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Representative Factor Generation for the Interactive Visual
Analysis of High-Dimensional Data

Cagatay Turkay, Student Member, IEEE, Arvid Lundervold, Member, IEEE,
Astri Johansen Lundervold, and Helwig Hauser, Member, IEEE

Abstract—Datasets with a large number of dimensions per data item (hundreds or more) are challenging both for computational and
visual analysis. Moreover, these dimensions have different characteristics and relations that result in sub-groups and/or hierarchies
over the set of dimensions. Such structures lead to heterogeneity within the dimensions. Although the consideration of these struc-
tures is crucial for the analysis, most of the available analysis methods discard the heterogeneous relations among the dimensions.
In this paper, we introduce the construction and utilization of representative factors for the interactive visual analysis of structures in
high-dimensional datasets. First, we present a selection of methods to investigate the sub-groups in the dimension set and associate
representative factors with those groups of dimensions. Second, we introduce how these factors are included in the interactive visual
analysis cycle together with the original dimensions. We then provide the steps of an analytical procedure that iteratively analyzes
the datasets through the use of representative factors. We discuss how our methods improve the reliability and interpretability of the
analysis process by enabling more informed selections of computational tools. Finally, we demonstrate our techniques on the analysis
of brain imaging study results that are performed over a large group of subjects.

Index Terms—Interactive visual analysis, high-dimensional data analysis.

1 INTRODUCTION

High-dimensional datasets are becoming increasingly common in
many application fields. Spectral imaging studies in biology and as-
tronomy, omics data analysis in bioinformatics, or cohort studies of
large groups of patients are some examples where analysts have to deal
with datasets with a large number of dimensions. It is not even uncom-
mon that such datasets have more dimensions than data items, which
generally makes the application of standard methods from statistics
substantially difficult (i.e., the “p >> n problem”). Most of the avail-
able analysis approaches are tailored for multidimensional datasets
that consist of multiple, but not really a large number of dimensions
and they easily fail to provide reliable and interpretable results when
the dimension count is in the thousands or even hundreds [1].

In addition to the challenge that is posed by a truly large number
of dimensions, it is often the case that dimensions have properties and
relations that lead to structures between the dimensions. These struc-
tures make the space of dimensions heterogeneous and can have differ-
ent causes. Dimensions can have difficult-to-relate scales of measure,
such as categorical, discrete and continuous. Some can be replicates
of other dimensions or encode exactly the same information acquired
using a different method. There can be explicit relations in-between
the dimensions that are known a priori by the expert. Some of these
relations are likely to be represented as meta-data already. Very im-
portantly also, there are usually inherent structures between the di-
mensions that could be discovered with the help of computational
and visual analysis, e.g., correlation relations or common distributions
types. Standard methods from data mining or statistics do not consider
any known heterogeneity within the space of dimensions – while this
might be appropriate for certain cases, where the data dimensions ac-
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tually are homogeneous, it is obvious that not considering an actually
present heterogeneity must lead to analysis results of limited quality.

A natural approach to understanding high-dimensional datasets is to
use multivariate statistical analysis methods. These tools provide the
analyst with the most essential measures that help with the extraction
of information from such datasets. However, a major challenge with
these tools is that their results are likely to become inefficient and un-
reliable when the dimension count gets substantially large [32]. Take,
for instance, principal component analysis (PCA), i.e., a method that
is a widely used for dimension reduction [21]. If we apply PCA to a
dataset with, for example, 300 dimensions, understanding the resulting
principal components is a big challenge, even for the most experienced
analysts.

Exactly at this point, the exploitation of any known structure be-
tween the dimensions can help the analyst to make a more reliable and
interpretable analysis. With an interactive visual exploration and anal-
ysis of these structures, the analyst can make informed selections of
subgroups of dimensions. These groups provide sub-domains where
the computational analysis can be done locally. The outcomes of such
local analyses can then be merged and provide a better overall under-
standing of the high-dimensional dataset. Such an approach is very
much in line with the goal of visual analytics [25], where the analyst
makes decisions with the support of interactive visual analysis meth-
ods.

In this paper, we present an approach that enables a structure-aware
analysis of high-dimensional datasets. We introduce the interactive
visual identification of representative factors as a method to consider
these structures for the interactive visual analysis of high-dimensional
datasets. Our method is based on generating a manageable number
of representative factors, or just factors, where each represents a sub-
group of dimensions. These factors are then analyzed iteratively and
together with the original dimensions. At each iteration, factors are
refined or generated to provide a better representation of the relations
between the dimensions.

To establish a solid basis for our method, we borrow ideas from
factor analysis in statistics and feature selection in machine learning.
Factor analysis aims at determining factors, representing groups of di-
mensions that are highly interrelated (correlated) [15]. These factors
are assumed to be high-level structures of dimensions, which are not
directly measurable. Similar to our motivation of an analysis of the
structures in the dimensions space, factor analysis also assumes that
there are inherent relations between the dimensions. However, factor
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analysis operates solely on the correlation relation between the dimen-
sions and does not allow the analyst to incorporate a priori information
on the structures. Moreover, similar to the other multivariate analysis
tools, the resulting factors become harder to interpret as the variable
count gets large [15]. A second inspiration for our approach are the
feature subset selection techniques, where variables (dimensions) are
ordered and grouped according to their relevance and usefulness to the
analysis [14]. Similarly, we interactively explore the set of dimensions
to extract sub-groups that are relevant for the generation of factors in
our method.

