gp)
3. For each Nhi

for each Npj

EdgeList ENP = all edges of Ep whose source node is Npj

EdgeList ENH = all edges of Eh whose source node is Nhi

E-Countij = The number of pairs (p,h) which (p) is from ENP and (h) is from ENH
as p′s label is equal to h’s label;

PE-Countij = size of ENP
DE-Countij = E-Countij − PE-Countij

end for
end for

Math. Comput. Appl. 2025, 30, 65 11 of 30

Algorithm 2. Cont.

4. EQ-Count = 0
while all Visitedij is not true do

Find the smallest DE-Countij that Visitedij = false
Visitedij = true
if pVisitedij is not true && hVisitedij is not true then

EQ-Count += E-Countij;
pVisitedij = true
hVisitedij = true

end if
end while

5. Find all NACs of Gp and store in ArrayList of NACs allNAC
NEQ-Count = 0

for each NACi in allNAC do
NEQ-Count += The number of edges and nodes of NACi occurring in Gh

end for
return EQ-Count − NEQ-Count

The proposed fitness function in the FAPSO-based approach differs significantly from
conventional fitness functions used in PSO-based reachability analysis. Traditional fitness
functions in PSO for reachability checking often rely on heuristic distance measures, such as
the number of transitions needed to reach a target state or the minimization of unexplored
states. These conventional methods, while effective, do not dynamically adapt to the
structure of the state space, leading to inefficiencies when dealing with complex models. In
contrast, the proposed FAPSO fitness function incorporates a similarity-based evaluation
between the last state in the explored path and the target reachability property, leveraging
GTS and fuzzy logic for adaptive control.

The proposed FAPSO fitness function diverges significantly from conventional fitness
mechanisms used in evolutionary algorithms such as GA, PSO, or ACO for model check-
ing. Traditional approaches often use generic heuristics like path length minimization or
transition count, which are agnostic to the structural and semantic characteristics of the
model under analysis. In contrast, the FAPSO fitness function is intricately designed for
GTS and leverages the structural similarity between the terminal node of a search path and
the graph representing the reachability property.

This graph-based similarity measure ensures that paths ending in states closely re-
sembling the target property receive higher fitness scores. Moreover, the penalty for
encountering elements defined in NACs significantly enhances the precision of the search
by avoiding invalid or misleading states. This nuanced handling of graph semantics
is unattainable using traditional scalar fitness measures and makes FAPSO particularly
effective in complex software models where state semantics play a critical role.

3.4. PSO-Based Approach

The first proposed approach applies the PSO algorithm to search the state space and
find a path that starts from the initial state and ends at a state that satisfies the given
reachability property. As previously mentioned, each particle in this algorithm is encoded
as a path of transitions. The algorithm begins with an initial random population of particles.
Then, the fitness value of each particle is calculated, and the global best (gbest) and personal
best (pbest) are updated based on the fitness values of the particles. Next, the termination
condition is checked. If the updated gbest is a perfect solution or if the current iteration
number exceeds the predefined maximum number of generations, the algorithm terminates.

Math. Comput. Appl. 2025, 30, 65 12 of 30

Otherwise, Equations (1) and (2) are used to update each particle’s velocity and position,
respectively. The algorithm continues to run, repeatedly calculating fitness, until one of the
termination conditions is met.

3.5. FAPSO-Based Approach

Another approach proposed in this paper applies the Fuzzy Adaptive PSO algorithm,
referred to as FAPSO, to verify the reachability property of systems defined using GTS.
In traditional PSO, the parameters C1 and C2 are constant values that do not change
throughout the generations. However, better results can be achieved by dynamically
adjusting C1 and C2 during the algorithm’s execution. In FAPSO, fuzzy inference sys-
tems are used to adapt C1 and C2 in each generation. Like the standard PSO algorithm,
the proposed FAPSO begins with an initial population of randomly generated particles.
The fitness value of each particle is then calculated, and the global best (gbest) and per-
sonal best (pbest) are updated based on the fitness values of the particles. If the termi-
nation condition is not met, two input parameters for the fuzzy system—Diversity and
Iteration—are calculated. The diversity measure reflects the dispersion of particles, the
greater the separation between particles, the higher the diversity. As defined in Equation
(3), the diversity measure can be the average Euclidean distance between each particle’s
position and the best position in the corresponding generation [32].

Diversity (S(t)) =
1
ns

∑ns
i=1

√
∑nx

j=1 (x ij(t)− xj(t))
2 (3)

The second input to the fuzzy system is the percentage of iterations, calculated using
Equation (4). At the beginning of the algorithm, the “Iteration” value is considered “Low,”
and it gradually increases as the number of algorithm iterations approaches the maximum
iteration limit [32].

Iteration =
Current Iteration

Maximum of Iteration
(4)

The two measures mentioned above are used as inputs to the fuzzy system, which
adjusts C1 and C2. These values, C1 and C2, are the outputs of the fuzzy system. It is
important to note that the fuzzy system’s inputs are constrained within the range [0, 1].
While the Iteration variable can be directly defined within the acceptable range of values,
the Diversity measure requires normalization to convert it into a value between 0 and 1.
The normalization process applied to Diversity is shown in Equations (5) and (6). Equation
(5) illustrates that when the maximum and minimum Euclidean distances are equal, the
normalized Diversity is 0, indicating that the particles’ positions have not changed. If the
maximum and minimum Euclidean distances differ, the normalized Diversity is calculated
using Equation (6) [32].

Normal Diversity =

{
0 MinDiversity = MaxDiversity

Norm MinDiversity ̸= MaxDiversity
(5)

Norm =
Diversity−MinDiversity

MaxDiversity−MinDiversity
(6)

The choice of fuzzy membership functions considerably impacts the FAPSO algo-
rithm’s performance. Different membership functions influence how the algorithm dynam-
ically adjusts the PSO parameters (C1 and C2). The fuzzy system in FAPSO is designed to
enhance exploration and exploitation by modifying these coefficients based on diversity
and iteration count. If inappropriate membership functions are chosen, it can lead to

Math. Comput. Appl. 2025, 30, 65 13 of 30

premature convergence or ineffective exploration, reducing the efficiency of reachability
analysis in large state spaces.

In this approach, MamdanI′s fuzzy system inference method with two input variables
of Iteration and Diversity and two output variables of C1 and C2 is proposed. Figure 2
presents the proposed fuzzy system.

Figure 2. Architecture of the Fuzzy System in the Proposed Method.

