
              

City, University of London Institutional Repository

Citation: Hosseini-Hashemi, S. (1985). The Sound and Vibration Resulting from the 

Impact of Spheres. (Unpublished Doctoral thesis, The City University) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/35780/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


THE CITY UNIVERSITY

DEPARTMENT OF MECHANICAL ENGINEERING

"THE SOUND AND VIBRATION RESULTING

FROM THE IMPACT OF SPHERES"

by

Shahrokh Hosseini-Hashemi

This Thesis is submitted 
for the degree of Doctor 

of Philosophy

DECEMBER 1985.



TI
SH

 
vy

gn

IMAGING SERVICES NORTH
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY



i

CONTENTS

List of Figures

List of Tables

NOMENCLATURE

SUMMARY

ACKNOWLEDGEMENTS

1. INTRODUCTION

1.1. General Introduction

1.2. Review of Literature

1.2.1. Rigid body radiation

1.2.2. Pseudo steady state radiation

2. FUNDAMENTAL CONCEPTS USED IN THE SUBSEQUENT CHAPTERS

2.1. The Cartesian form of the three dimensional 
acoustic wave equation

2.2. General solution of acoustic wave equation 
in spherical co-ordinates

2.3. Monopole and simple sources.

2.4. The dipole source

2.5. Impact of elastic bodies

2.6. Numerical solution of force-time history

2.7. Equation of motion in an elastic medium

2.8. Solution of equations of motion for solid spheres

3. RIGID BODY RADIATION DUE TO ELASTIC COLLISIONS OF SPHERES

3.1. Sound radiation from an impulsively accelerated sphere
3.2. The impulsive monopole source

3.3. Velocity potential of an impulsively accelerated 
sphere (Laplace transform method)

3.4. Sound radiated by a sphere undergoing a Hertzian 
acceleration (Laplace transform method)

3.5. Sound radiated by a sphere undergoing a Hertzian 
acceleration (Approximate method)

Page No.

i v

i x

x

xxv

xx vi

1

1

3

3
9

13

14

17
23

27

28
32

33

36

49

50
53

54

58

66



i i

Page No.

3.6. Sound radiated by a pair of colliding spheres 
(Convolution method)

3.7. Sound radiated by a pair of colliding spheres
(Numerical method) 78

3.8. Sound radiated due to change of volume of
sphere undergoing an elastic collision 79

3.9. Acoustic energy of an impulsively accelerated
sphere 82

3.10. Acoustic energy of sphere undergoing a Hertzian
acceleration 86

4. RADIATION DUE TO INELASTIC COLLISION OF SPHERES HO

4.1. Elastic-plastic contact deformation HO

4.2. Numerical solution of sound pressure H7

4.3. Sound radiation from a sphere subjected to
inelastic collision by a sphere (Analytical
solution) H5

4.4. Fourier transform of pressure-time history 131

5. SOUND PRESSURE RADIATED BY A VISCO-ELASTIC SPHERE 142

5.1. Impact solution 142

5.2. Numerical solution of sound pressure 144

5.3. Discrete finite transform for evaluating the
Fourier transform of pressure-time history 148

6. SOUND RADIATION FROM TRANSIENT VIBRATION OF SOLID SPHERE 157

6.1. Vibrations of elastic sphere 157

6.2. Solution of equations of motion (Alternative
approach) 163

6.3. Frequency equation 170

6.4. Orthogonality and normalisation of torsional modes 174

6.5. Modal shapes of torsional vibrations 179

6.6. Orthogonality and normalisation of spheroidal modes 184

6.7. Modal shapes of spheroidal vibrations 193

6.8. Response of a sphere to a radial concentrated force 198

6.9. Response due to collision 210

6.10. Sound generated by transient vibration of solid
spheres 216



i i i

Page No.

REFERENCES

SOUND RADIATION FROM TRANSIENT VIBRATION OF HOLLOW SPHERE 247

7.1 . Vibrations of hollow sphere 247
7.2. Frequency equation 249
7.3. Orthogonality and normalisation of torsional modes 253
7.4. Orthogonality and normalisation of spheroidal modes 256
7.5. Sound generated by transient vibration of hollow 

sphere 263

EXPERIMENT 287

8.1. Specimens and suspension 287
8.2. Design of the test rig 288
8.3. Fourier Analyzer 289
8.4. Anechoic chamber 290
8.5. Acoustic measurements 291
8.6. Acceleration measurements 292

DISCUSSION AND CONCLUSIONS 298

9.1 . Force-time history 298
9.2. Impulsively accelerated and pulsating sphere 298
9.3. Sphere undergoing a Hertzian acceleration 299
9.4. Radiation due to change of volume of sphere 308
9.5. Acoustic energy 308
9.6. Radiation of sound due to inelastic collision 

of spheres 311

9.7. Radiation of sound due to collision of visco-
elastic spheres 312

9.8. Vibration of solid and hollow spheres 312
9.9. Experimental results 314
9.10. Conclusions 316

343



i v

LIST OF FIGURES

Figure No. Page No.

2.1 . Illustration of elements ds = r sinedodip 47

2.2. Force-time history for 1.27 cm diameter steel spheres
with an initial impact velocity of 1.52 m/s 47

2.3. Stresses acting on a small rectangular parallelepiped 48

3.1 . Pressure-time curves of impulsively accelerated sphere 90

3.2. Pressure-time curves of impulsively pulsating sphere 90

3.3. Dimensionless peak pressure against dimensionless
contact time 91

3.4. Variations of n with R 91max p
3.5. Dimensionless peak of transform against 3 92

3.6. Variations of n*' with Rmax ■ 92

3.7. A Comparison of the exact solution for the sound
radiated by an impulsively accelerated sphere and 
approximate evalua.timof that sound obtained by 
aerodynamic approach 93

3.8. A Comparison of the exact solution for the sound
radiated by a sphere undergoing a Hertzian acceleration 
and approximate evaluation of that sound obtained by 
aeroacoustic approach 93

3.9. Model of colliding spheres 94

3.10. Model of wave path from impactor to measuring microphone 
located at 9 = 0° 94

3.11 . Dimensionless pressure-time curve 
spheres of equal sizes (9 =0°)

for pai r of similar
95

3.12. Dimensionless pressure-time curve 
spheres of unequal sizes (0 = 0°)

for pai r of simi1 ar
96

3.13. Dimensionless pressure-time cugve 
spheres of equal sizes (6 = 0°)

for pai r of di ssimilar
97

3.14. curv

3.15.

Dimensionless pressure-time 
spheres of unequal sizes (9 = 0u)

for pai r of dissimi1 ar
98

maximum pressureDirectional distribution of
by a pair of similar spheres of equal sizes.

radiated
99

a

a

a

a



V

Figure No. Page No.

3.16. Directional distribution of maximum pressure radiated 
by a pair of similar spheres of unequal sizes. 99

3.17. Directional distribution of maximum pressure radiated 
by a pair of dissimilar spheres of equal sizes. 100

3.18. Directional distribution of maximum pressure radiated 
by a pair of dissimilar spheres of unequal sizes. 100

3.19, Dimensionless rarefractive peak pressure against g. 101

3.20.
z\

Variation of n with 8.max 101

3.21 . Fourier transform of pressure for a pair of similar 
spheres of equal sizes. 102

3.22. Fourier transform of pressure for a pair of similar 
spheres of unequal sizes. 103

3.23. Fourier transform of pressure for a pair of dissimilar 
spheres of equal sizes, 104

3.24. Fourier transform of pressure for a pair of dissimilar 
spheres of unequal sizes. 105

3.25. Variation of n* with 6.max
106

3.26. Sound pressure time history for 2.54 cm diameter steel 
sphere with an initial impact velocity of 2.5 m/s. 106

3.27. Illustration of element dS for evaluating the shaded volume. 107

3.28. Dimensionless pressure time curve due to change of volume1 
of sphere undergoing an elastic collision. 108

3.29. Variation of dimensionless energy with 6 (Impactee only). 109

3.30. Variation of total dimensionless energy with f. 109

4.1. Force versus time for 2.54 cm diameter lead spheres with 
an initial impact velocity of 0.55 m/s. 136

4.2. Comparison of analytical and numerical solution of pressure 
time histories for 2.54 cm diameter lead spheres with an 
initial velocity of 0.55 m/s. (Impactee only). 137

4.3. Sound pressure-time history for 2.54 cm diameter lead 
spheres with an initial impact velocity of 0.55 m/s. 138



vi

Fi gure No. Page No

4.4. Fourier transform of pressure for 2.54 cm diameter 
lead sphere with an initial impact velocity 0,55 m/s. 139

4.5. Fourier transform of dimensionless pressure, (Impactee only) 140

4.6. Fourier transform of dimensionless acceleration. 141

5.1 . Sound pressure time history for 2.54 cm diameter sphere 
with the same properties described in Case 1. 152

5.2. Sound pressure time history for 2.54 cm diameter sphere 
with the same properties described in Case 2. 153

5.3. Sound pressure time history for 2.54 cm diameter sphere 
with the same properties described in Case 3. 154

5.4. Force-time curves due to collision of steel sphere and 
visco-elastic sphere described in Table 5.1. 155

5.5. Fourier transform of pressure for sphere with the pressure 
time history as given in Figure 5.3. 156

6.1 . Variation of normalised displacement of torsional 
vibration of sphere along the radius ( n = 2) . 223

6.2. Diagrams of the surface mode spheres of torsional vibration. 227

6.3. Variation of normalised displacement (u ) of spheroidal 
vibration along the radius. 232

6.4. Variation of normalised displacement (uQ) of spheroidal 
vibration along the radius. 237

6.5. Diagrams of the surface mode shapes of spheroidal vibration. 241

6.6. Force-time curves for a pair of colliding spheres of 
radii 1.27 cm and 7.112 cm (Eq.(6.161), n = 0 and £ =1,5). 246

7.1 . Variation of normalised displacement of torsional vibration 
of hollow sphere along the thickness. 274

7.2. Variation of normalised displacement (u ) of spheroidal 
vibration of hollow sphere along the thickness. 278

7.3. Variation of normalised displacement (uJ of spheroidal 
vibration of hollow sphere along the thickness. 283

8.1 . Schematic of Ball Suspension. 294



Figure

8.2.

8.3.

8.4,

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

9.11 .

9.12.

9.13.

No. Page No

Schematic diagram of test rig. 295

General arrangement of acoustic measurements. 296

General arrangement of acceleration measurements and
apparatus used in calibration, 297

Comparison of measured pressure time result and
calculated result for 2.54 cm diameter spheres. 321

Comparison of measured pressure time result and
calculated result for 2.54 cm diameter spheres. 322

Comparison of measured pressure time result and
calculated result for 2.54 cm diameter spheres. 323

Comparison of measured pressure time result and
calculated result for 2.54 cm diameter spheres. 324

Comparison of measured Fourier transform pressure
result and calculated result for 2.54 cm diameter 325
spheres.

Comparison of measured Fourier transform pressure
result and calculated result for 2.54 cm diameter 326
spheres.

Comparison of measured Fourier transform pressure
result and calculated result for 2.54 cm diameter 327
spheres.

Comparison of measured Fourier transform pressure
result and calculated result for 2.54 cm diameter 328
spheres.

Fourier transforms for various size spheres, 329

Fourier transform comparison for 2.54 cm diameter
sphere as a function of the angle for vQ =2.5 m/s. 330

Measured Fourier transform pressure for 5,08 cm 
diameter spheres. 331

Polar distribution of positive peak pressure for
2.54 cm diameter spheres. 332

Polar distribution of negative peak pressure for
2.54 cm diameter spheres. 332



v i i i

Figure

9.14.

9.15.

9.16.

9.17.

9.18.

9.19.

9.20.

9.21 .

9.22.

9.23.

9.24.

9.25.

No. Page No.

Comparison of measured energy integration result 
and calculated result for 2.54 cm diameter spheres. 333

Positive peak pressure vs impact velocity for 
2.54 cm diameter spheres. 334

Negative peak pressure vs impact velocity for 
2.54 cm diameter spheres. 334

Energy integration vs impact velocity for 2.54 cm 
diameter spheres. 335

Energy integration vs impact velocity for 2.54 cm 
diameter spheres. 335

Distribution of Energy Integration for 2.54 cm 
diameter spheres. 336

Comparison of measured Fourier transform acceleration 
result and calculated result for Impacjee of radius 
7.1 cm at position r = 7.1 cm and 0= 0 . 337

Comparison of measured Fourier transform acceleration 
result and calculated result for Impactge of radius 
7.1 cm at position r = 7.1 cm and 0= 0 . 338

Comparison of measured Fourier transform acceleration 
result and calculated result for Impactge of radius 
7.1 cm at position r = 7.1 cm, and 0= 0°. 339

Comparison of measured Fourier transform acceleration 
result and calculated result for Impactge of radius 
7.1 cm at position r = 7.1 cm and 0= 0 . 340

Comparison of measured Fourier transform pressure
result and calculated result for 7.1 cm radius spheres. 341

Comparison of measured Fourier transform pressure
result and calculated result for 7.1 cm radius spheres. 342



ix

LIST OF TABLES

Table No.

5.1. Material properties and assumed relaxation times
of three visco-elastic spheres.

6.1. Non-dimensional frequency of torsional vibration
of spheres.

6.2. Non-dimensional frequency of spheroidal vibration
of spheres.

7.1. Non-dimensional frequency of torsional vibration
of hollow sphere, (b/a = 0.2)

7.2. Non-dimensional frequency of torsional vibration
of hollow sphere (b/a = 0.4).

7.3. Non-dimensional frequency of torsional vibration
of hollow sphere (b/a = 0.6).

7.4. Non-dimensional frequency of torsional vibration
of hollow sphere (b/a = 0.8).

7.5. Non-dimensional frequency of spheroidal vibration
of hollow sphere (b/a = 0.2).

7.6. Non-dimensional frequency of spheroidal vibration
of hollow sphere (b/a = 0.4).

7.7. Non-dimensional frequency of spheroidal vibration
of hollow sphere (b/a = 0.6).

7.8. Non-dimensional frequency of spheroidal vibration
of hollow sphere (b/a = 0.8).

8.1. Characteristic of the balls used for the tests.

Page No.

151

221

222

226

267

268

269

270

271

272

273

294



X

N O M E N C L A T U R E

a,  a r a 2 , ax r a di u s of  s p h er e

a M >  a Ml ’ a M 2 m a xi m u m  v al u e  of  t h e a c c el er ati o n  i n t h e 
el a sti c  c olli si o n

a * i n n er r a di u s of  h oll o w  s p h er e

^ 0 ’̂ 1 ’S 2 ’et c * c o effi ci e nt  of  z er o a n d  e v e n  p o w er s  of  
i n e x p a n si o n  of

a kj el e m e nt s  of  m atri x  4  b y  4  d efi n e d  i n ( 7. 9 a)  
t o ( 7. 9 h)

A i nt e gr al f u n cti o n i n H ert z' s  t h e or y of  c o nt a ct

A n ar bitr ar y  c o n st a nt i n t h e e q u ati o n  ( 6. 6)

A * r e al p art  of  t h e F o uri er  tr a n sf or m of  
a c c el er ati o n  i n i n el a sti c c olli si o n

A *
n

c o effi ci e nt s  of  c o m p o n e nt w a v e s  i n e q u ati o n
( 2. 2 3)

/\

A a c c el er ati o n  f u n cti o n
A

A 1
✓ s

A 2
A

A 3
A

| A|

d e c el er ati o n  f u n cti o n d uri n g  el a sti c  l o a di n g p eri o d  

a c c el er ati o n  f u n cti o n d uri n g  el a sti c- pl a sti c  p eri o d  

a c c el er ati o n  f u n cti o n d uri n g  u nl o a di n g  p eri o d  

a b s ol ut e  v al u e  of  . a c c el er ati o n

A c o effi ci e nt  of  p eri o di c  f u n cti o n i n e q u ati o n  ( 2. 2 3)

A
n

ar bitr ar y  c o n st a nt i n t h e e q u ati o n  ( 6. 1 8 a)

A  
n m

c o effi ci e nt  of  c o m p o n e nt w a v e s  i n e q u ati o n  ( 2. 3 7)

A n m £ ar bitr ar y  c o n st a nt  i n t h e e q u ati o n  ( 6. 4 2 b)

A
n m q

A p s q

ar bitr ar y  c o n st a nt i n t h e s ol uti o n  of  e q u ati o n  ( 6. 4 9 b)

ar bitr ar y  c o n st a nt i n e q u ati o n  ( 6. 4 4 b)

ar bitr ar y  c o n st a nt i n e q u ati o n  ( 6. 1 8 a)

A

n m £
ar bitr ar y  c o n st a nt i n e q u ati o n  ( 7. 1 2 b)

% s q ar bitr ar y  c o n st a nt i n e q u ati o n  ( 7. 1 4 b)



xi

b

b*

^0’^1 »B2>etc.

b

B

coefficients of zero and even powers of k2 
in expansion of Bn

a position along the length of beam

integral function in Hertz's theory of contact

arbitrary constant in equation (6.9a)

B* imaginary part of the Fourier transform of 
acceleration in inelastic collision

B*n
ex* 
M

ZX /\ /X

B-| ,B2 jBg time independent coefficients in expressions 
of sound pressure due to inelastic collision

B coefficient of periodic function in equation (2.23)

arbitrary constant in equation (6.23a)

B nm

B o nm£

B nmq

n

nm£

nmq

coefficients of component waves in equation (2.37)

arbitrary constant in R-j 

arbitrary constant in R2
Ilco 

llcO 
llm 

U 
I O

arbitrary constant in equation (6.23a)

arbitrary constant in R^ 

arbitrary constant in R^

sound velocity
1 (A+B)^ 

“4
velocity of dilatation waves

velocity of distortion waves

= (X+2p^
P

time independent coefficients in expressions of 
sound pressure due to inelastic collision

CrC2 coefficients of modified Bessel functions of the
first and second kind in equation (3.25)



xi  i

d d ur ati o n  of  c o nt a ct

/ X / X

d 0 ’d l, d2 c o effi ci e nt s of  z er o a n d  e v e n  p o w er s  of  k 2 i n 
e x p a n si o n  of

d d ur ati o n  of  c o nt a ct i n i n el a sti c c olli si o n

D i nt e gr al d o m ai n

D n ar bitr ar y  c o n st a nt i n e q u ati o n  ( 6. 9 b)

D * n
Z X  / X Z X

D-j  , D2 , D3

c o effi ci e nt s  of  L e g e n dr e p ol y n o mi al  i n e q u ati o n  ( 2. 4 2)

ti m e i n d e p e n d e nt c o effi ci e nt s  i n e x pr e s si o n s  of  
s o u n d pr e s s ur e  d u e  t o i n el a sti c c olli si o n

D c o effi ci e nt s  of  c yli n dri c al  B e s s el  f u n cti o n of  
t h e fir st ki n d  i n e q u ati o n  ( 2. 3 1)

B n ar bitr ar y  c o n st a nt i n e q u ati o n  ( 6. 2 3 c)

^ n m £ ar bitr ar y  c o n st a nt i n Y-|

D n m q  

§ n

ar bitr ar y  c o n st a nt i n Y 2

ar bitr ar y  c o n st a nt i n e q u ati o n  ( 6. 2 3 c)

^ n m £ ar bitr ar y  c o n st a nt  i n Y-j

^ n m q

E, E 1 ’E 2 ’E x

ar bitr ar y  c o n st a nt i n Y 2

Y o u n g' s  m o d ul u s

E k ki n eti c  e n er g y

E p ot e nti al  e n er g y
P

E *
2 M 2  =  2

=  — — x- m v  
( 1 + M) 2  0

A

E e n er g y

z x  z x  z x

E 1 ’E 2 ’E 3 ti m e i n d e p e n d e nt c o effi ci e nt s i n e x pr e s si o n s  of  
s o u n d pr e s s ur e  d u e  t o i n el a sti c c olli si o n

✓ X

e t e n er g y  f or a p air  of  c olli di n g  s p h er e s

E c o effi ci e nt  of  c yli n dri c al B e s s el  f u n cti o n 
of  t h e s e c o n d ki n d  i n e q u ati o n  ( 2. 3 1)



x i i i

f frequency

fe radial dependent function in solution in ILu

L

Fmax

radial dependent function in solution of

maximum frequency in D.F.T. method

f1 f1
9’ ip 

f" f"9’ ip
Af

first derivatives of fQ and f^ with respect to r 

second derivatives of fQ and f^ with respect to r 

frequency resolution

f* nm£
f

time independent part of F*

function dependent on a in equation (4.38)

? function dependent on Z in equation (4.43)

F force function

Fj’Fk 

Fx’Fy’Fz 

f e

force at instants t = jAt and t = kAt 

resultant force in direction x, y and z 

force in the elastic annulus

FP force in the plastic circle

Fs magnitude of force in the form of a step function

f ep total force in the elastic-plastic loading period

f eu total force in the elastic unloading period

Fmax
. j? ,5v02 0.6
— l\Q \ Z\ )

C 4K]K2

Fnm£’Fnmq’Fpsq

F*

function defined in (6.80a) and (7.21a) 

left-hand side of equation (6.125a)

F coefficient of spherical Bessel function of the 
first kind in equation (2.33)



g function dependent on a in equation (4.24)

91 >92>93 separation functions for solving equation (2.16)

SO gravitational acceleration

9'1 ,9’2>9'3 first derivatives of separation functions with respect 
to their arguments used for solving equation (2.16)

g"pg"2.g"3 second derivatives of separation functions with respect 
to their arguments used for solving equation (2.16)

q*y nm£ time independent part of G*

Gnm«.’Gnmq’Gpsq function defined in (6.80b) and (7.21b)

G* left-hand side of equation (6.125b)

G*n
A • A
^1 ’^2’^3

expression defined in (6.175c)

time independent coefficients in expression of 
sound pressure due to inelastic collision

G coefficient of spherical Bessel function of the 
second kind in equation (2.33)

h = 2
n

h^.h <2> spherical Hankel functions of the n^ order of 
the first and second kind respectively

hD drop height of the ball

h  ^nax’01!
n

F = 1
n

H heavyside function

H

components of vector potential in the r,e,ip directions 

vector potential

i positive root of minus one

2 unit vector in x direction

I acoustic intensity

i
modified Bessel function of the first kind 

shortened for integration in equation (5.6)



XV

j any integer

jn spherical Bessel function of the n^ order of 
the first kind

i unit vector in y direction

j-V
cylindrical Bessel function of the n^ order 
of the first kind

k any integer

k unit vector in z direction

K wave number, = —c

K1 circular frequency divided by velocity of dilatation 
waves, = —

C1

k 2 circular frequency divided by velocity of distortion 
waves, = —

c2

Ky modified Bessel function of the second kind

K* 2 “1
= o n3 “max

z\ z\
KpK? constants in the Hertz's theory of contact

KrK2,K3 bulk modulus

SL»£j > &2 ratio of velocity of sound to the radius of sphere

m any integer

m-| ,m2,m mass

m mass of air displaced by the sphere

M mass of solid or hollow sphere

M
m2

= "T

n any integer 
tl

nl ’ a
t2

n2 ’ d



xv i

n* dimensionless time delay

n unit normal vector

n* dimensionless frequency

"*d = d/At

n max
/x
n

dimensionless frequency at which peak of transform occurs

dimensionless time
/X
nmax dimensionless time at which peak pressure occurs

n ,n any integer

N number of samples in D.F.T. method

^nm^ generalized force

p ,pQ ,p-| >P2 >P3 sound pressure

Pre real part of sound pressure

PUI pressure due to unit impulse acceleration

pmax peak pressure amplitude ■

IpI absolute value of sound pressure

P‘ static pressure and acoustic pressure

P static pressure

P pressure distribution across the circular contact area

P n
t hLegendre polynomial of the nLn order

p m 
n associated Legendre function11

PD
■ ?

PL
■ 2 -W ? 

1+M 0 0

PM = p.cv —Ho o r

PN
1.17M _ a

- 1+M

Prms root of mean square pressure

P 0 dynamic flow pressure



xv i i

vqk elliptic integral in the Hertz's theory of contact

associated generalized coordinate

%m£ differentiation of q^ with respect to time

second differentiation of qnm^ with respect to time

£ velocity vector

r radial coordinate

ro arbitrary radial coordinate

rl’r2 distance from the centre of sphere to the 
microphone position

—’ % position vector

r distance from the centre of the circular contact area

_rl radius of the circle of the plastic region

r2 radius of the circle of the plastic region 
at the end of elastic-plastic period

R radial dependent function in equation (6.22a)
§ = 0

R1 - D f r „ i v \ r _nm£nm£’Jn^wn£ c-, nmtf/n wn£ cJB f 0
1 1 nm£

r 2 Rnmq‘J'n^nq cJ^nmq^n^nq cJ’^ Q
1 nmq "

R' differentiation of R with respect to r

R' -],R*2 differentiation of R-| and with respect to r

R" second differentiation of R with respect to r

R-| 5R2 dimensionless coefficients in expressions (2.122) 
and (2.123)

R radius of contact area

R1 radius of the contact area at the end of elastic 
loading period.



xv i i i

s = iw

s* condensation

S surface area

Sn£ quantity defined in (6.156a)

S displacement vector

S n spherical surface harmonic of degree n

$n£ quantity defined in (6.156b)

t time

tl termination time of the elastic loading period

t2 duration of the elastic-plastic loading period

t3 duration of the elastic unloading period

At, At, At time step size

t* = t^+t?)
A
t = t-t-]

t = t-t-]

T period

Td time delay

time independent displacement components in the 
r,0,ip directions

ur,nm£ Z-th natural mode of degree m and order n in the 
r direction

Ur,psq q-th natural mode of degree S and order p in the 
r direction

u0,nm£ £-th natural mode of degree m and order n in the 
0 direction

ue,psq q-th natural mode of degree S and order p in the 
0 direction



xix

Uipinm^ £-th natural mode of degree m and order n in the 
ip direction

%,psq q-th natural mode of degree S and order p in the 
ip direction

u* n r ,n£ £-th normal mode of degree zero and order n in the 
r direction

u*r ,nm£ £-th normal mode of degree m and order n in the 
r direction

U*
e ,nm£ £-th normal mode of degree m and order n in the 

6 direction

u*ip,nm£ £-th normal mode of degree m and order n in the 
ip direction

z\
11 time independent displacement in the x direction
Z\
un

thn component of u

V2 di splacement

Ur’U6’% displacement components in the r,0,ip directions

URIG rigid body displacement

°r differentiation of Uf with respect to time

’ur second differentiation of Uf with respect to time
A

u displacement in the x direction

V velocity amplitude

vo constant velocity

vl’v2’vr radial velocity

vx’vy’vz velocity components

Fourier transform of impulsive velocity vqH(t )

v*r complex conjugate of Fourier transform of 
radial velocity

/X
V time independent displacement in the y direction
A 

vn
thn component of v



XX

V volume

V displacement in y direction

w* nm£z\
w

time independent part of W*

time independent displacement in the z direction
z\
w n

thn component of w

W function dependent on r and t

w*
z\
w

left-hand side of equation (6.125c) 

displacement in z direction

w Laplace transform of W

X Cartesian coordinate

6x infinitesimal length in x direction

X transformation variable for solving equation (2.21)

X function dependent on r and s

spherical solid harmonic of degree n

y Cartesian coordinate

spherical Bessel function of the nth order of the 
second kind

Sy infinitesimal length in y direction

y*
Sr
c

Y
.m

= — PJX) 
dxm *

D = 0
Y1 " ^nmrV^W cT^nmtVwn£c/ ’ § / 0

2 2 nm£ '

Y2 %mq’Jn^nq c2^+®nmqyn^nq^ ’ =nmq , 

nmq * u

Y’v

Ye y o 
mn’ mn

cylindrical Bessel function of the second kind

spherical surface harmonic of degree n



xx i

Y'1’Y'2 differentiations of Y-j and with respect to r

vii  y ii
Y l’Y 2 second differentiations of Y-. and Y9 with respect 

to r 1 z

z Cartesian coordinate
A = 0

Z1
- a a i r / r \ r_nm£nm£*Jn^n£ c^ nm£yn^ wn£c2 ^A^^ i 0

z2
" \sq*Vwpq^+^psqyp(wpq ^’{Jpsq / o

z'vz'2 differentiations of z-j and z^ with respect to r

" II
z rz 2 second differentiations of z-j and z^ with respect to

6z infinitesimal length in z direction

Z = (Kr)^g]

Zv = c^-f ) + S2I-( )

Z* Ct

Zs
z

Ct max
specific acoustic impedance

'Ct+otn -ct
z 1 max 

«!

z derivative of Z with respect to time

a approach

al approach at the end of elastic loading period

aF permanent deformation
,5v02 2/5

amax
ZX )

4K-jK2

ot first derivative of ct with respect to time

a]

a

a

first derivative ofct-|With respect to time 

second derivative of ct with respect to time 

third derivative of a with respect to time



a* e x pr e s si o n  d efi n e d  i n e q u ati o n  ( 6. 1 7 5 b)
z\ 
a c o effi ci e nt  of  vi s c o u s  d a m pi n g

a s eri e s s ol uti o n of  e q u ati o n  ( 2. 9 0)

a
n

a  
m a x

n ^  t er m i n e x p a n si o n  of  a  

1  j/ 4 2,  “l2 ^

3 “ 1  ( ^ 1 2
n

di m e n si o nl e s s  c o nt a ct  ti m e
I <-  , px

vi s c o u s  d a m pi n g  f a ct or
n  x.

8 E/ a ] \

p

✓ X

B

3( 1  ■\) 2 ) m 1

di m e n si o nl e s s  c o nt a ct  ti m e i n i n el a sti c c olli si o n
Z X

b 2
A

^ 3

=  1  
n  
£  

b *

6

I >- 
I >-

n

s eri e s s ol uti o n of  e q u ati o n  ( 2. 9 1) 

n ^  t er m i n e x p a n si o n  of  §

s eri e s s ol uti o n of  e q u ati o n  ( 2. 9 2) 

n ^ 1 t er m i n e x p a n si o n  of  y

m at eri al  pr o p ert y  i n H ert z' s  t h e or y of  c o nt a ct6-j  , 6 2

^ £ q  ,( 5m s  ,( Sn p

6 *

Kr o n e c k er  d elt a

2 a l
=  3 n

A

6 Dir a c  d elt a  f u n cti o n

6 dil at ati o n  di vi d e d  b y  e l a )̂

6“ n n ^  c o m p o n e nt of  6

A dil at ati o n  =  e x x + e y y  + e z z

£
m

=  1 ('f or m  =  0),  =  2 (f or m  / 0)

e x x ’E x y ’e x z > et c - c o m p o n e nt s of  str ai n i n C art e si a n  c o or di n at e s



xx i i i

6-|,02 angular coordinates of impactee and impactor

c integration variable in the convolution integral 
"Poal

n
ml

% quantity defined in equation ( 6.27b)

e angular coordinate

e0 arbitrary annular coordinate

X Lame's constant

P,P-| ,P2 rigidity modulus

i-th modulus of rigidity in summation form 
of presentation of pip

v,v-| ,\>2 Poisson's ratio

V fractionals of half orders, = n+ h

e,erc2 ratio of radial coordinate to the radius of sphere

^n£ quantity defined in equation (6.99b)

^n£ quantity defined in equation (7.31)

K6 Koss's dimensionless pressure time

Kq Koss's dimensionless pressure frequency

n acoustic power

P,PrPx density

pQ original density, density of air

p' density of medium

T*

arr’°re’°rK etc’ components of

axx,CFxy ,axz ’°yz ’ components of
etc.

. r-a
T = 1 —

= -2a/c

stress in spherical coordinates

stress in Cartesian coordinates

T. 
i

relaxation or retardation time of viscoelasticity



0 velocity potential function
4. -1 ^n£ !

_t n

$n spherical solid harmonic of degree n

X function dependent on 9 only C x(@) =cos0p 6)

ip angular coordinate ? 4 4
r K? r

ip rn series in the form of, 1 - 2(2n+3T + 2x4(2n+3)(2n+5)

¥ relaxation function of viscoelasticity

¥ rate of relaxation

co circular frequency

CO « 5 CO 5 con£ nq pq
co*n£

£-th and q-th circular frequencies of orders n and p

con spherical solid harmonic of degree n

co ,co ,coX’ y z components of rotation in Cartesian coordinates

co nn£ £-th circular frequency of order n of impactor

%£
V2

£-th dimensionless frequency of order n

Laplacian operator

Laplace transform operator



XXV

SUMMARY

In this research project the rigid body (or acceleration) 

noise together with the sound due to transient vibration has been 

studied for colliding spheres. In the investigation of the 

rigid body sound radiated by colliding spheres the three cases 

considered cover elastic,plastic and visco-elastic impact.

For elastic impact the Hertz law of contact was used for 

predicting the force time history during the contact period. 

The velocity potential for an oscillating sphere is also obtained 

and from this can be derived the sound pressure in the far field 

for a unit acceleration impulse. Convolution of this pressure 

term with the acceleration from the Hertz theory enables the 

computation of the pressure as a function of time.

For the case of radiation due to inelastic collision the 

Andrews theory is used in which the contact period is divided into 

three stages, an initial elastic loading period, secondly an 

elastic-plastic loading and finally an elastic loading period, 

Knowledge of the accelerations during each period enabled prediction 

of sound pressure with the aid of the convolution method.

The sound pressure radiated by a visco-elastic sphere in 

collision with a metallic sphere is also analysed. The model 

was based upon the use of the force-time relationship developed 

by Pao.

Finally, the transient vibrations of solid and hollow spheres 

are studied and the sound caused by transient vibration for both 

types of sphere are computed.
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1- INTRODUCTION

1.1. General introduction

Many of us have experienced pleasant feelings whilst 

listening to our favourite music during the evenings after 

a hard working day at the office or factory. This delicate 

instrument (i.e. the human ear) through which such comfort 

and relaxation is achievable may easily be annoyed by 

unpleasant noise. Continuous and discontinuous exposure to 

the hostile noise will effect man both physically, psychologically 

and socially.

The development of industry in modern societies has lead to 

more and more sound sources giving higher and higher noise levels. 

In most of the industrial machinery such as punch presses, gear 

boxes and computer print-out mechanisms, the impact noise is the 

dominant source of noise. Thus, work is required to be carried 

out in the field of impact noise in order to provide methods of 

acoustical prediction of impact machinery noise in a form which 

can be used at the design stage.

Five mechanisms of impact noise have been introduced by 

Akay fl]. These are rigid body radiation, pseudo-steady-state 

radiation, air-ejection, radiation due to rapid surface deformations, 

and sound radiation due to fracture of materials following impact.

The first two of the above mechanisms are subjects which 

have received attention in this report.



A review of rigid body radiation and pseudo-steady-state 

radiation is given in this Chapter. Following that, some 

principles of sound wave theory together with concepts required 

for analysing the sound radiated by elastic collision of spheres 

are discussed in Chapter 2.

In Chapter 3 the rigid body sound caused by elastic 

collision of spheres is considered. The Hertz law of contact 

is used for predicting the force time history during the contact 

period. The resultant sound pressure for a pair of colliding 

spheres: is obtained according to the ray theory.

The rigid body sound due to inelastic collision of spheres 

is dealt with in Chapter 4. A numerical method as well as 

analytical one is introduced for predicting the sound pressure.

Chapter 5 considers the sound caused by the impact of 

viscoelastic spheres. The discrete finite transform method 

is given for evaluation of Fourier transform of pressure-time 

h i s tory,

Torsional and spheroidal vibrations of solid and hollow 

spheres are investigated in Chapter 6 and 7. The response 

of a sphere to a radial concentrated force is obtained and sound 

due to transient vibrations is calculated.

In Chapter 8 the experimental results concerning elastic 

col 1ision are given.

Finally, in Chapter 9, both theoretical and experimental 

results are discussed and conclusions drawn.
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1.2. Review of Literature

1.2.1. Rigid body radiation

The rigid body radiation can be described as a pressure 

disturbance generated in an acoustic medium by the acceleration 

of an object. The study of this type of radiation goes back 

to the nineteenth century when Kirchhoff 12] calculated the 

velocity potential generated by an impulsively accelerated 

sphere. Later Taylor 13] studied the motion of a sphere in 

a compressible fluid subjected to a sudden impulse. He used 

a special case of the more general solution given by Love 14] 

and included the effect of the relative ratio of the densities 

of the sphere and the fluid in which it is immersed. Taylor 

showed that the final velocity of a sphere given an initial 

velocity UQ becomes Uq/(1+B), where 6 is the ratio of the virtual 

mass m (half the mass of fluid displaced) to the mass of the 

sphere m and gave an expression for energy lost as ^mLP|3/(l+[3). 

He argued that this energy is propagated away as a sound wave.

A similar study was carried out by Miles 15] for a cylinder 

in a compressible flow at low Mach number. By a simple analysis 

he explained the mechanism of sound radiation from an accelerating 

body in the following way: When a body immersed in an inviscid 

compressible fluid is brought to its final uniform velocity Uo 

impulsively and kept at this constant velocity by a force F(t), 

the final momentum of the associated flow will be mUQ, where m* 

is the virtual mass. Hence the total impulse delivered by F(t)
00

to the body is equal to 1= /F(t)dt=mll . Since the force F(t) 
o 0
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acts on a constant velocity the total work done is WT= /F(t)U dt
, 0 0 

- mlP. After the steady state is reached no resultant force 

acts on the body and the flow becomes potential; therefore, the 

energy of the associated flow is %nlP. Miles attributed the 

dissipation of the remaining ^mlP to sound radiation. When Miles 

result is compared to that of Taylor's since m/m=B and for air 

3^1s it follows that the amount of energy dissipated is the same 

in both analyses to first order in 3. He also computed the 

indicia! admittance, the velocity response to a suddenly applied 

unit force, and the indicial impedance, which is the force 

response to a suddenly imposed unit velocity. He obtained 

series solutions for these quantities and plotted them in 

graphical form. Later Miles extended these results in two 

papers 16,7] to compute the indicial impedance of either a piston 

or strip in a baffle.

Longhorn 18] investigated the effect of the compressibility 

on the work required to accelerate a rigid sphere when it was 

immersed in a fluid. He also calculated the work done on the 

sphere to maintain its velocity constant and the energy of the 

fluid from the potential field for both impulsive and arbitrary 

acceleration.

Chen and Schweikert I9J developed a method of analysis for 

predicting sound radiation from an arbitrary body vibrating in 

an infinite fluid medium. In their analysis the acoustic field 

was described by a distribution of surface sources of unknown 

strength at the body-fluid boundaries.
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Junger and Thompson 110J by using the standard dipole 

formula in the frequency domain and then by Fourier transforming 

into the time domain, obtained an expression for sound pressure 

radiated by an impulsively accelerated sphere. In their 

analysis the velocity was assumed to decay exponentially in time, 

which gives rise to a forced exponentially decaying pressure 

field. However, in the limiting case of a velocity step function, 

the forced solution vanished and the pressure obtained was the 

same as Kirchhoff's 12] velocity potential solution after 

differentiating with respect to time. Later, Junger Ill], by 

analysis in the time domain, treated the cases of an impulsively 

expanding sphere and a circular baffle subjected to a velocity 

step. He found that in both cases half of the work done on the 

fluid is radiated as sound during acceleration, and the other half 

is radiated when the source boundaries are suddenly stopped.

