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Abstract
Studies from many countries find that gender differences in mortality rates and life expec-
tancy vary by country. The multipopulation Lee-Carter family of models, a widely-used 
methodology, decompose mortality rates into age, time, and country components, offering 
valuable insights into mortality trends. We delve into the interpretability of the Lee-Carter 
multipopulation model, elucidating its ability to capture underlying mortality patterns and 
project future trajectories. Moreover, we extend our analysis by incorporating machine 
learning techniques to model the residuals of the Lee-Carter framework. The main contri-
bution of the paper is to introduce these techniques in the context of the multiple popula-
tion mortality models. Specifically, we employ Random Forest to refine joint mortality 
forecasts by country, effectively capturing complex nonlinear relationships in residuals 
and improving predictive performance. In this paper, we revisit these models using new 
statistical techniques and data sets from the Human Mortality Database. By leveraging 
advanced computational algorithms, we aim to enhance the accuracy of mortality rate 
predictions and account for residual patterns that may not be captured by the traditional 
Lee-Carter approach alone. Through empirical validation and comparative analyses, we 
demonstrate the efficacy of integrating machine learning into multiple population mortality 
forecasting, thereby contributing to the refinement and improvement of mortality model-
ing methodologies.

Keywords  Multipopulation Lee-Carter models · Interpretability · Forecasting · Machine 
learning

1  Introduction

Since Lee and Carter proposed a stochastic approach to the modelling of dynamic life tables 
in 1992 and used this model to study projections of mortality rates in US (Lee & Carter, 
1992), there have been several papers forecasting population mortality in other developed 
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countries such as Canada (Lee & Nault, 1993), Chile (Lee & Rofman, 1994), Japan (Wilm-
oth, 1996), Belgium (Brouhns et al., 2002), Austria (Carter & Prkawetz, 2001), England and 
Wales (Renshaw & Haberman, 2003), Australia (Booth & Tickle, 2003) and Spain (Guillen 
& Vidiella-i-Anguera, 2005; Debón et al., 2008). All these papers deal with separate models 
for each country, and fitting the Lee-Carter model to mortality data for each sex indepen-
dently. Another perspective focuses on the mortality dynamics of two or more populations 
of similar size, see, for example, Li and Lee (2005), Delwarde et al. (2006), and Antonio et 
al. (2017).

Recent work that has considered a group of related countries or subnational mortality 
modelling includes Li and Lee (2005), Russolillo et al. (2011), Debón et al. (2011), Villegas 
and Haberman (2014), Danesi et al. (2015), Alexander et al. (2017), Bergeron-Boucher et al. 
(2018), Cairns et al. (2019), Wen et al. (2021) and Bégin et al. (2023). Among them, Li and 
Lee (2005), Russolillo et al. (2011) and Debón et al. (2011) have proposed models derived 
from the Lee-Carter model to obtain coherent mortality forecasts for a group of populations 
that could be applied to modelling mortality rates for the two-sexes mortality and for a 
group of countries. These models also facilitate the comparison of mortality from different 
countries due to the interpretability of their parameters. Models with explicitly interpreted 
parameters offer advantages in clarity, communication, hypothesis formulation, and practi-
cal applicability, making them valuable tools across various research and application fields.

In particular, the proposals of Russolillo et al. (2011) and Debón et al. (2011) have the 
advantage that their computational cost is very low, as they only need an ARIMA model for 
forecasting, the comparison between countries is reduced to a unique index, and they are 
robust models considering the outliers (Debón et al., 2011). The main advantages of multi-
population mortality models are that pooling multiple populations can help exploit common 
information in datasets from different countries in order to identify a more stable trend, 
reduce statistical errors and increase coherence in forecasting. This summary is particu-
larly relevant for actuaries and demographers, as it enables more efficient and interpretable 
cross-country mortality comparisons while maintaining robustness with respect to anoma-
lies in the data. Additionally, the low computational cost makes these models practical for 
real-world applications, such as insurance pricing and reserving, pension forecasting, and 
public policy planning, where accurate and scalable mortality projections are essential. For 
these reasons, we think these types of model should be particularly considered for further 
development and extension.

Artificial intelligence (AI) is transforming actuarial science, providing new opportuni-
ties to enhance mortality modelling, insurance pricing, and the estimation of reserves set 
aside to meet claims. Richman (2021) highlights how deep neural networks have improved 
predictive accuracy in key actuarial areas, including mortality forecasting, telematics data 
analysis, and loss reserving in general insurance. In this context, Alonso-García (2023) pro-
vides an overview of advances in mortality modeling over the past three decades, highlight-
ing key methodological developments, challenges in estimation and forecasting, and the 
increasing role of machine learning and AI in refining multipopulation mortality models for 
actuarial and demographic applications.

In Levantesi and Nigri (2020) the authors introduce the development of new and sophis-
ticated methods for mortality forecasting using a combination of Random Forest (RF) 
(Breiman, 2001) and two dimensional P-spline (Eilers & Marx, 1996) for both sexes in 
each country. Building on these advances, Bjerre (2022) explores the use of pure tree-based 
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machine learning methods, specifically RF and Gradient Boosting, to model and forecast 
mortality, demonstrating their superior predictive performance over traditional stochastic 
models in most cases.

