IT City Research Online
UNIVEREIST%( ?qui)NDON

City, University of London Institutional Repository

Citation: Hosseini-Hashemi, S. (1985). The Sound and Vibration Resulting from the
Impact of Spheres. (Unpublished Doctoral thesis, The City University)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35780/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

THE CITY UNIVERSITY

DEPARTMENT OF MECHANICAL ENGINEERING

"THE SOUND AND VIBRATION RESULTING

FROM THE IMPACT OF SPHERES"

by

Shahrokh Hosseini-Hashemi

This Thesis is submitted
for the degree of Doctor
of Philosophy

DECEMBER 1985.



IMAGING SERVICES NORTH

oooooooooooooooooo

BEST COPY AVAILABLE.
VARIABLE PRINT QUALITY



CONTENTS

List of Figures

List of Tables

NOMENCLATURE

SUMMARY

ACKNOWLEDGEMENTS

1. INTRODUCTION

1.1.
1.2.

General Introduction

Review of Literature

1.2.1. Rigid body radiation

1.2.2. Pseudo steady state radiation

2. FUNDAMENTAL CONCEPTS USED IN THE SUBSEQUENT CHAPTERS

2.1.

2.2.

2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

3. RIGID

3.1.
3.2.
3.3.

3.4.

3.5.

The Cartesian form of the three dimensional
acoustic wave equation

General solution of acoustic wave equation
in spherical co-ordinates

Monopole and simple sources.

The dipole source

Impact of elastic bodies

Numerical solution of force-time history
Equation of motion in an elastic medium

Solution of equations of motion for solid spheres
BODY RADIATION DUE TO ELASTIC COLLISIONS OF SPHERES

Sound radiation from an impulsively accelerated sphere
The impulsive monopole source

Velocity potential of an impulsively accelerated
sphere (Laplace transform method)

Sound radiated by a sphere undergoing a Hertzian
acceleration (Laplace transform method)

Sound radiated by a sphere undergoing a Hertzian
acceleration (Approximate method)

XXV

XX Vi

—

O W w

13

14

17
23
27
28
32
33
36

49

50
53

54

58

66



3.6.

3.7.

3.8.

3.9.

3.10.

Sound radiated by a pair of colliding spheres
(Convolution method)

Sound radiated by a pair of colliding spheres
(Numerical method)

Sound radiated due to change of volume of
sphere undergoing an elastic collision

Acoustic energy of an impulsively accelerated
sphere

Acoustic energy of sphere undergoing a Hertzian
acceleration

RADIATION DUE TO INELASTIC COLLISION OF SPHERES

4.1.
4.2.

4.3.

4.4.

Elastic-plastic contact deformation

Numerical solution of sound pressure

Sound radiation from a sphere subjected to
inelastic collision by a sphere (Analytical
solution)

Fourier transform ofpressure-time history

SOUND PRESSURE RADIATED BY A VISCO-ELASTICSPHERE

5.1.
5.2.
5.3.

Impact solution
Numerical solution of sound pressure

Discrete finite transform for evaluating the
Fourier transform of pressure-time history

SOUND RADIATION FROM TRANSIENT VIBRATION OF SOLID SPHERE

6.1.
6.2.

6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.

Vibrations of elastic sphere

Solution of equations of motion (Alternative
approach)

Frequency equation

Orthogonality and normalisation of torsional modes
Modal shapes of torsional vibrations

Orthogonality and normalisation of spheroidal modes
Modal shapes of spheroidal vibrations

Response of a sphere to a radial concentrated force
Response due to collision

Sound generated by transient vibration of solid
spheres

Page No.

78

79

82

86
HO

HO
H7

H5
131

142

142
144

148
157

157

163
170
174
179
184
193
198
210

216



Page No.

SOUND RADIATION FROM TRANSIENT VIBRATION OF HOLLOW SPHERE 247
7.1 . Vibrations of hollow sphere 247
7.2. Frequency equation 249
7.3. Orthogonality and normalisation of torsional modes 253
7.4. Orthogonality and normalisation of spheroidal modes 256
7.5. Sound generated by transient vibration of hollow

sphere 263
EXPERIMENT 287
8.1. Specimens and suspension 287
8.2. Design of the test rig 288
8.3. Fourier Analyzer 289
8.4. Anechoic chamber 290
8.5. Acoustic measurements 291
8.6. Acceleration measurements 292
DISCUSSION AND CONCLUSIONS 298
9.1 . Force-time history 298
9.2. Impulsively accelerated and pulsating sphere 2908
9.3. Sphere undergoing a Hertzian acceleration 299
9.4. Radiation due to change of volume of sphere 308
9.5. Acoustic energy 308
9.6. Radiation of sound due to inelastic collision

of spheres 311
9.7. Radiation of sound due to collision of visco-

elastic spheres 312
9.8. Vibration of solid and hollow spheres 312
9.9. Experimental results 314
9.10. Conclusions 316

REFERENCES 343



LIST OF FIGURES

Figure No.

2.1,

2.2.

2.3.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11 .

3.12.

3.13.

3.14.

3.15.

Illustration of elements ds = r sinedodip

Force-time history for 1.27 cm diameter steel spheres
with an initial impact velocity of 1.52 m/s

Stresses acting on a small rectangular parallelepiped
Pressure-time curves of impulsively accelerated sphere
Pressure-time curves of impulsively pulsating sphere

Dimensionless peak pressure against dimensionless
contact time

Variations of n with R
max p

Dimensionless peak of transform against 3
Variations of n*  with R
max |

A Comparison of the exact solution for the sound
radiated by an impulsively accelerated sphere and
approximate evalua.timof that sound obtained by
aerodynamic approach

A Comparison of the exact solution for the sound
radiated by a sphere undergoing a Hertzian acceleration
and approximate evaluation of that sound obtained by
aeroacoustic approach

Model of colliding spheres

Page No.

47

47
48
90

90

91
91
92

92

93

93

94

Model of wave path from impactor to measuring microphone

located at 9 = 0°

Dimensionless pressure-time curve for a pair of similar
spheres of equal sizes (9 =0°)

Dimensionless pressure-time curve for a pair of similar
spheres of unequal sizes (0 = 0°)

94

95

96

Dimensionless pressure-time cugve for a pair of dissimilar

spheres of equal sizes (6 = 0°)

97

Dimensionless pressure-time curv for a pair of dissimilar

spheres of unequal sizes (9 = 0u)

Directional distribution of maximum pressure radiated
by a pair of similar spheres of equal sizes.

98

99



Figure No. Page No.

3.16. Directional distribution of maximum pressure radiated
by a pair of similar spheres of unequal sizes. 99

3.17. Directional distribution of maximum pressure radiated
by a pair of dissimilar spheres of equal sizes. 100

3.18. Directional distribution of maximum pressure radiated

by a pair of dissimilar spheres of unequal sizes. 100

3.19, Dimensionless rarefractive peak pressure against g. 101

3.20. Variation of n___ with 8. 101
max

3.21 . Fourier transform of pressure for a pair of similar
spheres of equal sizes. 102

3.22. Fourier transform of pressure for a pair of similar
spheres of unequal sizes. 103

3.23. Fourier transform of pressure for a pair of dissimilar
spheres of equal sizes, 104

3.24. Fourier transform of pressure for a pair of dissimilar

spheres of unequal sizes. 105

3.25. Variation of n* with 6. 106
max

3.26. Sound pressure time history for 2.54 cm diameter steel

sphere with an initial impact velocity of 2.5 m/s. 106
3.27. Illustration of element dS for evaluating the shaded volume. 107
3.28. Dimensionless pressure time curve due to change of volumel

of sphere undergoing an elastic collision. 108
3.29. Variation of dimensionless energy with 6 (Impactee only). 109
3.30. Variation of total dimensionless energy with f. 109
4.1. Force versus time for 2.54 cm diameter lead spheres with

an initial impact velocity of 0.55 m/s. 136
4.2. Comparison of analytical and numerical solution of pressure

time histories for 2.54 cm diameter lead spheres with an

initial velocity of 0.55 m/s. (Impactee only). 137
4.3. Sound pressure-time history for 2.54 cm diameter lead

spheres with an initial impact velocity of 0.55 m/s. 138



Vi

Fi gure No. Page No
4.4. Fourier transform of pressure for 2.54 ¢m diameter

lead sphere with an initial impact velocity 0,55 m/s. 139
4.5. Fourier transform of dimensionless pressure, (Impactee only) 140
4.6. Fourier transform of dimensionless acceleration. 141
5.1, Sound pressure time history for 2.54 cm diameter sphere

with the same properties described in Case 1. 152
5.2. Sound pressure time history for 2.54 cm diameter sphere

with the same properties described in Case 2. 153
5.3. Sound pressure time history for 2.54 ¢m diameter sphere

with the same properties described in Case 3. 154
5.4, Force-time curves due to collision of steel sphere and

visco-elastic sphere described in Table 5.1. 155
5.5. Fourier transform of pressure for sphere with the pressure

time history as given in Figure 5.3. 156
6.1. Variation of normalised displacement of torsional

vibration of sphere along the radius ( n = 2). 223
6.2. Diagrams of the surface mode spheres of torsional vibration. 227
6.3. Variation of normalised displacement (u ) of spheroidal

vibration along the radius. 232
6.4. Variation of normalised displacement (uQ) of spheroidal

vibration along the radius. 237
6.5. Diagrams of the surface mode shapes of spheroidal vibration. 241
6.6. Force-time curves for a pair of colliding spheres of

radii 1.27 cm and 7.112 tm (EqQ.(6.161), n = 0 and £ =1,5). 246

7.1 . Variation of normalised displacement of torsional vibration

of hollow sphere along the thickness. 274
7.2. Variation of normalised displacement (u ) of spheroidal

vibration of hollow sphere along the thickness. 278
7.3. Variation of normalised displacement (uJ of spheroidal

vibration of hollow sphere along the thickness. 283

8.1. Schematic of Ball Suspension. 294



Figure No.

8.2. Schematic diagram of test rig.

8.3. General arrangement of acoustic measurements.

8.4, General arrangement of acceleration measurements and
apparatus used in calibration,

9.1. Comparison of measured pressure time result and
calculated result for 2.54 cm diameter spheres.

9.2. Comparison of measured pressure time result and
calculated result for 2.54 cm diameter spheres.

9.3. Comparison of measured pressure time result and
calculated result for 2.54 cm diameter spheres.

9.4. Comparison of measured pressure time result and
calculated result for 2.54 cm diameter spheres.

9.5. Comparison of measured Fourier transform pressure
result and calculated result for 2.54 cm diameter
spheres.

9.6. Comparison of measured Fourier transform pressure
result and calculated result for 2.54 cm diameter
spheres.

9.7. Comparison of measured Fourier transform pressure
result and calculated result for 2.54 cm diameter
spheres.

9.8. Comparison of measured Fourier transform pressure
result and calculated result for 2.54 cm diameter
spheres.

9.9. Fourier transforms for various size spheres,

9.10. Fourier transform comparison for 2.54 cm diameter
sphere as a function of the angle for vQ =2.5 m/s.

9.11 . Measured Fourier transform pressure for 5,08 cm
diameter spheres.

9.12. Polar distribution of positive peak pressure for
2.54 cm diameter spheres.

9.13. Polar distribution of negative peak pressure for

2.54 cm diameter spheres.

Page No

295

296

297

321

322

323

324

325

326

327

328

329

330

331

332

332



Viii

Page No.

333

334

334

335

335

336

337

338

339

340

Figure No.

9.14. Comparison of measured energy integration result
and calculated result for 2.54 cm diameter spheres.

9.15. Positive peak pressure vs impact velocity for
2.54 ¢m diameter spheres.

9.16. Negative peak pressure vs impact velocity for
2.54 ¢m diameter spheres.

9.17. Energy integration vs impact velocity for 2.54 cm
diameter spheres.

9.18. Energy integration vs impact velocity for 2.54 cm
diameter spheres.

9.19. Distribution of Energy Integration for 2.54 m
diameter spheres.

9.20. Comparison of measured Fourier transform acceleration
result and calculated result for Impacjee of radius
7.1 cm at position r = 7.1 cm and 0= 0

9.21 . Comparison of measured Fourier transform acceleration
result and calculated result for Impactge of radius
7.1 cm at position r = 7.1 cm and 0= 0 .

9.22. Comparison of measured Fourier transform acceleration
result and calculated result for Impactge of radius
7.1 cm at position r = 7.1 cm, and 0= 0°.

9.23. Comparison of measured Fourier transform acceleration
result and calculated result for Impactge of radius
7.1 cm at position r = 7.1 cm and 0= 0 .

9.24. Comparison of measured Fourier transform pressure
result and calculated result for 7.1 cm radius spheres. 341

9.25. Comparison of measured Fourier transform pressure

result and calculated result for 7.1 cm radius spheres. 342



LIST OF TABLES

Table No.

5.1. Material properties and assumed relaxation times
of three visco-elastic spheres.

6.1. Non-dimensional frequency of torsional vibration
of spheres.

6.2. Non-dimensional frequency of spheroidal vibration
of spheres.

7.1. Non-dimensional frequency of torsional vibration
of hollow sphere, (b/a = 0.2)

7.2. Non-dimensional frequency of torsional vibration
of hollow sphere (b/a = 0.4).

7.3. Non-dimensional frequency of torsional vibration
of hollow sphere (b/a = 0.6).

7.4. Non-dimensional frequency of torsional vibration
of hollow sphere (b/a = 0.8).

7.5. Non-dimensional frequency of spheroidal vibration
of hollow sphere (b/a = 0.2).

7.6. Non-dimensional frequency of spheroidal vibration
of hollow sphere (b/a = 0.4).

7.7. Non-dimensional frequency of spheroidal vibration
of hollow sphere (b/a = 0.6).

7.8. Non-dimensional frequency of spheroidal vibration
of hollow sphere (b/a = 0.8).

8.1. Characteristic of the balls used for the tests.

Page No.

151

221

222

226

267

268

269

270

271

272

273

294



MOMENCLATURE

a, a;, az,ax radius of sphere
Ays Ay Ay maximum value of the acceleration in the
elastic collision
a* inner radius of hollow sphere
&U,SI,EE,Etc. coefficient of zero_and even powers of
kz in expansion of O
Sk. elements of matrix 4 by 4 defined in (7.9a)
J to (7.9h)
A integral function in Hertz's theory of contact
A arbitrary constant in the equation (6.6)
A* real part of the Fourier transform of
acceleration in inelastic collision
ﬂ*n coefficients of component waves in equation
y2:e3)
E acceleration function
E] acceleration function during elastic loading period
Az acceleration function during elastic-plastic period
ﬂE acceleration function during unloading period
|A| absolute value of acceleration
A coefficient of periodic function in equation (2.23)
ﬁn arbitrary constant in the eguation (6.18a)
ﬁnm coefficient of component waves in equation (2.37)
ﬂnmi arbitrary constant in the equation (6.42b)
Enmq arbitrary constant in the solution of equation (6.49b)
Epsq arbitrary constant in equation (6.44b)
En arbitrary constant in equation (6.18a)
Enmt arbitrary constant in equation (7.12b)

e arbitrary constant in equation (7.14b)



b*

NOM »B2>etc.

