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Abstract

This thesis explores the use of convex optimisations to address two types of prob-

lems. In the first chapter, we review the nearest correlation matrix problem, a prob-

lem in actuarial science and finance, to find the nearest correlation matrix that is

positive semidefinite. We introduce two algorithms to solve the problem, namely

the iterative quadratic/linear programming method and the gradient descent method.

The iterative quadratic/linear programming method enjoys great flexibility so that

it can handle different types of norms and user-defined constraints. The gradient

descent method works for unconstrained problems under the Frobenius norm and

experiments show that it is resilient to noise. In the second chapter, we explore the

fair learning problem. We introduce different definitions of fairness in classification

tasks and how they can be generalised into regressions. We propose two fair re-

gression models based on Liu-type estimator, using the expected squared difference

of the pairwise linear components and coefficient of determination of the sensitive

features as measures of fairness, respectively. The first method works with a single

sensitive feature while the second method can include multidimensional sensitive

features into its model. Both models can be calculated as closed-form solutions. In

the third chapter, we continue our study of the fair learning problem and propose a

fair generalised linear model framework that uses the maximum mean discrepancy

as the fairness measure. Our choice of fairness measure can capture more complex

differences between distributions from different sensitive groups. The model can be

applied to datasets with different outcome types so is suitable for both classification

and regression tasks.
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Introduction

A correlation matrix plays an important role in various applications across finance,

risk management, machine learning, data science, engineering, and signal process-

ing [1, 2, 3, 4]. It quantifies pairwise relationships between variables. A valid

correlation matrix should be symmetric, positive semidefinite with unit diagonal

entries. However, in real-world applications, an empirically computed correlation

matrix often fails to satisfy the positive semidefinite requirement, due to missing

data, estimation errors, numerical instability, or rounding errors [5]. Therefore, an

algorithm is needed to find a valid positive semidefinite correlation matrix which is

nearest to the estimated one. This problem is called PSDisation.

One fundamental question to consider before solving the PSDisation problem

is how we define nearness. This is usually done by choosing a matrix norm. [6] is

one of the earliest works on this topic which uses the Frobenius norm. Many recent

literatures use the same definition [7], while some can be adapted to work with the

W-norm or H-norm [8, 9]. However, it is suggested that alternative norms such as

the Chebyshev norm can be considered according to different application scenarios

[5].

In Chapter 1, we review the choices of norms for the PSDisation problem and

some state-of-the-art methods in the current literature. We then propose two new

algorithms as solutions to this problem. Our contribution is to provide an efficient

way to find the nearest correlation matrix which is more flexible with the choice of

norms, and another method which is robust so that it behaves stable on data with

noise.

With the fast development of machine learning techniques, biases have become
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a huge issue, leading to unfair decisions over different demographic groups. As a

result, fair learning became a crucial research topic in recent decades. It aims to

adjust the learning model, allowing some compromise on prediction accuracy, so

that it does not systematically favour or disadvantage specific sensitive groups such

as race, gender, or age. For example, we may expect that males and females with

similar backgrounds have equal opportunities to get a job, or that a person is not

rejected for loans simply because of ethnicity group.

Different measures of fairness have been defined in order to satisfy the re-

quirements of specific applications and fair learning algorithms have been proposed

accordingly [10]. Most early fair learning studies focus on classification tasks

[11, 12, 13, 14, 15], while [16, 17, 18, 19] apply to fair regression. [20] proposed

a fair learning framework based on generalised linear models which can be flexibly

applied to data with different types of outcomes. However, the fairness defined in

their model only captures the first two moments of the distributions of predicted

outcomes and lacks robustness.

In Chapter 2, we introduce the fairness problem in learning. Starting from

classification tasks, we summarise how fairness can be defined and how it can be

adapted to regression models. We proposed two fair regression models based on

Liu-type estimator. We show that our two models can be fitted to optimise fairness

with a closed-form solution. Experiments show that they can perform as well as

state-of-the-art methods while being more resilient to noise.

Chapter 3 explores the topic of achieving fairness in both classification and

regression tasks. We propose to use a new measure of fairness, maximum mean dis-

crepancy, as the penalty term to build our fair generalised linear model. We test our

proposed method with datasets for both regression and binary classification tasks

and show that it gives better fairness-accuracy trade-offs with certain measures of

fairness.

Chapter 1 - Efficient Positive Semidefinite Matrix Approximation by
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Iterative Optimisations and Gradient Descent Method

— This chapter was published in [21] as a feature article and was selected to be

the cover of that issue.

We devise two algorithms for approximating solutions of PSDisation, a prob-

lem in actuarial science and finance, to find the nearest valid correlation matrix that

is positive semidefinite. The first method converts the PSDisation problem with

a positive semidefinite constraint and other linear constraints into iterative Linear

Programmings (LPs) or Quadratic Programmings (QPs). The LPs or QPs in our

formulation give an upper bound of the optimal solution of the original problem,

which can be improved during each iteration. The biggest advantage of this iter-

ative method is its great flexibility when working with different choices of norms

or with user-defined constraints. Second, a gradient descent method is designed

specifically for PSDisation under the Frobenius norm to measure how close the

two matrices are. Experiments on randomly generated data show that this method

enjoys better resilience to noise while maintaining good accuracy. For example, in

our experiments with noised data, the iterative quadratic programming algorithm

performs best in more than 41% to 67% of the samples when the standard deviation

of noise is 0.02, and the gradient descent method performs best in more than 70% of

the samples when the standard deviation of noise is 0.2. Examples of applications

in finance, as well as in the machine learning field, are given. Computational results

are presented followed by discussion on future improvements.

Chapter 2 - Two Fair Regression Models with Liu-type Estimator

We introduce two robust fair regression models which are simple to learn and

have stable performance on dataset with noise. Both models are based on Liu-

type estimator, a generalised version of Liu estimator with two parameters, the

shrinkage parameter k and the correction parameter d. The first method considers

the expected squared difference of the pairwise linear components as its fairness

measure. It does not include sensitive features in its model prediction and d can
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be calculated as a closed-form solution to minimise fairness when k is fixed. By

alternating k and d we get a trade-off between fairness and predictive accuracy. The

second method is constructed with a similar idea. However, it differs from the first

method in two ways. Firstly, it includes multi-dimensional sensitive features in the

model and, secondly, it uses coefficient of determination of the sensitive features

as the measure of fairness. Our two fair regression models enjoy great simplicity.

We use a simple simulated dataset as well as real datasets to show the performance

of them on fairness-accuracy trade-off comparing with state-of-the-art methods.

Furthermore, we test the stability of the models and find that our models are robust

when data come with added noise.

Chapter 3 - Fair Generalised Linear Model with the Maximum
Mean Discrepancy Penalty

We propose a new fair learning model based on generalised linear models

for both classification and regression tasks. Fairness is achieved by introducing

a penalty term defined by maximum mean discrepancy. This is a kernel-based mea-

sure that can effectively capture differences between distributions in high order.

Both log-likelihood term of the generalised linear model and the penalty term for

fairness are convex and thus the loss function can be optimised efficiently. The flex-

ibility of generalised linear models ensures that the model can be applied to data

with different types of outcomes, including continuous, binary, count, and multi-

class, etc. We use real datasets with continuous and binary outcomes to compare its

performance with the fair generalised linear models which uses expected squared

difference of the pairwise linear components as fairness measure. Experimental

results suggest that our fair learning model provides better fairness-accuracy trade-

off when fairness is measured by maximum mean discrepancy or sum of squared

differences of the pairwise expected outcomes.



Chapter 1

Efficient Positive Semidefinite Matrix

Approximation by Iterative

Optimisations and Gradient Descent

Method

1.1 Introduction

A correlation matrix is a square matrix summarising correlation coefficients be-

tween each pair of variables. This is used by many financial or insurance companies

to determine how a group of risks are dependent from each other [22]. It is useful

across various fields to help us understand the relationship between variables. For

example, in finance, a correlation matrix is used in optimisation to build a portfo-

lio to minimise the volatility. It also enables efficient computation of cardinality

constrained efficient frontiers to solve mean-variance portfolio selection problems

[4]. In actuarial science, insurance companies use correlation matrices to measure

insurers’ exposure to risks and calculate the Solvency Capital Requirement (SCR)

under the Solvency II Standard Formula [1]. Another application is to work with

copulas for aggregation of risks in a more complex capital model [1]. In genomics

science, correlation matrices help identify relationship between genes and construct

relevance networks and association networks [2]. They also play a vital role in



1.1. Introduction 20

genes classifications. In machine learning and data science, correlation matrices

are widely used to identify key patterns of data through dimensionality reduction

techniques such as principal component analysis (PCA) [3].

In all these applications, the correlation matrices are required to be symmetric

and positive semidefinite (PSD) with diagonal entries all equal to one. In practice,

however, the correlation matrix estimated from the empirical data is rarely PSD

due to a variety of reasons, including data incompleteness, noise, rounding, man-

ual adjustment or inconsistent computing approaches, etc [5]. For example, when

correlations between variables are estimated in groups and then joined together, the

resulting correlation matrix can be non-PSD. There are many other factors that con-

tribute to this problem. The data collected in many scenarios can be incomplete

and may need further repair. The correlations may be estimated using inconsistent

approaches or have been manually adjusted according to the needs. All of these

reasons lead to an invalid estimation of the correlation matrix [5]. Therefore, a pre-

processing method is needed to obtain a valid PSD correlation matrix based on the

empirical matrix in order to perform any further analysis. The problem of finding

such correlation matrix nearest to an empirical matrix is called PSDisation [1].

Currently most state-of-the-art PSDisation methods focus on finding the near-

est correlation matrix with respect to the F-norm, of which some apply to H-norm

as well. Over those algorithms, the Newton method (NM) [8] and the augmented

Lagrangian method (ALD) [9] are the most efficient in producing optimal solu-

tions. However, depending on the industrial situations, insurance companies may

wish to measure the similarity using an alternative norm other than the F-norm,

which makes some algorithms more time-consuming or invalid. Another PSDis-

ation method that is widely used in industry is the shrinking method [23]. It is a

simple and efficient method that can improve the result of the alternating projec-

tions algorithm (APM) [5]. However, a target matrix that lies inside the cone of

PSD matrices is needed for the shrinking method, and therefore its performance

depends heavily on the choice of the target matrix.

[24] introduced a shrinkage method in order to improve the stability of the esti-
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mated covariance matrix that is not positive definite or is ill-conditioned. This often

happens when the matrix size is large and the number of observations is smaller than

or comparable to the number of variables. It achieves its goal by reducing variance

of the estimator, and thus reducing the mean squared error (MSE) via a computa-

tionally inexpensive approach. This involves a shrinkage of the sample covariance

matrix (unbiased) towards a target matrix without variance, usually an identity ma-

trix. The optimal shrinkage intensity parameter can be computed analytically to

minimise the MSE. The similar idea can be used to obtain a PSD correlation ma-

trix starting from an invalid one. Although the shrinkage method is not defined

as a PSDisation method, it has been widely used in many applications in different

fields. We will include this method in our experiments on real datasets to compare

its performance with other PSDisation methods.

Therefore, most algorithms in the current literature primarily operate under the

F-norm or the H-norm for the general PSDisation problems. However, they tend to

lack flexibility when addressing more specific needs in specialised cases. To tackle

this limitation, we propose two new methods to approximate the solution of the

PSDisation problem, which offer greater flexibility and provide robust solutions to

practical real-world challenges. The first algorithm works by solving a series of

optimisations, such as linear programming (LP) or quadratic programming (QP).

Instead of solving the original problem which requires the correlation matrix X to

be PSD, our formulation requires X = UT QU where Q belongs to the convex cone

of diagonally dominant symmetric matrices with non-negative diagonal entries and

thus all constraints are linear. This is a rich subset of the PSD matrices set, but the

optimisations can be solved more efficiently due to the linearity of the constraints.

The main advantage of this method is its flexibility as our formulation is adapted

directly from the original problem and is thus effective on any choice of norms,

including the F-norm, the Chebyshev norm, and the H-norm, or potentially a com-

bination of any of these norms above. The advantages of using these norms will

be illustrated in the results of our experiments. The second algorithm is to find the

nearest correlation matrix to the initial matrix using an iterative gradient projection
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method under the F-norm. This can be done simply by repeatedly taking a step

along the gradient of the objective function and then projecting the matrix back

to the PSD cone. This algorithm is easy to implement and enjoys good efficiency

while maintaining good accuracy.

We will compare our two proposed algorithms with the state-of-the-art NM,

ALD, and the shrinkage method. Extensive experiments demonstrate that our first

iterative algorithm could achieve results comparable to state-of-the-art methods,

while showing more flexibility to handle complex constraints or different choices of

norms. Our second gradient descent method provides slightly less accurate results,

but runs faster than the first algorithm and is more resilient to noise than some state-

of-the-art methods and therefore can be more reliable in practical situations.

This chapter is organised as follows. In Section 1.2 we introduce the notations

and formally define the PSDisation problem. Section 1.3 summaries some of the

most popular PSDisation algorithms that exist in the current literature together with

the shrinkage method by [24]. In Section 1.4 we introduce our two approaches to

the PSDisation problem. Experiment results with simulated data as well as real

data for both algorithms are reported in Section 1.5 and Section 1.6, respectively.

Finally, in Section 1.7 we conclude this chapter and propose some future work.

1.2 Problem Formulation

We now introduce the notations we use throughout this chapter and the background

knowledge of the PSDisation problem. Denote the set of n× n real matrices by

Rn×n. A real-valued symmetric matrix Z ∈ Rn×n is positive definite (PD) if yyyT Zyyy

is positive for any nonzero real vector yyy ∈ Rn. It is positive semidefinite (PSD) if

yyyT Zyyy is non-negative for any nonzero real vector yyy. Equivalently, a real symmetric

matrix is PSD if all its eigenvalues are non-negative. We write Z ⪰ 0 if Z is PSD

(Z ≻ 0 for PD). We use diag(Z) to denote the vector of all diagonal entries of Z.

Let I be the identity matrix and 111 be the all-ones vector. The operator || · || over the

set of real matrices represents a generic matrix norm, for which different choices

are signified by a subscript and four choices are explored in this chapter; namely,
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for a M ∈ Rn×n, these norms are as follows:

1. Frobenious norm (or F-norm): ||M||F =
√

∑
n
i=1 ∑

n
j=1 m2

i j =
√

Tr(MTM);

2. W-norm: ||M||W = ||W 1
2 MW

1
2 ||F, where W ∈ Rn×n is a square matrix with

positive entries;

3. H-norm: ||M||H =
√

∑
n
i=1 ∑

n
j=1 hi jm2

i j;

4. Chebyshev norm (or max norm): ||M||C = maxi, j(|mi j|),

where mi j is the (i, j) entry of M.

The PSDisation problem we consider in this chapter is defined as follows. Let

A ∈ Rn×n be a symmetric matrix that is not PSD with diagonal entries all equal to

1. It represents an empirical correlation matrix of n random variables Y1, . . . ,Yn with

standard deviations σY1 , . . . ,σYn whose (i, j) entry is given by

ai j = corr(Yi,Yj) =
cov(Yi,Yj)

σYiσY j

, if σYiσY j > 0.

We aim to find the nearest PSD matrix X of the same form. The problem can be

written as follows.

min
X

||A−X||2 s.t. X ⪰ 0, diag(X) = 111. (1.1)

As we wish to find the nearest correlation matrix X to the empirical matrix A, the

choice of the matrix norm || · || determines how “nearest” is defined.

The F-norm [25] is a trivial choice for defining how close two matrices are

and is widely used in most of the PSDisation literature. However, recent studies

have explored the use of different norms in order to meet more practical demands.

The W-norm is a weighted norm commonly used in numerical mathematics [6] and

allows us to force some elements of X to be closer to the corresponding entries in A.

Setting W to the identity matrix will retrieve the F-norm. However, when applied

to actuarial science, an insurance company may be more interested in the H-norm

[1]. The H-norm is similar to the F-norm but allows one to assign weights to M
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on an element-by-element basis. Therefore, in the situation where one has prior

knowledge on the correlation matrix, the H-norm may be preferred. For example,

when one is more confident in some entries of the estimated correlation matrix A

and want to fix them, he can allocate more weights on those entries so that a small

change results in a huge penalty when measuring the distance between matrices.

The H-norm is equivalent to the F-norm when H is an all-ones matrix. Finally,

the Chebyshev norm specifies an element-wise ceiling for the largest difference

between the entries of X and A, which can be particularly useful and more robust

to outliers when mi j is large.

It is worth mentioning that the choice of norms should be determined accord-

ing to specific applications and there is no guarantee which one would work best.

Therefore, we attempt to develop a more flexible algorithm that can be generalised

to work with different norm choices.

1.3 Related Work

This section summaries some most popular existing solutions on PSDisation as well

as the shrinkage method to fix the ill-conditioned covariance matrix.

One of the early algorithms to tackle the PSDisation problem is the alternat-

ing projections method (APM) [6]. It finds the nearest PSD correlation matrix by

iterative projections onto two convex sets, the PSD matrices cone S and the set

of matrices U with diagonal values all equal to one. The alternating projections

method stated that by repeatedly projecting A onto S and then onto U we could

finally obtain the nearest matrix X on the intersection of S and U [26]. Further-

more, to achieve the convergence to the optimal solution, a correction needs to be

made according to [27]. In general, the alternating projections algorithm converges

linearly at best [28] and can be applied under the F-norm as well as the W-norm. It

shows good potential on the H-norm if an efficient algorithm of projection onto S

can be found.

[6] suggested another way to tackle this problem, that is, to formulate the op-

timisation as a semidefinite programming (SDP) which can then be solved using
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any powerful SDP solver. For the F-norm, the object ||A−X||2 is a second-order

function of X, so a transformation into the standard SDP primal form is needed

before any general SDP solver can be applied. According to [6], the problem can

be written as a standard SDP with (n2 + n+ 2)2 variables and 1
2n4 + 1

23n2 + n+ 1

constraints. Although the SDP problem can be further reformulated and simplified,

to our knowledge, there is still currently no SDP solver that is efficient enough to

solve such an SDP easily.