In this context, Alonso-García (2023) reviews the evolution of mortality models from the 
classic Lee-Carter model to modern AI-driven approaches, emphasizing the growing inte-
gration of machine learning techniques to improve the accuracy and applicability of these 
models in actuarial and demographic studies. The increasing role of deep learning is further 
exemplified by Nigri et al. (2019), who propose an integrated Lee-Carter model enhanced 
with Long Short-Term Memory (LSTM) networks to capture complex mortality dynamics 
better. Similarly, Garrido et al. (2024) have developed an LSTM-based coherent mortality 
forecasting model for developing countries, addressing mortality convergence trends across 
populations. Meanwhile, Euthum et al. (2024) leverage neural networks, including LSTM 
and Gated Recurrent Units (GRU), to model multipopulation mortality trends, incorporat-
ing socioeconomic factors to refine actuarial predictions. Richman and Wuthrich (2019) 
further validate the utility of recurrent neural networks (RNNs), demonstrating their ability 
to outperform traditional actuarial models in capturing mortality trends over time. Recently, 
De Mori et al. (2025) have highlighted the effectiveness of multi-task neural networks for 
multipopulation mortality forecasting, enhancing prediction accuracy by leveraging shared 
demographic trends across countries. The combination of these perspectives demonstrates 
how AI provides more powerful tools for actuarial data analysis and introduces new chal-
lenges and opportunities for the actuarial profession, particularly in ensuring model inter-
pretability, robustness, and regulatory compliance.

Our paper seeks to extend the mortality analysis in Li and Lee (2005), Russolillo et 
al. (2011), and Debón et al. (2011) by modelling simultaneously the mortality from dif-
ferent countries for each sex, and boosting the models using RF. To do this, we analyse 
male and female mortality data corresponding to the period 1971-2020 in Italy, Spain and 
the United Kingdom (UK). The thirty years from 1971 to 2000 are used to fit the models 
and to forecast age-specific death probabilities for twenty years more from 2001 to 2020. 
By incorporating multiple countries into the analysis, we can effectively compare mortal-
ity trends across different demographic and socio-economic contexts, identifying common 
patterns and country-specific variations in a single index. Moreover, leveraging the power 
of machine learning, particularly RF, allows us to capture complex nonlinear relationships 
while maintaining the interpretability of the model, making it a valuable tool for both actu-
aries and demographers in understanding and predicting mortality dynamics. In this paper, 
we exploit, on one hand, the advantages of multipopulation approaches for mortality fore-
casting, and, on the other hand, the machine learning techniques applied to mortality. Thus, 
we propose as an original contribution the application of machine learning techniques to 
mortality projections not only by gender but also by country.

In summary, the plan of the paper is the following: Sect. 2 presents the methodologies 
to be used for trend estimation and for residual analysis. Sect. 3 is devoted to the results 
of applying the different methods to model the mortality data corresponding to the period 
1971-2020 in Italy, Spain and The UK. The conclusions drawn from these results are pre-
sented in Sect. 4.
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2  Methodology

Actuaries are often more interested in probabilities of death at age x in year t, qxt, than other 
mortality measures (Currie, 2016) because most actuarial calculations directly involve those 
measures, although the results can be extended to the force of mortality µxt or central death 
mortality rates mxt.

We consider a set of probabilities of death in the form of dynamic life tables for differ-
ent countries denoted by i. We wish to produce smoother estimates, q̂xti, of the true but 
unknown mortality probabilities qxti from the set of crude probabilities of death, q̇xti, for 
each age x and year t in each region i. The crude probability at age x is typically based on 
the corresponding number of deaths recorded, dxti, relative to those initially exposed to 
risk, Exti.

2.1  Lee-Carter models

The classical Lee-Carter model was applied to the annual age-specific central mortality 
rates, mxt, in Lee and Carter (1992). In that paper, the logit transformation of the annual 

age-specific probability of death, qxt, logit(qxt) = log
(

qxt

1 − qxt

)
, is modeled as follows,

	 logit(qxt) = ax + bxkt + ϵxt.� (1)

Cossette et al. (2007) have used the complementary log-log (cloglog) transformation but 
this choice may be somewhat arbitrary as Haberman and Renshaw (2008) have pointed 
out. There are different link functions: the justification here for choosing the logit link is the 
fact that as we work with probabilities the application of this link is guaranteed to provide 
estimates between 0 and 1.

In the above expression Eq. (1), ax and bx are age-dependent parameters and kt is a mor-
tality index specific for each year. The errors, ϵxt, reflect age-specific historical influences 
that are not captured by the model.

This model presents a problem of identifiability (Lee & Carter, 1992); therefore, some 
constraints must be imposed on the parameters to get a single solution. Although Lee and 
Carter (1992) propose the normalization 

∑
x

bx = 1 and 
∑

t

kt = 0, we propose other con-

straints, namely that bx0 = 0 where x0 is the first age and kt0 = 0 where t0 is the first time 
point because they are easier to implement in R.

The standard Lee and Carter (1992) model is often estimated using Singular Value 
Decomposition (SVD), which provides a computationally efficient decomposition but lacks 
a probabilistic foundation. Generalized non-linear models (GNM) offer more flexibility in 
incorporating distributional assumptions and additional constraints on parameters (Currie, 
2016). Empirical studies, such as Debón et al. (2008, 2010a), confirm that GNM generally 
provides superior goodness-of-fit and robustness with respect to irregularities in mortality 
data. Given these advantages, GNM is preferred over SVD for mortality modelling within 
the Lee-Carter framework.