B*

B*
n

X n X

B-| ,B2jBg

nm

nm%

o

nmq

091

ol

nm§£

il

nmq

CrC2

Xi

coefficients of zero and even powers of k2
in expansion of Bn

a position along the length of beam
integral function in Hertz's theory of contact
arbitrary constant in equation (6.9a)

imaginary part of the Fourier transform of
acceleration in inelastic collision

*

ex
M

time independent coefficients in expressions
of sound pressure due to inelastic collision

coefficient of periodic function in equation (2.23)

arbitrary constant in equation (6.23a)

coefficients of component waves in equation (2.37)

arbitrary constant in Rj
arbitrary constant in R2
arbitrary constant in equation (6.23a)
arbitrary constant in R?
arbitrary constant in R

sound velocity

1 (A+B)~
“4
= (X+2pt
velocity of dilatation waves ( P P

velocity of distortion waves

time independent coefficients in expressions of
sound pressure due to inelastic collision

coefficients of modified Bessel functions of the
first and second kind in equation (3.25)



%711

d duration of contact

dgid1!d2 coefficients of zero and even powers of kE in
expansion of ¥

d duration of contact in inelastic collision

D integral domain

Dn arbitrary constant in equation (6.9b)

D*n coefficients of Legendre polynomial in equation (2.42)

DI’DZ’DE time independent coefficients in expressions of
sound pressure due to inelastic collision

D coefficients of cylindrical Bessel function of
the first kind in equation (2.31)

ﬁn arbitrary constant in equation (6.23c)

Dnmi arbitrary constant in T]

Dnmq arbitrary constant 1in ?2

En arbitrary constant in equation (6.23c)

Dnmﬁ arbitrary constant 1in Y1

Dnmq arbitrary constant 1in TE

E’El’EZ’Ex Young's modulus

E|< kinetic energy

EP potential eneragy

% W m=t 12
E o= L
(1+M)

E energy

EI’EZ’ES time independent coefficients in expressions of
sopund pressure due to inelastic collision

ET energy for a pair of colliding spheres

E coefficient of cylindrical Bessel function

of the second kind in equation (2.31)



nm£

F3 “Fk
Fx’FyFz
fe

FP

Fs

fep

feu

max
Fnm£“Fnmq“Fpsq
F*

F

Xiii

frequency

radial dependent function in solution in Ih
radial dependent function in solution of

maximum frequency in D.F.T. method

first derivatives of fQ and f~ with respect to r
second derivatives of fQ and f~ with respect to r
frequency resolution

time independent part of F*

function dependent on a in equation (4.38)
function dependent on Z in equation (4.43)

force function

force at instants t = jAt and t = kAt

resultant force in direction x, y and z

force in the elastic annulus

force in the plastic circle

magnitude of force in the form of a step function
total force in the elastic-plastic loading period
total force in the elastic unloading period

. J? ,5v022\ 0.6

— noen

C 4K]K2
function defined in (6.80a) and (7.21a)
left-hand side of equation (6.125a)

coefficient of spherical Bessel function of the
first kind in equation (2.33)



g function dependent on a in equation (4.24)

91 >92>93 separation functions for solving equation (2.16)

S0 gravitational acceleration

9'1 ,972>9'3 first derivatives of separation functions with respect
to their arguments used for solving equation (2.16)

g"pg"2.g"3 second derivatives of separation functions with respect
to their arguments used for solving equation (2.16)

g*nmE time independent part of G*

Gnm«.”Gnmq“Gpsq function defined in (6.80b) and (7.21b)

G* left-hand side of equation (6.125b)
G*n expression defined in (6.175¢c)
A CA
Al PA27N3 time independent coefficients in expression of
sound pressure due to inelastic collision
G coefficient of spherical Bessel function of the
second kind in equation (2.33)
h =2
n
h™~.h <2 spherical Hankel functions of the n”~ order of
the first and second kind respectively
hD drop height of the ball
A 011
h nax“01!
n
F =1
n
H heavyside function
components of vector potential in the r,e,ip directions
H vector potential
i positive root of minus one
2 unit vector in x direction
I acoustic intensity

modified Bessel function of the first kind

1 shortened for integration in equation (5.6)



j any integer
3n spherical Bessel function of the n”™ order of
the first kind
i unit vector in y direction
- cylindrical Bessel function of the n”™ order
v of the first kind
k any integer
k unit vector in z direction
K wave number, = <
Ki circular frequency divided by velocity of dilatation
waves, = —
Cl
k2 circular frequency divided by velocity of distortion
waves, = —
c2
Ky modified Bessel function of the second kind
K* = é n A\Y 1
max
AR\
KpK? constants in the Hertz's theory of contact
KrK2,K3 bulk modulus
SLy£j > &2 ratio of velocity of sound to the radius of sphere
m any integer
m| ,m2,m mass
m mass of air displaced by the sphere
M mass of solid or hollow sphere
m2
M - uT
n any integer
tl
nl ’ a
L)

n2 7 d



XV i

n* dimensionless time delay

n unit normal vector

n* dimensionless frequency

"k = d/At

)1 max dimensionless frequency at which peak of transform occurs
X

n dimensionless time

X

AMax dimensionless time at which peak pressure occurs
n,n any integer

N number of samples in D.F.T. method

ApmA generalized force

p,pPQ,p-| >P2 >P3 sound pressure

Pre real part of sound pressure
PUI pressure due to unit impulse acceleration
pmax peak pressure amplitude
Ipl absolute value of sound pressure
P static pressure and acoustic pressure
P static pressure
P pressure distribution across the circular contact area
P Legendre polynomial of the nEH order
n
pnm associated Legendre function

" 2
PD

m 2 —\N\ 7
PL

4+M 0 0
i " RVo T
1.17M __a

PN - 1+M
Prms root of mean square pressure
P dynamic flow pressure



XVii

~~qk elliptic integral in the Hertz's theory of contact
associated generalized coordinate
%m£ differentiation of g with respect to time

second differentiation of gnm* with respect to time

£ velocity vector
r radial coordinate
ro arbitrary radial coordinate
r1°r distance from the centre of sphere to the
microphone position
—r o position vector
r distance from the centre of the circular contact area
B radius of the circle of the plastic region
) radius of the circle of the plastic region
at the end of elastic-plastic period
R radial dependent function in equation (6.22a)
. § =
RI = D mezanfwne & nmtfn'wng ST = ikl
1 | nmg
r Rnmg‘)'n~ng cJ*nmg~n~nq <3 Q
1 nmq "
R' differentiation of R with respect to r
R' -],R*2 differentiation of R| and with respect to r
R" second differentiation of R with respect to r
R-| 5R2 dimensionless coefficients in expressions (2.122)
and (2.123)
R radius of contact area
Rl radius of the contact area at the end of elastic

loading period.



XViii

S = iw

s* condensation

S surface area

Snf quantity defined in (6.156a)

S displacement vector

Sn spherical surface harmonic of degree n

$nE quantity defined in (6.156b)

t time

tl termination time of the elastic loading period
B duration of the elastic-plastic loading period
3 duration of the elastic unloading period

At, At At time step size

t* = tN+t?)

A

t = t-t-]

t = t-t-]

T period

Td time delay

time independent displacement components in the
r,0,ip directions

Z-th natural mode of degree m and order n in the

ur,nm£ ! -
r direction

Ur, psq g-th natural mode of degree S and order p in the
r direction

u0,nm£ £-th natural mode of degree m and order n in the
0 direction

ue,psq g-th natural mode of degree S and order p in the

0 direction



UipinmA

%,psq
%

“ronk

r,nmE
U*

e ,nm£E

*
u ip,nm£
\
!
\

un

— N

~

/2
Ur‘u67%
URIG

°r
ur

A

u

VO
vi’v2’vr

vX‘vy ‘vz

XiX

£-th natural mode of degree m and order n in the
ip direction

g-th natural mode of degree S and order p in the
ip direction

£-th normal mode of degree zero and order n in the
r direction

£-th normal mode of degree m and order n in the
r direction

£-th normal mode of degree m and order n in the
6 direction

£-th normal mode of degree m and order n in the
ip direction

time independent displacement in the x direction
nth component of u

di splacement

displacement components in the r,0,ip directions
rigid body displacement

differentiation of Uf with respect to time
second differentiation of Uf with respect to time
displacement in the x direction

velocity amplitude

constant velocity

radial velocity

velocity components

Fourier transform of impulsive velocity vqH(t)

complex conjugate of Fourier transform of
radial velocity
time independent displacement in the y direction

nth component of v



XX

v volume

v displacement in y direction

\:\’*nm£ time independent part of W*

‘;‘( time independent displacement in the z direction
W nth component of w

w function dependent on r and t

‘;\\’* left-hand side of equation (6.125c)

w displacement in z direction

W Laplace transform of W

X Cartesian coordinate

6x infinitesimal length in x direction

X transformation variable for solving equation (2.21)
X function dependent on r and s

spherical solid harmonic of degree n

y Cartesian coordinate

spherical Bessel function of the nth order of the
second kind

Sy infinitesimal length in y direction
Sr
y* c
m
Y = — PIX)
dxm *
D =0
Y1 " AnpmrVAW cTNnmtvvwn£ec/ ’ § / 0
2 2 nmE '
Y2 %mqg’In~ng c2"+Emmgyn~ng”™ ' =nmq
nmq * u
Yv cylindrical Bessel function of the second kind
Ye yo spherical surface harmonic of degree n

mn’ mn



XX i

Y'1°Y"2 differentiations of Y-j and with respect to r
Y |,¥”2 second differentiations of Y- and Y9 with respect
tor ! z
z Cartesian coordinate
- i r r.\ rA =0
71 nmeXInAng A nm£ynjwn£c2 FARK o
, " \sg*Vwpg™+2psqyp(wpq <~ "{Jpsq / o
z
z"\z"2 differentiations of zj and z* with respect to r
7 r'zHZ second differentiations of zj and z* with respect to
6z infinitesimal length in z direction
4 = (KnN”d]
Zv = cN-f ) + S2I-( )
¢
*
z ¢
s max
YA specific acoustic impedance
'Ct+otq -ct
7 max
«l
yA derivative of Z with respect to time
a approach
al approach at the end of elastic loading period
aF permanent deformation
,5v02 2/5
x )
amax 4K5K2
ot first derivative of ¢ with respect to time
al first derivative ofct-|With respect to time
a second derivative of ¢ with respect to time

a third derivative of a with respect to time



®xii

o* expression defined in equation ( 6,175b)
V] coefficient of viscous damping
& series solution of equation (2.90)
&n nt" term in expansion of o
> =1 4o M
max St aftiner)
E,B1152,ﬂx dimensionless contact time
BnR viscous damping factor
BEva L
> ol g
3'|:'|--1.}2}m.I
B dimensionless contact time in dinelastic collision
& e
5‘2 e FI-
o — g
B3 = bF
B series solution of equation (2.91)
En nt term in expansion of B
¥ series solution of equation (2.92)
}n nt term in expansion of ¥
5],62 material property in Hertz's theory of contact
6£q’6m5’6np Krﬁnegker delta
o Swintad
3 ﬁz
& Dirac delta function
3 dilatation divided by e'“t
En nt component of &
i} dilatation = Exx+€yy +Ezz
€ =1 (form=20), =2 (form # 0)

Exx’Exy’Exz’Etc‘ components of strain in Cartesian coordinates



%

el
6-|,02

PP P2

V,v-| 2

e,ercl
Ang

Ang

K6

Kq

P,PrPx

pQ

p

XXTii

integration variable in the convolution integral
""Poal

ml

quantity defined in equation ( 6.27b)

angular coordinate

arbitrary annular coordinate

angular coordinates of impactee and impactor
Lame's constant

rigidity modulus

i-th modulus of rigidity in summation form
of presentation of pip

Poisson's ratio

fractionals of half orders, = n+ h

ratio of radial coordinate to the radius of sphere
quantity defined in equation (6.99b)

quantity defined in equation (7.31)

Koss's dimensionless pressure time

Koss's dimensionless pressure frequency

acoustic power

density

original density, density of air

density of medium

arr°re’°rk etc’ components of stress in spherical coordinates

axx,CFxy ,axz "°yz’

etc.

T*

components of stress in Cartesian coordinates

. r-a
=1 —

-2a/c

relaxation or retardation time of viscoelasticity



(0

COﬁSCO 500
n nq pq

co*
nf

co
n

w0 ,C0
z

X"y
@}

%E£
V2

velocity potential function
4 -1 ~nE |
_tn

spherical solid harmonic of degree n

function dependent on 9 only C x(@) =cosOp 6)

angular coordinate ? 4 4
r K? r
series in the form of, | - 2(2n+3T + 2x4(2n+3)(2n+5)

relaxation function of viscoelasticity
rate of relaxation
circular frequency

£-th and g-th circular frequencies of orders n and p

spherical solid harmonic of degree n
components of rotation in Cartesian coordinates
£-th circular frequency of order n of impactor
£-th dimensionless frequency of order n
Laplacian operator

Laplace transform operator



XXV

SUMMARY

In this research project the rigid body (or acceleration)
noise together with the sound due to transient vibration has been
studied for colliding spheres. In the investigation of the
rigid body sound radiated by colliding spheres the three cases
considered cover elastic,plastic and visco-elastic impact.

For elastic impact the Hertz law of contact was used for
predicting the force time history during the contact period.

The velocity potential for an oscillating sphere is also obtained
and from this can be derived the sound pressure in the far field
for a unit acceleration impulse. Convolution of this pressure
term with the acceleration from the Hertz theory enables the
computation of the pressure as a function of time.

For the case of radiation due to inelastic collision the
Andrews theory is used in which the contact period is divided into
three stages, an initial elastic loading period, secondly an
elastic-plastic loading and finally an elastic loading period,
Knowledge of the accelerations during each period enabled prediction
of sound pressure with the aid of the convolution method.

The sound pressure radiated by a visco-elastic sphere in
collision with a metallic sphere is also analysed. The model
was based upon the use of the force-time relationship developed
by Pao.