Farm and Huang 112] used the source density method developed 

by Chen and Schweikert I9J to find the acoustic field generated 

by the arbitrarily time dependent motion of a rigid circular 

baffled piston in a rigid infinite plane. They also developed 

a numerical method and solved the sound pressure induced by the 

sudden start of a rigid sphere in an infinite fluid. The surface 

of the sphere was divided into 648 triangles and each element 

was considered as a rigid piston. They compared their numerical 

results for a sphere with Kirchhoff's results. An asymptotic 

description of the sound pulse front for the case of arbitrary 

shaped bodies was given by Junger 113] with similar numerical 
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results for the sphere as were obtained by Fam and Huang 112]. 

Farassat and Sears 114] also treated the present problem as a 

special case of the far field sound radiation for rigid bodies 

in arbitrary motion.

Ffowcs Williams and Lovely 115] gave an approximate method 

for evaluating the sound of impulsively accelerated bodies. 

In their approximation method they used the local ray theory to 

evaluate the surface pressure fluctuation in the Kirchhoff 

integral to give a simple estimate of the sound field radiated 

by the impulsive motion of solid bodies. The method was tested 

by comparing the approximate calculations with exact results for 

an impulsively accelerated rigid sphere. The outcome of this 

comparison showed a good degree of agreement.

Akay and Hodgson 116] calculated the potential velocity of 

an impulsively accelerated sphere in an arbitrary fluid medium 

and showed that as the relative density ratio of the fluid to 

the sphere is increased the amplitude of pressure increases too. 

They also investigated the effect of the rate of change of 

velocity by solving the sound pressure radiated by a sphere 

subjected to a ramp step velocity and found out that as the 

velocity changes become smaller, the sound radiation decreases. 

Finally, they calculated the energy in both time and frequency 

domains and concluded that the energy lost in the acceleration 

or deceleration is dissipated as sound.

Banerji 117,18] was the first to investigate the radiation 

of sound generated by collision of two spheres. He employed 
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an apparatus which was based on a ballistic principle and 

measured intensity in different directions for pairs of 

spheres of various materials. These measurements showed 

that the maximum intensity was along the direction of impact 

and minimum intensity occurred at an angle of about 67° with 

the same direction. He also gave an expression for the 

velocity potential but did not take the Hertzian acceleration 

into account.

Nishimura and Takahashi 119,20] studied the characteristics 

of impact sound generated by both normal and oblique collision 

of two steel balls of different radii. The duration of contact 

was measured electrically and the form of stress wave was 

observed by using a piezoelectric transducer and a synchroscope. 

A condenser microphone was also employed to investigate the wave 

forms of sound pressure due to the collision of the balls. They 

showed that the peak sound pressure was proportional to the 

6/5th power of the impact velocity which was also in good 

agreement with the Hertz contact stress theory.

Further studies of this problem were made by Koss and 

Alfredson 121] who extended the work of Nishimura and Takahashi 

[19,20] by combining acoustic theory with the Hertz theory of 

contact stresses. They showed both analytically and experimentally 

that the sound radiation from the colliding spheres is solely 

due to their acceleration-time history. In separate studies 

Koss [22,23] reported results for sound radiation from the impact 

of elastic spheres in normalised forms and extended these results 

to inelastic collisions.
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Hudson and Copley 1241 investigated the sound generated 

by a pair of colliding spheres in a similar way as carried 

out by Koss and Alfredson 121].

Anderson 125] studied the noise produced by the impact 

of a pile and a hammer in pile driving experimentally. For 

this purpose he first considered collision of two spheres 

and then investigated the impact of a hammer and a rod which 

was partially burried in sand. He found that for objects 

with small dimensions the impulsive acceleration and deceleration 

of the objects were the main source for generating the noise, 

whereas for objects with relatively large size the major part 

of the noise was due to transient vibration of the objects at 

their natural frequencies.

Hodgson 126] employed the finite difference method to 

calculate the sound pulse radiated by a platen in the form of 

a solid cylinder undergoing Hertzian deceleration. The results 

were presented in dimensionless form in order to enable the 

pulse to be calculated for a wide range of platen sizes and 

impact times.

Holmes 127] developed an analysis for the acoustic energy 

of impact sounds. He showed that the maximum acoustic energy 

that can be radiated due to sudden acceleration is related to 

the kinetic energy of the fluid flow near the bodies before and 

after the impact. He then applied his theory to impact of 

spheres and concluded that only a small fraction of this maximum 

energy was actually radiated as sound.
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A.T. Holmes et al 128] later showed that sound energy due 

to rigid body radiation in industrial machinery can reach 

considerable levels and proved that rigid body type radiation 

can be an important factor in impact sound generation.

Richards et al 129] studied the noise generated by impacting 

bodies due to the high surface acceleration during the contact 

period. They produced theoretical and empirical formulae 

together with curves for the initial peak pressures and the 

total acceleration noise energy associated with simple impact 

processes.

1.2.2. Pseudo-steady-state radiation

Another fundamental mechanism of impact noise is the 

pseudo-steady-state radiation. Richards I30J argued that an 

impact process is generally employed to convert a vast amount 

of energy into useful work in a very short time span. The 

time span is often too short for the applied energy to be 

wholly converted into work. The excess energy is absorbed 

by the mechanical structural which subsequently undergoes 

transient vibrations for a limited period. It is useful 

here to consider the role of elastic yib.rations on sound 

radiated from an impacted sphere. Lord Rayleigh 131] showed 

that except for spheres with very large diameters or yery high 

impact velocities energy absorbed by the elastic vibrations of 

an impacted sphere is a fraction of its initial kinetic energy 

on the order of 1/50(vo /Cq), where vQ is the relative impact 
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velocity and CQ is the material elastic waye velocity. Also, 

Lamb's analytical results I32J demonstrate that the natural 

frequencies of vibrations of small spheres are so high that 

they can not contribute to the audible sound field.

Sound radiation due to pseudo-steady-state radiation from 

impactively excited structures have been investigated analytically 

and experimentally for simple cases of an impacted plate and 

an impacted rod by several workers.

The first investigation of sound radiation from impacted 

plates was performed by Tokita 133-35], who found the empirical 

relationship between either the peak sound pressure or the peak 

acceleration level of the plate and the momentum of the impacting 

hammer to be A =C-|(mv) 2, where AQ is the peak value of either 

acceleration or sound pressure, m is the mass and v is the 

impact velocity of the hammer. C-j and C£ are frequency dependent 

coefficients. Tokita 133] described as a reduction factor 

indicating the momentum converted into plate vibrations but 

found this coefficient too complex to be analysed quantitatively. 

Tokita found the coefficient C? to be unity in the low frequency 

region and less than unity in the high frequency region and 

interpreted this result as inefficient transfer of momentum into 

plate vibrations at higher frequencies. Tokita further examined 

the relationship between vibrational characteristics of the 

plate and the radiated sound pressure and found that at low 

frequencies the sound pressure was almost proportional to plate 

vibrational velocity, while at high frequencies sound pressure 
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was almost proportional to acceleration. Similar studies were 

carried out by Magrab and Reader 136] who analytically investigated 

the far field radiation from an infinite elastic plate excited 

by a transient point loading. Their investigation led to the 

conclusion that only the radiation from flexural waves with 

frequencies above the critical frequency would reach the acoustic 

far field.

Akay et al 137] made an experimental study of the sound 

generated by the impact of small spheres and steel plates of 

different thicknesses. They found the peak sound pressure level 

to be linearly dependent on the peak plate acceleration level 

at impact.

Matsumoto and Simpson 138] determined by modal analysis 

the longitudinal response of an unrestrained elastic cylinder 

subjected to a contact force at its end, where radiation from 

the radial surface was considered negligible. Matsumoto and 

Simpson's experimental results show agreement with their 

prediction for the rigid body radiation followed by the lower 

amplitude structural ringing correspond!'ng to the modal 

acceleration terms of the bar.

Akay and Hodgson 139] examined both theoretically and 

experimentally radiation of sound due to collision of a small 

sphere and a thick plate. In this study radiation from the 

flexural vibrations of the thick plate were found to be 

negligible.
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Richards et al [40] in their comprehensive studies 

regarding noise arising from the subsequent free vibration 

have drawn attention to the radiation efficiency of simple 

components having various modes of vibration, and have 

presented this information in the form of charts.

Benedetto et al 141 ] investigated radiation of sound 

resultant from the central impact of a sphere on a thin plate 

supported along all edges. The observed acoustic phenomenon 

consists of an initial sound pressure peak followed by 

vibrations at the natural frequencies of the plate.

The pseudo-steady-state radiation from a steel.cylinder 

impacted by a steel sphere from the longitudinal or the 

transverse direction was investigated by Endo et al 142]. 

They examined both theoretically and experimentally the 

influence of impact speed and the aspect ratio of the impactee 

on the radiated sound. They concluded that whether the 

dispersion of the elastic waves is significant as in the 

transverse impact, or not as in the longitudinal one, the 

product of the fundamental natural radian frequency w-j of the 

cylinder and the contact time T, i.e. wTp is a suitable parameter 

for characterising the generation conditions under which rigid 

body radiation or pseudo-steady-state radiation is the 

predominant source of sound. The pseudo-steady-state becomes 

predominant for comparatively small w-|T, while the rigid body 

sound is predominant for large values of w-jT.
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2. FUNDAMENTAL CONCEPTS USED IN THE SUBSEQUENT CHAPTERS

In this Chapter some principles of acoustics together with 

those concepts later used in the following Chapters are reviewed. 

The reviews are divided into three parts as follows:

1. Acoustic wave equation and its solution together with some 

characteristies of simple, monopole, and dipole sources of 

sound are given. The potential functions of monopole and 

dipole sources of sound are later used in Chapter 3 to find 

their impulsive solution.

2. The impact of elastic bodies is investigated by means of 

the Hertz law of contact. The original work is in German 

but an outline of which is given by Goldsmith 143]. The 

Hertz law of contact is used later for studying the sound 

radiated by colliding spheres. The author also employed 

a numerical method in order to calculate the differential 

equation relating the force and time which has not been 

examined anywhere else. The results of this examination 

are compared in Figure (2.2) with the half sine pulse 

approximation.

3. Equations of motion for an isotropic elastic solid and its 

solution for a sphere are given. These solutions are 

based on the remarkable work of Lamb 132, 44] giyen in the 

series of two papers. Later in Chapter 6 these solutions 

will be used in order to study the vibration of spheres, 

and results will be compared with those given by the author.



-14-

2.1. The Cartesian form of the three dimensional 
acoustic wave equation

The derivation of the acoustic wave equation is given in 

many classical acoustic's text books (e.g. Malecki 145], Junger 

146], James [47], and Hunter [48] ). Following procedures 

may be found similar to one or another. To produce the 

acoustic wave equation one should use both the continuity 

equation and the dynamic equation. These equations may be 

written as: 

(2.1)

components of particle velocity, and p is the sum of static 

pressure p and excess or sound pressure p. The details 

concerning derivation of the above equations may be found in 

[47, 48].

The dynamic equations given in the above are based on 

assumptions that the particle velocities are small and the 

forces due to viscous stresses are negligible. Another 

assumption which is essential for derivation of the acoustic 

wave equation is the conservation of heat energy. This means 

that the adiabatic law holds. As a result of this assumption
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one obtains:

2*
P = poc s (2.3)

•k

where P ,c, and s are original density, velocity of sound, and 

condensation respectively. The condensation of a gas may be 

defined as the ratio of the increment of density change to the 

original density, and can be expressed as:

I

(2.4)

Using equation (2.4) and substituting for p in both equation 

of continuity and the dynamic equation gives:

and

-gradp = pQ a

(2.5)

(2.6)

where divq =
ox +

But from (2.3):

^-2. = q c^ —
91 po 91

*
Substituting for from (2.5) gives:

at = - poc2diva

(2.7)

(2.8)
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E1iminating c[ between (2.6) and (2.8) yields:

5-2- = c2V2p (2.9)
3,t2

2 g 2 g 2 2
where V p is a shortened form of (-^— + ----- + ------ )p.

3x2 ay2 az2

It is called the Laplacian of p.

The sound field is considered to be irrotational, i.e.

curl£ = 0 (2.10.a)

or
2

V q = graddiv^ (2.10.b)

Thus one may define the potential function such that:

£ = -gradf (2.11)

where f is the velocity potential function. Using equation

(2.6) and substituting for £ from (2.11) gives:

P =
a f

%st (2.12)

From (2.11) and (2.12) one may write:

2 
div£ = -divgrad^ = -V <j) (2.13)

and

IP. 
at (2.14)
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Substituting in (2.8) for div^ and gives:

(2.15)

Equation (2.15) is called the acoustic wave equation.

2.2. General solution of acoustic wave equation in 
spherical co-ordinates

The acoustic wave equation given by (2.15) can be wri tten

in spherical co-ordinates r, 9, and ip (Figure 2.1) as:

1_
c2

Lil = 1 LI)
9t2 r29r 9r

+
r2sin0

1

(2.16)

The proof of it is given by Skudrzyk 149].

The solution of (2.16) may be represented in the form:

(2.17)

where g^r), g2(e) and g3(<p) are 

one of the space co-ordinates.

the individual functions of

Substituting the above solution

into the wave equation yields:
•' i

gl gl
+ 2r ■—- +

91 91
r2

c2

•I I

9o 9o
= +cotg6 — +

92 g2

II 
_92) 
sin 0 g^ 7

1

(2.18)

dg2 ,i d2g2
~ . , and so forth.where g'-j

d9i n d2g-| ,
“dr- ’ 91 " ’ g2 ~ de-’ g2 “
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Since is a function of r only, the left hand side of equation

(2.18) is independent of 0 and <p. Similarly the right hand

side is independent of r, so each side must be equal to a constant.

Let this constant be n(n+l), where n is an integer. Thus one

may write:

r2g![ + 2rg'-[ + I^r2 - n(n+l )]g^ = 0
G

(2.19)

and
H i (i
9? 9o 9o

sin20 I—- +cotg6 + n(n+l)] = - — = m2 (2.20)
g2 92 g3

Using (2.20) and following similar procedure for the separation 

of variables gives:

g‘2 + cotgO g2 + In(n+1) - ™in2&]g2 = 0 (2.21)

and

g3 + m2g3 = 0 (2.22)

where m2 is the constant of separation. In order that the 

potential <P be single valued, m should be an integer. Thus

may be expressed in terms of periodic function as:

g3(^P) = Acos(mip) + Bsin(m<P) (2.23)

The transformation cosO = X transforms (2.21) to the so-called

Legendre's associated differential equation:
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d-X2)^-2g2 ' 2X 3* 92 +In(n+1)- y^]g2 = 0 (2.24)
Qa

where =-g/sin0 and ^2 = J^(g2-g'2cotq0).

UA

Equation (2.24) is the same as Skudrzyk (491 except X = p.

To find the solution of (2.24) one may first consider the 

Legendre's equation derivable from (2.24) by letting m = 0. 

Thus:
d2g? dg?

(1-X2)—--2X + n(n+l)g2 = 0 (2.25)
dX

The general solution of (2.25) may be expressed in terms of 

Legendre polynominals and Legendre functions of the second kind. 

Since the desired solution should be finite at the poles X = -1, 

one may choose a solution as:

g2 = pnW = pn(cos9) (2.26)

where Pp(X) is the Legendre polynomial of the nth order.

The first few Legendre polynomials are:

Po(x) = 1, P,(x) = x, p2(x) = %(3X2 - 1)

P3(X) = M5X3 -3X), P4(X) = J(35X* -30X2 +3),

P5(X) =§(63y5 - 70X3 + 15X). (2.27)

Using equation (2.25) and differentiating it m times with

respect to X gives:

(1-X2)-- 
dy2

■m
where Y = —- go = -.III 2d.y

d Y-2(m+l)x +[n(n+l)-m(m+l)]Y = 0 (2.28)

.m
"4PnW- 
dXm n
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A similar equation to (2.28) can be obtained from (2.24) 

by substituting

g2 = Y(l-32)m/2

Thus the solution to the equation (2.24) may be given by:

92 = (1-X2)m/2 S Pn(X) =
(2.29)

where functions P111^) are called associated Legendre functions 

of the first kind, and these functions in turn are related to 

the Legendre polynomials listed in (2.27).

To solve the equation (2.19) one may write:

r2 — + r 4|-+!K2r2- (n+Jj)2]Z=0 (2.30) 
dr2 dr

where 2 = (Kr)^g^ and « = p Equation (2.30) is Bessel's 

differential equation and its solution may be expressed in 

terms of Bessel functions as:

Z = DJ (Kr) + EY (Kr) 
n+^ n+%

(2.31)

Rewriting (2.31) in terms of spherical Bessel functions gives:

(2.32)

Thus the solution for g^ may be written as:

2 -
91 = (pl I0jn(Kr) + Eyn(Kr)] = Fj^Kr) + Gyn(Kr)

(2.33)
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The above radial dependent function together with time 

dependent function should be representable in forms of functions 

with arguments ct-r and ct+r. Thus coefficients F and G should 

be related to each other as:

G = -iF (diverging)

and

G = iF (converging)

Substituting for G into (2.33) and representing the result in 

terms of Hankel functions gives

g/r) = Fhn(1’2)(Kr) (2.34)

(1 °)where h^ ’ A(Kr) are spherical Hankel functions of the first and 

second kind, and may be related to the spherical Bessel functions 

through relations h'^ ’2\f<r)= Jn(Kr)-iy (Kr). The first few

spherical Bessel and Hankel functions may be expressed as:

J0(Kr) = ^Kr, y0(kr) = - cosKr
kr ’

(1) iKr
h (kr) = ,o i kr ’

h(2)(Kr)=.5iKr
o v iKr

iKr
If (Kr)=-

-iKr e
Kr (1- 1_) 

Kr;

□ -] (kr) = sinkr
• 2 2K r

coskr /iz xY^Kr) cosKr
f/2 2
K r

J2(kr) =

y2(kr) =

hn2

(^~--

k3r3

k3r3
. iKr

(Kr) =

)sinKr

^)cosKr

3

K2r2

3

cosKr,

(1 + £- - 
kr

-sinkr,

-h>. - C"-k2r2 2 Kr
3i 
kr

3

k2r2

5
(1 +2_) h )
U KrJ , n1

3

(2.35)
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It should be emphasised that different notations have 

been used to represent spherical Bessel functions. The above 

notations are the same as those employed by Junger 146] , whereas 

Skudnzyk [49] , Morse [50], and Stratton 151] used n (Kr) instead 
n 

of yp(Kr). Skudrzyk [49] also considered the Stokes-Rayleigh 

solution of the radial part which has the advantage of giving 

the solution in terms of a near field component and a far field 

one.

Substituting for g-j » g£ and g^ into the expression (2.17) 

gives:

$ = Fhn^ ,2\kr) pnm(cos0) IAcos(mip)+Bsin(mip)Jelut

(2.36) 

or by summing over both n and m

* = elwt E E h (1’2)(Kr)p m(cose)IA cosM) 
n=0 m=0 11 n nm

+Bnm (2-37)

Equation (2.37) may now be used for obtaining the sound 

radiated by a general spherical source. The procedure is as 

follows:

1. Expressing the radial velocity at the surface of a spherical 

source which is in general a function of 0, ip and t in terms

of a series of Legendre functions.

2. Finding the radial velocity at the vicinity of the source 

by simply differentiating the potential field T with respect to 

r and substituting for r the radius of the source.
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J ~ J

3. Equating both radial velocities to deduce Anms and B^s.

4. Using equation (2.12) to obtain the radiated sound pressure. 

As far as the purposes of this study is concerned attention

has been given to those spherical sources that are symmetric 

about the polar axis and consequently ip independent. The sound 

radiated from the semicircular array on the equator of a 

spherical baffle which has been considered by Junger 1461 may 

be given as an example of the sound radiated by a nonaxisymmetrical 

source. Equation (2.37) for a spherical symmetric field reduces 

to:

E Ah' (Kr)p (cos9)
n n n v 1 nKn=0

(2.38)

2.3. Monopole and Simple Source

Suppose that a sphere of radius a is located at the centre 

of the field and behaves as a source by vibrating uniformly in 

the radial direction. Such a sphere is also called pulsating 

sphere or monopole and the radial velocity of its surface can 

be given by:

(2.39)

Differentiating (2.38) with respect to r and substituting r = a 

gives:

(2.40)
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For a free field situation, i.e. in the absence of reflecting

surfaces (2.40) can be written as:

iwt E A
n=0

9_
n 3r P (cos9)

(2.41)

Rewriting (2.39) in terms of a series of Legendre functions and 

equating to (2.41) gives:

00 - co _ (2)
n^DrTn(cose) = ’J0AnaF hn (Kr)„|r=a.p^cose)

(2.42)

where Dq = v and = 0 for n = 1, 2,.......... Expanding both

sides of equation (2.42) and equating the constants yields:

Ao i?h0(2)(KrJlr=a = _i -,“H1 + iKa)e’1Ka = -v (2.43)

_ 3

and A = 0 for n = 1,2, .... . Substituting for As into n 3 n
equation (2.38) gives:

2 i(ujt-Kr+Ka)
* =(W) • F

The sound pressure and the radial velocity of the pulsating 

sphere or monopole sound source can now be given by:

3 0 ip0KCva2 ei(wt-Kr+Ka)
p = po aT = (1+iKa) ' r (2-45)
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vr (2.46)

The specific acoustic impedance which is defined as the ratio

of the sound pressure to the velocity may be expressed as:

K2r2 + iKr
1+K2r2 m2r2

(2.47)

where pQC is called the characteristic impedance or radiation 

resistance for a plane wave. The mean square pressure which 

is directly related to the amount of energy in the sound signal 

and its root, which can be measured by a sound level meter, 

is given by:

T

prms = T f [Pre  m (2.48)
0

where p| is the pressure amplitude. Thus multiplying (2.45)

by its complex conjugate and dividing by two gives:

2 a2 vz ——
r2

(2.49)

The acoustic power radiated from the source may now be expressed

as:

n = f IdS (2.50)
S

p2* rmswhere I = ---. c is called the acoustic intensity and dS = r2sined0d^

is the element of the surface area as shown in Figure (2.1). Thus 

the acoustic intensity and the acoustic power for the pulsating 

sphere or monopole sound sources, respectively are:
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I =  Sj p  c ^- 2 —  • v 2 —
0  1 + K 2 a 2 r 2

II ~  * 4 p c ~ - ----- . 4ir a 2 v 2
0  1 + K 2 a 2

( 2. 5 1)

( 2. 5 2)

A n  e x a m pl e  of  a  m o n o p ol e  s o ur c e of  s o u n d i s p ul s ati o n s  at  t h e 

i nt a k e of  a n i nt er n al c o m b u sti o n e n gi n e. T h e  p ot e nti al  

f u n cti o n of  p ul s ati n g  s p h er e m a y  al s o  b e  u s e d  f or d eri v ati o n  

of  p ot e nti al  f u n cti o n of  a si m pl e s o ur c e. T h u s  fr o m ( 2. 4 4)

( c o s K a + i si n K a).
i( wt- Kr) 

e

r
( 2. 5 3)

If K a  i s s m all c o s K a 1 a n d si n K a K a,  s o t h at ( 2. 5 3) r e d u c e s  

t o:

a  =  v a 2 i( ^t- Kr)
( 2. 5 4)

T h e  s o u n d pr e s s ur e,  r a di al v el o cit y  a n d  ot h er  a c o u sti c al  p ar a m et er s

of  a si m pl e s o ur c e m a y  n o w  b e  e a sil y  gi v e n  b y  f oll o wi n g e x pr e s si o n s.

P

i p K c w a 2  v x
_ o _ _ _ _ _  i( wt- Kr) ,

r

V r

- 7 _  / K 2 r 2 , i Kr x
Z  =  p c  (-------- +  ------------ ) ,

1 + K 2 r 2  1 + K 2 r 2

✓ s

( 2. 5 5)
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2.4. The dipole source

Another example of a spherical source is the oscillating 

sphere, that is a sphere of radius a oscillating back and 

forth as a rigid body in the direction of the principal axis. 

This is also called dipole source of the sound. The radial 

velocity at the surface of the source may be expressed as:

= ve1*(cos0) 
r=a '

(2.56)

Expressing (2.56) in terms of a series of Legendre functions 

and repeating the same procedure as given for the derivation

of the potential function of a monopole source, gives:

va3(1+i Kr)

2(l+iKa)-K2a2 

i (cot-Kr+Ka)
— COS0, (2.57.a)

ip0Kicva3 /1+iKrj ej/“t‘Kr+l<aLose (2.57.b)

2(l+iKa)-K2a2 r2

v = gfl+iM-Kk2. vai ,ei(“t-Kr+Ka)cose ( {2.57.c) 
r 2(l+iKa)-K2a2 r3

Oscillations of the whole body of the diesel engine, cavitation 

in liquids, exhaust emissions and organ pipes are all examples 

of dipole sources of the sound.

From Equation (2.57) the radial specific acoustic impedance 

for the dipole source can be written as:
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The mean

radiated

as given

k
z = 0.c(—-----

0 4+K‘r*
+ iKr 2+KV_)

4+K‘‘r‘*

square pressure,

power may now be

for the monopole

(2.58)

the acoustic intensity, and the

obtained by following similar process

source. Thus:

n-xpC.
6 0 4+K''a‘t

.4ra2V2.(i±!<ki)

K2r2
(2.59)

2.5. Impact of elastic bodies

According to the Hertz law of contact the force-deformation

relation for collision of elastic bodies may be expressed in the

form:
ZS 3/2

F = K2a (2.60)

where
K = - , A|<

2 3 (6-j +$2 A+B (2.61)

and a is called the approach. The values of A, B

tabulated by Goldsmith J43J for different types of

and q are 
K

contact.

He has also given the following expressions for 6-j and ^2^
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1-v 2
, (2,62.a)

1 -Mo2
S2=^’ (2'62'b)

where v-j and are the Poisson’s ratio for the bodies 1 and 2 

respectively and E is the Young's modulus. Goldsmith [43] 

investigated several impact problems involving vibrational 

phenomena by use of equation (2.60) and concluded that good 

correlation with experimental results can be achieved. Consider 

now two elastic bodies colliding into each other with an initial 

relative velocity v . Thus the initial conditions can be 

written as:

a = v (2.63 .a)o
and

a = 0 (2.63.b)

The displacements of these bodies under action of a contact force

F and in absence of any vibrational phenomena may be given by:

t t
f dt f Fdt 
o o

(2.64.a)

and
1 t t
— f dt f Fdt m?

o o
(2.64.b)

where m-j and m2 are the masses of the bodies. The approach a 

may now be written as:
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a  =  U ] -

t 
dt  / F dt

o
( 2. 6 5)

w h er e

✓ X

K 1 ( 2. 6 6)

Diff er e nt! ’ati  n g ( 2. 6 5) t wi c e wit h  r e s p e ct t o t a n d  u si n g  e q u ati o n

m-j + m ^

T n- p n ^

( 2. 6 0) gi v e s:

a = cl
d P L  = K  q 3 / 2  
d a K 1  K 2 a ( 2. 6 7)

I nt e gr ati n g b ot h  si d e s a n d  i n s erti n g t h e i niti al c o n diti o n s  

yi el d s:

( 2. 6 8)

W h e n  t h e a p pr o a c h  i s m a xi m u m  t h e r el ati v e v el o cit y  a  

i s e q u al t o z er o. T h u s  b y  m a ki n g  u s e  of  ( 2. 6 8) o n e  m a y  fi n d

t h at:

a m a x

5 v o / s 
= (- ^r-)

4 ^ K 2

( 2. 6 9)

w hi c h  c a n al s o b e  u s e d  f or e v al u ati n g  F-
ni a  a

F
m a x

. 5 v  2 0. 6

4 K ] K 2

( 2. 7 0)

T O  fi n d t h e a p pr o a c h-ti m e  r el ati o n o n e  m a y  r e writ e e q u ati o n

( 2. 6 8)  i n t h e f or m:

d a
a

t =  f------------------ s y
o V  /l X- 5 5— ) / z

0 " m a x

( 2. 7 1)
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the approximate solution of which is given by Hunter 152]

in the following form:

where

“ = «max sin
irt 
d (2.72)

is called the duration of

and (2.65) the force-time

F = Win 7Tt 
d

amax

o

da

contact.

relation

a
------- 7- - 2.9432 -^9

%ax (2.73)

By making use of (2.72)

can be approximated as:

(2.74)

2
vo

Thus the acceleration of each body is given by:

A = £ = sin gt (2.75)
in m

where m is either equal to m^ or m^.

In the above analysis no attention has been given towards

the vibration of the bodies, or in other words, vibration 

produced by the collision is assumed to be negligible. This 

is true for the bodies with dimensions that permit a duration 

of contact much longer than the period of lowest mode of vibration. 

To study the impact problems involving vibrational phenomena 

responses of the bodies to contact force F=F(t) should be taken 

into account. As an example consider the transverse collision 
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of a sphere of mass m^ with a simply supported beam. If the 

vibration of the sphere can be neglected one may write:

t t
a = Vot " m ; dt f " U2(x=b,t) (2.76)

1 o o

where vQ is the impact velocity and U2(x=5,t) is the deflection 

of the beam due to applied force F=F(t) at position x = 6. 

Equation (2.76) may now be represented in terms of F(t) by 

simply substituting a suitable force approach relation. The 

resultant equation which includes the unknown function F(t) 

should be solved numerically.

2.6. Numerical solution of force-time history

To solve the equation (2.67) numerically one may use the 

initial conditions at instant t = 0 to predict the value of a 

at time t = At. This can be done easily by use of Taylor's 

formula. Thus: 

a I =a|
t=At t=0

+ At a| + 
t=0

(2.77)

where At is a suitable time step size, a|, n = 0, al. n= v ,1t=0 1t=0 o
and a|t=Q =alt=o = ............To estimate the value of a at

time t = 2At one needs to know the value of ,a| and

etc. These values can be easily determined by use of equations

(2.68) and (2.67). By repeating the same process a and 

corresponding force can be calculated at any instant t = nAt, 

n = 0, 1, 2............ The force-time history calculated numerically

is compared with the half sine pulse approximation in Figure (2.2).
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2.7. Equation of motion in an elastic medium

To derive the equation of motion in an elastic medium

Kolsky [53] used a cubic element with its sides parallel to

a set of rectangular axes as shown in Figure (2.3). The 

resultant force in each direction, x, y and z due to variations

of components of normal and shear stresses are:

3 a 3 a 3a^
Fx = f XX

k3x + _ZX
9y

+ 9z )6x6y6z

3 Q 3a 3 o
Fy =. ( y* 

k 3x + yyay + )6x6y6z

3 cr . 3 a
F =z

= ( ZX 
k3x + zy

3y
+ 9z )<5x<5y6z (2.78)

where <Sx, 6y and 6z are dimensions of cubic element in directions

x, y and z respectively. Assume that
AA

U, V and W are displacements

in directions x, y and respectively. Thus by Newton's secondz

where

known

P

P

P

3 cr 3 a 3a3 U XX + XX + xz
3t2 3x 3y 3z

/S 3 er 3 o 3 a3 V = yx + xx + yz
3t2 3 x 3y 3z

r\ 2l I 3 a_v 3a 3a.3 W zx + ZX + zz
3 t2 3x sy 3z

1 aw:

of thep is the density element.

(2.79)

Equations (2.79) are

as equations of motion in an elastic medium. For an

isotropic medium the stress-strain behaviour of the medium in 

terms of dilatation, A and Lame's constants, A and p where p
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is also the modulus of rigidity as given by Koi sky [53] are:

Qxx = XA+ 2pexx > ayy XA+ 2peyy, Gzz =: XA+ 2pczz

Qxy " ayx =peXy> °xz = °zx = pexz ’ Qyz “ °zy "U£yz

/S

(2.80)

where A = e + £ + £^ = 9_U + 9_W The above stress-
XX yy ZZ 9 x ay 9 z

strain relations may also been expressed in terms of Young's 

modulus E, and Poisson's ratio v, 

and v = 2 (X+p)’ •

Substituting from (2.80) for

and rewriting the result in terms

through relations

the stress components in (2.79)

of displacements gives:

9 2U _/■->< \ 9 A , V7211 p ----- =(X+p) ~— + pVzU
912 d

9 2V [ , x 9 A . V7 2v p -----  = (X+p) + pVzV
9t2

9 2W Mt \ 9 A , V7211 p ----- = (X+p) 5— + pV W
at2 3Z

(2.81.a)

(2.81.b)

(2.81 .c)

X + p

Equations (2.81.a) to (2.81.c) are known as equations of motion 

of an isotropic elastic solid and may be represented in vector 

form as:

(X+p)grad div S_ + pV2S_ (2.82)
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where = Ui_ + V j_ + Wk. Differentiating both sides of (2.81 .a) 

with respect to x, both sides of (2.81.b) with respect to y, 

and both sides of (2.81.c) with respect to z and adding them 

together gives:

= Q 2V2& 
at2 1 (2.83)

where C-j = is the velocity of the dilatation wave.

Equations (2.81.a) to (2.81.c) can also be used for derivation 

of equations in terms of rotation. This can be achieved by 

eliminating A between any selected pair of equations. Thus:

(2.84)

where

- -i/9U 3Wt -
29y 3 z ’ 0Jy ^3z 9x ’ wz

_ 3U.)
2V3x ay7

and
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2.8. Solution of equations of motion for solid sphere

In the case of simple harmonic motion, the solution of

equations of motion can be represented as:

U = d(x,y,z)ela\ V = v(x,y,z)e1wt, and

W = w(x,y,z)ei(jt (2.85)

Substituting these solutions into equations (2.81.a) to

(2.81.c) gives:

V-u + KI
zxu = (1 -

V2ft

co
C1

us assume now

where K-j
/X

U,

K|

K|

K2

9

/X
V = (1 -

= (1 -

5)

-)2 /
K1

$

2 
q

= and
U2

and $ can

36
3x

36

36
3z

£ A —1 cot 3u ,6 = Ae = ^— + 3x
be expressed as

(2.86.b)

(2.86.c)

ay aft
9y 3z • Let

V7 2V V +

+

3

u 1 36 _ .
+ a’ v“ ’

/X

w _ L_ M 
K* 3Z
(2.87)

+ y

where a, 6 and y each are functions of x, y and z. Substi tuti ng

for u into equation (2.86.a) gives:

V2a + K| a = V2(^) +
2 k2 3x '

36
3x (2.88)
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Using a set of solutions given by (2.85) and substituting 

them into equation (2.83) yields:

V26 + K-j2? = 0 (2.89)

Inspection of (2.89) suggests that the right hand side of 

equation (2.88) should be equal to zero. Thus (2.88) reduces 

to:

V2a + K^2a = 0 (2.90)

By following similar procedure one obtains:

V2B + K22B = 0 (2.91)

V2y + K^y = 0 (2.92)

In order that equation (2.89) be satisfied by the set of

assumed solutions (2.87) one requires:

= o3a , 3(3 , 3y
37 + 3? + 3z (2.93)

The general solution of the system of equations given by 

(2.90) to (2.93) has been investigated by Lamb 144] . In his 

method of solution he assumed that the functions a, and y 

can be expanded in series of solid harmonics, and employed the 

notation an, and y^ to express the terms of degree n in these 

expansions.

Before going any further some explanation regarding functions 

called solid harmonics may be useful. Lamb 154] remarks that
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amongst the methods available for solving V2f = 0 in three 

dimensions, the most important is that of spherical harmonics. 

This is especially suitable when the boundary conditions have 

relation to spherical or nearly spherical surfaces. He 

further states that if is a spherical solid harmonic of 

degree n it may be expressed as = rnS , where functions S 
n n n

are called spherical surface harmonics. Morse's representations 

[55] of spherical surface harmonics are given as:

Ym® = cos(mip)P™ (cosQ), and Ym° = sin(mip)P™(cos0)

where the ones for m = 0 being zonal harmonics, the ones for 

m = n being sectoral harmonics, and the rest, for 0<m<n, being 

tesseral harmonics.

