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Abstract. A new beam-column model is developed for the seismic analysis of reinforced concrete 

(R/C) structures. This finite element consists of two interacting, gradual spread inelasticity sub-

elements representing inelastic flexural and shear response and two rotational springs at the ends of 

the member to model anchorage slip effects. The flexural sub-element is able to capture gradual 

spread of flexural yielding in plastic hinge regions of R/C members. The shear sub-element interacts 

throughout the analysis with the flexural sub-element, in the location of the plastic hinge regions, in 

order to capture gradual spread of inelastic shear deformations as well as degradation of shear 

strength with curvature ductility demand based on an analytical procedure proposed herein. The 

skeleton curves and hysteretic behaviour in all three deformation mechanisms are determined on the 

basis of analytical procedures and hysteretic models found to match adequately the experimental 

results. Empirical formulae are proposed for the shear distortion at onset of stirrup yielding and 

onset of shear failure.  The proposed element is implemented in the general finite element code for 

damage analysis of R/C structures IDARC and is validated against experimental results involving 

R/C column and frame specimens failing in shear subsequent to yielding in flexure. It is shown that 

the model can capture well the hysteretic response and predict reliably the type of failure of these 

specimens. 

Keywords: Reinforced concrete; finite elements; beam-column element; gradual spread; shear-

flexure interaction; bond-slip. 

1 Introduction 

Seismic response analysis of reinforced concrete structures requires realistic analytical models 

that can predict strength, stiffness and ductility characteristics of members under cyclic loading. The 

current state of the art in mathematical modelling of reinforced concrete behaviour permits 

reasonably accurate predictions of hysteretic response in flexure. However, inelastic deformations 
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generated during seismic response are by no means limited to flexure. Experimental investigations 

have indicated that inelastic shear distortions can be significant in local areas, such as hinging 

regions, even when the overall behaviour is governed by flexure [1-4]. Moreover, it has been well 

documented [5-7] that an R/C member may fail in shear due to interaction with flexure despite the 

fact that it has been provided initially with shear capacity greater than the one corresponding to 

yielding in flexure. 

Several researchers have attempted to explicitly include inelastic shear response in assessment of 

R/C structures [8-13]. Typically, in these studies, shear rigidity is assumed to be constant along the 

concrete member or shear deformations developed along the entire element are lumped in inelastic 

rotational or translational springs placed at the ends of the member. The former approach cannot be 

exact due to interaction of shear and flexural deformations occurring in the plastic hinge regions. The 

latter approach can be accurate only in the special case where the moment distribution along the 

member is already known and the point of contraflexure remains fixed throughout the analysis. 

Additionally, a number of fibre elements have been developed incorporating the shear flexibility 

effect. In these models, shear deformations are either uncoupled [13] or coupled [12] with axial and 

bending effects at the section level. Nevertheless, the computational effort involved, especially in the 

latter case, limits their feasibility for response history analysis of complete multi-storey structures. 

Furthermore, the Gauss or Gauss-Lobatto integration technique used in these elements does not 

represent, in an exact manner, the actual phenomenon, when inelastic deformations tend to spread 

gradually from the member ends to the midspan. 

To capture the gradual spreading phenomenon, a spread inelasticity formulation has to be 

developed. A number of researchers have introduced flexural, spread inelasticity elements [9,14,15]. 

The writers [16-18] have developed a shear spread inelasticity element for the case where shear force 

varies along the member due to distributed loading. No model has been developed so far to reproduce 

gradual spread of inelastic shear deformations following progressive growth of the plastic hinges 

towards the midspan.  

In most cases, shear-flexure interaction effect is taken into consideration adopting advanced 

analytical procedures like the modified compression field theory (MCFT) [19]. These methods, albeit 

conceptually attractive, have not yet been extended to cope successfully with degradation of shear 

strength in plastic hinges and cyclic loading effects [20]. Additionally, the computational effort 

required hinders their application in seismic analysis of complex R/C structures.  

A number of analytical models [10,13], applied shear strength models (e.g. Priestley et al. [5]) to 

capture degradation of shear strength with increasing flexural ductility demand. While these models 

are able to predict shear failure with a reasonable accuracy, they have not been developed with a view 

to reproducing rapid development of shear deformations, following flexural yielding. Hence, the need 

arises for a simple analytical procedure which will provide reasonably accurate predictions of shear 

strength and deformations, especially in the yielded end-regions of R/C members. 
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Existing beam-column elements considering separately shear deformations, with the exception of 

the analytical models presented in [9,11], do not account for anchorage slip effects in an explicit 

manner. Fixed-end rotations caused by anchorage slip may influence significantly the stiffness and 

deformation capacity of R/C members, while they have not yet been related experimentally to 

degradation of shear strength. Moreover, fixed end rotations are treated only as a function of the 

moments acting at the ends of the member, i.e. not of the bending moment diagram distribution, 

which determines variation of flexural deformations along the member. Hence, it is evident that 

ignoring bond-slip effects or lumping them together with flexural deformations inside a single end 

rotational spring may lead an analytical model to erroneous results. 

The goal of the present study is to develop a cost-efficient beam-column model, suitable for 

seismic analysis of complex R/C frame structures, which, at the same time, will be capable of taking 

into account rather complex mechanisms, such as gradual spread of inelastic flexural and shear 

deformations from the member ends to the midspan, degradation of shear strength with curvature 

ductility demand, coupling between inelastic flexural and shear deformations in the plastic hinges, 

and fixed-end rotations caused by anchorage slip. 

With the objective to verify the capabilities of the proposed model to reproduce the 

aforementioned mechanisms, the results of the analytical model are compared with those 

experimentally obtained from a number of well-documented tests of R/C column and frame 

specimens exhibiting rather complex behaviour i.e. failing in shear after yielding in flexure. 

Whenever possible, the comparisons are not restricted to total response parameters, but also 

encompass individual deformation components (curvatures, distortions, anchorage slip fixed-end 

rotations), with a view to verifying individual features of the model. 

2 Finite element formulation 

The proposed, member-type, finite element is based on the flexibility approach (force-based 

element) and belongs to the class of phenomenological models. It consists of three sub-elements 

representing flexural, shear, and bond-slip response (Fig. 1). The total flexibility matrix (F) is 

calculated as the sum of the flexibilities of its sub-elements and can be inverted to produce the 

element stiffness matrix (K). Hence: 

 
fl sh slF F F F    (1) 

 
1K F     (2) 

Where, F, F
fl
, F

sh
, F

sl
 are the basic total, flexural, shear and anchorage slip, respectively, tangent 

flexibility matrices. K is the basic tangent stiffness matrix of the element, relating incremental 

moments ΓΜΑ, ΓΜΒ and rotations ΓθΑ, ΓθΒ at the ends A and B of the flexible part of the element 

(Fig. 1) through the following equation 
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B B

M
K

M





    
    

    
   (3) 

The local stiffness matrix, relating displacements and forces at the element joints, is then easily 

determined following standard structural analysis procedures. The components of the aforementioned 

finite element, as well as their interaction, are described in the following sections. 