Finally, the transient vibrations of solid and hollow spheres
are studied and the sound caused by transient vibration for both

types of sphere are computed.
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1- INTRODUCTION

1.1. General introduction

Many of us have experienced pleasant feelings whilst
listening to our favourite music during the evenings after
a hard working day at the office or factory. This delicate
instrument (i.e. the human ear) through which such comfort
and relaxation is achievable may easily be annoyed by
unpleasant noise. Continuous and discontinuous exposure to
the hostile noise will effect man both physically, psychologically
and socially.

The development of industry in modern societies has lead to
more and more sound sources giving higher and higher noise levels.
In most of the industrial machinery such as punch presses, gear
boxes and computer print-out mechanisms, the impact noise is the
dominant source of noise. Thus, work is required to be carried
out in the field of impact noise in order to provide methods of
acoustical prediction of impact machinery noise in a form which
can be used at the design stage.

Five mechanisms of impact noise have been introduced by
Akay fl]. These are rigid body radiation, pseudo-steady-state
radiation, air-ejection, radiation due to rapid surface deformations,
and sound radiation due to fracture of materials following impact.

The first two of the above mechanisms are subjects which

have received attention in this report.



A review of rigid body radiation and pseudo-steady-state
radiation is given in this Chapter. Following that, some
principles of sound wave theory together with concepts required
for analysing the sound radiated by elastic collision of spheres
are discussed in Chapter 2.

In Chapter 3 the rigid body sound caused by elastic
collision of spheres is considered. The Hertz law of contact
is used for predicting the force time history during the contact
period. The resultant sound pressure for a pair of colliding
spheres is obtained according to the ray theory.

The rigid body sound due to inelastic collision of spheres
is dealt with in Chapter 4. A numerical method as well as
analytical one is introduced for predicting the sound pressure.

Chapter 5 considers the sound caused by the impact of
viscoelastic spheres. The discrete finite transform method
is given for evaluation of Fourier transform of pressure-time
history,

Torsional and spheroidal vibrations of solid and hollow
spheres are investigated in Chapter 6 and 7. The response
of a sphere to a radial concentrated force is obtained and sound
due to transient vibrations is calculated.

In Chapter 8 the experimental results concerning elastic
col lision are given.

Finally, in Chapter 9, both theoretical and experimental

results are discussed and conclusions drawn.



1.2. Review of Literature

1.2.1. Rigid body radiation

The rigid body radiation can be described as a pressure
disturbance generated in an acoustic medium by the acceleration
of an object. The study of this type of radiation goes back
to the nineteenth century when Kirchhoff 12] calculated the
velocity potential generated by an impulsively accelerated
sphere. Later Taylor 13] studied the motion of a sphere in
a compressible fluid subjected to a sudden impulse. He used
a special case of the more general solution given by Love 14]
and included the effect of the relative ratio of the densities
of the sphere and the fluid in which it is immersed. Taylor
showed that the final velocity of a sphere given an initial
velocity UQ becomes Ug/(1+B), where 6 is the ratio of the virtual
mass m (half the mass of fluid displaced) to the mass of the
sphere m and gave an expression for energy lost as ~mLP|3/(I+[3).
He argued that this energy is propagated away as a sound wave.

A similar study was carried out by Miles 15] for a cylinder
in a compressible flow at low Mach number. By a simple analysis
he explained the mechanism of sound radiation from an accelerating
body in the following way: When a body immersed in an inviscid
compressible fluid is brought to its final uniform velocity Uo
impulsively and kept at this constant velocity by a force F(t),

the final momentum of the associated flow will be mUQ, where m

is the virtual mass. Hence the total impulse delivered by F(t)

00

to the body is equal to 1= /F(t)dt=mll . Since the force F(t)
0 0



acts on a constant velocity the total work done is WT= /F(t)U dt
- H1IP. After the steady state is reached no resultantoforce0
acts on the body and the flow becomes potential; therefore, the
energy of the associated flow is %nlP. Miles attributed the
dissipation of the remaining “mlP to sound radiation. When Miles
result is compared to that of Taylor's since m/m=B and for air
3715 it follows that the amount of energy dissipated is the same
in both analyses to first order in 3. He also computed the
indicia! admittance, the velocity response to a suddenly applied
unit force, and the indicial impedance, which is the force
response to a suddenly imposed unit velocity. He obtained
series solutions for these quantities and plotted them in
graphical form. Later Miles extended these results in two
papers 16,7] to compute the indicial impedance of either a piston
or strip in a baffle.

Longhorn 18] investigated the effect of the compressibility
on the work required to accelerate a rigid sphere when it was
immersed in a fluid. He also calculated the work done on the
sphere to maintain its velocity constant and the energy of the
fluid from the potential field for both impulsive and arbitrary
acceleration.

Chen and Schweikert 19] developed a method of analysis for
predicting sound radiation from an arbitrary body vibrating in
an infinite fluid medium. In their analysis the acoustic field
was described by a distribution of surface sources of unknown

strength at the body-fluid boundaries.



Junger and Thompson 110] by using the standard dipole
formula in the frequency domain and then by Fourier transforming
into the time domain, obtained an expression for sound pressure
radiated by an impulsively accelerated sphere. In their
analysis the velocity was assumed to decay exponentially in time,
which gives rise to a forced exponentially decaying pressure
field. However, in the limiting case of a velocity step function,
the forced solution vanished and the pressure obtained was the
same as Kirchhoff's 12] velocity potential solution after
differentiating with respect to time. Later, Junger IlI], by
analysis in the time domain, treated the cases of an impulsively
expanding sphere and a circular baffle subjected to a velocity
step. He found that in both cases half of the work done on the
fluid is radiated as sound during acceleration, and the other half
is radiated when the source boundaries are suddenly stopped.

Farm and Huang 112] used the source density method developed
by Chen and Schweikert 19] to find the acoustic field generated
by the arbitrarily time dependent motion of a rigid circular
baffled piston in a rigid infinite plane. They also developed
a numerical method and solved the sound pressure induced by the
sudden start of a rigid sphere in an infinite fluid. The surface
of the sphere was divided into 648 triangles and each element
was considered as a rigid piston. They compared their numerical
results for a sphere with Kirchhoff's results. An asymptotic
description of the sound pulse front for the case of arbitrary

shaped bodies was given by Junger 113] with similar numerical



results for the sphere as were obtained by Fam and Huang 112].
Farassat and Sears 114] also treated the present problem as a
special case of the far field sound radiation for rigid bodies
in arbitrary motion.

Ffowcs Williams and Lovely 115] gave an approximate method
for evaluating the sound of impulsively accelerated bodies.

In their approximation method they used the local ray theory to
evaluate the surface pressure fluctuation in the Kirchhoff
integral to give a simple estimate of the sound field radiated
by the impulsive motion of solid bodies. The method was tested
by comparing the approximate calculations with exact results for
an impulsively accelerated rigid sphere. The outcome of this
comparison showed a good degree of agreement.

Akay and Hodgson 116] calculated the potential velocity of
an impulsively accelerated sphere in an arbitrary fluid medium
and showed that as the relative density ratio of the fluid to
the sphere is increased the amplitude of pressure increases too.
They also investigated the effect of the rate of change of
velocity by solving the sound pressure radiated by a sphere
subjected to a ramp step velocity and found out that as the
velocity changes become smaller, the sound radiation decreases.
Finally, they calculated the energy in both time and frequency
domains and concluded that the energy lost in the acceleration
or deceleration is dissipated as sound.

Banerji 117,18] was the first to investigate the radiation

of sound generated by collision of two spheres. He employed



an apparatus which was based on a ballistic principle and
measured intensity in different directions for pairs of
spheres of various materials. These measurements showed
that the maximum intensity was along the direction of impact
and minimum intensity occurred at an angle of about 67° with
the same direction. He also gave an expression for the
velocity potential but did not take the Hertzian acceleration
into account.

Nishimura and Takahashi 119,20] studied the characteristics
of impact sound generated by both normal and oblique collision
of two steel balls of different radii. The duration of contact
was measured electrically and the form of stress wave was
observed by using a piezoelectric transducer and a synchroscope.
A condenser microphone was also employed to investigate the wave
forms of sound pressure due to the collision of the balls. They
showed that the peak sound pressure was proportional to the
6/5th power of the impact velocity which was also in good
agreement with the Hertz contact stress theory.

Further studies of this problem were made by Koss and
Alfredson 121] who extended the work of Nishimura and Takahashi
[19,20] by combining acoustic theory with the Hertz theory of
contact stresses. They showed both analytically and experimentally
that the sound radiation from the colliding spheres is solely
due to their acceleration-time history. In separate studies
Koss [22,23] reported results for sound radiation from the impact
of elastic spheres in normalised forms and extended these results

to inelastic collisions.



Hudson and Copley 1241 investigated the sound generated
by a pair of colliding spheres in a similar way as carried
out by Koss and Alfredson 121].

Anderson 125] studied the noise produced by the impact
of a pile and a hammer in pile driving experimentally. For
this purpose he first considered collision of two spheres
and then investigated the impact of a hammer and a rod which
was partially burried in sand. He found that for objects
with small dimensions the impulsive acceleration and deceleration
of the objects were the main source for generating the noise,
whereas for objects with relatively large size the major part
of the noise was due to transient vibration of the objects at
their natural frequencies.

Hodgson 126] employed the finite difference method to
calculate the sound pulse radiated by a platen in the form of
a solid cylinder undergoing Hertzian deceleration. The results
were presented in dimensionless form in order to enable the
pulse to be calculated for a wide range of platen sizes and
impact times.

Holmes 127] developed an analysis for the acoustic energy
of impact sounds. He showed that the maximum acoustic energy
that can be radiated due to sudden acceleration is related to
the kinetic energy of the fluid flow near the bodies before and
after the impact. He then applied his theory to impact of
spheres and concluded that only a small fraction of this maximum

energy was actually radiated as sound.



A.T. Holmes et al 128] later showed that sound energy due
to rigid body radiation in industrial machinery can reach
considerable levels and proved that rigid body type radiation
can be an important factor in impact sound generation.

Richards et al 129] studied the noise generated by impacting
bodies due to the high surface acceleration during the contact
period. They produced theoretical and empirical formulae
together with curves for the initial peak pressures and the
total acceleration noise energy associated with simple impact

processes.

1.2.2. Pseudo-steady-state radiation

Another fundamental mechanism of impact noise is the
pseudo-steady-state radiation. Richards I30] argued that an
impact process is generally employed to convert a vast amount
of energy into useful work in a very short time span. The
time span is often too short for the applied energy to be
wholly converted into work. The excess energy is absorbed
by the mechanical structural which subsequently undergoes
transient vibrations for a limited period. It is useful
here to consider the role of elastic yib.rations on sound
radiated from an impacted sphere. Lord Rayleigh 131] showed
that except for spheres with very large diameters or yery high
impact velocities energy absorbed by the elastic vibrations of
an impacted sphere is a fraction of its initial kinetic energy

on the order of 1/50(vo/Cq), where vQ is the relative impact
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velocity and CQ is the material elastic waye velocity. Also,
Lamb's analytical results 132] demonstrate that the natural
frequencies of vibrations of small spheres are so high that
they can not contribute to the audible sound field.

Sound radiation due to pseudo-steady-state radiation from
impactively excited structures have been investigated analytically
and experimentally for simple cases of an impacted plate and
an impacted rod by several workers.

The first investigation of sound radiation from impacted
plates was performed by Tokita 133-35], who found the empirical
relationship between either the peak sound pressure or the peak
acceleration level of the plate and the momentum of the impacting
hammer to be A =C-|(mv) 2, where AQ is the peak value of either
acceleration or sound pressure, m is the mass and v is the
impact velocity of the hammer. C(j and C£ are frequency dependent
coefficients. Tokita 133] described as a reduction factor
indicating the momentum converted into plate vibrations but
found this coefficient too complex to be analysed quantitatively.
Tokita found the coefficient C? to be unity in the low frequency
region and less than unity in the high frequency region and
interpreted this result as inefficient transfer of momentum into
plate vibrations at higher frequencies. Tokita further examined
the relationship between vibrational characteristics of the
plate and the radiated sound pressure and found that at low
frequencies the sound pressure was almost proportional to plate

vibrational velocity, while at high frequencies sound pressure
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was almost proportional to acceleration. Similar studies were
carried out by Magrab and Reader 136] who analytically investigated
the far field radiation from an infinite elastic plate excited

by a transient point loading. Their investigation led to the
conclusion that only the radiation from flexural waves with
frequencies above the critical frequency would reach the acoustic
far field.

Akay et al 137] made an experimental study of the sound
generated by the impact of small spheres and steel plates of
different thicknesses. They found the peak sound pressure level
to be linearly dependent on the peak plate acceleration level
at impact.

Matsumoto and Simpson 138] determined by modal analysis
the longitudinal response of an unrestrained elastic cylinder
subjected to a contact force at its end, where radiation from
the radial surface was considered negligible. Matsumoto and
Simpson's experimental results show agreement with their
prediction for the rigid body radiation followed by the lower
amplitude structural ringing correspond!'ng to the modal
acceleration terms of the bar.

Akay and Hodgson 139] examined both theoretically and
experimentally radiation of sound due to collision of a small
sphere and a thick plate. In this study radiation from the
flexural vibrations of the thick plate were found to be

negligible.
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Richards et al [40] in their comprehensive studies
regarding noise arising from the subsequent free vibration
have drawn attention to the radiation efficiency of simple
components having various modes of vibration, and have
presented this information in the form of charts.

Benedetto et al 141] investigated radiation of sound
resultant from the central impact of a sphere on a thin plate
supported along all edges. The observed acoustic phenomenon
consists of an initial sound pressure peak followed by
vibrations at the natural frequencies of the plate.

The pseudo-steady-state radiation from a steel.cylinder
impacted by a steel sphere from the longitudinal or the
transverse direction was investigated by Endo et al 142].

They examined both theoretically and experimentally the
influence of impact speed and the aspect ratio of the impactee
on the radiated sound. They concluded that whether the
dispersion of the elastic waves is significant as in the
transverse impact, or not as in the longitudinal one, the
product of the fundamental natural radian frequency wj of the
cylinder and the contact time T, i.e. wTp is a suitable parameter
for characterising the generation conditions under which rigid
body radiation or pseudo-steady-state radiation is the
predominant source of sound. The pseudo-steady-state becomes
predominant for comparatively small w-|T, while the rigid body

sound is predominant for large values of w-jT.
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2. FUNDAMENTAL CONCEPTS USED IN THE SUBSEQUENT CHAPTERS

In this Chapter some principles of acoustics together with
those concepts later used in the following Chapters are reviewed.
The reviews are divided into three parts as follows:

1. Acoustic wave equation and its solution together with some
characteristies of simple, monopole, and dipole sources of
sound are given. The potential functions of monopole and
dipole sources of sound are later used in Chapter 3 to find
their impulsive solution.