Substituting an, $n and yn into equations (2.90) to (2.93) 

and rewriting them without K2 (i.e. K?= 0) gives:

V “n = °’ V2Bn = 0, = 0 (2.94)

9a 9y__ n + n yn
9x 9y 9z = 0 (2-95)

first equation of (2.94) yields:

Differentiating (2.95) with respect to x and substituting 
92« 

for---- Q into the
9x2

9_X
9yl9x

9ot ~ 9a 9y____ n\ _ 3 / n _ 1 n\
9y ' Oz^Oz 9x ' (2.96)
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By following the similar procedures one finds:

(2.97)

0yV0y (2.98)

From (2.96) to (2.98) one finds that there must be a 

function, say X^, such that its derivatives with respect to 

x, y and z can be expressed as:

Oy'n OBn
Ox " 3y “ Oz

OX n Oan Oy
' n

ay Oz “ Ox

ox n OBn Oan
Oz Ox “ 9y (2.99)

Multiplying both sides of the last two equations of (2.99)

by z and y respectively, and subtracting from each other gives:

Oa , n Oy
n

Oanz ar- 0x“ -y rr + y  <—y Oy

y

(2 JOO.a)

Simi1arly,

3Bn 3Sn
x Oz Z Ox x ax + y aF +

(2.100.b)
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and
9X

y — y Ox
51

xay
5n +
ax y

3y 3yn , n , ------ • z ----- + VBy 3z 'n

It

Thus:

- Ii(x“n + y5.
n + ZYn)

can be shown from (2.94) and (2.95) that:

V2(xan + y6n + zVn) =* 0

x% + yBn + zVn = 5n+1

(2.100.c)

(2.101)

(2.102)

where <jj -j is

Equation

a solid harmonic of degree n+1„

(2.100.a) can now be written as:

(n+1)an
3*n+l , 37n 3*n

+ zaF - y yr3x (2,103)

Dropping the factor n+1 causes no loss of generality. Thus

the complete solution of the system of equations given by (2c90)

to (2.93) in the absence

3*n+l + z

3*n+l
S = E( ay

- '

Y =

+ X

+ y

of nay be written as:

OX 3Xn n\
ay- - y ~}

ax__ n
0z

a7 n
ax

z

X

(2.104.a)

(2.104.b)

(2.104.c)
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To find the solution of the system of equations in the

case of K2 0, one may assume a solution in the form of:

“n = ®o ' KF1 + K2®2 ’ K1T +......... (2.105)

Substituting this solution into equation (2.90) gives:

V2$o- K| (V2^ - ?o )+K^(V2?2 - ^)-K^(V2^2)+...=0

(2.106)

In order to satisfy (2.106) the coefficients of the 

various powers of K| should be equated to zero. Thus:

V2$o = 0, V2^ = , V2^ = .... (2.107)

The solution of the first equation has already been proved

to be:

3$ 3X 3X
So = + z’ay1 ~ y 7T (2.108)

To obtain the solution of the remaining equations one may write:

3a A r\ A3a 3a
V2(rm3o’ = rVS

0
+i

2mrm”2(.x 0 .35T + y o , _ °1aF z ^z-’

+ a vy 2 f Tn \ (r ) (2.109)

But by the defi ni tion of a solid harmonic

3$ 3$ 3a
X9>T + y + z3y

0
3z

A- = na0 (2.110)
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Thus (2.109) reduces to:

V2(rniao) = m(2n+m+l)rm 2aQ (2.111)

Using the second equation of (2.107) and substituting for

aQ in the right hand side of equation (2.111) gives:

V2(rm:'&o) = m(2n+m+l )rTT1_2V2a1 (2.112)

Upon letting m = 2 yields,

/S

al
r2

2(2n+3)
A
a o (2O113)

Similarly,

a2 = 2^4720+3)(2n+5) ao (2.114)

and so on. Substituting for So, a-, ,ao and etc.
I c. into equation

(2.105) gi ves:

an

3^ ,1
= * hr11* 

n ax z ¥ ' (2.115)

where

ipn

K|r2
1 ' I(2n+3j + Z-'4(2n+3)(2n+5) ~ (2.116)

By following similar procedures

■ n yn
h = ,< A+1 
o Sy

+

Y =' n n
A ^n+1
d = ( n+l

o nK 3z + y

x

; one obtains:

ax n
az

ax nx
- z (2.117)

ax n
3x

ax
- * ar> (2.118)
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where 6q , 6p... and cT0, 8p... are coefficients of the various 

powers of in expansion of 6n and y^ in forms of series 

similar to that shown for a . In order to satisfy (2.93) one 

should examine the following equations:

3s 36 380 + —2 + —- = 03x ay 3z

3a 36,
+ —-

38,
+ —- = 03x~ sy 9z

(2.119)

(2.120)

etc. It can be easily found that the solution given for 3 ,

6q and dQ satisfy equation (2.119) whereas solutions for

6^ and 8-j need to be modified to satisfy (2.120). Substituting 

for §p 6-j and 8-| into equation (2.120) gives:

3a-, 36, 38, a x+6 v+8nz ,,__ 1_ __ 1_ __ 1_ _ o oJ o _ n+1 t
3x 3y 'Sz 2n+3 2n+3 %+l

(2.121)

The form of (2.121) suggest a new solution as follows:

/s _ r2 , n 2n+5 3 ^n+1
al " 2(2n+3) ao V 3x f2n+3

6 = f2 + R r2n+5 9 ^n+1
1 2(2n+3) o K1 3y f2n+3

3 _ r2 A + R r2n+5 9 Jj±L
al 2(2n+3) o V 3Z r2n+3 (2.122)
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where

n+1 1
1 n+2 (2n+3)(2n+5)

S = a + R r2n+7 3 <i>n+1
a2 2.4(2n+3)(2n+5) ao 2 ax 2n+3

g = __ / fi + 6 r2n+7 3 <*>n+1
2 2.4(2n+3)(2n+5) o 2 ay p2n+3

d = — r“ d + R r2n+7 3 ^n+1
2 2.4(2n+3)(2n+5) o K2 az 2n+3

(2.123) 

where = g+2 ' 2(2n+3)(2n+5)(2n+7)

Substituting for a , a-| a^ and etc. into equation (2.105) 

gi ves:

30 X1 3X 9X K^r2n+5- _ , t ^n+1, n n^ n+1 2
“n V 3x z3y ' y 3z + n+2 ' (2n+3)(2n+5)

, 3 *n+l
• *n+2 3x r2n+3 (2.124)

where 0^ can be deduced from (2.116). The solution for 

ar,d yn can also be found by following similar procedure.

Thus the complete solution of the equatiors (2.90) to (2.93)

which are also finite at the origin, may be expressed as: 

3X K2r2n+5
nx n+1 2

‘/az n+2' (2n+3) (2n+5)
*n+l}

30 ,t 3X- _vr, I ^n+1 , , n 
“ + zay~

•^n+2 3x r2n+3
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3 =
9^ ,i 3X? r 1 [ n+ I , __ n

Sy 3Z

. 9
'%i+2' 9y

3X

*n+l, 
r2n+3j

n„
n+2 ’ T2n+3)(2n+5)

A+l , ,?*n .. 3\ n+l . K2^n+5

''n 9z y 3x x ay '■ n+2 (2n+3)(2n+5)

3 *n+l ,
•+n+2- 3z 2n+3 1 (2.125)

Inspection of (2.125) suggests that the solutions of the system 

of equations are of two distinct types. Thus one may write:

Fx =E{^n(z —-1! _ y (2.126)

and
n+l 
n+2'

K*r2n+5

(2n+3)(2n+5)a
i 1_ ^+1,

’^n+2' 3x 2n+3^ r 

(2.127)

The solution of the second type can also be written in

the form:

a =E^r;_] Sx n+l

(2.128)

In order to'represent the solutions of the equations (2.86.a)

to (2.86.c) by expressions (2.87) one must also find 6. Thus

the solution to the differential equation (2.89) should be

determined. This solution has been given by Lamb 132] as follows:
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(2.129)

where w is a solid harmonic of degree n.
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Fig.2.1. Illustration of element dS = r2sin0d0dip

lime (micro seconds)
Fig. 2.2. Force-time history for 1.27 cm diameter 

steel spheres with an initial impact 
velocity of 1.52 m/s.
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Fig.2.3. Stresses acting on a small rectangular 
parallelepiped.
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3. RIGID BODY RADIATION DUE TO ELASTIC COLLISION OF SPHERES

The sound pressure radiated by elastic collision of spheres 

is dealt with in this chapter. Two methods of derivation of 

sound as such are introduced. These are the Laplace transform 

and the convolution methods. In the first method the Laplace 

transform of the potential function satisfying both the wave 

equation and the boundary condition was found, and then the 

inverse transformation was introduced to transform the result 

into the time domain. In the second method the sound pressure 

was obtained by finding the convolution of the response due to 

unit impulse acceleration and the Hertzian acceleration. This 

method is the one firs- given by Koss and Alfredson [21] who 

also suggest the ray tneory assumption for combining pressures 

generated by a pair of colliding spheres. The second method 

was also used for the derivation of the approximate formula for 

sound pressure. The '-esponse due to unit impulse acceleration 

for derivation of these formulae is the one given by Ffowcs 

Williams and Lovely [15]. A brief introduction to a numerical 

method for calculating she pressure is given. This numerical 

method is useful when sn analytical solution is either complicated 

or cannot be achieved. This method is discussed in detail in 

chapter 5. Attention is also paid to the sound radiated by the 

change of volume of a sphere undergoing a Hertzian acceleration. 

In this investigation :ne sphere was assumed to be a monopole 

source of sound expanding and contracting impulsively in its 

radial direction. Finally, an expression for evaluating energy 
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in the far field is given. The results obtained in this 

chapter are also expressed in dimensionless form. Graphical 

presentation of some of the dimensionless results later will 

be used in chapter 9 for evaluation of empirical formulae.

3.1. Sound radiation from an impulsively accelerated sphere

It is shown earlier that an oscillating sphere moving back 

and forth as a rigid body in the direction of the principal axis 

behaves as a dipole source of the sound. The corresponding 

field can be deduced by substituting m ? 0 and n = 1 in equation 

(2.37) which upon satisfying the radial velocity at the surface 

of sphere yields to the result given by the equation (2.57a). 

This velocity potential may also be written as:

(3.1)

where

2(l+iKa)-K^a^

and

(3.2b)

Consider now a sphere of radius a which is subjected to

an impulsive velocity vqH(t ) in the direction of one of the 

principal axes. The impulsive velocity vqH(t ) may be defined

as:
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v H(t ) = o v ’
T> 0

0, otherwise

where H(t ) is a unit step function and also may be referred to 

as the unit Heaviside function. The Fourier transform of this 

velocity, as given by Champeney [56] is:

/ _ \ 00 •

v = /V H(T)e dr = v {tt 6 (w ) - —} (3.4)
-co ° 0 W

zx.

where 6(w) is the Dirac delta function. The velocity potential 

of an impulsively accelerated sphere can now be obtained by 

finding the inverse of the Fourier transform of (3.2a) after 

substituting v = v^\ Thus:

4>(r,e,T)
v a3cose (tt 6(h>)- —J(l+iKr) . 
-2-^-----7-------------- e1MTdM

2irr 2(l+iKa)-K az
(3.5)

which by evaluating the residues of function at its poles yields 

the solution:

3 _v a cose 9
<j>(r,0,T) = -------x----- (1 + e T[(—~ - l)sin&T - cos £t ]}

2 r a
(3.6) 

where £= —. Equation (3.6) is the same as one given by Koss 

and Alfredson [21]. By making use of equations(2.12) and (2.11) 

the pressure p(r,e,T) and the radial velocity v (r,e,T) are found 

to be:
2 ~ v a

p(r,e,T) = Po = pQc cosee £t [^cos £t +(1 -y)sinh]
v

(3.7)



-52-

and

vf(r,0,T) = - = —°2 cos0e ^T[(-| - Ay - -^)sin£T
r a

3
r 1 v a

+ (~2 - —)cos £t > —°g- cose (3.8)
a r

The Fourier transforms of equation (3.7) is:

3

p(r,e,<o) = pn -Ar- cose n,+lKr)----- (3.9)
0 r 2(l+iKa)-l<V

The sound pressure caused by a unit impulse of acceleration 

can be simply found by substituting vq = 1 into equation (3.7). 

The sound pressure due to the other forms of acceleration may 

be given by convolution of the response to a unit impulse
z\

acceleration with any arbitrary acceleration, A. Thus:

T
P(»65t ) - f Pjj (»0’ T-^)A(^) d^ t > 0

0

= 0 T < 0 <3‘10)

where p^ is the pressure due to the unit impulse acceleration 

and is the integration variable. The sound pressure in the 

far field which is radiated by an impulsively accelerated sphere 

may be chosen as that part of the pressure which decays like r~^ 

as r oo. Thus from equation (3.7) one obtains:

p(r,0,T) = PMe ^t (cos £t - sin&T)cos0 (3.11)
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p cv a n
where PM = — y0-. Graphs showing variations of against t  

for e = 0° and 60° are given in Figure (3.1).

3.2. The impulsive monopole source

The potential function f given by equation (2.44) for a 

pulsating sphere may be used to evaluate the sound pressure 

radiated by an impulsively pulsating sphere. This is a sphere 

subjected to a uniform impulsive velocity vqH(t ) in its radial 

direction. By following a similar process as given above for 

the oscillating sphere one obtains:

Finding the residues of the function at its poles (w = 0 

and w = i£), yields the solution:
2v a _

<f>(r,T) = ——(1 - e ) (3.13)

The sound pressure and the radial velocity may now be given 

by:

(3.14)

and

(3.15)

The Fourier transforms of equation (3.14) is:

p(r,w) = p —7-° ... \

Graph showing variations of E— 
M

(3.16)

against t is given in Fig.(3.2).
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3.3. Velocity potential of an impulsively accelerated

sphere (Laplace Transform method)

The Laplace transform method as shown by Langhorn [8]

may also be used to evaluate the velocity potential of an 

impulsively accelerated sphere. Consider a rigid sphere 

of radius a subjected to an impulsive velocity vqH(t ) in 

direction of one of the principal axes. The velocity potential 

f at any observation point p with co-ordinates (r,0,4>) must 

satisfy the wave equation:

r
(3.17)

where = (p(r,0,ip, t). Equation (3.17) can be written in

terms of spherical polar co-ordinates as given by equation (2.16) 

in section (2.2). For a potential function independent of ip 

equation (2.16) reduces to:

(3.18)

where (p = <p(r,0, t). The boundary condition on the surface of

the sphere at r = a is:

- -v cosOH (t) 9r o

Also at t = 0,

(3.19a)

* = t =0 (3.19b)
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Let us assume now the solution of the differential equation 

(3.18) can be represented in the form of f(r,0, t) = W(r,t).x(0) 

Inspection of the boundary condition on the surface of the sphere 

suggests that x(©) = cos0 . Thus the potential function may be 

represented in the following form:

(f)(r,6,t) = cos0.W(r,t) (3.20)

Substituting this solution into the equation (3.18) yields:

2
3 W 2 3W 2W 1 32W

2
3r r 3r 2 r 2 2

l 3t
(3.21)

Multiplying both sides of the above differential equation

by e and integrating over t gives:

dT 2 dW 
dr2 r dr (3.22)

where
00

W = W(r,s) = TW(r,t)e~stdt
o

(3.23a)

(3.23b)

and

/ 3—e"stdt = s2fi(r,s)-sW(r,t)e~st| - —I
o 3t t=0

t=0
(3.23c)
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The conditions given by expression (3.19b) require that 

the last two terms in (3.23c) be zero. Thus (3.22) can be 

easily derived. The transformation W = —^-,-Stransforms 

(3.22) to the equation:

)X = 0 (3.24)

The solution of this type of Bessel's equation as suggested 

by McLachlan [57] can be represented in terms of Bessel's 

functions of imaginary argument. Thus, the general solution 

of (3.24) is:

* = Z3/2(- £ = ClK3/2^ + ^3/^ 0-25)

The function in general form I-(y*)and K-(v*)are known 

as the modified Bessel functions of the first and second kind, 

respectively. The asymptotic expansions of these functions 

are:

y*
Ir,(y*)= —----- W-(y*) (3.26a)

/2TTy* v

-y*
K-(y*)= -^2^7- wy-y*) (3.26b)

/ 7T

where
W_(y*) = 1 _ iTLT + (4\>2-12) (4v2-32)

v 1!8** 2!(8y*)2 (3.26c)
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Using the asymptotic expansion of K-(y*) as a solution of 

(3.24) for the +ve going wave only, gives:

W = 5 (If) TH ^>)e-SF (3.27)
sr

The constant 6^ can be evaluated by using the transformation 

of boundary condition given by expression (3.19a). Thus at 

r = a,

dW | 
dr r=0

f aw(r,t) c +■ 00 _ J_ V
e"stdt = -v /H(t)e'stdt = - — 

0 s

(3.28a)

and 3 . avac
C = 0
12 2 2 s a + 2sac + 2c

o s—/2s x e c 
^TTC' (3.28b)

Using given by (3.28b) and substituting in (3.27) gives:

(3.29)

To find W(r,t) defined by (3.23a) one should obtain the 

inverse Laplace transform of expression (3.29). This may be 

carried out by finding the residues of function W(r,s)est at its 

poles. Thus, the velocity potential given by (3.20) can be 

derived to be:
3

v a cose 9
4)(r,e,T) = ------ x----- {1 + e T[(f^ - l)sin£T - cos £t ]}

2r a
(3.30)
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Y** — A C
where t = t -------- and £= —. Note that equation (3.30) isc a
exactly the same as equation (3.6), but has been derived 

by a different approach. The result also agrees with 

Kirchhoff's solution [2].

3.4. Sound radiated by a sphere undergoing a Hertzian

acceleration (Laplace Transform method)

In the study of impact of elastic bodies the Hertz law 

of contact was used for the derivation of the acceleration of 

each body. Thus from equation (2.75) the acceleration of a 

sphere undergoing an elastic collision can be given by:

z\

A(t) = a^sinbt 0 < t < d

= 0 otherwise (3.31)

F
ITI3 X TTwhere a^ = —— and b = -t— . The boundary condition on the 

m
surface of the sphere at r = a may now be written as:

=a^sinbtcose (3.32a) 
r=a

1 _3pi = 9vr, = 92(fr
% 8r‘r=a " 'r=a“^r9t

Also at t = 0,

* = t =° (3.32b)

The Laplace transform of the potential function satisfying

the wave equation, and the conditions given by expression (3.32b)

can be found by following similar procedures as given in section

(3.3) to be:
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fl = C. (^■)’S'2(1 + -^)e’sF
1 c r 2'sr

(3.33)

where W is the Laplace transform of W(r,t) related to the

potential function 4 through the expression (3.20) and 0^ is a

constant to be determined. The constant C-j can be evaluated

by using the transformation of boundary condition given by

equation (3.32a). Thus at r= a.

dW |S 3“ dr1r=a
9
9r

” Mnt)e-stdt = 
o 3t

oo

-a^ f sinbte stdt 
o

and

-sd x+ e ) (3.34a)

aMbca3

G1= (IW)
2 aec (1+ e’sd) (3.34b)

Using C-j given by (3.79b) and substituting in (3.33) gives:

(sr+c)
2 2 2 s a +2sac+2c

(1 +e’sd)

(3.35)

The inverse Laplace transform of equation (3.35) may now be 

obtained by simply finding the residues of function West at its 

poles. Thus the velocity potential 4 related to W(r,t) through 

the expression (3.20) can be derived to be:
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where t

The

as:

<|)(r, 9,t ) = —2 -1) (4b3sin£T+ 8b£2cos£T)e~^T
8(b4+W)r a

-(4b3cos£T-8b£2sin£T)e~^T

+ (y~ -1) [4b3sin£(T-d)T8b£2cos£(T-d)]e~^T-c*^

- [4b3cos£(t-d)-8b£2sin£(T-d) ]e~^T-c^}

a a3
aMa

+ -—-cose (3.36a)
/b

t > d
+• r-a , n ct--------and £ = — .c a

sound pressure and the radial velocity may now be expressed

pnaMa cose o no
p(r,e,T) = p -jrr = -----t ---- 4—2 -1 )[(4b £-8b£ )cos £t

0 3t 8(PW)r2 a

- (4b3S.+8b«.3)sinJ>T]eX'T+[(4b3«,+8b«.3)cos«.T

+ (4b3^-8bi3)sinJ.r]e’X''r+ (|^ -1)C(4b35.-8bj>3)cosjl(T-d)
a

-(4b3S,+8b£3)sin{(T-d)]e^(T'd)

+ [ (4b3mb£3 )cosJ>(T-d )+(4b3Jl-8b«.3 )s inje. (T-d) ] e_!l (T~d }

t > d (3.36b)

and
, aMa cose -i q _

v = - = -----4---- 7—o " P(4b cos£T-8b£2sin£T)e_£T
r 8r 4(b4+4?)r dr r

r 2 1 ? 2 ”
-(~2 - - + y?) (4b sin£T+8b£ cos£T)e

a

+(^2 - -j;)[4b3cos£(T-d)-8b£2sin£(T-d)] e"^(T_d\'
a

■(S ■ f + 7)[4b3sw(T-d)+8b£2cos£(T-d)] e"£(T_d)} 

3 3
2aMa

+  n—cose
rJb

t > d (3.36c)
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To find the potential function for t < d one may similarly

wri te:

(sr+c)

-|(r-a)
e L

2 2 2s a +2sac+2a^

By repeating the process as before the velocity potential can 

be found to be:

4>(r, 0, t )

3 
aMa cose 

8(b4+4£4)r2
{(|^ -1)(4b3sin£T+8b£2cos£T)e

-(4b3cos£T-8b£2sin£T)e~^T

-(y- -1)(4£b2sinbT-8£3sinbT+8b£2cosbT)

+(4b3cosbT-4£b2si nbT-8£3sinbT)}

aMa3cose
+ -----X—---- (1-cosbT)

2r b 0<T<d
(3.38a)

The sound pressure and the radial velocity ere:

p(r,e,T)
pQaMa3cos0

8(b4+4£4)r2
{(~- -1)(4b3£cos£T-8b£3sin£T-4b3£sin£T 

a

- 8b£3cos£T)e~^T+(4b3£sin£T+8b£3cos£T+4b3£cos£T

- 8b£3sin£T)e”^T+(|^ -1)(8£3bcosbT-4£b3cosbT+8b2£2sinbT) 

-(4b4sinbT+4£b3cosbT+8£3bcosbT)}

p aMa3c°s0
+ —-----n------ sinbT 0< t < d (3.38b)

2r
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and

r —-----Z—2 ~ 7)(4b3cos£T-8b£2sin£T)e~^T
r 4(b%-4?)r a r

-(^2 - + 7) (4b3sin£T+8b£2cos£T)e~5/r 

"(7 ■ 7)(4£b2sinbT-8£3sinbT+8b£2cosbT)-(^2 - l)(4b3cosbT)

-(7 - ^7) (8£2bcosbT) + (2 ~ - 1 - 1) (4£b2sinbx) 
a^ aZ a r

11 ? COS0
-(7 - 7) (8x sinbT)} + ----- (] _ cosbT)

t < d (3.38c)

It can be easily deduced from equation (3.38c) and (3.36c) 

that at the surface of the sphere

M■g—(1 - cosbT)cose (3.39a)

(3.39b)

Si milarly,

9vr
at = a^sinbicose (3.39c)

= 0 (3.39d)
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The sound pressure in the far field may be given by that 

part of pressure which decays like r as r Thus from 

equations (3.38b) and (3.36b) one obtains:

p(r,0,T)

2
£bCOS0 9 2 9 9 Ot

-5-d-L----- 7-----{[(b -2/)cos£T-(bz+2£ )single
(b4+4?)r

-(b^ -2&2)cosbT+2£bsinbT}

t <d

(3.40a)

and
2

^COSO 2 2 2 2 -Pt

p(c ,9,t ) = ------ 7j----- t -----{ [(b -2£ )cos&T-(b +2& )sin&T]e
(b4+4?)r

+ [(b2- 2K.2)cos«.(T-d)-(b2+2«.2)sina(x-d )]e_S'^T-d^}

t > d (3.40b)

By employing equation (2.70) the amplitude of acceleration

can be wri tten as:

F n r 0.6 . A 0.4 1.2
J™. =-M>) (K.KJ .v 

m1 1+r '4' 1 2' o (3.41a)

where

sphere

- m2 •
M = is

ml
under consideration. The duration of contact given by

the ratio of mass of striker to the mass of the

equation (2.73) can also be expressed in terms of impact velocity
zs z\

and coefficients K-] and as:

5 °’4 
d = 2.9432 (|)

-0.2v 
(W° (3.41b)
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Substituting (3.41b) into (3.41a) gives:

(3.42)

The sound pressure in the far field may now be given by:

rMCOSU r\ Q —flTTR
j {[(l-2B2)cos(fiirB)-(l+2B /si n(fiirB) ]e p 

(1+4 B4)

-(l-2B2)cos(nir)+2Bsin(nTT)} (3.43a)

n <1

and
P^cosS 9 2 v -Att R

p = -M-----j {[(1 -2BZ)cos(Btt B)-(1 +2B<;)sin(flirB)]e
(1+4B )

+ [(1 -2b2)cos  [(n-1 )TTfi]-(l+2B2)si n [(fi-1 ) tt B] ] e“(n_1 ),ie}

n >1 (3.43b)

where P^ 1.17M

1+M r
B = | and n =

Graph showing variations of dimensionless peak pressure 

against 6 is given in Figure (3.3). Variations of ri v at
Illa a

which the peak occurs is also plotted against B, and is given 

in Figure (3.4).

In order to study the frequency spectrum one should establish 

the Fourier transform of the sound pressure. This can be done 
—(r-a) 

simply either by multiplying equation (3.35) by pQscos0eC
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and then substituting s = i co, or by finding the product of 

the Fourier transform of the pressure due to unit impulse 

acceleration given by equation (3.9) and the Fourier 

transform of half sine pulse represented by expression (3.31). 

Thus.

p(r e „) = poaMbca (iwr+c)____ cose ,, -i.ji,
pir.H.toj 2 2 2 2iO. 2 2 U e >

b -co r 2c +2i toac-co a

(3.44)

Multiplying equation (3.44) by its complex conjugate and

using (3.42) gives:

|p|2 = 4(1.17)2R2 po vo a c°Ton+T 

(1+Flf S2(l-4n*2)2

2 2 
/i+ B____ x cos (n*ir)

4n*2^2 ($4+4n*4) (3.45a)

or
_ 2.34M Povoacosen*e„

I P I HP----------------------- 2---- 1 1
IM e|(l-4n*Z)|

+

(3.45b)

where n* = fd and £ = —. a
e2

At a large distance r,
4n*z£

1 and (3.45b) reduces to:

|p| = PLcose[—rt x 
(B%4n*^

- 2M p^V a6-where P. = 2.34 -X -2-2—.
L 1+M r

| cos(n*7r)| j
| (l+4n*2)|

(3.45c)
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It may be noted that if M is small (i.e. mass of striker 

is small compared with mass of sphere), the radiated sound 

pressure is negligible.

Graph representing variations of dimensionless peak of 

transform against $ is given in Figure (3.5). Variations of 

nmax at which the Peak of transform occurs is also plotted 

against 3 and is shown in Figure (3.6).

3.5. Sound radiated by a sphere undergoing a Hertzian 
acceleration (Approximate method)

An approximate method based on aero acoustic theory is 

given by Ffowcs Williams and Lovely [15] for evaluating the 

sound pressure generated by an impulsively accelerated sphere. 

This sound pressure can be written as:

P
P = 2!1{[5e'P'T+(£T-3)]H(2a-CT) + [5e'£T-e'^T+2]H(T-2|-)}cose

where

and

cv a

(3.46)

n _ 0 0 T - t f“a

rM r

H(2a - ct ) = 1 T< |a (3.47a)
= 0 otherwise

H(t - |^) = 1 X 2a1 T> ---C (3.47b)

= 0 otherwise

Equation (3.46) gives an approximate evaluation of the sound 

pressure in the far field and may be compared with the exact

solution (Equation 3.11) as shown in Figure (3.7). Using the 
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response to unit impulse deduced from (3.46) together with

Hertzian acceleration given by Equation (3.31) and substituting

in (3.10) gives:

p caMacos0 t oi r\p(r,e,T) = ---------- { HSe'^-^+JlCr-O-S]

0

H[2a-c(x-c)]sinbcd? -(2.389)/e'{'(T’c)H(T-c- |^-)

0

sinb^d^} (3.48a)

and d
p caMacos0 0, \

p(r,0,T) = -------27------- ( f[5e c '+£(t -^)-3]
o

H[2a-c(T-c)]sinbcd^- (2.389)/ —
o c

sinb^dz;} (3.48b)

The sound pressure radiated by one sphere undergoing a

Hertzian acceleration may now be written as:

p(r,0,T) = °9 cos0{--9-5b (e~l'T-cosbT+ AsinbT)
/+b^ D

+ £-(£t - sinbT+3cosbT -3)}
(3.49a)
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p(r,e,T)
p caMa ,

—cos0{~—x—x-[cosbT* - -rSinbT* - 5cosbT+5^sinbT
D b

-0.323e ■-] - l(cosbT* -; jjsinbT* - 3c©sbT+ ^sinbx)}

I5-<t  <d (3.49b)

p(r,e,T) = [cosbT* - ^sinbi* + 0.676e’£^T*"d^
r+b D

-P T*, 1 P-0.323e X'T ] - ^(cosbT* - ^sinbT* -£t * + £d+l)}

•|^- <d <t , t * <d

(3.49c)

p(r,0,T)
poCaMa

2r
COS0{0.323b

2 2 r+b^

— <d< t , t * >d

(3.49d)

where t * = t - It should be emphasised that the above

equations, except (3.49b) are also applicable to the case — >d. c
In this case equation (3.49b) should be replaced by:

p(r,0,T) =^-^cos0{^T[e"£(T"d)+e’£T]+ 1(2£t - £d - 6)} 

r r+bd b

d < t  <|^- (3.49e)

Substituting for a^ from equation (3.42) and rewriting the 

results in non-dimensional form gives;
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R_ = —-|-Q{—^^-cos(fin) + Bsin(fin)J +finB-Bsin(fin) 
hN z 1 + B

-3cos(fin)-3}

fi < ~ <1 (3.50a)

f— = —1—-[cos(fin- -|)-Bsin(fin- -^)-5cos( fin)+5 Bsin (fin)
PN 1 + B2 3 3 -2.389e-"^]

-tcos(nn- — )-Bsin(nn- |-)-3cos(nn) + Bsin(nn) ]}
B P

n < 1 (3.50b)

P_ = cosQ{ 1 [cos(fiK_ 2j_6sin(^_ 2)+5e-(n-l)nB_2>38ge-nnB] 
HN Z 1+B P p

+ [(n-l)nB -3-cos(nn- -|)+Bsin(nn- j|)]}

z>n -
(3.50c)< fi,

p cosQ {^389[e-(R-l)^+e-fiiTB]}
1+BZ

2
nB

<! < fi, fi - !

(3.50d)

£_ = cose{_§Je-(MhB+e-fi^]+(2fl.lb6.6}
hn z i +bz

1 <fi < (3.50e)
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where P., = 7M- -g—— , 6 = - and ft = -r. Figure (3.8)
N 1+M r b

shows a comparison of this approximate approach with the 

exact method for a single sphere undergoing a Hertzian 

acceleration.

3.6. Sound radiated by a pair of colliding spheres

(Convolution method)

The convolution method may as well as the Laplace transforms 

method, be used in the derivation of the sound generated by a 

sphere undergoing an elastic collision. This is the method used 

by Koss and Alfredson [21] for studying the sound radiated by a 

pair of colliding spheres.

It is mentioned in section (3.1) that the sound pressure due 

to any arbitrary acceleration may be given by a convolution 

integral, which was given previously as equation (3.10). Using 

the Hertzian acceleration given by equation (3.31) together with 

response to unit impulse expressed by (3.7) and substituting in 

(3.10) gives:

2p caMa cose t  r
p(r,e,T) = -2—2---------- /[2cosJt(r-c) + (l - -)sinX(T-c)]

r o

e~^T_^sinb<;di; 0 < t  <d

(3.51a) 

and 2 ^

p(r,0,T) = —-------2-------f [^os £(t -c ) + (1 - -)sin£(T-d]
r o

nb^d t  > d (3.51b)
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Solving (3.51a) and (3.51b) leads to exactly the same 

results as given in Equations (3.38b) and (3.36b) respectively.

Consider now a pair of colliding spheres modelled as 

shown in Figure (3.9) and assume that the sphere 1, which is 

initially at rest, is called the impactee and the other one 

the impactor. For a microphone positioned at 0<9O° (9 anti-

clockwise, see Figure (3.9)) the sound radiated by the impactor 

arrives with a delay in time in comparison with the sound 

arriving from the impactee; the process would be the reverse 

if the microphone were positioned at 0>9O°. The sound pressure 

at any microphone position can be simply given by the sum of 

the pressures radiated by the impactee and impactor. Thus at 

a position defined by the polar co-ordinate (r,0) (see Figure 

(3.9)), the pressure is:

p(r,e,T) = H(-T+d)p(r1,e1,T)+H(T-d)p(r1,e1,T)fH(T-Tci)

xH(-T+Td+d)p(r2,e2,T-Td)+H(T-Td-d)p(r2,92,T-Td)

-90° < e < 90° (3.52a)

where

H(-Tjd) - 1 T <d J H(T-d) = 1 T >d },
= 0 Otherwise ’ =0 Otherwise

H(T-Td) = 1 T > Td } H(-T+Td+d) =1 T<Td+d}

= 0 Otherwise = 0 Otherwise

H(x-Td-d) zz 1 t  > T i+d
} (3.52b)

= 0 Otherwise
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and is the time delay between the arrival of the sound to

the microphone from each sphere. The time delay may be

approximated according to the ray theory and given by:

(3.53)

for a suitable range of 9 depending upon the size of spheres.

An approximate time delay for 6=0° and equal radii spheres 

is given in reference [21]as follows:

2.57a+(r-] Z+a^-r,

c (3.54)

For 0-0° and unequal radii spheres one may similarly

wri te:

a2+1.57a1 + (r12+a12)!s-r1
Td = E

(3.55)

Q QI
where r2 = a2 + + (r^+a^)^ is the path of a-b-c-d as

shown in Figure (3.10). By following the similar procedures 

as given in section (3.4) for the impactee the amplitude of 

deceleration of the impactor can be found to be:

aM2 bvo (3-56)

m2
where M = — is the ratio of mass of impactor to the mass of 

impactee. For a pair of colliding spheres as shown in Figure 

(3.9) one may write:
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r-| - r - a-|Cose

- r + a2cose

r ^1
cose-. = — cose -

1 r] 
and

r a2
cose? = — cose+ -£

2 2

(3.57a)

(3.57b)

(3.58a)

(3.58b)

Substituting for r from (3.57a) and (3.57b) into equations

(3.58a) and (3.58b) respectively gives:

1
^1

where

cose-] ~ cose

cose2 -

and

. 2 sin e

cose

(3.59a)

(3.59b)

The sound pressure in the far field radiated by the

impactee may now be written as:

x (cose- -p—s i n 
^1 ^1

e)
2

{[(1 -23-j 2)cos(fiirB-j )-(l+23-j2) s i n (frirB-j)]e“n7T|3l

- (1 -23-] 2)cos (h7r)+26-1 si n (fin)} (3.60a)

ft < 1
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and
1 .17M pocvo 1 , „ 1 . 2„'

P-. = — ---------------7- 7—(cose- —sin e)
1 1+M (1+46-,)

{[(1 - 2S-j2)cos(rt7TB-| )-(l+26-j2)sin(rM-| )]e "^1

+ [(l-2812)cos[(ft-l)1T61]-(l+2B12)sin[(rt-l)7rg1]]e'(n 1 ) irB-j j

fi > 1

where 3-j
(3.60b)

Similarly the sound pressure radiated by the impactor can 

be found to be:

1.17

1+M

0 cv ,PO 0 1 7----------J- x — (cose+ 
(1+4^) ^2

{ [(1 -2£22)xcos [(fi-n* )ir62]-(l+2622)sin[(h-n' M2]]

e (n n Jirgg _(-] _2g^2)cos [(n-n' )Tr]+2B2sin [(fi-n' )tt ] }

0 < n - n' < 1 (3.60c)

and
„ _ 1.17 %cvo 1 , 1 . 2„.
Po --------- — ----------x 7—(cos6+ y-sin 9)

1+M (l+432 ) 7 2

{[(l-2622)xcos[(n-n' )tt B2J - (1+2B,,2) s 1 n [ (fi-n1 )tv B2J] 

e-(ft‘n' )’Te2+[(l-2g22)coS[(fi-n'-1 )tt B2] 

-(l+2g22)sin[(ft-n’-l)TTfi2]]e'(n‘n''1 )’i62}

fi> n'+l

where 0
£2

= and n

(3.60d)
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The total sound pressure may now be written as:

p = H(-fi+l )p-]+H(fi-l )p-|+H(ft-n 1 )xH(-fi+n'+l Jp^+Htft-n 1-1 )p2

-90° < e <90° (3.61)

The total sound pressure for 90° < 9 <270° can be obtained 

by changing the role of the impactee and impactor. Graphs 

representing variations of dimensionless pressure against n for 

a pair of similar spheres of equal and unequal sizes are given 

in Figure (3.11) and (3.12) respectively. The dimensionless 

pressure versus n for a pair of dissimilar spheres of equal 

and unequal sizes are also given in Figures (3.13) and (3.14). 

The directional distribution of sound for all above cases are 

presented in Figures (3.15) to (3.18).

Equations (3.60a) to (3.60d) make also possible that the 

variations of dimensionless rarefactive peak against $ be studied 

for the case of similar spheres of equal radii and 0 = 0°. 

Graphical presentation as such is given in Figure (3.19). 

Variations of n at which the rarefactive peak occurs is alsomax r

shown in Figure (3.20).

In order to study the frequency spectrum of a pair of 

colliding spheres equation (3.44) may be written as:

Pl (-J ,0-J > w)
cose^l+e iwd)

2 2~ 
2c +2icoa-] c-w a-]

(3.62a)
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Similarly for the impactor arriving with a time delay Td 

one obtains:

n (r fl 1 _ 1-17 Pob2cVoa23 (i“r2+c)

2 2’ 2’W 1+M b2- w2 r22 2c2+2iMa2c-w2a22

(3.62b)

Adding (3.62a) and (3.62b) and then multiplying the results

by its complex conjugate gives:

4(1.17)2po2vo2a12612n*2cos2(n*TT)

(1+M)2(1 -4n*2)2(B14+4n*4)(B24+4n*4)

4 zi o o (3i +4n* ){—4(3? +4n* -----9—n-)(6i cos0-sin20)2+ —----- 2-----
5] 4n*%2 1 ?24

B 2
(1 +-----x—2-)U2cose+sin20)2------ 5—5—[4n*4-2n*2(B1-fi9)2

4n*^/ ?1 %3"* 1 2

2 2 fi Bo
+ ]x[2n*61 62(1 +------2-------)cos(2Trn*n' )+(^2B-i -CiB?)

1 4n*%69 12

sin(2Trn*n')] (6-]COS0-sin20)x(69cos0+sin20)------
^iV

(2n*2+B] fi2) (B1 -B2) [(e2®i-5] B2)cos(2jrn*n') -2n*^

^2 2 2
(1 + -----a------ )sin(2Trn*n')] (g.cose-sin eJtCoCOse+sin^e)}

4n*%£2 1 2

(3.63)
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At a large distance r, 4n*2q?2 ’ 4n*%2
and

are all much less than unity and one may write:

P
2.34povoai 6-|n*cos(n*iT)

(1+M) (1 -4n*2) (B14+4n*4 6/+4n* V2

U2cos9+sin29)2------|2— [4n*4-2n*2(6-|-ft?) +$-. 1

62 n*

x[2n*^£2cos(2mn*n' )+(^26-|-C-|B2)sin(2irn*n1 )]

2 2 2M 2
(C-jCOse-sin 9)U2cos9+sin 9)------ —j(2n* +B-| $2) (3-|-B2)

S] ?2

[(^2^1 62)cos(2Trn*n1 )-2n*£^ 62sin(2irn*n')]

x(C-| cos9-sin29) (£2cos9+sin29) (3.64)

Graphs showing variations of |zp| versus n* for a pair of 

similar spheres of equal and unequal radii are given in Figures 

(3.21) and (3.22) respectively. Similar graphs for a pair of 

dissimilar spheres of equal and unequal sizes are also given in 

Figures (3.23) and (3.24). Variations of n*ax at which the 

peak of transform occurs is also plotted against 3 in Figure 

(3.25) for a pair of similar spheres of equal radii and 9 = 0°.

It should be emphasised that the dimensionless forms of 

pressure-time and pressure-frequency introduced in this section 
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may be easily related to those given by Koss [22] through 

the relations:

p(r,e,T)/pocvo = 1J7
IT, g X 1+M

and

p(r,e,tj)/povoa1

7T

9

2 M4.68/6-.x
• 1+M

where n,- = and = -Lp_(_L\6 , u) | afe ^ossis normalised
o p aM1an 9/iO Ml 1 4p camd

pressure-time and pressure-frequency respectively. The 

difference between the results is due to use of equation (2.42) 

which is not being used by Koss [221. His dimensionless result 

in the frequency domain is also limited to case of pair of 

similar and dissimilar spheres of equal radii.

