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Abstract 

Variation in the type of structural system (bent-to-deck connection) not only significantly impacts the 

seismic performance of regular bridges but also adds complexity when skewness irregularity is involved. 

Previous studies have separately evaluated the impact of either the type of structural system or skewness 

on the vulnerability assessment of bridges. The present study examines, for the first time, the combined 

effects of structural systems and skew angles on the seismic response of multi-span reinforced concrete I-

girder bridges. For this purpose, two prevalent superstructure systems, namely, multi-span simply 

supported and multi-span continuous, are considered. For each system, the boundary condition at 

superstructure-substructure interface is modeled assuming elastomeric bearings with steel dowels. In the 

case of the multi-span continuous system, two more commonly applied types of bent-to-deck connection 

are considered, including pinned connectivity and elastomeric bearings without steel dowels. To account 

for the irregularity, five skew angles ranging from 0° to 60° are also considered. Probabilistic seismic 

demand models are developed for key components, such as columns and bearings, and subsequently, 

component- and system-level fragility curves are generated. It is observed that superstructure skewness 

may reduce the sensitivity of column response to variations in the structural bridge systems by up to six 

times compared to regular counterparts. The results also reveal that skew angle variation can influence the 

bridge system fragility by up to 40% across different structural systems. 

Keywords: Concrete I-girder bridge; Skewness; Structural irregularity; Fragility curves; Seismic vulnerability assessment 

1. Introduction 

Recently, there has been a controversial issue regarding the extent to which employing different 

types of structural systems affects the seismic response of highway bridges (Sun et al. 2023). In bridges, 

the load transition path between the superstructure and substructure is affected by the type of pier-to-bent 

connection (Ishac and Mehanny 2016). Consequently, it is imperative to assess the influence of various 

structural systems and connections on the seismic response of bridge. Several studies can be found in the 

literature that investigate the impact of different structural systems on a bridge under seismic excitations 

(Abdelnaby et al. 2014; Abbasi and Moustafa 2017; Abbiati et al. 2018). For example, Hou et al. (2017) 

investigated the seismic demand of simple-made-continuous I-girder bridges with integral abutments using 

three types of bent-to-deck connectivity: roller, pinned, and fixed. With the intention of minimizing moment 

demand at pier base of the bridge, the pinned and roller bent-to-deck connections were found to be 

preferable to the fixed connection in the skewed-only configurations in low-intensity seismic zones. A 

recent study by Sun et al. (2023) examined two types of connection between the pier and bent on a small-

radius curved bridge: one with a monolithic pier-to-bent connection and the other with a fixed support 

installed at the pier-to-bent connection. They observed that the bridge model employing the latter structural 

system displays greater susceptibility to concrete splitting failure during seismic excitations in comparison 

to that of the former one. However, previous studies did not specifically address the effects of various 

structural systems, including multi-span simply supported and multi-span continuous, on the seismic 

vulnerability assessment of seismically-designed concrete I-girder bridges with seat-type abutments. 
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Furthermore, in the latter system, they did not investigate the effects of bent-to-deck connections, including 

pinned connectivity and elastomeric bearings without steel dowels. 

On the other hand, skewed bridges are widely acknowledged as the best solution to deal with the 

geometric restrictions associated with some regions in which regular (straight) configurations cannot be 

accommodated due to complex terrain (Miner 2014). Such situations necessitate adopting bridges with 

skew-angled bent and/or seat-type abutment in order to overcome the geometrical constraints or in other 

sense costly construction and easing traffic flow. In addition, the shift from a regular bridge to an irregular 

one, characterized by skew angles exceeding 20° (Caltrans 2019), inherently adds to complexities of the 

seismic assessment problems. For example, large earthquakes such as Chile (2010) resulted in deck 

unseating or displacement of superstructure, particularly evident in skewed bridges (Elnashai et al. 2012). 

Over the last 25 years, many researchers have extensively studied the seismic behavior of skew 

bridges (Sullivan and Nielson 2010; Kaviani et al. 2012; Zakeri et al. 2014; Yang et al. 2015; Omranian et 

al. 2018; Abbasi and Moustafa 2019; Aldea et al. 2021). Their focus has been on the seismic assessment of 

skewed bridges, aiming to uncover vulnerabilities related to the structural components of bridge. Generally, 

it is observed that increasing the skew angle of bridge superstructure alters the seismic behavior of 

reinforced concrete (RC) bridges as a result of coupling translational modes with rotational mode of 

vibration. Through cloud analysis, Noori et al. (2019) evaluated the seismic vulnerability of a skewed two-

span RC I-girder bridge with pinned bent-to-deck connection. It was indicated that as the skew angles vary 

from 0° to 60°, the seismic fragility of the column has been mitigated. In a study conducted by Huo and 

Zhang (2013), the seismic performance of RC highway bridges was perused under the combined effects of 

pounding and skewness. Their findings showed that when pounding did not occur, the seismic performance 

of the columns in skewed bridges outperformed that of straight bridges as the skew angle increased. 

Notwithstanding the extensive research on skewed bridges, none of the aforementioned works specifically 

inspected how various structural systems affect the seismic vulnerability assessment of skewed I-girder 

bridges.  

The novelty of this research is to evaluate the simultaneous effects of structural systems and skew 

angles on the seismic response of RC I-girder bridges. In the present research, four unique combinations of 

superstructure systems and bent-to-deck connections are generated. To this end, two types of commonly 

used bridge superstructure systems, including multi-span simply supported I-girder and multi-span 

continuous I-girder, are studied. Additionally, two commonly applied connections in the case of continuous 

I-girder superstructure, namely, pinned connectivity and plain elastomeric bearings (also referred as 

unreinforced elastomeric bearings or elastomeric bearings without steel dowels), are considered. In 

addition, the angle of skewness varies between 0° to 60° with increments of 15°. Therefore, 20 different 

structural configurations of I-girder bridges are generated. For nonlinear time history analysis (NLTHA), 

finite element models of the bridges are created, and a set of bidirectional horizontal far-field ground 

motions is selected. A total of 800 NLTHAs are conducted on the bridge models using the OpenSEES 

platform. To compare seismic vulnerability of the most important components, such as columns and 

bearings, fragility assessment is implemented at four different limit states by developing probabilistic 

seismic demand models for each bridge model. Subsequently, the system-level fragility of all bridge models 

is derived through joint probabilistic demand models. Lastly, this paper ends with notable findings and 

recommendations for future research. 

2. Structural systems 

In this research, different types of structural systems applied to concrete I-girder bridge are studied 

based on their capabilities in transferring loads between the super- and substructure. Two commonly used 

types of bridge superstructure systems are studied: multi-span simply supported I-girders (MSSS) and 

multi-span continuous I-girders (MSC). The MSSS and MSC structural systems are distinguished by the 

presence of a gap between adjacent decks at the bents for the former case. The MSSS structural system 

entails discrete spans with joints, allowing each span to act independently in response to seismic loads. In 

contrast, in the MSC superstructure, the bridge spans are connected without any expansion joints. For each 

system, the boundary condition at superstructure-substructure interface is modeled assuming elastomeric 
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bearings with steel dowels. Additionally, two prevalent connectivity types in MSC superstructures are 

examined: pinned connectivity and plain elastomeric bearings. Overall, the structural systems are 

categorized as multi-span simply supported (MSSS) (Ghosh 2021; Bhaskar Panchireddi and Ghosh 2023), 

multi-span continuous with fixed and expansion bearings (MSC-FEB) (Yang et al. 2015; Ghosh 2021), 

multi-span continuous with elastomeric bearings (MSC-B) (Zakeri and Ghodrati Amiri 2014; Mirzai et al. 

2023), and multi-span continuous with pinned connectivity (MSC-PC) (Soltanieh et al. 2019). Fig. 1 

provides a general view of the various structural systems for multi-span RC I-girder bridges. To simplify 

notation, each case of the structural systems is denoted by the letter ‘C’ with a numerical subscript. 

Accordingly, MSC-PC (no fixed/expansion bearings at bents), MSC-FEB, MSSS, and MSC-B are indicated 

as C1, C2, C3, and C4 hereafter. The four structural systems and their corresponding designations are 

summarized in Fig. 1.  