2. The impact of elastic bodies is investigated by means of
the Hertz law of contact. The original work is in German
but an outline of which is given by Goldsmith 143]. The
Hertz law of contact is used later for studying the sound
radiated by colliding spheres. The author also employed
a numerical method in order to calculate the differential
equation relating the force and time which has not been
examined anywhere else. The results of this examination
are compared in Figure (2.2) with the half sine pulse
approximation.

3. Equations of motion for an isotropic elastic solid and its
solution for a sphere are given. These solutions are
based on the remarkable work of Lamb 132, 44] giyen in the
series of two papers. Later in Chapter 6 these solutions
will be used in order to study the vibration of spheres,

and results will be compared with those given by the author.
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2.1. The Cartesian form of the three dimensional
acoustic wave equation

The derivation of the acoustic wave equation is given in
many classical acoustic's text books (e.g. Malecki 145], Junger
146], James [47], and Hunter [48] ). Following procedures
may be found similar to one or another. To produce the
acoustic wave equation one should use both the continuity
equation and the dynamic equation. These equations may be

written as:

(2.1)

components of particle velocity, and p is the sum of static
pressure p and excess or sound pressure p. The details
concerning derivation of the above equations may be found in
[47, 48].

The dynamic equations given in the above are based on
assumptions that the particle velocities are small and the
forces due to viscous stresses are negligible. Another
assumption which is essential for derivation of the acoustic
wave equation is the conservation of heat energy. This means

that the adiabatic law holds. As a result of this assumption
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one obtains:

2*
P = poc s (2.3)

where P ,c, and s are original density, velocity of sound, and
condensation respectively. The condensation of a gas may be
defined as the ratio of the increment of density change to the

original density, and can be expressed as:

2.4

Using equation (2.4) and substituting for p in both equation

of continuity and the dynamic equation gives:

(2.5)

and

-gradp = pQ a (2.6)
where divqg = +

o

But from (2.3):

/\_2I = q C/\ R

91 po 9l (2.7)

Substituting for from (2.5) gives:

at = - poc2diva (2.8)
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Eliminating c[ between (2.6) and (2.8) vields:

5-2- = c2V2p (2.9)
3,2
2 g2 g2 2
where V p is a shortened form of (-*— + --—--- + - )p.

3x2 ay2 az

It is called the Laplacian of p.

The sound field is considered to be irrotational, i.e.
curle = 0 (2.10.a)
or
2 .
V q = graddiv®™ (2.10.b)

Thus one may define the potential function such that:

£ = -gradf (2.11)

where f is the velocity potential function. Using equation

(2.6) and substituting for £ from (2.11) gives:

P = ot (2.12)
From (2.11) and (2.12) one may write:

divE = -divgrad™ = -V2<j) (2.13)
and

IP. (2.14)

at
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Substituting in (2.8) for div”™ and gives:
(2.15)
Equation (2.15) is called the acoustic wave equation.
2.2. General solution of acoustic wave equation in
spherical co-ordinates
The acoustic wave equation given by (2.15) can be written
in spherical co-ordinates r, 9, and ip (Figure 2.1) as:

1 Ll =1 Ly . 1
c2 o2 r29r Or r2sin0
(2.16)
The proof of it is given by Skudrzyk 149].

The solution of (2.16) may be represented in the form:

(2.17)

where g~r), g2(e) and g3(<p) are the individual functions of
one of the space co-ordinates. Substituting the above solution

into the wave equation yields:
i -t ! I

.| I 90 90 1 92
9 +2r|g—+02”= +cotg6 — + - A)
91 o1 92 g2 Sin 0 gr7
(2.18)

doi n d2g-| . dg2 | d2g2

where ng ~dr— 7 91 " r 92 ~ de—' @2 A\ . and so forth.
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Since is a function of r only, the left hand side of equation
(2.18) is independent of 0 and <p Similarly the right hand

side is independent of r, so each side must be equal to a constant.

Let this constant be n(n+l), where n is an integer. Thus one
may write:

r2gf + 2rg-[ + I™r2 - n(n+l)jg™ =0 (2.19)

G

and H i (i

. 9? 90 9

sin20 I— +cotg6 + n(n+D] = - —=m2 (2.20)

g2 92 g3

Using (2.20) and following similar procedure for the separation

of variables gives:

2 + cotgO g2 + In(n+1) - TMin2&]gz =0 (2.21)
and

g3 + m2g3 = 0 (2.22)
where m2 is the constant of separation. In order that the
potential ¢ be single valued, m should be an integer. Thus

may be expressed in terms of periodic function as:

g3("P) = Acos(mip) + Bsin(m<P) (2.23)

The transformation cosO = X transforms (2.21) to the so-called

Legendre's associated differential equation:
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d-X2)n-2g2 " 2X 3* 92 +In(h+1)- y™]g2 =0 (2.249)

Qa

where =-g/sin0 and -2 = 3™ (g2-g2cotq0).

UA

Equation (2.24) is the same as Skudrzyk (491 except X = p.

To find the solution of (2.24) one may first consider the
Legendre's equation derivable from (2.24) by letting m = 0.
Thus:

d2g? dg?
(1-X2)——-2X + n(n+Dg2 = 0 (2.25)
dX
The general solution of (2.25) may be expressed in terms of
Legendre polynominals and Legendre functions of the second kind.
Since the desired solution should be finite at the poles X = -1,

one may choose a solution as:

g2 = pnW = pn(cos9) (2.26)

where Pp(X) is the Legendre polynomial of the nth order.

The first few Legendre polynomials are:

Po(x) =1, P,(X) =x, p2(x) = %3X2 - 1)

P3(X) = M5X3 -3X), P4(X) = J(35X* -30X2 +3),

P5(X) =§(63y5 - 70X3 + 15X). (2.27)

Using equation (2.25) and differentiating it m times with

respect to X gives:

(1-X2)== _2(m+I)x a¥ +[n(n+D)-m(m+D]Y = 0 (2.28)
dy?

where ¥ = ——
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A similar equation to (2.28) can be obtained from (2.24)

by substituting
g2 = Y(I-32)m/2

Thus the solution to the equation (2.24) may be given by:
92 = (1-X2)m/2 < Pn(X) =
( m/ X) (2.29)
where functions PIlliN) are called associated Legendre functions

of the first kind, and these functions in turn are related to
the Legendre polynomials listed in (2.27).

To solve the equation (2.19) one may write:

rl — + r 4|-+!K2r2- (n+Jj)2]z=0 (2.30)
dr2 dr

where 2 = (Kr)~g” and « = p Equation (2.30) is Bessel's
differential equation and its solution may be expressed in

terms of Bessel functions as:

Z =D (Kr) + EY (Kr) (2.31)
n+A n+%

Rewriting (2.31) in terms of spherical Bessel functions gives:

(2.32)

Thus the solution for g* may be written as:

2 -
91 = (pl I0jn(Kr) + Eyn(Kr)] = FjJ~Kr) + Gyn(Kr)

(2.33)
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The above radial dependent function together with time
dependent function should be representable in forms of functions
with arguments ct-r and ct+r. Thus coefficients F and G should

be related to each other as:

G = -iF (diverging)
and

G = iF (converging)

Substituting for G into (2.33) and representing the result in

terms of Hankel functions gives
g/r) = Fhn(172)(Kr) (2.34)

o}
where h"(1 ! }\(Kr) are spherical Hankel functions of the first and

second kind, and may be related to the spherical Bessel functions
through relations h* 72\f<r)= In(Kr)-iy (Kr). The first few

spherical Bessel and Hankel functions may be expressed as:

(1) iKr
JO(Kr) = “"Kr, _ _ cosKr _
yo(kr) = kr ' ho (kr) = ikr '
. iKr -iKr
h(2)(Kr)=.5iKr 1R h ) e 1
o v iKr ° If y %T:) nt (K==, Q- K_I‘),
sinkr coskr j cosKr
oy (kr) = 20F7 y Ak v 3
Kr r
32¢kr) = - )sinKr 3 cosKr,
k3r3 K2r2
y2(kr) = ~)cosKr _sinkr,
k3r3
. iKr (:" .
Plz (Kr) - (1 + £_ T m >. - —-— 3' 3
kr K2r?2 2 r kr K2P

(2.35)
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It should be emphasised that different notations have
been used to represent spherical Bessel functions. The above
notations are the same as those employed by Junger 146] , whereas
Skudnzyk [49] , Morse [50], and Stratton 151] used nn(Kr) instead
of yp(Kr). Skudrzyk [49] also considered the Stokes-Rayleigh
solution of the radial part which has the advantage of giving
the solution in terms of a near field component and a far field
one.

Substituting for g¢gj» g£ and g into the expression (2.17)

gives:
$ = Fhn~ ,2\kr) pnm(cos0) IAcos(mip)+Bsin(mip)Jelut

(2.36)

or by summing over both n and m

* = elwt E E h (172)(Kr)p m(cose)IA cosM)
n=0 m=0 Il n nm

+Bnm (2-37)

Equation (2.37) may now be used for obtaining the sound

radiated by a general spherical source. The procedure is as
follows:
1. Expressing the radial velocity at the surface of a spherical

source which is in general a function of 0, p and t in terms
of a series of Legendre functions.

2. Finding the radial velocity at the vicinity of the source
by simply differentiating the potential field T with respect to

r and substituting for r the radius of the source.
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3. Equating both radial velocities to deduce Ari]ms and INBJ’\S.

4. Using equation (2.12) to obtain the radiated sound pressure.
As far as the purposes of this study is concerned attention

has been given to those spherical sources that are symmetric

about the polar axis and consequently ip independent. The sound
radiated from the semicircular array on the equator of a

spherical baffle which has been considered by Junger 1461 may

be given as an example of the sound radiated by a nonaxisymmetrical
source. Equation (2.37) for a spherical symmetric field reduces

to:

E AR (Kr)p (cos9)

=™ (2.38)
= non v n

2.3. Monopole and Simple Source

Suppose that a sphere of radius a is located at the centre
of the field and behaves as a source by vibrating uniformly in
the radial direction. Such a sphere is also called pulsating
sphere or monopole and the radial velocity of its surface can

be given by:

(2.39)

Differentiating (2.38) with respect to r and substituting r = a

gives:

(2.40)
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For a free field situation, i.e. in the absence of reflecting

surfaces (2.40) can be written as:

WE £ A o P (cos9)

n=0
(2.41)

Rewriting (2.39) in terms of a series of Legendre functions and

equating to (2.41) gives:

0 - €0 (2)

nDrTn(cose) = “J0AnaF hn (Kn), |r=a.p”cose)

(2.42)

where Dg = v and =0 forn-=1, 2,.... Expanding both

sides of equation (2.42) and equating the constants yields:
Ao i?hO(2)(Krdlr=a =_i -“Hl+iKa)e“lKa = -v (2.43)

_ 3
and An =0 forn-=1,2, .... . SubstitutingJ for Aﬁs into

equation (2.38) gives:

2 i(ujt-Kr+Ka)
*=(CW) ' F

The sound pressure and the radial velocity of the pulsating
sphere or monopole sound source can now be given by:

30 ipOKCva? ei(wt-Kr+Ka)
p=poaTl = (1+4iKa) 'r (2-45)
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vr (2.46)
The specific acoustic impedance which is defined as the ratio
of the sound pressure to the velocity may be expressed as:

K2r2 + iKr

1+K2r2  mma2r2

(2.47)

where pQC is called the characteristic impedance or radiation
resistance for a plane wave. The mean square pressure which
is directly related to the amount of energy in the sound signal
and its root, which can be measured by a sound level meter,

is given by:
T
prms = T f [Pre (2.48)

0
where p| is the pressure gmplitude. Thus multiplying (2.45)
by its complex conjugate and dividing by two gives:
vi & (2.49)
r2

The acoustic power radiated from the source may now be expressed

as:

n = f IdS (2.50)

Pins
where I = - c is called the acoustic intensity and dS = r2sinedod”
is the element of the surface area as shown in Figure (2.1). Thus
the acoustic intensity and the acoustic power for the pulsating

sphere or monopole sound sources, respectively are:
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I =%pc "Vt —
5P ST 5 (2.51)
2a2
Jie= %pbﬂ Amaly? (2.52)
14K%a 2

An example of a monopole source of sound is pulsations at the
intake of an internal combustion engine. The potential
function of pulsating sphere may also be used for derivation

of potential function of a simple source. Thus from (2.44)

va2 - ET{ui-KP}
¢ = fTiTEET{CDSKH+ isinka). = (2.53)

If Ka is small coska - 1 and sinKa + Ka, so that (2.53) reduces

to:

24 4 <A
EE+.E‘{mt Kr)

e

(2.54)

The sound pressure, radial velocity and other acoustical parameters

of a simple source may now be easily given by following expressions.

. 2
WL oi (Bt-Kr)

R

WL e (1+iKr) il{wt-Kr) 2

r 28

~ 2.2 -
7 = puc{K Vil ikr

1+K3r> 1422

12 = L 2C2K2a2 VE i

ms o TR
m = %po Kta2 dmadyt {2.55)
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2.4. The dipole source

Another example of a spherical source is the oscillating
sphere, that is a sphere of radius a oscillating back and
forth as a rigid body in the direction of the principal axis.
This is also called dipole source of the sound. The radial

velocity at the surface of the source may be expressed as:

= vel*(cos0) (2.56)
r=a ‘

Expressing (2.56) in terms of a series of Legendre functions
and repeating the same procedure as given for the derivation

of the potential function of a monopole source, gives:

. i (cot-Kr+Ka)
va3(1+iKr) _ Coso, (2.57.3)
2(I1+iKa)-K2a2
ipOKicva3 /1+iKrj ej/ "t Kr+l<aLose (2.57.b)

2(I+iKa)-K2a2 r

v = gfl+iM-Kk2 vai ,ei("t-Kr+Ka)cose ( {2.57.c)
r 2(I+iKa)-K2az2 r3

Oscillations of the whole body of the diesel engine, cavitation
in liquids, exhaust emissions and organ pipes are all examples
of dipole sources of the sound.