3.7. Sound radiated by a pair of colliding spheres

(Numerical Method)

In section (2.6) a numerical method was given for calculating 

the force at any instant of time by solving equation (2.67) 

numerically. The method can be developed for predicting the 

sound radiated by a pair of colliding spheres if the instantaneous 

values of acceleration are being employed for calculating (3.51a) 

and (3.51b) numerically. The method will be explained in detail 

later on in chapter 5 because of its common use in predicting the 

sound radiated by a pair of viscoelastic spheres. Typical sound 
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pressure time history calculated both numerically and

analytically (equation (3.52a) are compared in Figure (3.26).

3.8. Sound radiated due to change of volume of sphere 

undergoing an elastic collision

The change of volume at any instant of time for a sphere 

of radius a^subjected to an elastic collision by another sphere 

of radius a^ as shown by shaded region in Figure (3.27a) can 

be written as:

a-! /a-j -x 2
V = f dx f r d r / dg = j(2a-|^-3a^x+x^)

x o o
(3.65) 

where x, r and g are illustrated in Figure (3.27b). The 

change of volume may also be expressed in terms of instantaneous

2 2radius of surface of contact by substituting x =/a-| -R into 

equation (3.65). Thus:

V = y(2a13-2a12/a12-R2 - R^a-j-R2 ) (3.66)

where R is the instantaneous radius of the surface of contact 

and is given by Goldsmith [43] as:

F(6]+62)

A + B
(3.67)

Using the relationship between force and approach given by

equation (2.60) together with equation (2.61) and substituting

into equation (3.67) gives:
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ala2
--- :—a
al+a2

(3.68)

where q = 3^, = — and A = B = ^(— + —) for a pair of
a i\ it  a 1 a2

colliding spheres of radii a^ and a£. Rewriting equation (3.68) 

in terms of t by using the approach-time relation given in 

equation (2.72) yields:

a-| a

—.a sinbt a.|+a2 max (3.69)

Substituting (3.69) into (3.66) and finding the rate of

change of volume, one obtains:

3V TT.
9t T

a o r anmax 2 . o, . , 2----------- 7 a3ao sw2bt 1------ x 
(a^)----- 12 . al

amax 
(3^82

(3.70a)

Neglecti ng the term
a 2
*7

^maxx Ya'+a jSinbt in comparison with

uni ty gi ves:

9V 2
a-^ sin2bt (3.70b)

The radial velocity of a sphere of radius a-j at its surface

may now be expressed in terms

v r r=a-| 4TTa

1 9V
2 at

1

of the volume velocity

,22i bao ot
yz- x ---------------£sin2bt
16 a1(a1+a2)2

as:

(3.71)
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Using differential of (3.71) with respect to t together 

with the

given by

impulse potential function of a pulsating sphere 

equation (3.13) and substituting into the convolution

integral produces:

and

The

and

The

♦(r,T) =

(j>(r,T) =

solutions

<f)(r,T) -

<{)(r,T) =

u.2 2 2 T
D 3 -i 3 q CX q  /----- -  2 2 x<(l-e~^ 'Cbsin2b?dC 

(a-j+a?) r

2 2P cb a o_____ max
(£2+4b2)

(3.74b)

(3.72a)

d

(1 -e T )sin2b^d
o

T > d (3.72b)

to the equations (3.72a) and (3.72b) are:

cb2a2 a 2
i —x-----5^-------2---- ?— sin2bT-cos2bTl'e_^T]
8 (£2+4b2) (a1+a2)2r 2b

0< t < d (3.73a)

2 
a2

(3.73b)

sound pressure may now

_l 2 2
poc a max 
(£2+4b2)

be found
2 a2 £

to be:

-^si n2bT-e”^T]
£

[cos2bT+
(a-|+a2) r

0 < t  <d (3.74a)

P ( 5 T ) g

0

0 < t  < d

t > d

and

P(r,T) = i

t  > d



-82-

Substituting in equations (3.74a) and (3.74b) for a from max
(2.69) and rewriting the results in terms of non-dimensional 

variables gives:

^+6-] )

0 < n < 1 (3.75a)

and

ft > 1 (3.75b)

where Pn = 0.142 p v 2 al
D fo o

Figure (3.28) shows variations of p/P^ versus fi for a 

single sphere.

3.9. Acoustic energy of an impulsively accelerated sphere

Consider a volume V of a fluid surrounded by inner and outer 

spherical boundaries at r = a and r = r, respectively. Further 

assume that the sphere of radius a is subjected to an impulsive 

velocity vQH(t) and is surrounded by inner boundary of this fluid. 

The kinetic energy of the element of this fluid having the 

volume dV and the mass p'dV is:
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dEK = 1 p'(q)2dV (3.76)

where q is the velocity vector.

The condensation of the medium which is given by equation

(2.4) confirms that for small condensation p' = pQ. Thus,

K 2 po
/(q)2dV
V -

(3.77)

The change in the volume of the element generates the 

potential energy which by assuming an adiabatic relationship 

between pressure and volume, can be written as:

(3.78)

So the total energy at any given instant of time is:

E = ek + EP = I Po ^(q)2dV + ——2 ■PP2()V
2poc V

(3.79)

The flux of energy propagating out of the volume V may now 

be obtained by differentiating (3.79) with respect to time.

Thus:

9E
9t po dV + “7vp It dV 

poc
(3.80)

Using equations (2.6) and (2.8) gives:

(3.81)
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By using Green's theorem:equation (3.81) can be reduced 

to the surface integral of the density of energy flow in a 

direction normal to the surface S which bounds the volume V 

of the fluid. Thus:

-|r = -/div (pq)dV = JpqndS (3.82)
V - S —

where n is the outward unit normal.

Representing the element of dS as shown in Figure (2.1) 

gives:

= pup fpV sin0d0 (3.83)
1 o r

where v = q n.r _2 _
Using expressions (3.7) and (3.8) given for pressure and

raidal velocity, substituting them into (3.83) and integrating 

over the interval of 0 gives:

(3.84)

where T = t - c
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Equation (3.84) shows that the flux of energy propagating 

in direction normal to the surface S which is positioned at a 

distance r from the centre of the sphere decreases by increasing 

the time, and has a maximum amount at r = 0. Thus:

/X

3E _ 4
9t 7TpoCV (3.85)

o

which is independent of r.

To evaluate the energy equation (3.82) can be written as:

E = f f pv dSdt 
t S r

(3.86)

which by carrying out the similar process as given before and 

integrating over the interval of t from zero to infinity yields

to the following result:

E = (3.87)

To find the energy radiated in the far field one may use 

the fact that

_ 1
9r c 9t (3.88a)

or, in other words,

Vr pc (3.88b)
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Thus from equation (3.86)

E = -— f f p2dSdt 
poC t S

(3.89)

By making use of equation (3.89) the energy radiated in

the far field can be evaluated to be:

E = 1
3 7TPOa (3.90)

The same result may also be obtained from (3.87) by

estimating limit of E as r-> °° . The result given by (3.87)

is similar to that given by Akay and Hodgson [16 J who have al so

given an expression in the form of:

I
E = f f p(co)vf*(to)dtodS 

S
(3.91)

for evaluating energy in frequency domain, where vf*(w) is the

complex conjugate of v (co).

3.10. Acoustic energy of sphere undergoing a Hertzian
accelerati on

As shown in section (3.4) 

a sphere undergoing a Hertzian 

by two expressions, each for a 

P-|(r,0,T) and P2(i%9,t ) denote 

0 < t  <d and T>d respectively 

per unit area of any spherical 

the sound pressure generated by 

acceleration can be represented 

certain interval of time. Let 

the sound pressures in intervals

Thus the intensity of energy 

surface positioned at a distance
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r from the centre of sphere can be given by:

1
2O cos 0

3E
9S

d

f p1 (r,T) .v-j (r,T)dT
o

+ J* P2(r,T) .v2(r,T)dT 
d

(3.92) 

where v-j(r,0,T) and v2(r,0,T) correspond to radial velocities 

in each interval. To solve the above equation one may use 

Simpson's rule which is a well known method for solving an 

integral numerically. So the integrals on the right hand 

side of equation (3.92) can be evaluated approximately as:

1
2Q

COS 0

0E At
3S 3

[(pvr)|T=o +(4pvr)|T=At+(2pvr)|T=2At+(4pvr) +
=3At

.......... +(2pvf) lT = (n_2)At+(4Pvr) ^(n-l )At+^Vr^T=hAt

(3.93)

where At is a constant increment of time, pvf is either equal to 

P-|v-| for 0 <t < d or p2v2 for T>d, and n is an even number.

Since the pressure decays with increasing time, n may be chosen 

as a suitable large number to give a negligible value of pv for 

t > nAt. The result obtained from (3.93) gives the amount of the 

intensity of energy in a certain direction. Thus, to find the
4 2energy one should multiply this result by -jrrr .

By taking the far field condition into account one may reduce

(3.92) to:
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1
2fl 

COS o
(3.94)

which can be solved either numerically or analytically. It 

should be emphasised that representing an analytical expression 

as a solution to (3.92) required a long calculation. Therefore, 

a numerical solution is preferable, but in the far field case 

the operations are shorter and analytical solution may be 

achieved. Thus, by substituting for p from equations (3.40a) 

and (3.40b) the intensity of energy per unit area can be found 

from (3.94) to be:

(3.95)

/\

3E
aM2a3pQb2cos2e [(4£4-b4-4b2£2)sin£de-^d

L3S ‘ 2(b4+424)2r2
-(4£4-b4+4b2£2)(cos£de"^d+l ) + (4£4+b^d ]

By making use of equation (3.95) the radiation energy can

be obtained as:

9. 2 3 ,22aM a pQb tt  

3(b4+4£4)2
[(4£4-b4-4b2£2)sin2.de £d

-(424-b4+4b2JZ.2) (cosJlde'^+l )+(424+b4)£d ]

(3.96)

or in terms of B

I* = -°--3424~^[(4B4-462-l )sinfiire K|3-(4B4+4g2-l ) (cosirge 7t 6+1 )
L (wV . ,

+it 6(4B +1)J (3.97)
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OM 2where E*= — -----m v c and m is the mass of air displaced by
(1+M)Z 0

the sphere.

Figure (3.29) shows variations of E/0.342E* against 8

for a single sphere. Variations of total dimensionless
z\

energy, Ey/0.5E* versus B for a pair of similar and equal

radii spheres is also given in Figure (3.30).
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Fig.3.1. Pressure-time curves of impulsively 
accelerated sphere.

Time in unit of a/c

Fig.3.2. Pressure-time curve of impulsively 
pulsating sphere.
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L0G1 0
6 =£/b

Fig.3.3. Dimensionless peak pressure againsL 
dimensionless contact time.

Fig.3.4. Variation of with 6. max
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L0G1 0

2

3 = Vb

Fig.3.5. Dimensionless peak of transform 
against 3.

3 =Vb L OG10

Fig.3.6. Variation of n* with 3 
max p
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Fig.3.7. A Comparison of the exact solution for the 
sound radiated by an impulsively accelerated 
sphere and approximate solution of that sound 
obtained by aerodynamic approach.
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radiated by a sphere undergoing a Hertzian acceleration 
and approximate evaluation of that sound obtained by 
aeroacoustic approach.
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Fig.3.9. Model of colliding spheres.

Fig.3.10. Model of wave path from impactor 
to measuring microphone located at 
9 = 0°.
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Fig.3.11. Dimensionless pressure-time curve for a 
pair of similar spheres of equal sizes. 
(9 = 0°).
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Fig.3.12. Dimensionless pressure-time curve for a pajr
of similar spheres of unequal sizes (0 - 0°).
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Fig.3.13. Dimensionless pressure-time curve for a pair
of dissimilar spheres of equal sizes (6 = 0°).
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Fig.3.14. Dimensionless pressure-time curve for a pair
of dissimilar spheres of unequal sizes.
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Angle, 0 (degree)
Fig.3.15. Directional distribution of maximum pressure radiated 

by a pair of similar spheres of equal sizes.

Angle, 6 (degree)

Fig.3.16. Directional distribution of maximum pressure radiated 
by a pair of similar spheres of unequal sizes.
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Angle ,0 (degree)
Fig.3.17. Directional distribution of maximum pressure 

radiated by a pair of dissimilar spheres of 
equal sizes.

Angle ,0 (degree)

Fig.3.18. Directional distribution of maximum pressure 
radiated by a pair of dissimilar spheres of 
unequal sizes.
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LOG1 0
1 _

-22
-3:

L0G1 0

8 =£/b
Fig.3.19 Dimensionless rarefactive peak 

pressure against B.

(Pair of similar spheres of 
equal radi i 0 = 0°.)

Fia.3.20. Variation of n with B max
(Pair of similar spheres 
of equal radii 8=0°)
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Fig.3.21. Fourier transform of pressure for a pair 
of similar spheres of equal sizes, 
(v = 1.52 m/s, r - 0.255 m, 0 = 0°)
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XI o"1 
Logarithm of dimensionless frequency, log n*

Fig.3.22. Fourier transform of pressure for a pair 
of similar spheres of unequal sizes.' 
(vQ = 1.52 m/s, r = 0.255 m, Q = 0 .)
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Fig.3.23. Fourier transform of pressure for a pair 
of dissimilar spheres of equal sizes. 

(vQ = 1.52 m/s, r = 0.255 m, 0 = 0°.)
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Fig.3.24. Fourier transform of pressure for a pair 
of dissimilar spheres of uneaual sizes 

(vQ = 1.52 m/s, r = 0.255 m, 'o = 0°.)
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Fig.3.25. Variation of n*max v/i th 6

(Pair of similar spheres of 
equal radii 0=0°)

Pr
es

su
re
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Fig.3.26. Sound pressure time history for 2.54 cm diameter 
steel sphere with an initial impact velocity 2.5 m/s.

(6 = 0°, r = 0.375 m)
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(a)

(b)

Fig.3.27. Illustration of element dS for 
evaluating the shaded volume.
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Fig.3.28. Dimensionless pressure time curve due to change 
of volume of sphere undergoing an elastic 
collision.



-109-

0
L0G1 0 3 = £/b

Fig.3.29. Variation of dimensionless energy 
with 3 (Impactee only)

L0G1 0 3 = £/b

Fig.3.30 Variation of total dimensionless
energy with 3

?-(Pair of similar spheres of equal radii) 
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4. RADIATION DUE TO INELASTIC COLLISIONS OF SPHERES

The sound pressure due to inelastic collision of spheres 

is studied in this chapter. The theory of inelastic collision 

of soft material for two identical spheres is given by Andrews 

[58, 59] and a review of this theory is also given by Goldsmith 

[43]. According to this theory three distinct periods are 

existing during the collision of a pair of identical soft spheres. 

Knowing the accelerations during each period one would be able 

to predict the sound pressure by making use of the convolution 

method. This has been done first by Koss [23], who gave no 

expressions regarding sound pressure either in the time or 

frequency domains. Koss produced predicted results for the 

sound pressure caused by the impact of soft spheres, but he 

gave no information on how these results were derived. It is 

likely that he calculated the convolution integral numerically. 

The present study not only gives details of the numerical 

calculation of the convolution integral, but also provides in 

addition an analytical solution.

The dimensionless pressure-time and pressure-frequency

are also given.

4.1. Elastic-plastic contact deformation

To study the contact deformation due to collision of a

pair of identical soft spheres, as suggested by Andrews [58, 59]

one should consider three periods which are as follows: 
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1. an elastic loading period., 2. an elastic-plastic loading 

period., 3. an elastic unloading period. Each sphere may also 

be considered as impacting a completely rigid massive plane 

surface (E^ =°° and m2 =°° ) with an initial relative velocity 

equal to half the relative velocity of the spheres. During 

the first period the Hertz law of contact is valid, and the 

following expressions:

51 =
1-V2 6 _

tt E ’ 62 "

Fmax
Z ,5 2- K2 <TB- vo _ ,5 2

%iax H6 vo

d = 5.886 ,
0

and A-jCt) = sin = a^sinbt

may be found by using equations given in section 2.5,

(A=B = 2^— and q^ = 1) as shown in reference [43].

0< t< t-j (4.1)

and assuming

5

The pressure

distribution within the contact area of radius R may be expressed 

as:

p. -aita? (4.2)
ira^l-v )

where r is a distance from the centre of the circle of the contact 

area. It should be emphasised that an area of contact, in general, 

has an elliptical shape, but in special cases such as the collision 

of a sphere and a massive plane or collision of a pair of spheres 

a contact area of circular shape exists. The first period 

terminates when the maximum pressure which occurs at the centre 
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of contact area (r=0) reaches a critical amount like PQ. Thus 

at this instant the radius of the contact area and deformation 

can be given as:

. TlP^d-V2)
R1 ’ 2E

and „ 9
R/ TTP.d-v1-) 2

“1 = = al [ 2E 1

(4.3a)

(4.3b)

By making use of equation (2.71) the termination time of

the first period may be evaluated to be:

The contact area during the 

regions: a plastic region which 

a constant pressure distribution 

is an annulus of thickness 

given by equation (4.2).

5/2 -^2
) ] dot (4.4)

amax

second period consists of two

is a circle of radius r^ , with

PQ and an elastic region which 

R-r-| with a pressure distribution 

Thus the force in the plastic .circle

and in the elastic annulus are respectively:

(4.5a)

and
F = J 21r?Pd? = ; 4E-r[(R2.--^)lt d? 

r r >
rl rl 1

3 a^l-7)

(4.5b)

Inserting the conditions P = PQ at r = r-j into the equation

(4.2) gives:

F? -’fl2f0
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(4.6)

By making use of the above expression, Fp and may be 

written as:

(4.7a)

and

(4.7b)

Thus the total force in the second period is:

(4.8)

where a = —.
al

The equation of motion may now be written as:

2 = m-jp a (4.9)

2 
where n

1,Poa1
By making use of equation

velocity at the beginning of the second period

(2.68) the initial

may be expressed

(4.10)

Thus the solution to the differential equation (4.9) is:

• 2 2 2,22 122-2 a =-n a + J n a-]Ci + a-] + a-j (4.11)



-114-

When a is maximum the relative velocity a is equal to

zero. Thus from equation (4.11):

%ax4“l + (4-12)

n

To evaluate the approach-time relation, one may write

equation (4.11) in the form:

1
n

dZ*_______
/(1-Z*)(1+Z*-K*)

where Z*= , K* = , and t = t - t
max amax

to equation (4.13) may be expressed as:

(4.13)

The solution

+ (“max ' |“1)sin(nt + 6*) (4.14)

2 alwhere tan6*= n 7—. By making use of equation (4.14) theO Ot-j
acceleration and duration of the second period may be written 

as:

A2(t) = (%ax ” J ai )n2sin(nt + 6*) t^ <t <t^ + t? 

(4.15a)

(4-15b)

Consider now the final period which is an elastic unloading 

from amax given by eTuation (4.12) to the permanent deformation 

like otF. During this period it may be assumed that the plastic 
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region which is created during the second period returns 

elastically to the original surface of the sphere, so that 

at the end of the period the permanent deformation can be
r22

given by a,P = -— , where ro is the radius of the circlei a-j c

of the plastic region at the end of the second period.

The total force as given in reference 1431 is:

3/2
r _ 2E r2z52 - 2X , - 2/n2 - 2X1^FEU " .... ,, 2j3(R " r2 ’ + r2 (R " r2 0

a^l-v ) c '

(4.16)
2Substituting R = a-^ct into the above equation and using 

Newton's second law gives:

3/2
) + ?22(aia - ?22)

(4.17)

By making use of equation (4.6) the radius of the plastic 

circle at the end of the second period may be written as:

r2 = 61 (“max ’ “Pj2 = (al“p2 (4.18)

where am_Y is given by equation (4.12). By introducing the11 Id. z\

initial conditions (a = a and a= 0) the solution to the max

non-linear differential equation (4.17) may be expressed as:

— 2 9 _i /9 _ 5/o 3/q
Z = - Z - Z )J

(4.19)

“V - V
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2 8E/a,
where 0* = ------- -—x-----

3(1 - v )m]
and Z

a + a-j

The duration and acceleration of the third period may now 

be given by:

'3“ / - Z Mamax- ai)(l -Z 2)J dZ

(4.20)

and

2 - 1A3(t) = n (amax - j a-j )cosb*t* t-1+t2 <t<t-j+t2+t3

(4.21)

where b* = ^7r-
2t3

and t*=t-(t-| + t2). Equations given in this section as shown by 

Koss [23] may be used for evaluating the sound pressure 

generated by the collision of soft spheres. Thus by using 

equation (3.10) one may find that:

T /S /S /X

p(r,e,T) = f pUI(r,e,T-c) [A-](^) + A2(d + A3(^)} de

o

t] + t2 < t  ^t-j + t3 + t3

(4.22)

where p(r,0,T) is the sound pressure generated by each sphere.

The total sound pressure can be expressed in the similar form 

as given by equation (3.52a).
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4.2. Numerical Solution of Sound Pressure

The sound pressure due to inelastic collision of spheres 

may be calculated numerically by employing steps as follows:

1. Calculation of termination time of each period.

2. Numerical estimation of force or acceleration at different 

instants during each period.

3. Evaluation of sound pressure at different instants during 

each period and after termination of last period.

To make the above steps more clear, let us consider an 

instant t  defined by 0 < t <t-|, where t-j is the termination 

time of the first period given by equation (4.4). Equation 

(4.4.) is a function of a and may be written as:

t-| = f g(a) da 
o

(4.23)

where g(a) = ^-[1 -(^----- )
o max

the trapezoidal rule which

To solve (4.23) one may use

is a well known method as well as

Simpson's rule for solving an integral numerically. So the 

integral on the right hand side of equation (4.23) may be found 

approximately to be:

t-i - y[g(a) | +2g(a)| +....+2g(a)| +g(a) |
a=0 a=h a=(n-l)h a-nh

(4.24)
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1where h = — and n is an integer. By making use of equation

(2.67) the differential form of acceleration during the first

period may be written as:

-a (4.25)

Thus to find the acceleration at different instants during 

the first period one must solve a differential equation in the 

form of:

(4.26)

Many methods, such as Runge-Kutta, Numerov's and Taylor's 

expansion are suggested in references [60 and 61] for solving 

the differential equation. Let us now use the Taylor's 

expansion method for solving equation (4.26). According to 

the Taylor's expansion formula the value of a at instant t = At 

may be expressed in terms of successive derivative of a with 

respect to t at instant t= 0 as:

2
a| =a| +Ati| +-^U-a| +••• (4.27)

t=At t=0 t=0 t=0

where At = — and n is an integer.

The initial conditions at instant t = 0 are:

v
a| = 0 , a| = ^- (4.28)

t=0 t=0

and the higher order derivatives at the same instant may be 
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found to be zero by the use of equation (4.26). The value 

of a at t = At may now be simply estimated by substituting 

the initial conditions into equation (4.27). Thus the 

corresponding a can be evaluated from (4.26). To repeat 

the process one needs to estimate the first derivative. It 

can be easily shown graphically that:

. al _a|
a| ~ t=(n+l)At " t=(n-l)At ,.

t=nAt 2At

Using now the Taylor’s formula to estimate the value

of a at t = 2At and ignoring the derivatives of higher than 

second gives:

a| - a| +Ata| + a| (4.30)
t=2At t=At t=At ' t=At

Estimating the value of a at t = At by making use of

equation (4.29) and substituting into equation (4.30) yields: 

a|
t=2At

2a | -a| +(At)^a|
t=At t=0 t=At

(4.31)

or more generally,

a | - 2ot | -a | +(At)^a|
t=nAt t=(n-l)At t=(n-2)At t=(n-l)At

n >2 (4.32)

Thus, at each iteration one would be able to calculate a

and consequently a. Having calculated a both force and 

acceleration may be found from (4.25) to be:
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and

F | = -m,a|
t=nAt t=nAt

n >0 (4.33a)

AJ = -a|
t=nAt t=nAt

n ^0 (4.33b)

To estimate the sound pressure the convolution integral

(4.22) may be written as:

C=t

P(t ,0,t ) = f p||T(r,0,T-dAi(c)dC
c=o Ui 1

0< T < t1 (4.34)

where p^ can be given by equation (3.7) after substituting vq  

equal to unity. By making use of equation (4.34) the sound 

pressure at t = nAt can be expressed as:

C=nAt
p(r,0, nAt) = f pUT(r,e»nAt-^)A,(^)d^

C=0 U1 1

Ck nAt <<t-| (4.35)

Using now the trapezoidal rule to calculate (4.35) numerically

gives:

At
p(r,e,nAt) = 2 PuI(r,e,nat-0)A1(0)+2pUI(r,e,nAt-At)A1(At)

+ .... +2p|jj [r,e,nAt-(n-l )At]A1 [(n-1 )At]

z\

+ Pjj (^>9,nAt-nAt)A-| (nAt)

0<nAt<t-| (4.36)
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By making use of (4.36) the sound pressure at different 

instants of the first period can be evaluated. Consider 

now instant t  defined by t^<T< t-]+t2, where t? is the duration 

of the second period given by equation (4.15b). The duration 

of the second period can also be given by equation (4.13) as:

%iax
= n { f“l + “max)] 2<J“ (4’37>

al

Using the trapezoidal rule to evaluate (4.37) numerically 

gi ves:

^2 - '^■[^(ot)l +2f(a)| _+...2f(a)| _ _+ f(a)| ]
a=0 a=h a=(n-l)h a=nh

(4.38) 

where f(a) = 1 [ (a^-a) (a- \ h = , and

n is an integer. In order to find the acceleration at different 

instants during the second period one must solve a differential 

equation in the form of:

2 1 2 -n a + y na = (4.39)

with initial conditions:

a =

• •
a =

at t = t-j (4.40)

This can be done easily by using Taylor's expansion method 

and following similar procedures as given previously for solving
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equation (4.26). Thus at any instant during the second period

the force and acceleration can be given by:

F| __ = -m,a|
t=t-|+nAt t=t1+nAt

n > 0 (4.41a)

AJ = -a|
t=t-|+nAt t=t-j+nAt

n > 0 (4.41b)

_ ^2
where At = — . The sound pressure at t  = t-j+nAt may now be

found by use of the trapezoidal rule to be:

p(r,e,t.]+nAt) = ~ PUT (r, Ojt-j+nAf-OjA-j (0)

+2p^(r,e,t-1+nAf-At)A-I (At)+.... 

+2pUI '(r,0,t+hAt-(n-l ) At] ^[(n-l )Atj 

+PU!(r,e,t1+nAt-nAt)A1 (nAt) x

At
2 Pyj(^»0»t-j +naT~tj)A^(t-J)

+2P|j T (r^t-j+nAMt-j+At)] ^(t-j+At)

+....................

+2pUI [r^t-j+n/ft- Lt-j+(n-1 )aTJ]A2 [t-j

+PJJ [r,e,t1+nAt-(t1+fiAt)]A2(t1+nAl)

t-]< t-] + nAt <t-j+t2 (4.42)
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Let us now apply the trapezoidal rule to calculate the 

integral on the right hand side of equation (4.20). One can 

obtain:

[?(z)|_ +2?(z)|_ = +...2?(J)| _ _+?(z)|
z=0 z=h z=(n-l)h z=nh

(4.43)
= - a-. 2 _ 5/p _ _3/2 -i2where f(z) = - — [ja/l-z ) (1-z )] ,

= 1 = . ® .
h - — and n is an integer. The differential equation needs

n
to be solved numerically is equation (4.17) with initial 

condi ti ons:

a | amax (4.44a)

and

a| =0 (4.44b)
t=tl+t2

By following a similar process as before the force, 

acceleration and the sound pressure at t-j + t£ < t  

can be determined. It is clear that the acceleration at any 

instant t  is equal to zero. Thus the sound pressure

at instant t = d+nAt can be given by:



-124-

At
2

PUI(^,e,d+nAt- t-1)Ao(t1) +........

+2PJJJ [r,e,a+nAt-(t1+At)]A2(t1+Al)+...

+2P(jj [r^a+nAt-tt-j+fn-l )At] ] A2 [t-j + fh-l ) At] 

^Pjj t®’d+nAt-(t-| +nAt)]A2(t-| + nAt) 

^Plu  [r,e,d+nAi-(t1+t2)]A3(t1+t2)

— - - ■ ~

+2pUI [r,B,a+iiAt-(t1+t2+At)]A3(t1+t2+At)+...

+2P(JI [r,e,a+nS- [tn +t2+(n-l)H] ] A3

[t]+t2+(n-l)At]+pUI [r.e.a+nAl-ft-j+^+nAt)] 

^A3(t]+t2+nAt)

t  >d (4.45)

=
where d = t-j+t2+t2 is the total contact duration, At =—, and n

n
is an integer. It should be emphasised that the numerical method 

described in this section is not necessarily the best method but 

it is the simplest one. The accuracy of the results may be 

increased if, instead of using equation (4.29) for estimating 

the first derivative, the actual equation such as (4.11) and (4.19) 

are used. More accurate results can also be obtained by taking 

derivatives higher than second into account. Graph: showing 

variations of force versus time for 2.54 cm diameter lead spheres
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with an initial impact velocity of 0.55 m/s is given in

Fig.(4.1).

4.3. Sound radiation from a sphere subjected to inelastic 
collision by a sphere (Analytical SolutionT

The sound pressure due to inelastic collision of spheres 

can also be given analytically by using the convolution integral. 

Using acceleration given by equation (4.1) together with 

response to unit impulse expressed by (3.7) and substituting 

in (3.10) gives:

2
/ x poCa aM T r r

P-|(r,0,T) =-------------cose  /[^os £(t -^)+(1 - £)sin£(T-?)]
r o

e ^T"^sinb£d£

0 < T <t] (4.46)

The solution to the equation (4.46) is:

-£t

[(B-|-D1 Jsin^T+tC-j-E-i )cos £t ] (4.47)

where G-|

0 < T <t-j

= (2ll2+b2+2bj>)U-b(l- £)},

C1 = (2s.2+b2+2bs.)[{-(2jl-b)-j>], D1 = (2jt2+b2-2ba) [A+bd - y)],and 

q = (2£2+b2-2b{.)[^(2s.+b)-!l]. The contribution of the first

period to the sound pressure at instant T> t1 can be obtained 

from (4.46) by replacing the upper limit of integral by t-j.
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Thus one may find:

/X b t-| /x btn
[B-j sin£(T-t-|+ —— )+Ci cos£( t -ti + -~)

/X /X /X /X p

- [(B-j-D-j )sin£T+(C-]-E-| )cos£T]e T

(4.48)

During the second period one

t > t-j

must use acceleration given

by equation (4.15b) and establish a new convolution integral

T
- -la-|)cose/ [^cos£(T-t) + (l- ^)

tl

sin£(T-t)] sin £ri( £-t-| )+6]d£

t-]< t < t-|+t2 (4.49)

The solution to the equation (4.49) can be given by:

x** /X /X /X /X

(B2+D2)si n [o (t -t-| )+<5*] + (C2-E2)cos  [q(T-t^ )+6*]

i
/x zx

B2Si n [£(t -t-j )+6*] K^cos [£(T-t-| )+6*]

/\ /X

-D2Sin[£(T-t-| )-(S*] -E2COS [£(T-t-| )-<S*i e

(4.50)
2 2 PQca n/X 

where G9 = ------
6 2(4r+nV

C2 =(2£2+q2+2q£)[^(2£-q)-£], D2 = (2£2+q2-2q£)[£+q(1 - ^-)1 and

(amax ” ]^-|)cose’ ^2 = (2£2+n2+2q£) [£-n(l- ^)],

as:

t-|< T <^]+^2
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2 2E2 =(2r+n -2n£)[^(2£+n)-<| . The sound pressure at instant 

t-| <t ^-j+t^ may now be written as:

p(r,0,T) = P-i(r,e,T)| + p?(r,e,T)| (4.51)
T>t1 t1<T <t

where t = t-]-^. The contribution of the second period to

the sound pressure at instant t  >t may be deduced from (4.49)

by replacing the upper limit of integral by t. Thus:

£(t —t

t1 M

t (4.52)

Finally the convolution integral requires to evaluate the 

sound pressure during the third period which its acceleration is 

given by equation (4.21) can be expressed as:

2 2
p ca 1 T

p3(r,0,t) = ------ J-----(“max" 3“1 )cos0-/’[^cosi(T-C)+(1-
r t

sin«,(T-c)] e , cosE(c- t)d?

t < t  < a (4.53)

where d = t-j^^+tg. The solution to the equation (4.53) may 

be written as:
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P3(rse,T) (B3+D3)cosb*(T-t)-(C3-E3)sinb*(T-t)

t < t <d (4.54)

2 2/s pQCa 8 1
WherS G3 = 2?4?+b*V2(“max‘ 3“l)c°Se ’ B3= +b* +2^*m-b*(l- £)]

C3 = (282+b*2+2£t>-)[^(2£-b*)-«.], D3 = (2£2+b*2-2^[8+b*(l- and

E3 = (28 +b*<28.b*)[£(2S.+b*)-8.]. The sound pressure at instant

t < t < a may now be found to be:

(4.55)

Replacing the upper limit of convolution integral (4.53) by 

d and evaluating the integral gives:

[-(B3-D3)sin8.(T-d)-(C3-E3)cosJl(T-d)]e’S-(T’a) N.

-[(B3+D3)cosJ>(T-t)-(C3+E3)sin8(T-t)]e’S'(T':£)

dT >

Thus the sound pressure at instant t > d 

(4.56)

may be expressed

as:
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A n al yti c al  a n d  n u m eri c al  s ol uti o n s of  s o u n d pr e s s ur e  f or 

i m p a ct e e ar e  c o m p ar e d i n Fi g. ( 4. 2). T h e  s o u n d pr e s s ur e-ti m e  

hi st or y  f or a p air  of  l e a d s p h er e s i s al s o  gi v e n  i n Fi g. ( 4. 3).

T h e  n o n- di m e n si o n al  f or m of  s o u n d pr e s s ur e  i n t h e f ar 

fi el d c a n al s o  b e  e a sil y  r e pr e s e nt e d b y  f oll o wi n g a si mil ar  

pr o c e s s  a s  gi v e n  f or el a sti c  c olli si o n. T h u s  e q u ati o n  ( 4. 4 7)  

a n d ( 4. 4 8) r e d u c e t o:

p  c v a c o s 0
p =  0. 5 8  ° -----

r(l + 4 6f)
2 3-j Si n h T T ~  -( 1 - 2 B-.2 ) c o sfi-rr |-

1 3]  I | 3]

7\

- [( 1  + 2| 3 1 2 )si nfiir B-  ( 1 - 2 2 ) c o sfiir B]  e

( 4. 5 8)

a n d

. 0. 5 8 p o c v o a c o s 9

P 1 2(l + 4 B 1 4 )r
( 1 + 2 6-j 2 + 2 0-| ) [ si n 7 T §( n- n-| +- ^-)

-(l- 2 g p c o s 7r §( n- n-] + g b] e n l )

9  / x n i

+  ( 1 + 2 0.] - 2 3- j ) [ si n T T 0( n- n-|- ^-)  

-(l + 2 g1 ) c o s 1 T B( n- n 1 - ^-)] e‘1 T ® ("- n l )

/ X / X

- 2[(l + 2 31 2 ) si n n Tr 0-(l  - 2 01 2 ) c o sri 7 T e] e "ri 7r^

£  
b

a n d ( 4. 5 2) m a y

w h er e 5 5

z\

n
I T

b e  writt e n

=  — , a n d  
a

a s:

n l

✓ X

n

d

( 4. 5 9)> n l

Si mil arl y  ( 4. 5 0)
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P o c a-] a c o s 0

2(l + 4 0 2 4 )r c o s 6 *

z\

<  o  & o  r *
4 0 9 si nir  ^-( n- n, +  t F-  — )

2 B 2 1  6 lf

A

- 2(l- 2 B? 2 ) c o s 7 T ^-( n- n- |- b J- — )
2 0 2 1 0  

-( 1 + 2 B2 2 + 2 B 2 ) [ si m T 0( n- n-| + 4 ?)  

tt 0  

-( 1 - 2 0? ) c o stt 0( n- n + 4 ^)]  - e _ 7 T ^ ^ " n l 

tt 0

- ( 1+ 2 6 2 2 - 2 B2 ) [ si n 7r 0( n- n-|- ~ )

ir g 
_-(l + 2 g 2 ) c o s Tr B( n- n1 - ^-) J e _ 1 T ^ n " n l

a n d

P o c a-| a c o s 0

P 2 2(l + 4 0 2 4 )r c o s 6 *

n-| <  t <  n-| + n 2 ( 4. 6 0)

? 2 . 6 *
z x

0

(l + 2 0? 2 + 2 0 ? ) [ si mr 0( n- n 1 - n9 + ^ £  +

0 2 tt 0

. +  ^) ] e~ ^( n- n 1 - n 

7 T 0

n 2 6 S
O  / X z x  )

0 2  7 T 0

-(l + 2 02 ) . c o s-jr 0( n- n-.- n2 - - ^)] e ^ ( n’’n l "n

0 2 T T 0

-(l + 2 02 2 + 2 0 2 ) [si ni T B( n- n-j 4 — r)

7 T 0

-(l- 2 02 ) c o s T T 0( n- n 1 +  ^ c)] e _ Tr ^ n " n l )

' jr 0

-(l + 2 02 2 - 2 02 ) [ si nir St n- n-j-

z\ z\ z\  n  q
-(l- 2 02 ) c o si T 0( n- n-]- n 2 +- ^  

0 2  

+  (l + 2 02 2 - 2 02 ) [ si  n 7 T 0( n- n-|  - n

7 T 0

-(l + 2 g2 ) c o s 1 r 6( n- n1 - ^-)] e ‘7r ® ( n'n l'

T T 0
✓ X

n  >  n-| + n 2 ( 4. 6 1)
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~ £
where 39 = — , and n9 =2 n 2
(4.56) can be expressed

Finally equation (4.54) and

P3 =
p ca.acosQ0 1______
(l+4f2^)rcos6*

ZX Zx ZX ZX 3 S'

- [263COSTr3(n-n-| -n^ )-4$2 S1 ri7rB( n-n-j -n^) ]

Zx ZX

ZX

n-|+n2<$ n < 1 (4.62)

and

P3=

ZX 

g3p0CV cose____
r(l+4g34) cos6* g2

[ - (1 ) s i n7T0 (n-1)+ (1 -26^^) CQStt |3 (n-1 )]

e-7rB( n-1)

ZX ZX ZX ZX zx zx

- [263cos7r6(n-n-|-n2)-4P3 sinir^(n-n-j -n^)]

zx zx

e-7T6(n-n-]-n2)

n >1 (4.63)
ZX

where £ 
b*

4.4. Fourier Transform of pressure-time history

The Fourier transform of acceleration may be written as:

A(t) = ^max" 3^1 )h2sin[q(t-t1 )+6*] t] <t <t-)+t2 (4.65b)

A(w)
00

= f A(t)e’1Gjt dt = ; A(t)e‘1“t dt (4.64)

zx

-00 0

where A(t) = aM]sinbt 0 <t <t-| (4.65a)
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A(t) = («max- |a-1)n2cosb*(t-t1-t2) t-]+t2 <t <d (4.65c)

d
f cosb*(t-1-. -1? )e^b dt 

tn+tn

Substituting (4.65a) to (4.65c) into equation (4.64) gives: 

tl a tl+t2
A(w) = aM1 f sinbte”lwtdt+ ^-3* f sin[n(t-t-| )+6*]eiwt dt 

0

A-jn
+ cos6*

(4.66)
a]q 2 _ i

where -- P. = q (a - ^). Solving the integrals oh the cosb* max 3 1 3
right hand side of equation (4.66) and making some simplifications

yields:

A(w) = A* + iB* (4.67)

where
a 1* -I

A* = ~2—2~(wsi nbt^ si nojt-|+bcosbt-} coswt-j -b)
GU -b

qa-i p 2
- ---------—K--------- ------ 2~ "b* )sin6*sinwt-.

cos 6*(oj -q ) (o -b* )

+q(co2-b*2)cos6*coswt-] -w(q2-b*2)s Wt+b*(oj2-q2)coswd]

(4.68a)

and

B* = ——2 (wsinbt-|Coswt-|-bcosbt-|Sinwt-|) 
w -b

qot-i 2 2
- ------------—9------- 2 V2~ [w(w -b* )sin6*cosCJt1

cos<5*(w -q )(co "b )

-q((/-b*2)cos6*sin(j0t1 -(Jo(q2-b*2)coswt-b*(w2-q2)sinwa]

(4.68b)
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The Fourier transform of the pressure due to unit impulse 

acceleration may also be given by:

paccose 2 2 2 22
PuftrjQjw) = —4---- £—a+^ r)+iw(2£ r-w r-2a&'

(to +4£ )r

(4.69)

Using now (4.69) together with (4.67) the transform of 

the pressure for a sphere subjected to inelastic collision

by a sphere can be obtained to be:

p(r,e,w) = pUI(r,e,co) (A*+B^i) (4.70)

where A* and B* are given by equations (4.68a) and (4.68b)

respectively. Multiplying (4.70) by its complex conjugate

gives:

|p(r,9,w)
2 2 2 22 p a c cos e 9 9 9

= 77---- 477— (aWrZ)(A*M
(w +4£4)r

(4.71a)

or
p accosO 99 991 9 01—»-----3-^(a2J!2+w2r2p(A*2+B*2)'s
(w4+U4)V

(4.71b)

A graph representing variations of |p| against frequency 

for a pair of lead spheres is given in Fig.(4.4). In order 

to represent |p(r,e,to)| in terms of non-dimensional variables 

A*,B*, and pressure due to unit impulse may be written 

respectively as:
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[ 2 n
6]  g
- x- s  i n  ( n , s  i n  ( 2  n n *  n )  + c  o  s  ( n  
B ' B 1  I

c o s( 2 n.|  n *ir)-l  ]

a-j B 2

c o s 6 *( 4 n * 2 0 2 2 - B2 )
2r br- si  n 6 * si n( 2 n 1 n * 7i) + c o s 6 * c o s( 2 n- I n * 7 T)

I B  1 1
/ x / x o z x n

2 B( B 3  - B2  ) n *
7 ? h a  q  / xn  si nf  2( n n + n 0 ) n *i T]
B 2 ( 4 n * 2 fi3 - B) - 1  2

n  Q'''  ?
^ B 3 ( 4 n *2 B 2  - B )

B 2 ( 4 n *2 B 3  - B )
c o s( 2 n *ir)

( 4. 7 2 a)

0. 5 8 v q B 2

( 4 n *2 fi1 2 - B2 )
B

) c o s( 2 n 1 n * n)- c o s( n )

si n( 2 n- ]n *ir)]

Q/ X  Q  z\  Q  
c o s 6 *( 4 n * B 2 - B )

Z X

B n  
, 2 n *- 7- si n 6 * c o s( 2 n1 n * 7 T)- c o s 6 * si n( 2 n 1 n * 7r)  
L b  1

✓ x / x n  z x n

2 B( B 3 - B2 ) n *

------ 2 x ~ 2  x 2 c o s  [2 ( n l + n 2) n * ^
B 2 ( 4 n * B 3 - B )

n/ x O  z ^ 2

B 3 ( 4 n *2 B 2  - B )

7 x ̂/ x 2 z x o  n  ( 2 tt n )
B 2 ( 4 n *2 B 3  - B )

( 4. 7 2 b)

— ----- 4- ^-  -T [( B2 - 2 n *2 + 4 n * 2 e)-i ^( B 2 + 2 n * 2 C- B 2 C)l

2( 4 n * 4 + Bj  C  B

( 4. 7 3)
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— p
where n* = fd and £ = —. The non-dimensional form of a

pressure may now be given by substituting A*,B* and p j in 

equation (4.70) and multiplying the result by its complex 

conjugate as already carried out for establishing |p(r,0,w) 

A plot of pressure againstn* is given in Fig.(4.5). Graph 

showing variations of |A(w)| versus n* is also given in 

Fig.(4.6).