3 Flexural sub-element 

This sub-element (Fig. 1c) is used for modelling the flexural behaviour of an R/C member 

subjected to cyclic loading before, as well as after, yielding of longitudinal reinforcement. It consists 

of a set of rules governing the hysteretic moment-curvature (M-θ) response of the member end 

sections, and a spread inelasticity model describing flexural stiffness distribution along the entire 

member. 

3.1 Μ-φ relationship for member end-sections 

The M-θ relationship at each end section of the member is described by the primary curve and the 

rules determining its hysteretic behaviour. The primary M-θ relationship is derived using standard 

flexural analysis and appropriate bilinearization of the resulting curve.  

Loading response is assumed to follow the bilinear envelope curve. Unloading is based on the 

respective Sivaselvan & Reinhorn [21] hysteretic rule adjusted for mild stiffness degradation 

characterising flexural response. This is achieved by setting the unloading parameter of this hysteretic 

model equal to 15. Reloading aims at the previous point of maximum excursion in the opposite 

direction [22]. 

3.2 Flexural spread inelasticity model 

The flexural spread inelasticity model presented herein is based primarily on the respective one by 

Soleimani et al. [14]. The stiffness distribution along the member is assumed to have the shape shown 

in Fig. 2, where: L is the length of the member; EIA and EIB are the current flexural rigidities of the 

sections at the ends A and B, respectively; EIo is the stiffness of the intermediate part of the element; 

αA and αB are the yield penetration coefficients. The flexural rigidities EIA and EIB are determined 

from the M-θ hysteretic relationship of the corresponding end sections. For simplicity, in this study, it 

is assumed that the state (loading, unloading, reloading) and the stiffness of the spread plastic zone is 

controlled by the state and stiffness of the section at the end of the member.   

The yield penetration coefficients specify the proportion of the element where the acting moment 

exceeds the end-section yield moment. These coefficients are first calculated for the current moment 

distribution from Eqns. (4)-(5), where MyA and MyB are the respective flexural yielding moments of 

end sections A and B. Then, they are compared with the previous maximum penetration lengths; the 

yield penetration lengths cannot be smaller than their previous maximum values. 
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Having established the stiffness distribution along the R/C member at each step of the analysis, the 

coefficients of the flexibility matrix of the flexural sub-element can be derived from closed-form 

analytical expressions [14], by applying the principle of virtual work.  

4 Shear sub-element 

The shear sub-element (Fig. 1d) represents the hysteretic shear behaviour of the R/C member prior 

and subsequent to shear cracking, flexural yielding, and yielding of the shear reinforcement. Herein, 

this sub-element has been designed in a similar way to the flexural element described above. It 

consists of a set of rules determining V-γ (shear force vs. shear strain) hysteretic behaviour of the 

member end and intermediate regions, and a shear spread inelasticity model determining distribution 

of shear stiffness along the R/C member.  

Shear hysteresis is determined by the V-γ skeleton curve and a set of rules describing response 

during unloading and reloading. The primary curve is first derived without considering shear-flexure 

interaction effects. Then, by applying an appropriate procedure proposed in this study, the shear-

flexure interaction effect is taken into consideration at the locations of plastic hinges. 

4.1 V-γ envelope curve without shear-flexure interaction  

The initial V-γ primary curve (Fig. 3) is independent from flexure and is used to model shear 

hysteresis outside the plastic hinge regions for members that have yielded in flexure or the response 

of the entire element for members that have not yielded in flexure. 

The V-γ primary curve consists of four branches, but has only three different slopes, as explained 

later on. The first branch, with uncracked stiffness GAo, connects the origin and the shear cracking 

point, which is defined as the point where the nominal principal tensile stress exceeds the tensile 

strength of concrete. Shear force at cracking Vcr is calculated by adopting an analytical procedure 

suggested by Sezen and Moehle [7]. 

The second and third branches of the initial primary curve have the same slope and connect the 

shear cracking point with the point corresponding to the onset of yielding of transverse reinforcement, 

or else the point of attainment of maximum shear strength (Vuo, γst). These branches are separated at 

the point corresponding to flexural yielding (Vy, γy). This approach is adopted in order to distinguish 

hysteretic shear behaviour before and after flexural yielding [4]. 

To estimate shear strength Vu, the approach proposed by Priestley et al. [5] is invoked. According 

to this approach, Vu is given by 
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  
 ' cot

0.80 tan
sw yw

u c g

A f d d
V k f A N a

s

  
       (6) 

wherein Asw is the area of transverse reinforcement oriented parallel to shear force; fc is the concrete 

compressive strength; fyw is the yield strength of transverse reinforcement; d-d' is the distance 

measured parallel to the applied shear between centres of longitudinal reinforcement; s is the spacing 

of transverse reinforcement; θ is the angle defined by the column axis and the direction of the 

diagonal compression struts; k is a parameter depending on the curvature ductility demand as shown 

in Fig. 4, and α is the angle formed by the column axis and the line joining the centres of the flexural 

compression zones at the top and bottom of the column. For the initial primary curve, Vuo is derived 

by setting in Eq. (6) the value of k corresponding to μθ≤3 (i.e. no strength degradation). 

The stiffness of the second and third branches, GA1, which represent shear deformation γs caused 

by shear force Vs in a cracked member, can be estimated by Eq. (7) derived by the truss analogy 

approach [23]  

 
  4 2

1 4

' sin cot

sin

s ws

s w

E b d dV
GA

  

   

     
 
  

 (7) 

where b is the section width; ρw is the volumetric ratio of transverse reinforcement; Es is the modulus 

of elasticity of steel; n=Es/Ec is the modular ratio, and Ec is the concrete modulus of elasticity. 

Shear distortion at onset of stirrup yielding γst can be easily determined by setting ΓVs=Vw where 

Vw is the shear strength contributed by the transverse reinforcement. Although the aforementioned 

procedure is based on a rational approach, calibration studies by the writers showed that it does not 

account accurately enough for the influence of axial load and member aspect ratio on γst. 

Regression analyses performed by the writers showed that best correlation with experimental 

results is achieved when, in calculating γst by the truss analogy approach, the angle θ is taken equal to 

45
o
 (unless limited to larger angles by the potential corner-to-corner crack) and the derived value is 

then multiplied by two modification factors. The first modification factor κ takes into account the 

influence of the normalised axial load v and is given by Eq. (8), while the second modification factor 

λ represents the influence of the aspect ratio (shear span, Ls, divided by column depth, h) and is given 

by Eq. (9). 

 1 1.07 v     (8) 

 5.37 1.59 min 2.5, sL

h


 
    

 
 (9) 

Hence, if γtruss is the shear distortion at onset of stirrup yielding derived by the truss analogy 

approach, it is proposed herein that γst is given by the following equation. 

 st truss       (10) 
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The regression analyses are based on the experimental results for 16 R/C columns (Table 1). The 

experimental results involved average shear distortions along the length of pure shear critical R/C 

specimens or flexure-shear critical elements failing in shear immediately after flexural yielding. The 

values followed by asterisk were derived indirectly, using the respective procedure described in [16]. 