From Equation (2.57) the radial specific acoustic impedance

for the dipole source can be written as:
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+ iKr 2+KV_)

( (2.58)
0 4+K'r* 4+K

The mean square pressure, the acoustic intensity, and the
radiated power may now be obtained by following similar process

as given for the monopole source. Thus:

N —><pC. A4ra2v2. (ix!<ki)
° 0 Akt K2r2

(2.59)

2.5. Impact of elastic bodies

According to the Hertz law of contact the force-deformation

relation for collision of elastic bodies may be expressed in the

form:
5 32
F = K2a (2.60)
where
K= -, AK 5
2 3 (6§j+%$2 A+B (2.61)
and a is called the approach. The values of A, B and qK are

tabulated by Goldsmith J43] for different types of contact

He has also given the following expressions for 64 and 72/
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1-v 2
, (2,62.a)
1 -M@2
S=2 — L (2'62"b)
where v-j and are the Poisson’s ratio for the bodies | and 2

respectively and E is the Young's modulus. Goldsmith [43]
investigated several impact problems involving vibrational
phenomena by use of equation (2.60) and concluded that good
correlation with experimental results can be achieved. Consider
now two elastic bodies colliding into each other with an initial
relative velocity v . Thus the initial conditions can be
written as:

a-=yv (2.63 .a)
and

a=0 (2.63.b)

The displacements of these bodies under action of a contact force

F and in absence of any vibrational phenomena may be given by:

t t
f dt £ Fdt (2.64.a)
0 0
and
1t t
— f dt f Fdt (2.64.b)
0 0
where mj and m2 are the masses of the bodies. The approach a

may now be written as:
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t t

o= U] - LI2 = vot - KII dt [Fdt (2.65)
0 0
where
m, +m
2 i
= (2.66)
1 m]mz

Differentiating (2.65) twice with respect to t and using equation

(2.60) gives:
a=&%4-ﬂ@5“ (2.67)

Integrating both sides and inserting the initial conditions

yields:
“ A A5
52 - v2 = - i—KTkza’2 (2.68)

When the approach is maximum the relative velocity a

is equal to zero. Thus by making use of (2.68) one may find

that:
5vG2 zfs
%ax = (== ) e
4K] 2
which can also be used for evaluating Fmax:
= {Evﬂz 0.6 ( )
F = Kol——— 2.70
D )

TO find the approach-time relation one may rewrite equation

(2.68) in the form:

doy
Vv!]-—'[ o }5-;2
O pax

(2.71)

-+
1l
R O =]
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the approximate solution of which is given by Hunter 152]

in the following form:

irt
™ = «max sin (2.72)
where
, amax a
da .. 7- - 2.9432 -~9
Yo o
%ax (2.73)
is called the duration of contact. By making use of (2.72)

and (2.65) the force-time relation can be approximated as:

7Tt

F= VVin ¢ (2.74)

Thus the acceleration of each body is given by:

A=£ = sin gt (2.75)

where m is either equal to m" or mA.
In the above analysis no attention has been given towards
the vibration of the bodies, or in other words, vibration
produced by the collision is assumed to be negligible. This
is true for the bodies with dimensions that permit a duration
of contact much longer than the period of lowest mode of vibration.
To study the impact problems involving vibrational phenomena
responses of the bodies to contact force F=F(t) should be taken

into account. As an example consider the transverse collision
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of a sphere of mass m" with a simply supported beam. If the

vibration of the sphere can be neglected one may write:

~+

t
a=Vot" m; dtf " U2(x=b,t) (2.76)
1 0

o~

where vQ is the impact velocity and U2(x=5,t) is the deflection
of the beam due to applied force F=F(t) at position x = 6.
Equation (2.76) may now be represented in terms of F(t) by
simply substituting a suitable force approach relation. The
resultant equation which includes the unknown function F(t)

should be solved numerically.

2.6. Numerical solution of force-time history

To solve the equation (2.67) numerically one may use the
initial conditions at instant t = 0 to predict the value of a
at time t = At This can be done easily by use of Taylor's

formula. Thus:

al =a| + At a + (2.77)
t=At t=0 =0

where At is a suitable time step size, all’t=8 = 0, all't=8: vo,

and a|t=Q =alt=0 = .......... To estimate the value of a at
time t = 2At one needs to know the value of ,al and
etc. These values can be easily determined by use of equations

(2.68) and (2.67). By repeating the same process a and
corresponding force can be calculated at any instant t = nAt,
n=0, 1 2. The force-time history calculated numerically

is compared with the half sine pulse approximation in Figure (2.2).
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2.7. Equation of motion in an elastic medium

To derive the equation of motion in an elastic medium
Kolsky [53] used a cubic element with its sides parallel to
a set of rectangular axes as shown in Figure (2.3). The
resultant force in each direction, x, y and z due to variations

of components of normal and shear stresses are:
Ja Ja 3an
7 7XX
FX ¢ 3y + _Q%X T 9z )6x6y62

3Q*+3a

( 30
Fy =« (oY a}»;y )6x6y62

Ja o

_ 4 t Ja
Fooo g X 3§y 9z )<5x<5y6z (2.78)

where <5, 6y and 6z are dimensions of cubic element in directions

X, Yy and z respectively. Assume that U, V and W are displacements
in directions X, y and z respectively. Thus by Newton's second

law:

e 3 3a
p3 U XX, Y y Toxz
30 3x 3y 3z

3V Jer 30 Ja
P : yx + XX 4+ Yz
38 3 X 3y 3z
Ja_y 3 3a
b 3 W 7 MY, 2Pz (2.79)
30 3x sy 3z ’

where p is the density of the element Equations (2.79) are
known as equations of motion in an elastic medium. For an
isotropic medium the stress-strain behaviour of the medium in

terms of dilatation, A and Lame's constants, A and p where p
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is also the modulus of rigidity as given by Koisky [53] are:

ayX =peXy> Oxz = ©9zx = peXZ, QYZ A\ ozy "U£yZ

(2.80)

=9U + 9w

The above stress-
9 x ay 9z

where A = e + £ + £2
XX vy £ZZ

strain relations may also been expressed in terms of Young's
modulus E, and Poisson's ratio v, through relations X + p
and v = 2(X+p)

Substituting from (2.80) for the stress components in (2.79)

and rewriting the result in terms of displacements gives:

o12 d
p 220 o bxap) OA 4 pURY (2.81.b)
ov
9 2W t \9A , IR
_____ oM A Y2 (2.81 .c)
P & p) >t

Equations (2.81.a) to (2.81.c) are known as equations of motion
of an isotropic elastic solid and may be represented in vector

form as:

(X+p)grad div S+ pV2s (2.82)
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where = U_ + Vi_ + Wk Differentiating both sides of (2.81 .a)
with respect to x, both sides of (2.81.b) with respect to vy,
and both sides of (2.81.c) with respect to z and adding them

together gives:

= Q 2Vv2& (283)

at2 1

where CGj = is the velocity of the dilatation wave.

Equations (2.81.a) to (2.81.c) can also be used for derivation

of equations in terms of rotation. This can be achieved by
eliminating A between any selected pair of equations. Thus:
(2.84)
where
- -i/9U 3wt - _3U)

29y 3z ' Oy N3z 9% " wz N3x ay/

and
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2.8. Solution of equations of motion for solid sphere

In the case of simple harmonic motion, the solution of

equations of motion can be represented as:

U = d(x,y,z)ela\l V = v(X,y,z)elwt, and

W = w(x,y,z)ei(t (2.85)

Substituting these solutions into equations (2.81.a) to

(2.81.c) gives:

=) 36
V—u_|_KIu=(1— 3x
Vv + KL G = (1 - =) 36 (2.86.b)
K1
S 36
Vvaft + K = -
I (1 A (2.86.0)
(o]
. €0 —lcot _ 3u , ay aft
h K- = = - A=
where K _— K2 " and é Ae X T 9y 37 Let
us assume now U, 9 and $ can be expressed as
36 _ . x L M
u + aa V“ b W _ + y
K* 3Z
(2.87)
where a, 6 and y each are functions of x, y and =z. Substi tuti ng
for u into equation (2.86.a) gives:
V2a + K| a = vV2(~) + 36
2 K2 3x' 3y (2.88)
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Using a set of solutions given by (2.85) and substituting

them into equation (2.83) yields:

V26 + K-2? = 0 (2.89)

Inspection of (2.89) suggests that the right hand side of
equation (2.88) should be equal to zero. Thus (2.88) reduces
to:

V2a + KA2a = 0 (2.90)

By following similar procedure one obtains:

V2B + K22B

n
o

(2.91)

V2y + KNy

n
o

(2.92)

In order that equation (2.89) be satisfied by the set of

assumed solutions (2.87) one requires:

3a . C 3y =
37:324+3 70 (2.93)

The general solution of the system of equations given by
(2.90) to (2.93) has been investigated by Lamb 144] . In his
method of solution he assumed that the functions a, and y
can be expanded in series of solid harmonics, and employed the
notation an, and y® to express the terms of degree n in these
expansions.

Before going any further some explanation regarding functions

called solid harmonics may be useful. Lamb 154] remarks that
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amongst the methods available for solving V2f = 0 in three
dimensions, the most important is that of spherical harmonics.
This is especially suitable when the boundary conditions have
relation to spherical or nearly spherical surfaces. He

further states that if is a spherical solid harmonic of
degree n it may be expressed as 5 = rnSn, where functions Sn
are called spherical surface harmonics. Morse's representations

[55] of spherical surface harmonics are given as:
Ym® = cos(mip)P™ (cosQ), and Ym® = sin(mip)P™(cos0)

where the ones for m = 0 being zonal harmonics, the ones for
m = n being sectoral harmonics, and the rest, for 0<m<n, being
tesseral harmonics.

Substituting an, $n and yn into equations (2.90) to (2.93)

and rewriting them without K2 (i.e. K?= 0) gives:

Vn o= o V2Bn = 0, =0 (2.94)
9a 9

““n+ n ¥n _

ox Oy 9z 0 (2-95)

Differentiating (2.95) with respect to x and substituting
92«
for----Q into the first equation of (2.94) yields:
ox2

9 X ~
_ 9otn\ 3 /9an ) 9\fn\
9y 19x 9y ' T 0z20z  9x ' (2.96)
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By following the similar procedures one finds:
(2.97)

Oy\VOy (2.98)

From (2.96) to (2.98) one finds that there must be a
function, say X”, such that its derivatives with respect to

X, Yy and z can be expressed as:

Ovn R

Ox " 3y ™ Oz

(0)4 Oa Oy
n n n

ay 0z ™ Ox

OXn OBn Oan

0z Ox ™ 9y (2.99)

Multiplying both sides of the last two equations of (2.99)
by z and y respectively, and subtracting from each other gives:

Oa Oy Oan
iar- ot =yrr’yoy

(2300.a)

Similarly,

3Bn 3Sn
XoZ Z Ox Xx ax +vy aF +

(2.100.b)
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and
9X 3y 3y
51 5n + ____l:\ |z ““D'I"V_'
Yy Ox xay ax Y By 3z n
- Bi(x"n + Y5+ zvn) (2.100.c)
It can be shown from (2.94) and (2.95) that:
V2(xan + yé6bn + zVn) # 0 (2.101)
Thus;
x% T yBn + zVn = Sntl (2.102)
where ¢ 4 is a solid harmonic of degree n+1,

Equation (2.100.a) can now be written as:

3*n+l , 37n 3*n

(n+1)an 3x + zaF -y yr (2,103)

Dropping the factor n+l1 causes no loss of generality. Thus
the complete solution of the system of equations given by (2c90)

to (2.93) in the absence of nay be written as:

3*n+l OX 3X
+ n n\

z ay- - y — (2.104.3)

3*n+l aXn
S=Eay *tx 03 z (2.104.b)

z

- ~ a’
y - + T x (2.104.c)

- Y ax . .



To find the solution of the system of equations in the

case of K2 0, one may assume a solution in the form of:

“n = ® " KF1 + K2®2 “ K1T +........ (2.105)

Substituting this solution into equation (2.90) gives:
V2$0- K| (V2 - 20)+KA (V2?22 - N)-KANV2-~2)+...=0
(2.106)
In order to satisfy (2.106) the coefficients of the

various powers of K| should be equated to zero. Thus:

V20 = 0, V2~ = . 2~ = (2.107)

The solution of the first equation has already been proved

to be:

3% 3X 3X
So = + Zayl ~y 7T (2.108)

To obtain the solution of the remaining equations one may write:

A W%
],

3a
V2(rm3gr = rVVS 4+ 2mm”2(x 35t 4 y al 'z A

0
+ 2 W2 (2.109)

But by the definition of a solid harmonic

3% 3% 3a0 A
X>T +y 3, +23,° % M (2.110)
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Thus (2.109) reduces to:

V2(rniao) = m(2n+m+)rm 2aQ (2.111)

Using the second equation of (2.107) and substituting for

aQ in the right hand side of equation (2.111) gives:
V2(rm'&0) = m(2n+m+| )r'I'I'l_ZVZal (2112)

Upon letting m = 2 vyields,

s rz A
al  202n43) % (20113)

Similarly,

a2 = 274720+3)(2n+5) ao (2.114)

and so on. Substituting for So, &y ,a(c) and etc. into equation

(2.105) gives:

3N 1
=* hri1*
a N oax 7 ¥ ' (2.115)
where
K|r2 .
Pn 17 H2n+3) T zo402n43)(20+5) (2.116)
By following similar procedures one obtains:
h =« A+1 aX aXx
! + n nt
nyn o Sy Xaz -1 (2.117)
é ~n+1 aX aX

- = n+l + n
Yn= n o n& 3z Y 3x - *ar> (2.118)
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where 6q, 6p... and 00, 8p... are coefficients of the various
powers of in expansion of 6n and y* in forms of series
similar to that shown for a . In order to satisfy (2.93) one
should examine the following equations:

3s 36 38

0
F—2 4 — =
x T2t Em 0 (2.119)

3a 36, 38,

+ - - =
'yt 0 (2.120)

etc. It can be easily found that the solution given for 3 ,

6g and dQ satisfy equation (2.119) whereas solutions for

6 and 8j need to be modified to satisfy (2.120). Substituting

for 8p 64 and 8| into equation (2.120) gives:

3a-1 36,l 38 aox+6oy+832

S TS T | _n¥l ¢t

3x 3y 'Sz 2n+3 2n+3 %-+I
(2.121)