In order to visually analyze dimensions through the generation of
factors, we make use of visualizations where the dimensions are the
main visual entities. We analyze the generated factors together with
the original dimensions and make them a seamless part of the analy-
sis. Due to the iterative nature of our analysis pipeline, a number of
factors can be generated and refined as results of individual iterations.
We present techniques to compare and evaluate these factors in the
course of the analysis. Our factor generation mechanism can be both
considered as a method to represent the aggregated information from
groups of dimensions and a method to apply computational analysis
more locally, i.e., to groups of dimensions. Altogether, we present the
following contributions in this paper:

• Methods to create representative factors for different types of di-
mension groups

• A visual analysis methodology that jointly considers the repre-
sentative factors and the original dimensions

• Methods to assess and compare factors

2 RELATED WORK

In many recent papers, it has been reported repeatedly that the integra-
tion of computational tools with interactive visual analysis techniques
is of key importance in extracting information from the nowadays
highly challenging datasets. In that respect, Keim [25] describes the
details of a visual analysis process, where the data, the visualization,
hypotheses, and interactive methods are integrated to extract relevant
information. Perer and Shneiderman [29] also discuss the importance
of combining computational analysis methods, such as statistics, with
visualization to improve exploratory data analysis.

There are interesting examples of works where such an integration
has been done. In MDSteer [41], an embedding is guided with user
interaction leading to an adapted multidimensional scaling of multi-
variate datasets. A two-dimensional projection method, called the at-
tribute cloud, is employed in the interactive exploration of multivariate
datasets by Jänicke et al. [19]. Endert et al. [6] introduce observation
level interactions to assist computational analysis tools to deliver more
reliable results. Johansson and Johansson [20] enable the user to inter-
actively reduce the dimensionality of a dataset with the help of quality
metrics. In these works, interactive methods are usually used to refine
certain parameters for the use of computational tools. Our method,
differently, enables the integration of the computational tools by inter-
actively determining local domains where these tools are then applied
on. Fuchs et al. [13] integrate methods from machine learning with
interactive visual analysis to assist the user in knowledge discovery.
Oeltze et al. [28] demonstrate how statistical methods, such as correla-
tion analysis and principal component analysis, are used interactively
to assist the derivation of new features in the analysis of multivariate
data. With our work, we contribute to this part of the literature by
having the computational tools as inherent parts and integrating their
results seamlessly to the interactive visual analysis cycle. Moreover,
we bring together the local structures and the related analysis results
to construct a complete image of the relations in high-dimensional
datasets.

Multi-dimensional datasets, where the dimension count is a few
to several dozens approximately, have been studied widely in the vi-
sual analysis literature. Frameworks with multiple coordinated views,
such as XmdvTool [37] or Polaris [34], are used quite commonly by
now in visual multivariate analysis. Weaver [38] presents a method

to explore multidimensional datasets, where the analysis is carried out
by cross-filtering data from different views. Surveys by Wong and
Bergeron [42] and more recently Fuchs and Hauser [12] provide an
overview of multivariate analysis methods in visualization. Compared
to all these important related works there are however only few studies
published where really high-dimensional data are analyzed. One ex-
ample is the VAR display by Yang et al. [43], where the dimensions are
represented by glyphs on a 2D projection of the dimensions. In order
to lay out these glyphs in the visualization, multidimensional scaling
is used based on the distances between the dimensions. Fernstad et
al. [7] demonstrate their quality metric based reduction in the analysis
of high-dimensional datasets involving microbial populations.

Our now proposed method is realized through a visualization ap-
proach, where dimensions are the main visual entities and the analysis
is carried out together with the data items as recently presented by
Turkay et al. [36]. In this (dual analysis) approach, dimensions are an-
alyzed along with the data items in two dedicated linked spaces. This
concept enables us to include the representative factors, that we iden-
tify, tightly into the analysis. There are few other works where similar
dual analysis methods already proved to be useful, such as in param-
eter space exploration [4], temporal data analysis [3], and multi-run
simulation data analysis [24]. Kehrer et al. [23] integrate statistical
moments and aggregates to interactively analyze collections of multi-
variate datasets. Wilkinson et al. introduced graph-theoretic scagnos-
tics [39] to characterize the pairwise relations on multidimensional
datasets. In a later work [40], the same authors used these features
to analyze the relations between the dimensions. Similar to our work
where we analyze the feature space describing dimensions, Wilkin-
son et al. perform the analysis on the feature space that describes the
pairwise relations.

The structure of high-dimensional datasets and the relations be-
tween the dimensions have been investigated in a few studies, also.
Seo and Shneiderman devise a selection of statistics to explore the
relations between the dimensions in their Rank-by-Feature frame-
work [33]. They rank 1D or 2D visualizations according to statistical
features to discover relations in the data. However, in their method the
main focus is on the data items, not so much the dimensions. One very
relevant related work for us is the visual hierarchical dimension reduc-
tion method by Yang et al. [44]. They analyze the relations between
the dimensions to create a hierarchy that they later use to create lower-
dimensional spaces. In our method, we build upon this idea of con-
structing representative dimensions. However, their method mainly
involved an automatic derivation of the dimension hierarchy and the
representative dimensions were used as the new visualization domain.
In our approach, we treat the representative factors as objects of a dedi-
cated analysis by embedding them into the visualization together with
the original dimensions. Moreover, we provide different methods to
generate, compare and evaluate the representative factors. In a similar
work, Huang et al. [17] utilized the derived dimensions together with
the original dimensions. The authors used several dimension reduction
methods to derive new dimensions and observed how these dimen-
sions correlate with certain characteristics of the original dimensions.
In an interesting paper from the analytical chemistry field by Ivosev
et al. [18], the authors present the idea to group variables according to
their inter-correlations and utilize them in dimension reduction and vi-
sualization. Although their method is applied only to principal compo-
nent analysis, it clearly demonstrates that grouping of variables indeed
improves the analysis of high-dimensional datasets.

Our work now contributes to the literature with a structure-aware in-
teractive visual analysis scheme for high-dimensional datasets. More-
over, we demonstrate that the visually-guided use of computational
analysis tools can provide more reliable and interpretable results.