The mean, median and coefficient of variation of the ratios of the experimental over the predicted 

values are 0.99, 0.97 and 0.19 respectively. The coefficient of determination R
2
 is 0.82. 

Experimental studies [1, 24] have shown that R/C members critical in shear do not lose 

immediately their lateral strength after yielding of transverse reinforcement. This observation leads to 

the conclusion that shear strain γu corresponding to onset of shear failure may considerably exceed γst. 

For this reason, a horizontal branch is added to the envelope V-γ curve, for γ>γst, to model response 

after yielding of transverse reinforcement. 

On the basis of experimental results for 25 R/C specimens (Table 1) failing in shear, the writers 

have developed an empirical formula correlating γu with the level of the applied axial load, the 

amount of transverse reinforcement and the member shear-span ratio Ls/h. Conservatively, it is 

assumed in this study that shear failure coincides with the onset of significant lateral strength 

degradation. The experimental results involved either measured shear strains in the vicinity of the 

plastic hinge regions for flexure-shear critical R/C members or average shear distortions along the 

length of pure shear critical R/C specimens or members failing in shear immediately after flexural 

yielding. For the average shear distortions along the member length, the values followed by an 

asterisk in Table 1 were derived indirectly, using the respective procedure described in [16]. The 

proposed relationship is 

 1 2 3u st st           (11.1) 

  1 1.0 2.5 min 0.40,     (11.2) 

  
2.0

2 min 2.5, /sL h   (11.3) 

  3 0.31 17.8 min ,0.08     (11.4) 

 
sw yw

c

A f

b s f





 
 (11.5) 

According to Eq. (11), the difference between γu and γst increases as the amount of transverse 

reinforcement and shear span ratio increase, and the normalised axial load decreases. The mean, 

median, and coefficient of variation of the ratios of the experimental over the predicted values are 

1.00, 1.00 and 0.34. The coefficient of determination R
2
 is 0.96.   

It is important to note that the empirical formulae proposed herein for both γst and γu are based on a 

set of data (Table 1) satisfying the following criteria: 1.11≤Ls/h≤3.91; 0≤v≤0.61 and 

0.47%≤ωκ≤8.13%; hence, they can only be applied with confidence for RC members that satisfy the 

aforementioned criteria. 
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4.2 V-γ envelope curve including shear-flexure interaction 

Several studies [5-7] have demonstrated that shear strength degrades due to disintegration of the 

plastic hinge zones caused by inelastic flexural deformations. Furthermore, it has been shown 

experimentally [1-4] that shear distortions in the plastic hinge regions may increase rapidly (“shear-

flexural yielding”) subsequent to flexural yielding, despite the fact that shear force demand remains 

almost constant, as it is controlled by flexural yielding. The combination of these phenomena is 

defined in this study as shear-flexure interaction effect. It is shown here that both of these phenomena 

can be represented simultaneously by combining the shear strength model of Priestley et al. [5] and 

the truss analogy approach [23].  

Fig. 5a illustrates the variation of the force carried by shear resisting mechanisms (concrete Vc and 

truss Vs) in the plastic hinge region of a single R/C column following the Priestley et al. [5] shear 

strength approach (for clarity of the figure, the contribution of axial load is lumped into Vc). It can be 

seen that, immediately after shear cracking, the truss contribution Vs increases, to meet additional 

shear force demand ΓV. This is the case even after flexural yielding and before μφ reaches the value of 

3. However, after μφ=3, Vs increases to accommodate both ΓV and additional deterioration of Vc; this 

means that, for the same ΓV, Vs increases now at a higher rate. On μφ reaching the value of 15, the 

concrete shear resisting mechanism Vc reaches its residual strength and consequently Vs increases 

again solely due to ΓV. 

Since the shear strain γs subsequent to shear cracking is correlated with Vs via Eq. (7), variation of 

γs with increasing μφ can be easily extracted (Fig. 5b). From this figure, it can be seen that 

immediately after flexural yielding γs increases at a slow rate with increasing μφ. Nevertheless, after 

μφ=3, increase of γs accelerates. After μφ=7, γs continues to increase more rapidly than when μφ<3 but 

less rapidly than when 3≤ μφ≤7. Finally, when μφ>15, γs continues to increase, but at the slow rate that 

initiated when μθ<3. 

Generalising the above, the shear strain increment Γγs caused by a shear force increment ΓV, when 

shear-flexure interaction effect is taken into account, can be estimated from Eq. (11), where ΓVs is the 

increment of the shear force resisted by the truss mechanism caused by the increment of the applied 

shear force ΓV and the additional drop of the shear capacity of the concrete shear resisting mechanism 

ΓdegVc.  

 
1 1

degs c
s

V V V

GA GA


  
    (11) 

If GAeff is the tangent stiffness of the shear primary curve including shear-flexure interaction 

effect, then it yields the same increment of shear distortions Γγs only for the applied shear force 

increment ΓV (without ΓdegVc), as illustrated in Fig. 6. Hence  

 s

eff

V

GA



   (12) 
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Combining Eqs. (11) and (12) and solving for GAeff, the following equation is obtained 

 1
deg

eff

c

V
GA GA

V V


 
 

 (13) 

Eq. (13) shows that GAeff can only be either equal to, or smaller than, GA1. Equality holds only 

when the degradation of the concrete shear resisting mechanisms is negligible. Moreover, it is clear 

that GAeff becomes a function of the shear force increment ΓV. But if it is to be applied in the 

analytical procedure, ΓV will be influenced by GAeff as well, since the latter will affect the flexibility 

matrix of the element (as shown in §4.4). To resolve this issue, an iterative analytical scheme, applied 

at the respective load step of nonlinear analysis, is proposed herein.  

According to this scheme, an initial value of GAeff is assumed. Based on this shear rigidity, shear 

force increment ΓV and additional drop of the concrete shear resisting mechanism capacity ΓdegVc 

for the examined member are evaluated. By applying these values in Eq. (13), a new value of GAeff is 

calculated. The iterative procedure terminates, when the values of GAeff converge with a pre-specified 

tolerance. Applying this procedure, it was found that numerical convergence is almost immediate. 

The number of iterations may increase as the influence of shear deformations on element flexibility 

increases, but the additional computational cost is justified by the significance of calculating 

accurately shear response in this case. 

4.3 V-γ hysteretic model 

Shear hysteresis is characterised by significant pinching effect, stiffness and strength deterioration. 

This behaviour is modelled using the proposals by Ozcebe and Saatcioglu [4] as a basis, with several 

modifications and improvements. Although, that hysteretic model was calibrated against experimental 

results and was found to yield a reasonable match, it has not been designed with a view to being 

incorporated in a dynamic nonlinear analysis framework. With this in mind, the writers have 

proposed specific modifications regarding both the unloading and reloading branches that can be 

found in their previous publication [16]. 