The form of (2.121) suggest a new solution as follows:

s _ r2 , n 2n+5 3 An+1
al " 2(2n+3) a0 3x f2n+3
6 = f2 + R r2n+5 9 An+l
1 2(2n+3) o K1 3y f2n+3
3 _ r2 A +R r2n+5 9 Jj=*=L

al 22n+3) o \/ 3Z r2n+3 (2.122)
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where
n+1 !
| n+2 (2n+3)(2n+5)
S = a + R r2n+7 3 <in#l
a2 2.4(2n+3)(2n+5) ao 2 ax 2n+3
g = / i +6rt] 3 Oml
2 ZA2n+3)(2n+5) o 2 ay p2n+3
d = — r d + R r2n+7 3 ~n+1
2 2.4(2n+3)(2n+5) o K2 az 2n+3
(2.123)
where = g+2 ' 2(2n+3)(2n+5)(2n+7)

Substituting for a , a| a” and etc. into equation (2.105)

gi ves.
A
- t3Qn)$-11, 3Xn 9Xn’\ n+1 Igr2n+5
“n T \/ 3x 3y "y 3z + n+2 ' (2n+3)(2n+5)
. 3 *n+|
¢ *n+2 3x r2n+3 (2.124)
where O can be deduced from (2.116). The solution for

ard yn can also be found by following similar procedure.
Thus the complete solution of the equatiors (2.90) to (2.93)

which are also finite at the origin, may be expressed as:

3X K2r2n+5
o _vr, I3Qn+’i . ,3Xn nx n+l 2
t zay~ N/az n+2' (2n+3) (2n+5)
*n+1}

*An+2 3X r2n+3
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N Yt Xy Xon,

- Sy 3Z n+2 ' T2n+3)(2n+5)

. 9 *n+|,

'%i+2' 9y r2n+3j
A+l |, ?¥n v 3L N+ K2~n+5
'm 9z y 3x X ay 'm n+2 (2n+3)(2n+5)

3 *n+l
e+n+2- 3z 2n+3 1 (2.125)

Inspection of (2.125) suggests that the solutions of the system

of equations are of two distinct types. Thus one may write:
k =E{"n(z —! _ vy (2.126)
and -
- K*r2n+5 1 A+,
a n+2' (2n+3)(2n+5) “~n+2' 3x r2n+3’\
(2.127)

The solution of the second type can also be written in
the form:

a =E"r;
S Sx n+l

(2.128)

In order to'represent the solutions of the equations (2.86.a)
to (2.86.c) by expressions (2.87) one must also find 6. Thus
the solution to the differential equation (2.89) should be

determined. This solution has been given by Lamb 132] as follows:
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(2.129)

where w is a solid harmonic of degree n.
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Fig.2.1. Illustration of element dS = r2sin0dOdip

lime (micro seconds)

Fig. 2.2. Force-time history for 1.27 cm diameter
steel spheres with an initial impact
velocity of 1.52 m/s.
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Fig.2.3. Stresses acting on a small rectangular
parallelepiped.
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3. RIGID BODY RADIATION DUE TO ELASTIC COLLISION OF SPHERES

The sound pressure radiated by elastic collision of spheres
is dealt with in this chapter. Two methods of derivation of
sound as such are introduced. These are the Laplace transform
and the convolution methods. In the first method the Laplace
transform of the potential function satisfying both the wave
equation and the boundary condition was found, and then the
inverse transformation was introduced to transform the result
into the time domain. In the second method the sound pressure
was obtained by finding the convolution of the response due to
unit impulse acceleration and the Hertzian acceleration. This
method is the one firs- given by Koss and Alfredson [21] who
also suggest the ray tneory assumption for combining pressures
generated by a pair of colliding spheres. The second method
was also used for the derivation of the approximate formula for
sound pressure. The '-esponse due to unit impulse acceleration
for derivation of these formulae is the one given by Ffowcs
Williams and Lovely [15]. A brief introduction to a numerical
method for calculating she pressure is given. This numerical
method is useful when sn analytical solution is either complicated
or cannot be achieved. This method is discussed in detail in
chapter 5. Attention is also paid to the sound radiated by the
change of volume of a sphere undergoing a Hertzian acceleration.
In this investigation :ne sphere was assumed to be a monopole
source of sound expanding and contracting impulsively in its

radial direction. Finally, an expression for evaluating energy
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in the far field is given. The results obtained in this
chapter are also expressed in dimensionless form. Graphical
presentation of some of the dimensionless results later will

be used in chapter 9 for evaluation of empirical formulae.

3.1. Sound radiation from an impulsively accelerated sphere

It is shown earlier that an oscillating sphere moving back
and forth as a rigid body in the direction of the principal axis
behaves as a dipole source of the sound. The corresponding
field can be deduced by substituting m ? 0 and n = | in equation
(2.37) which upon satisfying the radial velocity at the surface
of sphere vyields to the result given by the equation (2.57a).

This velocity potential may also be written as:

(3.1)

where

2(l+iKa)-K~an

and

(3.2b)

Consider now a sphere of radius a which is subjected to
an impulsive velocity vqH(t) in the direction of one of the
principal axes. The impulsive velocity vqH(t) may be defined

as.
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™ 0
VOH\(t) =
0, otherwise
where H(t) is a unit step function and also may be referred to

as the unit Heaviside function. The Fourier transform of this

velocity, as given by Champeney [56] is:

/_\ 00 .
v =_c()V° H(T)e dr = v, {t6 (w) - vT} 3.49)
where 6(w) is the Dirac delta function. The velocity potential

of an impulsively accelerated sphere can now be obtained by
finding the inverse of the Fourier transform of (3.2a) after

substituting v = v™\ Thus:

v a3cose ®6(h>)- —I1(+iKr)
4>(r,e,T) A 7 e elMTdM
2irr 2(I+iKa)-K az
(3.5)

which by evaluating the residues of function at its poles yields

the solution:

v a3cose 9
<j>(r,0,T) = ------- X----- (1 +e T(— - DSIN&T - cos £t ]}
2 r a
(3.6)
where £= —, Equation (3.6) is the same as one given by Koss

and Alfredson [21]. By making use of equations(2.12) and (2.11)

the pressure p(r,e,T) and the radial velocity v (r,e, T) are found

to be:

2
w vV a

pQc cosee £t [~cos £t+(1 -y)sinh]

p(r,e, T) = Po

(3.7)
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and
vf(r,0,T) = - = =92 cosOe ~T[(-] - Ay - -N)sSInE£T
r a
3
r 1 veoa
+ (~2 - —)cos £t> — 2 cose (3.8)
a r

The Fourier transforms of equation (3.7) is:

3

p(r,e,<0) = pn -Ar- cose N, K1) (3.9)
0 r 2(I+iKa)-I<Vv

The sound pressure caused by a unit impulse of acceleration
can be simply found by substituting vq = | into equation (3.7).
The sound pressure due to the other forms of acceleration may

be given by convolution of the response to a unit impulse

z\

acceleration with any arbitrary acceleration, A. Thus:
T
P(»65t) - f Pjj (>0’ T-MA(N) d» t> 0
0
=0 T<O <3¥10)

where p” is the pressure due to the unit impulse acceleration

and is the integration variable. The sound pressure in the

far field which is radiated by an impulsively accelerated sphere

may be chosen as that part of the pressure which decays like r~"

as r oo Thus from equation (3.7) one obtains:

p(r,0,T) = PMe "t (cos £t- sin&T)cos0 (3.11)
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p cv,a
where PM = —yﬂ—. Graphs showing variations of against t

for e = 0° and 60° are given in Figure (3.1).

3.2. The impulsive monopole source

The potential function f given by equation (2.44) for a
pulsating sphere may be used to evaluate the sound pressure
radiated by an impulsively pulsating sphere. This is a sphere
subjected to a uniform impulsive velocity vqH(t) in its radial
direction. By following a similar process as given above for

the oscillating sphere one obtains:

Finding the residues of the function at its poles (w = 0

and w = i£), yields the solution:

2
vV a

1 -e ) (3.13)

<f>(r,T) =

The sound pressure and the radial velocity may now be given

by:
(3.14)
and
(3.15)
The Fourier transforms of equation (3.14) is:
o
p(rw) = p —1-° .. | (3.16)

Graph showing variations of E— against t is given in Fig.(3.2).
M
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3.3. Velocity potential of an impulsively accelerated

sphere (Laplace Transform method)

The Laplace transform method as shown by Langhorn [8]
may also be used to evaluate the velocity potential of an
impulsively accelerated sphere. Consider a rigid sphere
of radius a subjected to an impulsive velocity vqH(t) in
direction of one of the principal axes. The velocity potential
f at any observation point p with co-ordinates (r,0,4>) must

satisfy the wave equation:

(3.17)

where = (p(r,0,ip, t). Equation (3.17) can be written in
terms of spherical polar co-ordinates as given by equation (2.16)
in section (2.2). For a potential function independent of ip

equation (2.16) reduces to:

(3.18)
where (p = <p(r,0, t). The boundary condition on the surface of
the sphere at r = a is:

or " —vocosOH Q) (3.19a)

Also at t = 0,

o =( (3.19b)
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Let us assume now the solution of the differential equation

(3.18) can be represented in the form of f(r,0, t) = W(r,t).x(0)
Inspection of the boundary condition on the surface of the sphere
suggests that x(©) = cosO . Thus the potential function may be

represented in the following form:
(F(r,6,t) = cosO0.W(r,t) (3.20)

Substituting this solution into the equation (3.18) yields:

2
3w 23w w1 32W
(3.21)

2
3r r 3r r2 I2 3t2

Multiplying both sides of the above differential equation

by e and integrating over t gives:
dT 2 dw
dr2 r dr (3.22)
where
W = W(I‘,S) = TW(r,t)eNStdt (3.23a)
0
(3.23b)
and
/ 3I——=e"stdt = s2fi(r,s)-sW(r,t)e~st| - —
o 3t t=0
t

(3.23¢)

0
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The conditions given by expression (3.19b) require that

the last two terms in (3.23c) be zero. Thus (3.22) can be

easily derived. The transformation W = —--=transforms

(3.22) to the equation:

X = 0 (3.24)

The solution of this type of Bessel's equation as suggested

by McLachlan [57] can be represented in terms of Bessel's

functions of imaginary argument. Thus, the general solution
of (3.24) is:
* = 73/72(- £ =CIK3/2"™ + ™33/ ™ 0-25)

The function in general form I-(y*)and K-(v*)are known

as the modified Bessel functions of the first and second kind,

respectively. The asymptotic expansions of these functions
are:
y*
Ir,(y¥)= —- W-(y*) (3.26a)
RTTy* v
_y*
K-(y¥)= -A277- wy-y*) (3.26b)
/1
where

W (y*) = 1 _ iTLT + (4>2-12) (4v2-32)

v 118%* 21(8y*)2 (3.26¢)



-57-

Using the asymptotic expansion of K-(y*) as a solution of

(3.24) for the +ve going wave only, gives:

W=5(f) TH ~>)eSF (3.27)
Sr

The constant 6 can be evaluated by using the transformation

of boundary condition given by expression (3.19a). Thus at

r = a,
. 00 ) v
dw | faw(rt) evsfdt - v /H(be'stdt = - —
dr r=0 0 >
(3.28a)
and va3c g . sa
3 /2sy e’c

S a + 2sac + 2c

Using given by (3.28b) and substituting in (3.27) gives:

(3.29)

To find W(r,t) defined by (3.23a) one should obtain the
inverse Laplace transform of expression (3.29). This may be
carried out by finding the residues of function W(r,s)est at its
poles. Thus, the velocity potential given by (3.20) can be
derived to be:

3
vV a cose 9
4)(r,e,T) = ——- x—--{1 + e T[N - DsSIiNET - cos £t ]}

2r a
(3.30)
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where t = t ---r:C-A- and f£= ;—. Note that equation (3.30) is
exactly the same as equation (3.6), but has been derived
by a different approach. The result also agrees with

Kirchhoff's solution [2].

3.4. Sound radiated by a sphere undergoing a Hertzian

acceleration (Laplace Transform method)

In the study of impact of elastic bodies the Hertz law
of contact was used for the derivation of the acceleration of
each body. Thus from equation (2.75) the acceleration of a

sphere undergoing an elastic collision can be given by:

z\

A(t) = ansinbt 0 <t«<d
=0 otherwise (3.31)
Fmax T
where an = and b = -+— . The boundary condition on the
m

surface of the sphere at r = a may now be written as:

1 _3pi = 9vr, = 92(f
% 8Fr=a " r=a“ ot =a”sinbtcose (3.32a)
r=a
Also at t = 0O,
*= g =° (3.32b)

The Laplace transform of the potential function satisfying
the wave equation, and the conditions given by expression (3.32b)
can be found by following similar procedures as given in section

(3.3) to be:
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fll = C.(~m)752(1 + -~)e”sF
e L2 (3.33)

where W is the Laplace transform of W(r,t) related to the
potential function 4 through the expression (3.20) and 0" is a
constant to be determined. The constant Cj can be evaluated

by using the transformation of boundary condition given by

equation (3.32a). Thus at r= a.

s L O Msrt‘t)e‘s"dt = an : sinbte stdt
¢ e (3.34a)
and
aMbca3 2 3
Gl= (1IVV) e (1+ esd) (3.34b)

Using (§ given by (3.79b) and substituting in (3.33) gives:

(sr+c) (1 +e”sd)
2 2
S a +2sac+2c
(3.35)

The inverse Laplace transform of equation (3.35) may now be

obtained by simply finding the residues of function West at its

poles. Thus the velocity potential 4 related to W(r,t) through

the expression (3.20) can be derived to be:



-60-

<, 9,t) = —2 -1) (4b3sin£T+ 8b£2cos£T)e~NT
8(b4+W)r a

-(4b3cos£T-8b£2sIiNET)e~NT
+(y~ -1) [4b3sin£(T-d)T8b£2cos£(T-d)]Je~NT-c

- [4b3cos£(t-d)-8b£2sin£(T-d) Je~NT-cN}

a a3
aMa
+ ——-cose (3.36a)

t> d
where t %----r-;-:gand e _gl
The sound pressure and the radial velocity may now be expressed

as.

pnaMa cose 0 nNMo
p(r,e, T) = p -jir = ---—-- t----4—2 -1 )[(4b £-8b£ )cos £t
0 3t 8(PW)r2 a

- (4b3S.48b«.3)sin)>T]eXT+[(4b3«,+8b«.3)cos«.T

+ (4b3~-8bi3)sinl.r]e“X'r+ (|~ -1)C(4b35.-8bj>3)cosjl(T-d)

-(4b3S,+8b£3)sin{(T-d)]e~(T"d)