The analysis was undertaken using purpose-written code in R Core Team (2024). The 
fitting procedure of a range of Lee-Carter models using gnm library (Turner & Firth, 2023) 
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can be found in Debón et al. (2010a) and Currie (2016). In addition, Currie (2016) compared 
Poisson models for the force of mortality and Binomial models for the rate of mortality over 
six countries, and, in most of them, the Binomial models outperform the Poisson ones in 
terms of goodness of fit. However, using the Binomial family, the results show overdisper-
sion as the Deviance statistic is greater than the degrees of freedom in the model; therefore, 
the quasiBinomial family is recommended. The following models have been fitted follow-
ing these same procedures and recommendations.

2.1.1  Additive model

By analogy with the Lee-Carter models and in order to obtain a parsimonious multipopula-
tion mortality model, Debón et al. (2011) propose adding a factor index that specifically 
modifies mortality for each member of the group. The proposed model is,

	 logit(qxti) = ax + bxkt + Ii + ϵxti.� (2)

Again, we have an identifiability problem in the model that has been effectively addressed 
within the model above through the imposition of constraints, specifically setting kt0 =0 
and bx0 =1, while stipulating I1=0. Therefore, taking the population 1 of the group as a 
reference and making I1 = 0, the index Ii means the additive change necessary for trans-
forming the logit(qxt1) = ax + bxkt in population 1 to that of a population i. In addition, 
this model assumes that differences in the mortality of specific populations are age and 
time-independent.

Consequently, this is the interpretation of the parameters: 

1.	 ax coefficients describe the shape of the age profile in population 1 for the period t0.
2.	 The values kt represent the trend of mortality in population 1 during the period.
3.	 The evolution of bx gives an idea of how fast the ratios decrease in response to changes 

in kt. Noting that, for many developed countries, the trend in kt has been downward 
over time. 

	
dlogit(qxti)

dt
= bx

dkt

dt
,

4.	 The succession of values Ii allows for comparing mortality patterns between popula-
tion 1 and other populations i. Positive values mean higher mortality probabilities than 
population 1, and negative values mean the opposite.

2.1.2  Multiplicative model

In contrast to the previous model, the Russolillo et al. (2011) proposal, called here the 
multiplicative model, includes the population as a multiplicative index and assumes that 
differences in mortality in specific populations are dependent on age and time. This model 
can easily be compared with Eq.  (2) as both share the same number of parameters. Its 
expression is,
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	 logit(qxti) = ax + bxktIi + ϵxti.� (3)

Therefore, the index Ii stands for the specific change shown in each population by the incre-
ments, bxkt, taking place concerning the general behaviour of the logit of mortality, ax. The 
problem of identifiability in Eq. (3) is solved by setting kt0 =0, bx0 =1 and I1=1. Then, the 
following is the interpretation of the parameters, 

1.	 ax coefficients describe the average shape of the age profile for the period t0.
2.	 The evolution of bx gives an idea of how fast the age decreases in response to changes 

in kt for population 1,
3.	 The evolution of bxIi gives an idea of how fast the age-specific death probabilities 

decrease in response to changes in kt for population i. Ii values smaller than 1 mean 
higher mortality probabilities than population 1, and Ii values higher than 1 mean the 
opposite.

4.	 The values kt represent the trend of mortality during the period.

2.2  Li and Lee models

Li and Lee (2005) propose a more complex variant of the original Lee-Carter model for 
estimating mortality in countries that form part of a group instead of considering them indi-
vidually. This model is expressed by,

	 log(mxti) = axi + bxkt + bxikti + ϵxti.� (4)

To avoid long-term divergence in mortality forecasting for the group, all populations must 
have the same bx and drift term for kt. At the same time, ax can be estimated separately 
for each population and denoted as axi. Debón et al. (2011) adapt the reduced version of 
this model called the common factor model by Li and Lee (2005) to the logit(qxti), that is,

	 logit(qxti) = axi + bxkt + ϵxti,� (5)

the problem of identifiability is solved with the following restrictions: kt0 = 0 and b0 = 1. 
The interpretation of the parameters is as follows, 

1.	 axi coefficients describe the average shape of the age profile in the region i.
2.	 The evolution of bx gives an idea of how fast the ratios decrease in response to changes 

in kt for the country.
3.	 The values kt represent the general trend of mortality during the period.

The Li-Lee based models and, in general, multipopulation models depend on the assump-
tion that mortality rates are similar between countries. This hypothesis is not always sup-
ported (Grigoriev et al., 2010) and has to be verified case by case.

2.2.1  Li-Lee additive and multiplicative models

We propose to modify model (5) including a population index Ii in an additive way,
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	 logit(qxti) = axi + bxkt + Ii + ϵxti,� (6)

or in a multiplicative way,

	 logit(qxti) = axi + bxktIi + ϵxti,� (7)

with the corresponding restrictions I1 = 0 and I1 = 1. In this way, the differences between 
the countries are collected through the index Ii. Eq. (4) is equivalent to Eq. (6) where bxikti 
is synthetized into Ii . The model fitting is easily obtained with the gnm library, providing as 
an initial point the SVD solution of the model in Eq. 5. These models considerably improve 
the comparison of countries using Ii with similar interpretations as in the above correspond-
ing models - additive as in Eq. (2) and multiplicative as in Eq. (3).