For each input of the fuzzy system, three triangular membership functions are de-
signed [32]. Figures 3 and 4 illustrate the membership functions used for the input variables
of Iteration and Diversity, respectively. Since it is recommended to select C1 and C2 within
the range of [0.5, 2.5] [33], the output variables are adjusted to fall within this range. As
shown in Figures 5 and 6, the output variables of C1 and C2 are represented by five tri-
angular membership functions. Tables 1 and 2 present the fuzzy system’s rule sets. It
is important to note that two key points must be considered when defining the fuzzy
system’s rules.

Figure 3. The membership functions for the input variable 1: Iteration.

Math. Comput. Appl. 2025, 30, 65 14 of 30

Figure 4. The membership functions for the input variable 2: Diversity.

Figure 5. The membership functions for the output variable 1: C1.

Figure 6. The membership functions for the output variable 2: C2.

Math. Comput. Appl. 2025, 30, 65 15 of 30

Table 1. Rule set of fuzzy system to calculate C1.

Diversity
Iteration

Low Medium High

Low High MediumHigh Medium

Medium MediumHigh Medium MediumLow

High MediumHigh MediumLow Low

Table 2. Rule set of fuzzy system to calculate C2.

Diversity
Iteration Low Medium High

Low Low MediumLow High

Medium Medium Medium MediumHigh

High MediumLow MediumHigh High

The first point is that exploration should be prioritized in the early iterations of the PSO
algorithm to eventually exploit the desired solutions. The second point is that exploration
should occur when the diversity is low, whereas exploitation should take place when the
diversity is high, meaning when the particles are spread out [32,33].

Once the fuzzy system’s input variables, namely Diversity and Iteration, are calculated
using Equations (3) and (4), their membership percentages are determined in the fuzzification
phase through the membership functions shown in Figures 5 and 6. Each membership
function is categorized into three levels: high, medium, and low. In the next step, the rules
defined by the inference system, as shown in Tables 1 and 2, are applied to calculate C1 and
C2. The values obtained from the inference system represent the percentage of membership
for C1 and C2 across five categories: high, medium-high, medium, medium-low, and low. The
defuzzification method used is the centroid method, which calculates the final values of C1
and C2 through the output membership functions presented in Figures 7 and 8, respectively.

Figure 7. The main idea of the FAPSO approach.

As shown in Figure 7, the proposed approach dynamically adjusts the PSO algorithm’s
parameters in each iteration by utilizing a fuzzy system.

Once the values of C1 and C2 are obtained from the fuzzy system, the PSO algorithm
updates each particle’s velocity using Equations (1) and (2). The fitness calculation phase
then continues until one of the termination conditions is met.

The design of the fuzzy inference system in the FAPSO approach is structured
to dynamically adjust the PSO parameters C1C_1C1 and C2C_2C2, thereby enhancing
the search process for reachability analysis in GTS. The system incorporates two input
variables—Diversity and Iteration—to represent the dispersion of particles and the progress
of the algorithm, respectively. These inputs are mapped to three triangular membership
functions (Low, Medium, High) to balance exploration and exploitation effectively. The
output variables, C1C_1C1 and C2C_2C2, are assigned five membership functions (Low,

Math. Comput. Appl. 2025, 30, 65 16 of 30

Medium-Low, Medium, Medium-High, High), ensuring finer granularity in adjusting the
cognitive and social coefficients. The fuzzy rule set is constructed to prioritize exploration
in early iterations and shift towards exploitation as the algorithm converges, preventing pre-
mature stagnation. Sensitivity analyses confirm the robustness of this adaptive approach,
demonstrating that variations in the membership functions or rule sets have a minimal im-
pact on the overall convergence trend while significantly reducing computational overhead.
The experiments show that the adaptive fuzzy system maintains optimal balance across
different problem sizes, leading to improved accuracy and faster convergence compared to
fixed-parameter PSO approaches.

Figure 8. Comparing the accuracy of the proposed approaches to the existing methods.

4. Experimental Results
4.1. Basic Models

The approaches were implemented in the GROOVE toolset using the Java program-
ming language to evaluate and compare their performance. Some existing classes in
GROOVE were modified, and new classes were created to better implement the approaches.
GROOVE was selected for its robust capabilities in modelling and verifying systems based
on GTS, which correspond directly to the formalism applied in this study. Its support
for fully customizable transformation rules, compatibility with Java (the language used
for implementation), and ease of integration with external algorithms made it a suitable
environment. As clarified in Section III, GROOVE serves primarily as the modelling and
simulation platform, while the FAPSO algorithm and the associated fitness function were
implemented independently. The approach remains adaptable to other model-checking
tools that support GTS or similar semantics, ensuring that it is not bound to a specific
platform and retains broad applicability.

For evaluation purposes, several models were considered, including the din-
ing philosophers [34], Pac-Man [29], shopping [35], process life cycle, N-Queen, and
8-puzzle [36] models. These models are available for download on the web. The ini-
tial parameters used in the PSO algorithm are listed in Table 3. The values of W and
Iteration in the FAPSO algorithm are the same as those used in the PSO method. A PC with
an Intel CORE i5 processor and 3 GB of memory was used for the experiments. It should be
noted that parameters such as depth limit and population size are not fixed universally but
are instead defined in accordance with the characteristics of each specific problem and the

Math. Comput. Appl. 2025, 30, 65 17 of 30

complexity of the corresponding model. As the model size increases, the associated state
space becomes significantly more expansive and complex, which in turn increases the diffi-
culty of locating the desired goal state within a reasonable time frame. In such cases, setting
higher values for the depth limit allows particles to explore longer transformation paths,
while a larger population size increases the diversity of candidate solutions, enhancing
the algorithm’s ability to avoid premature convergence. These parameter adjustments are
therefore essential to maintain search effectiveness and improve convergence in large-scale
or highly interconnected models. Failing to scale these parameters appropriately may result
in suboptimal performance, including missed goal states or excessive computation times.
As such, careful tuning of these values is a critical aspect of applying the FAPSO approach
to varying problem domains.

Table 3. Initial parameters of the PSO-based approach.

Iteration 100

C1 2

C2 2

W 0.8

It is important to note that the Genetic Algorithm proposed in [2] and the PSO-GSA
approach in [18] were modified to compare the efficiencies of the proposed methods.
These two approaches were originally designed to evaluate the safety property of systems
specified through GTS by detecting deadlock states. To adapt them for verifying reachability
properties, we replaced their original fitness functions with the one presented in Section 4.2.