-136-

(SU0q.M3^ ) 93J0J

■U

o
c 
o 
o

o CD
C\J cn

o S- 
o

FI
G-

4,
1‘ v

Xc
i2-54 Cm

 di
am

et
er

 lea
d s

Ph
er

es
 wi

th
 an 

in
iti

al
 imp

ac
t



-137-

Pr
es

su
re

 (P
as

ca
ls)

FIG.4.2. Comparison of analytical and numerical solution of 
pressure time histories for 2.54 cm diameter lead 
spheres with an initial impact velocity 0.55 m/s, 
impactee only.
(e = 0°, r = 0.26 m, PQ = 5 x 10? Pascals)
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FIG.4.3. Sound pressure time history for 2.54 cm diameter
lead spheres with an initial impact velocity 0.55 m/s. 

(9 = 0°, r = 0.26 m, PQ = 5 x 107 Pascals)
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FIG.4.4. Fourier transform of pressure for 2.54 cm diameter 
lead spheres with an initial impact velocity 0.55 m/s. 
(e = 0°, r = 0.26 m, Pq = 5 x 107 Pascals)
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blG. 4.5. Fourier transform of dimensionless pressure, 
impactee only.

(r = 0.26 m, Pq = 5 x 107 Pascals, vq = 0.55 m/s, 

a = 1.27 cm)



FIG.4.6. Fourier transform of dimensionless acceleration.

(r = 0.26 m, PQ = 5 x 107 Pascals, vQ = 0.55 m/s, 

a =1.27 cm)
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5. SOUND PRESSURE RADIATED BY A VISCOELASTIC SPHERE

In this chapter the sound radiated by a viscoelastic 

sphere in collision with a metallic sphere is investigated. 

The Hertz law of contact provides a useful approximation 

in the case of elastic objects. To deal with collisions 

in which one or both of the impinging bodies are of visco-

elastic material the Hertz law of contact should be extendedo 

This has been done by Pao [62] who used the Laplace transform 

method to obtain the viscoelastic expression for the force 

developed between two surfaceso

Having a knowledge of force-approach relation a numerical 

method is developed for solving the sound pressure,, In order 

to study the sound pressure in the frequency domain a method 

involving the discrete finite transform is introduced,, 

5„1„ Impact Solution

The force-approach relation given by equation (2o60) may
2 ...

be written in terms of the bulk modulus K = X+ yp and rigidity

modulus p in the form:

r _ 4 qK
J (A+B)2

K2+ J y2

47Tp2(i<2+ y p2)
a3/2

(5.1)

3 P1 
^irp-j (K-]+^P-| )

where K1+ ^1________ = 1-v12

4n)j1 (R-| + P]) 1lEl
(5.2a)
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and

^2 + 3^2 ~ v

4ttp 2(^2+ 3^2^ 7TE'2 (5.2b)

In the collison of a metallic body with a material constant 

<52 and a viscoelastic body with a material constant dp d2 is 

much less than d-j and can be neglected. Thus the Laplace 

transform of equation (5O1) in absence of d2 can be given as:

It has been shown by Pao [621 that the solution to the 

viscoelastic case is obtainable from the solution to the 

elastic case by simply replacing p^ by p^[1 - X(T)] in the

Laplace transform of the elastic equation. Thus from (5.3)

X(a3//2) 3/A+B
4q

R1

11 1(F) (5.4)

where T is called the relaxation function, T = ~ , T(0) = 0,
dt

and T(oo) = 1.

Neglecting the second term on the right hand side of equation 

(5.4) in comparison with the first one, using the inequality 

P] 0-<£<T>)« 3K-], and finding the inverse transform gives:

F = "T1 ^+B [“3/2' /1'<t-5>a3/2<c>dc] (5.5)

0
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The equation of motion may now be written as:

m^2 

m-j+ir^
a3/2- K

0

where <t> = Spk(l-e

a3/2<?> 

t/?k).
(5.6)

5.2. Numerical solution of sound pressure

The sound pressure due to collison of a metal 1ic sphere

a
Tk

e

upon a viscoelastic sphere can be obtained by solving the

corresponding convolution integral numerically. To carry

out this one must first calculate the acceleration at different

instants t = nAt, (n-0,1,2....). The acceleration of a

vi scoelastic sphere of mass m-j may be given by:

A(t) = F 
ml mlKl

(5.7)

m-j +m2 
m^

Thus to find the

Zs 
where K-j and m2 is the mass of the

acceleration one needs to

metal 1i c sphere.

solve the differential

equation (5.6) numerically, which can also be written as:

a

a

t

c
K-] fZ

o

^k
"k

3/2 
e k a '<?>

(5.8)

where c =
qK

The initial conditions at instant t = 0

are:

vot=0
= 0, a|

t=0
(5.9)
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and the higher order derivatives at the same instant may be 

found to be zero. Thus by using Taylor's expansion formula 

the value of a at instant t = At can be given by:

a| =a| + Ata| + d| +.... (5.10) 
t=At t=0 t=0 t=0

In the next iteration the new value of a may be estimated

from (4.32) to be:

a| -2a| -a|
t=2At t=At t=0

+ (At)2a|
t=At

(5.11)

The only unknown on the right hand side of equation (5.117

is the value of d at instant t = At which can be easily

determined by writing equation (5.8) as:

where

a|
t=At

41TP-P 3/2
-yA-p + 

t=At

4t Tzx

c 1

4=At

4=0

4=At

4=0

At
TZ

0
Tk

At~4
Tk 2<£>d^

(5.12)

(5.13)

By making use of the trapezoidal rule, equati on (5.13)

can be expressed as:

4=At11
4=0

At
2

pk
Z~ 
/k

_ At-0
e Tk a3/2|

4=0

At-At
4- a TI/ 3/o I
+ Z— e k a

Tk 4=Atz

c

I e

I

(5.14)
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T h u s  t h e v al u e  of  d  at  i n st a nt t =  At  a n d  c o n s e q u e ntl y  

t h e v al u e  of  a  at  t =  2  A  t c a n b e  d et er mi n e d. T h e  g e n er al  

f or m of  e q u ati o n  ( 5. 1 1), ( 5. 1 2) a n d ( 5. 1 4) ar e  r e s p e cti v el y:

n At- 0

T k a 3 / 2
n At- At

2 2
T k

+ Z

w h er e  n i s a n i nt e g er .

b e  f o u n d fr o m

I + 2 E

4 = 0

e T k 3/ 2

4 = n At

n At-( n-l) At

y k
~  e
T k

T h e

T k 3/ 2a c
4 =( n-l )At

n At- n At

"T k 3/ 2  |a c  |
C = n At  x

( 5. 1 5 c)

f or c e a n d a c c el er ati o n c a n al  s o

F| I =- Ui
t = n At K-| t = n At

a n d

✓ X
A|

1
/ X ■ d|

t = n At m ^ K-| t = n At

( 5. 1 6 a)

( 5. 1 6 b)

a
+

b e :

T h e  d ur ati o n  of  c o nt a ct  m a y  b e  gi v e n  at  i n st a nt t =  d i n 

w hi c h  t h e c al c ul at e d f or c e c h a n g e s it s si g n. T h e  s o u n d pr e s s ur e  

at  i n st a nt t  =  n At  m a y  n o w  b e  gi v e n  b y:
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p(r,e,nAt) = ^-[puj(r,0,nAt-O)A(O)+2pUI(r,e,nAt-At)A(At)

/X

+ ....+2pjj j [r,0,nAt-(n-l )At]AI(n-l )At]

/X

+Pjj (r,9,nAt-nAt)A(nAt)] (5.17a)

0 <nAt< d

or

p(r,e, nAt) = 2“ P|jp(r,9, nAt-O)A(O)+2pUI (r,e,nAt-At)A(At) 

+..•+2pUI[r,e,nAt-(n*-l)At]A[(n*-l) At] 

+PUI(r.e,nAt - ndAt)A(ndAt)

nAt > d (5.17b)

where n* = and p^ is the pressure due to unit impulse given 

by equation (3.7). The sound pressure time histories produced 

by the collision of a steel sphere and a viscoelastic sphere 

with material properties given in Table (5.1) are illustrated 

in Figs. (5.1) to (5.3). The corresponding force-time histories 

are also given in Fig.(5.4). The numerical method Gbscribed 

in this section may also be used for calculating the sound 

pressure produced by collision of elastic spheres. The 

differential equation required to be solved numerically is given 

by equation (2.67) which can be deduced from (5.8) by substituting 

ik = “ and U = 4K(si+gp
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5-3- Discrete finite transform for evaluating the 
Fourier transform of pressure-time history

Consider the sound pressure defined by:

p = p(r,e,T) 0 < t  < °° (5.18)

t  < 0

The Fourier transform of the above sound pressure-time history 

may be written as:

co . oo

p(r,6,w) =f p(r,e,T)e’1WTdT =f p(r,e,T)e-1 WTdT 
-00 0

(5.19)

The integral on the right hand side of equation (5.19) may 

be expressed approximately as a summation of an infinite number 

of discrete data each sgDarated by an interval of At. Thus:

n=oo .

p(r,0,w) = At f p(r,e,nAt)e”1wnA

n=0

Because of selection of finite interval of time At the

Fourier transform calculated by (5.20) no longer contains 

accurate magnitude and phase information at all frequencies 

contained in p(r,e,w), but it accurately describes the spectrum 

of p(r,e,T) up to some maximum frequency f which is dependent 

upon the sample interval At. To calculate (5.20) one must 

find the summation of infinite discrete data and this is not 

practical. Therefore it is necessary to select finite number 

of samples in the range of t =0 to ?=T. Thus one may write:
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i ax 1 i ex ax \ -i2imiAfnAt
p(r,0,mAf) = At E p(r,0,nAt)e

n=0 (5.21)

where N = and N is the number of samples. Equation (5.21) 

does not give a continuous spectrum it means that making use 

of ‘(5.21) only predicts the magnitude and phase information at 

certain frequencies such as mAf in the range of f = 0 to f = f . 

To- use equation'(5.21) one must assume that the function 

p(r,0,T) is a periodic function with period T for all time.

This assumption is made whether or not p(r,0,T) is actually
. N periodic. The number of points in the frequency domain is p 

because the frequency information is broken into two real and 

imaginary parts. Thus the maximum frequency f can be related
11 Id X

to the number of samples in time domain through the relation:

f = (5.22)nax 2

where Af = y is called the frequency resolution. To find the

magnitude of transform pressure equation (5.21) may be written 

as:
n=N-l 

p(r,0,mAf) = At E p(r,e,nAT) [cos (2irmAfnAT) 
n=0

-isi n(2irmAfnAT)] (5.23)

Multiplying (5.23) by its complex conjugate gives:

p(r,e,mAf)
n=N-l 2

[ E f (r,e,nAt)cos(2iTmAfnAt)]
n=0

n=N-l 2
+ [ E f(r,0,nAt)sin(2irmAfnAt)] ; 

n=0 >
(5.24)
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or

p(r,0,mAf)
n=N-l

E f(r ,0,nAt)cos(2iTmAfnAt)J 
n=0

n=N-l
[ E f (r,0,nAt)sin(2irmAfnAt)]Z 
n+o

(5.25)

Graph representing variations of transform pressure versus 

frequency is given in Fig.(5.5). The time domain samples for 

establishing Fig.(5.5) are taken from Fig.(5.3).
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CASE 1. Sphere of rigidity similar to polyethylene.

Pl = 1.03 X 10s N/m2

p2 = 5.51 X 10®

p3 = 1.1 X 108

= 0.41 X 108

C -= 29.57 m“

Tx = IO-6

T2 = IO-5

T3 = 10“4

T4 = 1

sec

CASE 2. Sphere of rigidity similar to nylon.

Pl = 5.72 X 108 N/m2 Tx = 10~7 sec

p2 = 2.89 X 108 T2 = 5 x 10“6

p3 = 4.55 X 10s r3 = 10-5

= 6.89 X 108 t 4 = 1

c ■= 29.57 m“

CASE 3. Sphere of same static rigidity as the nylon

described in Case 2.

Pt = 5.72 x 108 N/m2 Tt = 10 7 sec

P2 = 2.89 x 108 t 2 = 10“3

P3 = 4.55 x 10® t 3 = 10

P4 = 6.89 x 108 t 4 = 1

c = 29.57 nT*

TABLE 5.1. Material properties and assumed relaxation times of three 

visco-elastic spheres.
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FIG.5.1. Sound pressure time history for 2.54 cm diameter
sphere with the same properties described in Case 1.
(vQ = 4.87 m/s, 0 = 0°, r = 0.36 m)
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FIG.5.2. Sound pressure time history for 2.54 cm diameter
sphere with the same properties described in Case 2.
(v0 = 4.87 m/s, 9=0°, r = 0.36 m)
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FIG.5.3. Sound pressure time history for 2.54 cm diameter
sphere with the same properties described in Case 3.
(v0 = 4.87 m/s, e = 0°, r = 0.36 m)
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FIG.5.4. Force-time curves due to collision of steel sphere 
and visco-elastic sphere described in Table 5.1.



-156-

Lo
ga

rit
hm

 of
 am

pl
itu

de
 of

 tra
ns

fo
rm

, log 
|p

| (P
as

ca
ls-

se
co

nd
s)

FrequencyC Gertz)

FIG.5.5. Fourier transform of pressure for sphere with the 
pressure time history as given in Fig.5.3.
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6. SOUND RADIATION FROM TRANSIENT VIBRATION OF SOLID SPHERE

In Chapter Two Lamb's solution to the equations of motion 

for a sphere were introduced. These solutions are transferred 

to the spherical polar co-ordinates in this chapter and the 

results are compared with those developed through an alternative 

method. The results obtained by this new and more complete 

approach can also be used for studying the vibration of a hollow 

sphere.

Frequency equations for both torsional and spheroidal 

vibrations are derived and their successive roots for different 

orders are tabulated.

The orthogonality in both types of vibration have been 

established for the first time.

The orthogonality conditions allow the normalised modes to 

be calculated and enable the possibility of determining the 

responses to different excitation functions.

The modal shapes of torsional and spheroidal vibrations are 

studied and three dimensional diagrams of the surface mode 

shapes are provided.

Finally the response due to collision of a pair of spheres 

is obtained and used for the derivation of sound radiation by 

the transient vibration of spheres.

6.1. Vibration of elastic spheres

It has been shown in section (2.8) that the solution of 

the system of equations (2.86a) to (2.86c) are of two distinct 
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types, The first type may be given by the expression in the 

form of (2.126) as:

9X 9X
un = (y aT- - z A(K2r) (6Ja)

9X 3X
Vn = (z SF - x AM <6-lb’

ax ax
% = (x aF"y A(K2r> (6-lc>

where and is the velocity of distortional

Since the above modes of vibration make no change of volume 

wave.

(dilatation equal to zero), thei vibrations of the first class 

are purely transversal.

The modes of vibrations of the second class can be, represented

in terms of expressions in the form of (2.128) as:

/\

I. 2 2n+3 r

• (2n+l)(2n+3)

(6.2a)

n
n+1

2 2n+3 r

(2n+l)(2n+3)

(6.2b)

wn

r2n+l

„ 2 2n+3 r

(2n+l)(2n+3)

(6.2c)

1
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w h er e  6 n  =  w n ’P n ( K jr ) >  =  q H  a n d  C-j  i s t h e v el o cit y

of  dil at ati o n al  w a v e s. C o n si d er  n o w  s p h eri c al c o or di n at e s  

(r, e,i p) i n w hi c h

x =  r si n e c o si p, y  =  r si n e si ni p, z = r c o s O ( 6. 3)

T h e  c o m p o n e nt s of  di s pl a c e m e nt  i n dir e cti o n s,  r, 0,i p c a n b e

/ X z\  z\

r el at e d t o u , v a n d  w t hr o u g h t h e m atri x  r el ati o n
n n  n

Z X

U  
r

xX

si n e c o si p si n 9 si  ni p c o s e

✓

z\

u  
n

c o s e c o si p c o s  0 si  ni p - si n 9
z s

V
n

( 6. 4)

X

- si mji
X

u  i

L
c o si p 0

z

Al s o  b y  r e pr e s e nti n g t h e gr a di e nt  i n b ot h c o or di n at e s o n e

o bt ai  n s :

X

1  1 _  
r e e

1

X  X z

a
9 x

si n e c o si p c o s O c o si p - si  ni p

9  

s y
= si  n e si ni p c o s  0 si  ni p c o si p

9 _ c o s O - si n e 0

. 9 z x k z

X

9 _
9r

_ _ _ _  9

r si n 0 9i p
X  z

( 6. 5)

I n e q u ati o n  ( 6. 1 a) t o ( 6. 1 c) X i s a s oli d  
n

h ar m o ni c  of  d e gr e e

n  a n d  m a y  b e  writt e n  a s:

A n rn P n m ( C 0 S 6) s  i n mi p  
c o s mi p

( 6. 6)

w h er e  P  m ( c o s 0) i s t h e a s s o ci at e d  L e c e n dr e f u n cti o n. S u b stit uti n g  

f or s oli d h ar m o ni c  X n i nt o e q u ati o n  ( 6. 1 a) t o ( 6. 1 c) a n d  u si n g  

t h e m atri x  tr a n sf or m ati o n ( 6. 5) gi v e s:
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/X n m, _nxSinmip . (J_ m
P (cose) ; s i nil,± • • „ n cosmip smO

P m(cose)
n

cosmip 
si nmip cosecosip}

zx d 
de

(6.7a)

p m(cose)
n

s i nmip 
cosmipcosip+ m

si nQ
p m(cose)

n
cosing 
s i nmipcosesinip}

’VK2r) (6.7b)

ZX -A rnmP m(cose)cosmtj (K9r) 
n n v 'sinrmpn 2 7 (6.7c)

Using now (6.7a) to (6.7c) together with matrix transformation 

(6.4) yields:

ur =0 (6.8a)

u f +A m 0 rnP m(cose)^ (Kor)C0S*
0 n sine n v 74nk 2 7sinmip (6.8b)

u. = Vn 1P m(cose)ip (K,r)sinr* 
ip n d0 n n 2 'cosmip (6.8c)

Thus for transversal vibrations of a solid sphere the component 

of displacement in directions r,0,ip may be given by equations 

(6.8a) to (6.8c) respectively. In this type of vibrations there

is neither dilatational nor radial displacement.

In order to find uf, uQ and u^ for the set of equations (6.2a)

to (6.2c) one may similarly introduce the solid harmonics w and 6 
n Yn

as:

Bnrnpnm(cos0) s i nimp 
cosmip (6.9a)

$n = Dnfnpnm(cose) sinmip 
cosmip (6.9b)
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Substituting for and 0 into equations (6.2a) to (6.2c) 

and using the matrix transformation (6.5) gives:

zx

u n
n-1r

X
Jn+1 )ipn(K-]r) (2n+l )xpn_n (K-jr)J

s i nrmp • „; sinOcosib - cosmip y

X,

p-(n+l)*n(K1r)+Dn[n*n(K2r)-(2n+l)*n_1(K2r)]

d 
d9

p m(cose)sirmt 
p • rx cmih

n-1+ r 
n+l

■ cosm* COS0COS*

J2(n+l)*n(K1r)+Dn[n*n(K2r)-(2n+l)*|n-l(K2r)J
z

m(cose)« sin*m p * 
sine n ^^""'si nmip (6.10a)

/ X.

ZX

V n
n- r

1 J2[n+1)’l’n(K1r)-(2n+lH

,X1
n-r,xl(l^r) +nDnipn(K2r) 

X

OcosCJ sine sin*

X

n-1 r
n+l

B n

fl

< I
2(n+l )ipn(K-] r)+Dn nipn(K2r)-(2n+l )ipn_1 (K2r)

® Pnm(cos0)cisSCOS0Si™('

n-1+ r
n+l

B
-^2(n+l );pn(K r)+Dn nipn(K2r)-(2n+l )ip 

LK1 k
' -jK-r) 
n^l 2 J

/

sine % m(cose)sin5 cos* (6.10b)
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z\

w n
n-1 r

B n
K 2
lKl

(n+l)ipn(K1r)-(2n+l)ipn_1()x-1 ;

P m(cose)si"k cose 
n v 'cosmip

n-1
+ r__,

n+l

(K1r)p-nDnipn(K2r)

b r
—2< n+l )ipn(K-jr)+Dn n^(K2r) -(2n+l) 
lKi k

±_ P m(cos0)sirW sin0 
d0 n kCUSO;cosr# s,no (6.10c)

The components uf, uQ and may now be found from (6.4)

to be:

ur
n-1 r

z

B n k
z
(n+l )ipn(K-jr)-(2n+l )ipn_1 (K]

(6.11a)

ue
n-1 r
n+l

z
B n k

z X

(n+l)ipn(K1r)+Dn|nipn(K2r)-(2n+l)ipn_1(K2r)
z1

n'”l’' n

u i

d_  p
d0 n (cose'cosmip (6.11b)

- n-1+ r
n+l

z

B n
z >

(n+l )ipn( K] r)+Dn nipn(K2r)-(2n+l )ipn_1 (K2r)n' T ' “n

P m(cose)cosk 
sinO n 'sinmip

z
z*

(6.11c)
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It can be seen from equations (6.11a) to (6.11c) that 

except for the case n=m=0 the vibration of what is called 

second class are accompanied by both distortional and 

dilatational waves.

The terms torsional and spheroidal vibrations are also 

used by some writers such as Schreiber et al [63] to distinguish 

both types of vibrations which are referred in this section 

as vibrations of the first and the second class respectively.

6.2, Solution of equations of motion (Alternative approach)

The equations of motion of an isotropic elastic solid, 

given by equations (2.81a) to (2.81c) may be written in vector 

form as;

a2s 2
p —x- =(1 +p)grad div S_ + pv S_ (6.12)

' 3t

where S^ is the displacement vector. For purely torsional 

vibrations dilatation (div S_=0) and equation (6.12) reduces to:

9U
(6.13b)r

99“
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2
3 U, 
___i +

2 3r

2 9Ui2 _Jk +
r 3r

2
1 3 UiJ_____ +

2 2 r 30

+1 (________
sinO 3ip

+ 2 cot9e 1 sine 3ip
u, , a2u,
. 2 ' 2 2 sin 0 C2 3t (6 ,13c)

where U . IL and U, are re ip

directions r,0, and ip respectively.

components of displacement vector in

Consider now a solution in

the form:

9 3U2 r

u r (6.14a)

-A P m(cose)cos* e’iwt sin0 n v 'sinmip
(6.14b)

U, ^P^cose)51'"*
d0 n 'cosmip

(6,14c)

Substituting these solutions into equations (6.13a) to (6.13c) 

gives:

(6.15a)

+ ^2 L(r)cot9e He pnn'(cos®) = -K22fe(r)Pnm(cose) 
(6.15b)
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2
rf"(r) +

r

d---./m(cosO) + COtge-^-y P m(cos9) 
de n dez n

2 X.

sin2e de P" (C0S9)
sin2e "e 5>se’J

"7~?m2f»(r)Pnra(cOS0) = -K22Mr)3e pnm<cose)

(6.15c)

By making use of equation (6.15a), (6.15b) and (6.15c)

can be written as:

r2f^(r) +2rfg(r) (6.16a)

(6.16b)

In order to deduce (6.16a) and (6.16b) from equation (6.15b) 

and (6.15c) one should notice that:

2 2
“7 P m(cos0) + cotge p m(cose)------P m(cos0)
de2 n de n sin2e n

= -n(n+l)Pnm(cos9) (6.17a)

and

p m(cos0) + cotge P m(cose)-----P m(cos0)
de3 n d02 n sin2e de n

. 2 sin 0

d 
de Pnm(cos0) + m2p m(cose)

sin 0 n

=“n(n+l) Pnm(cose) (6.17b)
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It has been shown in section (2.2) that the solution to 

the equation such as (6.16a) and (6.16b) can be expressed in 

terms of spherical Bessel functions. Thus:

= AnW> + Vn(K2r) <6'18a)

and

fe = (6.18b)

where J^^r) and y^^r) are spherical Bessel functions of the 

first and second kind respectively. For a solid sphere one 

should seek a solution which is finite at the origin. Thus upon 

making An = 0 the displacements due to torsional vibrations can 

be written as:

(6.19a)

= +A __TL p (k r\C°smip 
n sin0 n Jn 2r'sinmip

= A nl(cose)j (K9r)sin*
n d0 n n 2 'cosmip

(6.19b)

(6.19c)

Consider now a second type of solution in the form:

S = grad(j) + curl 11 (6.20)

where $ and H_ are scalar and vector potentials respectively. 

Substituting the above solution into equation (6.12) gives:

= (6.21a)
c1 at

and
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2 1 9 —VH =-4-2
C2 St

(6.21b)

To satisfy equations (6.21a) and (6.21b) one may assume

solutions in the form:

* = -R(r)P m(cose)si™Vrt 
n v ' cosmip (6.22a)

Hr = 0 (6.22b)

H„ = Xa P m(cOS6)COSniV“t
0 0 sine n sinmip (6.22c)

H. = -W £a P m(cos9)sin*eill!t 
ip ip d0 n cosmip (6.22d)

where Hf, HQ and are components of vector potential H in 

directions r,0 and ip respectively. Substitution of the above 

assumed solutions into equations (6.21a) and (6.21b) suggests 

that the radial dependent functions should be expressed in terms 

of spherical Bessel functions of the first and second kind.

Thus one may write:

□ „(K,r) +By(K,r) n nv 1 nnl (6.23a)

- f (6.23b)

5nJ'n(K2r) + Bnyn(K2r) (6.23c)

Using now equation (6.2a) together with the assumed solution 

(6.22a) to (6.22d) and finding the components of the displacement 

vector in directions r,0 and ip gives:
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U.

•s

R

d 
de

P m(cos6)
n

si nmip 
cosmip

_JL_ Pmfcns0iCOSmip 
sin9 n ' si nmip

i wt e

(6.24a)

(6,24b)

(6.24c)

where primes denote differentiation with respect to r. Substituting

from (6.23a) to (6.23c) into equation (6.24a) to (6.24c) yields:

ur = - B'n[nj'n-l(Klr)-(n+1)jn+l(l<lr)]s?T

+gn[nyn-l(K1r)-(n+1)yn+l(Klr)J 2HT1

n(n+l)
r

1

D j (K9r)+D y (K9r)n nv 2 ' n nx 2 ' (cose) s i nmip
cosmif

(6.25a)

j (K, r)+B y (K,r) - - D j (K,r)+D v (K,r) rLn n 1 n nM J rLn n 2; rrn' 2 'Jr L n°n'”l'' ’unJnk,X1

+ - Dn
njn-l(K2r)-(n+1)jn+l(K2r)]A[ny!n-l(K2r)

-(n+l)yn+1(K2r)

+ 1

K2
2n+l

x d_ p ,sirW
x de n k Jcosmi|i

(6.25b)

1 fnB j (K,r)+B y (K,r) - - D j (K9r)+D y (K9r) r Ln n 1 n n 1 J rLn n' 2 n n 2r L n"n' '2' ’ ‘unJnv'x2

m__
sine

P m(cose)
n

cosmip 
sinmip

(6.25c)x
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Requirement that these solutions be finite at r = 0 may 

be accomplished by selecting B = D =0. Thus for a solid 

sphere the modes of the second class or spheroidal modes can

be given by:

ur - B K-. j n 1 LJ n-l(Klr) (n+l) ■ ,
K,r Jn(Kl ’

I >
j (K„r)r n rr 2 7

p m sinnfP 
n (cose)cosmlp- (6.26a)

Jn-fK2r) ' K2rJr/K2rJ

(6.26b)

/-
B
~j (K,r) - D K, r n 1 r. .

+u nK2 Jn-l(K2r)' K2rJn(K2r)^

J?— p m(cose)cosmf'
Sine n C0SH'sinmip (6.26c)

To express the solutions given in this section in terms of 

function ip one may simply write:

Vl<ir)= %(Kir)'njn(Kir)

and

VK2r) = nn^K2r'"njn^K2r) (6.27a)

where

nn = Ix3x5x...............x(2n+l) (6.27b)

It can also be easily shown that the results obtained in this 

section lead to the same results as given in section (6.1), by
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substituting (6.27a) into corresponding equations and taking

(6.28a)

(6.28b)

(6.28c)

6.3. Frequency equation

The stress-strain relations in spherical coordinates may

be written as:

au
°rr = aF" (6.29a)

°r0 p^r 30 3r r 7 (6.29b)

1 9Ur 9Ui5 Uib
o - u( ‘ r + —

rip Pkrsin9 Sip 3r r 7 (6.29c)

where A = divS is the dilatation. For torsional vibrations of

the sphere the above stress-strain relations may be given by:

orr (6.30a)

ar0
lf ) J" P m(COs6)cos* iwt 
r 07 sinO n v 'sinmip (6.30b)

°rip
. 1 f ) P m(cos9)sirW e1"1 

r r de n 01 cosmtj) e (6.30c)

= 0
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Similarly, for spheroidal vibrations one may obtain:

orr

Gr9

o ,rip

n(n+l)/x, 1 - • •
r [' ip r ' ipj 

X
(f1- - f,) P m(cose)S1 nm<(’ eiat

111 1,1 n 'cosmip

4- Pm(cosQ)sir* eiwt 
de n v 'cosmip

-A- p m(cose)c?smt sine n K 'sinmip i cot e

s,
(6.31a)

(6.31b)

(6,31c)

The boundary conditions at the surface of the solid sphere

- f I

(r=a) are:

a = o „ = o , = 0 rr r9 rip (6.32)

It can be easily found that for torsional vibrations of 

spheres the above boundary conditions can be satisfied if

1
a (6.33)

Thus the frequency equation of torsional vibrations of solid 

spheres may be written as:

(n-l)jn(K2a) - K2ajn+1(K2a) = 0 (6.34)

For a certain n there is an unlimited number of roots which 

can be expressed in the form Q , (£=1,2,3,....). The successive 

roots of equation (6.34) for a different value of n are tabulated
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i n T a bl e  ( 6. 1). T o  s ati sf y  t h e b o u n d ar y  c o n diti o n s o n  t h e 

s urf a c e of  s p h er e s u bj e ct e d t o s p h er oi d al vi br ati o n s  e q u ati o n  

( 6. 3 1 a) t o ( 6. 3 1 c) m a y  b e  writt e n  a s:

- a k 2 r | +
r = a

2 p  R "
n( n +l )

a
r = a

If  
a

X.

) =  0  
r = a J

( 6. 3 5 a)

^( R*  
a

- 1R |

r = a
)

r = a

2 _ f
2 i 

a i p r = a

n ( n + 1 )
2

a

-f"| = o

r = a r = a

+ -f i

( 6. 3 5 b)

+  ^( R'
- a

r = a
) +

r = a

- n( n +l )

r = a

=  0
r = a ~ r = a

-f”
e2 +  

a Y

( 6. 3 5 c)

pr o vi d e d  t h e fir st t w o of  t h e s e e q u ati o n s  ar e s ati sfi e d, t h e t hir d

o n e  a ut o m ati c all y  w o ul d  b e  s ati sfi e d b e c a u s e  of

S u b stit uti n g  f or R  a n d  f i nt o e q u ati o n s  ( 6. 3 5 a) a n d ( 6. 3 5 b) gi v e s:

✓  X

K 2 2 a 2j n ( Kla) ‘Z n( n '1)j n ( Kla) '4 K laj n +l (l <la)

+ 2 n( n +l ) Q n- 1  ) J n ( K2 a)- K 2 aj n + 1  ( K 2 a) J  D n =  0

( 6. 3 6 a)

2( n-l)j n ( K1 a)- 2 K 1 aj n + 1
%

■ 2 K 2 aj n +f  K 2 a ) + K 2 ( 6. 3 6 b)

It i s m or e  c o n v e ni e nt f or o ur  a n al y si s  t o f or m n e w  e q u ati o n s  

b y  si m pl y m ulti pl yi n g  e q u ati o n  ( 6. 3 6 b) b y  n a n d -( n + 1) s e p ar at el y  

a n d a d di n g  wit h  e q u ati o n  ( 6. 3 6 a). T h u s.
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Z 2 2K/a'jrl(K1a)-2(n+2)K1ajn+1 U1
"1 f 2 7

(K-ja) Bn+lnK2Vjn(K2a)
n

-2n(n+2)K2ajn+1(K2a) Dn =° (6.37a)

(K-ja) (n+1 )K22a2jn(K2a)
2 Q Vx2

7 1-
-2(i/-l)K2ajn_.|(K2a) Dn = 0 

z
(6.37b)

The ratio D^/B^ and the frequency equation may now be given

by:

D K?2a2i (K,a)-2(n-l)K1aj JlGa)
= . 2... n 1-----------------1.. n-1 1----------- (6.3S)

Bn (n+1) h<2 a^n(K2a)-2(n-l)K2ajn_1(K2a)j

nK22a2jn(K2a)-2n(n+2)K2ajn+i(K2a)
"■ Z

K22a2jn(K]a)

2 2

n

-2(n-l)K1ajn_1(K-|a)
z*

2(n+2)K1ajn+1 (K1a)-K22a2jn(K1a) (n+1) K22a2jn(K2a)

^(n-D^aj^t^a) (6.39)

In order to solve the frequency equation (6.39) numerically 

one needed to know theriio K-j/K2. This ratio can be expressed 

in terms of Poisson's ratio v as:

l-2v (6.40)
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The successive roots of equation (6.39) for different 

values of n and the Poisson's ratio v = 0.29 are tabulated 

in Table 6.2.