[7] introduced a method to produce a feasible correlation matrix near A based

on decomposition of a valid correlation matrix by representing it using angular pa-

rameters on a multidimensional unit hypersphere. The constraints on X are there-

fore automatically satisfied. Then by solving an optimisation problem over the pa-

rameters we expect to recover a feasible X near A under a norm of our choice. One

advantage of the hypersphere decomposition method (HDM) is that this algorithm

allows us to perform PSDisation with the H-norm, so we are able to weight each en-

try with more flexibility. Furthermore, the computation is efficient and the converge

speed is fast on small matrices. However, according to [1], the hypersphere decom-

position method may suffer from local optimum, making the solution less accurate.

Several side effects are discussed in their paper. For instance, when changing the

order of the input variables, the output of this method differs, which should not

happen to any proper PSDisation algorithms theoretically.

The spectral decomposition method (SDM) [7] is a slightly rough approach

but can give an acceptable solution even faster. The idea is to set all negative eigen-

values to zero after performing a spectral decomposition of the initial matrix. A

rescaling is then carried out to ensure the resulting correlation matrix has diagonal

elements all equal to one. The procedure is extremely fast as it contains no itera-

tions. The solution found by the spectral decomposition method can be an approx-

imation of the true optimal of the PSDisation problem, or can be used as a starting

point for other PSDisation methods [7]. However, the result cannot be considered

as accurate and it lacks the flexibility to be adapt with different choice of norms.

[8] introduced a Newton-type algorithm to find the nearest correlation matrix
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under the F-norm. It is designed to work with the F-norm as well as the W-norm us-

ing the semismooth Newton method combined with the conjugate gradient solver. It

has a quadratic convergence rate, which is superior to the APM, and is effective on

data with thousands of dimensions. Further improvements in this method were sug-

gested by [29]. [9] extended their work to the H-norm case based on an augmented

Lagrangian dual approach (ALD) by avoiding computing the projection onto the

PSD cone under the H-norm. An upper bound or lower bound for each entry of the

correlation matrix can also be set.

[24] proposed a shrinkage method for estimating the covariance matrix in or-

der to fix the ill-conditioned sample covariance matrix calculated from observations

in high-dimensional settings, which is likely to occur when the number of samples

available is smaller than the number of variables. It achieves higher accuracy and

better stability by shrinking the sample covariance matrix towards a simple struc-

tured target matrix. This significantly reduces the variance of the estimator without

introducing too much bias. The degree of shrinkage is called shrinkage intensity

and can be optimised to minimise the MSE in a closed form. The shrinkage method

has been particularly useful in finance applications such as portfolio optimisation or

risk management. It is also commonly adopted in statistics or and machine learn-

ing fields such as genomics and bioinformatic analysis. [23] developed a shrinking

method using a similar idea for restoring positive semidefiniteness. It was designed

to handle correlation matrix where one wants to keep some diagonal blocks fixed.

Instead of minimising MSE using the observation data, it uses a bisection method

to find the optimal solution to the PSDisation problem that lies on the path between

the initial non-PSD matrix A and a target PSD matrix. The bisection method enjoys

great simplicity and requires few iterations before achieving a good tolerance. How-

ever, the outcome of this method depends heavily on the choice of the target matrix.

Indeed, the target matrix can be chosen as any PSD matrix that is near to A. There-

fore, the shrinking method is not considered suitable for finding the global optimal

of the PSDisation problem. [5] explored the shrinking method as a way to improve

the results of the alternating projections method. Furthermore, any block-structured
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constraints that are linear can be applied in this method. We will include the more

general and widely used shrinkage method by [24] in our experiments to see how

our PSDisation algorithms and other state-of-the-art methods perform on real data

applications in finance and machine learning comparing with this technique.

Overall, most algorithms may become computationally expensive when addi-

tional constraints are introduced to the problem. To the best of our knowledge, there

is currently no algorithm that is able to solve the general PSDisation problem under

the Chebyshev norm efficiently.

1.4 Proposed PSDisation Methods
In this section, we propose two methods to approximate the nearest correlation ma-

trix. Currently most PSDisation methods are designed specifically for the F-norm.

Some of them can be adapted to work with the H-norm with the cost of a more com-

plex formulation or a longer computational time. We want to produce an algorithm

that is more flexible with the objective and the constraints and more efficient than

traditional SDP solvers. Therefore we propose our first proposed method which is

done by iteratively solving a series of linearly constrained quadratic optimisations

or linear optimisations. We get an approximation of the optimal value of the PS-

Disation problem by directly minimising the objective function at each iteration,

where we have the flexibility to easily choose different norms to work with. The

other approach we propose is based on iteratively taking a step along the gradient to

reduce the objective function and then projecting the resulting matrix onto the PSD

matrices set with diagonal one according to the spectral decomposition method [7],

which is designed for solving the PSDisation problem with respect to the F-norm.

Experiments show that our gradient descent approach enjoys good efficiency and

robustness. MATLAB implements for both algorithms are made available online.

1.4.1 Iterative Quadratic/Linear Programming

Consider the PSDisation problem in (1.1), which requires X to be PSD in its con-

straints. The PSD constraint can be reduced and therefore the optimisation problem

is transferred into quadratic or linear optimisation problems with linear constraints.
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A square matrix X ∈ Rn×n is called diagonally dominant if

|xii| ≥ ∑
j ̸=i

|xi j| ∀ 1 ≤ i ≤ n,

where xi j is the (i, j) entry of X. It is well known that a symmetric diagonally

dominant matrix with non-negative diagonal entries is PSD, which makes up a rich

subset of PSD matrices. Therefore, we could approximate the optimisation problem

(1.1) stated above by solving convex optimisation problems of the following form

in an iterative manner,

min
X,Q

||A−X||2

s.t. diag(X) = 111,

X = UT
h QUh,

Q = QT ,

Q is diagonally dominant with non-negative diagonal.

(1.2)

Note that U1 = I and Uh =Chol(X∗
h−1) for h≥ 2 where X∗

h−1 is the optimal solution

from the previous optimisation. U = Chol(X) represents the Cholesky decomposi-

tion of X such that U is an upper triangular matrix satisfying X = UT U.

Lemma 1. Problem (1.2) gives an upper bound of Problem (1.1).

Proof. The matrix Q is guaranteed to be PSD in (1.2), since it is symmetric and

diagonally dominant with non-negative diagonal entries and therefore X = UT
h QUh

is also PSD. Problem (1.2) minimises the objective function over a subset of PSD

matrices and therefore Lemma 1 holds.

Lemma 2. Problem (1.2) is feasible for iteration h (h ≥ 2) if it is feasible for itera-

tion h−1.

Proof. This proof is trivial as X∗
h−1 = UT

h IUh and the identity matrix I is

symmetric and diagonally dominant. Therefore, solution of problem in iteration

h−1 is feasible for iteration h.
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Let us denote the objective function by f (·),

f (X) = ||A−X||2.

Lemma 1 and Lemma 2 indicate that an optimal solution always exists for (1.2)

as long as the problem in the first problem is feasible and the optimal solution in

each iteration is at least as good as that from the previous iteration, i.e.,

f (X∗
h)≤ f (X∗

h−1) ∀h ≥ 2.

Given that the problems are feasible and the optimal solution is PSD (which

is true when numerical computation is concerned), it can be further shown that

the optimal value of Problem (1.2) decreases strictly after each iteration unless it

reaches the optimal value of Problem (1.1) [30]. In this case, the optimal objective

value in each iteration in Problem (1.2) will finally converge as it is monotonically

decreasing and bounded below by the true optimal value of Problem (1.1). In our

numerical experiments, the optimal after each iteration always finally converges to

the true optimal and strong empirical evidence shows a fast convergence.
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Algorithm 1: An iterative quadratic/linear programming algorithm to

solve PSDisation under some matrix norm

X0 = I;

while not converged do

Uh = Chol(Xh−1);

find Xh by solving

min
Xh,Qh

||A−Xh||2

s.t. diag(Xh) = 111,

Xh = UT
h QhUh,

Qh = QT
h ,

Qh is diagonally dominant with non-negative diagonal;

h = h+1;

end

Let us take the F-norm as an example. Note that ||A−X||2F = xxxT xxx− 2aaaT xxx+

aaaT aaa where xxx = vec(X) and aaa = vec(A) and vec is the vectorisation function that

transforms a matrix into a column vector. We further rewrite the objective function

and the constraint that Q is diagonally dominant with non-negative diagonal by

adding slack variables R into the optimisation,

min
X,Q,R

1
2

xxxT xxx−aaaT xxx

s.t. diag(X) = 111,

qii ≥ ∑
j ̸=i

ri j, 1 ≤ i ≤ n

− ri j ≤ qi j ≤ ri j, 1 ≤ i ̸= j ≤ n

X = UT
h QUh,

Q = QT ,

where qi j and ri j are the (i, j) entries of Q and R, respectively. Now all constraints
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Start

X0 = I

Uh = Chol(Xh−1)

solve QP/LP for Xh

Xh Converge

X = Xh

h = h + 1

Output X

Stop

yes

no

Figure 1.1: Flowchart of Algorithm 1: An iterative quadratic/linear programming algo-
rithm to solve PSDisation under some matrix norm

become linear and we obtain a series of iterative QPs. Each QP has 3n2 variables

and 4n2 −n constraints, which can be solved efficiently.

Similarly, if the H-norm is applied in the objective function, the iterative QPs
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can be written as

min
X,Q,R

1
2

xxxT Diag(hhh)xxx−aaaT Diag(hhh)xxx

s.t. diag(X) = 111,

qii ≥ ∑
j ̸=i

ri j, 1 ≤ i ≤ n

− ri j ≤ qi j ≤ ri j, 1 ≤ i ̸= j ≤ n

X = UT
h QUh,

Q = QT .

where hhh = vec(H) and Diag(hhh) is an n2 ×n2 diagonal matrix with the elements of

hhh on the main diagonal. This general formulation makes our method more flexible

when an insurance company wants to assign weight to each entry of the correlation

matrix, exploiting prior knowledge of the data.

Next, we consider the situation where we optimise with respect to the Cheby-

shev norm. According to [5], PSDisation over the F-norm is likely to result in a cor-

relation matrix X in which some entries differ significantly from the initial matrix

A, while other entries have relatively smaller deviations, giving the minimum F-

norm optimal. However, this is not preferred by some insurance companies as they

aim to minimise the maximum discrepancy between corresponding entries from the

valid correlation matrix X and the initial matrix A. In this case, minimising over the

Chebyshev norm becomes an alternative choice. With our iterative approximating
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method, this can be obtained by solving a series of LPs of the following form,

min
X,Q,R,t

t

s.t. − t ≤ ai j − xi j ≤ t, 1 ≤ i ̸= j ≤ n

diag(X) = 111,

qii ≥ ∑
j ̸=i

ri j, 1 ≤ i ≤ n

− ri j ≤ qi j ≤ ri j, 1 ≤ i ̸= j ≤ n

X = UT
h QUh,

Q = QT .

Note that in this formulation, minimising ||A−X||2C can be equivalently done by

minimising ||A−X||C and thus only LPs instead of QPs need to be solved.

Experiments show that our iterative algorithm proposed for approximating

optimal solutions for PSDisation problems offers great flexibility under different

norms while maintaining a good accuracy. Details are explained in Section 1.5.

1.4.2 Gradient Descent

Next we propose our second algorithm, where we will focus on working under the

F-norm only as there is currently no known method that could project X onto the

PSD set under the H-norm. This method is therefore less flexible in the choice of

norms. However, it works more efficiently and provides more steady results on real

data with noise.

Consider the objective in (1.1), and note that the gradient of its objective func-

tion under the F-norm is ∂

∂X ||A − X||F = X−A
||A−X||F . To project a matrix X onto

the PSD cone S n
+, first perform the eigendecomposition such that X = QΛΛΛQ−1

where Q ∈ Rn×n is the square matrix whose columns are eigenvectors of X, and

ΛΛΛ = Diag(λλλ ) is the diagonal matrix whose diagonal elements are the corresponding

eigenvalues λi of X. Define ΛΛΛ+ =Diag(λλλ+) where λ+i =max(λi,0). Next, in order

to ensure that the resulting matrix has diagonal 111, we calculate the scaling matrix
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T = Diag(ttt) where the weighting parameter ti is given by

ti =

(
n

∑
m=1

q2
imλ+m

)−1/2

.

Then X+ = TQΛΛΛ+Q−1T is the projection of X onto the cone of PSD matrices.

Our proposed method is shown in Algorithm 2 below. X is updated iteratively

by taking a gradient step followed by a projection onto the PSD cone until con-

verged. According to our experiments, the gradient step γ can be initialised as a

large value to speedup the convergence and it will fast decrease during iterations.

Algorithm 2: The Gradient descent algorithm for PSDisation under the

F-norm

X0 = I;

while not converged do

Xi+1 = Xi − γGi;

Xi+1 = PS +(Xi+1);

Ci+1 = ||A−Xi+1||F;

if Ci+1 <Ci then

γ = γ ∗ (1+δ );

else

γ = γ/2;

end

i = i+1;

end

1.5 Experimental Results on Simulated Data
To illustrate the robustness and flexibility of our algorithms in different settings, we

designed a series of tests based on both simulated and real datasets. In this section,

we explain and show the experimental results on simulated data and compare our

methods with the state-of-the-art methods. In the next section, we give examples

of some practical applications. All experiments were run using MATLAB R2023a

Prerelease (9.14.0.2137306) with Financial Toolbox v6.5, Optimization Toolbox
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Start

X0 = I

Xi+1 = Xi − γGi

Xi+1 = PS +(Xi+1)

Ci+1 = ||A−Xi+1||F

Ci+1 <Ci

γ = γ ∗ (1+ δ ) γ = γ/2

Xi Converge

X = Xi+1

i = i + 1

Output X

Stop

yes no

yes

no

Figure 1.2: Flowchart of Algorithm 2: The Gradient descent algorithm for PSDisation un-
der the F-norm
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v9.5, and Statistics and Machine Learning Toolbox v12.5, and Gurobi Optimizer

10.0.1.

1.5.1 Experiments on Iterative Quadratic/Linear Programming

Algorithm with Simulated Data

To test our iterative quadratic/linear programming algorithm, we randomly generate

the initial matrix A of different dimensions (i.e. with dimensions of 5, 10, 25, 50

and 75) that is not PSD. For A generated from each dimension settings, we solve for

the nearest valid correlation matrix X using our method under the F-norm and the

Chebyshev norm, which lead to iterative quadratic programming (IQP) and iterative

linear programming (ILP), respectively. The stopping criteria is set to achieve a

solution with error less than 0.1% in each iteration. We calculate the Frobenius

distance and the Chebyshev distance between X and A from the IQP and ILP and

compare with those given by the APM, the Newton method and the SDM, which

are all designed for minimising the F-norm. The APM and the Newton method

work very fast and can both achieve solutions with accuracy tolerance far lower

than 0.0001, therefore the experiment settings have no big impact on testing results.

We just use the default settings by the authors here [6, 8]. The results are shown in

Tables 1.1 and 1.2 for the F-norm and the Chebyshev norm, respectively. The best

performances in each group are shown in bold.

Table 1.1: The F-norm ||A−X||F obtained from different algorithms on different dimen-
sions of the initial matrix A. (Best performances are marked in bold.)

Dimension of A 5 10 25 50 75
Newton 0.3420 0.8341 5.0057 13.0331 20.6889
APM 0.3420 0.8341 5.0057 13.0331 20.6889
SDM 0.3537 0.8602 5.1716 13.5887 21.5025
IQP 0.3420 0.8352 5.0245 13.2406 21.2224
ILP 0.3819 1.0815 7.6554 15.9193 24.9860
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Table 1.2: The Chebyshev norm ||A−X||C obtained from different algorithms on different
dimensions of the initial matrix A. (Best performances are marked in bold.)

Dimension of A 5 10 25 50 75
Newton 0.1313 0.2128 0.6473 0.7605 0.8313
APM 0.1313 0.2128 0.6473 0.7605 0.8313
SDM 0.1416 0.2265 0.6225 0.7278 0.7512
IQP 0.1304 0.2131 0.6245 0.7314 0.8397
ILP 0.0854 0.1375 0.4293 0.4310 0.4805

To give a clearer view on how these algorithms compare with each other, we

use the Frobenius distance and the Chebyshev distance obtained from the Newton

method as a benchmark and calculate the relative change of the two distances ob-

tained from other algorithms in percentage. For example, the relative change of

the Frobenius distance obtained from the IQP algorithm compared to the Newton

method is given by ||A−XIQP||F−||A−XNewton||F
||A−XNewton||F ×100%. In Tables 1.3 and 1.4, a nega-

tive percentage means that the optimal solution obtained from this method is better

than that from the Newton method in the corresponding norm while a positive per-

centage represents a worse result.

Table 1.3: Relative change in the F-norm ||A−X||F compared with the Newton method in
percentage. (Best performances are marked in bold.)

Dimension of A 5 10 25 50 75
Newton 0 0 0 0 0
APM 0 0 0 0 0
SDM 3.43 3.13 3.31 4.26 3.93
IQP 0.02 0.14 0.3763 1.59 2.58
ILP 11.67 29.66 52.93 22.15 20.77

Table 1.4: Relative change in the Chebyshev norm ||A−X||C compared with the Newton
method in percentage. (Best performances are marked in bold.)

Dimension of A 5 10 25 50 75
Newton 0 0 0 0 0
APM 0 0 0 0 0
SDM 7.79 6.45 -3.84 -4.30 -9.64
IQP -0.70 0.16 -3.52 -3.82 1.01
ILP -34.98 -35.37 -33.68 -43.33 -42.21
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Furthermore, we report the computing time of each run in Table 1.5. The

lowest running times are shown in bold.

Table 1.5: Running time of different algorithms on different dimensions of the initial matrix
A (in seconds). (Best performances are marked in bold.)