To determine an appropriate population size and depth limit, the proposed approaches
were tested across a wide range of values. The results showed that a larger population size
enhances exploration but also demands more computational resources, while a smaller
population size may lead to suboptimal solutions due to limited search diversity. Addi-
tionally, a higher depth limit allows for the exploration of a larger state space, increas-
ing the chances of finding a reachable state, but it also increases memory usage and
computation time.

The experimental results from the paper indicated that larger population sizes and
depth limits improve accuracy, but they come with trade-offs in execution time and memory
consumption. Therefore, we selected the optimal values for population size and depth
limit based on the tested results.

The experimental results, averaged over 20 independent runs, are presented in
two tables for each case study.

4.1.1. Dinning Philosopher’s Problem

Dinning philosopher’s problem was first introduced by E.W. Dijkstra. In this scenario,
several philosophers are seated around a table, with a fork placed between each pair of
adjacent philosophers. After thinking, the philosophers become hungry. Each philosopher
picks up the left and right forks to use them for eating. A philosopher can only begin eating
if they have both the left and right forks. After eating, the philosopher places the forks
back on the table and resumes thinking. This process continues until a deadlock occurs,
where all philosophers are waiting for their right fork after already having picked up their left
fork [34]. This deadlock state is the reachability property that is checked in various versions
of this problem. The results obtained from applying the proposed approaches to verify the
reachability property in this problem are presented in Table 4.

Math. Comput. Appl. 2025, 30, 65 18 of 30

Table 4. Comparing the average time to verify the reachability property in the dining philosophers
problem for all existing approaches.

Number of
Philosophers Depth Limit Population FAPSO

(Second)
GA

(Second)
PSO

(Second)
PSO-GSA
(Second)

10 50 15 2.81 6.27 8.12 7.06
20 100 20 29.2 22 85 68
25 150 40 38.52 41 112 90
30 200 60 49.86 91 137 109

4.1.2. Pac-Man Game Problem

In the Pac-Man game, there are three types of objects: Pac-Man, marbles, and
ghosts [29]. According to the game rules, both Pac-Man and the ghosts can move to
an adjacent box during each stage. If Pac-Man moves to a new box and there is a marble
in it, he eats the marble. However, if a ghost moves into the same box as Pac-Man, the
ghost kills Pac-Man. The game ends when all marbles are eaten, or Pac-Man is killed by
a ghost. In this scenario, the following reachability property must be checked: Pac-Man
wins by eating all the marbles. The results obtained from applying different approaches to the
Pac-Man game problem are presented in Table 5.

Table 5. Comparing the average time to verify the reachability property in the Pac-Man Game
problem for all existing approaches.

Dimension of
Pac-Man Game Depth Limit Population FAPSO

(Second)
GA

(Second)
PSO

(Second)
PSO-GSA
(Second)

4 × 4 100 40 4.13 4.88 15.07 12.49
4 × 5 100 60 7.96 11.15 36.79 27.31
5 × 6 100 80 17.59 72.03 59.1 60.26

The results related to this problem demonstrate that the FAPSO approach takes a
shorter time to find the given reachability property and decreases the number of explored
states significantly.

4.1.3. Process Life Cycle Problem

The process life cycle describes the stages associated with the life cycle of a process in
an operating system. The cycle begins with the creation of a new process, which is then
loaded into memory, provided there is enough available space. Afterward, the process
waits for I/O devices or the CPU. Once the process has completed execution, all allocated
resources are released, and the process terminates. The reachability property to be verified
in the models of this problem is: All processes have been completed. The results obtained from
various approaches for the process life cycle problem are presented in Table 6. As shown
in the table, the FAPSO approach, unlike the other proposed methods, is able to find the
given reachability property even as the dimensions of the problem increase.

Table 6. Comparing the average time to verify the reachability property in the process life cycle
problem for all existing approaches.

Process Life Cycle Depth
Limit Population FAPSO

(Second)
GA

(Second)
PSO

(Second)
PSO-GSA
(Second)

20 process
8 memory 180 20 7.08 6.58 37.09 17.66

Math. Comput. Appl. 2025, 30, 65 19 of 30

Table 6. Cont.

Process Life Cycle Depth
Limit Population FAPSO

(Second)
GA

(Second)
PSO

(Second)
PSO-GSA
(Second)

30 process
8 memory 280 40 7.28 8.16 37.61 16.92

40 process
8 memory 350 60 19.52 125.4 80.28 54.13

50 process
8 memory 450 80 40.95 Out of Memory

4.1.4. Shopping Problem

The shopping problem pertains to the customer purchase process in a store, originally
presented in [35]. The reachability property considered in this case is as follows: all
customers have successfully completed their shopping. Table 7 presents the results obtained from
different approaches for the shopping problem.

Table 7. Comparing the average time to verify the reachability property in the shopping problem for
all existing approaches.

Shopping
Dimension Depth Limit Population FAPSO

(Second)
GA

(Second)
PSO

(Second)
PSO-GSA
(Second)

10 customer
30 good 160 20 2.45 2.01 3.89 4.14

15 customer
30 good 170 30 10.53 32.74 34.5 27.62

20 customer
30 good 180 40 33.58 Out of Memory

4.1.5. N-Queen Problem

The N × N chessboard and N queens form the elements of this problem. The goal
is to place the queens on the chessboard in such a way that no queen can attack another.
In chess, each queen can move horizontally, vertically, or diagonally as far as she wants,
and two queens can threaten each other if they share the same row, column, or diagonal.
Therefore, the acceptable arrangement is one where no two queens share the same row,
column, or diagonal. The reachability property considered in the various models of this
problem is: all queens are placed in positions where none can threaten another. Table 8 presents
the results obtained by different approaches for the N-Queens problem.

Table 8. Comparing the average time to verify the reachability property in the N-Queen problem for
all existing approaches.

N-Queen
Dimension

Depth
Limit Population FAPSO

(Second)
GA

(Second)
PSO

(Second)

PSO-
GSA

(Second)

8 × 8 100 20 3.0 7 1.45 6.83 2.17
16 × 16 120 30 24.17 Out of Memory

4.1.6. 8-Puzzle Problem

In this problem, there is a nine-box board where eight boxes are filled with numbered
tiles (from 1 to 8) and one box remains empty [36]. A tile can move into the empty box if it

Math. Comput. Appl. 2025, 30, 65 20 of 30

is adjacent to it. The goal of the game is to start with an arbitrary configuration of tiles and
arrange the numbers in ascending order. Table 9 presents the results obtained by different
approaches for this problem.

Table 9. Comparing the average time to verify the reachability property in the 8-puzzle problem for
all existing approaches.