4.4 Shear spread inelasticity model 

In §4.2, rapid increase of inelastic shear deformations inside plastic hinge regions has been 

explained. Following gradual growth of plastic hinge regions, inelastic shear strains tend to expand 

gradually from the member ends to the midspan. To capture this phenomenon, an innovative 

approach is adopted herein, based on the concept of gradual spread inelasticity models. 

More specifically, a shear spread inelasticity model is proposed, having the shear stiffness 

distribution of Fig. 7c, where αΑs and αΒs are the “shear-flexural yield penetration” coefficients. These 

coefficients specify the proportion of the element where “shear-flexural yielding” has developed, 

triggered by flexural yielding as described in §4.2. Since “shear-flexural yielding” develops inside 

plastic hinge regions, it is reasonable to assume that 
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 As A   ; Bs B   (14) 

In Fig. 7c, GAA and GAB are the current shear rigidities of the inelastic regions at the ends A and 

B, respectively. These values can be derived from the V-γ hysteretic relationships of the 

corresponding end sections, where the skeleton curves are determined including shear-flexure 

interaction effect (GAeff in §4.2), based on the inelastic curvature demand of the respective end of the 

flexural sub-element. In the case of constant shear force examined here, the level of acting shear force 

and the loading state (loading, unloading and reloading) are the same for all sections within the 

inelastic shear zones. Consequently, it can be assumed, with reasonable accuracy, that shear stiffness 

distribution remains uniform within these regions. 

Shear stiffness GAM occurs in the intermediate (elastic) part of the element. It can be determined 

again by the V-γ hysteretic model, but by adopting a primary curve without assigning shear-flexure 

interaction effect, as described in §4.1. Similarly, it can be considered as uniform in the specific part 

of the element. 

After determining the distribution of GA along the R/C member at each step of the analysis and by 

applying the principle of virtual work, the coefficients of the flexibility matrix of the shear sub-

element are given by the following equation  

 
1sh As As Bs Bs

ij

A M B

a a a a
f

GA L GA L GA L

 
  

  
 (i,j=A,B) (15) 

Based on the above, a dual coupling effect between the flexural and the shear sub-element is 

achieved. This effect determines both the length and stiffness of the inelastic zones of the shear sub-

element allowing for constant monitoring of the gradual spread of inelastic shear strains from the 

member ends to the mid-span, with the minimum possible computational cost. 

5 Anchorage slip sub-element  

The bond-slip sub-element accounts for the fixed-end rotations which arise at the interfaces of 

adjacent R/C members due to bond deterioration and the ensuing slippage of the reinforcement 

anchorage in the joint regions. The proposed model consists of two concentrated rotational springs 

located at the member-ends; the two (uncoupled) springs are connected by an infinitely rigid bar (Fig. 

1e). Following this formulation, the coefficients of the bond-slip flexibility matrix F
sl
 are given by 

Eq. (16), where fA
sl

 and fB
sl
 are the flexibilities of the concentrated rotational springs at the ends A and 

B respectively. These flexibilities depend on the moment - fixed end rotation (M-θslip) envelope curve 

and the model used to represent hysteretic behaviour of each rotational spring. 

 
0

0

sl

sl A

sl

B

f
F

f

 
  
 

 (16) 

 The M-θslip skeleton curve is derived on the basis of a simplified procedure [34,35] assuming 

uniform bond stress along different segments of the anchored rebar (Fig. 8). These segments are the 
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elastic region Le, the strain-hardening region Lsh and the pullout cone region Lpc. The average elastic 

bond strength ηbe according to ACI 408 [36] is adopted here for the elastic region, while the frictional 

bond ηbf according to the CEB Model Code [37] is assumed to apply within the strain-hardening 

region. In the pullout cone region, it is assumed that the acting bond is negligible. 

For various levels of the applied end moment and using the results of M-θ analysis, the stress ζs 

and strain εs of the reinforcing bar at the loaded end are first determined. Then, from equilibrium and 

applying the assumed bond distribution, variation of reinforcing bar stress ζs(x) along the embedment 

length is defined as shown in Fig. 8b, where ζy is the yield strength of steel and ζh is the stress at the 

end of the straight part of the rebar anchorage. Then, by assigning an appropriate constitutive material 

law for steel [38], strain distribution εs(x) is determined, as shown in Fig. 8c, where εy and εsh are the 

steel strains at the onset of yielding and strain hardening, respectively, and εh is the steel strain at the 

end of the straight part of the anchorage. It is important to note that post-yield nonlinearity of the 

material constitutive law, i.e. strain hardening, should be taken into account because it affects 

significantly the final results [18]. 

Once εs(x) is determined, slip of the reinforcement δslip can be calculated by integration along the 

anchorage length of the bar. In the case of hooked bars, local slip of the hook should be added. This 

can be evaluated by the force acting on the hook Ph=Ab∙ζh, where Ab is the area of the anchored bar, 

and an appropriate hook force vs. hook slip relationship [39]. 

Upon determination of δslip, the respective fixed-end rotation can be calculated by Eq. (17), where 

(d-xc) is the distance between the bar and the neutral axis. The envelope M-θslip curve constructed by 

the various points of the afore-described methodology is then idealized by a bilinear relationship for 

the purposes of analysis. 

 
slip

slip

cd x


 


 (17) 

After establishing the envelope curve, bond-slip hysteretic behaviour is determined by adopting 

the respective phenomenological model of Saatcioglu and Alsiwat [40]. Additional features have been 

introduced by the writers to prevent numerical instabilities resulting in the implementation of the 

specific model in the framework of nonlinear analysis [18]. 

6 Correlations with Experimental Results  

The analytical model described in previous sections has been incorporated in the general finite 

element program for inelastic damage analysis of R/C structures IDARC2D 

(http://civil.eng.buffalo.edu/idarc2d50/ ). In the following, the proposed beam-column model is 

calibrated against experimental data from R/C column and frame specimens, which developed shear 

failures after yielding in flexure. Validation is extended, whenever possible, to individual deformation 

components in order to verify as thoroughly as feasible, all features of the model. 

http://civil.eng.buffalo.edu/idarc2d50/
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6.1 R/C bridge pier specimen HS2 by Ranzo & Priestley (2001) 

Ranzo & Priestley [33] tested three thin-walled circular hollow columns. Herein, the specimen 

designated as HS2 is examined, which was designed to fail in shear after yielding in flexure. Its outer 

diameter was 1524mm and wall thickness 139mm. The ratio of the column shear span to the section 

outer diameter was equal to 2.5. The normalised applied compressive axial load was 0.05. 

Longitudinal reinforcement ratio was 2.3% and the volumetric ratio of transverse reinforcement 

0.35%. Concrete strength was 40MPa and yield strengths of longitudinal and transverse 

reinforcement were 450MPa and 635MPa, respectively. Lateral actions were applied in the push and 

pull direction of the column for increasing levels of displacement ductility μΓ with three repeated 

cycles at each μΓ. For this specimen, initial shear strength is predicted equal to 1930kN. 