Dimension of A 5 10 25 50 75
Newton 0.0024 0.0038 0.0058 0.0062 0.0350
APM 0.0005 0.0010 0.0068 0.0281 0.0615
SDM 0.0001 0.0001 0.0003 0.0008 0.0025
IQP 0.0315 0.1260 3.84 546 8180
ILP 0.0206 0.0937 2.35 719 5661

It can be easily concluded from Table 1.3 (and also see Table 1.5 for efficiency)

that both the APM and the Newton method give solutions with the minimum Frobe-

nius distance, which they aim to minimise, while the Newton method works slightly

faster in high dimensions. (Further experiments show that the ALD approach also

gives the same optimal solutions, which we omit in the above tables.) The SDM

on the other hand is not as accurate as the Newton method and the APM but is the

fastest algorithm overall as it does not require iterations. The IQP method gives

solutions slightly worse than the Newton method in terms of the F-norm but the dif-

ference is not significant, especially in low dimensions. These results from the IQP

can be improved by setting a lower tolerance and hence increasing the number of

iterations but will cost more time to converge. The ILP method is designed to min-

imise with respect to the Chebyshev norm and therefore does not give solid results

in the F-norm as other algorithms mentioned above. However, the nearest correla-

tion matrix generated by the ILP method has a much lower Chebyshev distance than

by the Newton method which intends to minimise the F-norm (see Table 1.4). This

result indicates that minimising over the Chebyshev norm can indeed be a good al-

ternative for PSDisation since considering the F-norm will potentially result in huge

deviations in some entries of X, which are not favoured by some insurance compa-

nies [5]. It is worth mentioning that both the IQP and ILP methods take a long

time to run when the dimension of A is high, this could potentially be improved

by optimising the QP and LP solvers in the future work. For example, possible
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improvements could be to carefully track the optimisations and keep an active set

to significantly reduce the number of constraints, or to manually set a starting point

for each optimisation based on the solution from the previous iteration.

To illustrate the flexibility of our IQP algorithm and its potential to achieve

good accuracy, our next step is to test when weights are assigned to each coefficient,

i.e. to work under the H-norm. Similarly as before, we generate the initial matrix

A of different dimensions. This time, we apply the ALD method and our IQP

algorithm to find the nearest correlation matrix to A under the F-norm and the H-

norm, respectively, where each entry of the weight matrix H is randomly generated

from a uniform distribution. We also test these methods on PSDisation problems

with constraints, that is, we let xi j = 0 if |ai j| < 0.1, we also request xi j > 0 if

ai j > 0.5 and xi j < 0 if ai j < −0.5. Table 1.6 shows the optimal values under

different settings.

Table 1.6: Optimal solution by ALD and IQP for constrained and unconstrained PSDisation
problems under the F-norm and the H-norm on different dimensions of the initial
matrix A. (Best performances are marked in bold.)

Dimension n 10 20 40 70
# of equality constraints (=0) 4 19 74 263
# of inequality constraints (<0/>0) 25 92 367 1208

Optimal solution

Unconstrained
F-norm

ALD 2.5032 6.2625 14.8958 30.2514
IQP 2.5060 6.2789 15.1565 30.7230

H-norm
ALD 1.6149 3.9136 10.0493 20.3044
IQP 1.6188 3.9360 10.2596 20.8868

Constrained
F-norm

ALD 2.5401 6.4399 15.2334 30.8318
IQP 2.5411 6.4562 15.3771 31.2218

H-norm
ALD 1.6631 4.0789 10.4666 20.9562
IQP 1.6501 4.0707 10.4355 21.1677

It can be concluded that both ALD and IQP work effectively on constrained or

unconstrained PSDisation problems based on the F-norm or the H-norm. Our IQP

algorithm runs slowly when dimension is high and produces slightly worse results

than ALD, but the optimal values are still competitive. For example, when working

under the F-norm with dimension n= 10, IQP gives optimal solutions of 2.5060 and

2.5411 in the unconstrained and constrained PSDisation tasks, respectively, which

are close to those given by ALD, 2.5032 and 2.5401. On the other hand, IQP gives
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slightly better results than ALD in constrained problems with the H-norm when

the dimension is low. For example, in the constrained task under the H-norm with

n = 10, the optimal solution given by IQP is 1.6501, which is better than 1.6631

by ALD. In addition, our iterative algorithm shows more flexibility when problem

settings are combined with the H-norm (IQP) and the Chebyshev norm (ILQ), where

the ALD method becomes infeasible.

1.5.2 Experiments on Gradient Descent Method with Simulated

Data

In order to test the performance of the gradient descent method on PSDisation prob-

lems, we compare ALD, IQP, GD and SDM on unconstrained problems of different

dimensions under the F-norm. SDM is a trivial method that project the matrix onto

the PSD cone directly and therefore can be considered as a baseline for this exper-

iment. Table 1.7 compares the convergence times and optimal solutions of all four

algorithms.

Table 1.7: Convergence time and optimal solution by ALD, IQP, GD and SDM for uncon-
strained PSDisation problems under the F-norm on different dimensions of the
initial matrix A. (Best performances are marked in bold.)

Dimension n 10 20 40 70 100 200

Convergence time
(unconstrained, F-norm)

ALD 0.0029s 0.0027s 0.0120s 0.0076s 0.0163s 0.0364s
IQP 0.17s 1.52s 2min 19s 2h 29min - -
GD 0.03s 0.06s 0.16s 0.07s 0.08s 0.26s
SDM 0.0003s 0.0004s 0.0007s 0.0011s 0.0017s 0.0047s

Optimal solution
(unconstrained, F-norm)

ALD 2.5032 6.2625 14.8958 30.2514 44.9199 96.3681
IQP 2.5060 6.2789 15.1565 30.7230 - -
GD 2.5316 6.2754 15.0992 30.8536 46.0570 98.7712
SDM 2.5667 6.5599 15.5756 31.3282 46.5758 99.3325

As shown in Table 1.7, GD provides comparable results to ALD. Though

slightly slower than ALD, GD works much more efficient than general SDP solvers.

Furthermore, we want to illustrate the advantages of the gradient descent (GD)

method over the ALD algorithm. Consider the situation where in practice, the cor-

relation matrices obtained by some insurance companies are usually inaccurate. We

expect our PSDisation algorithm to work better when error exists in the input matrix

according to the testing results.
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In the following experiment, we randomly generate a correlation matrix A that

is not PSD. Noise from normal distribution is then added to each non-diagonal entry

of A and A′ represents the estimated correlation matrix. We use GD, ALD and

IQP to calculate the nearest PSD correlation matrix X to A′ under the F-norm and

compare ||A−X||F, the distance between X and the actual initial matrix A.

Table 1.8: Average Frobenius distance from X to A and A′ by different algorithms over 100
tests in experiment settings. (Best performances are marked in bold.)

||A′−X||F ||A−X||F
ALD 4.43 5.70
IQP 4.45 5.72
GD 4.60 5.49

Table 1.8 shows the average results of the three algorithms tested on 100 dif-

ferent initial matrices of dimension 40 with noise of standard deviation 0.2. It can

be concluded that while GD provides slightly inaccurate solutions to the PSDisa-

tion optimisation problem, it is less influenced by noise, and thus leads to better

results than ALD overall. In all 100 testing examples, GD gives matrix X that is

closer to the initial matrix A. In practice, GD can be more resilient to noise with a

large standard deviation than ALD. Details of the experimental results are given in

Figure 1.3.
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Figure 1.3: Percentage of best performances by ALD, GD and IQP versus standard devi-
ation of the noise in PSDisation tests with different dimensions of the initial
matrix A.

Figure 1.3 plots the percentages of the best performance each PSDisation al-

gorithm achieves with different dimensions of the correlation matrix and different

standard deviations of noise. The best performance is decided by giving the shortest

distance between X and A, where X is calculated by applying different PSDisation

algorithms on the noised matrix A′. The tests are repeated 100 times for matrices

of different dimensions and noise of different levels.

It can be concluded that despite the fact that ALD performs best on accurate

initial matrices (when noise does not exist), IQP and GD can be good alternatives

when the input comes with noise, especially for matrices with large dimension. IQP

works well when the noise is small, e.g. in 67% of our tests IQP gives the smallest

||A−X||F for matrices with dimension 30 and noise with standard deviation 0.02.

When the noise becomes slightly larger (for a standard deviation between 0.1 and

0.2), GD performs significantly better.
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1.5.3 Experiments with Simulated Data Rounded to Multiples

of 25%

We present results of comparisons between ALD, IQP, GD and SDM on PSDisa-

tion problems under the F-norm in practical settings where entries of the correlation

matrix are rounded. Without knowing the actual correlations, the way the European

Commission creates the correlation matrix for the Solvency Capital Requirement

insurance models is by picking the best possible choices for the correlation matrix

entries from the set {−75%, −50%, −25%, 0%, 25%, 50%, 75%}. The correla-

tion matrix A estimated this way is usually not PSD, but certain entries of A can be

expected to be positive or negative as actuaries expect some risks to be positive or

negative correlated based on domain knowledge.

Inspired by the above practical scenario, our experiment is designed as follows.

Firstly a PSD matrix At is generated which we assume is the true correlation matrix.

Then 250 observations are generated from t-distribution with 3 degrees of freedom

and are used to calculate the sample correlation matrix As. We obtain our estimated

correlation matrix A′
s by rounding each entry of the sample correlation matrix As to

25%. We also round the true correlation matrix At to 25% to get A′
t . Now A′

s and A′
t

are not PSD. We perform an unconstrained PSDisation on A′
s under the F-norm and

the solution is denoted as X. We also test constrained PSDisation by ALD and IQP.

The constraints are set so that the entries of X have the same signs as As, which we

assume are available to actuaries as domain knowledge.

The tests are done repeatedly on matrices of dimensions 10, 20, 30 and 40.

The unconstrained PSDisations are done using ALD, IQP, GD and SDM. In our

experiment settings, only around 85% to 89% of the non-diagonal entries of X have

the same sign as As. In the constrined settings, both ALD(con) and QP(con) can

100% satisfy the same sign constraints, either strictly or to some small tolerance.

The results are shown in Tables 1.9 and 1.10.
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Table 1.9: Average Frobenius distance from X to A′
s and A′

s by different algorithms over
500 tests in experiment settings. (Best performances are marked in bold.)

n 10 20 30 40
||A′

s −X||F ALD 0.1387 0.3940 0.6991 1.0320
IQP 0.1388 0.3945 0.7003 1.0347
GD 0.1453 0.4198 0.7512 1.1252
SDM 0.1462 0.4247 0.7633 1.1479
ALD(con) 0.1421 0.4081 0.7262 1.0735
IQP(con) 0.1421 0.4086 0.7276 1.0760

||As −X||F ALD 0.6429 1.2817 1.8862 2.4612
IQP 0.6429 1.2820 1.8870 2.4633
GD 0.6433 1.2837 1.8910 2.4796
SDM 0.6440 1.2887 1.9019 2.5017
ALD(con) 0.6351 1.2499 1.8217 2.3611
IQP(con) 0.6350 1.2501 1.8223 2.3624

Table 1.10: Average Frobenius distance from X to A′
t and A′

t by different algorithms over
500 tests in experiment settings. (Best performances are marked in bold.)

n 10 20 30 40
||A′

t −X||F ALD 1.6960 3.5396 5.2255 7.0881
IQP 1.6960 3.5398 5.2261 7.0896
GD 1.6851 3.4839 5.1133 6.8849
SDM 1.6814 3.4640 5.0635 6.7970
ALD(con) 1.6923 3.5240 5.1953 7.0412
IQP(con) 1.6923 3.5240 5.1959 7.0425

||At −X||F ALD 1.5294 3.2316 4.7367 6.4601
IQP 1.5294 3.2318 4.7373 6.4617
GD 1.5169 3.1710 4.6136 6.2364
SDM 1.5128 3.1499 4.5599 6.1427
ALD(con) 1.5252 3.2135 4.7015 6.4052
IQP(con) 1.5252 3.2138 4.7022 6.4067

It can be easily concluded from Table 1.9 that ALD is the best in minimis-

ing the objective, ||A′
s −X||F, while IQP could produce very similar results. On

the other hand, GD gives slightly worse solutions than ALD and IQP, but still bet-

ter than baseline method SDM. Comparing ||As −X||F, unsurprisingly, we see that

constrained PSDisation shows its advantages if prior information is available. While

ALD allows restrictions on upper or lower bounds of entries of X, IQP could po-

tentially allow for any linear constraints and thus can be more flexible. Nonlinear
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constraints can also be set if efficiency is not the main focus. For example, we could

restrict the entries of X to be multiples of 25%. This leads to iterative mixed-integer

programming, which is beyond the scope of this thesis.

On the other hand, comparing ||A′
t −X||F and ||At −X||F in Table 1.10, SDM

and GD constantly give PSD matrix X that are closer to the true correlation ma-

trix At . Therefore, we draw the conclusion that although relatively inaccurate in

minimising the objective function, ||A′
s −X||F, in practice, SDM and GD are more

resilient to noise generated in real data, which coincides with our observations in

the previous part.

1.6 Experiments Results on Real Datasets
The potential of our two proposed PSDisation methods has been illustrated with

synthetic/simulated data. In this section, we test them with real-life data with ap-

plications in (financial) portfolio construction and dimension (data) reduction. We

compare our IQP/ILP and GD with other state-of-the-art PSDisation algorithms.

The shrinkage method is also included as it is widely used in finance, econometrics,

and statistics to tackle the ill-conditioned or non-PSD matrix problem.

1.6.1 Experiments with Assets Daily Return Data

We now present an example of PSDisation applications with real-life financial data

that consist of 50 public companies from NASDAQ stock market that started to be

listed on this marked at different points in time, i.e., assets have different obser-

vation periods that depend on first trading day of each asset. That is, we use the

daily asset returns since 2010 to calculate the pairwise correlation. This is useful

when building a portfolio and calculating the portfolio’s (aggregate) risk position

measured through risk measures such as Value at Risk (VaR) and Conditional Value

at Risk (CVaR). However, the resulting correlation matrix A is non-PSD and has

negative eigenvalues since i) missing values exist for each stock at certain periods

of time, and ii) each asset pair has different overlapping observation period. A so-

lution to this issue is to use PSDisation algorithms as portfolio construction means

computing weights for each asset and such computation requires PSD empirical
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correlation matrix. Alternatively, we can use some imputation techniques to replace

the missing data with substituted values, but this does not guarantee a PSD em-

pirical covariance matrix due to ii). Imputation techniques are statistically based

that require no domain knowledge or one may rely on imputation methodologies

that are specific to financial applications; e.g. one may replace the missing returns

with risk-free returns which is the rate of the 10-year rated government Treasury

note. Such imputations are the last resort solution with an unknowable impact on

the application in hand.

We perform PSDisation on the calculated correlation matrix A to get X. The

testing algorithms include IQP, ILP, GD, ALD, and SDM. The shrinkage method

[24] is not designed to work with missing data. Therefore we impute the data before

applying the shrinkage method. We use two methods to fill the missing entries,

namely replacing them with mean observed values of each variable and filling using

the multivariate imputation by chained equations method (MICE). Replacing with

mean value is a simple approach to handle missing data, but may not be appropriate

for estimating correlations when there are too many missing entries. MICE uses

a sequence of conditional models for imputation so that each variable is modelled

conditionally on other variables. The shrinkage method is then used to estimate the

correlation matrix X and we call them Shrinkage-Mean and Shrinkage-MICE for

the two different imputation strategies. We calculate the Frobenius distance and the

Chebyshev distance between A and X and the results are shown in Table 1.11.

Table 1.11: Frobenius distance and Chebyshev distance between A and X by different algo-
rithms on NASDAQ stocks return correlation matrix. (Best performances are
marked in bold.)

||A−X||F ||A−X||C
ILP 1.0836 0.0236
IQP 0.3765 0.0872
ALD 0.3764 0.0886
GD 0.3958 0.0836
SDM 0.4085 0.0931
Shrinkage-Mean 2.5625 0.4025
Shrinkage-MICE 2.3884 0.4367
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The same experiment was also carried out with mixed choices of top 25 SP500

companies and 25 NASDAQ stocks where the correlation matrix calculated is in-

valid. The results are shown in Table 1.12.

Table 1.12: Frobenius distance and Chebyshev distance between A and X by different algo-
rithms on a mixture of NASDAQ and SP500 stocks return correlation matrix.
(Best performances are marked in bold.)

||A−X||F ||A−X||C
ILP 0.5605 0.0121
IQP 0.2269 0.0542
ALD 0.2268 0.0547
GD 0.2488 0.0602
SDM 0.2534 0.0620
Shrinkage-Mean 2.4080 0.3935
Shrinkage-MICE 1.8739 0.3142

It can be concluded from Tables 1.11 and 1.12 that the optimal minimum

Frobenius distance solution by our IQP method is very close to the state-of-the-art

ALD method, while maintaining an even lower Chebyshev distance. This ensures

that the maximum deviation of correlation for each pair of stocks by IQP is smaller

than that by ALD. We also noticed that in this real financial data experiment, the

speed of convergence of IQP is faster and the optimal solution is closer to ALD

compared with those in previous simulated data, providing evidence that IQP is

potentially suitable for dealing with real dataset. In addition, GD performs slightly

better than the baseline method SDM in this stocks data experiment in terms of both

the F-norm and the Chebyshev norm. In Table 1.11 GD achieves even better Cheby-

shev norm with NASDAQ stocks than ALD, IQP and SDM, although this is not

guaranteed in all experimental settings. ILP gives a much lower Chebyshev norm

than other methods as expected, since it is designed to do so. The shrinkage method

is not designed to minimise any of the norms and thus does give comparable results

under these criteria. However, it aims to give a more stable and well-conditioned es-

timate of the correlation matrix. We now evaluate how the above methods perform

in the application of portfolio optimisation.

We divide the above assets return data into two parts. Data since January 2010
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until June 2021 serves as historical observations to estimate the correlation ma-

trix using either PSDisation algorithms or the shrinkage method after imputation.