Initial
Arrangement Depth Limit Population FAPSO

(Second)
GA

(Second)
PSO

(Second)
PSO-GSA
(Second)

100 40 2.77 1.79 11.37 12.45

100 50 6.57 5.91 47.13 61.9

100 60 34.93 26.3 126.03 276.35

100 70 102.5 116.51 209.23 380.52

4.1.7. Positioning FAPSO Against Machine Learning-Based Approaches

Recent advancements in deep learning, particularly reinforcement learning using
methods like Double Deep Q-Networks (DDQN), have been proposed for state-space
exploration in software verification [24]. Table 10 indicates the comparison of the average
time for the reachability verification via FAPSO and two novel approaches based on Deep
Reinforcement Learning. DDQN and DDQN* approaches use the double deep q-network
method. The term DDQN* refers to the method implemented via reinforcement learning
which uses a specific reward function for each problem. DDQN approach is referred to
the reinforcement learning based method with general rewards. These methods demon-
strate high potential in learning generalized strategies for state exploration. However,
their training requirements, computational complexity, and lack of interpretability pose
significant limitations.

Table 10. Comparing the average time of FAPSO with the reinforcement learning-based algorithms.

Approaches

8-Puzzle
(Second)

N-Queen
(Second)

Dining Philosophers
(Second)

8 12 16 40 70 90

FAPSO 2.77 6.57 34.93 102.5 3.07 12.54 24.17 55.23 97.18 131.11
DDQN * 1.98 6.04 33.9 836.45 21.54 34.33 87.85 2.09 4.07 8.27
DDQN 2.32 5.65 195.6 1759.55 40.78 242.57 522.58 12.04 75.46 265.23

While reinforcement learning methods like DDQN offer strong generalization, they
demand substantial training and yield less interpretable outcomes. In contrast, FAPSO
delivers competitive or superior performance with significantly lower computational over-
head and offers explainable paths tailored to GTS structures. It does not require pre-training,
adapts dynamically through fuzzy logic, and produces deterministic, interpretable search
paths. As shown in Table 10, FAPSO consistently outperforms DDQN and DDQN* in large-
scale models in terms of execution time, especially as model complexity increases. While
DDQN variants suffer from scalability issues (e.g., exceeding memory limits in the 8-puzzle
and process life cycle models), FAPSO maintains robust performance. This demonstrates
that while ML-based methods are promising, FAPSO provides a more practical and scalable
solution for GTS-based reachability analysis.

Math. Comput. Appl. 2025, 30, 65 21 of 30

4.2. Models Applied for Rule Composition

As mentioned in the introduction, the proposed approach for rule composition in [26]
not only improves the efficiency of model checking algorithms by reducing their runtime,
but also minimizes the number of explored states by eliminating unnecessary intermediate
states. This reduction in the number of explored states significantly decreases the memory
consumption required for executing the algorithm.

In this section, the basic models for the dining philosophers and shopping problems,
previously discussed, have been refined using the principles of rule composition [26]. As a
result, these models now contain fewer rules. However, it is essential that rule composition
is applied carefully, ensuring that the core specifications of the model are not compromised.
Furthermore, attention must be given to avoid inadvertently removing critical intermediate
states during the process.

4.2.1. Dinning Philosopher’s Problem

The dining philosophers problem consists of five transformation rules, as follows:

1. GoHungry: The philosopher transitions from the “Thinking” state to the “Hungry” state.
2. GetLeft: The philosopher picks up the left fork and transitions to the “HasLeft” state.
3. GetRight: The philosopher picks up the right fork and transitions to the “Eating” state.
4. ReleaseLeft: The philosopher releases the left fork and transitions to the “HasRight” state.
5. ReleaseRight: The philosopher releases the right fork and returns to the “Thinking” state.

During the rule composition stage, the first and second rules are merged, resulting in
the following updated rule set:

1. GoHungry-GetLeft: The philosopher picks up the left fork and transitions from the
“Thinking” state to the “HasLeft” state.

2. GetRight: The philosopher picks up the right fork and transitions to the “Eating” state.
3. ReleaseLeft: The philosopher releases the left fork.
4. ReleaseRight: The philosopher releases the right fork and returns to the “Thinking” state.

In the modified model, the “Hungry” state is removed, and the philosopher transitions
directly from the “Thinking” state to the “HasLeft” state. This combination does not violate
any specifications of the dining philosophers problem and reduces the number of rules
to four.

The results of applying the proposed approaches to the modified dining philosophers
model are presented below.

Table 11 compares the average time required to verify the reachability property in
both the basic and modified dining philosophers models using the proposed approaches.
Table 12 shows the average number of explored states required to verify the reachability
property in both the basic and modified models.

Table 11. Comparing the average time to verify the reachability property in the basic and modified
dining philosophers model for proposed approaches.

Number of
Philosophers Depth Limit Population

Basic Model Modified Model

FAPSO
(Second)

PSO
(Second)

FAPSO
(Second)

PSO
(Second)

10 50 15 2.81 8.12 1.77 7.05
20 100 20 29.2 85 11.93 18.62
30 200 60 49.86 137 15.18 37.87
40 200 60 Out of Memory 66.4 304.1
60 200 60 Out of Memory 98.6 389.6

Math. Comput. Appl. 2025, 30, 65 22 of 30

Table 12. Comparing the average number of explored states to verify the reachability property in the
modified dining philosophers model for proposed approaches.

Number of
Philosophers Depth Limit Population

Basic Model Modified Model

FAPSO PSO FAPSO PSO

10 50 15 1124 3212 64 95
20 100 20 5080 7730 273 531
30 200 60 5766 8450 465 850
40 200 60 Out of Memory 972 2422
60 220 60 Out of Memory 6177 11,046

As the results indicate, applying rule composition by merging just a pair of rules and
reducing the total number of rules by one has a significant impact on reducing both the
running time of the algorithms and the number of explored states.

4.2.2. Shopping Problem

The shopping problem consists of nine rules, including:

1. TakeCart: The customer initiates the shopping process by picking up a cart.
2. CreateBill: An unpaid bill is generated for the customer.
3. SelectGood: The customer picks up an item from the rack and places it in their cart.
4. DeselectGood: The customer returns an item from the cart to the rack.
5. BillGood: The customer′s items in the cart are added to the bill to begin the

payment process.
6. PayBill: The customer′s bill is paid once all items have been added to the bill.
7. SettleBill: The shopping process concludes, and the customer′s shopping flag

is deactivated.
8. Finish: The customer releases the cart, and their bill is deleted.

In the resulting model after applying rule composition, two pairs of rules are merged,
reducing the total number of rules to six. The modified rule set is as follows:

1. TakeCart-CreateBill: The customer initiates the shopping process by picking up a
cart, and an unpaid bill is generated for the customer.