3 REPRESENTATIVE FACTORS

With our method, we explore and consider the structures in the di-
mensions space during the high-dimensional data analysis. In order to
achieve a structure-aware analysis of the data, we represent the under-
lying structures with representative factors, or factors, for short. We
then analyze and evaluate these factors together with the original data
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Fig. 1. An illustration of our representative factor generation method.
Two statistics s1 and s2 are computed for all the dimensions and dimen-
sions are plotted against these two values (1). This view reveals a group
that shares similar values of s1 and s2 (2) and this group is selected to
be represented by a factor. We generate a representative factor for this
group and compute the s1 and s2 values for the factor (3). We observe
the relation of the factor to the represented dimensions and the other di-
mensions (4). The analysis continues iteratively to refine and compare
other structures in the data.

to achieve a more informed use of the computational analysis tools.
A conceptual illustration of our approach is presented in Figure 1.

Here, we start by computing statistics s1 and s2, e.g., mean and stan-
dard deviation, for each of the dimensions in the dataset. We analyze
the dimensions by visualizing them in a s1 vs. s2 scatterplot, where
each visual entity (i.e., point) is a dimension (1). We notice some
structure (a cluster in the lower right), which we then represent with
a factor (2). With the help of a computational method, e.g., PCA, we
generate the representative factor for the selected group of dimensions
and replace these dimensions with the generated factor (3). We con-
tinue the analysis by exploring the relations between the factor and the
represented dimensions, as well as the other dimensions (4). The anal-
ysis continues iteratively with the generation of new factors and/or the
refinement of the existing ones.

Our method operates (in addition to the original dataset) on a data
table dedicated specifically to the dimensions. We construct this
dimensions-related data table by combining a set of derived statistics
with available meta-data on the dimensions. In order to achieve this,
we assign a feature vector to each dimension, where each value is a
computed statistic/property or some meta-data about this dimension.
If we consider the original dataset to consist of n items (rows) and p
dimensions (columns), the derived data table has a size of p× k, i.e,
each dimension has k values associated to it. The set of dimensions is
denoted as D and the new dimensions properties table as S.

Through a visual analysis of S, we determine structures within the
dimensions that then result in a number of sub-groups. We represent
these sub-groups of dimensions with representative factors and assign
feature vectors to these factors by computing certain features, e.g.,
statistics. Since factors share the same features as the original dimen-
sions, this enables the inclusion of the factors into the visual analysis
process. Moreover, these factors are also used to visually represent
the associated sub-group of dimensions. Factors serve both as data
aggregation and as a method to apply computational tools locally and
represent their results in a common frame together with the original
dimensions.

As an illustrative example, we analyze an electrocardiography

(ECG) dataset from the UCI machine learning repository [9] in the
following sections. The dataset contains records for 452 participants,
some of whom are healthy and others with different types of cardiac
arrhythmia. There are 16 known types of arrhythmia and a cardiologist
has indicated the type of arrhythmia for all the records in the dataset.
This dataset is analyzed to determine the features that are helpful in
discriminating patients with different arrhythmia types.

The raw ECG measurements are acquired through 12 different
channels, and for each single channel 22 different features (a mix-
ture of numerical and nominal attributes) are calculated (leading to
12×22 = 264 values per individual). Already this description reveals
an important inherent structure within all dimensions, i.e., that they
form kind of a 2D array of dimensions (channels vs. features). In
addition to the above ECG measurements, 11 additional ECG-based
features are derived and 4 participant specific pieces of information
are included. The result is a 452×279 table (n = 452 and p = 279).

3.1 Computational and Statistical Toolbox

In order to generate and integrate representative factors into the visual
analysis process, we need methods to visually determine the factors
and to analyze them together with the other dimensions in D. The dual
analysis framework as presented by Turkay et al. [36] provides us with
the necessary basis to visually analyze the dimensions together with
the data items. We make use of visualizations, where the dimensions
are the main visual entities, as well as (more traditional) visualizations
of the data items. In order to make the distinction easier, the visual-
izations with a blue background are visualizations of data items and
those with a yellow background are visualizations of the dimensions.
For the construction of the factors, we determine a selection of com-
putational tools and statistics that can help us to analyze the structure
of the dimensions space.

As one building block, we use a selection of statistics to populate
several columns of the S table. In order to summarize the distributions
of the dimensions, we estimate several basic descriptive statistics. For
each dimension d, we estimate the mean (μ), standard deviation (σ ),
skewness (skew) as a measure of symmetry, kurtosis (kurt) to represent
peakedness, and the quartiles (Q1−4) that divide the ordered values
into four equally sized buckets. We also include the robust estimates
of the center and the spread of the data, namely the median (med) and
the inter-quartile range (IQR). Additionally, we compute the count of
unique values (uniq) and the percentage of univariate outliers (%out)
in a dimension. uniq values are usually higher for continuous dimen-
sions and lower for categorical dimensions. We use a method based
on robust statistics [23] to determine %out values. In order to inves-
tigate if the dimensions follow a normal distribution, we also apply
the Shapiro-Wilk normality test [31] to the dimensions and store the
resulting p-values (pValshp) in S. Higher pValshp indicate a better fit
to a normal distribution. In the context of this paper, we limit our in-
terest to the normal distribution due to its outstanding importance in
statistics [21].

One common measure to study the relation between dimensions is
the correlation between them. We compute the Pearson correlation
between the dimensions to determine how the values of one dimension
relate to the values of another dimension. Correlation values are in the
range [-1, +1] where -1 indicates a perfect negative and +1 a perfect
positive correlation.

Additionally, we use multidimensional scaling (MDS) to help us to
investigate the structure of the dimensions space. MDS is a method
that projects high-dimensional data items usually to a 2D space by
preserving the distances between them as good as possible. Here, we
use MDS directly on the dimensions, similar to the VAR display by
Yang et al. [43]. We use the correlations between the dimensions to
compute a distance matrix, where this distance information is used as
an input to MDS. As a result, MDS places the highly inter-correlated
groups close to each other. All these computational analysis tools are
available through the integration of the statistical computation package
R [35]. This mechanism enables us to easily include a variety of tools
in the analysis.