We then build a minimum variance portfolio with the correlation matrix from each

method and test how it performs in the following 20 months. The annualised av-

erage return, annualised standard deviation, and the Sharpe ratio for the NASDAQ

stock portfolio and the mixed portfolio are shown in Tables 1.13 and 1.14. An equal

weight portfolio is provided as a benchmark.

Table 1.13: Annualised average return, annualised standard deviation and Sharpe ratio of
NASDAQ stocks minimum variance portfolios based on correlation matrices
estimated using different methods. (Best performances are marked in bold.)

Method Average Return (%) Standard Deviation (%) Sharpe Ratio
ALD -15.6085 19.7047 -0.7921
GD -14.7107 19.3380 -0.7607
ILP -13.6843 20.6439 -0.6629
IQP -15.6040 19.7084 -0.7917
SDM -14.6754 19.3006 -0.7604
Shrinkage-Mean -11.5543 18.0076 -0.6416
Shrinkage-MICE -12.9444 18.7709 -0.6896
Equal weight -18.9210 31.2105 -0.6062

Table 1.14: Annualised average return, annualised standard deviation and Sharpe ratio of
a mixture of NASDAQ and SP500 stocks minimum variance portfolios based
on correlation matrices estimated using different methods. (Best performances
are marked in bold.)

Method Average Return (%) Standard Deviation (%) Sharpe Ratio
ALD 6.5146 15.1593 0.4297
GD 6.5242 15.1410 0.4309
ILP 7.0063 15.2558 0.4593
IQP 6.5072 15.1598 0.4292
SDM 6.5160 15.1395 0.4304
Shrinkage-Mean 3.4394 15.1660 0.2268
Shrinkage-MICE 6.1097 15.3055 0.3992
Equal weight -2.6196 24.7886 -0.1057

Judging from annualised standard deviation, we see that all minimum variance

portfolios have much lower volatility compared to the equal weight portfolio. In

the NASDAQ portfolio (Table 1.13), the portfolios built with the shrinkage method

achieve both higher annualised return and lower standard deviation. Portfolios with
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GD and SDM also have comparable results. However, since the annualised return

is negative, it is not easy to determine which is the best. In the mixed portfolio (Ta-

ble 1.14), SD achieves the lowest standard deviation, while the portfolio with ILP

gives the best return and Sharpe ratio. We would like to point out that the shrinkage

method only works without missing values in the data. Therefore, different data im-

putation methods can influence its performance. Table 1.14 gives a good example

of this where Shrinkage-Mean and Shrinkage-MICE portfolios show a significant

difference in their returns. Another note to make is that in this experiment, all port-

folios are built with correlation matrices estimated using historical data and are then

fixed for 20 months. The results might be different if the correlation matrices are

estimated based on moving windows and the portfolios are updated over time.

1.6.2 Experiments with Machine Learning Data for Applica-

tions in PCA

Principal component analysis (PCA) [3] is a popular statistical tool to reduce the

dimension of the dataset while maintaining as much information as possible from

the data, which helps visualising the data or performing further actions in different

fields of studies. The covariance matrix of the features is calculated before it turns

into an eigenvalue problem [31]. A standardisation of the data is usually needed

when the features are in different scales or, alternatively, the correlation matrix can

be used instead of the covariance matrix. If missing values present in the dataset, a

standard way is to delete all instances that contain missing values and then calculate

the correlation matrix. However, ignoring such instances means that less informa-

tion can be used from the whole dataset, which may lead to a decrease of the quality

of PCA. We seek to use as much information as possible from the dataset by cal-

culating the correlation between attributes pairwisely. This may cause the resulting

correlation matrix to be non-PSD and therefore a PSDisation process is needed.

We use the wine data available from the UCI Machine Learning Repository

[32] as an example to show the advantages of using PSDisation on pairwisely cal-

culated correlation matrix. The data consists of 13 attributes of chemical analysis of

wines from different cultivars in Italy. The target is categorical with three classes.
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The features are in different scales so it makes sense to use the correlation matrix in

PCA. We first drop 20% of the values from the dataset randomly so that it has miss-

ing values. We calculate the pairwised correlation matrix which is non-PSD and

thus invalid. Then PSDisation is performed on the invalid correlation matrix, after

which eigenvectors are calculated to transfer the standardised data with missing val-

ues. The variance of each principal component of the transformed data is reported

in Table 1.15. We use IQP algorithm for PSDisation in this example. We also per-

form PCA according to the correlation matrix calculated by omitting all instances

that have missing values. Figure 1.4 shows the cumulative sum of the variance for

each principal component of the transformed data by different methods, where all

PCA stands for PCA performed with all instances with missing values omitted and

pairwise PCA stands for PCA using pairwised correlation matrix with PSDisation.

Since PCA aims to capture as large variance in the data via the top several prin-

cipal components as possible, a curve that increases faster within the first several

principal components indicates a better PCA result.

Table 1.15: Variance of each principal component in the transformed wine data. (Higher
variance in each row is marked in bold.)

Principal Component all PCA pairwise PCA
1 3.1258 3.2692
2 1.5018 1.6485
3 0.7359 1.0723
4 0.6901 0.7908
5 0.7454 0.7164
6 0.5511 0.5894
7 0.7294 0.5543
8 0.4103 0.3897
9 0.4756 0.3526

10 0.3532 0.2875
11 0.3712 0.2895
12 0.3508 0.2604
13 0.3436 0.1637
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Figure 1.4: Cumulative sum of the variance of each principal component in the transformed
wine data.

Table 1.15 indicates that with the use of pairwised correlation, the transformed

data has higher variance in the first several principle components than all PCA.

Therefore, more important information can be captured by the first few principal

components via pairwise PCA.
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Table 1.16: Weight of each feature assigned by the 1st and 2nd principal components in
the wine data by PCA, pairwise PCA and all PCA. Top: Weights of features
in first principal component. Bottom: Weights of features in second principal
component. (Top 3 weights in each column are marked in bold.)

Features PCA pairwise PCA all PCA
Flavanoids 0.4229 0.4212 0.3793
Total phenols 0.3947 0.3753 0.3494
OD280/OD315 of diluted wines 0.3762 0.3633 0.3334
Proanthocyanins 0.3134 0.3046 0.1521
Nonflavanoid phenols 0.2985 0.2872 0.2453
Hue 0.2967 0.3090 0.2823
Proline 0.2868 0.3022 0.3558
Malic acid 0.2452 0.2237 0.2489
Alcalinity of ash 0.2393 0.2685 0.3481
Alcohol 0.1443 0.1886 0.3408
Magnesium 0.1420 0.1640 0.1399
Color intensity 0.0886 0.0550 0.0809
Ash 0.0021 0.0010 0.0893

Features PCA pairwise PCA all PCA
Color intensity 0.5300 0.5522 0.5696
Alcohol 0.4837 0.4429 0.2506
Proline 0.3649 0.3603 0.2577
Ash 0.3161 0.3533 0.3538
Magnesium 0.2996 0.2679 0.3946
Hue 0.2792 0.2824 0.3146
Malic acid 0.2249 0.2240 0.0492
OD280/OD315 of diluted wines 0.1645 0.1697 0.2766
Total phenols 0.0650 0.0788 0.0717
Proanthocyanins 0.0393 0.0280 0.2065
Nonflavanoid phenols 0.0288 0.0769 0.0902
Alcalinity of ash 0.0106 0.0287 0.1363
Flavanoids 0.0034 0.0049 0.1147

Furthermore, Table 1.16 summaries the weight of each feature that the first

and second principle components contain by PCA on full data and pairwise PCA

and all PCA on data with missing values. The weights of the first three features

with the highest weights are marked in bold. Since PCA is calculated from the

full dataset, we want the results of pairwise PCA or all PCA to stay as close to

the results of PCA as possible so that it captures more information, i.e. we want

the first and second principal components in pairwise PCA or all PCA both assign
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similar weights to each feature as PCA does. According to Table 1.16, the weights

assigned by pairwise PCA and PCA are very close to each other. In contrast, while

all PCA selects the same feature with highest weights as original PCA, the weights

of other features it gives are generally much further away than pairwise PCA. We

may conclude that pairwise PCA preserves as much information as possible from

data with missing values and thus produces more similar results to PCA from the

full dataset than all PCA. This indicates that pairwise PCA works better than all

PCA on dataset with missing entries and PSDisation helps achieve this.

To further show the impact of missing values on the data and different methods

of imputation data before PCA, we perform the following classification experiment.

We split the dataset into 70% training set and 30% testing set. For the training set,

we randomly drop 20% of the data so that the correlation matrix estimated pair-

wisely is not PSD. We use different PSDisation methods to obtain PSD correlation

matrix and then perform PCA. In comparison, we use all instances without missing

values to perform all PCA. We also include PCA using the correlation matrix esti-

mated by the shrinkage method with the two data imputation strategies as explained

previously in our test. As a benchmark, PCA is performed directly on data where

the missing entries are replaced with mean values. For each of these PCA methods,

the first 3 principle components are chosen to build a k nearest neighbours (kNN)

model. We then use the kNN model to predict the labels with PCA-transformed

data in the testing set and calculate the prediction accuracy. The test is repeated 50

times and average testing accuracies are shown in Table 1.17. In each model k is

tuned using leave-one-out cross-validation.
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Table 1.17: Average testing accuracy of kNN models built on data after PCA using different
correlation matrix estimating methods. (Best performance is marked in bold.)

Testing accuracy
all PCA 0.9143
pairwise PCA with ALD 0.9581
pairwise PCA with IQP 0.9581
pairwise PCA with ILP 0.9589
pairwise PCA with GD 0.9581
pairwise PCA with SDM 0.9581
PCA with Shrinkage-Mean 0.9555
PCA with Shrinkage-MICE 0.9585
PCA on data filled with mean values 0.9558

According to Table 1.17, all PCA performs the worst in the classification task,

indicating that dropping too much data in the training set may lead to undesirable

behaviours of the model. Pairwise PCA on the other hand gives better predictions,

of which ILP achieves the best prediction accuracy. This shows that in some sce-

narios, optimising under the Chebyshev norm instead of the F-norm can practically

be a better choice. The shrinkage method performs similarly to pairwise PCA and

it also depends on data imputation methods. However, there is not enough evidence

to judge between pairwise PCA and PCA with the shrinkage method.

1.7 Conclusions
In this chapter, we proposed two new approaches, the iterative quadratic/linear pro-

gramming method and the gradient descent method, to tackle the PSDisation prob-

lem for actuarial analysis in order to find the nearest correlation matrix.

IQP/ILP is a flexible algorithm that approximates the nearest correlation ma-

trix by solving a series of optimisations with linear constraints. Despite being

more time-consuming than traditional methods, the IQP method can achieve op-

timal solutions that are comparable to the APM, Newton, or ALD method when

working with the F-norm. There is currently no efficient PSDisation algorithm in

literature that minimises the Chebyshev norm as ILP does. In our experiments,

the ILP and IQP methods produce good results under the Chebyshev norm and

the H-norm, respectively. In addition, it is crucial to understand that our formula-
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tion of the problem is very flexible and thus can handle norms of any choice. It

is also possible to combine different norms in our formulation (e.g. to minimise

α||A−X||2F +(1−α)||A−X||2C where α is a weighting parameter). Future work

can be done to increase the speed of solving the quadratic or linear optimisation

problem in each iteration to increase the efficiency in order to cope with larger

problems.

The GD method repeats the following, taking a step in the opposite direction

of the gradient, projecting the matrix onto the PSD cone via spectral decomposi-

tion and scaling the matrix so that the diagonal is 1. This method is effective in

unconstrained PSDisation problems with respect to the F-norm. Experiments show

the efficiency and robustness of the algorithm that it is more resilient to noise and

shows good potential in practical scenarios. Future attempts to modify the GD al-

gorithm can be considered so that it can be applied under different choices of norms

or to solve problems with more constraints. For example, one possible extension of

this could be to explore subgradient approach or use smooth approximation to work

with norms that are not differentiable.



Chapter 2

Two Fair Regression Models with

Liu-type Estimator

2.1 Introduction

Machine learning techniques have been developed rapidly over the past decades.

They are widely used in decision making processes such as credit scoring, employ-

ment, sentence and bail decisions and play an important role in people’s everyday

life. On the one hand, machines can work with a much larger scale of datasets than

human beings are able to and cost fewer time. On the other hand, it is commonly

agreed that algorithms also suffer from biased as human beings do, even though

there was no intention for it in the first place. A well-known example is Correctional

Offender Management Profiling for Alternative Sanctions (COMPAS), a criminal

justice scoring system to help the court to evaluate the chance of recommitting a

crime for an offender and to decide whether to release him or keep in the prison

in the US. Studies show that the false positive rate (FPR) for African-Americans is

twice as that for white people. Therefore, concerns arise for eliminating bias and

ensuring fairness in learning. [20, 33].

Biases in machine learning origin from different aspects. Firstly, the data used

to feed the model might be biased, which will influence the algorithmic outcomes.

An example for this is how we sample and measure the data. Data collected in

a community which is highly policed and controlled may yield higher arrest rate
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than other communities. Missing data or omitted variables also causes bias, as al-

gorithms may fail to find the link between response and the missing variables but

attribute to other irrelevant features. Imbalanced data also leads to unfairness, as op-

timising the overall error on the whole dataset may result in minority groups being

ignored. Secondly, biases in algorithm can play an important role in causing people

making unfair decisions. For example, a search engine provides links suggestions

in correspondence to a search enquiry. However, the top few links are usually con-

sidered more relevant and are clicked by users more frequently, which can affect

the performance of future searches. Lastly, user behaviour and decisions can in turn

introduce bias to the data collection process. An example is that the most enthusi-

astic supporters of a political candidate are more likely to complete an opinion poll

that measures enthusiasm then anyone else. What’s more, data sampled on different

social media platforms such as Facebook, Reddit or Twitter may be influenced by

different user populations according to gender, age or ethnicity, etc. For a complete

summary of sources of unfairness, see [34].

Starting a few years ago, there has been much interest in improving fairness

while maintaining accuracy in prediction. In order to achieve fairness, we must

first decide which features (groups) we would like to protect from prejudices when

learning [35]. These are called sensitive features. These protected attributes are

usually determined according to certain anti-discrimination laws, including gender,

race, nationality, age, religion, etc. For example, we may want males and females

to have equal opportunities to get a job, or black and white people to receive fair

treatment in COMPAS.

Once the sensitive features are selected, the problem of how to define fairness

comes up. Currently, most works on fairness are based on classification models

[36, 37]. Popular fairness metrics include demographic parity, equalised odds and

equalised opportunity [38]. Starting from here, there are also studies where they

generalised those definitions into regression tasks, namely equalised expected out-

comes and equalised expected log-likelihood [20]. [39] chose to measure fairness

by the coefficient of determination (CoD) of sensitive attributes. We will further
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introduce the fair learning problem and related definitions properly later in the next

section. It is worth mentioning that different definitions may be useful in specific

applications and no definition is guaranteed to work the best. Studies show that it is

impossible to achieve fairness in multiple definitions at the same time unless with

a trivial dataset [10]. Evidence shows that it is impossible either to achieve both

predictive accuracy and model fairness at the same time (with a non-trivial dataset,

of course). Indeed, consider the algorithm as an optimisation problem that aims to

minimise the overall error which represents accuracy. Fairness can be achieved by

adding additional constraints to the optimisation, leading to a narrower feasible re-

gion and therefore resulting a worse accuracy. [10] gave a more detailed discussion

on trade-offs related to fairness.

In most literature researchers usually choose a definition that is most suitable

for their model formulation. In this chapter, we will focus on linear regression

tasks. Currently there are fewer studies focusing on regression than classification

models. [19] used the Hilbert Schmidt independence criterion as the fairness term

and applied their method to both linear and kernel regression. [17] proposed to use

both individual fairness and group fairness and applied them to regression prob-

lems. [16] proposed a general scheme for fair regression with arbitrary Lipschitz

loss functions. [39] proposed a fairness learning framework via a quadratically

constrained quadratic program (QCQP) formulation. Both predictors and sensitive

attributes can be continuous and multi-dimensional sensitive features are allowed.

This ensures that it can be applied on a wide range of different types of datasets.

Furthermore, the fairness is measured by CoD and can be directly controlled by

user’s input. [33] further extended this idea and presented a formulation of the op-

timisation with only a simple ridge penalty. This model is more efficient to solve,

which has a solution that is partly in closed form. It can also be extended to dif-

ferent models or work with different penalties. [20] aimed at achieving equalised

expected outcomes or equalised expected log-likelihoods rather that statistical par-

ity. They proposed using a convex penalty term to achieve fairness. It is based on

generalised linear models so allows different types of outcomes, but only with one
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sensitive attribute. These limitations and non-flexibility motivates us to develop a

simple model that can potentially work with different definitions of fairness and

produce stable results.

Our idea was inspired by Liu-type estimator [40]. Liu estimator was proposed

by [41] to tackle the multicollinearity problem in linear regression. It was further

generalised into Liu-type estimator [40], which is shown to perform more stable

than ridge regression under collinearity by reducing the bias. It allows a two-step

adjustment of the model to minimise MSE by having a shrinkage parameter and a

correction parameter to reduce the condition number and improve the fitness. In

this chapter, we use the parameters to balance the trade-off between fairness and

accuracy and obtain robust linear models. We proposed two simple Liu-type linear

models that achieves better fairness by selecting optimal parameters. The optimisa-

tion can be done by simply solving a linear or quadratic equation, which makes the

model extremely easy to fit. Experiments show that they could achieve competitive

trade-offs between accuracy and fairness to state-of-the-art methods while enjoying

good stability.

This chapter is organised as follows. In Section 2.2 we formally introduce

the fairness problem in machine learning by giving some notations and definitions

of fairness. We start from the classification problem and then show how the ideas

can be transferred into regression cases. Related fair learning methods and back-

ground knowledge is also introduced. In Section 2.3 we proposed two linear mod-

els, namely fair Liu model (fLiu) and fair Liu model with sensitive features (fLiuS).

Experimental results for both models are reported and discussed in Section 2.4.

Finally, in Section 2.5 we conclude this chapter with some future work ideas.