+[ (4b3mb£3 )cos]>(T-d )+(4b3]I-8b«.3 )sinje. (T-d) ] e_!I (T~d }
t> d (3.36b)

and

, aMa cose | q
v o= - = - 4----7—0 " P(4b cos£T-8b£2sin£T)e _£T

r 8r 4(b4+42?)r dr r

r 2 1 ? . 2 ”
-(~2 - — + y?)) (4b sSin£T+8b£ cos£T)e

a
+("2

a
m(S » T+ 7)[4b3sw(T-d)+8b£2cos£(T-d)] e"£(T_d)}

EaMa3

+ n—cose
rJb

-j;)[4b3cos£(T-d)-8bE2sin£(T-d)] e"~(T_d\

t> d (3.36¢0)



-61-

To find the potential function for t< d one may similarly

wri te:
-[(r-a)

L
(sr+c) €

S a +2sac+2a

By repeating the process as before the velocity potential can

be found to be:

3
aMa cose

8(b4-+4£4)r2

4>(r, 0, t) {(”™ -1)(4b3sin£T+8b£2cos£T)e

—(4b3cos£T-8bE2SINET)e~NT

-(y- -1)(4£b2sinbT-8£3sinbT+8b£2cosbT)

+(4b3cosbT-4£b2si nbT-8£3sinbT)}

aMa3cose

I  a— (1-cosbT) (3.38a)
2r b 0<T<d

The sound pressure and the radial velocity ere:

pQaMa3cos0
p(r,e, T) {(~- -1)(4b3£cosET-8b£E3SINET-4b3£SINET
8(b4+4£4)r2 a

- 8b£3cosET)e~NT+(4b3£siNET+8bE3coSET+4b3£coSET

- 8b£3sin£T)e”" " T+(|™ -1)(8£3bcosbT-4£b3cosbT+8b2£2sinbT)

-(4b4sinbT+4£b3cosbT+8£3bcosbT)}

p aMa3c®s0

+ —mmmm---- sinbT 0<t <d (3.38b)
2r



-62-

and

r —-—-- 7—2 v 7)(4b3cos£ET-8bE2SINET)e~ T
r  4(b%-4?)r a r

-("N2 - + 7) (4b3sin£T+8b£2CoSET)e~5/r
"(7 n 7)(4£b2sinbT-8£3sinbT+8b£2cosbT)-(~2 - 1)(4b3cosbT)

-(7 - ~7) (8£2bcosbT)+(2 ~ - 1 - 1) (4£b2sinbx)
an a’l a r

1 ?
-(7 - 7)(8 sinbT)} + - (1 _ cosbT)

t< d (3.380)

It can be easily deduced from equation (3.38c) and (3.36¢)

that at the surface of the sphere

|gﬂ(1 - cosbT)cose (3.39a)
(3.39b)
Similarly,
9vr
at = a’*sinbicose (3.39¢)

=0 (3.39d)
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The sound pressure in the far field may be given by that
part of pressure which decays like r as r Thus from

equations (3.38b) and (3.36b) one obtains:

£bCOS0 9 2 9 9 Ot
p(r,0T) -5d-L--—7-—{[(b -2/)cosET-(bz+2 )single
(b4+47?)r

-(b” -2&2)cosbT+2£bsinbT} (3.40a)
t <d
and
ACOSO 2 2 2 2 -Pt
p(c,9,t) = i t {[(b -2£ )cos&T-(b +2& )sin&T]e
(b4+42)r -

+[(b2- 2K.2)cos«.(T-d)-(b2+2«.2)sina(x-d )le_S"T-d"}

£> d (3.40b)

By employing equation (2.70) the amplitude of acceleration

can be written as:

[ 1506 (A0 12
- == . Vv
mi 1+r 4" Y 0 (3-41a)

- m2
where M = is the ratio of mass of striker to the mass of the
ml

sphere under consideration. The duration of contact given by

equation (2.73) can also be expressed in terms of impact velocity
zs z\

and coefficients K] and as:

-0.2

o, v

d = 2.9432 () o (3.41b)
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Substituting (3.41b) into (3.41a) gives:

(3.42)

The sound pressure in the far field may now be given by:

MCOSY [(1-2B2)cos(fiirB)-(1+2BY /si n(firB) e " p
(1+4B4)

-(1-2B2)cos(nir)+2Bsin(nTT)} (3.43a)

and

PACOSS 9 2 ;
o = M3 ([(1 -2BZ)cos(Bt B)~(1 +2B<)sin(flirB)Je "

(1+4B )

R

+[(1 -2b2)cos [(n-1 )TTFi]-(1+2B2)si n [(fi-1 )& B] ]e™(n_1 ),ie}

n >l (3.43b)

1.17M B=] and n =
1+M

where P~

Graph showing variations of dimensionless peak pressure
against 6 is given in Figure (3.3). Variations of ri v at
which the peak occurs is also plotted against B, and is given
in Figure (3.4).

In order to study the frequency spectrum one should establish

the Fourier transform of the sound pressure. This can be done

—(r-a
simply either by multiplying equation (3.35) by pQscosOeC (r-a)
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and then substituting s = i, or by finding the product of
the Fourier transform of the pressure due to unit impulse
acceleration given by equation (3.9) and the Fourier

transform of half sine pulse represented by expression (3.31).

Thus.
p(r e ,) = poaMbca (iwr+c) cose ,,  —iji,
pir.H.toj 2 2 2 2i0, 22U e )
b -co r 2c +2itoac-co a
(3.44)

Multiplying equation (3.44) by its complex conjugate and

using (3.42) gives:

IPI2 = 4(1.17)2R2 po vo a c°Ton+T

(1+FIf S2(I1-4n*2)2

2 2
/i+ B ¥ cos (n¥*ir)
4n*272  ($4+4n*4)

(3.45a)
or
_ 2.34M Povoacosen*e,,
1P e et I
IM e|d- 4n*Z)|
(3.45b)
where n* = fd and £ = 7
e2
At a large distance r, 1 and (3.45b) reduces to:
4n*z£
_ | cos(n*7r)| j
p| = PLcose[————— 3.45c
P [(B%4n*’\ | (I+4n*2)| ( )
/\
where P = 2.34 -X 2V2a—

L 1+M r
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It may be noted that if M is small (i.e. mass of striker
is small compared with mass of sphere), the radiated sound
pressure is negligible.

Graph representing variations of dimensionless peak of
transform against $ is given in Figure (3.5). Variations of
nmax at which the Peak of transform occurs is also plotted

against 3 and is shown in Figure (3.6).

3.5. Sound radiated by a sphere undergoing a Hertzian
acceleration (Approximate method)
An approximate method based on aero acoustic theory is
given by Ffowcs Williams and Lovely [15] for evaluating the
sound pressure generated by an impulsively accelerated sphere.

This sound pressure can be written as:

P
P = 21N{[5ePT+(£T-3)]H(2a-CT) + [5€'£T-e'""T+2]H(T-2]-)}cose

(3.46)
where Ccv a
n _ o o T — t £<<a
M r
H2a - ) =1 T< 13 (3.47a)
= 0 otherwise
and H( i) 5
t- = a
S £ (3.47b)

0 otherwise

Equation (3.46) gives an approximate evaluation of the sound
pressure in the far field and may be compared with the exact

solution (Equation 3.11) as shown in Figure (3.7). Using the
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response to unit impulse deduced from (3.46) together with
Hertzian acceleration given by Equation (3.31) and substituting

in (3.10) gives:

0

H[2a-c(x-c)]sinbcd? -(2.389)/e{"(T c)H(T-c- |*-)

0
sinb~dN} (3.48a)
and d
p caMacosO 0, \
p(r,0,T) = --—----- 27------- ( f[5e c'+E£(&-"N)-3]
0

H[2a-c(T-c)]sinbcd™- (2.389)/ —_
0

@]

sinb”dz;} (3.48b)

The sound pressure radiated by one sphere undergoing a

Hertzian acceleration may now be written as:

p(r,0,T) = °9 cosO{——9-5b (e~I"T-cosbT+ AsinbT)
/+b~ D

+ E-(£t- sinbT+3cosbT -3)}
(3.49a)
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p caMa ,
p(r,e,T) —0s0{~—x—x-[cosbT* - -rSinbT* - 5cosbT+5”sinbT
D b

-0.323e 1] - I(cosbT* - jjsinbT* - 3c©sbT+ sinbx)}

I5—<t <d (3.49b)

p(r,e, T) = [cosbT* - ~Asinbi* + 0.676e”£/T*"d"
r+b D

-0.323e AT ] - A(cosbT* - AsinbT* -£t* + £d+1)}

oA <d <t , t* <«d

(3.490)
poCaMa 0.323b
COS0
p(r,0,T) oF { 2p2
—<d< t, t* >d
(3.49d)
where t* = t- It should be emphasised that the above

equations, except (3.49b) are also applicable to the case = >d.
In this case equation (3.49b) should be replaced by:

p(r,0,T) ="N-"~cosO{N"T[e"£(T"d)+e”E£T]+ 1(2L£c- £d - 6)}
r r—+bd b

d <t < (3.49¢)

Substituting for a® from equation (3.42) and rewriting the

results in non-dimensional form gives;
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R_ = —|-Q—————~~-cos(fin) + Bsin(fin)J +finB-Bsin(fin)
hN z 1+8B
-3cos(fin)-3}
fi < ~ < (3.50a)
f— = —1—-1[cos(fin- -|)-Bsin(fin- -"~)-5cos( fin)+5 Bsin (fin)
PN 1+B2 3 3 -2.389e-""N]

-tcos(nn- —)-Bsin(nn- |-)-3cos(nn) +Bsin(nn) ]}
B P

n <1 (3.50b)

P_ = cosQ{ 1| [cos(fiK_ 2j_6sin(~_ 2)+5e-(n-1)nB_2>38ge-nnB]
HN Z 1+B P p

+ [(n-DnB -3-cos(nn- -|)+Bsin(nn- j|)I}

< fi, (3.50c)

p cosQ {"389[e-(R-I)™+e-fiiTB]}
1+BZ

<l < fi, fi - !

(3.50d)

nB

£ = cose{ 8le-(MhB+e-finN]+(2fl.1b6.6}
hn z itbz

1 <fi < (3.50e)
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where P., = ™ —g , 6 =— and ft = -r. Figure (3.8)
N 1+M r b

shows a comparison of this approximate approach with the
exact method for a single sphere undergoing a Hertzian

acceleration.

3.6. Sound radiated by a pair of colliding spheres
(Convolution method)

The convolution method may as well as the Laplace transforms
method, be used in the derivation of the sound generated by a
sphere undergoing an elastic collision. This is the method used
by Koss and Alfredson [21] for studying the sound radiated by a
pair of colliding spheres.

It is mentioned in section (3.1) that the sound pressure due
to any arbitrary acceleration may be given by a convolution
integral, which was given previously as equation (3.10). Using
the Hertzian acceleration given by equation (3.31) together with

response to unit impulse expressed by (3.7) and substituting in

(3.10) gives:
2
p caMa cose t r
p(r,e, T) = -2—2---—--—-- /[2cosIt(r-c)+ (I - -)sinX(T-c)]
r 0
e~NT_Asinb<;di; 0 <t <d
(3.51a)
and 2 ~
p(r,0,T) = —---- 2-----=- f [DNos£&(t-c)+(1 - -)sinE(T-d]
r 0

nbAd t > d (3.51b)
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Solving (3.51a) and (3.51b) leads to exactly the same
results as given in Equations (3.38b) and (3.36b) respectively.
Consider now a pair of colliding spheres modelled as

shown in Figure (3.9) and assume that the sphere 1, which is
initially at rest, is called the impactee and the other one

the impactor. For a microphone positioned at 0<90° (9 anti-
clockwise, see Figure (3.9)) the sound radiated by the impactor
arrives with a delay in time in comparison with the sound
arriving from the impactee; the process would be the reverse
if the microphone were positioned at 0>90°. The sound pressure
at any microphone position can be simply given by the sum of
the pressures radiated by the impactee and impactor. Thus at
a position defined by the polar co-ordinate (r,0) (see Figure

(3.9)), the pressure is:

p(r,e, T) = H(-T+d)p(rli,el,T)+H(T-d)p(rl,el, T)fH(T-Td)

XH(-T+Td+d)p(r2,e2, T-Td)+H(T-Td-d)p(r2,92,T-Td)

-90° < e < 90° (3.52a)

where
H(-Tid) - | T «d J H(T-d) =1 T 3¢ Y,
= 0 Otherwise ' =0 Otherwise
H(T-Td) =1 T>Td } H(-T+Td+d) =1 T<Td+d}
= 0 Otherwise = 0 Otherwise

H(x-Td-d) = 1 t > Ti+d
(3.52b)
= 0 Otherwise
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and is the time delay between the arrival of the sound to
the microphone from each sphere. The time delay may be

approximated according to the ray theory and given by:

(3.53)

for a suitable range of 9 depending upon the size of spheres.

An approximate time delay for 6=0° and equal radii spheres
is given in reference [21]as follows:
2.57a+(r-] Z+an-r,

c (3.54)

For O-0O° and unequal radii spheres one may similarly

wri te:
a2+1.57al + (ri2+ai12)!s-ri
Td = E
(3.55)
Q. Ql
where r2 = a2 + + (r+an”)” is the path of a-b-c-d as
shown in Figure (3.10). By following the similar procedures

as given in section (3.4) for the impactee the amplitude of

deceleration of the impactor can be found to be:

am2 bvo (3-56)

m2
where M = — is the ratio of mass of impactor to the mass of
impactee. For a pair of colliding spheres as shown in Figure

(3.9) one may write:
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| - r - a|Cose (3.57a)
- r + a2cose (3.57b)

r M
cose-, = — cose - (3.58a)

1 r]

and
r al
cose? = — cose+ -£ (3.58b)
2 2

Substituting for r from (3.57a) and (3.57b) into equations

(3.58a) and (3.58b) respectively gives:

cose-] ~ cose 1 sinze (3.59a)
M
cose2 - cose (3.59b)
where and

The sound pressure in the far field radiated by the

impactee may now be written as:

.2
X (cose- p—sin e)
M M

{[(1 -23-j 2)cos(fiirB-j )-(I1+23-j2) si n (frirB-j)]e™n7T|3I

- (1-23-]1 2)cos (h7r)+26- sin (fin)} (3.60a)

ft < 1
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and
1 .17M pocvo 1, P
T 7- 7—(cose- —sin e)
1 1+M  (1+46-)
{[(1 - 25-j2)cos(rt7TB-| )-(1+26-j2)sin(rM-| )le "~1
+ [(1-2812)cos[ (ft-DiT61]-(1+2B12)sin[(rt-1)rgi]]e'(n 1)irB4j
fi > 1
(3.60b)
where 3

Similarly the sound pressure radiated by the impactor can

be found to be:

{[(1-2£22)xcos [(fi-n* )ir62]-(1+2622)sin[(h-n" M 2]]

e (n n Jirgg _(-] _2g”2)cos [(n-n')Tr]+2B2sin [(fi-n' )t ]}

0<n-n" <1 (3.60c)
and

1, 1.
Po --------- — - x 7—(cosb+ y-sin 9)
4+M (14432 ) 7 2

{[{-2622)xcos[(n-n" )t B2] -(1+2B,,2)sin[ (fi-n! )vB2]]

e-(fttn' )Te2+[(1-2g22)coS[ (fi-n'-1 )t B2]
-(1+2g22)sin[(ft-n-DTTfi2]]e'(n*n" "1 )’i62}

fi> n'+l (3.60d)
£2
where 0 = and n
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The total sound pressure may now be written as:

p = H(-fi+l )p-J+H(fi-l )p-|+H(ft-n | YxH(-fi+n'+l IpA+Htft-n 1-1 )p2

-90° < e <90° (3.61)

The total sound pressure for 90° < 9 <270° can be obtained

by changing the role of the impactee and impactor. Graphs
representing variations of dimensionless pressure against n for
a pair of similar spheres of equal and unequal sizes are given
in Figure (3.11) and (3.12) respectively. The dimensionless
pressure versus n for a pair of dissimilar spheres of equal

and unequal sizes are also given in Figures (3.13) and (3.14).
The directional distribution of sound for all above cases are
presented in Figures (3.15) to (3.18).