  

multi-span simply supported (MSSS)

Deck Deck

Steel dowel

Pounding element

Elastomeric 

bearing Bent

Deck Deck

multi-span continuous with fixed/expansion bearings (MSC-FEB)

Deck Deck

multi-span continuous with elastomeric bearing (MSC-B)

 

Deck Deck

multi-span continuous with pinned connectivity (MSC-PC)

Bent

Bent

Bent

Diafragm
C1 C2

C4
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Fig. 1. General view of the various structural systems for multi-span I-girder bridge, with associated designations 

  The way in which loads are transferred between the superstructure and substructure of bridges is 

heavily influenced by the type of structural system. The C1 structural system allows free relative rotation 

between the superstructure and the substructure about all axes at the bent. In other words, this structural 

system transfers all translational forces from the superstructure (deck girders) to the substructure (cap beam) 

without moment transfer. In the case of C4, there is no moment transfer between the superstructure and the 

substructure at the bent either, and the seismic translational loads transfer via bearings. Although the 

seismic load path for both the C2 and C3 systems is similar to that of the C4 structural system, the movement 

of the superstructure of the two former systems is restricted by steel dowels. This occurs once the steel 

dowels engage with the elastomeric bearing.              

3. Models of bridges 

 Bridge geometric characteristics 

Multi-span I-girder reinforced concrete (RC) bridges are a widely-constructed structural design 

found across the globe (Jankowski 2015; Kabir et al. 2019; Shekhar et al. 2022). A schematic view of 

longitudinal elevation and transverse cross-section of the bridge, as well as the arrangement of bearing 

types across various structural systems is represented in Fig. 2. The bearing types are identified by distinct 

symbols: fixed bearing (orange triangle), expansion bearing (green circle), bearing without steel dowels 

(pink circle), and pinned connection (blue triangle). The bearing characteristics are discussed in §3.2. The 

superstructure has a length of 48.8 m and a width of 15.01 m. The superstructure is composed of a middle 
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span with length of 24.4 m, and two side spans with length of 12.2 m. The bridge deck is constituted of 

eight concrete girders and a concrete slab on top with a thickness of 0.178 m. AASHTO girder types of I 

and III girders are used for the side spans and middle-span. The side spans are supported by seat-type 

abutments at one end and a three-column bent at the other. The abutments rest on batter and vertical-type 

pile foundations, while the bent is attached to three eight-pile foundations. Backwall with a height of 2.4 m 

is accounted for embankment. Clayey backfills are also assumed for the abutment backwall. Typically, the 

gap between abutment and deck is 25.4 mm, while the gap between adjacent decks is 38.1 mm. 

 

Pin

Longitudinal layout, bearing arrangement
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Superstrcture

Substructure

Foundation

Deck I-Girder
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Column
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 Bearing without steel dowels
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Fig. 2. Schematic view of a typical multi-span RC I-girder bridge with bearing distribution across structural systems  

Columns of the bridge have a circular section with a diameter of 0.914 m and a height of 4.6 m. 

They are connected at the top using a cap beam of rectangular section with a width of 1.07m and depth of 

1.22 m, as the columns are also tied at the bottom using a pile cap. The center-to-center distance of columns 

at bent is 5 m. This circular column comprises 12 #29 longitudinal rebars. Moreover, #13 stirrups with a 

spacing of 76 mm on center (#13 bars @ 76 mm o.c.) are transversely distributed along the column, 

resulting in a ductile column (Ramanathan et al. 2012). This implies seismically-designed columns, 

whereby the flexural mode predominates in the column. Cross-section and elevation view of the seismically 

designed reinforced concrete bridge column are illustrated in Fig. 3. 
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Fig. 3. Cross-section and elevation view of the seismically designed reinforced concrete bridge column  

It should be noted that only neoprene pads (elastomeric bearings) are used in the C4 structural system 

without any steel dowels beneath the concrete girders, whereas the concrete girders of the three other 

structural systems are integrated into elastomeric bearings utilizing steel dowels, i.e., fixed and expansion 

bearings. The fixed and expansion bearings are constructed by embedding two steel dowels with a diameter 

of 25.4 mm above the concrete cap beam and/or abutment. It is done by passing the steel dowels through 

the circular holes within the elastomeric bearings for the fixed bearings and slotted holes for the expansion 

bearings. The dimensions of the slotted hole are 31.8 mm x 76.2 mm, and the diameter of the circular hole 

is 31.8 mm. Moreover, the steel dowel must be inserted into a 76.2 mm hole in the bottom of the girder 

such that the steel dowel can move loosely inside the hole. In the case of I-type girders, the elastomeric 

bearings pads are 406 mm wide and 152 mm long with a thickness of 25.5 mm. In the case of III-type 

girders, the dimensions are 559 mm x 203 mm x 25.5 mm. The only difference between the fixed and 

expansion bearings is a gap between the elastomeric bearing pad and the steel dowel, which is 3.2 mm and 

25.4 mm, respectively, along the longitudinal axis. In contrast, an identical gap size of 3.2 mm is considered 

for both types of bearings along the transverse direction.  

The geometric configuration of the bearings and the steel dowel holes are illustrated in Fig. 4. 

Because the deck is prone to unseating during seismic events, the steel dowels serve as restraining devices 

to prevent excessive movement of the girders that are seated on elastomeric bearings. Besides, to protect 

the bridge from potential movements such as anticipated thermal expansion, gap-defined holes are 

implemented to relieve stresses in the bent/abutment (Maleki 2005). In total, 96 steel dowels resided in 48 

elastomeric bearing pads throughout the bridge where the superstructure meets the supports for C3 and C2. 

Similarly, in the same order, 32 steel dowels and 16 elastomeric bearing pads are needed for C1, whereas 

only 48 elastomeric bearing pads are required for C4. When the steel dowel acts elastically, the combination 

of the steel dowel and elastomeric bearing restricts the motion of girders. If the steel dowel breaks under 

strong dynamic excitation, the only governing factor between the girder and bearing is sliding due to the 

elastomeric bearing. Furthermore, such bearings are immune against walking out, contingent on being 

properly secured in place. Detailed information about the geometric properties of the bridge can be found 

in (Nielson 2005).  
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                         Fig. 4. Plan and elevation view of the fixed and expansion bearings with steel dowels 

For implementing skewed geometry in the bridge, angular increments of 15° (ranging from 0° to 60°) 

are adopted (Mangalathu et al. 2019; Noori et al. 2019; Somala et al. 2021; Rezaei et al. 2025). Fig. 5 

compares the bridge configurations with straight (θ = 0°) and skewed (θ ≠ 0°) geometries.  
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Fig. 5. Geometric configuration of the straight/skewed concrete I-girder bridge system 

 Finite element modeling  

Nonlinear three-dimensional finite element models of the bridge are developed in OpenSEES 

(McKenna 2011). It is assumed that the superstructure remains elastic during seismic excitations. Therefore, 

the deck is modeled using elastic beam-column elements at center along the longitudinal direction. 

Geometric and mechanical properties of the deck are calculated and assigned to these elastic elements. 

Nodal mass is defined on superstructure nodes. The nonlinear behavior of columns is modeled by 

displacement-based beam-column elements and discretized fiber sections. The stress-strain laws of 

materials used to model confined and unconfined concrete are based on the work of Terzic and Stojadinovic 

(2015), and the maximum compressive strength is calculated by means of equations proposed by Mander 

et al. (1988). In OpenSEES, both the confined and unconfined behaviors are modeled using Concrete01 in 

which the ultimate concrete compressive strains are 0.062 and 0.0055. Besides, reinforcing steel is modeled 

using Steel01. At the top of the columns, the bent is modeled using a nonlinear beam-column element and 

a quadrilateral fiber section. The foundation system at the bottom of the columns is also simulated by means 

of linear translational and rotational springs. In abutments, it is important to note that the piles and the 

surrounding soil both participate in passive resistance, whereas the piles alone contribute to the active 

resistance. Additionally, the transverse direction resistance is only provided by piles without taking into 

account the resistance of wing walls. According to Shamsabadi et al. (2014), the HyperbolicGap material 

is used to model the nonlinear behavior of the abutment back-wall soil. To simulate piles, a trilinear model 

recommended by Choi (2002) is adopted. Furthermore, an impact element is defined through a bilinear 

model for deck-to-deck/deck-to-abutment collisions according to the recommendation of Muthukumar and 

DesRoches (2006). The energy dissipation of pounding is also considered in the model. A schematic view 
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is presented in Fig. 6 illustrating the arrangement and behavior of all the components utilized in the 

analytical model of the bridge in OpenSEES.  