2.2 Related Work

2.2.1 Fairness in Classification Tasks

The concept of fair learning origins from binary classification tasks with one single

sensitive feature so we will start to introduce the definitions from here. Let A denote

a potentially sensitive attribute that we wish to protect which takes discrete values
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from the set A = {a1, . . . ,ak}. Let XXX ∈ Rdx denote other attributes which can be

either discrete or continuous and dx is the dimension of the features. Denote the

outcome group by Y which for now we assume is binary, i.e. Y = {0,1}, and denote

the binary predictor by Ŷ . However, many of the definitions can be generalised to

work with categorical outcomes.

An intuitive way for attribute protection is by fairness through unawareness,

where the protected attributes A are simply left out of the model.

Definition 1 (Fairness through unawareness). A predictor Ŷ satisfies fairness

through unawareness if the sensitive attribute A is not used in the predictive model.

However, this may have limited effect on addressing and eliminating bias since

the protected attributes may be correlated to some attributes in XXX [42], resulting the

model to be still biased. Furthermore, ensuring independence of Ŷ and A would

result in bad predictions when the sensitive feature A itself can be a good predictor

of the response Y .

Definition 2 (Fairness through awareness). A predictor Ŷ satisfies fairness through

awareness if each pair of two similar instances receives similar treatment in the

predictive model.

Both Definitions 1 and 2 are fairness on an individual level. Definition 2 re-

quires a more specific definition on similarity (distance metric) between pair of in-

stances, which is non-trivial and must be designed according to the intended tasks.

Further criteria for group fairness have been created in order to treat different

groups equally rather than looking at individual instances.

Definition 3 (Independence/demographic parity). A predictor Ŷ satisfies indepen-

dence from sensitive attribute A if P(Ŷ = 1 | A = ai) = P(Ŷ = 1 | A = a j) ∀ 1 ≤ i, j ≤

k.

Independence of score and sensitive attribute requires Ŷ and A to be statisti-

cally independent, i.e. Ŷ ⊥ A. This requires the learning algorithm to be consistent

in the entire dataset so that it does not distinguish instances from different sensitive
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groups, which potentially contributes to its drawback since it prevents us from util-

ising knowledge we could learn on each separate class [36]. For example, a perfect

predictive model may be judged as unfair under this definition if the actual positive

rates of different sensitive groups are different [10], which is often the case in real-

istic. Moreover, on an individual fairness perspective, two similar individuals from

different sensitive groups can be treated differently, which in some scenario can be

against the law.

Definition 4 (Separation/equalised odds). A predictor Ŷ satisfies separation with

respect to sensitive attribute A given outcome Y if P(Ŷ = 1 | A = ai,Y = y) = P(Ŷ =

1 | A = a j,Y = y) ∀ 1 ≤ i, j ≤ k, y ∈ {0,1}.

Separation requires that the protected attribute is only related to the score

through the outcome, i.e. Ŷ ⊥ A | Y [36]. Therefore the sensitive attribute can

be correlated with the predictor and for different sensitive groups we may have dif-

ferent rates of positive predictions based on outcomes in training data.

Definition 5 (Equalised opportunity). A predictor Ŷ satisfies equalised opportunity

with respect to sensitive attribute A given outcome Y if P(Ŷ = 1 | A = ai,Y = 1) =

P(Ŷ = 1 | A = a j,Y = 1) ∀ 1 ≤ i, j ≤ k.

Equalised opportunity is a weaker fairness condition than equalised odds where

only the instances predicted to be accepted are concerned to be fairly scored while

others are ignored [36]. Depending on the applications equalised opportunity can

be easier to achieve than equalised odds.

Definitions 4 and 5 are two popular definitions for classification fairness based

on the most current studies, though equalised odds is still proven to suffer from

difference in false negative rate and equalised opportunity may behave badly when

base rates from different sensitive groups differ [10].

Definition 6 (Sufficiency). A predictor Ŷ satisfies sufficiency with respect to sensi-

tive attribute A and outcome Y if P(Y = 1 | A = ai,Ŷ = y) = P(Y = 1 | A = a j,Ŷ =

y) ∀ 1 ≤ i, j ≤ k, y ∈ {0,1}, i.e. Y ⊥ A | Ŷ .
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Above are examples of definitions for fairness in classification (binary) tasks.

We refer the readers to [34, 10, 43] for more detailed discussions on this topic.

2.2.2 Fairness in Regression Tasks

In this section, we introduce fairness in regression tasks. We mainly introduce two

representative algorithms, fair generalised linear models (FGLM) and fair ridge re-

gression model (FRRM), which we consider to be state-of-the-art. The formulation

of the problem is very similar to that in classification, while in regression tasks we

allow the outcome Y and the predictive score Ŷ to have real values. Many defi-

nitions we discussed previously can be adapted directly into regression problems.

Here we give an example of the generalised version of Definition 4 as follows [20].

Definition 7 (Equalised expected outcomes). A predictive score Ŷ satisfies

equalised expected outcomes with respect to sensitive attribute A given outcome

Y if E(Ŷ | A = ai,Y = y) = E(Ŷ | A = a j,Y = y) ∀ 1 ≤ i, j ≤ k, y ∈ Y .

Since Y is real-valued here, we discritise it into a finite number of regions with

segments that are closed on the left and open on the right to form Y .

Before going through the methods, we first declare the notations we use in the

fair regression problem. Let SSS ∈ Rds be the sensitive variables and XXX ∈ Rdx be the

normal (non-sensitive) variables where ds and dx are the dimensions of the sensitive

and non-sensitive features, respectively. Denote the continuous outcome variable by

Y ∈ R. Let S ∈ Rn×ds be observations of the sensitive attributes and X ∈ Rn×dx be

observations of the non-sensitive attributes and n is the number of observations. Let

Y ∈ Rn×1 be the target attribute to predict. We assume that all categorical variables

are one-hot encoded. Let βββ ∈ Rdx be the coefficient vector of a linear regression

model (assuming that the sensitive features are not included in the model) and Xβββ

is the linear predictor.

2.2.2.1 Fair Generalised Linear Model

[20] proposed a unified framework for fair GLM estimator (FGLM). The idea is to

solve an optimisation problem that minimises negative log-likelihood plus a penalty

term weighted by a constant λ that controls the trade-off between accuracy and
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fairness. The penalty term is determined as a measure of fairness, whose value

is the lower the better. They built their FGLM algorithm based on two fairness

criteria, equalised expected outcomes and equalised expected log-likelihood. In

their framework, they assume that the sensitive features S contain only one multi-

class variable S. Let pi
XXX |Y=y represents the conditional distribution of XXX given that

Y = y and S = si, i = 1, . . . ,k. The full FGLM formulations will be discussed in

Chapter 3, as the main focus of this chapter is on linear regression. For the linear

regression case (with the identity link function), the equation in Definition 7 can be

written as,

E(XXX iy
βββ ) = E(XXX jy

βββ ) ∀ 1 ≤ i, j ≤ k, y ∈ Y ,

where XXX iy ∼ pi
XXX |Y=y and XXX jy ∼ p j

XXX |Y=y. Note that in a linear model the expected

predictive score equals to the linear predictor. Based on this definition, [20] defined

a measure of group fairness by summing up the squared differences of the pairwise

expected outcomes DEO,

DEO =
k

∑
i, j=1

∑
y∈Y

(E(XXX iy
βββ )−E(XXX jy

βββ ))2.

where again we discritise the range of real-valued Y into a finite number of regions

with segments that are closed on the left and open on the right to form Y .

The fairness measured by the expected squared difference of the pairwise ex-

pected log-likelihood DELL can be defined in a similar way.

In order to achieve efficiency in computation, a new measure of fairness DLC

is created and used in optimisation. DLC is defined by summing up the expected

squared differences of each pair of linear components from different sensitive class,

DLC =
k

∑
i, j=1

∑
y∈Y

E((XXX iy
βββ −XXX jy

βββ )2). (2.1)

With the above definition of fairness, [20] proposed to find their fair GLM
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estimator by minimising the following function over βββ ,

−E(ℓ(βββ ;XXX ,Y ))+
λ

κ

k

∑
i, j=1

∑
y∈Y

E((XXX iy
βββ −XXX jy

βββ )2),

where ℓ(βββ ;XXX ,Y ) is the log-likelihood of the GLM, κ = k(k−1)
2 |Y | is the number

of possible combinations and λ > 0 is the weighting parameter which controls the

trade-off between fairness and predictive accuracy. By using DLC as the penalty

term which can be simplified into matrix form, the optimisation is convex and there-

fore can be solved efficiently through a Newton-Raphson method. [20] also showed

that by changing the weighting parameter λ , both DEO and DELL can be effectively

bounded.

FGLM turns out to work efficiently with GLM so it can handle different types

of tasks including binary and multi-class classifications, continuous and count out-

comes regressions. However, continuous sensitive attribute or multi-dimensional

sensitive attributes are not supported. In addition, since the response Y is continu-

ous, a discretisation is needed before we can calculate the fairness penalty. There-

fore the overall performance may vary depending on different discretisation method.

It is also worth pointing out that the sensitive feature is not used to feed the model,

but only used to calculate the fairness penalty.

2.2.2.2 Fair Ridge Regression Model

Next we introduce the fair ridge regression model (FRRM). It was proposed by [33]

which was adapted from the formulations of [44] and [39] to overcome the non-

convexity of the model from earlier works. A major difference from FGLM is that

sensitive features S are allowed to be multi-dimensional and will be used in model

prediction. The model is designed and the fairness is measured as follows.

Firstly a multivariate linear regression is done to remove the correlation be-

tween X and S,

X = SBT +U,
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where B is the regression coefficients and U is the residuals. B is estimated by

ordinary least squares as B̂OLS and then the residuals are given by,

Û = X−SB̂T
OLS.

where S and Û are orthogonal and COV(S, Û) = 0.

Then the predictive model is fitted with S and Û,

Y = Sααα + Ûβββ + εεε,

where ααα ∈ Rds×1 and βββ ∈ Rdx×1. The fairness can be determined by the overall

explained variance that is attributeable to the ensitive attributes R2
S (or coefficient of

determination, CoD, of the sensitive attributes),

CoD =
Var(Sααα)

Var(Ŷ)
=

αααT VSααα

αααT VSααα +βββ
T VUβββ

, (2.2)

where VS = COV(S) and VU = COV(Û).

Based on the above definition of CoD, [33] achieves fairness by minimising

the following objective function over ααα and βββ ,

||Y−Sααα − Ûβββ ||22 +λ (r)||ααα||22,

where λ (r)≥ 0 is a parameter such that CoD(ααα,βββ )≤ r.

The objective function consists of two parts, the mean squared error plus a

simple ridge penalty on ααα only. This penalty is parameterised such that CoD can be

bounded at an arbitrary threshold r. It can be further shown that there is a closed-

form solution to ααα and βββ with respect to the weighting parameter for the ridge

penalty, which monotonically controls CoD. Therefore the optimisation can be done

through a simple root-finding algorithm.

FRRM is easy to implement and can work with continuous or multi-

dimensional sensitive attributes. Sensitive features are used both as inputs of the

model and also to calculate fairness. However, ground truth Y is not included in the
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definition of fairness CoD.

Table 2.1 summarises ideas and differences between these two definitions of

fairness used in FRRM and FGLM.

fairness CoD DLC

Definition
Proportion of the overall explained
variance that is attributable to the
sensitive attributes

Sum of squared differences of pairwise
linear components Xβ

Idea
Statistical parity (predictions and the
sensitive variables are independent)

Equalised expected outcomes (add a variance
term to bound also difference of expected
log-likelihoods)

Use of ground truth No Yes

Table 2.1: Comparisons of two definitions for regression fairness.

2.3 Methodology
In this chapter, we propose our two approaches to achieve fairness in linear regres-

sion models that are efficient and robust. Our idea is inspired by Liu-type estimator

[40] which has been shown to be able to work well with the presence of collinear-

ity. It simply uses two parameters to addresses the ill conditioning problem with a

closed-form solution. Therefore, depending on different model settings or defini-

tions of fairness, we propose fair Liu model (fLiu) and fair Liu model with sensitive

features (fLiuS). The first model fLiu is built using only nonsensitive features X and

parameter d can be calculated to minimise the expected squared difference of linear

components DLC in (2.1). The second model fLiuS takes both S and Û as inputs and

aims to minimises CoD in (2.2). By alternating the parameters, we can achieve a

trade-off between fairness and accuracy effectively. Furthermore, depending on the

choice of k, the optimisation of DLC or CoD can be achieved within the Liu-type

framework by choosing parameter value d simply by solving a linear or quadratic

equation, which makes the model extremely easy to fit. We will first introduce

Liu-type estimator, followed by our two proposed methods.

2.3.1 Liu-type Estimator

Liu-type estimator [40] can be seen as a generalisation of Liu estimator [41] used

to combat collinearity. Before that, a well-known method was ridge regression
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proposed by [45],

β̂ββ R = (XT X+ kI)−1XT Y.

The shrinkage parameter k > 0 is used to control the condition number of XT X+kI,

as a large condition number will cause the estimator to be unstable. However, in

application, by increasing k in order to reduce the condition number will in turn

introduce more biasd to the regression [40]. Liu-type estimator was then proposed

to overcome this problem,

ˆβββ k,d = (XT X+ kI)−1(XT Y+dβ̂ββ ),

where β̂ββ = (XT X)−1XT Y is the least squares estimator. −∞ < d < ∞ is to ensure

that the model gets a good fit and is called the correction parameter.

The Liu-type estimator can be seen as a generalisation of Stein’s shrinking

principle [46], that is, to improve the estimator by shrinking an unbiased estimator

toward a target with lower variance to reduce MSE. It helps improve overall estima-

tion by trading off bias and variance and works effectively in high-dimensional data

with ill-conditioned settings. The Liu-type estimator can be interpreted as a combi-

nation of two estimators, typically the ordinary least squares (OLS) estimator and a

structured prior. The shrinkage parameter k controls the shrinkage behaviour of the

estimator and helps combat multicollinearity. A large k shrinks the model more and

improves the stability of the model, as in ridge regression, but introduces more bias.

The correction parameter d controls the bias towards structured shrinkage and helps

retain the OLS solution. From this perspective, the Liu-type estimator offers a flex-

ible framework that benefits from the advantages of both ridge regression and the

original Stein estimator, and can be adapted to fair learning according to different

fairness constraints or penalties. Instead of the commonly used OLS estimator β̂ββ in

the formulation, we can also choose β̂ββ R. This may lead to a more robust model, but

it also adds complexity by introducing one more parameter, and the performance

depends on specific applications. We will consider using the OLS estimator β̂ββ in
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this chapter.

[40] showed that for any k > 0, there exists d such that Liu-type estimator gives

less or equal MSE than ridge estimator. Our work will start from Liu-type estimator

and try to achieve optimal fairness by selecting d given k. We use the two fairness

metrics in FGLM and FRRM, DLC and CoD, to demonstrate the effectiveness of

utilising d in Liu-type estimator for achieving fairness.

2.3.2 Fair Liu Model

We minimise DLC by choosing d in our first model Liu, which is fitted without sen-

sitive features. The Liu-type estimator in this model ˆβββ k,d = (XT X+ kI)−1(XT X+

dI)β̂ββ where β̂ββ = (XT X)−1XT Y. Note that here X does not involve sensitive fea-

tures.

The fairness measure DLC can be further written as,

DLC =
1
κ

∑
k,l∈A

∑
y∈Y

E[(Xky
β̂ββ k,d −Xly

β̂ββ k,d)
2]

≈ 1
κ

∑
k,l∈A

∑
y∈Y

1
nkly ∑

(i, j)∈Skly

(xxxiβ̂ββ k,d − xxx jβ̂ββ k,d)
2

= β̂ββ
T
k,d [

1
κ

∑
k,l∈A

∑
y∈Y

1
nkly ∑

(i, j)∈Skly

(xxxi − xxx j)
T (xxxi − xxx j)]︸ ︷︷ ︸

D

β̂ββ k,d

= β̂ββ
T
k,dDβ̂ββ k,d

= [(XT X+ kI)−1(XT X+dI)β̂ββ ]T D[(XT X+ kI)−1(XT X+dI)β̂ββ ]

= β̂ββ
T
(XT X+dI)(XT X+ kI)−1D(XT X+ kI)−1︸ ︷︷ ︸

Ak

(XT X+dI)β̂ββ

= β̂ββ
T
(XT XAkXT X+dAkXT X+XT XAkd +d2Ak)β̂ββ

= β̂ββ
T

Akβ̂ββd2 +(β̂ββ
T

AkXT Xβ̂ββ + β̂ββ
T

XT XAkβ̂ββ )d +C,

where C is some term that does not involve d. This is a quadratic function of d and
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therefore is minimised at,

d f air =− β̂ββ
T

AkXT Xβ̂ββ + β̂ββ
T

XT XAkβ̂ββ

2β̂ββ
T

Akβ̂ββ

.

This gives us a fLiu estimator that depends on one parameter k only.

2.3.3 Fair Liu Model with Sensitive Features

We minimise CoD by choosing d in our second model fLiuS. Denote W = [S, Û] ∈

Rn×(ds+dx). Suppose we have a Liu-type estimator βββ k,d = [ααα,βββ ]T ∈ R(ds+dx)×1

which is estimated using W. Then,

Ŷ = Wβββ k,d,

= Sααα + Ûβββ

where ˆβββ k,d = (WT W+ kI)−1(WT W+dI)β̂ββ LS and β̂ββ LS = (WT W)−1WT Y.

The coefficient of determination can be given by,

CoD =
Var(Sααα)

Var(Ŷ)
=

βββ
T
k,dVSIβββ k,d

βββ
T
k,dVWβββ k,d

,

where VSI = COV(SIα), VW = COV(W) and Iα is a ds× (ds+dx) matrix with the

following form,

Iα =


1 0 · · · 0 · · · 0

0 1 · · · 0 · · · 0
...

... . . . ...
...

...