6.4. Orthogonali ty and normalisation of torsional modes

The natural modes of torsional vibrations of solid spheres

can be given by equations (6.19a) to (6.19c) in the form:

where

ur ,nm£

uip,nm£

r_c2

(6.42a)

- +A 0. nm£
m n r \cosmipsin6 Pn ^co ^n^nW^sinmip

a d n m, Q\ • r r xsinmip = Anntf. d’f n (cose)jn(“n£C^)cosmH)

= Koa - , and Koa2 a L

characteristic equation given by

(6.42b)

(6.42c)

are successive roots of the

expression (6.34). Multiplying

= 0

equations (6.42b) and (6.42c) by uQ and u^ pS^ respectively 

and integrating over the volume of the sphere gives:

a ? 71
f z^rdr f 

o o
pU0,nm£'U0,psq

21 6
£m ms

m.s

sin 0

p m(cos0)P s(cos0)sin0d0
n P

(6.43a)

f
D

%,nm£ u .ip,psq .dD = 21 6
e msm

ar 2 . v d 
f z}z2r dr f

0 o

Pnm(cose) Jg P s(cose)sinede (6.43b)
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where 6 f is the Kronecker delta, e = 1, e = 2, (m=l,2, ms o m ' ' ’

and

Z1 ^nm^^n^n^C^^

Z2 “ flpsqJp(“pq

(6.44a)

(6.44b)

Consider now the Legendre's associated differential equation 

which can be written as:

(1-X2)^2 Pnm(x) -2X Pnm(X)+[n(n+l)- -^P^fX) = 0

(6.45)

Multiplying (6.45) by P m(X) gives: 
r

2
(1 -X2)Ppm(X)Pnm(X)-2XPpm(X)^yPnm(X)

m(X)Prin,(X)-n(n+l )Ppm(X)Pnm(X) (6.46a)

gy (1 -X2)Ppm(X)^Pnm(X) = -%■ Ppm(X)Pnm(X) + (l-X2)

3XPpnl(X)Hf>nm(X)‘n(rl+1)Ppn'(X)Pnm(X) (6.46b)

Integrating both sides yields:

2n(n+l) , (n+m)! ~
2n+l (n-m)! np (6.47)
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By making use of (6.47) equations (6.43a) and (6.43b) can

be represented in the form of a single expression as:

4irn(n+l) (n+m)! 
em(2n+l)(n-m)! 6 6ms np

a
f z-^z^.r^dr (6.48)

To solve the integral on the right hand side of equation

(6.48) one may consider the following differential equation:

r 2 2
+ L0 n----o -L n£r 2

b2

o 22 rto —o . nq c 2
2

n(n+l) z = 0
> I

(6.49a)

- n(n+l) z? = 0 (6.49b)

which have as their solutions z-j = A 

respectively. Multiplying the

nj (w ) and nm£n n£C2
first equation by z?, the

z2 =Anmq'M^nqC^

second

by z-] and subtracting gives:

or

In

[z2z'l

2 2
W nq~ w n£ 

C 2
b2

2 .r z-^dr

order to find the value

2
nq ’ “ n«?zlz2

L2
(6.50a)

2^ r
> a

Z2Z'1~Z1Z’2
" ' o

(6.50b)

of the right hand side of equation

d f 2 
dr r

a

f
o

(6.50b) at r=a the characteristic equation of torsional vibrations

of spheres, given by expression (6.33) can be written as:
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= 0

and

(6.51a)
r=a

(6.51b)1
a

Multiplying the first equation by z^, the second by z-j and

subtracting, gives:

Z2Z (6,52)

Thus:

Vq (6.53a)

Also from (6.50b)

(“nUC^'n+l (6.53b)

Upon using expression (6.53a) and (6.53b) equation (6.48) can 

be written as:

X,

f 
D

Un nA1^0, nm£ 0,psq +uij),nm£ Uip,psqy dD

27in(n+l) ( n-Hn )! -2 3
cm(2n+l)(n-m)! M nm£’a ^n^)~Jn-l

(6.54)
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by:

The orthogonality of the torsional modes may now be given

P [Jfe ,nm£ ,Ue ,psq +lfy ,nn£ ,psq? dD 0 (6.55)

which is true whenever inequality between any pair of corresponding

indices exist. The natural modes of torsional vibrations can 

also be normalised by mutliplying both sides of equation (6.54)

by the density and equating the result to unity. Thus:

f pu
D U

,n _ 2prn (n+1) (n+m)! 
, c (2n+l)(n-m)! ' nr 7

a2 3 
nm£a

Jn2(wn^"J’n-l jn+l ((Vca-) = 1 (6.56a)
2 J

or
_2 £m(2n+l)(n-m)!
A nm£ 2rpn(n+l) (n+m)! x a 

a3n

(6.56b)

where p is the density of the homogeneous sphere under consideration. 

The spherical Bessel functions of order n-1 and n+1 in equation 

(6,56b) can be written in terms of spherical Bessel function of 

order n by using the characteristic equation given by expression 

(6.34) and noting that: 

which is derivable based on the properties of the spherical Bessel 

function, Thus:
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-2 2e (2n+l )(n-jr)!
A _ • 11

nm£" 3Mn(n+l)(n+m)! x

2 2co oan£

r 2 - 2r a^C2 Jn ( nHC2\
<0)2 na2

- (n-l)(n+2)C? J
(6.58)

4 3
where M = -^pTra is the mass of sphere. The normal modes of

torsional vibrations may now be given by:

2£m(2n+l)(n-m)! 

^3Mn(n+l) (n-Hn)!

>amjn(“n^
a f“2n£a^ 1

’ ' ■ 9 ' -<n-D(n+2)
C2 )2

u* ip,nm£

P m(cos9) .
n cosmtp
sin0 x sinmip

z2em(2n+l )(n-m) Q'1

3Mn(n+l) (n-hn)!
C2^n^n£C ’

(6.59a)

-(n-D(n+2)
2 C2

±_p m(coselx sirW 
de n cosmip (6.59b)

6.5. Modal shapes of torsional vibrations

The normal modes of torsional vibrations given by equations 

(6.59a) and (6.59b) in case n=l may be expressed as:

Jl_ p m(cose)xcosmip 
sine 1 'xsinmp

(6.60a)

[e (1 -m) fl m '
M(l+m)! — P m(cose)xsiri* dQ l COSH)XcosnliJj

(6.60b)

where m is either zero or one. In case of zonal harmonic (m=0)

equations (6.60a) and (6.60b) reduce to:

2
j j(^2^) x

X
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u0JM = 0 (6.61a)

J (K r)
Viof • 7m j^K^r sine <6-61b)

Thus each of the thin concentric spherical layers oscillate 

as a whole about the z axis. The characteristic equation given 

by expression (6.34) can be written as:

J2(K2a) = 0 (6.62)

The roots of equation (6.62) from Table 6.1 are:

K?a = 5.763,9.095,12.322,........ (6.63)

To find the positions of the spherical nodes, i.e.surfaces 

across which there is no displacement one may write:

j-|(K2r) = 0 (6.64)

The roots of equation (6.64) are:

K2r = 4.493,7.725,10.904 (6.65)

Thus the positions of the spherical nodes for the first three 

modes whose non-dimensional frequencies are given by expression 

(6,34) may be found to be:

— = 0.78 (1st mode)a (6.66a)
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- = 0.49, 0.85 a (2nd mode) (6.66b)

£ = 0.365, 0.627, 0.885 (3rd mode) 
a (6.66c)

There are also internal spherical surfaces across which

no stress exists. Upon equating equation (6.30b) to zero one

obtains:

j2(K2r) = 0

or

(6,67)

K2r = 5.763,9.095,12.322........ (6.68)

Thus the positions of these surfaces for the second and

third modes are respectively.

= 0.63 (2nd mode)
a

— = 0.467,0.738 (3rd mode)a

(6.69a)

(6.69b)

Consider now the case of sectorial harmonic (m=n=l). The

normalised displacements given by equations (6.60a) and (6.60b)

can be written as:

= ; 1 k2O cosip
0,1 K ZK j-| (K2a) x si nip

i ji(Kzr) n 0 sm 
V1U 4-1 jn(K„a) cose x cost!)

(6.70a)

(6.70b)
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There are two distinct groups of displacements depending 

upon whether the upper or lower functions of are selected.

It can also be easily verified that the position of spherical 

nodes and zero stress surfaces remain unchanged. Let us now 

investigate the second harmonic (n=2). The normalised

displacements given by equations (6.59a) and (6.59b) may be

wri tten as:

U9,2m£

f5c (2-m) 1T2
- m _

9M(2+m)1
JL p m(cose)xcosmip 
sinQ 2 sinmip

(6.71a)

Uip,2m£

5c(2-m)!^2 
m

9M(2+m)! (cose)x s i nmiO 
cosmip

(6.71b)

where m = 0,1,2. Substituting the values of m into equations

(6.71a) and (6.71b) gives:

= 0U0,2O£

1_ ^2a j2^2^
|jK2a)2-4]^j2(K2a)

-sin20

(Zonal harmonic 

m=0)

(6.72a)

/5
73 x

K2aj2(K2r)
X

[(K2a)2-4]
COS0XCOSt

si nipTijO^a)

/5 
i|),2H 73

K2aj2(K2r)
X > x €os2exsint <Te-;seral. 

cosip harmonic
a) m=l)

(6.72b)
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. „ cos2ip -sin0x .sw2ip

_ /5%,22r 273
1 K^aj2(^2^

x x 17,.S2"71^

(Sectoral 
harmonic 
m=2)

(6.72c)

The characteristic equation may be found from expression

(6.34) to be:

^2^2a^ " ^2a^3^2a^ (6.73)

The roots of (6.73) from Table 6.1 are:

K„a = 2.501 , 7.136,10.514 (6.74)

To find the positions of the spherical nodes one may write:

j2(K2r) = 0 (6.75)

or

K?r = 5.763,9.095,12.322........ (6.76)

Thus the positions of the spherical nodes are given by:

- = 0.807 a (2nd mode) (6.77a)

as:

- = 0.548,0.865 (3rd mode)a
(6.77b)

The positions of the zero stress surfaces may also be written

- = 0.35 a (2nd mode) (6.78a)
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- = 0.238,0,679 a
(3rd mode) (6.78b)

Plots showing variations of the normalised displacement 

along the radius of sphere are shown in Fig.(6.1). The three 

dimensional diagrams of the surface mode shapes are also given 

in Fig.(6.2).

6.6. Orthogonality and normalisation of spheroidal modes

The natural modes of spheroidal vibration of solid spheres

can be derived from equations (6.24a) to (6.24c) to be:

where

u = -F Jr).P m(cose)sinmt (6.79a)
r ,nm£ nmr ‘ n K cosmip

u9,nm£
r / \ d n m, „xsinmip= 'GnmJ>(r)-dfn (cos0)cosimp (6.79b)

u = +G ,(r). m0Pm(cose)« (6.79c)
ip,nm£ nmV ' sine n sinmip

F (r' nm£k ‘
> - - "r" (6.80a)

Gnm$/r) r ^nm£dn^n£C^ r Dnm^'n^n^C2^ _Dnm£J' n^nW^

(6.80b)

Multiplying equations (6.79a) to (6.79c) by ur,psq, ue,psq

integrating over the volume of sphereand u^ psq respectively and 

gi ves:

.uppur ,nm£’Ur,psqdD = ^6£m ms
a 2
fF n(r).F (r).rdrnm£? ' psqo

f P m(cos9) 
o n

(cosO)sinQdO (6.81a)
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/pu 
D 0 ,nm£ uQ0,psq dD

21TP 6

£m ms

/pii 
D

; Zepnm(cos9)

Psq

(cos0)sin0d0 (6.81b)

/ G a(r),G (r).r^dr 
nm£ ' psqv 'o

TT
/ -S-P m(cos0)P S(cos0)sin0d0 (6.81c) 
o sin 9 n

where p is the density, e = 1, and em = 2 (m=l,2,...). Using 

now (6.47) gives:

/p
D

a
4iTpn(n+l (n+m)! . r r
e (2n+l)(n-m)! ms npm o

Al so
TT
/ P m(cos0).P m(cos©)sin0d0 
o n

Thus (6.81a) can be written as:

dD 
U

G n(r).G (r).r^dr 
nm£v ' psqK '

(6.82)

2
2n+l 6 np (6.83)

Zpu _.u = ------n-D r,nm£ r,psq e (2n+l)(n-m)!
6 6ms np

a
/F m0(r) .F (r)./dr 
o nHlV ' psq ‘

(6.84)

Adding (6.82) and (6.84) yields:

.u .u

4iTp(n+m) !
£m(2n+l(n-m)!

G „(r).G nm£? ' psq

6 6 ms np
X|

(r) r dr

x

a

f F 0(r).F (r)+n(n+1) ol^nm£ psq

(6,85)
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T h e i nt e gr al o n t h e ri g ht h a n d  si d e of  e q u ati o n  ( 6. 8 5)

w h e n  m = s a n d n = p  c a n b e  f o u n d t o b e:

2
(r) r dr

a  

f 
o

X

W r)-F n m q (r) + n( n + 1 > G n m Jl(r) -G rm q

w h er e

R 1

a
R *  2 + n( n +l  ) R] R 2 | dr  - n( n +l)  f ( R ^ +r R' ^ +r R ^ ’̂ dr

' 0

a <

=  f r R

0

a

- n( n + 1)/ R, Y „ +r R' Y „ +r R  Y'  ) dr + n( n +l)  
0  I <- I £

a

+  n( n +l)/  Y-| Y 2 +r Y
0

. 2 n 1 r ■
' 1 2 r 2

I
a ?

-j Y2 ) dr +  n( n +l)f(r  Y  ’ Y ' + n ( n +l) Y] Y ? ) dr
0  6  z

( 6, 8 6)

Y 1

R q  =  B j ( c o 7 — )
2 n m q n n q  C-j

a n d Y 9 =  D j ( w £-)
2 n m q  n'  n q C ^

It c a n b e  e a sil y  s h o w n t h at Y-j  

ar e  s ol uti o n s of  t h e e q u ati o n s:

=  W u; ’ a n d Y„ = D j ( c o £-)
2 n m q n n q C 2

X.

r2 Y " 2 + 2r Y'

1 +  w  n Jl A  ’n (n + 1 ) JY i 0  

b 2

r 2

1
( 6. 8 7 a)

+  f 2 _ _ _

2 C  n q r 2  
b 2

- n( n +l ) Y 2 =  0
X

( 6. 8 7 b)

2 2
M ulti pl yi n g  t h e fir st e q u ati o n  b y  w  n q Y 2 , t h e s e c o n d b y  w  ^ ^ Y ^

a n d  s u btr a cti n g gi v e s:

✓  X
A ^ Y ^ + nf n + D Y ^ ^ ( 6. 8 8 a)
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or a
(“2nq - “2nP /^Y^Y'^ntn+DY^Jdr

2 i +n(n+l)co r nq

a
(6.88b)

Thus (6.86) can be written as:

^[%mJl(r)-Fnniq(r)+n(n+^Wr)-GnnK|(r)]r2dr

2
CO n n£

> a
! - n(n+1) (co1JO nq

2 co nt’Ma
0

) fv J2 2- n(n+1) (co - co n v v nq n£ 
a

+
0

n(n+l) (co2 - co2 J 
'v nq nV

-ntn+uVc^2 'la 
r Y' Y r 2’1J }

o

(6.89)

Equations (6.35a) and (6.35b) may now be used for estimating

the value of the above integral at r=a. Thus by substituting R^

and Y-] for R and f^ one may obtain:

2
03 nP 2— 2^a R,| -2n(n+l)R | +4aR' | -2n(n+l)(Y.| -aY'| )=0

r—a r=a r=a r~a r=a

(6.90a)
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)+ 2Y -2n(n+l)Y
r=a r=a

+ 2aY (6.90b)

1' r-a 1

= 0

The new set of equations may be furnished by combining both 

equations after multiplying the second one once by n and then by 

-(n+1). Thus:

<2
—^a2-2n(n+2) (R 

<c 6
2 r=a

+nY] )+2(n+2)a(R'
r=a

+nY
r=a

)=0
r=a

s

1 1
I

1

(6.91a)

X

R1 
k

- (n+-|)Y, 
r=a !

-2(n-l)a R 
r=a>

X,

r=a

-(n+l)Y' (6.91b)
r=a>

Similarly,

T 2 to o

lc2

X,

-2n(n+2)
)

(r 2 +nY2
r=a

)+2(n+2)a(R*
r=a

+nY'
r=a

)=0
r=a

= 0

(6,92a)

r 2C0 rx r\

—nV-2(n2-l)
Lc 2 J R2 -(n+l)Y

r=a

z

-2(n-l)a R 
r=aj k

X.

I

2'
r=a

-(n+l)Y'2 =0 (6.92b)

Z

r=a )
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2 
Multiplying (6.91a) by co nq(R2 

w n£^Rl + nY 
r=a '

+nY2
r=a

) and subtracting gives: 
r=a

), (6.92a) 
r=a

by

, 2 2 n(co n-coK n£ nq
I 2 1)lR1R2+n(R2Y1+R]Y2)+n^Y1Y2

-a

y

“2nt. 3
■>r=a

2co nq

X.
X

(6.93a-}
r=a

Applying the same procedure on equations (6.91b) and (6.92b)

yields:

(n+l) (co2 0- co2
v n£ nq

r ? i
)IR1R2-(n+l)(R2Y1+R1Y2)+(n+l)ZY1Y2

r=a

2co n n£

2co
nq

R1R'2-(n+l)(R1Y'2+Y1R'2)+(n+l)2Y1Y'2

R2R,1-(n+l)(R2Y'-1+Y2R,-1 )+(n+l)2Y' 1Y2

r=a
+ a

X

= 0

X

= 0

(6.93b)

Multiplying (6.93a) by (n+l), (6.93b) by (-n) and adding

gives:

2
nq

■2r/

>r=a
-n(n+1)(“2nq-“2n{.)

X.

r=a

> r=a
w n£a R

+ n<n+1’(“2nq-“2na 2 (
+n(n+l )co a Y'Y

I Ikj r=aJ
= 0

> r-a
(6.94)
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By making use of (6.94) expression (6.89) can be written

as:

o fnm^r^Fnmq^r^+n^n+1^Gnm£^r^ ,Gnmq

£/q (6.95)

Also from (6.86)

x
2

1 J
a2rmS,(r)+r,(n+1)G2nmS,(r) = f r2R'2 +n(n+l)R
o

dr

'Ia
-2n(n+l) rR-jY-j n(n+l) rY-|

Jo

+n(n+l) fpY12 +n(n+l)Y 21
ok 1 1 J

dr (6.96)

To simplify the integrals on the right hand side of

(6.96) equation (6.87a) may be multiplied by Y-j to give:

equation

ar
f /y *
o

2u,12+n(n+l)Y12
>

dr =

2
n£

C 2
l 2

s.
dr+ r^Y'.Y, (6,97a)

2CW I V 
r ■ Ti

2

o
+

a 
f r 
o V

Similarly,

2

C 2

a
f r^R' 
o <

* 2n' 2+n(n+l)R 2

1 1 >
dr = 2 2

R] dr+ R,)R1

(6.97b)

a 
f 
o

r 2 r
a

o

Thus (6,96) can be written as:

a 
f
o

F2 m.(r) + n(n+l )G2
I nmV k J nm&

(r) r2dr
2
rq

C 2 
bl

a 
f 
o

2 2r R-j dr

S'

+ r^R'-jR,

w2
+n(n+l) —5^

cL2

a s

-2n(n+l) rR-]Y
0 ’

2 2 r 2 
fr Y-] dr + r Y

T1J
r 

n(n+l) rY-j
>0

a

o
(6,98)
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Substituting for R-| and Y-| into equation (6.98) and using

(6.53b) gives:

F2nm£(r)+n("+1)G2nm/rt
2 u nmJT W (6.99a)

where

^n£ ” 2n

- (2n+3)w -
n L1

ZB > 2
Kn— j (w 0-|—)”(n+l)j (w 0-l—)
D o nv n£C,' v 'Jnv n£C9'Jt nm£ 1 2 '

<B2
nm£- / ax- > ax =2 V“n£C,)Jn+r ntt;)

nm£

C, 'l
+ n(n+l)^ + “

. 2 / a x , •3 nko~>+ 3 
k

+ J2

.2 , a
MC' J n+r“rac

X
X

, 22 a
1 n£r 2

bl
C 2

—) + n(n+l) 
1 J c2

f-2
B nmZ

D2 .
< nm£

.2 / ax 
n wn£C2J (w nx 1

as:

by:

, i (w 0F~) n+l n£Cr>2JJ
Upon using (6.95) and (6.99a) equation (6.85) can be

.u

- 2irp(n+m) 1.___ r 2 r X 6 6 6
e (2n+l)(n-m)! U nm£a’^n£A ms np £q

The orthogonality of the spheroidal modes may now be

fp u 
D <

(6.99b)

wri tten

(6.100)

represented

dD = 0

(6.101)
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which is true whenever inequality between any pair of corresponding 

indices exist. In order to normalise the natural modes of 

spheroidal equations (6.100) should be equated to unity. Thus:

2crn(2n+l)(n-m)l

nm£ 3M(n+m)! (6.102)

4 3where M = ^pua is

spheroidal vibrations may now be given by:

the mass of sphere. The normal modes of

ii*

r ,nm£
n£

'2em(2n+l)(n-m)!X
z
^nm£

l«nt (n+m)! J a D „ L
x nm£ 1

Jn-1( “nUC^

(n+1) . r r x 
r Jnwn^C^y

n(n+l)
r jn(“i

X

L_\p m, xSinmip
n£C2 n cosmip

Z

(6.103a)

2cm(2n+l)(n-m)!

n£v,,,,,,/‘ zT3MWn+ffl)!
^nm^

D o < nm£

1^
r

x 
Xco „n£. / r x n • / r x

C2 ^n-1 wn£C2 r ^n wn£C x
2 > Z

(6. Id3b)

Z2em(2n+l )(n-m)! s 

3M?nJ, (n+m)!

"2

+ aII* =

4>,nm£ z
- J (w 0~) r n n£C-|'

co nn£ . / r x n . / r x
C2 %-Vwn£C2 r Jn wn£C2

x P m(cose)cosm|’
x swO n w'sinmip

(6.103c)
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6.7. Modal shapes of spheroidal vibrations

The normal modes of spheroidal vibrations given by equations 

(6.103a) to (6.103c) in case n=0 may be written as:

2
ur,00£= Kla

B0Q£
°00£

(6.104a)

ue,00£ U’ UO0£ 0 (6.104b)

where

^0£ Kna■|"a J0(Kla)j/Kia)+Jo2(Kla)+jl2(Kla)
B2? ? 00£X K V 521 u 00£

(6.105)

The characteristic equation given by expression (6.39) reduces 

to:

4K]aj1 (K1a)-K22a2jQ(K1a) = 0 (6.106)

Substituting for j-j(K^a) from (6.106) into equation (6.105) 

gi ves:
R2 

r _ lv 4 4x-i^ 2 2 1OI/ 2 2x 00£ . 2fl/ , (c.^2 6K-| a 123 ) 2 Jq (^*j^) (6.107)
D 00£

Thus (6.104a) can be simplified as:

qaj-jtK^)
.^(qa)--ur,00£

____________ 32____________
3M(K24a4+16K}2a2-l 2K22a2„ (6.108)

Since the only non zero component of vector displacement is 

the radial one, therefore the motion everywhere is in the direction 
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of the radius vector. The roots of equation (6.106) for the

Poisson's ratio v= 0.29 from Table 6.2 are:

K-ja = 2.6528,6.086,9.2974............. (6.109)

By examining the roots of the characteristic equations for 

different Poisson's ratios, one can easily find that for any 

particular mode the value of K-ja increases as Poisson's ratio 

increases, and vice versa. As an example, the roots of 

equation (6.106) for v = 0.25 are:

^a = 2.563, 6.058, 9.279 (6.110)

To find the position of the spherical nodes one may write: 

j^r) = 0 (6.111)
J

whose roots are:

K}r = 4.493,7.725,10.904 (6.112)

Thus the positions of the spherical nodes for the second and 

third modes are respectively,

— = 0.739 (2nd mode)
a v = 0.29 (6.113)

£= 0.483, 0,83 (3rd mode)

Similarly, for v = 0.25

— =0.741 (2nd mode)
a (6.114)

— = 0.484, 0.832 (3rd mode)a
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T h u s  f or t h e £t h  m o d e  of  t h e h ar m o ni c  n = 0,  t h er e ar e  £- 1  

s p h eri c al s urf a c e s a cr o s s  w hi c h  t h er e i s n o  di s pl a c e m e nt. T o  

i n v e sti g at e t h e p o siti o n  of  t h e z er o str e s s s urf a c e s e q u ati o n  

( 6. 3 1 a) m a y  b e  writt e n  a s:

=  0  ( 6. 1 1 5)

T h e  r o ot s of  e q u ati o n  ( 6. 1 1 5) f or v  =  0. 2 9  ar e  gi v e n  b y  ( 6. 1 0 9). 

T h u s  t h e p o siti o n  of  t h e z er o str e s s s urf a c e s c a n b e  f o u n d t o 

b e:

—  =  0. 4 3 6 ( 2 n d m o d e)
3 ( 6. 1 1 6)  

7-  =  0. 2 8 5, 0. 6 5 4 6  ( 3r d m o d e)  
a

C o n si d er  n o w  t h e h ar m o ni c  n =l . T h e  n or m ali s e d di  s pl a c e m e nt

m a y  b e  writt e n  a s: ✓

l̂ m £  

l̂ m £
X

nr

I J- ( K? r) P, m ( c o s e) si n m ^  
r u r 2 ' 1 v ' c o s mi p

K- p l̂ ^r)-  r JV K lr)z

( 6. 1 1 7 a)

u a

u a

y

l̂ m £  1 - •

- r JV x l
I l m £

7  j ^r)- K 2 jQ ( K2 r)

7  j-|( K2 r)
/ 
/

d  

d e P 1 ( c o s e } c o s mi p ( 6. 1 1 7 b)



- 1 9 6-

u i p, 1  m £  +

f 2 e (l- m)l
m

a

z

7  j/ qr)- K 2 J 0 ( K2 r)

w h er e  m  i s eit h er

l̂ m) 7

D l m £

a n d

T h e

t o b e:

m
si n e

z er o or  o n e,

J 1 (K 2 a )

2 2  
+  2 K 3 a

p A c o s e) 0 0 5 1 ^
1 v ' si n mi p

z

Z

7
--

--
--

--
--

--
--

I o

J 2 (K ia )
L 2 J-]  ( K-| S)

l 2̂ j 2  (K 2 a )
K i V 7 ?) J

j o2 ( K-] a)2  — --- '_ +
s j1 2 ( K-)a)

K 2 2  j2 2 ( K2 a)  

q 2 j]2 ( K2 a) z

( 6. 1 1 7 c)

( 6. 1 1 8)

X

2 2 2  2  
+  4 K ] £ a  + 2 K ?  a

( 6. 1 1 9)

c h ar a ct eri sti c  e q u ati o n  m a y  b e  f o u n d fr o m e x pr e s si o n  ( 6. 3 9)

✓

K 2 2 a 2 j-]( K2 a)- 6 K 2 aj 2 ( K2 a) j1 ( K] a) = 2  6 K ]aj 2 ( K 1 a)
r , xi !aj 2 u x l

2, 2- K2 a ^j-jt K-j a) J 1 ( K2 a)

z
2 a ■jr p 'i

J  2  (^ a )

U si n g  ( 6. 1 2 0) a n d s u b stit uti n g f or A i nt o
J 1  k

gi v e s :

J-| 2 ( K2 a)
q «. =  2

v 4  4  r V 2  2, D 1/  2 2 ^ n v  2 2  
K 2 a - 6 K2 a + 8 K-]  a + 2 4 K-)  a

o 2  J  2 ^ 1 ^ ^

’ 8 K la K 2 a j1 ( K1 a) z

( 6. 1 2 0)

e q u ati o n  ( 6. 1 1 9)

J 2 2 ( K-]a)

J ^ K-j a)

( 6. 1 2 1)
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The roots of character!stic equation from Table 6.2 are:

K?a = 3.5132, 7.057,7.9992.......... (6.122)

The positions of the spherical surfaces across which the

only non-zero component of vector displacement is the radial

one are:

r
a 0.625 (1st mode)

r
a 0.47,0.81 (2nd mode) = 0 29 (6.123)

r
a 0.22, 0.82 (3rd mode)

The positions of the zero stress surfaces are given by:

= 0.498 (2nd mode)

v = 0.29 (6.124)
7- = 0.439,0.882 (3rd mode) a

Graphs showing variations of the normalised uf and uQ along

the radius of sphere are given in Figs.(6.3) and (6.4) respectively.

The three dimensional diagrams of the surface mode shapes are also 

given in Fig,(6.5).
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6-8. Response of a sphere to a radial concentrated force

Consider a solid sphere of radius a subjected to a radial 

concentrated force of amplitude F(t) as shown in Fig.6.6. The 

equations of motion in terms of stresses may be written as:

SorrSr 7<2(Jrr-CTe0-Varecot9e)+ 1 
r

(6.125a)

SoreSr aaee + 1_
S0 rsin0 

>2%

So 0ip
dip -o , , )cotg0+3o Aipip r0^

(6.125b)

So .rip
Sr

SoQ. iW + 1
30 rsin0

a2u
=p-4

at

So. .WSip ?<3(W2oeyot90)

(6.125c)

7\

where 6(r-r )is— o the three dimensional Dirac delta function and

may be represented in spherical polar

6(r-ro)6(e-eo)6(1p-1po)
6(r-ro)= 2 .r si nQ o

coordinates as:

(6.126)

+

+

1
r

1 
r

+

+

The left hand side of equation (6.125a) to (6.125c) may be 

represented in terms of components of displacement and their 

derivatives with respect to spherical polar coordinates. The new 

set of equations have many terms, therefore to avoid representing 

these lengthy equations one may write:
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92U
F* =P -----£

9t
F(t) 6(r - r0)

G* =p

296U,

W* =p ---------

at

(6.127a)

(6.127b)

(6.127c)

where F*, G* and W* are the left hand side of new set of equations 

as described above. Let us assume now a solution in the form:

U (r,0,ip,t) =
oo

= X
n
X

co
X u .q(t)1 n=0 m=0 £=1 r,nm£ nm£ (6.128a)

n
U (r,e,ip,t) =

exo
= X X

OO
X u q(t) (6.128b)V n=0 m=0 £=1 0,nm£ nm£

U (r,9,ip,t) =
OO

= 2
n
X

OO
X u- . q.(t)

Y n=0 m=0 £=1 ip,nm£ nm£

where-ur,nm£, ue>nm£,u^^nm£are the eigenfunctions given by expression 

(6.79a) to (6.79c) and q(t) are associated generalised coordinates.
nm£

Substituting the above solutions into equations (6.127a) to

(6.127c) gives:
OO n 00 oo n 00
X X X f * q - p X X X u q

n=0 m=0 £=1 nm£ nm£ n=0 m=0 £=1 r,nm£ nm£

=-F(t)6( r - r )0 (6.129a)
n n

oo
X X £ g* g _q

oo
X X Xu q = 0 (6.129b)

n=0 m=0 £=1 nm£ nm£ n =0 m=0 £=1 O,nm£ nm£

n nOO
X X °2 +X w* q -p

00
X X

CO
Xu q = 0 (6.129c)

n=0 m=0 £=1 nm£ nm£ n =0 m=0 £=1 ip,nm£ nm£
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Multiplying equations (6.129a) to (6.129c) by uf psq, u0 psq

Vpsq respectively, adding them together and integrating over

the volume of the sphere yields:

oo
y

n
E

oo
E U f* +u g* + u w* q dD

D n=0 m=0 £=1 r ,psq nm£ 0,psq nm£ ijj,psq nm£z nm£

co n 00

z
P f E E E u u + u u +u u

D n=0 ii 

oiiE K r,nm£ r,psq 9,nm£ 0,psq tp,nm£ ip,psq?

dD =-F(t) f u <5 (r-r ) dD 
D r,psq —

(6.130)

In order to simplify equation (6.130) one may consider the 

free vibration problem. Since the eigenfunctions must satisfy 

the equations of motion in the absence of external forces one may

wri te:

f nm£ n£ur,nm£ (6.131a)

9 nm£ n£U0,nm£

w nm£ n£Uip,nm£

(6.131b)

(6.131c)

Multiplying equations (6.131a) to (6.131c) by u , uA , H x x J r,psq 0,psq

u^ psp respectively and adding them together gives:

(6,132)
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as:

By making use of (6,132) equation (6,130) may be written

co
-P f E

D n=0

n
E

m=0 £=1

00 2
E w n 

n£

X,

+u u
ip,nm£ ip,psqz

q dD 
nm£

00

-p f E

D n=0

n
E

m=0

00
E

£=1
z
u u

r,nm£ r,psq

X

+U u
ip,nm£ <p,psqy

q dD 
nm£

= -F(t) f 
D

z\

u 6(r-r )
r,psq —

dD (6

Using now the orthogonality of the eigenfunctions gi ven

.133)

by

expression (6.101) equation (6.133) reduces to:

or

PD
z

2 u
X

q dDHpsq

+P f
D

z
2 u

X

q dD 
psq

.. + 2-
%m£ w n£%m£

.134)

.135)
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The solution to equation (6.135) can be easily obtained 

through standard techniques, and it appears as:

si neo t
= %m30)cos“n^ + W0)

n£

> o r r 2 n£ p/ u
DL

'dD (6.136)

where Qnm£(0) and 3nm£(0) are the initial generalised displacement 

and initial generalised velocity respectively, and

(6.137)

For any form of radial concentrated force acting at the

position r=ro,9 0Q and ip= equation (6.137) reduces to:

(t) (6.138)

Substituting (6.138) into equation (6.136) and assuming

(6.139)
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The response may now

for lnt0 eiuation

be obtained by substituting (6.139)

(6.128a) to (6.128c). Thus:

00

E
n=0

n
E

m=0 £=1

00

E

t 
f 
ox —
flu
D<

F(4)sinwn£(t-^)dt

[* 2 2 2
U r,nm£+u 0,nm£+u ip,nmyj dD

(6.140a)

n
E 

m=0 £=1
uA(r,0,ip,t) = E

n=0
t
/ F(Jsinw (t-^)d^0 nx

x r 2 2
D [u r,nm£+u 0,nm£+l

CO

E y r,nm£
puiU

(6.140b)

n
E

m=0
I' (r,0,ip,t)= E

n=0

t
f F( Jsinwn£(t-Jd?

x V 4u dL

Y .r,nm£ 
pw,

2 +u 
r ,nm£

or in terms of normalised modes:

U (r,0,ip,t) = E
' n=0

n
E

m=0

00

E
£=1

U*

wn£

dD
(6,140c)

t

x f F(c)sinunJl(t-c)d5 (6.141a)
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t

x f F(^)sincnn£(t-^)dc (6.141b)

t

x f F(^)sinwn£(t-<;)d^ (6.141c)

where u*r,nm?. ’ ue,nmJ>’ and uVnntf.are given by ecluatio"s (6.103a) 

to (6.103c) respectively. As an illustration let the applied 

force be in the form of a step function of magnitude F$,

F(t) = FsH(t) (6.142)

and evaluate the integral:

t F
f F$H(t )sinwn£(t-T)dr = ^-(1 - cosw^t) (6.143)

as:

Upon assuming rQ a, and 0Q = it  the response may be represented

L' (r,e,t) = ? 
r n=0

CO
E

£=1

2(2n+l)(-1)na2Fs

n£ .
n-1

{

5n.

FW n n£ . f a v
_C1 Jn-ll“nS>C1)’

D

n(n+l),. f a r n£

n£

(n+1)i ( r_J 
r Jn' nHC-|'j

■C0SVT)3e Pn(cos6)

(6.144a)
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oo
E

£=1

2(2n+l)(-1)na2Fs

Ci ''n-!Cl
a_\ 

n£C-|
_ (n+1) , a_.

a Jn wn£C,
I /

n(n+l) . f a x.W“nic+
X{B^ 1 j (u r, 

P r rr n£C-,' 
n£ 1

^n£ . , r n_
s C2 Jn-1 r n' n£C

X 
j>nT+|} x (1-cos“n£

u^(r,e,t) = 0

Note that:
(-l)n, m=0

0, otherwise

(6.144b)

(6.144c)

(6.145)

To represent the response in frequency domain one may simply 

evaluate the Fourier transforms of equations (6.144a) and (6.144b)

Thus.
00 „ 2(2n+l)(-l)a Fci

% (r,e)W) = - E £ -----------------=-------f-
n=0 J>=1

n(n+1)
a n-1

(n+1) • / r xr 3n^wn£ Cp - n("+1)J (“ J )+ (cose) 
r n n8.C? n

(6.146a)



2 0 6-

a n d

0 0

E

n = 0

0 0

E

£ = 1

2( 2 n +l)(-l) n a 2 F s i

2 =  _ _ _ _
w  n/ W

D <

( 6. 1 4 8)  

w h er e  B n '̂ s ar e  t h e vi s c o u s  d a m pi n g  f a ct or s. T h e  s ol uti o n of

3 m w (“V “ 2 >

8 o  
(

D  n
n o -

% > £ .
I ?! J n- 1

l d  
w n £ C

r V  n £ C 1

' s 

— ) 
V

✓  - s

P n ( c o s 9)

( 6. 1 4 6 b)

I n or d er  t o t a k e i nt o a c c o u nt  t h e eff e ct  of  vi s c o u s  d a m pi n g

e q u ati o n s  ( 6. 1 2 7 a) t o ( 6. 1 2 7 c) c a n b e  m o difi e d  a s:

F * = P

2
9 ^ U
_ _ _ r

9t 2
( 6. 1 4 7 a)

G * = P

✓ X  

a ( 6. 1 4 7 b)

W * = P

/ X

a

9 1 1
_ 1
9t

( 6. 1 4 7 c)

+

+

w h er e  a  i s t h e c o effi ci e nt  of  vi s c o u s d a m pi n g. B y  r e p e ati n g

t h e si mil ar pr o c e d ur e  a s gi v e n f or u n d a m p e d  pr o bl e m s,  o n e  o bt ai n s:

% m £  +  2 ^ n £ w n £ C ' n m £+ d D
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(6.148) can be easily obtained by means of the Laplace transformation

(see for example Meirovitch 64 ). Thus:

(r fl ,1, 1 F^)e -
r,nmr o’ o’V o
—----- *--------------- x

co n n£

sinw*n£(t-^)d^

(2 + 2 T2 '
pg t r,nm£ u e,nm£ u ip,nm£ dD

(6.149)

where U*n(,= ^/l- B2nr 

to (6.128c) gives:

Substituting (6.149) into equations (6.128a)

00
E 

£=1

ur,nnf('ur,nm£^ro’0o’^o^
*

w n£

sinco* (t-Jdr

U

dL

n
E 

m=0

co
E

£=1

t
f F(?)e
o

r 2 
f u 
d L

U0 ,nm<Jr *ur ,nm£/ro,0o’%)
*

Pw n£ 

’^n£wn£(t_^ • * \ .
Slnw n/t"^^ 

+ u2 +u2 1 dD
r,nm£ e,nm£ ip,nm£j

(6.150b)

x

x

F(de

%,nm&(r’9' ur ,nmjj ro

2 ^~2 ~ 2 s 
r,nm£ u e,nm£ u ip,nm£ dD

(6.150c)
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or in terms of normalised modes:

t 
f
0

n
E

m=0 £=1

00e

F(de sinM*nJ,(t-?)d? (6.151a)

oo
E

n=0

n
E 

m=0

oo
E 

£=1

t
f
o

F(c)e sin w*,.^(t-c)dc (6.151b)

U (r,e,ip,t)= T
n=0

n
E 

m=0

oo
E

£=1

u*

t
f F(^)e
o

sin a)*nJ,(t-c)d<; (6.151c)

Assume now a forcing function given by equation (6.142) being

applied at position rQ 

easily found to be:

a, IT. The response can be

^nS.