The fixed and expansion bearings are composed of an elastomeric bearing and two steel dowels. 

Seven steps are involved in the modeling of these bearings. Step 1: the elastomeric bearings associated with 

I-girder and III-girder are modeled using an elastic perfectly-plastic material that has an initial stiffness of 

3.4 kN/mm and 6.2 kN/mm, respectively. Step 2: the behavior of the steel dowel is modeled using a 

hysteretic material with an initial stiffness of 92 kN/mm. Step 3: to account for the gap in the bearings, an 

elastic perfectly-plastic gap material with an initial stiffness of 92 kN/mm is defined. Then, the hysteretic 

material modeled in step 2 is connected in series to the elastic perfectly-plastic gap material with a positive 

initial gap, e.g., +3.2 mm for the longitudinal fixed bearing, resulting in the tension behavior of the steel 

dowel considering the positive gap. Step 4: step 3 is repeated with a negative initial gap, in order to achieve 

the compression behavior of the steel dowel considering the negative gap (-3.2 mm). Step 5: through the 

parallel connection of the systems of spring created in steps 3 and 4, the cyclic behavior of steel dowels 

considering two-sided gaps is modeled. Step 6: the hysteretic behavior of the longitudinal fixed bearing is 

made by combining in parallel the resulting system of springs from step 1 with that of step 5. Step 7: the 

resultant material generated in step 6 is applied to a zero-length element connecting the nodes between the 

deck and bent/abutment. The expansion bearing is also modeled in a similar way to the fixed bearing.  

As mentioned in §3.1, the only difference between fixed and expansion bearings is the size of the 

gap at which the steel dowels can freely move until the closure of the gap. Once the gap in the fixed and 

expansion bearings is closed, engagement between the steel dowel and elastomeric bearing is incurred. 

Consequently, this engagement is postponed by the time delay associated with the size of the gap. In this 

research, interaction between steel dowels and elastomeric bearings is overlooked. 

In C1, translational degrees of freedom (DOFs) of the super- and substructure nodes are equalized 

while the rotational DOFs are free to rotate. In the modeling of the others, such as C2, only the vertical 

translational direction DOF of the superstructure node is equalized to that of the cap beam, and the rotational 

DOFs can rotate freely. In case of C2 and C3, the deck is connected to the cap beam using a zero-length 

element and the materials defined earlier in this section (i.e., fixed and expansion bearings). Furthermore, 

C4 is quite similar to C2 with the only difference that steel dowels are eliminated in the model of C4. It 

should be noted that in seat-type abutments, the gap and the pounding between the superstructure deck and 

the abutment need to be addressed correctly. In this manner, the longitudinal bearings are deployed parallel 

to the impact element in the abutment as well as in series with the soil element. The placement of bearing 

types along the bridge length can be seen in Fig. 2. 
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Fig. 6. Analytical model of bridge 

 

 

Fig. 7. Pushover analysis on column along longitudinal 

direction (Monotonic moment-curvature behavior of column) 
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A pushover analysis is conducted on the three-dimensional finite element model of the straight 

bridge assuming C1. Fig. 7 illustrates the monotonic moment-curvature behavior of the circular fiber-

defined section of the column along the longitudinal direction. A cyclic analysis is also conducted in order 

to demonstrate the cyclic behavior of the column and bearings. Relationship between moment and curvature 

of the column can be seen in Fig. 8a. The hysteretic behavior of the force-deformation related to the 

longitudinal fixed and expansion bearings is also illustrated in Figs. 8b and c, respectively.  

 

 

As opposed to straight bridges, skewed bridges are built with skewed-angle bents and/or seat-type 

abutments. In this regard, finite element models of skewed bridges contain additional rigid elements along 

the transverse axis to account for skewness effects on seismic responses of bridges. The transverse deck 

elements are rotated in accordance with the desired skew angle of the bridge, which produces an angle of θ 

other than 90° with respect to the longitudinal deck elements (i.e., parallel to the traffic direction).  

Additionally, the implementation of skew angles into the finite element models necessitates alterations to 

the orientation of several bridge elements. These elements are related to the piles and their surrounding soil, 

including impact, soil, and pile springs at the abutments, and rotational and translational springs at the 

foundation. These elements are required to be adjusted in accordance with the implemented skew angle of 

the bridge. For modeling skewed C3 bridges, the orientation of the impact element at adjacent decks is also 

modified such that it is normal to the decks. Nonetheless, all bearings, including the fixed and expansion 

bearings as well as the bearings without steel dowels, remain unchanged for models across all skew angles 

such that their orientations are collinear with the bridge principal axes.  

The deck of skewed bridges under seismic excitation tends to rotate in-plane about its vertical axis 

and subsequently, the skewed superstructure separates from the abutment at the acute corner while binding 

at the obtuse corner. This phenomenon leads to the creation of an inherently-asymmetric passive wedge 

inside the abutment backfill (Shamsabadi and Rollins 2014). In addition, the volume of backfill soil 

mobilized per unit length of the abutment wall increases from the obtuse corner to the acute corner. For 

analytical model of the skewed abutments to reflect these effects, different properties must be assigned to 

the nonlinear hyperbolic springs depending on their distance from the obtuse corner. The illustration of the 

analytical model related to skewed-angle abutments can be found in Fig. 9. To consider the different 

properties in the soil springs, the variation coefficients of soil stiffness are calculated based on 

β=0.3(tan(θ)/tan(60°)), which are a function of the skew angles (Kaviani et al. 2012), and are postulated at 

both abutments during the skewing process. In skewed bridges, there is also the potential for the decks to 

rub against each other due to the addition of skew, but in the simulation process, this can be ignored 

assuming the frictional resistance is substantially lower than the impact stiffness of the surfaces (Johnson 

et al. 2006). In this study, five different skew angles of 0°, 15°, 30°, 45°, and 60° are selected to investigate 

the skewness impacts on seismic responses of RC I-girder bridges. Each case of skew angles is represented 

by the letter ‘S’ with a numerical subscript for simplicity. Hereafter, S1 to S5 are representatives of 0° to 60° 

angles of skew with increments of 15°. It should be noted that structural responses are influenced by 

Fig. 8. Cyclic analysis response along longitudinal axis for (a) moment-curvature relationship of column, (b) 

fixed bearing, and (c) expansion bearing 
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modeling assumptions (Engen et al. 2017; De Matteis et al. 2022). For example, the consideration of an 

inherently asymmetric passive wedge within the abutment backfill for skewed bridges is one of such 

modeling assumptions adopted in this study. 

 

OBTUSE corner

ACUTE corner

Rigid Link

 

Fig. 9. Soil springs simulation for skewness 

Damping proportional to the stiffness component using the updated tangent stiffness is utilized in 

the models in which only one mode, the first mode, is assigned to determine the damping coefficients. In 

the models, a 5% damping ratio is assumed. In the present study, seismic excitations are imposed on the 

fixed nodes of the soil springs (i.e., HyperbolicGap elements) at the abutment and the bent foundation 

springs (i.e., linear translational and rotational elements).  

4. Dynamic bridge characteristics 

The dynamic characteristics of the bridge models with the different structural systems and skew 

angles are determined through eigenvalue analysis. The periods of the first and the second modes of 

vibration are presented in Table 1 for the 20 bridge models. In the table, C2S3 denotes the bridge model 

with the MSC-FEB structural system (C2) and a skew angle of 30° (S3). This table shows that the elastic 

period of the first vibration mode is longer than that of the second vibration mode for all the models. The 

fundamental mode of a straight bridge is characterized by a mode shape that is predominantly in the 

longitudinal direction.  

According to the table, the fundamental periods for the regular realizations of the bridge models are 

0.548s, 0.559s, 0.635s, and 0.559s corresponding to C1, C2, C3, and C4, respectively. The bridge model with 

the C1 structural system is inherently stiffer than the bridge model with discontinuous superstructure and 

fixed/expansion bearings, C3, in which the fundamental period is the highest amongst the structural systems. 

In the case of C1, C2, and C4 with S1, the second mode shape oscillates in the transverse direction. However, 

the second mode shape of C3S1 exhibits side spans vibrating in both rotational and translational DOFs, 

while its middle span sustains significant translational motion only. Referring to the table, the periods of 

0.373s, 0.435s, 0.484s, and 0.435s correspond to the second modes of C1S1, C2S1, C3S1, and C4S1. 