0 0 · · · 1 · · · 0

 .
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We could further write CoD as a function of d,

CoD =
βββ

T
k,dVSIβββ k,d

βββ
T
k,dVWβββ k,d

=
[(WT W+ kI)−1(WT W+dI)β̂ββ LS]

T VSI[(WT W+ kI)−1(WT W+dI)β̂ββ LS]

[(WT W+ kI)−1(WT W+dI)β̂ββ LS]
T VW[(WT W+ kI)−1(WT W+dI)β̂ββ LS]

=
β̂ββ

T
LS(WT W+dI)

ASI︷ ︸︸ ︷
(WT W+ kI)−1VSI(WT W+ kI)−1(WT W+dI)β̂ββ LS

β̂ββ
T
LS(WT W+dI)(WT W+ kI)−1VW(WT W+ kI)−1︸ ︷︷ ︸

AW

(WT W+dI)β̂ββ LS

=
β̂ββ

T
LSASIβ̂ββ LSd2 +(β̂ββ

T
LSASIWT Wβ̂ββ LS + β̂ββ

T
LSWT WASIβ̂ββ LS)d + β̂ββ

T
LSWT WASIWT Wβ̂ββ LS

β̂ββ
T
LSAWβ̂ββ LSd2 +(β̂ββ

T
LSAWWT Wβ̂ββ LS + β̂ββ

T
LSWT WAWβ̂ββ LS)d + β̂ββ

T
LSWT WAWWT Wβ̂ββ LS

By further differentiating with respect to d, we could find the d value that minimises

CoD, which defines our fLiuS estimator with a single parameter k.

In Table 2.2 we summarise the ideas and properties of fLiu and fLiuS compared

with state-of-the-art methods FGLM and FRRM.
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2.4 Experimental Results

In this section, we will evaluate the performance of our models, fLiu and fLiuS, in

simulated data and real data. We will also verify their robustness.

2.4.1 Experiments on DAG Simulated Data

2.4.1.1 Simulated Data

We first create simulated data for our experiments. We generate the data according

to the following directed acyclic graph (DAG) and distributions.

Figure 2.1: DAG used to simulate the dataset.
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Z ∼ Bernoulli(0.5)

X1 = 4∗Z +N (50,42)

X2 = 12+1.1∗Z +0.4∗X1 +N (0,22)

Y =−5+0.1∗X1 +0.3∗X2 +h∗Z +N (0,12)

In this graph, X1, X2 are non-sensitive features and Y is the response. We

consider Z to be the sensitive feature, where Z = 1 stands for female and Z = 0

represents the male group. Z has equal chances to be 0 or 1 so we consider the

dataset to be balanced. We use parameter h to modify the expected values of Y in

the following way. If h = 0.2, X1, X2 and Y all have larger expected values when

Z = 1 than Z = 0. While if h = −1.21, E(Y |Z = 1) = E(Y |Z = 0), though X1 and

X2 still have different expectations.

2.4.1.2 Experimental Settings

We first want to show the trade-offs of prediction accuracy and fairness of differ-

ent models. This is shown by varying the value of parameters and creating a plot

of prediction accuracy versus fairness for each model. The models we consider

here include fair generalised linear models (FGLM), fair ridge regression model

(FRRM) and linear regression model using Liu-type estimator (fLiu/fLiuS), with

and without sensitive features, respectively. FGLM contains one tuning parameter

λ ≥ 0 which controls the trade-off between fairness and log-likelihood. FRRM has

one parameter r ∈ [0,1] that bounds the coefficient of determination, CoD, of the

sensitive attributes, determining how fair the model is. In both fLiu and fLiuS we

have two parameters k and d. The shrinkage parameter k ≥ 0 can be used control

the condition number of XT X+ kI. However, in this experiment we fix it to 1, as

varying it turns out to have little impact on the results. Parameter d can then be

chosen via solving a linear or quadratic equation to achieve optimal fairness defined

by DLC in fLiu or CoD in fLiuS.

The data is split randomly into training (70%) and testing set (30%). First
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we compare our method fLiu with FGLM, both of which use DLC as the fairness

metric. Both methods take only X as inputs to the model but does not include sen-

sitive features Z. Instead, Z is used to calculate the fairness penalty during training.

The accuracy is determined by root mean square error (RMSE). We calculate both

DLC and DEO as there is no clear evidence which one works better. We try to fit

the models with different hyperparameter λ for FGLM and d for fLiu and plot the

curves to show the trade-offs between accuracy and fairness for each model in Fig-

ures 2.2 and 2.3. We also compare our method fLiuS with FRRM, both of which

use sensitive features in the model and CoD as the fairness metric. Again the pa-

rameter k for fLiuS is fixed to 1. The trade-offs between accuracy and fairness is

shown in Figure 2.4. Both experiments are repeated 20 times and average results

are reported. We also record the computational times which will be reported later

in this chapter.

2.4.1.3 Experimental Results

Each figure shows results for training (on the left) and testing datasets (on the right)

generated using different h values. The top row is for h = 0.2, where the two

sensitive groups have the most significant differences, while the bottom row is for

h =−1.21, where E(Y |Z = 1) = E(Y |Z = 0).
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Figure 2.2: Experimental results on the DAG simulated dataset generated with different h
values for trade-offs of prediction accuracy (measured by RMSE) and fairness
(measured by DLC) on training (left) and testing (right) sets of different linear
models fitted without sensitive features. Both values are the lower the better.
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Figure 2.3: Experimental results on the DAG simulated dataset generated with different h
values for trade-offs of prediction accuracy (measured by RMSE) and fairness
(measured by DEO) on training (left) and testing (right) sets of different linear
models fitted without sensitive features. Both values are the lower the better.
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Figure 2.4: Experimental results on the DAG simulated dataset generated with different h
values for trade-offs of prediction accuracy (measured by RMSE) and fairness
(measured by CoD) on training (left) and testing (right) sets of different linear
models fitted with sensitive features. Both values are the lower the better.
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In the above figures, each curve starts from the bottom-right point, where we

have the minimum RMSE and the largest DLC, DEO or CoD, respectively. This is

the point where the model is equivalent to an ordinary linear regression model. By

adjusting the parameters, λ for FGLM, r for FRRM and d for fLiu and fLiuS (fixing

k = 1), we could achieve a lower measure of fairness while sacrificing the accuracy

of the model. Therefore a curve that is more close to the bottom-left of the graph

represents a better trade-off between fairness and accuracy in the model.

It can be concluded from Figures 2.2 and 2.3 that when the sensitive feature

is excluded from the model, our method fLiu performs similarly as FGLM on this

dataset. In Figure 2.2 our curve for fLiu is close to that of FGLM when requirement

for fairness (measured by DLC) is not so strict. However, when fairness is low, we

cannot beat the accuracy of FGLM in terms of DLC. If measured by DEO, as in

Figure 2.3, the fairness can achieved by fLiu is slightly better than FGLM. This

pattern is more significant when h increases from -1.21 to 0.2 (when outcomes of

the two sensitive groups have larger difference so achieving fairness becomes more

important).

On the other hand, look at Figure 2.4, with sensitive features present as inputs

in the model, our fLiuS performs similarly as FRRM with large CoD. However,

fLiuS shows the potential to work better when CoD is limited to be extremely small.

It is also worth mentioning that as h goes from 0.2 to -1.21, the model tends to be

more fair with the lowest RMSE. This is not surprising as when E(Y |Z = 1) =

E(Y |Z = 0) it is much easier to obtain a fair model according to our definitions of

fairness. In Figure 2.4 when h = −1.21 the ordinary linear regression model itself

has a CoD value extremely close to 0 and therefore it is no longer necessary to use

FRRM or fLiu anymore.

We include more experimental results in Appendix A.

2.4.2 Experiments on Real Dataset

2.4.2.1 Real Data

Next we try some experiments on the real dataset. The experiment is performed on

the law school admission council (lsac) dataset, where we have grade point average
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(GPA) of 20,715 students as the continuous outcomes. Only one sensitive feature

is selected since in FGLM the fairness is only defined for such settings. Although

FRRM and fLiuS can work with multi-dimensional S. The original dataset has a

feature race which includes Asian, black, Hispanic, white and other. However, we

notice that the most difference of the outcomes (unfairness) in this dataset comes

from the black group versus the others, while all non-black groups remain relatively

similarly distributed. Therefore we choose to use a binary sensitive feature black

versus non-black race in the following experiment. Experiments are also done with

all the five races as the sensitive feature and the results are given in Appendix A.

2.4.2.2 Experimental Settings

The data is split into training (70%) and testing (30%) sets. Observations with

missing entries have been removed and all continuous predictors are standardised.

In FGLM sensitive features S are not included as factors to build the prediction

model, but only used when calculating the penalty term. Similarly in fLiu we only

include non-sensitive features X in the regression model and sensitive features S

are only used for calculating the optimal parameter d. In FRRM and fLiuS both

sensitive features S and non-sensitive Û (the residuals after removing the association

between X and S) are used in the regression model. A linear regression model (LM)

with non-sensitive features can be seen as a baseline.

Different than our previous test, this time we try different values of the shrink-

age parameter k since in experiments it greatly increases the potential that fairness

can be achieved by fLiu/fLiuS when it goes larger than 1. For each fixed k, we can

alter the choices of d between default value and d f air that minimises the fairness

term and plot a trade-off curve.

We repeat the random train-test splits 20 times. In each split, we build the

above models by alternating their parameters. We use RSME to measure the pre-

diction accuracy and we use DLC and DEO or CoD to measure the fairness, for

scenarios where sensitive features S are or are not included into the models, respec-

tively.
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2.4.2.3 Experimental Results

Figure 2.5: Experimental results for trade-offs of prediction accuracy (measured by RMSE)
and fairness (measured by DLC) on training (left) and testing (right) sets of the
lsac dataset with black versus non-black race as sensitive feature of FGLM and
fLiu.

Figure 2.6: Experimental results for trade-offs of prediction accuracy (measured by RMSE)
and fairness (measured by DEO) on training (left) and testing (right) sets of the
lsac dataset with black versus non-black race as sensitive feature of FGLM and
fLiu.
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Figure 2.7: Experimental results for trade-offs of prediction accuracy (measured by RMSE)
and fairness (measured by CoD) on training (left) and testing (right) sets of the
lsac dataset with black versus non-black race as sensitive feature of FRRM and
fLiuS.

Figures 2.5 , 2.6 and 2.7 show the trade-off curves of different models based

on the average results. For fLiu and fLiuS, each line represents one fixed value of

k. On each line different points represent different choices of d for fLiu and fLiuS,

of which the left most point stands for the value of d that optimise the fairness term

with respect to this certian value of k. (We further tried cases where k < 1 but the

results are very similar to k = 1 and it is hard to tell the differences in the plot, so

we did not include them.)

According to Figures 2.5 and 2.6, the ordinary linear regression model (the

bottom-right point in each plot) is the most unfair model that minimises RMSE in

training dataset (without using sensitive features). Starting from this point, both

FGLM and fLiu can achieve better fairness by alternating the parameters, with a

loss of MRSE in return. In Figures 2.5, we see that from the most unfair model

(k = 1), by increasing the value of k (different curves) fLiu can achieve much better

fairness with the sacrifice of accuracy and the trade-off is almost identical to that

of FGLM. When the value of k is large enough, optimising d can be effective.

Overall, by alternating the choice of k and d simultaneously, the shape of the lower

bound of the trade-off lines of fLiu can be very close to FGLM in this lsac dataset.

This means that fLiu can achieve better fairness without losing too much accuracy

compared with FGLM. Looking at Figures 2.6, alternating d gives a better trade-

off (more gentle curves) when fairness is measured by DEO. However, FGLM still
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slightly outperforms fLiu. This is true since the formulation of FGLM aims to seek

an optimal solution to the problem in the whole set of linear models, while fLiu only

allow linear models of a specific structure (Liu-type) but is simple and efficient.

Looking at Figures 2.7, the comparison of trade-offs between FRRM and fLiuS

shows a similar pattern as in Figures 2.4. fLiuS tends to perform better when d is

close to its optimal value d f air. This is when we require the model to be extremely

fair with a very small CoD. In addition, increasing k here do help getting better

accuracy slightly, but d plays a more important part. In practice, we would suggest

to tune k and d according to specific tasks in order to get a better fairness-accuracy

trade-off. We also test the results on three additional real datasets, which are in-

cluded in Appendix A.

Furthermore, we include the average running time for each model to fit on six

different datasets in Table 2.3. LSAC, Parkinsons updrs, Student performance and

Crime are real datasets with continuous outcomes which have been widely con-

sidered in fairness learning literature, while DAG and DAG large stands for our

simulated data with different size (n = 1000 and n = 50000, respectively).

Dataset lsac parkinsons updrs student performance crime DAG DAG large
LM 0.001704 0.003454 0.008803 0.006281 ∼0 0.011659
FGLM 0.390665 0.192511 0.041967 0.150179 0.032691 0.398992
FRRM 0.052411 0.021991 0.017122 0.037955 0.022384 0.172484
fLiu 0.003049 0.009538 0.010021 0.013364 0.011373 0.010978
fLiuS 0.013547 0.014005 0.012423 0.021840 0.013378 0.035090

Table 2.3: Average computational time of LM, FGLM, FRRM, fLiu and fLiuS on different
datasets (in second). (Lowest computational time in each column is marked in
bold.)

It can be seen that apart from the linear regression model, our fLiu and fLiuS

are the most efficient models followed by FRRM, with FGLM to be the most time

consuming one.

2.4.3 Tests of Stability

We have shown that fLiu and fLiuS models benefit from great simplicity and flexi-

bility. We developed the following experiment to show the robustness of the mod-

els. We select and fix the training dataset from the lsac data. We fit FRRM and
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fLiuS models. In FRRM we use different values of r to bound CoD. In fLiuS we

choose different values of k and for each k we calculate and use the optimal value

of d that minimises CoD. For ease of notations we record the estimated coeffi-

cient parameter vector β̂ββ and the predictions Ŷ. We then add some noise from the

Gaussian distribution with zero mean and standard deviation 0.2 to the numerical

non-sensitive standardised features. We fit FRRM and fLiuS again with the noised

data and record the coefficient vector and the predictions as β̂ββ
′

and Ŷ′. We then

calculate the Euclidean distance between β̂ββ
′

and β̂ββ and the root of mean squared

distance between predictions Ŷ′ and Ŷ. These are used to measure the stability of

the fair model. We expect to have smaller distances between β̂ββ
′
and β̂ββ and between

Ŷ′ and Ŷ in a models that are more robust. The experiment is repeated 100 times

and the average results of the above together with the RMSE, CoD and DLC are

reported in Table 2.4.

Model Parameter Value Stability Error Fairness
∥β̂ββ

′
− β̂ββ∥ ∥Ŷ′− Ŷ∥ RMSE CoD DLC

fLiuS k

1 0.0093 0.0442 0.9541 0.1381 0.5036
10 0.0092 0.0442 0.9544 0.1317 0.4952
100 0.0090 0.0437 0.9563 0.0846 0.4324
1000 0.0077 0.0404 0.9581 0.0052 0.3052
10000 0.0027 0.0241 0.9594 0.0021 0.1816
100000 0.0003 0.0050 0.9731 0.0028 0.0383
1000000 0.0000 0.0006 0.9781 0.0027 0.0043

FRRM r

0.5 0.0257 0.0478 0.9011 0.5000 0.5479
0.4 0.0213 0.0477 0.9065 0.4000 0.4890
0.3 0.0180 0.0476 0.9130 0.3000 0.4403
0.2 0.0152 0.0476 0.9205 0.2000 0.4002
0.1 0.0128 0.0475 0.9297 0.1000 0.3683
0.0 0.0112 0.0475 0.9502 0.0000 0.3506

Table 2.4: Stability, accuracy and fairness measured of fLiuS and FRRM models with dif-
ferent parameters on the lsac dataset with noise of standard deviation 0.2.

We can conclude that with a similar level of fairness (e.g. when CoD ≈ 0.1),

FRRM gives more accurate predictions while fLiuS gives more stable results with

the present of noise. For fLiuS model, larger k (with d f air) leads to better fairness,

more stability but worse accuracy.

We also try adjusting the strength of noise with different standard deviations.
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Below we show experimental results for the same tests with noises of standard de-

viations 1 and 0.02, respectively.

Model Parameter Value Stability Error Fairness
∥β̂ββ

′
− β̂ββ∥ ∥Ŷ′− Ŷ∥ RMSE CoD DLC

fLiuS k

1 0.1123 0.1577 0.9676 0.2245 0.4487
10 0.1121 0.1575 0.9678 0.2149 0.4394
100 0.1102 0.1559 0.9696 0.1420 0.3698
1000 0.0974 0.1446 0.9708 0.0087 0.2343
10000 0.0408 0.0914 0.9677 0.0023 0.1691
100000 0.0020 0.0243 0.9735 0.0015 0.0501
1000000 0.0003 0.0030 0.9780 0.0012 0.0063

FRRM r

0.5 0.3457 0.1843 0.9242 0.5000 0.3969
0.4 0.2850 0.1792 0.9300 0.4000 0.3507
0.3 0.2361 0.1755 0.9358 0.3000 0.3139
0.2 0.1937 0.1728 0.9419 0.2000 0.2847
0.1 0.1563 0.1710 0.9487 0.1000 0.2615
0.0 0.1325 0.1693 0.9638 0.0000 0.2473

Table 2.5: Stability, accuracy and fairness measured of fLiuS and FRRM models with dif-
ferent parameters on the lsac dataset with noise of standard deviation 1.