Fig. 9 shows the experimental and analytical lateral load vs. total displacement response of the 

specimen. The analytical model captures accurately the initial stiffness, lateral strength and hysteretic 

response of the R/C member. More importantly, the proposed model is able to predict reasonably well 

the tip displacement at which onset of shear failure and consequent strength degradation is developed. 

This can be seen also in Fig. 10a, which compares shear strength given by Eq. (6) and acting shear 

force as a function of the end section curvature demand. Initially, shear capacity exceeds significantly 

shear demand. However, due to inelastic curvature development, at the end of the analysis shear 

demand reaches shear capacity marking the onset of stirrup yielding. It is worth reporting that 

maximum curvatures predicted by the analytical model (0.019rad/m and 0.025rad/m in positive and 

negative bending respectively) correlate sufficiently with the measured ones inside the plastic hinge 

region (approx. 0.02rad/m) [33]. 

Fig. 10b illustrates shear strain distribution of the R/C column as predicted by the proposed shear 

sub-element for various levels of increasing μΓ. For μΓ=1.0, shear strains remain constant along the 

height of the member. After μΓ≥1.5, a double effect is noted: First, shear strains in the inelastic zone 

increase more rapidly and tend to differ substantially from the ones in the intermediate part of the 

element due to shear-flexure interaction effect and consequent yielding of transverse reinforcement. 

Second, the length of the inelastic zone increases following expansion of flexural yielding towards the 

mid-span. By this combined effect, gradual spread of inelastic shear deformations is appropriately 

captured by the model.  

Figs 11a and 11b present shear hysteretic response resulting by the proposed model inside and 

outside the plastic hinge region. It can be seen that while acting shear remains the same in both parts 

of the element, shear strains become significantly higher inside the inelastic zone. At the onset of 

shear failure, occurring inside the plastic hinge, shear deformations are predicted equal to 0.3% and 

1.3% outside and inside the inelastic zone, respectively. Both of these values are in good agreement 

with the experimental results (approx. 0.3% and 1.2% respectively) [33]. 
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6.2 R/C beam specimen R5 by Ma et al. (1976) 

Ma et al. [1] tested nine cantilever beams, representing half scale models of the lower story of a 

20-storey ductile moment-resisting R/C office building. Herein, the specimen designated as R5 is 

examined. Shear span ratio was equal to 2.41. Longitudinal reinforcement consisted of 4 top and 4 

bottom 19mm bars, while volumetric ratio of transverse reinforcement was set equal to 0.31%. 

Concrete strength was 31.5MPa and yield strengths of longitudinal and transverse reinforcement were 

452MPa and 413MPa, respectively. The specimen was subjected to a cyclic concentrated load at the 

free end. For this specimen, initial shear strength is predicted equal to 314kN. 

Fig. 12 presents lateral load vs. lateral displacement response as derived by the proposed model 

and as recorded experimentally. It can be seen that the analytical model reproduces sufficiently the 

experimental initial stiffness, lateral load capacity, and unloading stiffness. Reloading stiffness is 

predicted well during the early phases of inelastic response. However, as displacement demand 

increases, the pinching effect is underestimated leading to a small overestimation of the energy 

dissipation capacity of the member. It is pointed out that the displacement level at which shear failure 

is predicted by the analytical model correlates sufficiently well with the onset of serious shear 

strength degradation in the experimental response (μΓ≈4). 

Fig. 13a compares shear strength given by Eq. (6) and acting shear force as a function of the end 

section curvature demand. Initially, shear capacity exceeds significantly shear demand. However, due 

to inelastic curvature development, at the end of the analysis shear demand reaches shear capacity 

marking the onset of stirrup yielding. Maximum curvature demand is well predicted (experiment 

0.11rad/m and prediction 0.12rad/m). 

Fig. 13b shows moment vs. fixed-end rotation hysteretic response caused by anchorage slippage as 

derived by the analytical model described in this study. Maximum rotation is predicted equal to 

0.007rad in both directions. This hysteretic relationship is not reported in [1] for the specimen under 

examination. 

Fig. 13c illustrates shear hysteretic response inside the plastic hinge region as predicted by the 

analytical model. It is obvious that this relationship is characterised by intense pinching effect 

following the hysteretic model proposed in [4]. The predicted behaviour matches adequately the 

experimental response with slight underestimation of the observed pinching effect [1]. This is the 

reason for underestimating pinching effect in the total displacement response (Fig. 12). Shear 

deformation at onset of shear failure is calculated equal to 0.043 and is in close agreement with the 

experimental evidence as shown in Table 1. 

In Fig. 13c, V-γ envelope is also included without considering shear-flexure interaction. Initially, 

the initial envelope determines shear hysteretic response. Nevertheless, as soon as μθ>3, shear 

deformations increase more rapidly, due to interaction with flexure, and shear hysteresis separates 

from the skeleton curve. After stirrup yielding, occurring for γ≈4‰, shear rigidity becomes close to 
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zero and V-γ skeleton curve including shear-flexure interaction continues in parallel with the initial 

envelope. 

In Fig. 13d, variation of displacement components with μΓ is presented as derived by the proposed 

model and experimental recordings. It can be seen that the analytical and experimental displacement 

patterns are in close agreement. Although shear demand after flexural yielding remains almost 

constant, analytically derived shear displacement increases significantly due to modelling interaction 

with flexure and subsequent stirrup yielding.  

6.3 R/C frame specimen by Duong et al. (2007) 

This single-bay, two-storey frame (Fig. 14a) was tested by Duong et al. [41] at University of 

Toronto. The frame was subjected to a single loading cycle. During the experiment, a lateral load was 

applied to the second storey beam in a displacement controlled mode, while two constant axial loads 

were applied throughout the testing procedure to simulate the axial load effects of upper storeys (Fig. 

14a). During loading sequence, the two beams of the frame experienced significant shear damage 

(close to shear failure) following flexural yielding at their ends [41].  

The finite element model applied herein for the inelastic cyclic static analysis of the frame is also 

shown in Fig. (14a). It consists of 4 column elements and 2 beam elements (one for each column and 

beam). Hence, the number of finite elements applied is minimal, ensuring high computational 

efficiency of the numerical model. The columns are assumed to be fixed at the foundation. Rigid arms 

are employed to model the joints of the frame. 

Figs (14b), (14c) compare the experimental and analytical top displacement and base shear 

responses obtained by three different versions of the proposed model. Model F includes only flexural 

deformations. Model FB combines flexural and anchorage slip deformations. Finally, Model FSB, 

which is the one proposed in this study, incorporates all three types of deformations (flexure, shear, 

anchorage slip). 

As shown in Fig. (14b), model FSB follows closely the experimental behaviour over the entire 

range of response. Slight underestimation of the frame lateral stiffness takes place at the early stages 

of loading. This is due to the fact that flexural response prior to cracking is not modelled in this study. 

However, the following gradual decrease of frame stiffness is sufficiently captured by the analytical 

model. At maximum displacement, the analytical model slightly overestimates lateral strength 

(having a calculated-to-observed ratio of 1.10 in both directions). Furthermore, the analytical model 

predicts correctly that both beams develop shear failures after yielding in flexure. 