 

 Table 1 

Periods (s) of the first and the second modes of vibration  

 Skew angles 

 

 S1
 S2 S3 S4 S5 

 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

S
tr

u
ct

u
ra

l 

sy
st

em
s 

C1 0.548 0.373 0.548 0.373 0.548 0.373 0.549 0.373 0.550 0.374 

C2 0.559 0.435 0.572 0.445 0.573 0.445 0.574 0.445 0.575 0.445 

C3 0.635 0.484 0.646 0.488 0.659 0.484 0.670 0.480 0.670 0.477 

C4 0.559 0.435 0.572 0.445 0.573 0.445 0.574 0.445 0.575 0.445 

 

The influence of skewness on the mode shape of the bridge can be easily understood from the periods 

of vibration for the first and the second modes provided in Table 1. For instance, in the C3S4 model, the 

first mode period is 0.67s, whereas it is 0.63s for C3S1. Unlike C3S1, the first mode shape of C3S4 is a 
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combination of longitudinal and transverse movements. Nevertheless, the second mode shape of C3S4, 

albeit for middle span is translational along the 45°-transverse axis of the bridge akin to that of the C3S1 

model. However, the side spans of the C3S4 model demonstrate an interaction of the translational and 

rotational movements. Besides, the second mode periods of vibration of the straight and skewed bridges 

with C3 are approximately equal, as seen with cases of C1, C2, and C4. Overall, the skewed bridges show 

complex interaction between the first and the second modes of vibration in comparison to the straight 

bridges where the first mode of vibration is normally along the longitudinal direction of the bridge, and the 

second mode of vibration is along the transverse direction. 

5. Seismic fragility function methodology  

 Fragility function 

 Following Nielson (2005) and Mangalathu et al. (2019), this study employs fragility functions to 

generate fragility curves. Numerous researchers have employed analytical fragility functions to assess the 

seismic vulnerability of skewed RC I-girder bridges (e.g., Soleimani et al. 2017; Mangalathu et al. 2019). 

This paper also evaluates, in an analytical manner, the vulnerability of bridge components across different 

structural systems and angles of skewness. The seismic fragility function estimates the likelihood of bridge 

component demand reaching or exceeding a predetermined threshold at a certain level of seismic intensity. 
As a general description of fragility function (conditional probability), it can be stated as follows: 

{ 1| }
D

Fragility P IM
C

                                                                                   (1) 

Where P is the probability that the seismic demand on a bridge component (D) meets or exceeds its 

corresponding quantified limit state capacity (C) subject to a given level of intensity measure (IM). To make 

it more convenient, this probability is transformed into the space of the log-normal probability distribution 

(Wen et al. 2003).  

Based on Eq. (1), the fragility function is evaluated through a convolution of capacity models, given 

a limit state, and demand models. IM-conditioned demand models are probability distributions of structural 

demand, known as probabilistic seismic demand models (PSDM). To develop PSDMs, peak responses of 

structural demands or engineering demand parameters (EDPs) obtained through NLTHAs are plotted 

versus the values of ground motion IM (e.g., peak ground acceleration). Then, utilizing the IM-EDP pairs 

and a power-law function proposed by Cornell et al. (Cornell et al. 2002), a linear regression of EDPs on 

IMs is established to form PSDMs. Having the PSDMs, the logarithmic correlation between the median 

estimate of engineering demand parameter (SD) and IM can be established as given in Eq. (2):  

 

ln ( ) ln ( ) ln ( )DS IMa b                                                                                                    (2)                           

The equation above approximates SD as a function of IM values. In addition, ln(a) and b represent 

coefficients of the linear regression fitted to given pairs of EDP-IM. The model parameter ln(a) is the 

vertical intercept and the parameter b is the slope. The scatter plot of the PSDM portrays the relation 

between EDPs and IMs in a log-normal space for each component (e.g., see Fig. 12a).  

The logarithmic standard deviation of SD conditioned on IM, βD|IM, is expressed in the following way 

with respect to the basic statistical formula: 

 

2 1

|

1

[ln ( ) ln ( )] ( 2)
N

D IM i D

i

EDP S N                                                             (3) 

Where N is the number of ground motions, and EDPi is peak demand obtained from NLTHA corresponding 

to ith ground motion. βD|IM is also termed as ‘dispersion’, that is a dimensionless quantity. 
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After estimating the demand parameters, SD and βD|IM, and adopting capacity model, SC and βC, 

seismic fragility curves of bridge components conditioned on IM are generated using the following 

equation: 

2 2

|

ln ( ) ln ( )
{ | } 1 C D

D IM C

S S
P D C IM                                                                            (4) 

where Φ[.] indicates the standard normal cumulative distribution function. SC and βC represent the median 

and dispersion of the capacity model, which is elaborated in (§5.3). 

System-level fragility of bridges can be assessed by integrating component-level fragility curves 

through the development of joint probabilistic seismic demand models (JPSDMs) (Nielson 2005; 

Mangalathu et al. 2019). The JPSDM accounts for correlations between component demands. If Z = (Z₁, 

Z₂, ..., Zₙ) denotes the vector of demands on the n components of bridge in the original space, then B = ln(Z) 

represents the corresponding vector of component demands in log-transformed space. The JPSDM is 

formulated by assembling the mean vector, µB, and covariance matrix, σB, in the transformed space. The 

correlation coefficients between component demands are obtained from NLTHA results. Monte Carlo 

simulation is employed to generate 10⁶ realizations of demand and capacity, enabling probabilistic 

estimation of demand exceeding capacity for each IM value. This process is repeated for increasing IM 

values, and regression analysis is used to derive the lognormal parameters (median and dispersion) defining 

the bridge system fragility curve.  

 Earthquake ground motion suite 

To obtain the seismic response of bridge components in a probabilistic manner, a set of 40 unscaled 

standardized ground motions is selected for NLTHAs. The broad-band ground motions were originally 

proposed by Baker et al. (2011) for the Transportation Systems Research Program PEER (TSRP). The 

horizontal response spectra of the set correspond to the median and logarithmic standard deviations 

predicted for a strike-slip earthquake with a magnitude of 7 on the Richter scale (Mω = 7) and a seismic 

source-to-soil distance of 10 km. An average shear wave velocity of 250 m/s has been assumed at a depth 

of 30 meters above the soil layer. The ground motion set accounts for aleatoric uncertainty (record-to-

record variability). Various factors may contribute to such uncertainty including the frequency content of 

ground motions, earthquake magnitudes, and the distance between source and site (Tehrani and Mitchell 

2013). It should be noticed that the orthogonal horizontal pairs of the selected ground motions were 

mathematically rotated into their fault-normal (FN) and fault-parallel (FP) orientations. Accordingly, they 

are simultaneously applied to the principal axes of the bridge model in order to perform NLTHAs (e.g., 

Mangalathu et al. 2019; Noori et al. 2019).  

 Limit States 

For the development of the fragility function, it is equally important to define limit states of the 

bridge components (capacity model) as it is to formulate the demand model. Depending on the functional 

level of the bridge components, the quantity of limit states is determined. Prescriptive approaches based on 

physics assumptions are used in this process. Four qualitative descriptions of the limit states are apparent; 

slight, moderate, extensive, and complete. These definitions correspond to those provided by HAZUS 

qualitative limit states (FEMA 2003). 

Seismic vulnerability assessments mainly focus on two bridge components: columns and bearings. 

For this purpose, five EDPs are defined and used in this research, including curvature ductility demand, µφ, 

for columns, and displacement, δ, for longitudinal and transverse bearings. The limit state quantities for the 

seismically designed column are adopted from previous study in terms of curvature ductility (Howard 

Hwang et al. 2000; Ramanathan et al. 2012). Furthermore, the limit state values related to fixed and 

expansion bearings are adopted from (Ramanathan et al. 2012). Bearings without steel dowels follow the 

limit state values proposed in Ramanathan's thesis (2012). For simplicity, the same abbreviations are 
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adopted for both dowel-equipped and non-dowel bearings.  Table 2 lists  these components along with their 

median values (SC) and includes the structural system types where these bearings are applied. The dispersion 

of capacity (βC) is 0.25 for slight/moderate damage states and 0.47 for extensive/complete limit states. 