2.3  Residual analysis: Random Forest

The residuals of the above models can be modelled with a non-parametric technique called a 
Random Forest (RF), an ensemble of classification and regression trees (CART). The CART 
construction for regression, which applies in our case, using the ANOVA method, involves 
the following steps (Therneau & Atkinson, 2023). The technique identifies the single vari-
able that optimally divides the dataset into two groups, aiming for maximal homogeneity 
within each group and maximal dissimilarity between them. The dataset is then partitioned 
accordingly, and this process iterates recursively on each variable until it reaches a mini-
mum size or further improvement becomes unattainable.

The predictive supervised learning method RF improves the prediction capacity by com-
bining independent CART using the bagging technique Breiman (1996)1 and by randomly 
selecting, at each node, a subset of mtry variables (1 ≤ mtry ≤ p, with p the total number 
of predictors). Only this subset is searched when choosing the best split, so mtry gov-
erns the trade-off between tree strength and inter-tree correlation: smaller values encour-
age diversity (higher bias, lower correlation), whereas larger values strengthen individual 
trees (lower bias, higher correlation). Common defaults are mtry = √

p for classification 
and mtry = p/3 for regression Breiman (2001). The RF then resamples the training obser-
vations with replacement, and the unsampled observations are called out-of-bag (OOB) 
observations, which are used to measure the prediction error of the method. A more detailed 
description of CART and RF can be found in Hastie et al. (2009).

The RF algorithm captures complex, non-linear relationships between a dependent vari-
able and its predictors by growing an ensemble of bootstrapped decision trees, each split on 
a random subset of covariates; it then produces a prediction by averaging the conditional 
responses across all trees, thereby reducing variance and enhancing out-of-sample accuracy. 
In our analysis, the dependent variable is the mortality-model residuals, while Year, Age, 
and Country serve as explanatory covariates.

The RF training process was performed by employing cross-validation with k = 5 to 
avoid overfitting, using the train function of the caret R-package (Kuhn & Max, 2008). We 
adopted k = 5because it is the default in caret and a widely recommended bias-variance 

1 Bagging is the acronym of “bootstrap aggregating”. Bagging predictors involves a key step of creating mul-
tiple versions of a predictor. The different versions are created by making bootstrap samples from the original 
learning set to train the predictor, and after those versions are combined into a single, aggregated predictor.
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compromise (Hastie et al., 2009). Therefore, the “mtry” hyperparameter of the RF models 
was optimised. For our three-dimensional data (indexed by x, t, and i), the 5-fold cross-
validation process works as follows. The entire dataset is divided into five equally sized 
subsets. In each of the five iterations, one subset is held out as a validation set while the 
remaining four are used to train the RF model. This systematic rotation ensures that all parts 
of the data serve as unseen validation data exactly once. As a result, the model’s predictive 
performance is robustly evaluated to optimise the “mtry” hyperparameter.

Moreover, RF analysis empowers us to assess the importance of variables within the 
regression model (Breiman, 2001). Liaw and Wiener (2002) introduced two metrics, Inc-
MSE% and IncNodePurity, within their randomForest R-package:

	● %IncMSE (Mean increase MSE): obtained by calculating how much the prediction er-
ror (MSE) of the OOB observations increases when the data of one variable are per-
muted, leaving the rest unchanged.

	● IncNodePurity (Increase Node Purity): is the total decrease in node impurities due to 
splitting the variable, averaged across all trees. For regression, node impurity is meas-
ured by the mean squared error (MSE).

The %IncMSE measure is better as it is more robust than IncNodePurity. IncNodePurity is 
only used if the extra computing time is unacceptable.

However, the importance of the variables only establishes a ranking of variables. Par-
tial dependent plots (PDPs) offer a simple solution to quickly understand the relationship 
between outcome and predictors of interest (Greenwell, 2017). PDPs are graphical repre-
sentations of the predicted outcome of a model vs features to show whether the relationship 
is linear or not, positive or negative. PDPs are especially useful for visualizing the relation-
ships discovered by complex machine learning algorithms such as a RF.

In this paper logit residuals with expression,

	 rxti = logit(q̇xti) − logit(q̂xti)� (8)

have been modeled.
We select the logit scale because it provides a convenient and additive framework: differ-

ences (residuals) on the logit scale can be directly added to the predicted logits to adjust the 
estimates. Moreover, since the RF model is non-parametric, it does not require the residuals 
to follow a symmetric or Normal distribution, allowing us to capture deviations effectively 
without imposing strict distributional assumptions.

2.4  Evaluation of models

In summary, the interpretations of the model parameters provide clarity and trend iden-
tification and facilitate comparative analysis, making it a valuable tool for demographic 
research, policy formulation, and forecasting. The additive model emphasizes the average 
shape of the age profile in population one and the trend of mortality during the specified 
period. It provides insights into overall demographic patterns and mortality trends but may 
not explain how mortality varies across age groups in different populations. On the other 
hand, the multiplicative model offers a more nuanced analysis by considering the dynamic 
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response of age-specific mortality probabilities to changes in a critical factor (kt). It also 
allows for comparative analysis across populations, which can be valuable for understand-
ing differences in mortality patterns across demographic groups.