Model Parameter Value Stability Error Fairness
∥β̂ββ

′
− β̂ββ∥ ∥Ŷ′− Ŷ∥ RMSE CoD DLC

fLiuS k

1 0.0003372 0.0045 0.9530 0.1339 0.5078
10 0.0003364 0.0045 0.9533 0.1277 0.4995
100 0.0003302 0.0045 0.9552 0.0820 0.4371
1000 0.0002941 0.0041 0.9570 0.0051 0.3099
10000 0.0001577 0.0024 0.9588 0.0021 0.1817
100000 0.0000309 0.0005 0.9731 0.0029 0.0375
1000000 0.0000035 0.0001 0.9781 0.0029 0.0042

FRRM r

0.5 0.0007502 0.0048 0.8994 0.5000 0.5587
0.4 0.0006499 0.0048 0.9047 0.4000 0.4991
0.3 0.0005754 0.0048 0.9111 0.3000 0.4497
0.2 0.0005138 0.0048 0.9187 0.2000 0.4090
0.1 0.0004601 0.0048 0.9280 0.1000 0.3764
0.0 0.0004238 0.0048 0.9490 0.0000 0.3585

Table 2.6: Stability, accuracy and fairness measured of fLiuS and FRRM models with dif-
ferent parameters on the lsac dataset with noise of standard deviation 0.02.

According to Tables 2.5 and 2.6, we could draw a similar conclusion that given

a similar level of fairness measure, although slightly inaccurate in making pre-

dictions, in practice, fLiuS are more resilient to noise generated in real data than

FRRM. We expect similar results in fLiu comparing with FGLM.
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2.4.4 Cross-Validation

Finally, in the following experiment settings we want to try using cross-validation

to tune the parameters for fLiu/fLiuS. The idea of adding noise is similar to that

in previous work, and the cross-validation process is descried as follows. After

splitting the data into train and test sets, we use 5-fold cross-validation to find the

k value that gives the best RMSE result in a ridge regression model (d = 0). Then

with this k value, we alter the value of d to balance accuracy and fairness in our

fLiu and fLiuS models. dopt stands for a d value estimated to minimise RMSE

suggested by [40] and d f air stands for d value that minimises DLC or CoD in fLiu

and fLiuS, repectively. We further define dc = cd f air +(1− c)dopt (0 ≤ c ≤ 1) so

that c controls the trade-off between fairness and accuracy through d, with d0 = dopt

and d1 = d f air. In our test with the lsac dateset, the k value after cross-validation

would mostly be larger than 1 and smaller than 100. The results are reported in

Table 2.7 and Table 2.8 for training and testing datasets, respectively.
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Model Stability Error Fairness
∥β̂ββ

′
− β̂ββ∥ ∥Ŷ′− Ŷ∥ RMSE CoD DLC DEO

LM 0.0118 0.0624 0.9218 - 0.5332 0.3319
fLiu dopt 0.0118 0.0623 0.9218 - 0.5321 0.3312
fLiu d0.2 0.0105 0.0586 0.9229 - 0.4993 0.3111
fLiu d0.4 0.0113 0.0551 0.9259 - 0.4723 0.2926
fLiu d0.6 0.0140 0.0516 0.9310 - 0.4520 0.2760
fLiu d0.8 0.0178 0.0482 0.9379 - 0.4393 0.2616
fLiu d f air 0.0220 0.0450 0.9468 - 0.4350 0.2500
fLiuS dopt 0.0109 0.0476 0.9006 0.6335 0.6518 0.5694
fLiuS d0.2 0.0105 0.0470 0.9030 0.5420 0.5810 0.4899
fLiuS d0.4 0.0101 0.0463 0.9101 0.4250 0.5232 0.4233
fLiuS d0.6 0.0097 0.0457 0.9217 0.2894 0.4830 0.3762
fLiuS d0.8 0.0093 0.0450 0.9377 0.1663 0.4650 0.3562
fLiuS d f air 0.0091 0.0444 0.9577 0.1132 0.4717 0.3680
FRRM r = 1.00 0.0109 0.0476 0.9006 0.6356 0.6539 0.5717
FRRM r = 0.80 0.0109 0.0476 0.9006 0.6356 0.6539 0.5717
FRRM r = 0.60 0.0321 0.0481 0.9010 0.6000 0.6242 0.5375
FRRM r = 0.40 0.0208 0.0478 0.9096 0.4000 0.4896 0.3727
FRRM r = 0.25 0.0162 0.0477 0.9195 0.2500 0.4178 0.2717
FRRM r = 0.18 0.0144 0.0477 0.9250 0.1800 0.3911 0.2285
FRRM r = 0.13 0.0132 0.0477 0.9294 0.1300 0.3746 0.1990
FRRM r = 0.08 0.0121 0.0477 0.9346 0.0800 0.3606 0.1711
FRRM r = 0.04 0.0114 0.0477 0.9398 0.0400 0.3518 0.1515
FRRM r = 0.00 0.0109 0.0476 0.9533 0.0000 0.3489 0.1446

Table 2.7: Stability, accuracy and fairness measured of LM, fLiu, fLiuS (with cross-
validation k) and FRRM models with different parameters on the lsac training
dataset with noise of standard deviation 0.2.



2.4. Experimental Results 87

Model Stability Error Fairness
∥β̂ββ

′
− β̂ββ∥ ∥Ŷ′− Ŷ∥ RMSE CoD DLC DEO

LM 0.0118 0.0624 0.9187 - 0.5331 0.3262
fLiu dopt 0.0118 0.0623 0.9187 - 0.5320 0.3255
fLiu d0.2 0.0105 0.0587 0.9198 - 0.5003 0.3069
fLiu d0.4 0.0113 0.0551 0.9229 - 0.4745 0.2900
fLiu d0.6 0.0140 0.0516 0.9280 - 0.4557 0.2752
fLiu d0.8 0.0178 0.0482 0.9351 - 0.4447 0.2630
fLiu d f air 0.0220 0.0450 0.9440 - 0.4421 0.2535
fLiuS dopt 0.0109 0.0477 0.8974 0.6311 0.6516 0.5678
fLiuS d0.2 0.0105 0.0470 0.8999 0.5397 0.5811 0.4884
fLiuS d0.4 0.0101 0.0464 0.9070 0.4228 0.5236 0.4218
fLiuS d0.6 0.0097 0.0457 0.9186 0.2873 0.4837 0.3746
fLiuS d0.8 0.0093 0.0451 0.9345 0.1638 0.4659 0.3546
fLiuS d f air 0.0091 0.0444 0.9546 0.1096 0.4727 0.3664
FRRM r = 1.00 0.0109 0.0477 0.8974 0.6332 0.6537 0.5701
FRRM r = 0.80 0.0109 0.0477 0.8974 0.6332 0.6537 0.5701
FRRM r = 0.60 0.0321 0.0481 0.8978 0.5975 0.6241 0.5359
FRRM r = 0.40 0.0208 0.0479 0.9063 0.3980 0.4899 0.3710
FRRM r = 0.25 0.0162 0.0478 0.9162 0.2487 0.4188 0.2700
FRRM r = 0.18 0.0144 0.0477 0.9217 0.1790 0.3925 0.2268
FRRM r = 0.13 0.0132 0.0477 0.9261 0.1293 0.3763 0.1973
FRRM r = 0.08 0.0121 0.0477 0.9313 0.0796 0.3626 0.1695
FRRM r = 0.04 0.0114 0.0477 0.9365 0.0398 0.3540 0.1500
FRRM r = 0.00 0.0109 0.0477 0.9497 0.0000 0.3514 0.1438

Table 2.8: Stability, accuracy and fairness measured of LM, fLiu, fLiuS (with cross-
validation k) and FRRM models with different parameters on the lsac testing
dataset with noise of standard deviation 0.2.
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According to Tables 2.7 and 2.8, there is no significant difference between the

performance of any method in the training and testing sets. We first look at the

three criteria of fairness, CoD, DLC and DEO. According to Table 2.8, when c and

r change from 1 to 0 (for fLiu/fLiuS and FRRM, respectively), all three fairness

measures decrease. Therefore all models can achieve fairness effectively. However,

if one model has a lower fairness than another model in one fairness measure, it is

not necessarily more fair when measured in other criteria. For example, FRRM with

r = 0.18 results in 0.18 in CoD, around 0.39 in DLC and 0.23 in DEO. However,

given a slightly smaller CoD = 0.16, the fLiuS model with c = 0.8 has larger DLC

and DEO, which are 0.47 and 0.35, respectively. In contrast, with a similar level of

DLC = 0.48, for example, fLiuS model with c = 0.6 gives 0.29 in CoD while FRRM

with r = 0.40 has CoD = 0.40. Second, comparing fLiuS and fLiu with d = dopt ,

we conclude that adding the sensitive feature to the model helps achieve a lower

RMSE for this dataset. If we change the parameters to get better fairness, e.g. with

DLC ≈ 0.48, both fLiuS and FRRM have lower RMSE than fLiu does. This suggests

that including sensitive features can improve model fairness with less influence on

prediction accuracy. However, more evidence is needed for this conclusion. Finally,

with a similar level of fairness (under any fairness measure), fLiu and fLiuS models

give a higher RMSE but better stability than FRRM model. These conclusions are

similar to what we have in Tables 2.4 to 2.6. Note that here we only give an example

of how the parameters can be tuned using cross-validation in our models. Further

work can be done to explore other methods for choosing the parameters or to give

mathematical support to them.

2.5 Conclusions

In this chapter, we discussed fair linear regression models. We first introduced

fairness in regression by giving some definitions, followed by a summary of two

state-of-the-art methods, FGLM and FRRM. We then proposed two models based

on Liu-type estimator, fLiu and fLiuS, intended for modelling with or without sen-

sitive features, respectively. Experimental results were given to show the trade-off
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between accuracy and fairness compared with other methods. We conclude that

for models without using sensitive features as input, the performance of fLiu can

be close to FGLM in some dataset, while enjoys great simplicity. For models in-

cluding sensitive features as input, fLiuS can outperform FRRM in simple datasets,

especially with strict fairness restrictions. What is more, the simplicity of fLiu and

fLiuS means that they can work efficiently and experiments show that they are more

resilient to noise and therefore more stable. Future work can be done to develop a

method to tune the values of the hyper-parameters k and d according to specific

applications. It is also interesting to consider a metric used to evaluate the trade-off

between accuracy and fairness by linking these two terms together.



Chapter 3

Fair Generalised Linear Model with

the Maximum Mean Discrepancy

Penalty

3.1 Introduction

Generalised linear model (GLM) is a powerful tool in statistical modelling and ma-

chine learning. It offers a flexible framework for modelling the relationship between

the response variable and the predictors by generalising the ordinary linear model

in two aspects. Firstly, the response variable follows some distribution from the ex-

ponential family, which can be chosen to provide an appropriate variance structure.

Secondly, the conditional mean of the distribution is linked with the linear predic-

tor via a link function. Compared with ordinary linear regression, these extensions

make the model more flexible and accommodate a variety of different data types,

including continuous (Gaussian distribution), binary (Bernoulli distribution), cate-

gorical and count (Poisson distribution) outcomes. The generalised linear model

can be efficiently fitted by using a Newton’s method to minimise the negative log-

likelihood. Due to its simplicity and flexibility, the generalised linear model has

been widely used for decision making in various fields such as finance, medicine,

and social sciences.

However, a model can be problematic if it gives different predictions for dif-
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ferent demographic groups, leading to a critical concern about fairness. For ex-

ample, this can lead to unfair decisions in lending, hiring, and medical diagnosis

for individuals based on different races, genders, or religions, which are considered

sensitive attributes. Despite the flexibility and accuracy in making predictions, stan-

dard generalised linear models, like many other models, often fail to address such

concerns.

Fairness can be defined in various ways according to specific application sce-

nario. Studies have been done to explore different measures of fairness over the past

decades, and several learning methods have been proposed to achieve these goals.

One notable approach is the fair generalised linear model with a convex penalty

(FGLM) introduced by [20]. By incorporating a convex fairness penalty within

the generalised linear model framework, it ensures that the predictions remain fair

between different protected groups while maintaining good predictive accuracy.

FGLM is inspired based on two fairness criteria, namely equalised expected

outcomes (DEO) and equalised expected log-likelihoods (DELL), neither of which

can be optimised efficiently as a fairness penalty due to non-convexity. [20] uses a

different penalty term, equalised linear components (DLC), in their FGLM frame-

work, arguing that this formulation leads to efficient computation while efficiently

optimising the bounds of both DEO and DELL. However, the penalty term in FGLM

can not fully capture complex distributional differences between different sensi-

tive groups, because it only captures the first two moments of the distributions of

predicted outcomes. As a result, these methods can struggle in some settings, espe-

cially when sensitive attributes influence the data in a non-linear fashion.

To address these limitations, we propose a new fairness-aware GLM frame-

work that uses maximum mean discrepancy (MMD) as the fairness penalty. MMD

is a powerful kernel-based statistical distance metric that measures the difference

between probability distributions in a reproducing kernel Hilbert space (RKHS)

[47]. By incorporating MMD into the optimisation process of GLMs, we ensure

that the predicted distributions for different sensitive groups are close to each other,

while maintaining convexity of the loss function so that the optimisation remains



3.2. Related Work 92

computationally efficient. Unlike the fairness penalty in FGLM, MMD can capture

higher-order distributional differences, and is thus more robust and powerful for fair

learning. Additionally, our framework is also based on GLMs and thus can be ap-

plied to both classification and regression tasks, making it suitable for a wide range

of applications.

The remainder of this chapter is structured as follows. Section 3.2 provides

a summary of related works in this field. In Section 3.3, we first introduce the

notations we use throughout this chapter, followed by a introduction of the fair

generalised linear model algorithm by [20]. We then introduce the fairness measure

we propose to use, namely the maximum mean discrepancy (MMD). Our proposed

MMD-regularised GLM is then introduced, with descriptions in its mathematical

formulation and optimisation method. Section 3.4 presents experimental results

on real datasets with different outcome types for various tasks, demonstrating the

effectiveness of our approach compared with FGLM. Finally, Section 3.5 concludes

this chapter with discussions on potential future research directions.

3.2 Related Work

A number of researches have been done to address the fairness problem in machine

learning over the past few years. These methods can be arranged into three cate-

gories according to the time where fairness is enhanced: pre-process, in-process,

and post-process [10, 43]. We will focus on the cases where fairness is considered

during the learning process. This is usually achieved by modifying the loss function

to penalise unfair predictions.

Many early works deal with binary classification problems. For example, [48]

proposed to add regularisers to reduce mutual information between predictions and

the sensitive feature. [14] and [15] used constraints to avoid disparate mistreatment

and disparate impact. [11] considered demographic parity and equalized odds and

reduced the fair binary classification problem into a sequence of unconstrained cost-

sensitive classification problems.

Attempts have also been made to tackle regression tasks. [17] introduced a
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flexible family of penalties including group fairness, individual fairness, and a hy-

brid notion of both and applied them to regression problems. [16] used statistical

parity and bounded group loss as fairness notions and extended the work of [11]

to regression tasks. [19] proposed a projection-based fair learning approach using

the Hilbert Schmidt independence criterion as fairness, which allows the method to

work with non-linear regression.

[20] proposed to achieve fairness in GLMs by including a convex penalty term

in the loss function. It was the first work that is based on GLMs, which give it the

flexibility to be able to handle a broad range of outcome types. They adapted the

definition of fairness by adding a variance term to the expected difference of the

pairwise linear components. In this way, the loss function remains convex so that a

solution can be found efficiently. According to [20], both fairness criteria, equalised

expected outcomes and equalised expected log-likelihoods, are bounded by their

formulation and can be effectively reduced by changing the weighting parameter.

However, such definition of the penalty only takes into account the first and second

moments of the distributions of predicted outcomes from different sensitive groups.

We seek a more robust fairness measure that works well with data from all kinds of

distributions.

Maximum mean discrepancy (MMD) is a kernel-based statistical measure that

provides an alternative way to determine whether two samples are from the same

or different distributions [47]. It is a non-parametric method and does not introduce

any prior so is flexible in dealing with datasets coming from a wider range. It is

defined as the maximum difference in expectations over the unit balls in a char-

acteristic reproducing kernel Hilbert space (RKHS). This definition means that it

can capture more than mean differences and variance differences as traditional fair-

ness measures do. For example, [49] presented a fair learning algorithm based on

MMD constraints and showed that their method outperforms other state-of-the-art

techniques. Therefore, we propose to use MMD as an alternative fairness penalty

term in our GLM framework. Unlike [49], which uses MMD to align the distri-

butions of feature representations across different sensitive groups, we use MMD
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to monitor distributional differences in the predicted outcomes. The loss function

constructed in this way is convex with respect to the coefficient vector of the GLM

so the optimisation can be done efficiently.

3.3 Methodology

3.3.1 Fair Generalised Linear Model with a Convex Penalty

In this section, we introduce the notations we use for this chapter and briefly sum-

marise the fair generalised linear model proposed by [20].

Let X ∈RN×d be predictor variables with number of observations N and num-

ber of non-sensitive features d. Let Y ∈ RN×1 be the vector of outcomes. We

write Y for the set of all possible outcomes. Note that Y is discretised into small

segments for continuous response. Denote the set of all possible values of the sen-

sitive feature by A = a1, . . . ,aK where K is the number of classes of the sensitive

feature. We use Xk and Yk to represent the predictor and response variables of sen-

sitive group ak, respectively, and Xky are the predictor variables of sensitive group

ak which have label y. We write xi and yi for the ith instance, 1 ≤ i ≤ N. Let βββ ∈Rd

be the coefficient vector and µ be the expected value of the response variable in a

generalised linear model.

[20] proposed their fair generalised linear model where fairness is achieved by

adding a convex penalty term, DLC, measuring the average expectation of squared

difference of the linear predictors in two sensitive groups with the same outcome,

DLC =
1
κ

K

∑
k,l=1
k<l

∑
y∈Y

E((Xky
βββ −Xly

βββ )2),

where κ = K(K−1)
2 |Y | is the total number of possible combinations where we pick

two sensitive groups ai and a j together with one outcome y. The objective function
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to minimise is given by

LFGLM =−E(ℓ(βββ ;X,Y))+λ ·DLC

=−E(ℓ(βββ ;X,Y))+
λ

κ

K

∑
k,l=1
k<l

∑
y∈Y

E((Xky
βββ −Xly

βββ )2)

≈− 1
N

n

∑
i=1

ℓ(βββ ;xi,yi)+
λ

κ

K

∑
k,l=1
k<l

∑
y∈Y

1
nkly ∑

(i, j)∈Skly

(xiβββ −x jβββ )
2,

(3.1)

where Skly is the set of pairs (i, j) such that yi = y j = y and xi and x j belong to

sensitive groups ak and al , respectively, and nkly is the number of pairs in Skly.