To calculate µφ, the ratio of the maximum curvature (φm) to the yield curvature (φy) must be 

determined. Priestley et al. (1996) proposed a simplified equation to estimate column yield curvature (φy), 

which is a function of the cross-sectional diameter of the column and yield strain of the longitudinal 

reinforcement. In addition, φy is calculated using bilinear idealization as recommended by the same 

researchers. Actually, a decent agreement can be found between the two (φy = 0.00485). It should be 

mentioned that the square root of sum of squares (SRSS) method is employed to capture the column 

response. 

 

            Table 2 

Bridge EDPs, limit state thresholds, and associated structural systems  

Component Abbr. EDPs Units Limit states 

S
tru

ctu
ral 

sy
stem

 

    

S
lig

h
t 

M
o

d
erate 

E
x

ten
siv

e 

C
o

m
p

lete 

    SC SC SC SC 

Column curvature Col 
Curvature    

ductility (µφ) 
- 1 5.1 7.5 9 C1, C2, C3, C4 

Longitudinal expansion bearing LEB 

Displacement 

(δ) 
mm 

30 100 150 255 

C1, C2, C3 

Transverse expansion bearing TEB C1, C2, C3 

Longitudinal fixed bearing LFB C1, C2, C3 

Transverse fixed bearing TFB C1, C2, C3 

Elastomeric Bearing - 25 100 150 255 C4 

 

 Efficient intensity measure 

As described, record-to-record (RTR) variability of ground motions brings some levels of inherent 

randomness into seismic assessment problems (Ellingwood and Wen 2005; Tehrani and Mitchell 2013). To 

this end, the choice of an effective and optimal IM can significantly reduce the statistical variations caused 

by RTR variability. An efficient IM,  which is just one of the determinants of an optimal IM  (Giovenale et 

al. 2004), can minimize the variation in the estimated structural demand. Based on Eq. (3), the most efficient 

IM is determined by the lowest βD|IM value (dispersion) among the given EDP-IM pairs. This efficiency is 

explored among three IMs including peak ground acceleration (PGA), peak ground velocity (PGV), and 

spectral acceleration at the intermediate period of the first and second modes of vibration (Sa) (Baker and 

Cornell 2006). The geometric mean of the IM values for the two horizontal components of each ground 

motion is regarded as the resultant IM (Baker and Cornell 2006). For Sa, which is a structure-dependent 

IM, the geometric mean of Sa must also be estimated separately for each bridge model. The βD|IM values for 

the components of all the bridge models are calculated with respect to the three explored IMs. For instance, 

the βD|IM values associated with the column curvature ductility demand of all the models for the three IMs 

are offered in Fig. 10. In this study, PGA is chosen as the efficient IM because it showed the highest 

efficiency in most cases. This choice is also acknowledged by other researchers (e.g., Padgett 2008; Ghosh 

2021).  

The regression coefficients (ln(a) and b) and the coefficient of determination (R2) are derived for the 

considered EDPs for the twenty models and three IMs. R2 exhibits the accuracy of PSDMs, which is a 

dimensionless quantity. Figs. 11a and b show the R2 estimates across the bridge components in the twenty 

bridge models. Based on the figure, the R2 estimates for the most PSDMs associated with PGA are 

reasonable, indicating a relatively strong correlation between these EDPs and PGA. 
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A sample of PSDMs related to the column of the C3S3 model and the bearings of the C3S5 model 

are displayed in Figs. 12a and b, respectively. The probabilistic seismic demand parameters for the five 

EDPs of two bridge models, C1S1 and C3S3, are also given in Tables 3-5 with respect to PGA, Sa, and 

PGV as IM, respectively. The tables list the probabilistic seismic demand parameters including ln(a), b, 

βD|IM, and R
2.  

Fig. 10. Dispersion (βD|IM) estimates for the three explored IMs considering 

column curvature ductility demand as EDP across all the bridge models 

Fig. 11. Coefficient of determination (R2) estimates for all bridge models for (a) column curvature ductility 

demand for three different IMs, (b) bearings for PGA as IM 
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Table 3 

Probabilistic seismic demand parameters for bridge components considering PGA as IM 

EDPs Models 

       C1S1
   C3S3

 

IM = PGA Ln(a) b R2 βD|IM  Ln(a) b R2 βD|IM 

Col 1.88 1.38 0.74 0.46  1.27 1.00 0.64 0.42 

LEB 5.78 1.31 0.78 0.40  5.33 0.99 0.64 0.42 

LFB 5.88 1.38 0.75 0.75  5.72 1.43 0.67 0.57 

TEB 4.54 1.17 0.62 0.53  5.64 1.63 0.67 0.66 

TFB 4.90 1.34 0.66 0.55  5.52 1.57 0.60 0.74 

 
 Table 4 

Probabilistic seismic demand parameters for bridge components considering Sa as IM 

EDPs Models 

       C1S1
   C3S3

 

IM = Sa Ln(a) b R2 βD|IM  Ln(a) b R2 βD|IM 

Col 0.78 1.24 0.69 0.51  0.55 0.94 0.69 0.39 

LEB 4.73 1.18 0.72 0.45  4.60 0.92 0.66 0.41 

LFB 4.78 1.26 0.71 0.49  4.73 1.40 0.77 0.48 

TEB 3.68 1.16 0.69 0.47  4.55 1.64 0.80 0.50 

TFB 3.89 1.29 0.70 0.51  4.52 1.63 0.77 0.55 

 
 Table 5 

Probabilistic seismic demand parameters for bridge components considering PGV as IM 

EDPs Models 

       C1S1
   C3S3

 

IM = PGV Ln(a) b R2 βD|IM  Ln(a) b R2 βD|IM 

Col -3.98 1.10 0.53 0.63  -3.32 0.89 0.58 0.46 

LEB 0.12 1.07 0.58 0.56  0.82 0.87 0.56 0.46 

LFB -0.12 1.14 0.57 0.60  -1.04 1.33 0.65 0.59 

TEB -0.18 0.85 0.37 0.68  -1.51 1.36 0.52 0.80 

TFB -0.65 1.02 0.43 0.71  -1.30 1.29 0.46 0.86 

 

 

 

Fig. 12. Probabilistic seismic demand models for (a) column curvature ductility demand corresponding to C3S3, 

(b) longitudinal and transverse expansion bearings of C3S5 
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6. Results and discussion 

This study focuses on the seismic fragility assessment of bridge columns and bearings, considering 

four various structural systems (i.e., C1, C2, C3, and C4 as defined in §2) and the five skew angles (i.e., S1, 

S2, S3, S4, and S5).. Individual fragility curves of bridge components (columns and bearings) and fragility 

curves of the system are generated at four damage states: slight, moderate, extensive, and complete. A 

comparison is made between seismic fragility curves of the bridge at component- and system-level in the 

following subsections (i.e., §6.1.1 and §6.2.1). As the fragility can be investigated by evaluating the relative 

changes in median PGA values (Ramanathan et al. 2012; Abbasi and Moustafa 2019), a more detailed 

comparison between the seismic vulnerability of bridge systems based on median PGAs is presented in 

§6.1.2 and §6.2.2 for the component and system levels, respectively.  

 Component-level fragility assessment 

6.1.1. Component fragility curves 

To study the seismic vulnerability of columns in the various structural systems, their fragility curves 

are presented in Figs. 13a to d for the four damage states. More specifically, Fig. 13a displays the difference 

between column fragilities at the slight limit state considering different structural systems with S1. As it can 

be perceived from the figure, column vulnerability is not significantly influenced by the types of structural 

systems, particularly for C3S1 and C4S1 models. The curves of C3 and C4 intersect within the range of PGAs, 

making it difficult to distinguish which structural system is more susceptible to damage. However, 

appreciable differences can be seen between seismic fragility curves of columns at other limit states Figs. 

13a to d. For instance, probability of the moderate damage to the bridge column in the C1S1 model is 

approximately 77% at PGA = 1g, whereas it is 18% for the C3S1 model (see Fig. 13b). Referring to Figs. 

13a to d, the lowest likelihood of exceeding a given limit state relates to the C3S1 model. Besides, the 

fragility curves of C1S1 are above those of the three other models, suggesting that this model is more 

susceptible to damage than the other models. Similar trends associated with the column fragility have been 

observed for other skew angles examined in the bridge models. 
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Figs. 14a and b illustrate a comparison fragility curves for two different types of bearings. It can be 

concluded from the figures that adopting various types of structural systems for bridge affects the seismic 

vulnerability of the bearings. The fragility curves of longitudinal expansion bearings are plotted in Fig. 14a 

for C1, C2, C3 and C4 in S1 at the moderate limit state. This figure shows roughly identical fragilities for 

longitudinal expansion bearings in C1, C2, and C4. However, this component suggests the lowest fragility 

for C3S1 in comparison to the other structural systems. On the other hand, Fig. 14b shows that the highest 

probability of the moderate damage associated with the transverse fixed bearing relates to the C3S1
 model. 