Therefore, the additive model may be more appropriate if the goal is to understand over-
all demographic trends and mortality patterns in population 1. However, suppose the analy-
sis requires a detailed examination of how mortality varies across different populations and 
age groups and how it responds to changes in a specific factor. In that case, the multiplica-
tive model may be preferable. On the other hand, if there are conditions of differences in the 
mean mortality of the populations that will be maintained but are not expected to diverge 
in the future, the models derived from Li and Lee’s proposal will be the most appropriate. 
Ultimately, the choice between the models should be based on the specific research ques-
tions, objectives, and numerical results.

In general, there are three strategies for the validation of the numerical results of the 
model predictions: 

1.	 evaluate the model in a test sample different to the fitting sample,
2.	 develop the model with around 70 % of the sample and calculate the predictive power 

with the remaining 30%, or
3.	 use the same sample, but calculate predictive indicators using bootstrap or resampling 

techniques.

In this paper, we use the second and the third as we only have one large sample. Specifically, 
we use the hold-out method for time series, which separates the data into two subsets in 
chronological order, one used to train the model and the other one to perform the validation 
test. We have used 60% (30 years) of the original periods to develop the models (training 
set) and calculated the predictive power with the remaining 40% (20 years) of the periods 
(validation set). The hold-out method is widely used in the mortality literature (e.g., Debón 
et al. (2010b), Ahcan et al. (2014), Danesi et al. (2015), Neves et al. (2017), Diaz et al. 
(2018), and Atance et al. (2020)) because it respects the inherent temporal ordering of the 
data, ensuring that predictions are genuinely forward-looking.

The steps in the hold-out were as follows: 

1.	 Mortality models were fitted to the training dataset.
2.	 The index kt was predicted using a time series model (ARIMA) for all years in the test 

period.
3.	 Probability of death predictions (q̂xti) were generated with the predicted indexes 

(obtained in the previous step) for the test period.
4.	 The model predictions (q̂xti) were compared with the observed mortality probabilities 

(q̇xti) in the validation period obtaining measures of goodness of fit.

Additionally, we have used resampling methods, such as k-fold cross-validation–imple-
mented so that the folds respect the chronological ordering of the data and with fixed origin 
in year 1981–to provide a clear framework for evaluating both short-term and long-term 
forecast accuracy by simulating a realistic forecasting scenario.

Therefore, we are going to use measures of goodness of fit in training and test sets such 
as:
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	● Mean Squared Error (MSE) that measures the average of the squares of the errors (dif-
ference between the predictions and the actuals) 

	 MSE(q̂) = mean
(
(q̇xti − q̂xti)2)

,� (9)

	● Root Mean Squared Error (RMSE) that measures the average error 

	 RMSE(q̂) =
√

MSE(q̂),� (10)

 and,

	● Mean absolute percentage error (MAPE) that measures the average absolute percentage 
error 

	
MAPE(q̂) = mean

(
|q̇xti − q̂xti|

q̇xti

)
.� (11)

In the field of mortality modelling, cross-validation (CV) has only recently been introduced. 
Most existing applications have focused on single-population models (e.g., see Atance et 
al. (2020), Kessy et al. (2022), Lindholm and Palmborg (2022), and Barigou et al. (2023)), 
highlighting the limited use of resampling methods in multipopulation contexts. Our work 
extends this approach by employing the CvmortalityMult R-package (Atance & Debón, 
2025) and some modified functions to implement CV for the proposed multipopulation 
mortality models.

3  Application of the models

All these models will be used to fit and predict mortality rates for the three countries to 
explore and understand their similarities and differences.

3.1  Description of the data

The data used in this analysis come from the Human Mortality Database (2024). In particu-
lar, we have worked with published male and female life tables for Spain, Italy and the UK 
mortality data corresponding to 1971–2020. The models described in Sect. 2 have been used 
to fit life tables from the three countries for 1971–2000 and a range of ages from 21 to 100 
for each sex. Then, the fitted models have been used to obtain predictions for 2001–2020 
and compare them with the observed values.

When forecasting mortality for pension and insurance purposes, it is common practice to 
focus on the age ranges for adults and the elderly rather than for the entire human life span. 
Life insurance and pension products primarily cover working-age individuals and retirees, 
and adult and elderly mortality trends significantly influence the financial risk associated 
with these products. In contrast, infant and adolescent mortality exhibits much lower vari-
ability and has a negligible financial impact in actuarial applications (Cairns et al., 2006; 
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Plat, 2009). Given these considerations, restricting the analysis to a relevant age range 
enhances the precision and practical applicability of the mortality predictions.

Figures 1 and 2 show the behaviour of the average logit of the probability of death for 
ages and years, respectively, by sex and country. This exploratory study shows the typical 
average mortality profile across ages, the decline in mortality rates over the years (Fig. 2), 
and the different patterns by sex and country with higher mortality rates for males and the 
UK for most ages, specifically intermediate and the oldest ages (Fig. 1) and a more pro-
nounced decline for females (Fig. 2). The exploratory analysis in Fig. 2 reveals a partial 
convergence in overall mortality among Spain, Italy, and the United Kingdom, grouping the 
three within the same developed-country cluster under the criteria of Atance et al. (2024). 
However, a full-surface cluster analysis (Debón et al., 2017) still singles out the UK as 
distinct from its two Mediterranean counterparts. This residual difference is precisely what 
the country-specific index in our proposed multipopulation models is designed to capture.