On the other hand, models F and FB considerably overestimate both stiffness and strength, and 

consequently the ability of the examined frame to dissipate hysteretic energy. For the F model, the 

calculated-to-observed ratio for strength is 1.30 and 1.23, in the positive and negative direction 

respectively. The prediction is improved with inclusion of anchorage slip effect  in the FB model and 

the aforementioned ratios become 1.19 and 1.22.  
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Fig. (14e) presents the pushover curves obtained by the different finite element models. It can be 

seen that models F and FB overestimate stiffness, strength, and displacement capacity. At the end of 

the analysis, the F and FB models overestimate strength by 38% and 37% respectively. The same 

models overestimate displacement capacity by 52% and 358% accordingly. Both models erroneously 

predict flexural failure at the base of the frame. 

The FSB model predicts correctly that shear failure is developed after yielding in flexure. 

However, inclusion of shear-flexure interaction effect and degradation of shear strength with 

curvature ductility demand affects substantially the displacement capacity predicted by this analytical 

model. When shear-flexure interaction is considered, ultimate displacement capacity is found to be 

46mm, which is very close to the 44.7mm recorded experimentally. On the other hand, if shear-

flexure interaction is ignored, displacement capacity is overestimated by 228%. 

Finally, Figs (14e) and (14f) present shear force vs. shear strain hysteresis loops predicted by the 

FSB analytical model inside and outside the plastic hinge regions for the 1
st
 storey beam of the frame 

under cyclic loading. It can be seen that, due to shear-flexure interaction effect and consequent stirrup 

yielding, shear strains are predicted significantly higher inside than outside the plastic hinges (1.26% 

instead of 0.53%), while shear force remains constant along this RC member. 

6.4 R/C frame specimen 1 by Elwood & Moehle (2008) 

This half-scale frame specimen was constructed and tested on the shaking table at the University 

of California, Berkeley [42]. It comprised three columns interconnected at the top by a 1.5m wide 

beam and supported at the bottom on footings (Fig. 15a). The columns supported a total mass of 31t. 

To represent R/C columns typical of 1960s construction in the Western United States, the central 

column was constructed with light transverse reinforcement having 90
o
 hooks. The outside columns 

were detailed with closely spaced spiral reinforcement to ensure ductile response and to provide 

support for gravity loads after shear failure of the central column. 

The specimen was subjected to one horizontal component of the ground motion recorded at Viña 

del Mar during the 1985 Chile earthquake (SE32 component). The normalised axial load in the 

central column was 0.10. During testing, the central column experienced a loss of lateral load 

capacity, due to apparent shear failure at its top, during a negative displacement cycle at 

approximately 17.6sec [42]. 

The finite element model applied herein for the inelastic response-history analysis of the frame is 

shown in Fig. (15a). It consists of 3 column elements and 2 beam elements (one for each member). 

Hence, the number of finite elements required is minimal, ensuring low computational cost.  

The columns are assumed to be fixed at the foundation. Rigid arms are employed to model the 

joints of the frame. Rayleigh model is used for viscous damping. The equivalent viscous damping is 

set equal to 2% of critical for the fundamental vibration mode. The mass is assumed lumped at the top 

of the frame. In the following, for the calculation of the central column shear strength, the 
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contribution of the stirrups is reduced by half to take into account their inadequate anchorage (90
o
 

hooks). Hence, initial shear strength is determined equal to 115kN for this member. 

Figs (15b), (15c) compare the experimental and analytical top displacement and base shear 

respectively response histories between t=10sec and onset of shear failure. The first 10 seconds are 

omitted so that the critical duration of response can be more clearly observed. It is evident that the 

analytical model predicts closely the experimental response up to the onset of shear failure of the 

central column. 

The same conclusion can be drawn in Fig. (15d), which presents the comparison between the 

experimental and analytical hysteresis loops for the frame, up to onset of shear failure. It is apparent 

that the analytical model captures satisfactorily the initial frame stiffness, maximum shear capacity 

and the displacement corresponding to onset of shear failure. 

Finally, Fig. (15e) compares the pushover curves obtained by four different versions of the 

proposed finite element model and the experimental response. The comparison is shown in the 

negative displacement direction because in this direction shear failure was detected.  

Model F, which tackles only flexural deformations, significantly overestimates initial frame 

stiffness and underestimates displacement at failure. In particular, this model predicts erroneously 

flexural failure at the base of the central column at a 20mm lateral displacement.  

Model FS which combines flexure and shear, predicts correctly the development of shear failure at 

the top of central column. However, it significantly overestimates initial lateral stiffness and 

underestimates displacement capacity at onset of shear failure (27mm instead of 51mm).  

Model FB, which includes flexural and anchorage slip deformations, provides better estimates 

than the two previous models. However, it overestimates initial stiffness after base shear exceeds 

150kN (onset of shear cracking) and underestimates considerably displacement at onset of lateral 

failure (37mm instead of 51mm). Moreover, a flexural failure at the base of the central column is 

falsely predicted. 

The best estimations are provided by the FSB model which incorporates all types of deformations. 

Envelope stiffness is closely captured until maximum response. Additionally, this model predicts 

correctly a shear failure at the top of the central column at a 47mm displacement, which is quite close 

to the experimental value. 

 

7 Summary and Conclusions 

A new beam-column finite element for inelastic analysis of R/C planar frame structures was 

introduced and verified against experimental results. The model is of the phenomenological type and 

is developed using the flexibility approach. It consists of three individual sub-elements connected in 

series and accounting for member flexural, shear, and anchorage slip response. 
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 The flexural sub-element is used for modelling flexural behaviour before and after yielding of 

longitudinal reinforcement. By adopting a spread inelasticity formulation, it is able to account for 

variation of section stiffness along the R/C member.  

Shear flexibility is modelled explicitly via the shear sub-element. This sub-element is capable of 

reproducing gradual spread of inelastic shear deformations, developed in plastic hinges, from the 

member ends to the midspan, a feature that cannot be found in any of the existing models. This is 

achieved by determining the length and stiffness of its inelastic zones through a dual interaction 

procedure with the flexural sub-element. 

 Shear stiffness is defined by the respective primary curve and the empirical hysteretic model 

described in [4]. Initially, shear skeleton response is modelled without shear-flexure interaction. This 

envelope curve is appropriate for modelling shear response outside the plastic hinge regions. Herein, 

new empirical formulae are proposed for evaluating shear distortion at onset of stirrup yielding and 

shear failure. Then, by developing a new analytical procedure, which combines the truss analogy 

approach and the shear strength model by Priestley et al. [5], the V-γ envelope within plastic hinge 

regions is determined. In this way, shear strength degradation and rapid increase of inelastic shear 

deformations following flexural yielding are modelled simultaneously and in a rational manner. 

Fixed-end rotations caused by anchorage slippage are modelled by nonlinear rotational springs. 

M-θslip skeleton curve is determined by a simplified procedure assuming constant, uniform bond stress 

distribution along the elastic and inelastic part of the anchorage length. Post-yield nonlinearity of the 

constitutive law for steel, i.e. strain hardening, is taken into consideration. Anchorage slip hysteretic 

relationship is modelled following the phenomenological approach described in [40]. 