Furthermore, the lowest fragility of this component pertains to C1S1.  

Fig. 13. Fragility curves for column curvature ductility demand considering four different structural systems with 

0° skew angle at (a) slight, (b) moderate, (c) extensive, and (d) complete limit states 
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The column fragility curves for skewed RC I-girder bridges are illustrated in Figs. 15a and b at the 

moderate limit state. Specifically, the impacts of various skew angles on the vulnerability of bridge columns 

assuming C3 are addressed using fragility curves in Fig. 15a. The curves concerning the C3S2 and C3S3 

models demonstrate the highest vulnerability when compared to the rest of the models. Moreover, columns 

in the C3S5
 model are less susceptible to the damage than those in the other skewed models. Conversely, 

the columns of bridges assuming C1 are less sensitive to variation in the skew angle. The column fragility 

curves of C1 are exhibited in Fig. 15b for scenarios S1 to S5. From the comparison of these fragility curves, 

it can be perceived that the skew angle has a minor impact on the column fragility in C1 models.  

 

Seismic fragility curves of the five bridge components defined in Table 2 are presented in Figs. 16a 

to d at the extensive limit state. Each plot demonstrates fragility curves of a specific structural system with 

S4. As indicated in these figures, the column is the least vulnerable component in comparison to the other 

components. Furthermore, in accordance with Figs. 16b and d, the fragility curves of the fixed and 

expansion bearings are quite similar along transverse and longitudinal directions for each model of C2S4 

and C4S4. However, referring to Figs. 16a and c, the aforementioned components in C1S4 and C3S4 indicate 

dissimilar probabilities of damage state exceedance. It is evident that the probability of damage for the 

Fig. 14. Fragility curves of RC I-girder bridges under the influence of the various assumptions of structural 

systems for (a) longitudinal expansion bearing (LEB), (b) transverse fixed bearing (TFB) - with S1 at the moderate 

damage state 

Fig. 15. Seismic fragility curves for the column curvature ductility demand across the five different skew angles 

at the moderate limit state for (a) C3, (b) C1 - S1 to S5 represent skew angle from 0° to 60° in increments of 15° 
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column in the four examined limit states in the cases of C3 and C4 across five skew angles is the lowest 

among the five components. 

 

6.1.2.  Component fragility medians    

This is a relatively straightforward technique to compare differences in the fragility curves. A 

positive shift in the median PGA value indicates that the bridge components become less fragile, and vice 

versa. In Figs. 17a to e, the fragility medians at the extensive limit state are illustrated for different bridge 

components. The median PGAs for columns are depicted in Fig. 17a. The minimum of these values 

indicates the highest vulnerability, and the maximum of them accounts for the lowest vulnerability. The 

lowest fragility, concerning column curvature ductility demand, pertains to the C3S1 model amongst the 

regular bridge models. Apart from C3S1, the columns of the C4S1, C2S1, and C1S1 models occupy the second 

through the fourth places for the lowest vulnerability. For example, the median PGAs for column curvature 

ductility demand are estimated 1.099g, 1.260g, 2.389g, and 1.725g for the straight bridge model assuming 

C1, C2, C3 and C4. In fact, in the cases of C2, C3, and C4, the fragility of the columns decreases by 14.6%, 

117.4%, and 56.9% when compared to C1. The same trend is generally observed for the other three limit 

states. As shown in Table 6, the impact of different structural systems on column vulnerability is less 

pronounced at the slight limit state. 

 

 

 

 

 

Fig. 16. Component seismic fragility curves of bridge for (a) C1S4, (b) C2S4, (c) C3S4, and (d) C4S4 - at the 

extensive limit state 
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Table 6 

Median PGAs of the obtained fragility functions at slight damage state for bridge components 

Models          Components  Models  Components 

  Col LEB LFB TEB TFB    Col LEB LFB TEB TFB 

C1S1  0.26 0.16 0.17 0.38 0.33  C3S1  0.31 0.16 0.21 0.23 0.23 

C1S2  0.26 0.17 0.17 0.30 0.32  C3S2  0.28 0.15 0.20 0.24 0.24 

C1S3  0.25 0.17 0.18 0.27 0.24  C3S3  0.28 0.14 0.20 0.25 0.26 

C1S4  0.25 0.19 0.19 0.23 0.21  C3S4  0.31 0.15 0.21 0.22 0.22 

C1S5  0.25 0.22 0.22 0.19 0.19  C3S5  0.32 0.17 0.22 0.16 0.17 

C2S1  0.28 0.16 0.17 0.30 0.30  C4S1  0.31 0.15 0.15 0.23 0.23 

C2S2  0.26 0.16 0.16 0.27 0.25  C4S2  0.29 0.15 0.15 0.20 0.20 

C2S3  0.27 0.17 0.17 0.23 0.22  C4S3  0.31 0.15 0.15 0.17 0.17 

C2S4  0.27 0.18 0.18 0.21 0.20  C4S4  0.33 0.16 0.16 0.16 0.16 

C2S5  0.28 0.19 0.20 0.19 0.20  C4S5  0.33 0.16 0.16 0.14 0.14 

 

 According to Fig. 17a, the median PGAs for the columns in straight bridge models of C1 and C2 are 

nearly the same. This can be justified by referring to the fact that including steel dowels in the model of 

elastomeric bearings increases the stiffness of this type of connection at intermediate bents of the C2 bridges. 

Therefore, the column fragility of C2 is fairly close to C1 where the bent-to-deck connectivity is fully pinned. 

From another point of view, both models of C1 and C2 are free to rotate, but C1 is totally fixed along 

translational DOFs, and C2 is partially restricted at translational DOFs. Nevertheless, the relative change in 

the column median PGAs concerning the two structural systems increases when the bridge configuration is 

modeled with S5 rather than S1. 

 As stated in §3.1, the main difference between model of C2 and C4 systems is that elastomeric 

bearings are modeled together with steel dowels for C2, while they are modeled alone in the case of C4. 

With C4, the columns are less susceptible to damage because the elastomeric bearings are more ‘flexible’ 

than the fixed/expansion bearings, and hence, they allow relative movement between the super- and 

substructure. In other words, the columns of C4 experience the less curvature demand than C2. The columns 

of C2 sustain higher demand because of the more engaging between the super- and substructure resulted 

from the fixed/expansion bearings. Furthermore, as elaborated in §2, C3 is constituted from separated spans, 

each of which is capable of moving individually. In other words, a smaller portion of deck mass is affected 

by seismic excitations when compared to the other structural systems. It demonstrates that the seismic 

demands on columns in C2S1 can indeed be larger than those for C3S1.  
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Based on Fig. 17a, the different structural systems affect the seismic response of columns not only 

in bridge models with skew angle of 0° but also in models with other angles of skewness (i.e., θ ≠ 0°). 

Accordingly, the order of column vulnerability from highest to lowest relates to C1, C2, C4, and C3. The 

column median PGAs are 1.125g, 1.453g, 2.551g, and 3.023 g for C1S5, C2S5, C4S5, and C3S5, respectively. 

In other words, C2S5, C4S5, and C3S5 exhibit median PGAs that are 29.1%, 126.7%, and 168.7% greater 

Fig. 17. Median PGAs of the obtained fragility functions for the extensive limit state corresponding to (a) 

column curvature ductility demand, (b) longitudinal expansion bearing, (c) longitudinal fixed bearing, (d) 

transverse expansion bearing, and (e) transverse fixed bearing - S1 to S5 represent skew angle from 0° to 60° in 

increments of 15° 
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than C1S5. This attests that C3 renders the least fragility in terms of column curvature ductility, unlike C1, 

which is the most fragile. Furthermore, considering skew angles from S2
 to S5, the similar trends can be 

found in the moderate and complete limit states as well. 