00
E

n=0

00
E

5> = 1

2(2n+l)(-l)na2Fs

3M^nA

lCl '"-I

n(n+l) . /
a Jn ^n^C^3 )}X

Dn«.

/ r_x
J1 '’n-l^niicf

^n£C^ a Jn^wi

_ (n+1)..- ( r_\

x 1 n'

(6.152a)
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2(2n+D(-l)na2Fc
u„(r,e,t) = ? ? ------- p----- -

n=0 3M5nyn,

where

T"’“ ■ <"<)- (6.153)

The Fourier transforms of equations (6.152a) and (6.152b) are 

respecti vely:

„ m 2(2n+l)(-l)na2F i
'V (r.0,0)) = - f ? --------------?----------------

n=° s,=1 3M?n^(W nJ,-U +2^^)

^n£.
LC1 Jn-1

(n+1) • / r_4
r Jn^wn£C-|Z

Bn£ PW- / r x
D LC1 Jn-l(wn£C } 
n£

nLT“U JnU’nT/} Pn<cos&>

(6.154a)



-210-

, . co ooU.„(r,e>M) = - E £
B n=0 £=1

2(2n+l)(-l)na2Fsi

3M5nll“(“ n£-“ +26n£“n£iw5

6.9. Response due to collision

Consider a pair of colliding spheres as shown in Fig.(3.9)

Displacement of each sphere at the contact point can be easily

written as:

t

f
0

U1
1_
ml

dt

t

f F(t)dt + E

o n=0

00
E

£=1

Sn£ 

wn£

t

f F(^)sincon£(t-^)d^

(6.155a)

U2
t t 
fdt/F(t)dt -f
o 0

00
E 

n=0 £=1

Sn£ 

wn£

t

f F(^)sinw^t-c)dcv t
0

1

(6.155b)

where vQ is the initial relative velocity,

(6.156a)

0= 0) (6.156b)

and m-| and are the masses of the spheres. The approach a may 

now be given by:
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t

a = v t
0= U2-Ul

t
/X

- K] / dt / F(t)dt 
o o

00
E

n=0

oo
E

£=1

$n£ 
w nn£

00
E

n=0

oo
E

£=1

S 0n£
£ „n£

t

f F(<;)sinu)n£(t-c)d^

t

/ F(t)sinwn£(t-t)d£ 
o

(6.157)

z\ z\

where K-j and <2 are given by equations (2.66) and (2.61) respectively.

It can be easily shown by means of Laplace transformation that the

displacement of rigid body of mass M under action of a force F(t)

is:

1 f(t-L)f(^)d^
o

(6.158)

Thus equation (6.157) may be written as:

r 2/3 
a = (-z—) = v t

Ko
K-. /(t<)f(Od?

0

- E

n=0

OO
E 

£=1

S 0n£

- E 

n=0

OO
E

=1

$n£
(L n

t

f F(^)sina) £(t-^)d^
o

t

f F(c)sin ujn£(t-ddC (6.159)

To solve the equation (6.159) the contact force may be assumed 

to be constant during any time interval At. The time interval At 

may be chosen as some small fraction of the fundamental period of 

vibration of the small sphere. Thus the value of approach at 

t=2At may be given by:
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a|
t=2At

= 2v At o

-F? (2At-^x2At)(2At)-(2At-W)At

00

- E
n=0

S 0 g n£

£=1

pl
co coswn^(2At-At)-x:oswn^(2At-0)

CO nn£

Jcoswn^( 2At-2At) -cosco^f 2At-At

00

En=0
00

E 
£=1

s r in£ h
to coscon^( 2At-At) -cosw ( 2At-0)

F? r -
+ =— cosco 0(2At-2At) - coscon£ 'nA2At-At)] (6.160)

By repeating the

a |
t = kAt

process

Fk2/3(^)
K2

one obtains:

F.J
oo
E

n=0

00

E
£=1

k
E

j=l
F. 
J

Sn£
2co „ n£

S 0 n£
-2□ n n£

OO
E

n=0 £=1 co1

00

E

cosu)n£( k-j) At-coscon£( k-j+1) At

coscon£(k-j)At-coscon£(k-j+l)At

CO n UJ nn£ L n£ <

k
E

j = l

(6.161)

Graphs representing force-time history for a pair of colliding 

spheres is given in Fig.(6.6).

Consideration of this graph verifies that for the size of 

spheres being investigated the force-time history may be approximated 

as a half sine pulse. Thus:

F(t) = Winbt (6.162)
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and

1 F
fmax sWsinU|U(t-C)dC = -"^(bsin^t-^sinbt)

t< d (6.163a)

d F
/F max n

sinb?sinwn)l(t-c)d5 = -™ax2 bsln%/t'd)+bsi,1“lUt
V b n£

t> d (6.163b)

where d is the duration of contact. The response at position

r-a, 6= 0 of sphere (1) may now be given by:

U (r=a,0=O,t) = 2 ? -(-1> (bsinm t-rn sinbt)

n=0,=l ^(b2-^) ™

t < d (6.164a)

Ur(r=a,e=0,t) = E E
n=0 £=1

(-1)nFmaxSn,

“n^fa2-“2n? bsin“njJt"d)+bsin“niit

(6,164b)
t > d

Differentiating twice with respect to t to obtain the acceleration 

gives:
oo
E

e (-l)nbF S
E max n£z. ... .-----x------- -------(bsinbt-w sinw t) n=0 £=1 (b2-w2n£)

t < d (6.165a)
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92U 
___ r 
9t2

00

E 
£=1

(-1)nbFmaxMn?n£

,.2 2(b nP
-sino^t-dj-sino^t

t > d (6.165b)

The effect of viscous damping may be taken into account by

following similar procedures as given in section (6.8). Thus:

U (r-a,0-O,t) -EE ------ —-m.ax J's in be since* 0(t~e)
n=0M con£ o

t < d (6.166a)

oo (-l)nF S d
Ur(i"=a,0=O,t) = E E --------*max n'' /sinb^sinio* „(t-c)

n=0 H=1 o> n„ o nZ

t > d (6.166b)

where
1 -B Jt-c)
J"sinb<;sinw*nJ,(t-<;)e z dr

cosbt+(b^y)sinbt4^;
______________________ C0Sh)*n?-<b+fa)%^

“2n£ + (b+a,*nj/ R 

x /

6nAjtcosbt+(b-M*n^sinbt - b-M*nPsin“*n?]

t < d
(6.167a)
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/sinb^sinw* (t-^)e n d?
o n

5, EgnA^cos^n/t-d)+(b+oitnPsinM*na(t-d)Je_____________

< +“*n/

[Bnrt£costd*n? -(b+^npsinMW]e "

(b +%P2

-z*

, + (b-“*n^sin“*n?Oe 3nA^
"2 fi2 2 7 fh * ,2

e nl’“ n£ + (b - “ nP

ESnn“nJlcos“*nPt-d)-(b-“*nPsinwtnPt-d)]e

d 2 2 x * x26 ru“ n? (b - “'nP

t > d (6.167b)

The response and acceleration in frequency domain may now

be represented as:

bF
U (r=a,e=O,a) = ..
r (b2-u>2)

(l+e_itod) ?
n=0

00 
z

£=1 +2iWrn“

(6,168a)

00
^1 <-1}X

“ nfc’“ +2i6nAa“

(6.168b)
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6.10. Sound generated by transient vibration of solid spheres

Consider a solid sphere of radius a subjected to force-time 

history given by expression (6.162) at position r=a, and 0= it . 

The acceleration of the sphere at its surface may be assumed to 

be the sum of both rigid body and vibratory acceleration. Thus 

the Fourier transform of the total acceleration at the surface 

of sphere can be written as:

rr z n \ — max / -i, -i tod \ , ,2 y1 'yU (r=a,0,io) - -p—h—(1+e ) tt COsS-w E E
r b n=0 £=1

(-1 )ns o p (cose) 'Iv 7 n£ n (6.169)

where M is the mass of the sphere. The velocity potential 

satisfying the acoustic wave equation for a spherical symmetric 

field is given by equation (2.38) and may reappear here as:

<}> = <t>(r,e,<i))eiwt (6.170)

where
<f>(r,e,co) = ? A* h (2\l<r)P (cose) (6.171)

n=0 n n n

Suppose now sphere

and behaves as a source

being located at the centre of the field 

of sound. The boundary condition which 

must be satisfied is:

(6.172)
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where Ur is the radial velocity at the surface of sphere. By 

the properties of the Fourier transform it can be easily shown

that:

(6.173)

Substituting for Uf and 0(r,0,w) into equation (6.173) gives:

X.
00

E
n=0

= - E A*
n=0

) P (cose) 
J r=a nn

(6,174)

where

FB*n (6.175a)

= 0 otherwise,

(6.175b)

and 2

“2njT“2 +2i(Wnj>“ (6.175c)

The spherical Hankel function in equation (6.174) may be 

expressed in terms of spherical Bessel functions of the first and 

second kinds, and then differentiated. The result can be 

reproduced in terms of Hankel function and written as:

r=a
(6.176)
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Substituting (6,176) into equation (6.174) gives:

B*n-(-l)nG*n

? hn(2)(Ka)-Khn^)(Ka)

2- h ^(Ka) - Kh J2’ 
a n v ' n+1

(6.180)

(6.177)

The potential 4(r,9,w) given by equation (6.171) may now

be written as:

<f)(r,0,w) =
n=0 2. hn(2)(Ka)-Khn+1(2)(Ka) Pn(cose)

(6.178)

In order to find the relation between pressure and potential

function in the frequency domain one may simply transform both

sides of equation (2.12) to obtain:

p(r,9,w) = pQ iaxj>( r,0,u)) (6.179)

where pQ 

equation

is the density of

(6.179) ■ gives:

the air. Substituting (6.178) into

co
E 

n-0
— pn(cose) 
(Ka) n

As an illustration of the result let us examine the case n=0.

Thus:

P0(r,a>) = -

OO
E 

£=1

poCba2W2(1+e~iOjd)e'lM(^a) 

r(b2 -u?)(C+iwa)

S
_

a) orW2 +2ieoA£u)
(6.181)
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where C = 

the sound 

transform 

function i

is the velocity of the sound in the

pressure in time domain one must find

This can be done easily by finding 
i cot . ,Qe at its poles. Thus:

and

air. To represent

the inverse

the residues of

p Ca2bF 
p n(r,T) = -2--------ro r J1S“

c
r2 _aT

_____ C ae_______________
(C2+a2b2)(C2+a2<1)2or2aCBoAjl )

b2l|(<n20jl-b2)a+2CB0^0J cosbT-b|f(w20jl-b2)C-2b2aBoAJsinbT
(C2+b2a2) ((b2AAb2e2o/od1

(w‘

r b2H?2b2ceoJe 0£ cosm *(k t ____________

32+c2-2aCBo^oP[(^2ovb2-e2o/oP2+462o/o^2o^

2 *2 > 
. _ } 0£z*

Ofllfc 0£+b C(J

w*o/w o£a +c ~2aCWW
2orCb^o£ld ________

*2orb2-e2o/oP2+4e2oA^
t < d (6.182a)

p Ca2bF 
p n(r,z) = -2-------- 
ro r 0«/r2, 2.2Wr2. 2 2 „ rDtC +a b )(C +a co or2aC6Q^o^

T
“oJ[(yorb2)aWo?2b2CBoJ

|cosw *q^t  +cosw*Q^(T-d)e je

(“Vc2-2aCB0?W
2

*

p -''n p

?in“V+sin(i)WT-d)e J

t >d (6.182b)
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K* “* 3 where t = t - —. Calculations of sound pressure in time 

domain can be carried out by means of inverse discrete Fourier 

transform. The method is similar to forward transform given 

in section (5.3.),
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TABLE 6.1. Non-dimensional frequency of torsional vibration of spheres

Value of n 2=1 2=2 2=3 2=4 2=5

1 * 5.763 9.095 12.322 15.514
2 2.501 7.136 10.514 13.771 16.983
3 3.865 8.444 11.881 15.175 18.412
4 5.095 9.712 13.210 16.544 19.809
5 6.266 10.950 14.510 17.885 21.180
6 7.404 12.166 15.787 19.204 22.529
7 8.520 13.364 17.045 20.503 23.860
8 9.621 14.548 18.287 21.786 25.174
9 10.711 15.720 19.515 23.054 26.473

10 11.792 16.882 20.731 24.310 27.760
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TABLE 6.2. Non-dimensional frequency of spheroidal vibration

of sphere. (Poisson ratio = 0.29)

Value of n 2=1 2=2 2=3 2=4 2=5

0 4.894 11.229 17.153 23.01 28.842
1 * 3.513 7.056 7.999 10.711
2 2.645 4.985 8.499 10.257 12.202
3 3.934 6.584 9.856 12.303 13.762
4 5.04 8.191 11.197 14.066 15.479
5 6.075 9.756 12.543 15.593 17.319
6 7.076 11.259 13.905 17.004 19.156
7 8.058 12.696 15.289 18.366 20.9
8 9.028 14.066 16.69 19.709 22.51
9 9.99 15.379 18.099 21.046 24.002

10 10.946 16.645 19.505 22.385 25.415
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FIG.6.2. Diagrams of the surface mode shapes of torsional vibration 

(* Nodal point)
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(Upper function)

FIG.6.2. (Continued)
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FIG.6.2. (Continued)
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FIG.6.2. (Continued)
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FIG.6.2. (Continued)
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of spheroidal vibration along the radius. 
(Poisson ratio = 0.29, n = 1)
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FIG.6.5. Diagrams of the surface mode shapes of spheroidal vibration

II
 II
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FIG.6.5. (Continued)
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FIG.6.5. (Continued)
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FIG.6.5. (Continued)



FIG. 6.5. (Continued)
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FIGURE 6.6. FORCE-TIME CURVES FOR A PAIR OF COLLIDING SPHERES 

OF RADII 1.27 cm and 7.112 cm (Eq.(6.161), n= 0, 
and £ = 1,5)

1 = Vibration terms excluded

2 = Vibration terms included
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7. SOUND RADIATION FROM TRANSIENT VIBRATIONS OF HOLLOW SPHERES

The transient vibration of hollow spheres, together with the 

sound generated from this vibration, receives attention in this 

chapter. This study is very similar to that given for solid 

spheres except that spherical Bessel functions of the second kind, 

which played no part in the solid sphere investigation, should 

now be taken into account. In order to satisfy the object of 

this chapter, the following studies are carried out:

(a) The frequency equations for both torsional and 

spheroidal vibrations are derived and their successive 

roots for different order and different ratio of 

inner to outer radii are tabulated.

(b) Orthogonality is examined and diagrams showing 

variations of the normalised displacement across 

the thickness of hollow spheres are given.

(c) Finally, the sound pressure caused by transient 

vibration of a hollow sphere is considered.

7.1. Vibration of Hollow Sphere

Vibrations of a hollow sphere can be easily studied by 

following similar procedures as given for a solid sphere. In 

order to carryout this study, let us consider a hollow sphere 

of inner and outer radii of a* and a, respectively. Unlike 

the solid sphere the Bessel functions of the second kind with 

the non-zero coefficients should be introduced into the formula 

representing displacement, since their presentation yield to
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the finite solution at both r=a and r=a*. Thus displacements

due to torsional and spheroidal vibrations of hollow spheres

are respectively:

u r = 0 (7.1a)

ur

+ Bn

 n(n+l) 
r

msine P m(cose)COS^ 
n ' 'snooty

(7.1b)

ip><5

(7.1c)

K1
2n+l

K1
2n+l

Vn<K2r)+Vn(K2''^Pnm(cose)tS

(7.2a)

s.
■ .; . u v v' ix i)

nunv‘'l ' nJnv 1 J= - {- B j (K,r) + B y (K,r) r nunv 1 ' nJnv 1 '
1

- Dn
X >

njn_1(K2r)-(n+l)jn+1(K2r)
K2

2n+l

> K
- Dn

X

nyn-f K2r>_<n+1 >yn+i (K2r>
X

(7.2b)
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1
s

U .
<P

" Dn
R-l{K2r)-(n+1)jn+l(K?r) K2

2 J2n+1

2n+F
x 4- P "’(cose)0051"* 

sin0 n v 'sinmip

(7.2c)

7.2. Frequency equation

The stress-strain relation given by equations(6.30a) to (6.30c) 

and (6.31a) to (6.31c) may be used for the derivation of the frequency 

equations for both torsional and spheroidal vibrations of a hollow 

sphere. The boundary conditions which should be satisfied at both 

r=a and r=a* can be written as:

(7.3)

For torsional vibration the above boundary conditions can be

satisfied if:

(7.3a)

= 0 (7.3b)

spheres may be written as:

Thus the frequency equation of torsional vibrations of hollow
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(n-1)Jn(K2a)-K2ajn+1(K2a)

(7.4)

The ratio A /A may a^so be 9iven by:

An _ (n-l)yn(K2a)-K2ayn+1(K2a)
(7.5)

A n
(n-T) j|V)(K2a) -K2aJn+1 (K2a)

The successive roots of equation (7.4) for different ratios 
a*— and n are tabulated in Tables (7.1) to (7.4). To derive the 

frequency equation of spheroidal vibration the boundary conditions 

given by expression (7.3) may be written as:

n(n+l)
a (f = 0

(7.6a)

) +
r=a

2 i n(n+l)
2 V 2 a * r=a a

= 0

(7.6b)

= 0

(7.6c)
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r=a
n(n+1) 

a* = 0

(7.6d)

(7.6e)

r=a
2 f-i T n(n+l)f i _fll | 

a*2 e'r=a* a*2 <P'r=a* e 'r=a* = 0

(7.6f)

Substituting for and from equations (6.23a) to (6.23c)

gi ves:

(7.8)

JX X X X X

all a12 a13 a14 B n 0
— — —
a21 a22 a23 a24 B n 0

. - —
a31 a32 a33 a34 Dn 0

—
a a a a D 0

41 42 43 44 n X x

where:

®11 = K22a2jn(K1a)-2n(n-1)Jn(K3a)-4K1aJn+1(K1a) (7.9a) 

a12 = K22a2yr/ K1a) '2n(n’1 )yrJ K1_4K1 ayn+1 Kla^ (7-9b)

= 2n(n+l) (n-l)Jn(K2a)-k2ajn+1(K2a) (7.9c)

a]4 = 2n(n+l) (n-l)yn(K2a)-K2ayn+1(K2a) (7.9d)
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a21 = 2(h-l)K1a)-2K1ajft+1(K1a) (7.9e)

522 = 2(n-l)yn(K1a)-2K1ayri+1(K1a) (7.9f)

a23 = 2(l-n2)jn(K2a)-2K2ajn+1(K2a)+K22a2jn(K2a) (7.9g)

a24 = 2(l-n2)yn(K2a)-2K2ayn+1(K2a)+K22a2yn(K2a) (7.9h)

The remaining two rows can be obtained from the first two by 

substitution of a* for a. In order to find a nontrivial solution 

of equation (7.8) determinant a^ must be equated to zero. Thus:

(a34a42 a44a32)+(a3ia43"a33a4])(ai4a22 a24a12^

Dn

Sn

B
The ratios —

B„
5 and — may be found to be:

Sn

|n = alf a24a33~a23a34^+a2f a13a34~a14a33^+a3f a14a23~a13a24^ 

gn a12^a23a34"a24a33^+a22^a14a33"a13a34^+a32^a13a24~a14a23^

(7.11a)
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(7.11c)

The successive roots of equation (7.10) for different ratios

— and n are tabulated in Tables (7.5) to (7.8).a

7.3. Orthogonality and normalisation of torsional modes

The natural modes of torsional vibration of hollow spheres can

be given by equations (7.1a) to (7.1c) in the form:

ur,nm£ (7.12a)

—) c2 J
m p m, xcosmip 

sine Pn os0'sinmip

(7.12b)

% ,nm£ \m£0n^wn£ c^^nm^n^wn£c^^ d 
de (cose) s i nmip 

cosmip

(7.12c)

Multiplying equations (7.12b) and (7.12c) by u0jpsq and u^psq 

respectively, and following the same procedure as given in section 

(6.4) gives:
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/lu 
D k

. u

x 4'n~n( n+1) (n+m)! . .
em(2n+l)(n-m)! ms pn

a
?

f z-. .z9r dr 
a* 1 z

where

Z1 Anm£.Jr/“nJl C2’+AnmX.yn^0)nS. F")
c2

(7.13)

(7.14a)

Z2 %sqJp(“pq C2’+Apsqyp^“pq

Since equations (7.14a) and (7.14b) satisfy the Bessel

differential equations one easily obtains:

r=b

(7.15)

Upon using equations (7.3a) and (7.3b) the orthogonality 

to torsional modes can be given by:

f
D

U0 ,nm£‘u0 ,psq+uip,nm£’uip,psq (7.16)

which is valid whenever unequality between any pair of 

corresponding indices exist. To normalise the modal functions 

one requires to solve the integral (7.16) for the case of 

n=p, m=s and £=q. Thus:
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as:

f P
D

N|

. dD = 2Ppn(n+l )(.n+m) ! 52 3
Em(2n+l)(n-m)! A nm&a

2 X W 0-Ljn-i(zr*■)+
^nm^

7n- Pc2

X

a)

i (^) + A™”\, ( nJ
Jn+l(ZT^)+5 ViV 
k nmH L

+ a*3r
TJ a L
a*

The normal

%,nm£

where:

a^
a3

(B n A n W n

Z nm£ Z

/

modes of torsional vibration may

Anm£ J'n(wn&^ +
^nm^

^nm^
y (w —) n K n&c0'

+
A o nm£

A „ nm£
yn(wn£cJ d 

de

a 2 = em(2n+l)(n-m)l 
nm£ 2pTrn( n+1) (n+m)! x 1

a3
+

- j
(^a) + 

n-1 c2 7

a*3 
a3

A onm£
A Yn_1

nm£
£ 0

nm£
A

nm£
a*) +

w J (^

-y (^W
Jnvc9 7<- >

+
A 0nm£
A

nm£

“n*
yn+A2

X-

a*)

^nm^ 
■z—y 
^nm^

now

m
sinQ

n^c2 1
2

nm\ z^n^ 
yn+l(^“' 

lnm£

jim£
A

(7-17)

be written

-a*)

(7.18a)

P m(cose)sinmt 
n K 'cosmip

(7.18b)

fl »nm£
A 

nm£

Hn+1(^a)

nm£ z '
)+

2 , a*3 
a3

-1

2

j (^a*) 
n-Vc?

(7.19)
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Pl ot s  s h o wi n g v ari ati o n s  of  t h e n or m ali s e d  di s pl a c e m e nt

al o n g  t h e t hi c k n e s s of  h oll o w  s p h er e s ar e  gi v e n  i n Fi g. ( 7. 1).

7. 4.  Ort h o g o n alit y  a n d  n or m ali s ati o n  of  s p h er oi d al m o d e s

T h e  n at ur al  m o d e s  of  s p h er oi d al vi br ati o n s  of  a h oll o w  s p h er e

c a n b e  gi v e n  b y  e q u ati o n s  ( 7. 2 a) t o ( 7. 2 c) i n t h e f or m:

w h er e

u r , n m £

%, n m ^

=- F(r) . P m ( c o s 9) si n m t 

n m £. n  C O S m *

=  - G(r) n .
v ' n m £

p  m ( c o s e)si n n " f' 
d 9 n k 0  °' c o s mi p

JI!_ _  p r n c Al C 0 S m ^
si n e n e ' si nr m p

n m £

( 7. 2 0 a)

( 7. 2 0 b)

n( n +l)
r

% mr- n ^ w n £  e J ^ n m ^/ n ^ n ^ c J ( 7. 2 1 a)
2 2  >

✓  _  s

^ n m ^ n ^ w n £ c ^ + % m £ y n ^ w n £ c-| ^
— 1 1- i| D i ( — ) 
, c < r n m £ J n k w n £ C 2

D n m £ Jn ^ n £ ^  ~ D n m £ y n ^ w n £ c 2 ^

B y  f oll o wi n g si mil ar pr o c e d ur e  a s  gi v e n  i n s e cti o n ( 6. 6)

o n e  o bt ai n s:

F( r) n m £

( 7. 2 1 b)
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.u .u dD
/

gjSTfca-. w„„ * ’
a*

+ n(n+1)G(r)nrnVG(r)psq^ 2
r dr

F(r) nmVru'psq

(7.22)

The integral on the right hand side of equation (7.22) when

m=s and n=p may be found to be:

f F(r)
b

nm/(r)nnK, +n(n+1)G(r)nmFG(r)nmqz

= f [A

a*

I

a
1RI 2+n(n+l)R]R2 dr -n(n+l)f (R^+rR1 ^rR-jY *2)dr

a*

where

and

- n(n+l)

+

a
+ n(n+l)7 (Y^^rY^Y'j 

a*

, dr

(7.23)

n(n+l)Y1Y2

R1 ^nm^'n^wn£c-j ^+Bnm£’Yn^n£c-|

Y1 ^nm£Jn^n£c2^+Dnm£yn^n£c2^

R2 Gnniq'’n^“nqc1’+Bnmqyn^'jJnqcJ

Y2 Dnmq'3n^°nqc2^+Dnmqyn^wnqc2^

(7.24a)

(7.24b)

(7.24c)

(7.24d)
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Since equations (7.24a) to (7.24d) satisfy the Bessel

differential equation, it can be easily shown that:

f [F(r)nmVF(r) 

a*
nmq+n(n+1)G(r)nmd-G(r)nmq r2dr

1
2 2 

“ nq'“ nd

2
U)

r2R'-,R,l
nq L 1 2J

r2R' 2R1
a* a*

- n(n+l)(U2nq -n(n+l)(<n2nq- U2njl 

a*

T -na
)[rR2Yl 

a*

+ n(n+l)(w2nq- <7^ 1a 2 
! +n(n+l)(jo 
Ja*

r2Y' Y, 
nq L 12.■j  a *

2
w n£

a 2 r

’ w nd

) [rR^J3

a

a

2
- n(n+l)w (7.25)

Using the boundary conditions given in section (7.2) and 

substituting for R and f^ from (7.24a) and (7.24b) gives:

nS- a2R I2 a R]l 
c2 r=a

-2n(r>+l) R1 -2n(n+l)(Y1

r=a r=a

- 2(1^ 2Y1

- aY* | ) = 0
r=a

(7.26a)

-2n(n+l)Y]
r=a r=a

+2aY Y = 0 (7.26b)
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2
w  n £ 2  .
— - 2 n( n +l) R] | + 4 a * R ,] |

c 2  r = a * r = a * r = a *

- 2 n( n + 1)( Y

r = a *

- a * Y ( 7. 2 6 c)

- 2( R-]| - a * R'1 | ) + 2 Yj  - 2 n( n +l) Y1 |

r = a * r = a * r = a * r = a *

2  
C O 0  9

+ 2 a * Y' 1 | + — ^ a ^ Y-jl  = 0

r = a * c 2  r = a *

( 7. 2 6 d)

B y  f oll o wi n g si mil ar pr o c e d ur e s a s  gi v e n  i n s e cti o n ( 6. 6)

o n e  o bt ai n s:

-“ 2 n £ a [R, 2 R J r = a -n( n + 1)( “ 2 n q -“ 2 n P

+ n( n +l) o >  n q

2 R 1 r = a * - nf n +l X ^ q- ^)

+ n < n + 1 >( “ 2 n q- “ 2 n (>

+  n( n +l) c o 2 n q a *  Y', Y O
1 2  r = a

n ( n + 1) “ 2 n ^
✓ h  

a *  Y. Y'
U  2 Jr = a

( 7. 2 7 b)

t*  =  0
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T h u s :

a
^f {r) n r aV F (r’n m q + n ( n + 1 ’G (r) n mr G (r > n m q } 2 dr  =  0

« ■ / q  ( 7. 2 8)

Al s o  fr o m ( 7. 2 3),

a

f
a *

n m ? n( n + l) G2 (r)

a  

r ^ dr =  f

a *

2 + n( n +l) R ^
V,

- 2 n( n +l)
/ a
r R1 Y 1

)  a *
+  n( n +l)

a

+  n( n + 1 ) A
a *

'l ^ + n( n +l) Y-|2 I dr
( 7. 2 9)

T h e  B e s s el  diff er e nti al  e q u ati o n  i n t h e f or m of  e q u ati o n  

(: 6. 8 7 a) m a y  n o w  b e  u s e d  f or si m plif yi n g  t h e i nt e gr al s o n  t h e 

ri g ht h a n d  si d e of  e q u ati o n  ( 7. 2 9). T h u s  o n e  o bt ai n s:

a r .

( * LF (r)™ * + n( n +i) G 2(M r 2 dr
2c o n

n £

C 1 2

a

f 
a *

2 2
r R-| ar

a
- 2 n( n +l) r R. Y

a * 1 V a *

a  a✓

+  n( n +l)  r Y-]2

✓  a

2
C O „

+ n( n +l)  —

c 2 a *

2V  Y1 ri
a *

( 7. 3 0)
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or

9 F? ~~1
aUFa

2
1 w n£ r
2 2 K

C1

o Ja

R1
>a*

+ n(n+l)
2

3Y-jY 1 2 3 r

where

= B nnm£
n 4 i r Jn(“i

as:

2 . r dr

- Ijrifn+ljR^r -SR-jR^r2

-2n(n+l) [ri^Y

a 2
1 r

^a*

0)
JU
C1

Y'l ^nm£

nm£^n£ (7.31)

^n£. , r_.
c-j ^n+V^Wc-p

yn+l
I z

COJ 4 / r x n£. , r
r JnttonHc2c2 Jn+l(“n«.c

> Dv nm£

Upon using (7.28) and (7.31) equation (7.22) can

47Tp(.n+m) j 
cm(2n+l)(n-m)!

(7.32a)

(7.32b)

be written

dD
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The orthogonality of the spheroidal modes may now be 

given by:

q P %,nmV%,psq+u9,nmrue,psq+uip,nmrue,psqJdD 0

((7.34)

which is true whenever inequality between any pair of corresponding 

indices exist. The normal modes of spheroidal vibration may

be found to be:

u r,nm£ Bnm& nJ ] j c1 (2n+l)

’ (to -) n+1K n^c,'

n(n+l)
r

r d Q 
nm£

^nm£ J"n^wn^C2^ +
0 0 nm£ ,, /

nm£

> to „ n£
c-| (2n+l)

Si 
n'~Jn£c9 n ' 'cnc""''

(7.35a)

cosmipn

+ ^nm£

B o nm£

1
r

0 O nm£-(n+1)jn+l(“n^
| to n. n£

' c?(2n+l) " .
Z ' nm£

-z

- C^l)yn+1(MnJl^-)J qfcrr ®
(7.35b)



where

n£c2(2n+T) m
sin0

(7.35c)

cosmtp 
s i nmipX

cm(2n+l)(n-m)!
nm£ 4irp( n+m)! (7.36)

Graphs showing variations of the normalised u and unr 0
along the thickness of hollow spheres are given in Figs ,'(7.2) and 

(7.3) respectively.

7.5. Sound generated by transient vibration of hollow spheres

The general equations (6.141a) to (6.141c) given in chapter

6 can be used for finding the response of a hollow sphere to any 

type of radial concentrated force. As an illustration, let us 

examine a force in the form of half sine pulse acting at the 

position r=a and 0= ir. By following similar procedures as given 

for solid sphere the response at position r=a and 0= 0 can be 

easily found to be:
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(bsinw^t - ^sinbb) t< d (7.37a)

oo oo
E E

n=0 £=1

jbsinwn^(t-d) + bsSjo^t] t> d (7.37b)

where u* 0 is given by equation (7.35a) after substituting 

m=0. By taking into account the effect of viscous damping 

the acceleration in frequency domain may be expressed as:

i/bF . .
ur(:r=a,e=0,io) = - ? ma* (l+e1^)

i hn(2)(Ka)-Khn+1(2)(Ka)

r (b2- J)

„ „ (-1)%*2r;n£(r-a,e=K)

"=0 £=1 . y + 2i6nAjlU (7.38)

By following similar procedure as given for solid sphere

the sound pressure can be found to be:
|(-l)nG*n-B*n)hn(2\Kr)

oa

E' 
n=0 Pn(cose)

OO
E

n=0
(7.39)

where

n = 1 (7.40a)

= 0 otherwise
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bF max
iw(b2-w2) ( 7.40b)

(7.40c)

The sound pressure in the time domain may be obtained by 

means of the inverse discrete Fourier transform.
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Value of n 2 = 1 2 = 2 2 = 3 2 = 4 2 = 5

1 * 5.799 9.310 12.902 16.598
2 2.5 7.118 10.479 13.827 17.310
3 3.864 8.438 11.843 15.094 18.371
4 5.094 9.711 13.197 16.490 19.696
5 6.266 10.950 14.507 17.866 21.114
6 7.403 12.166 15.787 19.199 22.505
7 8.520 13.364 17.045 20.502 23.853
8 9.621 14.548 18.287 21.786 25.172
9 10.711 15.720 19.515 23.054 26.473
10 11.792 16.882 20.731 24.310 27.760

TABLE 7.1. Non-dimensional frequency of torsional vibration

of hollow sphere (b/a = 0.2)



Value of n 9 =1 2 = 2 2 = 3 2=4 2 = 5

1 * 6.357 11.141 16.171 21.296
2 2.475 7.237 11.639 16.499 21.540
3 3.850 8.358 12.363 16.986 21.902
4 5.088 9.593 13.288 17.625 22.381
5 6.263 10.859 14.380 18.411 22.974
6 7.403 12.111 15.589 19.355 23.676
7 8.519 13.335 16.863 20.389 24.486
8 9.621 14.534 18.153 21.554 25.403
9 10.711 15.714 19.431 22.801 26.423
10 11.792 16.879 20.683 24.093 27.542

TABLE 7.2. Non-dimensional frequency of torsional vibration

of hollow sphere. (b/a = 0.4)
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TABLE 7.3. Non-dimensional frequency of torsional vibration of 

hollow sphere. (b/a = 0.6).

Value of n 2 = 1 2=2 2=3 2 = 4 2 = 5

1 * 8.443 16.020 23.772 31.574
2 2.373 8.872 16.235 23.915 31.681
3 3.736 9.484 16.552 24.127 31.840
4 4.986 10.248 16.968 24.407 32.051
5 6.182 11.134 17.476 24.754 32.313
6 7.342 12.116 18.070 25.164 32.625
7 8.477 13.169 18.744 25.636 32.986
8 9.592 14.275 19.492 26.166 33.394
9 10.691 15.416 20.307 26.752 33.849
10 11.779 16.580 21.185 27.392 34.347
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Value of n 2 = 1 9 = 2 2 = 3 2=4 2 = 5

1 * 15.943 31.535 47.203 62.891
2 2.199 16.103 31.614 47.256 62.931
3 3.477 16.341 31.734 47.336 62.991
4 4.663 16.652 31.892 47.442 63.070
5 5.814 17.034 32.089 47.574 63.170
6 6.946 17.482 32.323 47.732 63.288
7 8.066 17.991 32.595 47.915 63.427
8 9.178 18.556 32.903 48.124 63.585
9 10.284 19.173 33.246 48.358 63.762
10 11.384 19.838 33.623 48.617 63.958

TABLE 7.4. Non-dimensional frequency of torsional vibration of

hollow sphere. (b/a =0.8)
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Value of n 2 = 1 2 = 2 2 = 3 2=4 2=5

0 4.725 10.260 16.095 22.746 29.713

1 * 3.565 7.541 8.021 11.583

2 2.556 4.870 8.007 10.245 12.014
3 3.914 6.543 9.430 12.143 13.170
4 5.038 8.181 11.052 13.802 15.090
5 6.075 9.754 12.511 15.465 17.145
6 7.076 11.259 13.900 16.967 19.093
7 8.058 12.696 15.288 18.358 20.878
8 9.028 14.066 16.690 19.707 22.503
9 9.990 15.380 18.100 21.046 24.000

10 10.946 16.645 19.505 22.385 25.415

TABLE 7.5. Non-dimensional frequencyof spheroidal vibration

of hollow sphere.

(b/a = 0.2 and Poisson’s ratio = 0.29)
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Value of n 2 = 1 2=2 2 = 3 2=4 2 = 5

0 4.070 10.781 19.855 29.332 38.903

1 * 3.763 7.868 9.626 12.690

2 2.165 4.832 9.298 10.116 14.115

3 3.534 6.327 9.557 12.294 15.081

4 4.820 7.864 10.327 14.184 15.919

5 5.981 9.408 11.489 15.441 17.303

6 7.042 10.957 12.888 16.383 18.990

7 8.047 12.477 14.418 17.387 20.550

8 9.025 13.931 16.015 18.541 21.859

9 9.989 15.305 17.628 19.854 23.025

10 10.946 16.608 19.209 21.310 24.184

TABLE 7.6. Non-dimensional frequency of spheroidal vibration

of hollow sphere.

(b/a = 0.4 and Poisson’s ratio - 0.29)
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Value of n 9 = 1 9=2 9 = 3 9=4 9=5

0 3.453 14.963 29.213 43.626 58.078
1 * 3.846 9.083 14.333 16.852
2 1.710 5.049 10.461 13.882 17.930
3 2.693 6.588 12.054 13.719 19.091
4 3.812 8.127 13.228 14.382 20.288
5 5.004 9.556 13.713 16.094 21.462
6 6.213 10.820 14.373 17.943 22.550
7 7.405 11.925 15.314 19.703 23.582
8 8.562 12.945 16.460 21.240 24.725
9 9.675 13.966 17.703 22.491 26.096
10 10.744 15.038 18.964 23.554 27.603

TABLE 7.7. Non-dimensional frequency of spheroidal vibration

of hollow sphere.

(b/a = 0.6 and Poisson’s ratio = 0.29)
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Value of n 2 = 1 2 = 2 2=3 2 = 4 2 = 5

0 3.016 29.155 58.049 87.002 115.969

1 * 3.631 16.146 28.856 31.914

2 1.369 4.961 16.689 28.445 32.566

3 1.850 6.599 17.450 28.034 33.340

4 1.424 8.310 18.386 27.672 34.191
5 3.169 10.026 19.456 27.384 35.098
6 4.023 11.720 20.628 27.107 36.052
7 4.943 13.374 21.870 27.107 37.044
8 5.925 14.971 23.149 27.171 38.068

9 6.945 16.492 24.416 27.429 39.118

10 8.139 17.914 25.592 27.971 40.191

TABLE 7.8. Non-dimensional frequency of spheroidal vibration

of hollow sphere.

(b/a = 0.8 and Poisson’s ratio = 0.29)
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8. EXPERIMENT

This chapter deals with the description of the experimental 

set up and design of the test rig. The main objectives of 

these experiments were to measure the sound pressure-time histories 

generated by collision of two balls at different impact velocities 

and different directions, and to investigate the sound pressure 

due to elastic vibration of spheres. The results will be 

discussed and compared with the predicted results later in Chapter 9.