3.2  Model fitting

The estimation of parameters has been obtained for the models for the three countries for 
each sex. According to Debón et al. (2011), which applies them to Spanish regions, these 
models can obtain life tables for the different populations that do not differ too much, elimi-
nate the irregularities in those with smaller populations and finally, respect their peculiari-
ties. However, in this new application, we intend to quantify and describe the differences 
between these three countries for each sex, taking full advantage of the interpretability of 
these models.

Figures 3 to 7 illustrate the estimated parameters obtained from the models. Figs. 3 and 
4 reveal similar values for parameter ax across all models. In fact, it is hard to distinguish 
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Fig. 1  Behaviour of the average across all years of the logit probability of death for ages by sex and 
country
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the results for the 4 different models but they indicate consistently higher mortality rates for 
males across all age groups. Moving on to Fig. 5, we see positive values for bx in females 
for all ages, suggesting a decrease in mortality. Males, however, exhibit a different pattern. 
Their bx values are negative between ages 23 and 37, indicating an increase in mortality 
for that specific age range, followed by a decrease. In both sexes, the model with the dif-
ferent behaviour is multiplicative; the other three show a very similar evolution for the bx 
parameter. These negative bx values for young adult males are plausibly linked to transient, 
cause-specific mortality shocks (e.g., AIDS, drug use, violent deaths or war casualties) that 
have since diminished; not modelling such exogenous events explicitly may bias forecasts 
for this cohort and therefore constitutes a limitation that could be addressed in future work 
by incorporating external covariates or event indicators.

Figure 6 depicts a general decline in mortality over the years for both genders, with a 
steeper decrease observed for females and the Li-Lee-multiplicative model. Finally, Fig. 7 
focuses on the country index. Italy2 is the reference country, so its index is 0 in the additive 
model and 1 in the multiplicative model by construction. Spain displays consistently lower 
death probabilities than Italy, whereas the United Kingdom records the highest mortality of 
the three countries in every specification except the Liâ€“Lee multiplicative model. In the 
Liâ€“Lee additive formulation, all Ii indices are zero because the country-specific terms axi 
already capture national differences. The index for Spain is smaller than that of the UK for 
the Li-Lee-multiplicative model for males, indicating a smaller decrease in mortality rates 
but relative to the country-specific axi.

Table 1 shows the MSE, RMSE and MAPE for both models in each sex. The Li-Lee ver-
sions improve the fitting, and the Li-Lee-multiplicative model shows the best global result 

2 The reference population is selected by the first in alphabetical order by default in R.
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for goodness-of-fit measures with the lowest MAPE for both sexes and lower RMSE in 
almost all cases except men where the additive Li-Lee model is lower by a small difference. 
In contrast, Debón et al. (2011) found the additive model shows the best global result for 
both sexes and the deviance goodness-of-fit measure in an application to Spanish regions. 
However, in this study, the prediction model’s performance is evaluated with MSE and 
RMSE, measures of the distance between observed q̇xti and adjusted values q̂xti in each 
population i, whose expression measures the error of estimations without any correction 
and they are easier to interpret than the deviance. On the other hand, MAPE measures the 
relative error, giving less importance as the probability of death increases so that, for the 
high age probabilities, it would allow more error. Thus, MAPE is less suitable for measuring 
prediction error in this context, which is why the Li-Lee-multiplicative model is the best in 
relative terms but also globally.

Renshaw and Haberman (2006) suggest carrying out diagnostic checks on the fitted 
model by plotting residuals. In this study, we are going to model them with RF and see their 
importance and then their behavior with PDPs: this will allow us to improve predictions and 
understand the relationships. Fig. 8 summarises the relative contribution of the quantitative 
variables age and year, and of the categorical variable country (Spain and the United King-
dom, with Italy as the reference). In both models and across sexes, predictor importance 
declines in the order Age, Year and Country.

Sex Model MSE RMSE MAPE
Females Additive 0.00005 0.007117 8.50

Multiplicative 0.00003 0.005721 7.05
Li-Lee-additive 0.00001 0.003500 5.30
Li-Lee-multiplicative 0.00001 0.003309 4.82

Males Additive 0.00003 0.005408 8.83
Multiplicative 0.00002 0.004503 8.08
Li-Lee-additive 0.00002 0.003980 5.33
Li-Lee-multiplicative 0.00002 0.004029 5.12

Table 1  Goodness-of-fit mea-
sures for the models in training 
data set
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Next, PDPs are shown in Figs. 9, 10, and 11 with logit residuals (Eq. 8). Figs. 9, 10, and 
11 show which ages, years and countries values of the residuals are predicted closest to zero 
and therefore where the models work best.

3.3  Model forecasting

The predictions beyond the last time period are carried out by the projection of time series 
previously adjusted to the time parameters kt. The corresponding ARIMA models are 
obtained using the functions auto.arima and forecast from the forecast R-package (Hyn-
dman et al., 2024; Hyndman & Khandakar, 2008). Fitted ARIMA models for models kt 
index for females and males are shown in Table 2 and drawn in Figs. 12, 13, 14,and 15, 
respectively.

Then, logit(q̂xti) are obtained by substituting the corresponding predicted k̂t in the fitted 
expression of the corresponding model.