In Fig. 17a, it can be observed that columns in the two structural systems, C3 and C4, are sensitive 

to the angle of skewness. However, it is important to note that this sensitivity diminishes when adopting 

C2. The median PGAs corresponding to the curvature ductility demands of columns in C2, across S1 to S5, 

are 1.260g, 1.156g, 1.386g, 1.254g, and 1.454g, respectively. On the other hand, these values for the 

structural system of C3 are 2.389g, 2.025g, 2.098g, 2.653g, and 3.023g, assuming the same order of skew 

angles for the bridge. Nonetheless, the figure also exhibits that the lowest fluctuation in median PGAs is 

given by C1. Consequently, the bridge columns of C1 across five levels of skewness indicate approximately 

equal fragility median values, unlike C3 and C4, which display the most changes in the median PGAs. These 

trends can also be found at the moderate and complete limit states.  

Among all the bridge models investigated in Fig. 17a, the minimum median PGA 1.072g is given 

by the C1S3 model, whereas this occurs in other structural systems with S2, e.g., C2S2. Similar results are 

also observed for the other limit states. Meanwhile, it can be generally resulted, with trivial exceptions such 

as C3S2, that as the angle of skewness is increased, the median PGAs of columns increase, indicating the 

beneficial role of skewness, especially beyond S3 for C3 and C4 models. In other words, the greater angle of 

skewness results in the lower vulnerability of columns. To sum up, by increasing skewness, particularly 

beyond a medium level of angle, the fragility of columns in the cases of C3 and C4 diminishes for all the 

four limit states. 

The median PGAs are presented in Figs. 17b to e, corresponding to the extensive damage on the 

expansion and fixed bearings along longitudinal and transverse directions of the bridge models. It should 

be noted that the seismic response of bearings is examined at abutments only in the case of the C1 model, 

as bent-to-deck connectivity is pinned. Based on Fig. 17b, the median PGAs for the longitudinal expansion 

bearing of the straight model vary from 0.553g for C1 to 0.566g, 0.662g, and 0.561g for C2, C3, and C4, 

respectively. This indicates that the vulnerability of the longitudinal expansion bearing varies depending 

on the type of structural system. Additionally, these values for the same component in S5 are 0.955g, 0.801g, 

0.906g, and 0.606g, revealing the sensitivity of the longitudinal expansion bearing to the skewness. 

According to Fig. 17c, the longitudinal fixed bearings are also sensitive to the assumptions associated with 

the structural systems and skewness. Furthermore, a similar conclusion can be drawn at the other limit 

states. In addition, Figs. 17b and c illustrate that the longitudinal expansion bearing exhibits lower 

vulnerability compared to the fixed bearing in the same direction for C1, C2, and C3.  

Referring to Figs. 17b and c, despite some exceptions, such as longitudinal bearings of the C3S2 

model, which fragility peaks out among the other angles, generally, as the skew angle increases, the 

bearings become less fragile. For example, with reference to Fig. 17c, the fragility medians 0.548g, 0.600g, 

0.649g, 0.698g, and 0.743g related to the longitudinal fixed bearing are obtained for C2S1, C2S2, C2S3, C2S4, 

and C2S5. It means that by changing the bridge configuration from S1 to S5, the probability of attaining the 

extensive damage to the longitudinal fixed bearings is reduced by 35%. In total, increasing skew angle 

contributes to the reduction of the fragility of the longitudinal bearings for models with C1, C2, C3, and C4.  
In the cases of C1, C2, and C4, transverse bearing fragility increases as skew angle increases, in 

contrast to the other types of bearings. For example, the median PGAs for the transverse expansion bearings 

of the bridge model with C2 corresponding to S1 through S5 are 1.041g, 0.862g, 0.754g, 0.636g, and 0.601g, 

respectively. However, when C3 is included in modeling, the fragility of the transverse bearings decreases 

as the skewness increases. Referring to Fig. 17d, median PGAs 0.541g, 0.581g, 0.678g, 0.719g, and 0.704g 

are associated with the transverse expansion bearings of the C3 models from S1 to S5, respectively. It means 

that by switching from C3S2 to C3S3, a 16.6% reduction in the seismic fragility is achieved. Additionally, 

these trends concerning the transverse bearings hold true at the moderate and complete limit states for all 

the structural systems.  

 It is evident from Figs. 17b to e that the presence of steel dowel inside the fixed and expansion 

bearings is a contributing factor in reducing the vulnerability of the bearings. For example, in the case of 

C2S5, the vulnerability of longitudinal expansion bearings is 32.1% lower than that of longitudinal bearings 
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of the C4S5 model. Overall, the longitudinal bearings with C4 are generally more fragile than those of C2. 

The trend is consistent across all the damage states. 

To compare the seismic vulnerability of the column with that of bearings, their median PGAs 

corresponding to the moderate limit state are plotted in Figs. 18a to d for each structural system versus 

different skew angles. According to Figs. 18c and d, the bearings are more vulnerable than the columns. It 

should be noted that the bridge columns of C3 and C4 are considerably less vulnerable than the transverse 

or longitudinal bearings for all the angles of skewness. These results can also be observed at the other limit 

states. For instance, the fragility medians of the column in C3 are equal to 1.62g, 1.39g, 1.43g, 1.77g, and 

1.97g for S1 to S5, respectively. The corresponding values for the longitudinal expansion bearing in the 

same structural system are 0.46g, 0.43g, 0.48g, 0.54g, and 0.59g for S1 to S5. This means that the seismic 

vulnerability of the columns for the five skew angles is by 252.1%, 202.2%, 297.9%, 221.8%, and 228.3% 

lower compared to that of the longitudinal expansion bearings. Similarly, the vulnerability of the transverse 

expansion bearings in the C3 models from S1 to S5 is 3.77, 3.02, 2.7, 3.34, and 5.1 times that of the column, 

respectively. Altogether, the lowest vulnerability at the four limit states and amongst all the components is 

given by bridge columns assuming C3 and C4. 

 

Fig. 18. Median PGAs of the obtained fragility functions at the moderate damage state for different bridge 

components assuming various structural systems: (a) C1, (b) C2, (c) C3, and (d) C4 versus skew angles - S1 to S5 

represent skew angle from 0° to 60° in increments of 15° 
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6.1.3. Fragility median ratios of column curvature ductility 

The ratio defined in Eq. (5) is used to comprehend the simultaneous effects of structural systems 

and skew angles on the seismic fragility of columns across the four limit states. The equation is as follows:  

 

1

( )

( )
n

n

mmedian C S
R

median C S
                                                                                                                  (5) 

 

where R is the median PGA of a bridge column obtained for the mth structural system (Cm) divided by that 

obtained for the model with pinned connection (C1) at the nth skew angle (Sn).  

Figs. 19a to d illustrate the R ratios for the various models across the four limit states. As evident 

from comparing the R ratios, columns are strongly influenced by different structural systems at some angles 

of skewness, e.g., C2S4 and C4S4 (see Fig. 19a). However, for certain angles, the figure shows that the 

impacts of different structural systems on column are inconsequential. As a result, the noticeable effects of 

structural systems on the regular bridge columns may be largely alleviated when considering skewness.  

As plotted in Figs. 19a to d, the R ratios corresponding to C3 and C4 are roughly equal for certain 

angles. In accordance with Fig. 19c, the R ratios of 1.95 and 1.83 pertain to the C3S3 and C4S3 models. 

Besides, the R ratios for C1S2 and C2S2 are approximately identical for the three limit states of slight, 

moderate, and extensive. Although the relative change in the R ratios between C2 and C4 are significant at 

most cases (e.g., 0.76 for S4 at the moderate limit state), this value is 0.22 in case of S5 at the complete 

damage state. Consequently, a skewed superstructure at certain angles for various limit states may 

significantly reduce the response sensitivity of columns to the variations of the structural systems. 

 

Fig. 19. R values for different skew angles at (a) slight, (b) moderate, (c) extensive, and (d) complete limit states 
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 System-level fragility assessment 

6.2.1. System fragility curves 

For the regular bridge (θ = 0°, S1), the system fragility curves corresponding to the four structural 

systems examined in this study are presented in Figs. 20a to d for slight, moderate, extensive, and complete 

damage states. Comparison of the bridge system fragilities reveals that structural systems C3 and C4 exhibit 

the highest and lowest vulnerability across all damage states. It is observed that the structural systems C1 

and C2 exhibit similar vulnerability. For instance, at PGA = 1g, the probability of complete damage reaches 

81% for the C3S1 model, compared to 58% for C4S1 (Fig. 11d). In contrast, C1S1 and C2S1 exhibit nearly 

identical fragility, with probabilities of 65% and 64%. To summarize, for the regular bridges across all limit 

states, C4 exhibits the lowest probability of exceedance, whereas C3S1 demonstrates the highest 

vulnerability. In contrast, C1 and C2 demonstrate comparable vulnerability. 