8.1. Specimens and Suspension

The characteristics of the steel balls used in the experiments 

are given in Table (8.1). Each of the pair of colliding balls 

were suspended by either fishing lines or steel wires depending 

upon the weight of the balls used during the experiments. To 

suspend the balls by fishing lines a pair of small holes were spark 

eroded at symmetrical positions with respect to the centre of each 

ball and a small hook was cemented into each hole by using araldite. 

A frame consisting of two vertical and one horizontal bars was 

placed inside the anechoic chamber. On the horizontal bar was 

fitted two small rectangular pieces each possessing a pair of hooks 

from which the balls were suspended. The distance between the 

hooks could be adjusted according to the size of the selected pair 

of colliding balls. To suspend the forged steel balls by steel 

wires a pair of holes were made at symmetrical positions with 

respect to the centre of each ball and a 3/8" bolt was screwed 

into each hole. A schematic diagram of balls suspension is given 

in Fig.( 8.1).
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8.2. Design of the Test Rig

In order to measure the sound pressure in different directions 

about the contact point it was required to rotate the microphone 

on the imaginary circle centred at the impact point. To carry 

out this task a test rig as shown in Fig.(8.2) was designed.

This structure consisted of a base plate 1 on which the 

horizontal arms 2 and 3 were mounted. Located within the base 

are ball races which enable the arms to rotate freely about the 

fixed axis z.z. The impact point of the balls is also arranged 

to lie on the axis zz. The pointers 4 and 5 attached to the 

horizontal arms could be positioned in any of 360 holes drilled 

in two concentric circles on the face of a circular plate 6 which 

was connected to the base 1 through V bolts. The vertical stand 

7 carrying the microphone holder 8 was assembled on the horizontal 

arm 2 through sliding base 9 which could be clamped at any position. 

The whole structure enabled the position of the microphone with 

respect to the impact point to be estimated with the aid of scales 

mounted on both the horizontal arm and vertical stands. It should 

be emphasised that the direction of the swing of the balls was 

chosen as a reference for estimating the angular coordinate of 

the microphone position. To maintain the same distance from the 

contact point during rotation of the horizontal arm the axis of 

shaft 10 zz, passing through the centre of base 2 was checked by 

a plumb-line to ensure that the impact point of the spheres was 

lying on the axis zz.
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To reduce the interference of the sound reflecting back 

from the microphone holder a conical shape of microphone holder 

was found suitable. To release the balls an electromagnetic 

holder 11 was attached by sliding part 12 to the vertical stand 

13, along which it could slide and be clamped. A scale 

graduated in mm was mounted on the vertical stand 13 to measure 

the drop height of the balls.

8.3. Fourier analyzer/54SIC Hewlett Packard

Since the Fourier analyzer played the main role in displaying 

and analysing the experimental results a brief note about how it 

works may be found to be useful.

The instrument transforms data from the time domain to the 

frequency domain by means of the discrete finite transform’(D.F.T.). 

This transformation is carried out quickly by means of a special 

algorithm, the fast Fourier transform (F.F.T). For example, 1024 

data points in the time domain are transformed into the frequency 

domain in 55 ms. The resolution Af between lines in the frequency 

spectrum is related to the total time of the record T by:

The time T, the sampling time At and the number of data points

N are related by:

T = N At

The highest frequency in the spectrum F is given by:IllaA



-290-

The highest possible value of F with the Fourier analyzer max

is 100 kHz.

In using the Fourier analyzer it is important to ensure that 

that there are no aliasing errors. This is achieved by passing 

the analog time data through a low pass filter before the data is 

sampled by the analog to digital converter. The cut-off of the 

low pass filter was selected to be F or less.r max
A main feature of the Fourier analyzer is a keyboard on which 

the user can punch keys for a variety of mathematical functions 

to be performed on the frequency data. More information about 

this may be found in the manufacture application note (see ref.(65)).

8.4. Anechoic chamber

The anechoic chamber used during the experiment was designed 

by Anderson 66 and is situated on level 1 in the Department of 

Mechanical Engineering. The chamber is a 50 mm thick concrete box 

mounted on rubber pads which act as vibration isolators. Polyurethane 

foam wedges (Dunlop DPI03) of length 600 mm line the chamber leaving 

a maximum working space of 4.5 m x 3 m by 3.37 m high. The 

background noise in the chamber is 30 dB(.A) and is mainly structure- 

borne sound of low frequency. A good anechoic chamber should, by 

definition, be echo-free. The walls need to be perfectly absorbing, 

so that free-field conditions are achieved. For a point source 

of sound in a free-field the intensity of sound is inversely 

proportional to the square of the distance from the source. Thus 

the inverse square law test is the most sensitive test of the 

quality of an anechoic chamber, and a good room should exhibit 

very small deviations from the inverse square law. Details 
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about the inverse square law test carried out by Anderson 

can be found in ref. 66 . Service ducts for electricity, 

water pipes, air tubes, microphone cables, etc., are underneath 

the chamber. A control cabin is adjacent to the chamber and 

contains standard B8K analysis equipment and the Hewlett 

Packard Fourier analyzer.

8.5. Acoustic measurements

The sound measuring system consisted of aBruel and Kjaer 

% inch condenser microphone (type 4135) and a type 2608 measuring 

amplifier. The output of the measuring amplifier was connected 

to the input of the Fourier analyzer. After each collision the 

pressure-time pulse could be displayed on the oscilloscope of 

the Fourier analyzer and stored on a magnetic disc. A Bruel and 

Kjaer \ inch condenser microphone (type 4133) was used to trigger 

the scope. This was necessary because of the fast transient 

nature of the pulse. The triggering microphone was attached 

to another measuring amplifier, whose output was connected to 

the external trigger of the Fourier analyzer. To prevent reflections 

of the sound pulse off the triggering microphone from reaching the 

measuring microphone the triggering microphone was positioned at 

a suitable distance away from the measuring microphone.

A schematic diagram of the apparatus used for the acoustic 

testcis given in Fig,(8.3). To calibrate the measuring system, 

a Bruel and Kjaer type 4220 pistonphone was used. This produces 

a sound level of 124 dB re 20 ppa, plus or minus a correction 

factor which depends upon the barometric pressure. The apparatus
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was set up as shown in Fig.(8.3) except for the trigger circuit 

which was not required. The pistonphone was then placed over 

the \ inch microphone and the range setting of the measuring 

amplifier was set on the 0.3V full scale deflection. A sine 

wave form signal generated by the pistonphone was displayed on 

the oscilloscope and the peak amplitude was noted. For every 

collision the impactor was held back against the electromagnet 

and its circuit was broken through the switch placed in the 

control room. The impact velocity vQ is determined from the
p 

drop height of the ball, hp, by using the relation, vq = (2gGhp) 2 

where g^ is the gravitational acceleration.

8.6. Acceleration measurement

Surface acceleration of the impactee was measured by means 

of a Bruel and Kjaer accelerometer type 8309 with a calibration
_2

constant of 0.0184 mV/ms . The accelerometer was screwed into 

a hole which had been prepared on the side opposite to the impact 

point. The accelerometer was connected to a Bruel and Kj.qer 

precision sound level meter. The output of the sound level meter 

was connected to the Fourier analyzer so that the acceleration 

time histories can be displayed. A Bruel and Kjaer inch 

condenser microphone (type 4133) was used to trigger the scope. 

The triggering microphone connected via a measuring amplifier to 

the external trigger of the Fourier analyzer. A schematic 

diagram of the apparatus used fort.the acceleration measurement 

is given in Fig.(8.4). To calibrate the measuring system a 

function generator type„(.TWG 501) was used and its input was 

measured by a voltmeter. The function generator was connected
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to sound level meter, whose output was connected to the input 

of the Fourier analyzer. It was found that with the sound 

level meter on 110 dB an input of 99 mV gave an output of 2.68 

Volts on the Fourier analyzer. Thus a simple calculation 

shows that the calibration constant for the system is given 

by IV = 2007.6 m/s2.
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TABLE 8.1. CHARACTERISTICS OF THE BALLS USED FOR THE TESTS.
* Average Diameter

Diameter (") 1 2 357
64

Diameter (cm) 2.54 5.08 14.17*

Type Non- 
corrodable

non-
corrodable

Forged

Hardness
(Rockwel 1)

55 - 56 55 - 56 -

Weight
(g)

66 528 11800

Densi tv
(g/cm3) 7.8 7.8

Side view

100 cm

FIGURE 8.1. SCHEMATIC OF BALL SUSPENSION
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FIGURE 8.4. GENERAL ARRANGEMENT OF ACCELERATION MEASUREMENT AND 

APPARATUS USED IN CALIBRATION. CM: Condenser Microphone, 
MA: Measuring amplifier, AM: Accelerometer, SLM: Sound 
Level meter, FA: Fourier analyser, VM: Voltmeter, 
FG: Function generator.
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9. DISCUSSION AND CONCLUSIONS

Predicted results obtained in previous chapters, together 

with the experimental results, are discussed and conclusions 

drawn.

9.1. Force-time history

The validity of the Hertz law of contact relating force and 

approach through equation (2.60) has been investigated for many 

impact problems by Goldsmith [43] and proved to be adequate. The 

numerical methods for calculating force-time history in absence 

and presence of the terms due to transient vibration of colliding 

spheres are given in sections (2.6) and (6.9) respectively. 

Graphical representation of these solutions are shown in Figures 

(2.2.) and (6.6). Solutions based on assumption of half sine 

pulse is also represented graphically in Fig.(2.2). Comparison 

of the results show a difference in slope of the curves at the 

beginning and at the end of contact. Apart from these differences 

good agreement between both solutions may be observed. Thus one 

may conclude that analytical representation of force-time history 

as a half sine pulse is a good approximation.

9.2. Impulsively accelerated and pulsating spheres

Graphs representing pressure-time histories at 6= 0° and 60° 

for an impulsively accelerated sphere is given in Fig.(3.1). At 

the wave front i.e. t = 0, pressures are maximum and their peak 

values may be given by P=P^cose'. As e increases from 0° to 90° 

the peak value at the wave front decreases and this is the same
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also for the rarefactive peak which is forming later in time.

Pressure-time curve of impulsively pulsating sphere as 

shown in Fig.(3.2) has the same switch on value as the 

impulsively accelerated one given for 6 = 0°. Unlike the 

impulsively accelerated sphere the sound pressure radiated by 

an impulsively pulsating sphere decays exponentially with time 

and forms no rarefactive peak. It is also independent of 9.

In Fig.(3.7) both the exact solution of the sound radiated 

by an impulsively accelerated sphere and approximate evaluation 

of that sound obtained by the aerodynamic approach are compared. 

Both pressure decay rates and switch-on values agree very closely.

9.3. Sphere undergoing a Hertzian acceleration

The logarithmic plot of dimensionless peak pressure amplitude 

against non-dimensional contact time 9 is given in Fig.(3.3). 

Observation of this graph suggests that the variation of peak 

amplitude with respect to 9 can be approximated by the straight 

lines shown at the same Figure. Thus one finds:

P. -0.45max
P^cosO = 0.5256 for 0 < 0.3,

P. -0.98max
PNCOS0 = 0.280 for 0.3 < 0 < 1

and

P - 1.73max
PMCOS0 = 0.280 for 0 > 1
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The non-dimensional contact time 3 can be related to the impact 

velocity through equation (3.41b) and it is not difficult to 

show that:
2 2

= 555.37

where units are all in the SI system. This equation together 

with the approximate relations given for peak amplitude may be

used for predicting the peak pressure when one or some of the 

variables such as size of colliding spheres, modules of elasticity, 

and etc. change. Since the non-dimensional contact time 6 varies 

with the inverse of impact velocity to the power 0.2 the proportionality

of the peak pressure amplitude and impact velocity can be written

The dimensionless time n 

plotted logarithmically versus

as:
1.09P . avmax 0

1 .2P avmax 0

and
1.35

Pflax av0

zx.

for 3 < 0.3

for 0.3 < 3 < 1

for 3 > 1

for which the peak occurs is also

3 and is shown in Fig.(3.4).

Approximation based on representation of this graph with the 

straight lines for different regions of 3 suggests that:
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/X

nmax

/X

nmax

-0.17
= 0.613

-0.36
= 0.483

for 3 < 0.3

for 0.3 <0 < 1

and
zx
nmax

-0.72
= 0.483 for 3 >1

Thus for all values of 3 within the range of 0.1 <6 < 10 

the value of n never exceeds unity.

Due to max the dependency of the peak pressure on cosO 

its directional distribution is symmetrical about 0 = 90° and 

depending upon whether 0 < 0 < a compressive peak or |- < 9 < tt  

a rarefactive peak can be generated.

The logarithmic plot of dimensionless peak of transform 

against non-dimensional contact time 0 is given in Fig.(3.5) and 

can be approximated by straight lines for different regions of 

0. Thus one may write:

p
|-^| = 0.49 for 0 < 0.3

p -0.26
|-^-| = 0.353 for 0.3 < 3 <1

L
and

-0.91
IPmax| = 0.35 3 for 3 > 1

PL

The value of dimensionless frequency n* for which the

transform peak occurs is also plotted logarithmically against 3

and is shown in Fig.(3.6). It can be easily shown that these

values can be approximately given by:
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n * =  0. 6 3 B f or B  <  0. 7m a x

n *
m a x

=  0. 5 B  0, 3 4 f or 0. 7  <  B  < 2. 5

a n d

n *
m a x

=  0. 6 8 3 f or B > 2. 5

Di m e n si o nl e s s  pr e s s ur e  ti m e c ur v e s f or a p air  of  c olli di n g  

s p h er e s ar e  gi v e n  i n Fi g. ( 3. 1 1) t o ( 3. 1 4). T h er e  ar e  s e v e n  

di m e n si o nl e s s  p ar a m et er s  B-|, B 2 >  a n d n w hi c h  t a k e p art

i n pr e di cti n g  t h e r e s ult a nt di m e n si o nl e s s  pr e s s ur e. T h e

< 1  1 x c o s e
+

T h e  pr e s s ur e  g e n er at e d  b y  t h e i m p a ct or r e a c h e s t h e mi cr o p h o n e

aft er  t h e a b o v e  di m e n si o nl e s s  ti m e d el a y  h a s  el a p s e d. T h u s  t h e

v al u e  of  t h e fir st c o m pr e s si v e p e a k  w o ul d  b e  u n aff e ct e d  b y  t h e 

pr e s s ur e  c o ntri b uti o n of  t h e s e c o n d s p h er e if t h e di m e n si o nl e s s  

ti m e n f or w hi c h  t h e c o m pr e s si v e  p e a k  o c c ur s  i s l e s s t h a n n *.  

It c a n b e  e a sil y  s h o w n t h at t h e v al u e  of  n'  at  e =  0 °  f or c olli di n g  

s p h er e s of  e q u al  a n d u n e q u al si z e s n e v er  c o ul d b e  l e s s t h a n
1 . . . ^ 1  

a n d r e s p e cti v el y. B y  e x a mi ni n g  diff er e nt  v al u e s  of  B]  a n d  

o b s er vi n g  t h e ti m e f or w hi c h  t h e p e a k  o c c ur s  o n e  w o ul d  b e  a bl e  

t o fi n d a n  u p p er  b o u n d  v al u e  of  b  b el o w  w hi c h  n <  n ‘. T h u s  f or 
m a x

a p air  of  c olli di n g  s p h er e s of  e q u al  a n d u n e q u al  si z e s a n  u p p er

✓ x

b o u n d  v al u e  of  B  b el o w  w hi c h  n < n *  m a y  b e  gi v e n  b y  Bi  =  2. 7 9
m s  x  I

a n d B]  =  0- 5 3  r e s p e cti v el y. F or  a n y  p air  of  c olli di n g s p h er e s  
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the first compressive peak would reamin unaffected by arrival 

of sound pressure from the second sphere, if the dimensionless 

contact time 6^ has a lower value than the corresponding upper 

bound value. This can also be confirmed by comparing the 

values of the first compressive peak in Figs.(3.11) to (3.14), 

with those which could be estimated by using expressions given 

previously for a single sphere. In order to study the effect 

of the replacement of the impactee by another impactee of the 

same size but different material one may write:

6 = 637.95
0.4,l-v2>0.4 -0.2

P (—) vQ

and 0

0 - co-7 nc 0.4, 1 A0.4,V 637.95 p (1+p/p ) (
X

i 2 n /I r 0.4 n 01 -\) '0.4, , x E ' -0.2E (1+ 1 2 x E ’ vo
1 -v X

where 6 and 8 are dimensionless contact times before and afterX

replacement of the impactee respectively. The ratio of 3 to 3 X

may now be written as:

6

Depending upon the value of the right hand side of above 

expression one would be able to predict the outcome of this 

replacement. As an example let the impactee of a pair of 

colliding steel spheres in Fig.(3.11) be replaced by a copper 

sphere of the same size. As a result of this replacement one 
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obtains ~ - 1.15. Since 3 >3 and the fact that p /P., 

decreases as 3 increased, one should expect to obtain a 

lower value of Pmax/P^ ln case of the new arrangement. 

This can also be confirmed by comparing the values of first

Pmax^N ln ^1'9S .(3.11) and (3.13). To consider the effect 

of the replacement of the impactee by another impactee of 

the same material but different size, a similar procedure 

yields:

t A = 1.148

If the size of impactee of colliding steel spheres in

Fig.(3.11) increases by a factor 2, one obtains 3 /3= 0.594.
X

Thus as a result of this replacement a greater value of p /P.. 
unax N

should be expected. Comparisons of the first p /PM inHmax N
Figs.(3.11) and (3.12) justifies this prediction. (Note that:

Pmax 1+M

o o 1.17M

For a pair of similar spheres of equal sizes the pressure 

profiles are functions of five parameters only. These parameters 
r r

are and n. By substituting , C2 = 9 = 0°,
2

and n' = — in equations (3.60a) to (3.60d) and neglecting the 

difference between r, r-^ and r^ in the denominator of the result, 

one would be able to express the resultant pressure in terms of 

6 and n only. The logarithmic plot of dimensionless rarefactive 

peak amplitude against 3 is given in Fig.(3.19). Approximations 
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based on representation of this graph with the straight lines

for different regions of 6 suggests that:

p rmax -0.52
0.5473

= 0.5476
1 .78

for 6 < 1

for 1 < 8 <1 .5

and

-3
1.143 for 3 >1.5

The proportionality of the rarefactive peak amplitude and 

impact velocity may be given by:

p armax V
0 for 3 < 1

p a rmax
V T-35

0 for 1 < 3 <1.5

and

p a rmax
V b6

0 for 3 >1.5

The dimensionless time n for which the rarefactive peak 

occurs is also plotted logarithmically against 3 and is shown

in Fig.(3.20). It can be easily shown that these values can

be approximately given by:

/X -0.8
nmax 1.143 3 <1

-0.46
nmax 1.143 1< 3 < 3

and
Z\ -0.16
nmax 0.83 3< 3 < 10
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The directional distribution of the sound radiated by 

a pair of similar spheres of equal and unequal sizes are given 

in Figs.(3.15) and (3.16), respectively. The sound distribution 

for colliding spheres of equal sizes in syrrmetrical about a line 

joining the centres of the spheres and about a line perpendicular 

to this line through the contact point. The minimum pressure 

occurs at angle 0 = 90°. The sound distribution for colliding 

spheres of unequal sizes is also symmetrical about a line joining 

the centres of the spheres and no symmetry about the perpendicular 

direction exists. The sound pressure is minimum at angles of 

0= 90° and 270°. The directional distributions of the sound 

radiated by a pair of dissimilar spheres of equal and unequal 

sizes are also given in Figs.(3.17) and (3.18) respectively. 

The same behaviour as mentioned for the pair of similar spheres 

can be observed in Figs.(3.17) and (3.18).

In Figs.(3.21) to (3.24) are shown the transforms for the 

pressure-time results given in Figs.(3.11) to (3.14). The levels 

of transforms are constant for a limited bank of low frequencies 

and peak in the region of n* = 0.3-0.4. For a pair of similar 

spheres of equal sizes the dimensionless pressure transforms 

are functions of five dimensionless parameters. These parameters 
rl r2 o

are and n** By substitutin9 6] = IT’ ^2 = a-’ and e= 0

in equation (3.64) and neglecting the difference between r, r-j and 

r^ in the denominator of the result, the dimensionless pressure 

transforms can be expressed in terms of 0 and n* only. The 

logarithmic plot of dimensionless frequency n* for which the 



-307-

transform peak occurs against 3 is given in Fig.(3.25). It

can be easily shown that:

and

for B < 0.7

for 0.7< B < 2.5

for B >2.5

n* = 0.7Bmax

n* = 0.58 B0,45
max

n* = 0.89max

Thus for all values of B within the range 0.1 <B < 10 the

value of n* never exceeds unity. The value of n*=l can be max J

interpreted as the frequency associated with the duration of

the contact. The value of f for which the transform peak max r

occurs may also be given by:

and

f . 76.4 for B <0.7max a

f . 63.3 -0.55
B for 0.7< B < 2.5max a

f . 97.2 -1
B for B >2.5max a

It may be interesting to note that for a pair of colliding 

spheres at radii a^ = a^< 0.38 cm and B < 0.7 the Fourier 

transform of pressure time history peaks above the audible 

frequency region and the audible sound will be due to lower 

amplitude portions of the transform.

The saind pressure-time history calculated both analytically 

and numerically are compared in Fig.(3.26). No significant 
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difference between the results can be observed. Thus the 

half sine pulse approximation is adequate in most calculations.

In Fig.(3.8) both the exact solution for the sound 

radiated by a sphere undergoing a Hertzian acceleration and 

approximate evaluation of that sound obtained by aeroacoustic 

approach are compared. Both curves are identical for a 

certain period of time and agree very closely afterward. 

The only advantage of the aerodynamic approach is that the 

final formula are slightly simpler.

9.4. Radiation due to change of Volume of Sphere

The dimensionless pressure-time trace due to change of 

volume of 2.54 cm diameter colliding spheres is shown in Fig.(3.28). 

If the values of velocity and distance are chosen to be the same 

as those given in Fig.(3.26) it can be calculated that the maximum 

sound pressure is 0.53 x 10 Pa. Pressure of this magnitude 

may be neglected in comparison with the rigid body sound pressure 

radiated by colliding spheres of the same size, for which results 

are shown in Fig.(3.26).

9.5. Acoustic Energy

The acoustic energy radiated by an impulsively accelerated 

sphere in the far field is given by equation (3.90) and may be 

written in terms of velocity and mass of air displaced by the 

sphere as:
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T h u s  e n er g y  r a di at e d b y  a n i m p ul si v el y a c c el er at e d  s p h er e  

i s e q u al t o h alf  t h e ki n eti c  e n er g y  of  air  di s pl a c e d  b y  t h e 

s p h er e. It c a n b e  e a sil y  s h o w n fr o m e q u ati o n  ( 3. 8 7) t h at

at  t h e s urf a c e of  t h e s p h er e

E I S
%

P

2
v

o

1 =  
m  v

2 =  1  

o 2
M

w h er e  M  i s t h e m a s s of  s p h er e. I n Fi g. ( 3. 2 9) i s s h o w n t h e

l o g arit h mi c pl ot  of di m e n si o nl e s s  e n er g y  a g ai n st  f f or a

s p h er e u n d er g oi n g  a H ert zi a n  a c c el er ati o n. A p pr o xi m ati o n

b a s e d  o n  r e pr e s e nt ati o n of  t hi s gr a p h  wit h t h e str ai g ht li n e s

i n diff er e nt  r e gi o n s of  f s u g g e st s t h at:

p  - 0. 3 6

=  0. 2 6 6 f or 0. 4

£  - 1. 1 4

=  0. 1 3 6 f or 0. 4 <

3 <

a n d

p  - 2. 6 7

p  =  0. 1 3 6 f or 3 > 1

_ 2
2 M

w h er e  E *  =  --------- ? m
( 1 + M)

2
v o

of  t h e s a m e si z e a s  t h e i m p a ct e e ( E * =  E T <; ) o n e
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✓ X
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W h e n a si mil ar s p h er e
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air  di s pl a c e d

b y  t h e i m p a ct e e. T h e  pr o p orti o n alit y  of  t h e e n er g y  a n d i m p a ct 

v el o cit y  m a y  b e  writt e n a s :

E a

E a

2. 2 3

f or f <  0. 4

f or 0. 4  <  f <  1
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and

' 2 53
Ea vq * for 3 > 1

In order to calculate the total energy radiated by a pair 

of similar spheres of equal size it is assumed that e-j = 6^ = 6 

and r-j = r^ = r. Such assumptions allow the total dimensionless 

pressure to be expressed in terms of 3, n and e. The logarithmic 

plot of total dimensionless energy against 3 is given in Fig.(3.30).

for 3 < 0.4

for 0.4 < 3 <0.8

for 0.8< 3 < 1.5

for 3 >1.5

that the total energy radiated

by a pair of colliding spheres is less than kinetic energy of 

air displaced by the impactee. It may also be interesting to 

note that since for a pair of colliding steel spheres the ratio 

(pQ/p = 1.5 x 10 ^), therefore the total radiated energy will 

never be greater than 1.5 x 10 times the kinetic energy of the 

impactee. This in turn means that only about less than one-six 

thousandth of the kinetic energy of the impactee may be

an

and

it can beasily shown that:

E -0.3
= 0.73

EIS

Once n one conclude
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radiated as< acoustic energy.

9.6. Radiation of sound due to inelastic collision of spheres

A typical force time history for the collision of a 2.54 cm 

diameter lead sphere is given in Fig.(4.1). Observation of 

this graph shows that the force increases slowly during the 

elastic-plastic loading and decays rapidly during the elastic 

unloading period. The duration of the elastic-plastic period 

is much greater than the duration of the elastic loading and 

elastic unloading periods. Thus the major part of the duration 

of the contact is allocated to the elastic-plastic loading period . 

For the lead spheres considered in Fig.(4.1) the duration of the 

contact and duration of the elastic-plastic loading period are 

353.7 ps and 331.8 ps, respectively. The analytical and 

numerical solutions of pressure time history radiated by the 

impactee are compared in Fig.(4.2). There is a slight difference

between both solutions in the region of rarefactive peak and that 

should be due to the difference of the analytical and numerical 

estimation of the duration of the elastic-plastic period. 

Consideration of these graphs also show that a low sound can be 

radiated until the elastic unloading period is started. This 

is because of the fact that the accerlation increases slowly. 

It can also be noticed that because of the abrupt slope of the 

acceleration more sound can be generated during the elastic 

unloading period. In Fig,(4.3) is shown the sound presssure 

radiated by a pair of colliding lead spheres. Unlike the 

pressure time history of a pair of colliding steel spheres of 



-312-

the same sizes the amplitude of the second compressive peak is 

higher than the first one. This is due to slow rate of deceleration 

of the impactor which prevents a high sound pressure being radiated 

before the time equal to the time delay plus the time taken for 

both first and second periods to be completed. The Fourier 

transform of total pressure time history is shown in Fig.(4.4). 

The transform peaks at frequencies 2.3 and 4.7 kHz. The transforms 

of dimensionless pressure time history and acceleration for the 

impactee are given in Figs.(4.5) and (4.6) respectively. Comparison 

of these Figures shows that the lesser amplitude peaks in pressure 

transform are associated with the transform of the acceleration.

9.7. Radiation of sound due to collision of viscoelastic spheres

Typical examples of pressure time history for viscoelastic 

spheres with the properties described in Table 5.1. are given in 

Figs.(5.1) to (5.3). The force time history due to collision of 

viscoelastic and steel spheres for each example are also given in 

Fig.(5.4). Observation of these graphs indicate that the amplitude 

of the peak pressure increase as the amplitude of the force increase 

and shorter contact durations register shorter pressure time traces. 

In Fig.(5.5) is shown the transform for the pressure time result 

given in Fig.(5.3). The position of the main peak and lesser
63 3 -0 55amplitude peaks may be approximately given by —— 3 , 2/d, 3/da

and etc. respectively.

9.8. Vibration of solid and hollow spheres

The radial displacement for torsional vibration is zero. Thus 

the motion except case of zonal harmonic (m =0) is a combination



-313-

of two displacements, namely u and u . 
0 Ip

The radial dependent

function appearing in both u^ and u expressions are identical.

Distribution of normalised radial dependent functions along the 

radius of spheres for different values of n and % are given in 

Figs.(6.1) and (7.1). The nodal points give the position of 

spherical surfaces across which there is no displacement. The 

number of these surfaces depend on £ and may be expressed as y-1 

The fundamental mode for given n is that with £ = 1. If n >2 

distribution of radial dependent function of displacement for 

fundamental mode registers no node. Thus by analogy for n = 1 

there is no fundamental mode. In Fig.(6.2) the surface mode 

shapes are given for different values of n and m. If n = 1, m 

must be either zero or one and the surface motion corresponding 

to these values of n and m are simply rotation about one of the 

axis. In case n = 2 and m = 0, the upper and lower hemispheres 

of surface rotate in opposite directions and a nodal circle can 

be formed.

For spheroidal vibrations the motion, except for case of

zonal harmonic (m = 0) is a combination of three displacements,

The radial dependent function in both u
0

identical. Distribution of radial

namely uf, uQ and u .

and u, expressions are

dependent functions appearing in u and u expressions for r 0

different values of n and are given in Figs.(6.3) ,(6.4), (7.2) 

and (7.3). The number of spherical surfaces across which there 

is no displacement, apart from the case n = 0, can no longer be 

given by £-1. As well as torsional vibration there should be 
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no fundamental mode corresponding to case n = 1. Regardless 

of value of m (m = 0, or m = 1) the motion in case n = 1 is 

merely translation in direction of one of the axis. Such motion 

is not a free oscillation and needs an external force to be 

sustained. Thus the frequency equation has no root corresponding 

to £= 1. This in turn explains why there is no fundamental 

mode corresponding to case n = 1. In Fig.(6.5) the surface mode 

shapes are given for different values of n and m. All the points 

undergo oscillation and no nodal point exists.

9.9. Experimental Results

As the theory indicates the pressure-time history generated 

by a pair of colliding spheres is a function of angle 0. Thus 

the agreement between theoretical and experimental results should 

be examined for different angles. The agreement also depends 

on how accurately results could be predicted by the ray theory 

assumption. The theoretical and measured pressure-time traces 

are compared in Figs.(9.1) to (9.4). The results agree well for 

0 = 0°, 40°, and 60°. For 9 = 90° discrepancy can be observed 

and this might be due to reflection of sound wave between colliding 

spheres.

The theoretical and measured Fourier transform of pressure 

time histories as a function of angle (e) are compared in Figs.(9.5) 

to (9.8). The predicted result was obtained by using D.F.T. method; 

and the resolution was chosen to be the same as the one selected 

on the Fourier analyser. Once again the experimental results 

verify the theoretical ones for all angles except for 0 = 90°.
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The value of f for which the transform peak occurs confirms 

the relation fmax = suggested previously. In Fig.(9.9)

the measured transforms for various sizes of spheres are shown. 

The transforms peak at frequencies 6, 3 and 1.1 kHz, which are 

inversely proportional with the radii of spheres. Observation 

of Fig.(9.10) showing measured transforms as a function of angle 

6 also indicates that the position of transform peak is independent 

of 6. The pressure transform for a 5.08 cm diameter colliding 

sphere is shown in Fig.(9.11). Peaks at frequencies 55 and 82 

kHz respectively correspond to the first and second lowest 

fundamental frequencies of spheroidal vibration of a sphere. The 

theoretical and experimental polar distribution of both compressive 

and rarefactive peaks compared in Fig.(9.12) and (9.13).

Measured and predicted compressive peaks agree well for all 

except 0 = 80° and 90°. Once again the reflection of the sound 

wave between colliding spheres could be the cajse of the discrepancy. 

For the rarefactive peak the agreement also very much depends on 

the accuracy with which one can predict the time delay between 

arrival of the sound from impactee and the impactor. In Fig.(9.14) 

both predicted and measured energy integrations are compared and 

good agreement can be observed. The compressive and rarefactive 

peaks are respectively plotted logarithmically in Figs.(9.15) and 

(9.16) as a function of velocity for 0 = 0°. The graphs are 

straight lines with slope 1.2.

The logarithmic plots of measured and predicted energy 

integration as a function of velocity for 0= 0° and 0 = 40° are 
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compared in Figs.(9.17) and (9.18). These logarithmic plots 

suggest that the energy integration is proportional to the 

impact velocity to the power 2.4.

The measured and predicted Fourier transform of acceleration 

are compared in Figs.(9.20) to (9.23). Predicted results are 

obtained by using equation (6.169) with no damping. Thus the

finite peak values, as w tends to are due to the selection 

of resolution frequency and can be varied by variation of the 

resolution frequency. All modes up to frequency of 70 kHz are 

included in predicted results. For the lower modes there is 

a reasonable degree of agreement between the theoretical and 

experimental results. However discrepancy appearing in higher 

modes is rather peculiar. In the comparison of the predicted 

and measured results the resolution in the D.F.T. is the same, 

and hence any leakage losses should be the same. Thus a direct 

comparison may be made between theory and experiment in Figs. 

(9.24) and (9.25). In both theoretical and experimental curves 

no absolute values can be assumed. The results can only be 

regarded as a guide to actual response levels.

9.10. Conclusi ons

Conclusions with regard to rigid body sound are:

1) The force-time history for the case of elastic collision of 

spheres can be approximately given by a half sine pulse even 

when vibratory terms are included.
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2) Both compressive and rarefactive peaks for an impulsively 

accelerated sphere decrease as 9 increases.

3) The pressure-time curve of a pulsating sphere forms no 

rarefactive peak and it is also independent of 0.

4) The aerodynamic approach for predicting the sound of an 

impulsively accelerated sphere has been compared with the 

exact solution and found to agree very closely.

5) Empirical formula relating peak pressure and dimensionless 

contact time have been found for a single sphere undergoing 

a Hertzian acceleration.

6) The equation involving the dimensionless contact time and 

the impact velocity together with the empirical formula 

enables one to predict the peak pressure when one or some 

of the characteristics of colliding spheres, such as size, 

modulus of elasticity, etc., are known.

7) For the collision of the metallic spheres the peak pressure 

generated by a single sphere occurs after a time less than 

the duration of the contact of that particular collision.

8) Empirical formulae relating peak of Fourier transform and 

dimensionless contact time have been found for a single 

sphere undergoing a Hertzian acceleration.

9) Empirical formulae relating frequency associated with the 

peak of transform and dimensionless contact time have been

found for a single sphere undergoing a Hertzian acceleration.
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10) A typical sound pressure-time trace for a pair of colliding 

spheres is like a damped sine wave. The initial peak 

might be compressive or rarefactive followed by a secondary 

peak normally higher than the initial one.

11) Depending upon whether the initial peak is compressive or 

rarefactive the secondary peak is either rarefactive or 

compressive respectively.

12) For most of the duration of the collision of equal radii 

metallic spheres the first compressive peak at 0= 0° would 

be unaffected by the pressure contribution of the second 

sphere.

13) Empirical formulae relating the dimensionless rarefactive 

peak amplitude and dimensionless contact time have been 

found for a pair of similar spheres of equal sizes. The 

dimensionless time for which the rarefactive peak occurs 

is also investigated and expressed empirically in terms 

of dimensionless contact time.

14) The directional distribution of the sound radiated by a pair 

of colliding spheres of equal sizes is symmetrical about a 

line joining the centres of the spheres and about a line 

perpendicular to this line through the contact point. The 

directional distribution of the sound for a pair of colliding 

spheres of unequal sizes is also symmetrical about a line 

joining the centres of the spheres and no symmetry about

the perpendicular direction exists.
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15) Empirical formula relating frequency at which the peak 

of transform occurs and dimensionless contact time have 

been found for a pair of colliding spheres.

16) Energy radiated by an impulsively accelerated sphere is 

equal to half the kinetic energy of air displaced by the 

sphere.

17) Empirical formula relating energy and dimensionless contact 

time are given for a sphere undergoing a Hertzian 

acceleration.

18) For spheres of the same size energy never exceeds the 

kinetic energy of air displaced by the impactee.

19) The total energy radiated by a pair of colliding steel

-4 spheres will never be greater than 1.5 x 10 times the 

kinetic energy of the impactee.

20) The sound pressure in the far field has been calculated 

for plastic and visco-elastic spheres.

21) The sound pressure due to collision of a pair of visco-

elastic spheres of the same material may be found by 

assuming each sphere individually colliding with a rigid 

massive metallic plane with an initial relative velocity 

equal to half the relative velocity of the spheres.

22) Materials which are similar when judged by their static 

rigidity may behave differently as radiators of sound if 

their visco-elastic functions are not the same.

23) Numerical methods given for the visco-elastic case may 

also be applied for elastic case by simply assuming =°°.
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Conclusions with respect to transient vibration sound 

are: -

1) Orthogonality conditions have been shown to be satisfied 

for both torsional and spheroidal modes.

2) The response of spheres to any excitation could be 

calculated and has been calculated for step acceleration 

functions and Hertzian acceleration function.

3) Modal shapes have been established and illustrated 

graphically.

4) The sound pressure due to transient vibration of spheres 

has been calculated.

5) Theoretical and experimental results are compared and 

their compatibility has been discussed.
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Pressure (Pascals)

FIGURE 9.12. POLAR DISTRIBUTION OF POSITIVE PEAK PRESSURE

FOR 2.54 cm DIAMETER SPHERES.

(v =1.5 m/s, r = 0.375 m)

* Measured; Calculated.

<T5
U
co

FIGURE 9.13. POLAR DISTRIBUTION OF NEGATIVE PEAK PRESSURE

FOR 2.54 cm DIAMETER SPHERES.

(vQ = 1.5 m/s, r = 0.375 m)
* Measured; Calculated.
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POSITIVE PEAK PRESSURE VS IMPACT VELOCITY 
FOR 2.54 cm DIAMETER SPHERES.
(r * 0.375, e = 0°)

* Measured; _____ Calculated.

L0G1 0
2_

0-....
I ' • • I i t : ) ( :

-1 0 i

L0G1 0
Impact velocityf m/s)

FIGURE 9.16. NEGATIVE PEAK PRESSURE VS IMPACT VELOCITY

FOR 2.54 cm DIAMETER SPHERES.
(r = 0.375 m, e = 0°)

* Measured; Calculated.



-335-

L0G1 0
- 1 _

O ----------- T j—T—. , ------------7 ]—7—r.....

- 1 0

CL
- 3

L0G1 0
Impact velocity (m/s)

FIGURE 9.17. ENERGY INTEGRATION VS IMPACT VELOCITY

FOR 2.54 cm DIAMETER SPHERES.
(r = 0.375 m, 6 = 0°)

* Measured; ____  Calculated.

Impact velocity (m/s)

FIGURE 9.18. ENERGY INTEGRATION VS IMPACT VELOCITY
FOR 2.54 cm DIAMETER SPHERES,
(r = 0.375 m, o = 40°)

* Measured; Calculated.
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