Additionally, we propose to obtain predicted logit residuals r̂xti using RF models for 
obtaining better predictions as follows,

	
log

(
q̂xti

1 − q̂xti

)
+ r̂xti.

Table 3 shows MSE, RMSE and MAPE for all models for predictions in the 2011-2020 
period, with slightly better results for the RMSE measure for the additive model than for 
the multiplicative model for both sexes. However, the multiplicative version of the Li-Lee 
framework demonstrates comparable or superior performance. Table 3 also shows the pre-
dictions by adding residual modelling which improves the results in all cases.
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Table 2  ARIMA models for kt of each model and sex
Sex Additive Multiplicative Li-Lee-additive Li-Lee-multiplicative
Females ARIMA(1,1,0) ARIMA(2,1,0) ARIMA(1,1,0) ARIMA(1,1,0)
Males ARIMA(1,1,0) ARIMA(1,1,0) ARIMA(1,1,0) ARIMA(1,1,0)
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Fig. 13  ARIMA models from the functions auto.arima and forecast for Multiplicative model mortality 
index for females (left) and males (right)
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Furthermore, residuals are modelled primarily to analyze their behaviour rather than for 
predictive purposes. The forecasting process relies on the projection of the models, ensur-
ing that predictions are based on each approach’s underlying structure and assumptions 
rather than direct extrapolation of residual patterns. Therefore, we obtain goodness-of-fit 
measures for predictions using 10-fold cross-validation for each model, with an initial train-
ing period spanning ten years (1971–1980) and forecasts covering the period from 1981 to 
2020. Table 4 presents the MSE, RMSE, and MAPE values, averaged over 10 folds with 

Sex Model MSE RMSE MAPE
Females Additive 0.000029 0.005357 15.52

Additive+RF 0.000017 0.004148 10.47
Multiplicative 0.000039 0.006287 16.40
Multiplicative+RF 0.000031 0.005588 13.40
Li-Lee-additive 0.000025 0.004968 14.71
Li-Lee-additive+RF 0.000019 0.004417 10.52
Li-Lee-multiplicative 0.000020 0.004482 13.97
Li-Lee-multiplicative+RF 0.000019 0.004449 10.72

Males Additive 0.000040 0.006398 30.67
Additive+RF 0.000025 0.005043 22.58
Multiplicative 0.000053 0.007281 42.75
Multiplicative+RF 0.000028 0.005269 19.33
Li-Lee-additive 0.000027 0.005196 32.25
Li-Lee-additive+RF 0.000025 0.005006 22.55
Li-Lee-multiplicative 0.000026 0.005084 31.19
Li-Lee-multiplicative+RF 0.000025 0.005045 22.43

Table 3  Goodness-of-fit mea-
sures for predictions in test set of 
each model
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size 4 years: 1981–1984, 1985–1988, 1989–1992, 1993–1996, 1997–2000, 2001–2004, 
2005–2008, 2009–2012, 2013–2016, and 2017-2020. Again, the results indicate that the 
RMSE values are slightly lower for the additive model than for the multiplicative model 
for both sexes. However, the multiplicative version demonstrates comparable or slightly 
superior performance in the Li-Lee framework.

To illustrate the variability in model performance across different ages and validation 
folds, the MSE values for models on average for each age and each fold for females and 
males are presented in Figs. 16 and 17, respectively. Fig. 16 reveals that the MSE varies 
between ages, with the multiplicative model performing worse in most specific age groups. 
Higher MSE values at extreme ages suggest potential challenges in capturing mortality 
trends among the oldest ages. Meanwhile, the trends observed in Fig. 17 suggest that MSE 
fluctuates over time, with variations in predictive accuracy depending on the model speci-
fication and sex, providing insight into the consistency and robustness of each approach. In 
particular, the Li-Lee models exhibit MSE values lower than their additive and multiplica-
tive counterparts in certain validation periods, indicating an improved fit in those cases. We 
also find that the prediction error is generally smaller when the test fold is shorter than the 
corresponding training set, with the single exception of the final fold, which includes the 
excess mortality produced by the COVID-19 pandemic.

Dong et al. (2020) found that the multiplicative model’s out-of-sample forecasting per-
formance is significantly improved for individual populations and the aggregate population 
compared with using the single-population mortality model based on rank-1 singular value 
decomposition (SVD) which corresponds to the Lee-Carter model. Their results also shed 
light on the similarities and differences in mortality among 10 European countries (Den-
mark, United Kingdom, Finland, France, Italy, the Netherlands, Norway, Spain, Sweden,and 
Switzerland) and the 2 genders.