3.2 Factor Construction
Constructing factors that are useful for the analysis is crucial for our
method. Since factors are representatives for sub-groups of dimen-
sions, they are constructed to preserve different characteristics of the
underlying dimensions. The machine learning and data mining liter-
ature provides us with valuable methods and concepts under the title
of feature (generally called an attribute in data mining) selection and
extraction [14]. Feature extraction methods usually map the data to a
lower dimensional space. On the other hand, feature subset selection
methods try to find dimensions that are more relevant and useful by
evaluating them with respect to certain measures [5].

Here, we introduce three different methods to construct represen-
tative factors using a combination of feature extraction and selection
techniques. Each factor construction method is a mapping from a sub-
set of dimensions D′ to a representative factor DR. The mapping can
be denoted as f : D′ → DR, where D′ ∈ 2D. The t dimensions that are
represented by DR are denoted as dR

0 , . . . ,d
R
t . Each factor creation is

followed by a step where we compute a number of statistics for DR
and add these values to the S table. In other words, we extend the D
table with a DR column and the S table with a row associated with DR.
Notice that each DR column consists of n values similar to the other
columns of the D table.

3.2.1 Projection Factors
The first type of representative factor is the projection factors. Such
factors are generated using the output of projection-based dimension
reduction methods that represent high-dimensional spaces with lower
dimensional projections. Projection factors are preferred when we
want the resulting factor(s) to represent most of the variance of the
underlying dimensions [21]. In order to determine structures that are
suitable to be represented via this type of factors, we analyze the cor-
relation relations between the dimensions. Subsets of dimensions that
are highly inter-correlated are good candidates to be represented by a
projection factor.

In the context of this paper, we use principal component analysis as
the underlying reduction method. However, depending on the nature
of the data and the analysis, different reduction methods [21] could be
employed here, too.

During each projection-factor generation we create two factors, be-
ing the first two principal components here. We choose to include two
components in order to be able to visualize also the data items in a
scatterplot when needed. For D′, where the variance structure cannot
be well captured by two components, we suggest two options. The first
option is to apply PCA to several subsets of D′ and create factors for
each of these subsets. These subsets can be determined by observing
the inter-correlations between the dimensions in D′ and separating the
sub-groups with stronger inter-correlations. The second option is to
use more components (factors) than two where a more accurate num-
ber can be determined by certain methods suggested in the literature,
such as observing a scree-plot [21]. In our analysis, we prefer the first
method instead of creating a larger number of factors per D′, since it
creates easier to interpret factors.

In order to determine sub-groups of dimensions that are suitable to
be represented with projection factors, we can make use of MDS. If
we apply MDS on the dimensions using the correlation matrix as the
distance function and visualize the results, the clusters in such a view
corresponds to highly inter-correlated sub-groups, i.e., suitable for a
projection factor. In Figure 2-a, we see such a sub-group of dimen-
sions (consisting of 10 dimensions) that is suitable to be represented
with a projection factor. We then apply PCA to these 10 selected di-
mensions and store the first two principal components as the represen-
tative factors for these 10 dimensions.

Projection factors are the most suitable factors when the goal of
the analysis is dimension reduction. Since different dimension re-
duction methods have different assumptions regarding the underlying
data, evaluating these assumptions leads to more reliable results. In
that respect, dimensions can be analyzed in terms of their descriptive
statistics, normality test scores and uniq values to determine their suit-
ability.
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Fig. 2. Groups of dimensions that are suitable to be represented by
different types of factors. a) MDS is applied to the dimensions using
the correlation information. A highly inter-correlated group is selected
to be represented by a projection factor. b) A group of dimensions that
are likely to come from a normal distribution (skew and kurt ∼ 0) is to
be represented by a distribution model factor. c) Meta-data is utilized
to select a group of dimensions (same channel, different features) that
then can be represented by a medoid factor.

3.2.2 Distribution Model Factors
The second type of representative factor is the distribution model fac-
tors. These factors represent the underlying dimensions with a known
distribution where the distribution parameters are derived from the un-
derlying dimensions. Distribution model factors are suitable to repre-
sent groups of dimensions that share similar underlying distributions.
In the context of this paper, we limit our investigation of the underly-
ing distributions to the normal distribution. If a group of dimensions
are known to come from a normal distribution, these dimensions can
be represented by a normal distribution where the modeled distribu-
tion parameters are derived from the group. The representative normal
distribution can be written as:

N (
t−1

∑
i=0

medi

t
,
t−1

∑
i=0

IQRi
t

)

Here, medi is the median and IQRi is the inter-quartile range of the
dimension di where d0, . . . ,di ∈ D′ . We prefer the robust estimates of
the center and the spread of the distributions to make our distribution
generation step more resistant to outliers. As a final step, we draw n
values from N to generate the representative factor DR. Notice that,
here, the N distribution is one dimensional, thus we create a single
factor for the underlying t dimensions. In other words, DR is a new
artificial dimension, where the data items are known to come from the
modeled distribution N .

In Figure 2-b, we visualize the dimensions by a skew vs. kurt scat-
terplot. Normal distributions tend to have skew and kurt values very
close to 0. This view enables us to select a group that is likely to fol-
low a normal distribution, and thus, suitable to be represented via a
distribution model factor.

Distribution model factors are suitable for distribution fitting tasks.
To extend the applicability of this type of factors, different types of
known distributions could be considered as well, such as Student’s
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Fig. 3. Integrating factors in the visual analysis. a) The normalized
dimensions of the ECG data are visualized in a med vs. IQR scatterplot.
b) Each channel in ECG is represented by a factor. The coloring is done
based on the aggregated correlation. c) The factor for channel DI is
expanded (DDI

R ) and visually connected to the dimensions it represents
(dR). The coloring is done on the mutual correlations between DDI

R and
dR. d) The relation between DDI

R and dR are different for skew and kurt
values. e) Two color maps are used to map correlation information,
the first is used to color representative factors using the aggregated
correlation and the second for the represented dimensions.

t-distribution or the chi-square distribution. Depending on the dis-
tribution type to be tested, dimensions can be visualized either over
descriptive statistics or fitness scores to known distributions.