The proposed analytical model was implemented in the finite element program IDARC and was 

validated against experimental results from R/C column specimens failing in shear subsequent to 

yielding in flexure. Model calibration was not restricted to total response parameters, but also 

encompassed individual deformation and displacement components. In all cases, sufficient agreement 

was achieved with the experimental observations.  

The developed beam-column model represents a complete proposal for modelling inelastic 

response of R/C members since all deformations mechanisms (flexure, shear, anchorage slip), as well 

as their interaction and gradual development, are duly taken into consideration. At the same time, the 

numerical formulation remains robust and requires minimum computational effort. Hence, it is 

believed that the proposed finite element constitutes an efficient analytical tool for seismic assessment 

of R/C structures. 



18 

 

References 

[1] Ma SM, Bertero VV, Popov EP. Experimental and analytical studies on hysteretic behaviour of 

R/C rectangular and T-beam. Report EERC 76-2. Berkeley: University California Berkeley; 

1976. 

[2] Oesterle RG, Fiorato AE, Aristizabal-Ochoa JD. Hysteretic response of reinforced concrete 

structural walls. In: Proceedings of ACISP-63: Reinforced Concrete Structures subjected to 

Wind and Earthquake Forces, Detroit; 1980. 

[3] Saatcioglu M, Ozcebe G, Response of reinforced concrete columns to simulated seismic 

loading. ACI Structural Journal 1989; 86(1): 3-12. 

[4] Ozcebe G, Saatcioglu M. Hysteretic shear model for reinforced concrete members. Journal of 

Structural Engineering 1989; 115(1): 132-48. 

[5] Priestley MJN, Seible F, Verma R, Xiao Y. Seismic shear strength of reinforced concrete 

columns. Report No. SSRP-93/06. California: University of San Diego; 1993. 

[6] Biskinis D, Roupakias G, Fardis MN. Degradation of shear strength of R/C members with 

inelastic cyclic displacements. ACI Structural Journal 2004; 101(6): 773-83. 

[7] Sezen H, Moehle JP. Shear strength model for lightly reinforced concrete columns. Journal of 

Structural Engineering 2004; 130(11): 1692-703. 

[8] Takayanagi T, Derecho AT, Gorley WG. Analysis of inelastic shear deformation effects in 

reinforced concrete structural wall systems. In: Proceedings of CSCE-ASCE-ACI-CEB 

International Symposium, University of Waterloo, Ontario, Canada; 1979. 

[9] Filippou FC, D’ Ambrisi A, Issa A. Nonlinear static and dynamic analysis of RC 

subassemblages. Report EERC 92-08. California: Univ. California Berkeley; 1992. 

[10] Ricles JM, Yang YS, Priestley MJN. Modelling nonductile R/C columns for seismic analysis of 

bridges. Journal of Structural Engineering 1998; 124(4): 415-25. 

[11] Pincheira J, Dotiwala F, Souza J. Seismic analysis of older reinforced concrete columns. 

Earthquake Spectra 1999; 15(2): 245-72. 

[12] Petrangeli M, Pinto P, Ciampi V. Fibre element for cyclic bending and shear or R/C structures. 

I: Theory. Journal of Engineering Mechanics 1999; 125(9): 994-1001. 

[13] Marini A, Spacone E. Analysis of reinforced concrete elements including shear effects. ACI 

Structural Journal 2006; 103(5): 645-55. 

[14] Soleimani D, Popov EP, Bertero VV. Nonlinear beam model for R/C frame analysis. In: 

Proceedings of Seventh Conference on Electronic Computation, St. Louis, Misouri; 1979. 



19 

[15] Valles RE, Reinhorn AM, Kunnath SK, Li C, Madan A. IDARC2D Version 4.0: A program for 

the inelastic damage analysis of buildings. Technical Report NCEER-96-0010. New York: 

State University of New York at Buffalo; 1996. 

[16] Mergos PE, Kappos AJ. A distributed shear and flexural flexibility model with shear-flexure 

interaction for R/C members subjected to seismic loading. Earthquake Engineering and 

Structural Dynamics 2008; 37(12): 1349-70. 

[17] Mergos PE, Kappos AJ. Seismic damage analysis including inelastic shear-flexure interaction. 

Bulletin of Earthquake Engineering 2010; 8(1): 27-46.  

[18] Mergos PE. Assessment of seismic behaviour of existing RC structures. PhD Thesis. Greece: 

Aristotle University of Thessaloniki; 2011. 

[19] Vecchio FJ, Collins MP. The modified compression field theory for reinforced concrete 

elements subjected to shear. ACI Structural Journal 1986; 83(2): 219-31. 

[20] Priestley MJN, Seible F, Calvi GM. Seismic design and retrofit of bridges. New York: Wiley; 

1996. 

[21] Sivaselvan MV, Reinhorn AM. Hysteretic model for cyclic behaviour of deteriorating inelastic 

structures. Technical report MCEER-99-0018. New York: State Univ. of New York at Buffalo; 

1999. 

[22] Clough RW. Effect of stiffness degradation on earthquake ductility requirements. Structures 

and Materials Research Report No 66-16. California: Univ. of California Berkeley; 1966.  

[23] Park R, Paulay T. Reinforced concrete structures. New York: Wiley; 1975. 

[24] Aboutaha R, Engelhardt D, Jirsa J, Kreger E. Rehabilitation of shear critical concrete columns 

by use of rectangular steel jackets. ACI Structural Journal 1999; 96(1): 68-77. 

[25] Lam SSE, Wu B, Wong YL, Wang ZY, Liu ZQ, Li CS. Drift capacity of rectangular reinforced 

concrete columns with low lateral confinement and high-axial load. Journal of Structural 

Engineering 2003; 129(6): 733-42. 

[26] Sezen H. Seismic behaviour and modelling of R/C building columns. PhD Thesis. California: 

University of California Berkeley; 2002. 

[27] Arakawa T, Arai Y, Egashira K, Fujita Y. Effects of the rate of cyclic loading on the load 

carrying capacity and inelastic behaviour of R/C columns. Transactions of the Japan Concrete 

Institute 1982; 4: 485-92. 

[28] Umehara H, Jirsa JO. Shear strength and deterioration of short R/C columns under cyclic 

deformations. PMFSEL Report No. 82-3. Texas: University of Texas, Austin; 1982. 



20 

[29] Bett B, Klinger R, Jirsa JO. Behaviour of strengthened and repaired R/C columns under cyclic 

deformations. PMFSEL Report No. 85-3. Texas: University of Texas, Austin; 1985. 

[30] Garstka B. Investigations on resistance and damage behaviour of RC linear elements 

considering shear effects under cyclic nonlinear loading. Report Nr. 93-2. Germany: Institut für 

Konstruktiven Ingenieurbau, Ruhr-Universität Bochum; 1993. 