4  Conclusions

To understand forecasting error, evaluating error in specific-age death probabilities is essen-
tial (Booth et al., 2006); therefore, we focused on predicting mortality probabilities instead 
of using mortality indicators for life expectancy. Additionally, Santolino (2023) has con-
cluded that models that provide a good fit or a good prediction performance on the log scale 
might be inadequate in the original scale, and vice versa, and using one selection measure 
or another ultimately depends on the decision-maker’s preferences. Therefore, in this paper, 
we have included absolute and relative goodness-of-fit measures but calculated on the scale 
of the original probabilities because those are used in actuarial and related calculations and, 

Sex Model MSE RMSE MAPE
Females Additive 0.000033 0.005745 11.43

Multiplicative 0.000041 0.006403 10.03
Li-Lee-additive 0.000026 0.005099 11.33
Li-Lee-multiplicative 0.000021 0.004583 9.02

Males Additive 0.000035 0.005916 13.08
Multiplicative 0.000039 0.006245 15.80
Li-Lee-additive 0.000031 0.005568 13.54
Li-Lee-multiplicative 0.000030 0.005477 13.78

Table 4  Average goodness-of-fit 
measures obtained from 10-fold 
cross-validation predictions, 
based on the initial training set 
(1971–1980), for all models and 
sexes
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therefore, have direct economic consequences. We have applied four multipopulation mod-
els to Italy, Spain and UK data for both male and female and have implemented a RF on the 
residuals of each models in order to improve the accuracy of the projections. Table 1 shows 
the goodness-of-fit performance values for the analysed models in the training data set. In 
general, including the multiplicative country effect improves the model’s fitting relative 
to the additive one for males and for females. On the other hand, the multiplicative model 
shows the best global results for both sexes and all performance measures. The explana-
tion for this can be found in introducing the country effect as a multiplicative term, which 
better adapts the model for the countries involved in the study and for intermediate and 
advanced ages. Note that the additive model has a simpler structure because it only consid-
ers the main effects, assuming that differences in the mortality of specific populations are 
age and time-independent (Debón et al., 2011). It has to be acknowledged that mortality 
across countries could undergo different phases and differences in mortality are often time-
dependent (Raftery et al., 2013). However, as highlighted by Léger and Mazzuco (2021), 
these differences change over time, especially for infants, while our dataset is composed 
of adults and the elderly (ages 20–100). These authors group countries with similar evolu-
tion of mortality over time into a homogeneous cluster. In particular, they observe for the 
years 1960-2018 that Italy and Spain are in the same clusters during the early years, and 
they together undergo a rapid transition from one cluster to another, while such a transition 
is slower in the United Kingdom, but essentially the difference between cluster is due to 
higher infant mortality of Southern countries in the first period. In the second half of the 
period, the disparities seemed to be reduced, and all the countries followed the shifting 
and compression process of the mortality curves previously described. In any case, even 
if time-dependent differences emerge, it is interesting to observe from our analysis that the 
limitation of not considering the factor Ii dependent on age and time is overcome by the fact 
that the RF is applied to residuals that depend on age, time and countries. In this way, the 
residuals of each model are adjusted through the RF, taking into account also the time and 
age components. And empirically, the model that works better in terms of accuracy on the 
test set is the Additive one plus the RF (see Table 3).

Table 3 shows the prediction model’s performance values for all models. A first conclu-
sion, common to all models, is that prediction performs better for females than males. Fur-
ther, the multiplicative model shows a worse global result for the prediction performance 
evaluation measures for both sexes. Taking into account the results from Table 1 relative 
to Tables 3 and 4, the multiplicative model can lead to over-fitting. The additive model can 
be more robust, and its parameters are better estimated with less erratic behaviour than the 
multiplicative model. In addition, residual modelling improves predictions and helps us to 
understand the relationships between the residuals and the underlying factors of age, year 
and country.

We note that the models have some advantages: easily interpretable parameters in as 
much as they describe the evolution of mortality over age, period and country; their compu-
tational cost is meagre as they only need an ARIMA model for forecasting; the comparison 
between countries is reduced to a unique index, and they are robust models considering the 
outliers. One comment must be made about the additive model; this type of model must be 
considered for future development as an alternative to similar models to predict a group of 
related populations.
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Concerning the work of other authors, we should highlight two distinctive features of the 
methodology presented here: first, that models are fitted using maximum-likelihood, and 
second, the projections of different models are compared in terms of error in probabilities of 
death, and not in terms of the error in logarithmic transformation of mortality measures as in 
Dong et al. (2020). In addition, the new Li-Lee multiplicative model offers the best overall 
performance, and the residuals are modeled, obtaining interpretable results and improved 
predictions, unlike other works that only use the models to fit and predict the mortality rates 
for countries such as Li and Lee (2005), Debón et al. (2011), or Russolillo et al. (2011). Fur-
thermore, the higher MSE values at extreme ages suggest challenges in capturing mortality 
trends among older age groups, highlighting areas for potential model refinement.

Although the conclusions about comparing the models are based on the three countries 
that we have chosen, we propose statistical tools which provide a clear framework for sup-
porting decisions in geographically disaggregated information about mortality trends. How-
ever, this study has limitations because the results from the analysis of one dataset cannot 
lead to general conclusions. Future research should explore additional machine learning 
techniques and alternative statistical approaches to further refine mortality models, par-
ticularly in addressing age-specific prediction challenges and enhancing forecasting robust-
ness in multipopulation settings. It would be useful to examine other datasets and research 
whether the conclusions are consistent for different studies.

A promising extension of our framework is to incorporate exogenous covariates into the 
RF residual-modelling stage, thereby capturing abrupt yet transitory shocks–e.g., a medi-
cal breakthrough that converts a lethal disease into a chronic condition. Embedding such 
context-specific information directly in the RF component, rather than solely in the deter-
ministic trend, could help disentangle structural shifts from short-lived anomalies and, in 
turn, sharpen forecast accuracy and interpretability. We leave a systematic exploration of 
this extension for future work.
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