2. SelectGood: The customer picks up an item from the rack and places it in their cart.
3. DeselectGood: The customer returns an item from the cart to the rack.
4. BillGood: To begin the payment process, the customer′s items in the cart are added

to their bill.
5. PayBill-SettleBill: The customer′s bill is paid once all items have been added, and

the shopping process concludes by deactivating the customer′s shopping flag.
6. Finish: The customer releases the cart, and their bill is deleted.

Applying these rule compositions does not violate any of the specifications of the
shopping problem, nor does it eliminate any essential intermediate states. Table 13 com-
pares the average time required to verify the reachability property in both the basic and
modified models of the shopping problem using the proposed approaches. Meanwhile,
Table 14 presents the average number of explored states needed to verify the reachability
property for both the basic and modified models of the problem, as evaluated through the
proposed methods.

Math. Comput. Appl. 2025, 30, 65 23 of 30

Table 13. Comparing the average times to verify the reachability property in the modified shopping
problem for proposed approaches.

Shopping
Dimension

Depth Limit Population
Basic Model Modified Model

FAPSO
(Second)

PSO
(Second)

FAPSO
(Second)

PSO
(Second)

10 customer
30 good 160 20 2.45 3.89 0.98 2.5

15 customer
30 good 170 30 10.53 34.5 2.16 8.41

20 customer
30 good 180 40 33.58 Out of

Memory 2.82 12.58

25 customer
30 good 180 50 Out of Memory 3.24 13.16

30 customer
30 good 180 50 Out of Memory 5.61 14.3

Table 14. Comparing the average number of explored states to verify the reachability property in the
modified shopping problem for proposed approaches.

Shopping
Dimension

Depth Limit Population
Basic Model Modified Model

FAPSO PSO FAPSO PSO

10 customer
30 good 150 20 243 287 133 142

15 customer
30 good 160 30 482 603 131 151

20 customer
30 good 170 40 765 Out of

Memory 155 161

25 customer
30 good 180 50 Out of Memory 152 158

30 customer
30 good 180 50 Out of Memory 167 164

As the results show, applying rule composition—by merging a pair of rules and
reducing the total number of rules by one—significantly reduces the algorithm’s running
time and the number of explored states. This improvement is achieved by simplifying the
modeL′s structure, removing redundant or unnecessary intermediate states, and optimizing
the overall execution process. Reducing the number of rules not only streamlines the
model but also minimizes computational overhead, resulting in faster processing and
lower memory consumption. Additionally, this approach preserves the model′s essential
specifications while enhancing efficiency, making it especially beneficial for larger and
more complex problem dimensions, where performance gains are even more noticeable.

To ensure that the essential semantics of the original model are preserved during rule
composition, the following techniques have been applied:

• Validation through Formal Methods: The modified rules have been formally verified
to ensure that they do not change the expected system behaviour.

• Checking Intermediate States: Rule composition did not remove critical intermediate
states that affect the reachability of essential states.

Math. Comput. Appl. 2025, 30, 65 24 of 30

• Structural Consistency: The graph transformation rules maintain structural constraints
to ensure the logical flow remains intact.

As the results indicate, some models lead to “out-of-memory” errors, especially when
using competing algorithms such as GA and PSO-GSA. In these cases, the reported compu-
tation time reflects the actual runtime until either a solution was found, or the execution
reached the maximum timeout limit of one hour for complex models.

The experiments were designed to cover both classical benchmark models and complex
transformation structures. Time to verification, number of explored states, and convergence
trends were used as metrics to evaluate the effectiveness, efficiency, and robustness of the
proposed approach.

Although the experiments were conducted on a resource-constrained hardware setup
(Intel i5 with 3 GB RAM) to evaluate algorithmic robustness under practical limitations,
we recognize that modern applications typically run on more powerful platforms. The
consistent superiority of the FAPSO approach, even under such constraints, suggests its
scalability and potential applicability in larger-scale settings.

Furthermore, while benchmark datasets were employed in this study due to their
established role in model checking research, we acknowledge that real-world GTS-based
models (such as software workflow systems, distributed sensor networks, or enterprise
architecture models) present more dynamic and irregular transformation patterns. Future
work will incorporate such real-world datasets to validate the applicability of FAPSO
in industrial and operational environments, addressing the evolving needs of software
verification in contemporary systems.

5. Discussion
The advantages and limitations of the proposed approaches are outlined as follows.
As explained in the literature, previous approaches focus on detecting deadlock

states to refute the safety properties of GTS-specified systems. In contrast, the FAPSO
approach has been applied to verify the correct reachability property in problems such as the
dining philosophers, process life cycle, and 8-puzzle, and the results have been compared
with those from evolutionary approaches that aim to refute safety properties through
deadlock detection. Table 15 indicates the average time to refute safety by reachability
property for FAPSO, BOA, GA, PSO, PSO-GSA, Beam Search (BS), and a Greedy Best Fit
Algorithm (BFA).

An important strength of the FAPSO approach is its accuracy in verifying reachability
properties. Accuracy is measured as the ratio of successful runs—those in which the
algorithm correctly identifies a valid path—to the total number of executed runs. A
higher number of successful runs directly correlates with improved accuracy, indicating
the algorithm’s effectiveness and reliability across multiple trials. Figure 8 presents a
comparative analysis of the accuracy achieved by the proposed methods across all evaluated
problems, demonstrating FAPSO’s superior performance in consistently verifying the
reachability of the specified properties.

As the previously presented results indicate, the execution speed of these approaches,
particularly FAPSO, is faster than that of the others. Additionally, the proposed approaches
generate shorter counterexamples/witnesses compared to the other methods. The chart in
Figure 9 compares the length of the witnesses produced by different approaches to verify
reachability in the dining philosophers problem, specifically in the case of 10 philosophers.

Math. Comput. Appl. 2025, 30, 65 25 of 30

Table 15. Comparing the performance of FAPSO approach to refute safety by reachability property
with proposed approaches to safety refutation by detecting a deadlock state.