Equations (3.60a) to (3.60d) make also possible that the
variations of dimensionless rarefactive peak against $ be studied
for the case of similar spheres of equal radii and 0 = 0°.
Graphical presentation as such is given in Figure (3.19).
Variations of N ax at which the rarefactive Peak occurs is also

shown in Figure (3.20).

In order to study the frequency spectrum of a pair of

colliding spheres equation (3.44) may be written as:

coseNl+e iwd)

Pl CJ,0)>w) 2 2w
2c +2icoa-] c-w a-]

(3.62a)
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Similarly for the impactor arriving with a time delay Td

one obtains:

n (r fl ! _ 1-17 Pob2cVoa23 (i*'r2+c)

2 2" 2°W 1+M b2- w2 r22 2c2+2iMa2c-w2a2?

(3.62b)
Adding (3.62a) and (3.62b) and then multiplying the results

by its complex conjugate gives:

4(1.17)2po2vo2al2612n*2cos2(n*TT)

(1+M)2(1 -4n*2)2(B14+4n*4)(B24+4n*4)

(—a@? 4?9 n-)(6i cosO-sind0)3+ L1457 )

5] 4n*%2 1 224

B 2
(1 +----x—2-)U2cose+sin20)2------ 5—5—[4n*4-2n*2(B1-fi9)2
an*~/ 21 %%3"* )

2 2 fi Bo
+ Ix[2n*61 62(1 +------ 2------- Ycos(2Trn*n' )+(~2B-i -CiB?)
! 4n*%69 12

sin(2Trn*n")] (6-]COS0-sin20)x(69cos0+sin20)------

(2n*2+B] fi2) (B! -B2) [(e2®i-5] B2)cos(2jrn*n') -2n*~

~2 2 2
1 + -----g------ in(2Trn*n' . -si +sinA
( 4n>'§%£2)sm( rn*n")] (g 1cose sin eJtC02COse sine)}

(3.63)
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A | ; and
t a large distance r, 4n*2q?2 ' An*%?

are all much less than unityand one may write:

2.34povoai 6-|n*cos(n*iT)
(1+M) (1 -4n*2) (B14+4n*4  6/+4n*\/]

U2co0s9+sin29)2------ 1 2— [4n*4-2n*2(6-|-ft?) +$-. {
62 n*

X[2n*AN£2cos(2mn*n' )+(~26-|-C-|B2)sin(2irn*n! )]

2 2 2M 2
(C-jCOse-sin 9)U2cos9+sin 9 )------ —j(2n* +B-| $2) (3-|-B2)
S] ?2

[(~271 62)cos(2Trn*nl )-2n*£A 62sin(2irn*n")]

X(C-| cos9-sin29) (£2cos9+sin29) (3.64)

Graphs showing variations of [ip| versus n* for a pair of
similar spheres of equal and unequal radii are given in Figures
(3.21) and (3.22) respectively. Similar graphs for a pair of
dissimilar spheres of equal and unequal sizes are also given in
Figures (3.23) and (3.24). Variations of n*ax at which the
peak of transform occurs is also plotted against 3 in Figure
(3.25) for a pair of similar spheres of equal radii and 9 = 0°.

It should be emphasised that the dimensionless forms of

pressure-time and pressure-frequency introduced in this section
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may be easily related to those given by Koss [22] through

the relations:

p(r,e,T)/pocvo = 137

IT, g X 1M
and
p(r,e,4)/povoal y
4.68/6-.x
T v 14M
9
where n,- = and 9= -_Lp»(_L\6,U)| afe “ossis normalised
0 poamllaq /E}p camd
pressure-time and pressure-frequency respectively. The

difference between the results is due to use of equation (2.42)
which is not being used by Koss [221. His dimensionless result
in the frequency domain is also limited to case of pair of

similar and dissimilar spheres of equal radii.

3.7. Sound radiated by a pair of colliding spheres

(Numerical Method)

In section (2.6) a numerical method was given for calculating
the force at any instant of time by solving equation (2.67)
numerically. The method can be developed for predicting the
sound radiated by a pair of colliding spheres if the instantaneous
values of acceleration are being employed for calculating (3.51a)
and (3.51b) numerically. The method will be explained in detail
later on in chapter 5 because of its common use in predicting the

sound radiated by a pair of viscoelastic spheres. Typical sound
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pressure time history calculated both numerically and

analytically (equation (3.52a) are compared in Figure (3.26).

3.8. Sound radiated due to change of volume of sphere

undergoing an elastic collision

The change of volume at any instant of time for a sphere
of radius a”subjected toan elastic collision by another sphere

of radius a® as shown by shaded region in Figure (3.27a) can

be written as:

a-! /a-j -Xx 2

/ dg = j(2a-|"™-3a™x+x7)
X 0 0

(3.65)

where x, r and g are illustrated in Figure (3.27b). The

change of volume may also be expressed in terms of instantaneous
radius of surface of contact by substituting x =/a-| 2-R2 into

equation (3.65). Thus:

V = y(2al13-2a12/al2-R2 - R™a-j-R2 ) (3.66)

where R is the instantaneous radius of the surface of contact

and is given by Goldsmith [43] as:

F(6]+62)

(3.67)
A+ B

Using the relationship between force and approach given by

equation (2.60) together with equation (2.61) and substituting

into equation (3.67) gives:
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ala2
-——a (3.68)
al+a2
where ¢ = 3, =— and A = B = MN—+ —) for a pair of
a i\ it al a2

colliding spheres of radii a* and af. Rewriting equation (3.68)

in terms of t by using the approach-time relation given in

equation (2.72) yields:

a-| a

a+a2 .amaxsmbt (3.69)

Substituting (3.69) into (3.66) and finding the rate of

change of volume, one obtains:

(3.70a)

a2 A .
Neglecting the term x7 X Ya o ]Sinbt in comparison with

uni ty gi ves:

2
N a-~"sin2bt (3.70b)

The radial velocity of a sphere of radius aj at its surface

may now be expressed in terms of the volume velocity as:

| 9V i Ba? %

YZ- X =mmmmmmmemee- £sin2bt 3.71
R — 41'ra12 at 16 al(al+a2)? (3.71)
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Using differential of (3.71) with respect to t together
with the impulse potential function of a pulsating sphere

given by equation (3.13) and substituting into the convolution

integral produces;

u2. 2 T
or) = o2 2 x<(l-e~X *Cbsin2b?dC
(@j+a?) r o
d
an d
G>,T) = (1-e T )sin2b~d
0
T>d (3.72b)
The solutions to the equations (3.72a) and (3.72b) are:
cb2a? a 2
DT - i —X-—--5Nm- 2---- 70— sin2bT-cos2bT'e_AT]
’ 8 (£2+4b2) (al+a2)2r 2b
0<t <d (3.73a)
and >
a2
<)1) =
t > d (3.73b)
The sound pressure may now be found to be:
12 2 a22£
OC a max : "
P(.T) g p [cos2bT+ -Nsin2bT-e”AT]
(£2+4b2) (a-]+a2) r £
0 <t <« (3.74a)
and )
_ P cb"a
P(r,T) =i O max
(£2+4b2)

t > d (3.74b)
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Substituting in equations (3.74a) and (3.74b) for amax from

(2.69) and rewriting the results in terms of non-dimensional

variables gives:

M6 )

0 <n <1 (3.75a)

and

ft> 1 (3.75b)

where Pn = 0.142 p v 2 al
D fo o

Figure (3.28) shows variations of p/P” versus fi for a

single sphere.

3.9. Acoustic energy of an impulsively accelerated sphere

Consider a volume V of a fluid surrounded by inner and outer
spherical boundaries at r = a and r = r, respectively. Further
assume that the sphere of radius a is subjected to an impulsive
velocity vQH(tY) and is surrounded by inner boundary of this fluid.
The kinetic energy of the element of this fluid having the

volume dV and the mass p'dV is:
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dEK = 1 p'(q)2dV (3.76)

where q is the velocity vector.
The condensation of the medium which is given by equation

(2.4) confirms that for small condensation p' = pQ. Thus,

0 /(q)2dv (3.77)

K 2pv_

The change in the volume of the element generates the
potential energy which by assuming an adiabatic relationship

between pressure and volume, can be written as:

(3.78)

So the total energy at any given instant of time is:

E=e + EP = I Po N(q)2dV +

2 PP2()V
2poc V

(3.79)

The flux of energy propagating out of the volume V may now

be obtained by differentiating (3.79) with respect to time.
Thus:

9E

ot O v+ 7vp It dv (3.80)
poc

Using equations (2.6) and (2.8) gives:

(3.81)
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By using Green's theorem:equation (3.81) can be reduced
to the surface integral of the density of energy flow in a

direction normal to the surface S which bounds the volume V

of the fluid. Thus:

-lr = -/div (pq)dV = JpgndS (3.82)
Vv - S —
where n is the outward unit normal.
Representing the element of dS as shown in Figure (2.1)

gives:

= pup fpV sin0dO (3.83)
o r
where vr = _(1 _n

Using expressions (3.7) and (3.8) given for pressure and
raidal velocity, substituting them into (3.83) and integrating

over the interval of 0 gives:

(3.84)

where T = t -



-85-

Equation (3.84) shows that the flux of energy propagating
in direction normal to the surface S which is positioned at a
distance r from the centre of the sphere decreases by increasing

the time, and has a maximum amount at r = O. Thus:

X

E 4
9t = ZTpolV, (3.85)

which is independent of r.

To evaluate the energy equation (3.82) can be written as:

E=f f pv dSdt (3.86)
ts r

which by carrying out the similar process as given before and
integrating over the interval of t from zero to infinity yields

to the following result:

E = (3.87)

To find the energy radiated in the far field one may use

the fact that

_ 1 (3.88a)

or, in other words,

v (3.88b)
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Thus from equation (3.86)

E=-—FfF p2dSdt

ot s (3.89)

By making use of equation (3.89) the energy radiated in

the far field can be evaluated to be:

The same result may also be obtained from (3.87) by
estimating limit of E as r> ®° ., The result given by (3.87)
is similar to that given by Akay and Hodgson [16 ] who have also

given an expression in the form of:
E = f £ p(co)vf*(to)dtodS (3.91)
S

for evaluating energy in frequency domain, where vf*(w) is the
complex conjugate of v (co).

3.10. Acoustic energy of sphere undergoing a Hertzian
acceleration

As shown in section (3.4) the sound pressure generated by
a sphere undergoing a Hertzian acceleration can be represented
by two expressions, each for a certain interval of time. Let
P-|(r,0,T) and P2(i%9,t) denote the sound pressures in intervals
0 <t <d and T>d respectively Thus the intensity of energy

per unit area of any spherical surface positioned at a distance
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r from the centre of sphere can be given by:

d
L g s FPLCET) N (R, TYAT + 3 P2(r,T) v2(r, )T
COs 8 0 d

(3.92)
where v-j(r,0,T) and v2(r,0,T) correspond to radial velocities
in each interval. To solve the above equation one may use
Simpson's rule which is a well known method for solving an
integral numerically. So the integrals on the right hand

side of equation (3.92) can be evaluated approximately as:

! 0E At [(pvr)|T=0 +(4pvr)|T=At+(2pvr)|T=2At+(4pvr)
28 3 3
cos

.......... +(2pvh) IT=(n_2)At+(4Pvr) N(N-1 )At+"\VrAT=hAt
(3.93)

where At is a constant increment of time, pvf is either equal to
P-lv-|] for 0 <t < d or p2v2 for T>d, and n is an even number.
Since the pressure decays with increasing time, n may be chosen
as a suitable large number to give a negligible value of pv for
t> nAL The result obtained from (3.93) gives the amount of the
intensity of energy in a certain direction. Thus, to find the
energy one should multiply this result by f‘jrrrz.

By taking the far field condition into account one may reduce

(3.92) to:

=3At



-88-

1 (3.94)
Ccos 0
which can be solved either numerically or analytically. It

should be emphasised that representing an analytical expression
as a solution to (3.92) required a long calculation. Therefore,
a numerical solution is preferable, but in the far field case
the operations are shorter and analytical solution may be
achieved. Thus, by substituting for p from equations (3.40a)
and (3.40b) the intensity of energy per unit area can be found

from (3.94) to be:

g M2a3pQP2COS2e 1 4ry pa-ab2£2)sinEde-1d

35 ' 2(b4+424)2r2
-(4£4-b4+4b2£2)(cosEde" Nd+ )+ (4£4+bAd ]

(3.95)

By making use of equation (3.95) the radiation energy can
be obtained as:
%aMza?’prztt
3(b4+4£4)2

[(4£4-b4-4b2£2)sin2.de £d

-(424-b4+4b21.2) (coslide' A +1 )+(424+b4)£d |

(3.96)

or in terms of B

I* = -°--3424~"[(4B4-462-1 )sinfiire K|3-(4B4+4g2-1) (cosirge 7t6+1)
L (wV

+t6(4B  +1)] (3.97)
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where E*= —O-M----mv C a%d m is the mass of air displaced by
(1+M)Z 0

the sphere.

Figure (3.29) shows variations of E/0.342E* against 8
for a single sphere. Variations of total dimensionless
energy, i\Ey/O.SE* versus B for a pair of similar and equal

radii spheres is also given in Figure (3.30).
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Fig.3.1. