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Abstract 

  The free vibration analysis of an axially loaded Timoshenko-Ehrenfest beam coupled in axial and 

bending deformations is carried out in this paper for different boundary conditions. First, the governing 

differential equations of motion in free vibration are developed using Hamilton’s principle and then 

they are solved in closed algebraic form for axial displacement, bending displacement and bending 

rotation.  The expressions for axial force, shear force and bending moment are also obtained in explicit 

algebraic form. Finally, by applying the boundary conditions, the natural frequencies and mode shapes 

of the axially loaded axial-bending coupled Timoshenko-Ehrenfest beam are computed for an 

illustrative example with clamped-free (C-F), pinned-pinned (P-P) and clamped-clamped (C-C) 

supports at the ends. The results are discussed, and some conclusions are drawn.  

1. Introduction 

The free vibration behaviour of axial-bending coupled beams using Bernoulli-Euler and Timoshenko-

Ehrenfest theories has been investigated by several authors [1-6], but these publications do not generally 

account for the case when the beam carries an axial load whose effect on the beam’s free vibration 

characteristics can be significant. For an axial-bending coupled Timoshenko-Ehrenfest beam exhibiting 

free vibration, the inclusion of an axial load increases the level of complexity greatly. The problem does 

not appear to have been adequately dealt with in the literature. The present paper addresses this problem.  

2. Theory 

Figure 1 shows a uniform axial-bending coupled Timoshenko-Ehrenfest beam of length L in a right-

handed Cartesian coordinate system with the Y-axis coinciding with the beam elastic axis which is the 

locus of shear centres of the beam cross-sections. A compressive axial load (P) considered to be positive, 

is assumed to act through the elastic axis of the beam as shown. Note that P can be positive so that 

tension is included in the theory. The coupling between axial and bending displacements will occur in 

a beam of this type because of the eccentricity between the centroid (Gc) and shear centre (Es) of the 

beam cross-section, see Figure 1. There are many practical cross-sections for which the centroid and 

shear centre are non-coincident (see Figure 2 of [4]), but the inverted T section is shown in Figure 1 

only for convenience. The mass axis which is the locus of the centroid of the beam cross-sections is 

separated by a distance z from the elastic axis, as shown. Now, if v0, w0 and  are axial displacement, 

bending displacement and bending rotation of a point on the elastic axis at a distance y from the origin 

in the coordinate system of Figure 1, the governing differential equations of motion in free vibration of 

the axially loaded axial-bending coupled Timoshenko-Ehrenfest beam can be obtained by applying 

Hamilton’s principle and they are in the usual notation, given by  

𝐸𝐴𝑣0
′′ − 𝐸𝐴𝑧𝛼𝜃′′ − 𝜌𝐴𝑣̈0 + 𝜌𝐴𝑧𝛼𝜃̈ = 0        (1) 

𝐸𝐼𝑒𝜃′′ − 𝜌𝐼𝑒𝜃̈ + 𝜌𝐴𝑧𝛼𝑣̈0 − 𝐸𝐴𝑧𝛼𝑣0
′′ + 𝑘𝐴𝐺(𝑤0

′ − 𝜃) = 0     (2) 

𝑘𝐴𝐺(𝑤0
′′ − 𝜃′) − 𝑃𝑤0

′′ − 𝜌𝐴𝑤̈0 = 0        (3) 
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where EA, EIe and kAG are axial, bending (about the elastic axis) and shear rigidities of the beam, A, 

Ie are mass per unit length and mass moment of inertia per unit length (about the elastic axis) and a 

prime and an over dot denote partial differentiation with respect to length y and time t, respectively. 

The expressions for axial force (f), bending moment (m) and shear force (s) which result from the natural 

boundary conditions of the Hamiltonian formulation are given by 

𝑓 = −𝐸𝐴𝑣0
′ + 𝐸𝐴𝑧𝛼𝜃′            (4) 

 𝑚 = −𝐸𝐼𝑒𝜃′ + 𝐸𝐴𝑧𝛼𝑣0
′            (5) 

𝑠 = −𝑘𝐴𝐺(𝑤0
′ − 𝜃) + 𝑃𝑤0

′            (6) 

 

Figure 1. Coordinate system and notation for an axially loaded axial-bending coupled Timoshenko-

Ehrenfest beam. 

For harmonic oscillation with circular or angular frequency , and by introducing the non-dimensional 

length parameter =y/L, Equations (1)-(3) can be solved for the amplitudes of axial displacement (V), 

bending displacement (W) and bending rotation () in terms of integration constants A1-A6 to give 

𝑉(𝜉) = 𝜇𝑘𝛼𝐴1 sinh 𝛼𝜉 + 𝜇𝑘𝛼𝐴2 cosh 𝛼𝜉 + 𝜇𝑘𝛽𝐴3 sin 𝛽𝜉 −

                                                                   𝜇𝑘𝛽𝐴4 cos 𝛽𝜉+ 𝐴5 sin 𝛾𝜉 + 𝐴6 cos 𝛾𝜉     (7) 

𝑊(𝜉) = 𝐴1 cosh 𝛼𝜉 + 𝐴2 sinh 𝛼𝜉 + 𝐴3 cos 𝛽𝜉 + 𝐴4 sin 𝛽𝜉       (8) 

𝛩(𝜉) = 𝐴1
𝑘𝛼

𝐿
sinh 𝛼𝜉 + 𝐴2

𝑘𝛼

𝐿
cosh 𝛼𝜉 +𝐴3

𝑘𝛽

𝐿
sin 𝛽𝜉 −𝐴4

𝑘𝛽

𝐿
cos 𝛽𝜉      (9) 

where , , , k, and k are given by 

𝛼 =
√

−
𝐶1

2
+

√𝐶1
2+4𝐶2

2
; 𝛽 =

√𝐶1

2
+

√𝐶1
2+4𝐶2

2
; 𝛾 = √

𝜔2𝜌𝐴𝐿2

𝐸𝐴
  𝑘𝛼 =

𝑏2𝑠2+𝛼2𝜆2

𝛼
; 𝑘𝛽 =

𝑏2𝑠2−𝛽2𝜆2

𝛽
       (10) 

with 

𝐶1 =
(𝑎2−𝜇2𝑏2){𝑏2(𝑟2+𝑠2)(𝑎2−𝜇2𝑏2)+𝑎2𝑝2−𝑏2𝑟2𝑠2(𝑎2−𝜇2𝑏2)}

(1−𝑝2𝑠2)(𝑎2−𝜇2𝑏2)
;    𝐶2 =

{𝑎2𝑏2−𝑏4𝑟2𝑠2(𝑎2−𝜇2𝑏2)}

(1−𝑝2𝑠2)(𝑎2−𝜇2𝑏2)
   (11) 

𝑎2 =
𝜔2𝜌𝐴𝐿2

𝐸𝐴
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𝐸𝐼𝑒

𝑘𝐴𝐺𝐿2;  𝜇2 =
𝑧𝛼

2

𝐿2; 𝜆2 = 1 − 𝑝2𝑠2   (12) 



 
 

Similarly, the expressions for the amplitudes of axial force (F), shear force (S) and bending moment 

(M) for harmonic oscillation can be obtained as  

𝐹(𝜉) = −
𝐸𝐴

𝐿
(

𝑑𝑉

𝑑𝜉
− 𝜇

𝑑𝛩

𝑑𝜉
) = −

𝐸𝐴

𝐿
  𝛾(𝐴5 cos 𝛾𝜉 − 𝐴6 sin 𝛾𝜉)          (13) 

𝑆(𝜉) =
𝐸𝐼𝑒

𝐿3  (𝐴1𝑔𝛼 sinh 𝛼𝜉 + 𝐴2𝑔𝛼 cosh 𝛼𝜉 + 𝐴3𝑔𝛽 sin 𝛽𝜉 − 𝐴4𝑔𝛽 cos 𝛽𝜉)     (14) 

𝑀(𝜉) = −
𝐸𝐼

𝐿2
(𝐴1ℎ𝛼 cosh 𝛼𝜉 + 𝐴2 ℎ𝛼 sinh 𝛼𝜉 + 𝐴3ℎ𝛽 cos 𝛽𝜉 + 𝐴4ℎ𝛽 sin 𝛽𝜉 − 𝐴5 ℎ𝛾 cos 𝛾𝜉 + 𝐴6ℎ𝛾 sin 𝛾𝜉)  (15) 

where 

𝑔𝛼 =
𝑏2

𝛼
;      𝑔𝛽 =

𝑏2

𝛽
;  ℎ𝛼 = 𝛼𝑘𝛼(1 − 𝜇2𝑏2/𝑎2);   ℎ𝛽 = 𝛽𝑘𝛽(1 − 𝜇2𝑏2/𝑎2);  ℎ𝛾 = 𝛾𝜇𝑏2/𝑎2   (16) 

Now, Equations (7)-(9) and Equations (13)-(15) can be used to apply boundary conditions for 

displacements and rotations, as well as for forces and moments, respectively, to eliminate the constants 

A1-A6 and arrive at the frequency equation which yields the natural frequencies of the axially loaded 

axial-bending coupled Timoshenko-Ehrenfest beam. The mode shapes can be recovered by assigning a 

chosen value of one the constants and determining the rest of the constants in terms of the chosen one. 