Approach
Problem

Depth
Limit Population FAPSO

(Second)
BOA

(Second)
GA

(Second)
PSO

(Second)
PSO-GSA
(Second)

BFA
(Second)

BS
(Second)

dining
philosophers

(10 philosophers)
25 15 4.41 0.71 ± 0.15 10.12 13.45 38.92 0.94 3.85

dining
philosophers

(20 philosophers)
100 20 29.2 1.04 ± 0.15 23 158 170 1.9 4.12

process life
cycle

(40-process-8-
memory)

350 60 19.52 1.44 ± 0.8 Not
found

Not
found 939.45 Not

found
Not

found

process life
cycle

(50-process-8-
memory)

450 80 40.95 1.81 ± 0.39 Not
found

Not
found

Not
found

Not
found

Not
found

8-puzzle
(Second argument) 100 50 6.57 1.15 ± 0.33 35.81 94.72 16.7 0.16 1.33

8-puzzle
(Third argument) 100 60 34.93 Not

found 165 165.51 147.7 3.5 2.33

Figure 9. Comparing the length of witness of the implemented methods to reachability verification in
the dining philosophers problem with 10 philosophers.

It is important to note that generating shorter counterexamples/witnesses plays a
crucial role in the model checking process. Therefore, the length of the generated coun-
terexamples/witnesses in the proposed approaches was controlled using the depth limit
parameter.

The proposed approaches, particularly FAPSO, outperform other methods in terms of
the number of explored states. The chart in Figure 10 compares the number of states ex-
plored by different approaches to verify the reachability property in the dining philosophers
problem, specifically for the case of 10 philosophers.

Math. Comput. Appl. 2025, 30, 65 26 of 30

Figure 10. Comparing the explored states number of the proposed approaches to reachability
verification in the dining philosophers problem with 10 philosophers.

Figure 11 presents the convergence graph of the proposed approach applied to a dining
philosophers model with 10 philosophers. This graph illustrates the progress of the FAPSO
algorithm over iterations, showing whether the fitness function improves consistently.

Figure 11. Convergence graph of the proposed approaches to reachability verification for the dining
philosophers problem with 10 philosophers.

When comparing the convergence of FAPSO with other methods (PSO, GA, and PSO-
GSA), it is evident that the proposed algorithm reaches an optimal solution more quickly.
Unlike the PSO approach, it does not stagnate at a suboptimal solution (local optima).

To verify whether there is a significant difference between the results of the proposed
method and those of previous techniques, the results were evaluated using the Wilcoxon
signed-rank test. This test is a non-parametric statistical hypothesis used to compare related
samples. It can be performed in the SPSS Statics v27 software, and if the obtained output
(sig) is less than 0.05, it can be concluded that there is a significant difference between the
two groups of data. Table 16 presents the Wilcoxon test results for the FAPSO approach.

Math. Comput. Appl. 2025, 30, 65 27 of 30

Table 16. Wilcoxon test results for the FAPSO approach.

Approaches FAPSO-GA FAPSO-PSO FAPSO-BFA FAPSO-BS FAPSO-A * FAPSO-
DDQN

Z
Asymp. Sig.

(2-tailed)
0.001 0.001 0.03 0.007 0.03 0.042

The experimental results demonstrate that the proposed FAPSO approach maintains
high efficiency and accuracy in reachability analysis, particularly as model complex-
ity increases. Its adaptive parameter tuning mechanism—driven by a fuzzy inference
system—enables dynamic control over exploration and exploitation, helping the algorithm
converge faster and more effectively than traditional PSO and other metaheuristic methods.
This adaptability is especially valuable in complex state spaces where static parameter
settings often lead to premature convergence or inefficient search trajectories.

Despite these strengths, several limitations must be acknowledged. As the size of the
model and the complexity of rule compositions grow, FAPSO requires a higher number of
fitness function evaluations (FFEs), which increases per-iteration computational overhead.
While the adaptive mechanism improves solution quality and reduces the total number of
generations needed, the additional cost of diversity assessment and fuzzy rule evaluation
introduces a scalability trade-off, particularly for very large models. Furthermore, FAPSO
depends on well-defined fuzzy membership functions and rule sets, which may need to be
tuned manually for different domains. The algorithm’s effectiveness is also influenced by
parameters such as population size and depth limit, which must be carefully configured to
balance performance and resource usage.

These challenges are not unique to FAPSO. Prior work involving GA, ACO, and hybrid
approaches such as PSO-GSA has highlighted similar issues, including sensitivity to param-
eter tuning and difficulty scaling to larger models. However, unlike these earlier methods,
which rely on fixed or semi-static search strategies, FAPSO introduces a feedback-driven
adaptation mechanism that adjusts its behaviour based on real-time diversity and iteration
progress. This capability reduces the likelihood of stagnation and enhances the search
process, especially in environments with evolving structural complexity. Additionally,
while many existing algorithms focus primarily on deadlock detection, this study expands
the scope to full reachability verification using a graph-aware fitness function tailored to
GTS, offering a more semantically aligned solution.

The computational complexity of FAPSO can be analysed in terms of FFEs, with the
total cost per iteration proportional to the swarm size and number of generations. Although
the fuzzy control system introduces additional processing at each step, this cost is offset by
faster convergence and fewer required iterations. As shown in the experimental results,
FAPSO consistently outperforms baseline PSO, GA, and PSO-GSA in both execution time
and the number of explored states, particularly for complex models. This indicates a net
computational gain despite the added per-iteration workload.

To improve scalability further, future work should explore parallelizing particle evalu-
ations and incorporating heuristic-guided pruning techniques to reduce unnecessary explo-
ration. Integrating predictive models or hybrid strategies that combine fuzzy metaheuristics
with machine learning could enhance search efficiency and adaptability. Additionally, while
this study focused on reachability, extending FAPSO to verify other properties—such as
fairness, liveness, or probabilistic behaviour—would require adjustments to the fitness
function and search dynamics, offering a promising direction for continued research.

In summary, this study offers several key contributions to the field of model checking
and optimization-based software verification. From a theoretical standpoint, it introduces

Math. Comput. Appl. 2025, 30, 65 28 of 30

an adaptive fuzzy mechanism within the PSO framework that dynamically adjusts search
behaviour based on system diversity and iteration progress, addressing common limita-
tions of static parameter settings in traditional metaheuristics. The practical implications
lie in demonstrating how this approach improves convergence speed, search efficiency, and
solution quality for reachability analysis in GTS, making it suitable for use in real-world
model verification tasks with large and complex state spaces. Managerially, the findings
suggest that organizations adopting model-driven engineering practices can benefit from
intelligent, scalable verification techniques like FAPSO to enhance quality assurance and
reduce verification time, especially in systems with evolving or modular rule sets. At the
same time, the study acknowledges its limitations, including the added computational
overhead introduced by the fuzzy logic system, the need for careful parameter tuning,
and potential challenges in adapting the method to other modelling formalisms beyond
GTS. Addressing these limitations through future extensions, such as parallelized architec-
tures, auto-tuning strategies, and hybrid learning-based guidance, can further enhance the
applicability and impact of the proposed approach.