3.2.3 Medoid Factors
The third type of representative factor is the medoid factors, that are
generated by selecting one of the members of D′ as the representative
of D′. Such factors are preferred when the dimensions in D′ are known
to share similar contextual properties or some of the dimensions could
be filtered as redundant. The user may prefer to select one of the di-
mensions and discard the rest due to redundancy. Meta-data on the
dimensions provide a good basis to determine and select the suitable
dimensions to be represented by medoid factors.

In order to automatically determine one of the dimensions as the
representative, we employ an idea from partitioning around medoids
(PAM) clustering algorithm [22]. In this algorithm, cluster centers are
selected as the most central element of the cluster. Similarly, to find
the most central element, we choose the dimension d ∈ D′ that has the
minimum total distance to the other dimensions, computed as:

argmin
d

(
t−1

∑
j=0

dist(d,d j)),d �= d j,(d,d j ∈ D′)

where dist is chosen as the Euclidean distance and t is the total number
of dimensions in D′. This dimension d is then selected as the repre-
sentative. In Figure 2-c, we make use of the meta-data information
to determine a group that is suitable to be represented via a medoid
factor. Here, we plot the channel codes and the feature codes on a

med

IQR
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2 factors9 dimensions 21 dimensions 

Fig. 4. Representative factors can be brushed together with the original
dimensions. When a factor is selected, all the dimensions that are rep-
resented by the factor are highlighted in the other views. And similarly,
when one of the represented dimensions is selected in another view, the
associated factor is highlighted. Here, 9 raw dimensions and 2 factors
(each representing 6 dimensions) are brushed. A total of 9+ 2× 6 = 21
dimensions are highlighted in the other views.

scatterplot. The first five features associated with a channel are known
to be associated with the width of sub-structures in the channel, thus
they can be represented by a medoid factor.

3.3 Integrating Factors in the Visual Analysis
In order to include the factors into the dimensions visualizations, we
compute all the statistics that we already computed for the original
dimensions also for the representative factors. We add these values on
DR as a row to the table S. This enables us to plot the factors together
with the original dimensions.

Figure 3-a shows the dimensions in a plot of med vs. IQR. We then
select all the continuous dimensions that are related to the first channel
DI and apply a local PCA to the selected dimensions. We leave out the
categorical data dimensions since they are not suitable to be included
in PCA calculations. We perform the same operation also for the other
11 channels. This leaves us with a total of 12 representatives, each of
which represents 16 dimensions. We compute the med and IQR values
also for the DRs and replace the original dimensions with their repre-
sentatives in Figure 3-b. The representatives are colored in shades of
green to distinguish them from the original data dimensions. Here,
we see the relation between different channels through the distribution
of the factors over the med vs. IQR plot. In order to see how a sin-
gle factor relates to the represented dimensions over the med and IQR
values, the factor is expanded and connected with lines to the repre-
sented dimensions (Figure 3-c). The relations between the factor and
the represented dimensions are also observed on a skew vs. kurt view
(Figure 3-d).

Brushing representative factors: Representative factors require a
different way of handling in the linking and brushing mechanism.
When the user selects a representative factor DR in a view, all the
dimensions dR

i that are represented by DR in the other views are high-
lighted. Similarly, when the user selects one of the dR

i dimensions, the
related DR is highlighted in the other views. Figure 4 illustrates how
the selections of factors are linked to the other views. Here, for each
factor selected in the med vs. IQR view, 6 associated dimensions are
selected in the second skew vs. kurt view. Therefore there are 21 se-
lected dimensions in total in the right view. This mechanism enables
us to interact with information at both the original dimension level and
the aggregated level.

3.4 Evaluation of the representatives
The evaluation and a more quantitative comparison of the factors is
an essential part of a representative factor based analysis pipeline as
presented here. We provide two different mechanisms to evaluate the
factors using quantitative measures.
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Fig. 5. Two profile plots for two different representative factors (visible in
the med vs. IQR plot) are visualized. Each bin in the profile plots is asso-
ciated with the listed statistics. The profile plot for the first factor shows
that most of the features of the represented dimensions are preserved.
However, the second profile indicates that the factor fails to represent
the features.

The first method is related to the correlation based coloring of the
factors and the represented dimensions. As an inherent part of the fac-
tor generation, we compute the Pearson correlation between DR and
the dimensions that it represents dR

i . The result is a set of t values
corrR, where each value is in the range [-1, +1] as described already.
We color-code these pieces of correlation information in the views us-
ing two different color maps (Figure 3-e). Firstly, we represent the
aggregated correlation values as shades of green. For each DR, we
find the average of the absolute values of corrR. More saturated green
represent higher levels of correlation (either positive or negative) and
paler green represent lower levels. Secondly, we encode the individual
values of corrR when a factor is expanded. Each represented dimen-
sion dR

i is colored according to the correlation with DR. Here, we use
a second color map where negative correlations are depicted with blue
and positive correlation with red.

The second mechanism to evaluate the factors is called profile plots.
When the set of statistics associated with dimensions is considered,
factors do not represent all the properties equally. If we consider again
how the same factor relates to the represented dimensions over med
and IQR in Figure 3-c and skew vs. kurt, in Figure 3-d, we see different
levels of similarity between DR and the represented dimensions. Since
these relations for all the statistics, i.e., columns of S, are different,
we build profile plots to visually represent this difference information.
In order to find the similarity between DR and di

i with respect to the
statistic s, we compute the following value:

sims = 1−
1
t ∑t−1

i=0 |s(DR)− s(dR
i )|

max(s(dR
i ))−min(s(dR

i ))

The sim values are in the range [0, 1] where higher values indicate that
the representative has similar s values as the represented dimensions.
We present the sims values for all the different statistics in a histogram-
like view called profile plots as seen in Figure 5-right. Here, each
bin of the plot corresponds to a different s (as listed in the figure)
and the sims value determines the height of the bin. Additionally, we
color-code the average of sims values as the background to the profile
plots, with the color map (marked 1) in Figure 3. In Figure 5, we
see two examples of factors where the profile plot for the first factor
preserves most of the features of the underlying dimensions. However,
the second profile plot shows that the factor has different values for
most of the features of the underlying dimensions.