3. Discussion of results and conclusions 

To demonstrate the application of the developed theory, an axially loaded coupled axial-bending 

Timoshenko-Ehrenfest beam made of aluminium and with the inverted T cross-section shown Figure 2 

which is that of [5] is now analysed for its free vibration characteristics. The dimensions used for the 

cross-section (see Figure 2) are b = 40 mm, t = 4 mm and the length of the beam L is taken as 1 m. The 

distance between the shear centre and the centroid of the cross-section is worked out to be z = 9.474 

mm. The material properties used in the analysis are the Young’s modulus E = 70 GPa, the shear 

modulus G = 26.92 GPa and the density  = 2700 kg/m3. The shear correction factor (also known as the 

shape factor) k is taken to be 2/3. Using the above data, the stiffness and mass properties of the section 

are calculated as axial stiffness (EA) = 2.128×107 N, (ii) bending stiffness (EIe) = 5135.57 Nm2, (iii) 

shear stiffness (kAG) = 5.4564 ×106 N, (iv) mass per unit length (A) = 0.8208 kg/m and (v) the mass 

moment of inertia (rotatory) per unit length (Ie) = 0.001981 kgm. 

 

 

 

 

 

 

 

Figure 2. Cross-sectional details of an axially loaded coupled axial-bending Timoshenko-Ehrenfest 

beam, mass axis (centroid): Gc, elastic axis: Es. 

The critical buckling loads (Pcr) of the axial-bending coupled Timoshenko-Ehrenfest beam for clamped-

Free (C-F), Pinned-Pinned (P-P) and clamped-clamped (C-C) boundary conditions were established at 

7.9471 kN, 45.055kN and 124.44 kN, respectively by using the theory published by Banerjee [6]. (Note 

that the P-P boundary condition prevents axial motion at the ends.) Next, the first five natural 

frequencies of the beam for C-F, P-P and C-C boundary conditions were computed using the current 

theory considering the axial load 0.0, 0.5Pcr and -0.5Pcr, respectively, and the results are shown in Table 

1. These results were checked using the computer program BUNVIS-RG [7] which has the capability 

to connect eccentrically an axially loaded beam to nodes at the centroid of the cross-section to idealise 

an axially loaded axial-bending coupled beam, giving approximate, but sufficiently accurate results. 
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Table 1. Natural frequencies of an axially loaded axial-bending coupled Timoshenko-Ehrenfest beam 

for different boundary conditions. 

 

Frequency 

Number 

(i) 

Natural frequencies i (rad/s) 

C-F P-P C-C 

Axial Load (P) Axial Load (P) Axial Load (P) 

0.0 0.5Pcr -0.5Pcr 0.0 0.5Pcr -0.5Pcr 0.0 0.5Pcr -0.5Pcr 

1 220.036 158.654 264.873 736.381 520.752 901.802 1381.23 985.952 1678.63 

2 1364.98 1306.85 1420.42 2431.11 2200.10 2641.98 3735.55 3243.68 4165.44 

3 3761.76 3712.99 3809.90 5510.47 5288.36 5723.95 7147.55 6620.77 7636.82 

4 7210.10 7163.85 7256.04 9214.82 8992.90 9430.97 11478.1 10923.3 12006.6 

5 7998.11 7998.11 7998.11 14275.8 14046.7 14501.1 15996.2 15996.2 15996.2 

 

The results shown in Table 1 indicate as expected that the effect of the compressive axial load (P=0.5Pcr) 

is to reduce the natural frequencies whereas the corresponding effect of a tensile load (P=-0.5Pcr) is to 

increase the natural frequencies. It should be noted that the fifth natural frequency for the C-F and C-C 

boundary conditions shown in Table 1 is unaltered because it corresponds to a pure axial mode for 

which the axial load is not expected to have any major effect. The theory developed and the results 

presented demonstrate the importance of axial-bending coupling effects on the free vibration 

characteristics of axially loaded axial-bending coupled Timoshenko-Ehrenfest beams. 
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