Although the experiments in this study were conducted on a resource-constrained
system (Intel i5 with 3 GB RAM) to reflect baseline performance and maintain comparability
with earlier approaches, we acknowledge that modern verification environments often
benefit from significantly more powerful computing resources. Evaluating the FAPSO
algorithm on advanced hardware such as Intel i7 or i9 processors would likely further
highlight its computational advantages. This will be considered in future extensions of
this work.

Additionally, the choice of a one-hour computation time limit was made to reflect
real-world verification practices, where such timeouts are common in toolchains to avoid
indefinite execution in complex models. This limit was uniformly applied across all
algorithms to ensure fairness in evaluation. Notably, FAPSO consistently converged well
within this limit across all tested scenarios, reinforcing its efficiency.

6. Conclusions
This paper presented a Fuzzy Adaptive Particle Swarm Optimization (FAPSO) ap-

proach for reachability analysis in complex software systems modelled using Graph Trans-
formation Systems (GTS). By incorporating fuzzy logic into the standard PSO framework,
the proposed method dynamically adjusts the cognitive and social coefficients (C1, C2)
based on search diversity and iteration progress. This adaptive mechanism enhances
the balance between exploration and exploitation, leading to faster convergence and
higher accuracy.

Extensive experiments across multiple benchmark models demonstrated that FAPSO
outperforms traditional PSO, Genetic Algorithms (GA), and hybrid PSO-GSA in terms of
execution time, number of explored states, and solution quality. Furthermore, integrating
rule composition techniques reduced unnecessary intermediate states, improving model
scalability and efficiency without compromising semantic correctness.

FAPSO’s adaptive nature makes it well-suited for analysing large-scale models, of-
fering interpretable and deterministic results without requiring pre-training, unlike many
machines learning-based methods. The algorithm is particularly beneficial in contexts
where verification must be both efficient and transparent.

Future work will focus on:

• Enhancing the fuzzy system through refined membership functions and rules.
• Extending the fitness function to verify other properties such as safety, liveness,

and fairness.
• Applying FAPSO to broader optimization benchmarks and real-world case studies.

Math. Comput. Appl. 2025, 30, 65 29 of 30

• Automating rule composition to reduce manual effort and improve scalability.
• Exploring hybrid integrations with machine learning techniques for further perfor-

mance improvements.
• Finally, while the current work relied on classic benchmark models, an important

direction for future research is the integration of real-world GTS datasets. These may
include configurations extracted from software repositories, business process models,
and cyber-physical system simulations. Such expansions will allow for deeper insight
into the algorithm’s adaptability and performance under diverse, large-scale, and
non-synthetic conditions.

Overall, the proposed FAPSO algorithm offers a robust, scalable, and interpretable
solution for reachability verification in GTS-based models, addressing key limitations of
traditional and learning-based approaches.

Author Contributions: Conceptualization, N.S., S.S. and V.R.; methodology, V.R.; software, N.S.;
validation, N.S., S.S. and V.R.; formal analysis, N.S.; investigation, N.S.; resources, N.S.; data curation,
N.S.; writing—original draft preparation, N.S.; writing—review and editing, S.S. and D.K.; visualiza-
tion, D.K.; supervision, S.S. and V.R.; project administration, S.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Data Availability Statement: Data used for analysis has been provided in the manuscript, and any
additional information desired will be made available by the authors on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Denil, J.; Jukss, M.; Verbrugge, C.; Vangheluwe, H. Search-Based Model Optimization Using Model Transformations. In System

Analysis and Modeling: Models and Reusability; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 80–95.
2. Yousefian, R.; Rafe, V.; Rahmani, M. A heuristic solution for model checking graph transformation systems. Appl. Soft Comput.

2014, 24, 169–180. [CrossRef]
3. Baresi, L.; Heckel, R. Tutorial introduction to graph transformation: A software engineering perspective. In Graph Transformation:

First International Conference, ICGT 2002, Barcelona, Spain, 7–12 October 2002; Springer: Berlin/Heidelberg, Germany, 2002.
4. Lafuente, A.L. Symmetry reduction and heuristic search for error detection in model checking. In Proceedings of the Workshop

on Model Checking and Artificial Intelligence, Acapulco, Mexico, 10 August 2003.
5. Clarke, E.; McMillan, K.L.; Campos, S.V.A.; Hartonas-Garmhausen, V.I. Symbolic Model Checking. Available online: https:

//www.cs.cmu.edu/~emc/papers/Conference%20Papers/Symbolic%20Model%20Checking.pdf (accessed on 15 April 2025).
6. Edelkamp, S.; Leue, S.; Lafuente, A.L. Directed Explicit-state model checking in the validation of communication protocols. Int. J.

Softw. Tools Technol. Transf. (STTT) 2004, 5, 247–267. [CrossRef]
7. Gyuris, V.; Sistla, A.P. On-the-fly model checking under fairness that exploits symmetry. Form. Methods Syst. Des.

1999, 15, 217–238. [CrossRef]
8. Lin, F.J.; Chu, P.M.; Liu, M.T. Protocol verification using reachability analysis: The state space explosion problem and relief

strategies. In Proceedings of the ACM Workshop on Frontiers in Computer Communications Technology, Stowe, VT, USA, 11–13
August 1987; ACM: New York, NY, USA; pp. 126–135.

9. Yang, C.H.; Dill, D.L. Validation with guided search of the state space. In Proceedings of the DAC’98: Proceedings of the 35th
Annual Design Automation Conference, San Francisco, CA, USA, 15–19 June 1998; ACM: New York, NY, USA, 1998; pp. 599–604.

10. Edelkamp, S.; Reffel, F. OBDDs in Heuristic Search. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
1998; pp. 81–92.

11. Friedman, G.; Hartman, A.; Nagin, K.; Shiran, T. Projected state machine coverage for software testing. In Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analysis, Rome, Italy, 22–24 July 2002; ACM: New York, NY,
USA, 2002; pp. 134–143.

12. Francesca, G.; Santone, A.; Vaglini, G.; Villani, M.L. Ant Colony Optimization for Deadlock Detection in Concurrent Systems.
In Proceedings of the 35th IEEE Annual Computer Software and Applications Conference, Munich, Germany, 18–22 July 2011;
pp. 108–117.

https://doi.org/10.1016/j.asoc.2014.06.055
https://www.cs.cmu.edu/~emc/papers/Conference%20Papers/Symbolic%20Model%20Checking.pdf
https://www.cs.cmu.edu/~emc/papers/Conference%20Papers/Symbolic%20Model%20Checking.pdf
https://doi.org/10.1007/s10009-002-0104-3
https://doi.org/10.1023/A:1008701202999

Math. Comput. Appl. 2025, 30, 65 30 of 30

13. Duarte, L.M.; Foss, L.; Wagner, R.; Heimfarth, T. Model Checking the Ant Colony Optimisation. In Distributed, Parallel and
Biologically Inspired Systems, IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany,
2010; pp. 221–232.