4 ANALYTICAL PROCESS

The structure-aware analysis of the dimensions space through the use
of these factors involves a number of steps. In the following, we go
through the steps and exemplify them in the analysis of the ECG data.
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Fig. 6. a) Different normalization methods could be suitable for different
types of dimensions. We use unit scaling for group 1, z-standardization
for group 2 and robust standardization for group 3. b) Three differ-
ent normalizations are applied on the same group of dimensions and
three sets of factors (using PCA) are generated accordingly for the same
group. The differences between the results show that transformations
can affect the outcomes of computational tools.

Still, these steps are general enough to provide a guideline for the anal-
ysis of heterogeneous high-dimensional data using the representative
factors.

Step 1: Handling missing data – Missing data are often marked prior
to the analysis and available as meta-data. It is important to handle
missing data properly and there are several methods suggested in the
corresponding literature [15]. We employ a simple approach here and
replace the missing values with the mean value of continuous dimen-
sions prior to the normalization step. Similarly, in the case of cate-
gorical data, we replace the missing values with the mode of the di-
mension, i.e., the most frequent value in the dimension. Moreover, we
store the number of missing values per each dimension in S for further
reference.

Step 2: Informed normalization – Normalization is an essential step
in data analysis to make the dimensions comparable and suitable for
computational analysis. Different data scales require different types
of normalization (e.g., for categorical variables scaling to the unit in-
terval can be suitable, but not z-standardization) and different analysis
tools require different normalizations, e.g., z-standardization is pre-
ferred prior to PCA. We enable three different normalization options,
namely, scaling to the unit interval [0,1], z-standardization, and, ro-
bust z-standardization. In the robust version, we use med as the robust
estimate of the distribution’s center and IQR for its spread. In order
to determine which normalization is suitable for the dimensions, we
compute certain statistics, namely uniq, pValshp and %out, prior to
normalization. We visualize uniq vs. %out (Figure 6-a) to determine
the groups of dimensions that are suitable for different types of nor-
malizations. Dimensions with low uniq values (marked with 1 in fig-
ure) are usually categorical and scaling to the unit interval is suitable.
Dimensions with higher uniq values (marked 2) are more suitable for
z-standardization. And, for those dimensions that contain larger per-
centage of one dimensional outliers (marked 3), a robust normaliza-
tion is preferable. We normalize the same sub-group of dimensions
using all the three methods and apply PCA separately on the three dif-
ferently normalized groups. Figure 6-b shows the first two principal
components factors. We observe that non-robust and robust normal-
izations resulted in similar outputs, however the unit scaling resulted
in PCs that carry lower variance.

Step 3: Factor generation – In this step, we analyze the structures
in the dimensions space firstly through the help of meta-data informa-
tion. We choose to represent each channel only by the first principal
component. Each channel in the ECG data has 22 dimensions associ-
ated, however, we select a sub-group of these features (the continuous
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Fig. 7. A sample analysis of the ECG dataset. One factor for each of the channels is created and displayed in a uniq vs. %out plot (1). One channel
V 2 has a high %out value. The expanded dimensions shows that it has strong correlations with some of the dimensions (solid ellipse) and less with
the other (dashed ellipse). We use all the underlying dimensions to apply PCA to the subjects and observe two groups (2), however with some
noise. We analyze further and create new factors for the two sub-groups (marked with the ellipses) (3). When we apply PCA using these subgroups
separately, we see that the grouping is due to the strongly correlated dimensions (4) and there was no distinctive information in the other ones (5).
We bring up a histogram where bins are different arrhythmia types. We observe that the left group in plot 4 is mainly the subjects with coronary
artery disease. This means that V 2 is a good discriminator for such types of arrhythmia.

features (dimensions) that have larger uniq values) and then construct
projection factors for each channel. The resulting groups are now dis-
played on a uniq vs. %out plot (Figure 7).

Step 4: Evaluating and refining factors iteratively – In figure 7-1
we notice that the factor that is representing the V 2 channel (denoted
as DV 2

R ), has a higher percentage of 1D outliers. This is interpreted as
a sign of an irregular distribution of items in this factor and we decide
to analyze this factor further. First, we have a look at the items in a
scatterplot of the first two components of DV 2

R and we clearly see that
there are two separate groups (figure 7-2). However, when we expand
the selected factor to see its relation with the underlying dimensions,
we observe that there are dimensions that the factor has strong correla-
tions (D′

1) and some other that have weak correlations (D′
2). We decide

to refine this factor further by creating two smaller groups D′
1 and D′

2
and visualize the new factors in the same view (Figure 7-3). When we
observe the items in visualizations of the first two components of the
new factors (Figure 7-4,5), we see that the grouping is solely due the
dimensions in D′

1. The dimensions in D′
2 carry no significant informa-

tion.
In order to the analyze the separated group of patients in Figure 7-

5, we observe the arrhythmia class label column in a histogram. We
find out that the selected group accounts for almost all the patients
with coronary artery disease (Figure 7-6). This shows that these three
dimensions associated with the V 2 channel are distinctive features for
coronary artery disease.

Here, we present a step-by-step iterative analysis where at each it-
eration we refine the factors and dig deeper into the data. The above
example demonstrates how the representative factors enables a more
controlled use of computational tools and a better understanding of the
relations in-between the dimensions.