ℓ(βββ ;xi,yi) is the log-likelihood as defined in GLM. Finally, λ is a positive weighting

parameter that we choose to balance the trade-off between predictive accuracy and

fairness.

[20] solved the optimisation problem of minimising LFGLM in (3.1) with a

Newton-Raphson method. The algorithm works efficiently and convergence is guar-

anteed as the function is convex in βββ .

Each element of the penalty term DLC for fairness can be written as follows,

E((Xky
βββ −Xly

βββ )2) = Var(Xky
βββ −Xly

βββ )+(E(Xky
βββ )−E(Xly

βββ ))2,

where it consists of two terms, the variance of difference in the linear predictors

from different sensitive groups and the squared difference in the expectations of

the linear predictors. The squared difference term comes intuitively from the def-

inition of equalised expected outcomes in linear regression and, according to [20],

introducing the variance term help achieving a lower difference in the expected log-

likelihoods of the model and thus resulting better fairness. However, the definitions

of fairness can vary and using the expectation of difference in the linear predic-

tors together with their variance as a measure still fails to capture the whole plot of

the resulting model. Therefore, we seek to quantify the fairness of the generalised

linear model with a different measure that estimate how close the distributions of

µ(Xkyβββ ) and µ(Xlyβββ ) given label y are, namely the maximum mean discrepancy
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(MMD), where µ is the conditional mean of the distribution depending on the pre-

dictor variables X and the choice of the link function.

3.3.2 Maximum Mean Discrepancy

In this section, we introduce the maximum mean discrepancy to measure the dis-

tance between two distributions.

Let X and Y be random variables defined on X with probability measures p

and q, respectively. The squared maximum mean discrepancy between p and q is

defined as,

MMD2(p,q) = ||µp −µq||2H ,

where H is an reproducing kernel Hilbert space with inner product ⟨·, ·⟩H and µp

and µp are mean embeddings of p and q, respectively.

Suppose X and X ′ are independent and identically distributed random variables

from p and Y and Y ′ are independent and identically distributed random variables

from q. The squared population maximum mean discrepancy is given by,

MMD2(p,q) = E(K(X ,X ′))+E(K(Y,Y ′))−2E(K(X ,Y )),

where K(·, ·) : X ×X →R is some positive definite kernel (e.g. RBF kernel) such

that K(x,x′) = ⟨φ(x),φ(x′)⟩H and φ(·) is the corresponding feature map.

An unbiased empirical estimate of the squared maximum mean discrepancy

can be obtained by,

M̂MD2(x,y) =
1

n(n−1)

n

∑
i, j=1
i̸= j

K(xi,x j)+
1

m(m−1)

m

∑
i, j=1
i̸= j

K(yi,y j)−
2

nm

n

∑
i=1

m

∑
j=1

K(xi,y j),

where xi (1 ≤ i ≤ n) and y j (1 ≤ j ≤ m) are independent samples from p and q,

respectively, and n and m are number of observations.

As a non-parametric distance measure, maximum mean discrepancy does not

make any assumptions about the distributions of the data. Instead of capturing just
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mean differences or variance as many traditional metrics do, maximum mean dis-

crepancy can capture higher-order differences, and thus turns to be a more com-

prehensive fairness measure. It can also be estimated when the sample sizes from

both distributions are different. The choice of kernel function provides flexibility,

allowing it to capture more complex distributional differences. In addition, maxi-

mum mean discrepancy is effective for both continuous and categorical outcomes

as well as in high-dimensional settings. Therefore, we choose to use it as a fairness

criterion to build our fair generalised linear model.

3.3.3 Fair Generalised Linear Model with the Maximum Mean

Discrepancy Penalty

In this section, we present our fair generalised linear model with a penalty based on

the maximum mean discrepancy described above.

We define the sample squared maximum mean discrepancy of a generalised

linear model between two sensitive groups ak and al with the same label y as fol-

lows,

M̂MD2(βββ ;k, l,y) =
1

n(n−1) ∑
(i, j)∈Skky

i̸= j

K(µ(Xiβββ ),µ(X jβββ ))

+
1

m(m−1) ∑
(i, j)∈Slly

i̸= j

K(µ(Xiβββ ),µ(X jβββ ))

− 2
nm ∑

(i, j)∈Skly

K(µ(Xiβββ ),µ(X jβββ ))

where µ is the link function, K(·, ·) is some kernel, and n and m are number of

observations of Xky and Xly, respectively.

Then we define the loss function of our fair generalised linear model as,

LMMD =− 1
N

N

∑
i=1

ℓ(βββ ;Xi,Yi)+
λ

κ

K

∑
k,l=1
k<l

∑
y∈Y

M̂MD2(βββ ;k, l,y). (3.2)

The choice of kernel decides how differences between distributions are mea-
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sured and can influence the performance of the model. The radial basis function

(RBF) kernel is widely used due to its smoothness and universal approximating abil-

ity. It is a characteristic kernel so that it can distinguish two distributions uniquely.

It is also able to capture distributional differences in higher orders. Other choices

of kernels (e.g. polynomial kernel) can be explored for adapting to varying data

characteristics, although differentiability is also crucial for efficient optimisation.

We use the RBF kernel, K(Xiβββ ,X jβββ ) = exp(− (Xiβββ−X jβββ )
2

2σ2 ), in our experimen-

tal settings. It has a parameter σ , known as the bandwidth. It controls the scale of

the kernel function and can be selected using techniques such as cross-validation.

A small bandwidth leads to a more sensitive detection of distributional differences

but may also lead to a model that is more sensitive to noise. Assume that the re-

sponse of the model follows a normal distribution with the identity link function,

i.e. µ(Xiβββ ) = Xiβββ for 1 ≤ i ≤ N. The maximum mean discrepancies for different

distributions and their derivatives can be obtained in a similar way by replacing the

link functions. The gradient,

∇M̂MD2(βββ ;k, l,y) =
1

n(n−1) ∑
(i, j)∈Saay

i̸= j

∇i j +
1

m(m−1) ∑
(i, j)∈Sbby

i̸= j

∇i j −
2

nm ∑
(i, j)∈Saby

∇i j,

where ∇i j is given by,

∇i j =
∂

∂βββ
K(Xiβββ ,X jβββ )

= exp(−
(Xiβββ −X jβββ )

2

2σ2 )
(X jβββ −Xiβββ )(Xi −X j)

σ2

= K(Xiβββ ,X jβββ )
−(Xi −X j)βββ (Xi −X j)

σ2︸ ︷︷ ︸
Qi j

.

Similarly, we can find the Hessian,

∇
2
i j = ∇i jQT

i j +K(Xiβββ ,X jβββ )
−(Xi −X j)(Xi −X j)

σ2 .

Therefore, to minimise the loss function in (3.2), we can set βββ 0 = 000 and
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then iteratively update βββ using the Newton-Raphson method by βββ i+1 = βββ i −

(∇2LMMD(βββ i))
−1∇LMMD(βββ i), where

∇LMMD(βββ ) =− 1
N

XT (Y−µµµ)+
λ

κ

K

∑
k,l=1
k<l

∑
y∈Y

∇M̂MD2(βββ ;k, l,y).

and

∇
2LMMD(βββ ) =

1
N

XT Diag(µµµ)X+
λ

κ

K

∑
k,l=1
k<l

∑
y∈Y

∇
2 M̂MD2(βββ ;k, l,y).

Note that 000 is the all-zeros vector, µµµ is the mean response vector of the generalised

linear model for all observations and Diag(µµµ) is an N ×N diagonal matrix with the

elements of µµµ on the main diagonal.

For responses of different types such as binary, count or multi-class, a proper

link function should be chosen and the same algorithm applies.

3.4 Experimental Results
In this section, we compare the performance of our fair generalised linear model

with the maximum mean discrepancy penalty (FGLM-MMD) with the fair gener-

alised linear model (FGLM) by [20].

We perform our tests on two datasets with different types of outcomes. The

first dataset is the Law School Admission Council (lsac) dataset. It consists of

20715 observations of student grade point average (GPA) as targets. Each instance

has 7 features including race as a sensitive feature with five classes. The outcomes

are continuous, therefore we fit generalised linear models with normal distribution

using identity link function µ(Xiβββ ) = Xiβββ .

The second dataset we use is the German credit dataset with binary outcomes.

It contains records of 1000 individuals whose credit risks are classified as either

good or bad. The predictors consist of 46 features after one-hot encoding, including

age, employment status, credit history, number of people being liable to provide

maintenance for, etc. We use sex as the sensitive feature. For this binary classifica-



3.4. Experimental Results 100

tion task we use Bernoulli distribution and logit link function µ(Xiβββ ) =
1

1+exp(Xiβββ )
.

In addition, for both datasets, the sensitive feature is not included in predictors X,

but only used to calculate the penalty term to help obtain the fair coefficient vector

βββ .

We split each dataset into training (70%) and testing (30%) sets. We use the

training data to build FGLM and FGLM-MMD with different parameters. Both

FGLM and FGLM-MMD have weighting parameter λ ≥ 0 that controls the trade-

off between accuracy and fairness. FGLM-MMD has another parameter σ which is

defined in the RBF kernel. We use each model we build to predict the outcomes and

calculate the training and testing accuracies. There is currently no single evaluation

of fairness that has been widely accepted. Therefore, we consider the following

measures (estimates),

DEO =
1
κ

K

∑
k,l=1
k<l

∑
y∈Y

(E(µ(Xky
βββ ))−E(µ(Xly

βββ )))2,

DLC =
1
κ

K

∑
k,l=1
k<l

∑
y∈Y

E((Xky
βββ −Xly

βββ )2),

MMD =
1
κ

K

∑
k,l=1
k<l

∑
y∈Y

M̂MD2(βββ ;k, l,y),

and for regression task with continuous outcomes,

KS =
1
κ

K

∑
k,l=1
k<l

∑
y∈Y

D(βββ ;k, l,y),

where D(βββ ;k, l,y) is the two-sample Kolmogorov–Smirnov (KS) statistic between

predictions of the model of sensitive groups ak and al with label y. Note that FGLM

aims to minimise DLC and our FGLM-MMD is designed to minimise MMD with a

specific σ .

The data split is repeated 20 times and we plot the average accuracy-fairness
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trade-offs of FGLM and FGLM-MMD with different σ for lsac and German credit

training and testing datasets in Figures 3.1-3.4, respectively. In each figure, accu-

racy is plotted on the vertical axis and fairness measured by different metrics is

shown on the horizontal, both of which are the lower the better. Accuracy for the

lsac dataset (Figures 3.1 and 3.2) is measured by RMSE and the German credit

dataset (Figures 3.3 and 3.4) is calculated as the predictive error rate.
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Figure 3.1: Average experimental results for trade-offs of prediction accuracy and fairness
on training sets of the lsac dataset of FGLM and FGLM-MMD with different σ

values. Accuracy is measured by RMSE, and fairness is measured by different
metrics. Top left: DEO. Top right: DLC. Middle rows and bottom left: MMD
with different values of σ . Bottom right: KS statistic.
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Figure 3.2: Average experimental results for trade-offs of prediction accuracy and fairness
on testing sets of the lsac dataset of FGLM and FGLM-MMD with different σ

values. Accuracy is measured by RMSE, and fairness is measured by different
metrics. Top left: DEO. Top right: DLC. Middle rows and bottom left: MMD
with different values of σ . Bottom right: KS statistic.
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According to Figures 3.1 and 3.2, both FGLM and FGLM-MMD are able

to achieve a trade-off between predictive accuracy and fairness by alternating the

weighting parameter λ in the regression task with lsac dataset. FGLM and FGLM-

MMD use DLC and MMD as fairness penalty, respectively. While FGLM and

FGLM-MMD (with σ values equal to or larger than 1) do not show a significant

difference in the RMSE-DLC curves, FGLM-MMD shows slight superiority in the

RMSE-MMD curves when σ is small. For example, when σ = 0.01, there is an

area in the plot where the RMSE-MMD curve of FGLM-MMD is under that of

FGLM, where that FGLM-MMD has a lower MMD as well as a lower RMSE. KS

statistic is a non-parametric test and is useful to measure the difference between

the empirical cumulative distribution functions of two continuous one-dimensional

distributions. When fairness is measured by KS statistic, FGLM-MMD can achieve

much better fairness than FGLM given a similar level of predictive accuracy. In

general, FGLM-MMD performs better in terms of mmd and KS when σ is small,

while it behaves closer to FGLM when σ becomes large. Considering the over-

all performances of FGLM and FGLM-MMD with different measures of fairness,

we conclude that FGLM-MMD provides a flexible trade-off between accuracy and

fairness in general.
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Figure 3.3: Average experimental results for trade-offs of prediction accuracy and fairness
on training sets of the German credit dataset of FGLM and FGLM-MMD with
different σ values. Accuracy is measured by predictive error rate, and fairness
is measured by different metrics. Top left: DEO. Top right: DLC. Bottom left:
MMD with σ = 1. Bottom right: MMD with σ = 10.
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Figure 3.4: Average experimental results for trade-offs of prediction accuracy and fairness
on testing sets of the German credit dataset of FGLM and FGLM-MMD with
different σ values. Accuracy is measured by predictive error rate, and fairness
is measured by different metrics. Top left: DEO. Top right: DLC. Bottom left:
MMD with σ = 1. Bottom right: MMD with σ = 10.
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Figures 3.3 and 3.4 show training and testing results for the binary classifica-

tion task with German credit dataset. For the training data, we conclude that FGLM

performs better in the trade-off between error rate and DLC, while FGLM-MMD

gives fairer solutions in the accuracy-MMD trade-offs. When fairness is measured

by DEO, FGLM-MMD also provides overall better results. For the testing data, the

curves show similar trends as in the training data. However, the graphs suggest that

FGLM-MMD may suffer from overfitting in this example.

3.5 Conclusions
In this chapter, we presented a new framework of fairness-aware generalised linear

model using maximum mean discrepancy as the fairness penalty. It enjoys the flex-

ibility of GLMs to be able to handle prediction tasks with different outcome types,

while maintaining the convexity of the loss function so that the optimisation can

be solved efficiently. We believe that using maximum mean discrepancy can help

capture the differences between the entire distributions in more details instead of

using only the first few moments. The kernel based method has the flexibility to

detect more complex and non-linear relationships. Experimental results from both

regression and classification examples show that our algorithm performs well based

on different metrics for fairness.

Currently our tests are limited to a few regression and binary classification

tasks. It will be interesting to test with more datasets, including those with multi-

class or count outcomes. It is also not clear how the choice of kernel functions and

parameters will have an impact on model performance.



Appendix A

Additional Experimental Results for

Fair Liu Model and Fair Liu Model

with Sensitive Features

We present additional experimental results for our fair regression models based on

Liu-type estimator on the DAG, the lsac, and three additional datasets.

Figure A.1 shows the results on the standardised DAG simulated dataset simu-

lated with h= 0.2, including different choices of k values for fLiu and fLiuS models.

Figure A.2 shows the results on the lsac dataset where race is chosen as the

sensitive feature, consisting of five classes.

Three additional real datasets are used for experiments. The first additional

dataset we use is the student performance data. It records the final-year grades of

649 students of two Portuguese secondary schools. There are 37 predictors includ-

ing age, weekly study time, guardians’ education level, etc. Sex is considered to be

the sensitive feature. The second additional dataset we use is the Communities and

Crime (crime) dataset. The outcomes are violent crimes per population among 1993

communities in the US from a survey in 1990. We include 95 predictors such as age

and income, while others such as community names are excluded. Race is set to be

the sensitive feature and has four classes. The third additional dataset we use is the

Parkinson’s telemonitoring (Parkinson’s UPDRS) dataset. We include 16 predic-

tors consisting of measurements form 5875 biomedical voice recordings across 42
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people with early-stage Parkinson’s disease. Sex is set to be the sensitive attribute

where 67% of the instances are male and 33% are female. The target variable to

predict is the UPDRS score, a continuous score that evaluates various aspects of

Parkinson’s disease.

The data split is repeated 20 times and the average accuracy-fairness trade-offs

of FGLM, FRRM and fLiu/fLiuS with different k values for the training and testing

sets of all three data are shown in Figures A.3-A.5, respectively. In each figure,

accuracy is measured by RMSE and is plotted on the vertical axis and fairness

measured by different metrics is shown on the horizontal, both of which are the

lower the better.
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Figure A.1: Experimental results for trade-offs of prediction accuracy (measured by
RMSE) and fairness (measured by DLC, DEO and CoD, respectively) on train-
ing and testing sets of the standardised DAG simulated dataset of FRRM, fLiu,
FGLM and fLiuS.
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Figure A.2: Experimental results for trade-offs of prediction accuracy (measured by
RMSE) and fairness (measured by DLC, DEO and CoD, respectively) on train-
ing and testing sets of the lsac dataset (standardised) with races (Asian, black,
Hispanic, white and other) as sensitive feature of FRRM, fLiu, FGLM and
fLiuS.
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Figure A.3: Experimental results for trade-offs of prediction accuracy (measured by
RMSE) and fairness (measured by DLC, DEO and CoD, respectively) on train-
ing and testing sets of the student performance dataset (standardised) with
black versus non-black race as sensitive feature of FRRM, fLiu, FGLM and
fLiuS.
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Figure A.4: Experimental results for trade-offs of prediction accuracy (measured by
RMSE) and fairness (measured by DLC, DEO and CoD, respectively) on train-
ing and testing sets of the crime dataset (standardised) with black versus non-
black race as sensitive feature of FRRM, fLiu, FGLM and fLiuS.
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Figure A.5: Experimental results for trade-offs of prediction accuracy (measured by
RMSE) and fairness (measured by DLC, DEO and CoD, respectively) on train-
ing and testing sets of the parkinsons updrs dataset (standardised) with black
versus non-black race as sensitive feature of FRRM, fLiu, FGLM and fLiuS.
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