[31] Yoshimura M, Takaine Y, Nakamura T. Collapse drift of R/C columns. In: Proceedings of 5
th
 

US-Japan Workshop on Performance Based Earthquake Engineering Methodology for R/C 

Building Structures: 239-254; 2003. 

[32] Kowalsky MJ, Priestley MJN. Shear behaviour of lightweight concrete columns under seismic 

conditions. Report No. SSRP-95/10, California: University of San Diego; 1995. 

[33] Ranzo G, Priestley MJN. Seismic Performance of Circular Hollow Columns Subjected to High 

Shear. Report No. SSRP-2001/01. California: University of San Diego; 2001. 

[34] Alsiwat JM, Saatcioglu M. Reinforcement anchorage slip under monotonic loading. Journal of 

Structural Engineering 1992; 118(9): 2421-38. 

[35] Lowes L, Altoontash A. Modeling Reinforced Concrete Beam-Column Joints Subjected to 

Seismic Loading. Journal of Structural Engineering 2003; 129(12): 1686-97. 

[36] ACI Committee 408. Bond and development of straight reinforcement in tension. American 

Concrete Institute: Farmington Hills; 2003. 

[37] CEB Bulletin No. 213/214. CEB-FIP model code 90; 1993. 

[38] Park R, Sampson RA. Ductility of reinforced concrete column sections in seismic design. ACI 

Structural Journal 1972; 69(9): 543-51. 

[39] Soroushian P, Kienuwa O, Nagi M, Rojas M. Pullout behaviour of hooked bars in exterior 

beam-column connections. ACI Structural Journal 1988; 85(3): 269-76. 

[40] Saatcioglu M, Alsiwat J. Hysteretic behaviour of anchorage slip in R/C members. Journal of 

Structural Engineering 1992; 118(9): 2439-58. 

[41] Duong KV, Sheikh FJ, Vecchio F. Seismic behaviour of shear critical reinforced concrete 

frame: Experimental Investigation. ACI Structural Journal 2007; 104(3): 304-13.  

[42] Elwood K, Moehle JP. Dynamic collapse analysis for a reinforced concrete frame sustaining 

shear and axial failures. Earthquake Engineering and Structural Dynamics 2008; 37 (7): 991-

1012. 

 



21 

 

 

Figure 1: Proposed finite element model: a) geometry of R/C member; b) beam-column finite 

element with rigid arms; c) flexural sub-element; d) shear sub-element, e) anchorage slip sub-

element. 
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Figure 2: Flexural spread inelasticity model. 
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Figure 3: Initial V-γ primary curve. 
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Figure 4: Relationship between curvature ductility demand and strength of concrete shear resisting 

mechanisms. 
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Figure 5: Variation of a) shear resisting mechanisms; b) shear strain after shear cracking with 

curvature ductility demand in plastic hinge regions of R/C members. 
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Figure 6: Definition of GAeff. 
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Figure 7: Shear spread inelasticity model: a) moment diagram; b) shear diagram; c) shear spread 

model. 
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Figure 8: a) Reinforcing bar with 90
o
 hook embedded in concrete; b) steel stress distribution; c) strain 

distribution; d) bond stress distribution. 
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Figure 9: Lateral load vs. total displacement response for specimen HS2  

(Ranzo & Priestley 2001). 
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Figure 10: a) Shear demand and capacity as a function of the end section curvature demand;  

b) shear strain distribution for increasing displacement ductility demands. 
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Figure 11: Predicted shear hysteretic response a) inside; b) outside plastic hinge region.  
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Figure 12: Lateral load vs. total displacement response for specimen R5 (Ma et al. 1976). 
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Figure 13: a) Shear demand and capacity as a function of the end section curvature demand; b) 

analytical M-θslip hysteresis; c) analytical V-γ relationship inside the plastic hinge region and d) 

variation of member displacement components with μΓ predicted by the analytical model and 

measured experimentally. 
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Figure 14: a) Duong et al. frame specimen layout and corresponding finite element model; (b) 

base shear vs. top displacement prediction by FSB model; c) base shear vs. top displacement 

predictions by F and FB models; d) pushover curves from different finite element models; e) first 

a) 

b) 

c) 

d) 

e) 

f) 

b) 

e) 
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storey beam shear force vs. shear strain response inside plastic hinges; f) first storey beam shear force 

vs. shear strain response outside plastic hinges. 
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Figure 15: a) Elwood & Moehle frame specimen 1 layout and corresponding finite element 

model; (b) displacement time history; c) base shear time history; d) frame hysteresis; e) pushover 

curves from F, FB, FS and FSB finite element models and comparison with the experimental 

response. 

a) 

b) 

c) 

d) e) 
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Ref. Specimen Ls/h v ωκ γst  γu  

    (%) (‰) (‰) 

     Experiment Prediction Experiment Prediction 
[1] R5 2.41 0.00 8.03  4.1 40.0 43.0 

[1] R6 3.91 0.00 8.13  3.4 38.0 37.2 

[4] U1 2.86 0.00 3.22  3.6 21.1 20.1 

[5] R3A 2.00 0.06 1.15 3.3 3.7 3.3 6.4 

[5] C5A 2.00 0.06 0.74 5.4 3.7 5.4 5.6 

[25] X2 1.50 0.40 0.49 2.7 2.9 2.7 2.9 

[26] 2CLD12 3.22 0.15 3.93 2.7 3.0 14.0 11.8 

[26] 2CHD12 3.22 0.61 3.93 1.0 1.3 3.0 1.3 

[26] 2CLD12M 3.22 0.15 3.93 3.3 3.0 9.0 11.8 

[27] OA2 1.25 0.18 1.70 4.6* 
4.3 4.6* 4.3 

[28] CUS 1.11 0.16 3.28 9.0* 
7.5 9.0* 7.5 

[28] 2CUS 1.11 0.27 2.72 7.1* 
6.8 7.1* 6.8 

[29] No 1-1 1.50 0.10 2.08 5.1* 
6.2 5.1* 7.1 

[24] SC9 1.33 0.00 1.92 5.5* 
6.9 5.5* 8.0 

[24] SC3 2.67 0.00 1.75 3.4* 
2.9 12.9* 11.4 

[30] SBV1 1.67 0.00 3.07  7.7 18.0 18.5 

[30] SBV2 2.20 0.00 3.07  5.3 22.0 21.9 

[30] SBV3 2.50 0.00 3.07  3.9 26.0 21.0 

[31] No. 1 2.00 0.20 2.41 2.9* 
3.8 2.9* 5.7 

[31] No. 3 2.00 0.30 1.20 3.3* 
3.3 3.3* 3.3 

[31] No. 4 2.00 0.35 2.41 2.5* 
3.1 2.5* 3.1 

[32] SL1 2.00 0.04 0.47 3.7 3.2 3.7 4.5 

[32] SL2 2.00 0.04 2.50   5.0 17.0 13.6 

[33] HS2 2.50 0.05 0.84   5.0 12.0 12.6 

[33] HS3 2.50 0.15 0.96   3.9 5.0 7.3 

 

Table 1: Experimental and predicted values for γst and γu 
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