5 USE CASE: ANALYSIS OF HEALTHY BRAIN AGING STUDY
DATA

In this use case we analyze the data related to a longitudinal study of
cognitive aging [2, 46]. The participants in the study were healthy

individuals, recruited through advertisements in local newspapers. In-
dividuals with known neurological diseases were excluded before the
study. All participants took part in a neuropsychological examination
and a multimodal imaging procedure, with about 7 years between the
first and third wave of the study. One purpose of the study was to in-
vestigate the association between specific, image-derived features and
cognitive functions in healthy aging [46]. In the study, 3D anatom-
ical magnetic resonance imaging (MRI) of the brain has been com-
plemented with diffusion tensor imaging (DTI) and resting state func-
tional MRI [16, 45]. Here we are interested in the analysis of the
anatomical MRI recordings. These recordings are segmented auto-
matically [10], and statistical measures, such as surface area, thickness
and volume (among several others) are computed for each of the seg-
mented cortical and subcortical brain regions. The neuropsychological
examination covered tests of motor function, attention/executive func-
tion, visual cognition, memory- and verbal function. The participants’
results on these tests are evaluated by a group of neuropsychologists.

The dataset covers 83 healthy individuals with the measurements
from the first wave of the study in 2005. For each subject, a T1-
weighted image was segmented into 45 anatomical regions, and 7 dif-
ferent measures were extracted for each region. For a complete list of
brain regions, refer to the work by Fischl et al. [8]. These computa-
tions are done automatically using the software called Freesurfer [10].
The 7 features associated with each brain region are number of voxels,
volume and mean, standard deviation, minimum, maximum and range
of the intensity values in the region. This information on the brain re-
gions and the features is represented in the meta-data file, which is then
used in the analysis. The above operation creates 45×7 = 315 dimen-
sions per subject. In addition, details about each individual, such as
age and gender, and the results of the neuropsychological examination
are added to this dataset. With this addition, the resulting dataset has
357 dimensions. In other words, the resulting table’s size is 83×357
– a great challenge for visual as well as computational analysis. Such
a high dimensionality usually requires analysts to delimit the analysis
to a selected subset of segments, based on an a priori specified hypoth-
esis. Our aim here is to discover different subsets of individuals and
brain regions that are relevant for building new hypotheses.
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We start our analysis with the missing value handling and the nor-
malization step. Missing values in the dataset are identified with dif-
ferent strings in different columns of our dataset. And these identifiers
(specific for each dimension) are recorded in the meta-data file. We
replace the missing values with the mean (or mode) of each column.
In Figure 8, we see the normality test values before and after the re-
placement. It is seen that some of the dimensions (marked with the big
rectangle) have a large number of missing values which affect their fit-
ness to normality. One example is the selected CC-middle posterior
dimension (histograms in Figure 8), which shows a skewed histogram
first (the binning of the histogram is distorted by missing values), and
then, nicely fits to a normal distribution after the replacement. We con-
tinue with the normalization where we prefer different normalizations
for different types. Here, dimensions related to participant specific in-
formation and the memory test are scaled to the unit interval and the
rest of the dimensions are z-standardized.

After these initial steps, we start by investigating the 7 different
features associated with the brain regions and generate 7 projection
factors for these 7 sub-groups. We select these groups through the use
of the available meta-data (not shown in the images here). Each factor
here represents 45 dimensions, being the different brain regions, e.g.,
one sub-group contains all the number of voxels columns for the 45
brain regions. We visualize these factors over a med vs. IQR plot (Fig-
ure 9-a) and bring up a matrix of profile plots, Figure 9-b, for these
factors. The first observation we make through the profile plots is that
the number of voxels (marked 1) and volume (2) features carry identi-
cal information. We decide that one of these features needs to be left
out. In this specific example it is, of course, clear that number of vox-
els is equal to the volume. However, such relations may not be always
easily derived from the names of the features and require visual feed-
back to be discovered. Moreover, the profile plot reveals that the range
of intensity feature (7) preserves most of the statistics in the underly-
ing dimensions. We also mark the standard deviation of intensities as
interesting, since the underlying dimensions have different correlation
relations with the representative factor. This indicates that this feature
is likely to show differences between the brain regions.

We continue by delimiting the feature set for the brain regions to
those two selected features. This means that we delimit the operations
to 45× 2 dimensions and apply MDS on these 90 dimensions using
the correlation matrix as the distance values. We identify a group
of dimensions that are highly correlated in the MDS plot (Figure 9-
c). We find out that this group is associated with the sub-structures
in the Cerebellum Cortex (CerCtx) and CerCtx is represented with 5

sub-regions in the dataset. We decide to represent all the dimensions
related to the CerCtx via a medoid factor.

As the next step, we create factors to represent each brain-region
(not CerCtx, since it is already represented by a medoid factor). We
compute a PCA locally for each brain region and create representa-
tive factors. In Figure 9-d, we see the factors (using only the first
component) over a normality score vs. %out plot. Here, each factor
represents a single brain region. We select the brain regions, where
the representative shows a normal distribution. Such a normally dis-
tributed subset provides a reliable basis to apply methods such as PCA
on the participants. From this analysis, the regions of interest are right
and left lateral ventricle, brain stem, left and right choroid plexus and
right inferior lateral ventricle. Using only the selected regions, we
apply PCA on the subjects (Figure 9-e). We select a group of out-
lier participants and visualize them on a scatterplot of birth year vs.
gender. We observe that this group is mainly composed of older par-
ticipants. This observation leads to the hypothesis that the selected
brain structures are affected by aging.

Here, we comment on the findings related to the the selected brain
regions. Right and left lateral ventricle are part of the ventricular sys-
tem that are filled with cerebrospinal fluid (CSF). These regions are
interesting and expected findings, and they are known to increase with
age (since the brain tissue parenchyma shrinks and the intracranial vol-
ume remains constant). Brain stem image information might not be so
reliable in the periphery of the core magnetic field homogeneity of the
scanner, thus needs to be left out from the hypothesis. Left and right
choroid plexus are small protuberations in the ventricles’ walls/roof
that produces CSF. It is unexpected for these structures to influence
interesting age-related associations. However, this is an unexpected
and important finding that our analysis can provide and can be subject
to further investigation.