 

Figs. 21a and d present the bridge system fragility curves across five skew angles (S1 to S5 

Corresponding to skew angles 0° to 60°) at the extensive damage limit state. Fig. 21a specifically examines 

the influence of skew angle on the vulnerability of C3 structural system. The results reveal that system 

fragility in C3 structural system is sensitive to variation in skew angles. In contrast, Fig. 21b illustrates the 

bridge fragility curves for C4, showing minimal sensitivity to skew angle changes. Findings indicate that 

the fragility of both C2 and C4 is insensitive to skew angle variations, while C1 and C3 demonstrate 

sensitivity across all limit states. The remainder of this section presents and discusses the fragility median 

values for the bridge system. 

Fig. 20. System fragility curves of RC I-girder bridges under the influence of the various assumptions of structural 

systems with S1 at (a) slight, (b) moderate, (c) extensive, and (d) complete limit states 
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6.2.2. System fragility medians 

The parameters of the system fragility functions, i.e., median (S) and dispersion (β), for all bridge 

models are summarized in Table 6. The table indicates similar median PGAs for all bridge models at the 

slight damage state. However, at more severe damage states (extensive and complete), greater variation 

emerges in the system's fragility medians. 

 

Table 7 

Median and dispersion values for bridge system fragility  

Model Ss* βs Sm βm Se βe Sc βc 

C1S1 0.117 0.787 0.373 0.724 0.503 0.725 0.742 0.725 

C1S2 0.118 0.862 0.418 0.796 0.581 0.798 0.885 0.795 

C1S3 0.122 0.819 0.409 0.753 0.560 0.755 0.834 0.754 

C1S4 0.122 0.800 0.398 0.733 0.540 0.733 0.796 0.731 

C1S5 0.112 0.892 0.423 0.821 0.597 0.822 0.914 0.812 

C2S1 0.117 0.800 0.377 0.736 0.512 0.737 0.763 0.736 

C2S2 0.113 0.820 0.378 0.764 0.521 0.767 0.791 0.767 

C2S3 0.111 0.810 0.369 0.748 0.507 0.750 0.767 0.753 

C2S4 0.113 0.792 0.366 0.732 0.498 0.732 0.746 0.732 

C2S5 0.112 0.804 0.367 0.738 0.500 0.739 0.750 0.739 

C3S1 0.113 0.712 0.321 0.608 0.413 0.608 0.574 0.608 

C3S2 0.108 0.715 0.310 0.618 0.402 0.620 0.564 0.622 

C3S3 0.112 0.776 0.344 0.723 0.466 0.725 0.692 0.727 

C3S4 0.111 0.844 0.370 0.778 0.511 0.778 0.778 0.778 

C3S5 0.106 0.878 0.369 0.807 0.516 0.805 0.797 0.803 

C4S1 0.109 0.892 0.390 0.820 0.546 0.819 0.847 0.819 

C4S2 0.102 0.880 0.363 0.813 0.509 0.814 0.792 0.814 

C4S3 0.101 0.892 0.365 0.826 0.515 0.826 0.807 0.827 

C4S4 0.096 0.936 0.370 0.867 0.532 0.868 0.857 0.869 

C4S5 0.095 0.913 0.353 0.848 0.503 0.848 0.800 0.849 

* The subscripts s, m, e, c denote slight, moderate, extensive and complete damage states. 

 

To facilitate direct comparison, Figs. 22a and b display the system fragility medians corresponding 

to the extensive and complete damage states. In Figs. 22a and b, the highest and lowest bridge system 

fragility pertains to C3 and C4 assuming the regular bridge model S1. The system fragilities of C1S1 and C2S1 

Fig. 21. System fragility curves for (a) C3, (b) C4 across the five different skew angles at the extensive limit state - 

S1 to S5 represent skew angle from 0° to 60° in increments of 15° 
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are comparable, falling between the fragility levels of the aforementioned structural systems. For example, 

the median PGAs for the system fragility at the complete damage state are estimated 0.57g, 0.74g, 0.76g, 

and 0.84g for the straight bridge model assuming C3, C1, C2 and C4, respectively. Quantitative comparisons 

also indicate that C3 is more vulnerable at S1 to S3, compared to alternative systems. In contrast, C2 shows 

higher seismic vulnerability at higher skew angles (S4 and S5).  

As shown in Figs. 22a and b, the influence of skew angle variations on bridge system vulnerability is 

relatively minor for C2 and C4 structural systems at the extensive and complete limit states. Based on the 

figures, the structural system C2 is insensitive to variation in skew angles at the extensive damage state, 

with median fragility values confined to a narrow band between 0.498g (S4) and 0.521g (S2), varying by 

less than 5% across all skew angles. However, the system fragility medians of C1 and C3 show significantly 

greater sensitivity to skewness effects at the extensive and complete limit states. At the complete limit state, 

the median PGAs for bridge system increase with higher skew angles, exhibiting a 41% variation across 

the examined range of skew angles (0° to 60°). The study concludes that while bridge skewness can 

influence the performance of C1 and C3 structural systems in the bridge models, its effect on C2 and C4 is 

negligible.  

7. Conclusion 

This study aims to examine the combined effects of various structural systems and skewness on the 

seismic behavior of seismically-designed multi-span reinforced concrete I-girder bridges. In this respect, 

the two most common structural systems including multi-span simply supported (C3) and multi-span 

continuous girders are considered. The latter structural system in this study is categorized using three 

different assumptions in terms of boundary conditions including continuous girders with pinned bent-to-

deck connectivity (C1), continuous girders resting on elastomeric bearings along with steel dowels (C2), 

and continuous girders resting on elastomeric bearing without steel dowels (C4).  

The results proved that bridge fragility characteristics vary depending on the type of structural 

system or skew angle under consideration. It is seen that the response sensitivity of the column to the 

variation of the structural systems may considerably decrease when implementing skewed superstructure. 

The relative change in fragility medians of the column corresponding to C3 and C4 structural systems in the 

skewed bridges (skew angle of 30°) is about 6 times less than that of the straight bridges (skew angle of 0°). 

The seismic vulnerability of the column is significantly more pronounced under the effects of skew angles 

in bridges with the C3 and C4 structural systems in comparison to bridges assuming C1 and C2. Besides, the 

skewness plays a beneficial role in reducing the column vulnerability of bridges modeled using C3 and C4 

Fig. 22. Median PGAs of the obtained system fragility functions across all the bridge models at (a) extensive, (b) 

complete limit states - S1 to S5 represent skew angle from 0° to 60° in increments of 15° 
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structural systems such that, in most cases, the column vulnerability diminishes as the skew angle rises. 

Given the deployment of different structural systems in the bridges, the order of the column vulnerability 

from highest to lowest pertains to C1, C2, C4, and C3. It is also noted that the vulnerability of longitudinal 

fixed and expansion bearings decreases with increasing skew angles. However, the skewness has an adverse 

impact on the fragility of transverse fixed and expansion bearings in the bridges with C1, C2, and C4 

structural systems. Interestingly, for bridges assuming C3, as the skew angle increases, the fragility of 

transverse bearings is actually reduced.  

Structural system C3 exhibit greater system-level vulnerability at lower skew angles (0°
 to 30°) 

compared to the other structural systems. In contrast, C2 is the most vulnerable at higher skew angles. The 

study concludes that while variation in skew angles can influence the seismic vulnerability of C1 and C3 

structural systems, its effects on the vulnerability of C2 and C4 is negligible.  

The findings of this paper highlight that both structural system and skewness angle of bridges can 

have important implications for post-earthquake recovery, maintenance requirements, and lifecycle 

performance. Bridges with higher fragility, particularly in key components like columns and bearings, are 

likely to experience longer downtimes, higher repair costs, and greater disruption to transportation 

networks. Thus, selecting structural systems with lower fragility (e.g., C3 in certain skew angles) can 

contribute to more resilient infrastructure with reduced recovery times and improved service continuity 

after seismic events. Future research opportunities include the need to determine the extent to which 

adopting various self-centering dampers as a retrofit measure can affect the seismic behavior of skewed 

bridges adopting the different structural systems. 
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