14. Alba, E.; Troya, J.M. Genetic Algorithms for Protocol Validation. In Proceedings of the International Conference on Parallel
Problem Solving from Nature (PPSN IV), Berlin, Germany, 22–26 September 1996; Springer: Berlin/Heidelberg, Germany, 1996;
pp. 869–879.

15. Vardhan, A. Learning to Verify Systems. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2006.
16. Alba, E.; Chicano, F. Finding safety errors with ACO. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary

Computation, London, UK, 7–11 July 2007; pp. 1066–1073.
17. Alba, E.; Chicano, F. Searching for Liveness Property Violations in Concurrent Systems with ACO. In Proceedings of the 10th Annual

Conference on Genetic and Evolutionary Computation, Atlanta, GA, USA, 12–16 July 2008; ACM: New York, NY, USA, 2008.
18. Moradi, M.; Rafe, V.; Yousefian, R.; Nikanjam, A. A Meta-Heuristic Solution for Automated Refutation of Complex Software

Systems Specified through Graph Transformations. Appl. Soft Comput. 2015, 33, 136–149.
19. Pira, E.; Rafe, V.; Nikanjam, A. EMCDM: Efficient Model Checking by Data Mining for Verification of Complex Software Systems

Specified through Architectural Styles. Appl. Soft Comput. 2016, 44, 1185–1201. [CrossRef]
20. Pira, E.; Rafe, V.; Nikanjam, A. Deadlock detection in complex software systems specified through graph transformation using

Bayesian optimization algorithm. J. Syst. Softw. 2017, 131, 181–200. [CrossRef]
21. Partabian, J.; Bagherifard, K.; Rafe, V.; Parvin, H.; Nejatian, S. Checking Reachability Property in Complex Concurrent Software

Systems with a Knowledge Discovery Approach. J. Soft Comput. Inf. Technol. 2023, 12, 41–51.
22. Nejati, F.; Hamid, N.A.W.A.; Koohi, S.Z.; Zadeh, Z.R. An Incremental Optimization Algorithm for Efficient Verification of Graph

Transformation Systems. IEEE Access 2023, 11, 75748–75760. [CrossRef]
23. Pira, E. Using Deep Learning Techniques for Solving AI Planning Problems Specified through Graph Transformations. Soft

Comput. 2022, 26, 12217–12234. [CrossRef]
24. Mehrabi, M.J.; Rafe, V. Using Deep reinforcement learning to search reachability properties in systems specified through graph

transformation. Soft Comput. 2022, 26, 9635–9663. [CrossRef]
25. Lambers, L. Certifying Rule-Based Models Using Graph Transformation. Ph.D. Thesis, Technische Universität Berlin, Berlin,

Germany, 2019; ISBN 978-3-8381-1650-1.
26. Große, M.; Presicce, F.P.; Simeoni, M. Refinements of Graph Transformation Systems via Rule Expressions. In Theory and

Application of Graph Transformation: 6th International Workshop, TAGT'98 Paderborn, Germany, 16–20 November 1998; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 368–382.

27. Taentzer, G. Parallel high-level replacement systems. Theor. Comput. Sci. TCS 1997, 186, 43–81. [CrossRef]
28. Rensink, A.; Schmidt, Á.; Varró, D. Model Checking Graph Transformations: A Comparison of Two Approaches. In International

Conference on Graph Transformation; Springer: Berlin/Heidelberg, Germany, 2004; pp. 226–241.
29. Heckel, R. Graph Transformation in a Nutshell. Electron. Notes Theor. Comput. Sci. (ENTCS) 2006, 148, 187–198. [CrossRef]
30. Kennedy, J. Particle Swarm Optimization. In Encyclopedia of Machine Learning; Springer: Berlin/Heidelberg, Germany, 2010;

pp. 760–766.
31. Kastenberg, H.; Rensink, A. Model Checking Dynamic States in GROOVE. In Model Checking Software: International SPIN Workshop,

Vienna, Austria, 30 March–1 April 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 299–305.
32. Melin, P.; Olivas, F.; Castillo, O.; Valdez, F.; Soria, J.; Valdez, M. Optimal design of fuzzy classification systems using PSO with

dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 2013, 40, 3196–3206. [CrossRef]
33. Olivas, F.; Castillo, O. Particle Swarm Optimization with Dynamic Parameter Adaptation Using Fuzzy Logic for Bench-

mark Mathematical Functions. In Recent Advances on Hybrid Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 247–258.

34. Schmidt, A. Model Checking of Visual Modeling Languages. Master’s Thesis, Budapest University of Technology, Budapest,
Hungary, 2004.

35. Hausmann, J.H. Dynamic Meta Modeling: A Semantics Description, Technique for Visual Modeling Techniques. Ph.D. Thesis,
University of Paderborn, Paderborn, Germany, 2005.

36. Gaschnig, J. Performance Measurement and Analysis of Certain Search Algorithms. Ph.D. Thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 1979; technical report.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.asoc.2016.06.039
https://doi.org/10.1016/j.jss.2017.05.128
https://doi.org/10.1109/ACCESS.2023.3291412
https://doi.org/10.1007/s00500-022-07044-5
https://doi.org/10.1007/s00500-022-06815-4
https://doi.org/10.1016/S0304-3975(96)00215-0
https://doi.org/10.1016/j.entcs.2005.12.018
https://doi.org/10.1016/j.eswa.2012.12.033

	Introduction
	Background
	Model Checking
	Graph Transformation System
	Particle Swarm Optimization Algorithm
	Fuzzy Inference System

	The Proposed Approaches
	Problem Formulation
	Particle Encoding
	Fitness Function
	PSO-Based Approach
	FAPSO-Based Approach

	Experimental Results
	Basic Models
	Dinning Philosopher’s Problem
	Pac-Man Game Problem
	Process Life Cycle Problem
	Shopping Problem
	N-Queen Problem
	8-Puzzle Problem
	Positioning FAPSO Against Machine Learning-Based Approaches

	Models Applied for Rule Composition
	Dinning Philosopher’s Problem
	Shopping Problem

	Discussion
	Conclusions
	References