In order to validate the significance of our findings, we focused on
the nine participants that we selected in Figure 9-e. As mentioned
above, we analyzed the data from 2005, i.e., when all the participants
are known to be healthy. Since the data is from a longitudinal study,
there are internal reports on how the cognitive function of the partici-
pants evolved over time in the next waves of the study. Through these
reports, we observe that one of the nine participants is described as
showing an older infarct (through MRI scans) and six of the remain-
ing participants (75%) showed declining cognitive function during the
study period. The percentage (of cognitive function decline) in the
other participants is 28%. This shows a clinical importance of the
selected participants. Moreover, this result supports the above hypoth-
esis that the selected brain regions are related to age-related disorders.
All in all, the above observations clearly suggest that the interactive
visual analysis of the MRI dataset leads to significant and interesting
results that are very unlikely to be achieved using conventional analy-
sis methods.

Above, we have presented only a subset of the analytical studies
that we performed on this dataset. The overall analysis benefits highly
from the comparison and the evaluation of the computational analysis
results that are performed locally. We demonstrate that our methods
are helpful in exploring new relations that provide a basis for building
new hypotheses.

6 DISCUSSIONS

To adopt our approach, the experts need to have a deep understanding
of the statistics and computational tools that are employed in the analy-
sis. This makes the learning curve of our system steeper than classical
visual analysis systems. However, we observed that our tool could eas-
ily be integrated into the working pipeline of neuroinformaticians and
neuropsychologists. These experts who analyze such complex datasets
normally make use of computational analysis tools such as Matlab or
R [35] and have an overall understanding of computational analysis.
And compared to these systems, our solution is much more intuitive
thanks to the support from interactive visual methods in the use of
computational tools. We even state that such a tool can easily serve
as an educative tool to train scientists in multivariate computational
analysis. However, clear instructions and a video demonstration of
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Fig. 9. Analysis of the healthy brain aging dataset. We generate factors for the 7 types of features (a). Each factor represents 45 dimensions (the
number of brain regions). We observe the profile plots for these seven factors (b). The profile plots for number of voxels and volume (1 and 2)
reveal that these two features are identical, thus we discard one of them. One of the factors (4) has a varied correlation relation with the underlying
dimensions and another factor (7) is a strong representative of the statistics over the brain regions. For each brain region, we limit the features
to these two and apply MDS on this subset of dimensions (c). The MDS reveals a tightly inter-related group of dimensions that is found to be
associated with the Cerebellum Cortex (CerCtx). CerCtx is represented by a medoid factor and the rest with projection factors. These factors, each
representing a brain region, are visualized on a pValshp vs. %out plot (d). 6 of the “most normally” distributed factors are selected. PCA is applied on
the participants. We notice a group of individuals with outlying values (e) and find out that this group consists of elderly subjects (f). We conclude
that the selected 6 brain regions are likely to be affected by aging (this hypothesis would still have to be tested to make a more definite statement).

an analysis of a simple dataset is regarded as highly important. One
suggestion to improve the usability of the system is to further exploit
the integration of R and develop a modular system that is accessible
also for the domain experts. In order to get a clearer image of the re-
quirements, a formal user study is needed. Such a study could lead to
simplifications in the analysis process. To make the high-level opera-
tions more accessible and traceable, we need to devise special meth-
ods where the outcomes of the iterative steps are visually abstracted
through a work-flow like interface. Such abstractions can also play a
role in the presentation of the results and improve the usability of our
system.

Different visualization methods such as parallel coordinate plots
could also be incorporated to visualize the factors together with the
original dimensions. One possible method to achieve this is to use
hierarchical parallel coordinates, suggested by Fua et al. [11]. At sev-
eral stages in our analysis, we are building new factors using a subset
of factors, which implies that we are creating a hierarchy of factors.
In our present realization, we only visualize the relations between the
factors and the raw dimensions. Augmenting the visualization with
such a hierarchy can likely lead to additional insight. Hierarchical dif-
ference scatterplots, as introduced by Piringer et al. [30], is a powerful
technique to visualize such hierarchies.

Apart from the present case of healthy aging, the applicability of
our tool could also be explored in the broader context of open access
brain mapping databases such as BrainMap [26] and NeuroSynth [27].
These databases provide imaging data and meta-data from several
thousand published articles available for meta-analyses and data min-
ing, and thus are suitable for visual and explorative analysis methods.

7 CONCLUSION

With our method, we present how the structures in high-dimensional
datasets can be incorporated into the visual analysis process. We intro-

duce representative factors as a method to apply computational tools
locally and as an aggregated representation for sub-groups of dimen-
sions. A combination of the already available information and the
derived features on the dimensions are utilized to discover the struc-
tures in the dimensions space. We suggest three different approaches
to generate representatives for groups with different characteristics.
These factors are then compared and evaluated through different in-
teractive visual representations. We mainly use dimension reduction
methods locally to extract the information from the sub-structures.
Our goal is not to solely assist dimension reduction but rather to enable
an informed use of dimension reduction methods at different levels to
achieve a better understanding of the data. In both of the analysis ex-
amples, we observe that the results of the analysis become much more
interpretable and useful when the analysis is carried iteratively on local
domains and the insights are joined at each iteration.

The usual work flow when dealing with such complex datasets is to
delimit the analysis based on known hypotheses and try to confirm or
reject these using computational and visual analysis. With the advent
of data generation and acquisition technologies, new types of highly
complex datasets are produced. However, when these datasets are con-
sidered, little is known a priori, thus data driven, explorative methods
are becoming more important. Our interactive visual analysis scheme
proved to be helpful to explore new relations between the dimensions
that can provide a basis for the generation of new hypotheses.
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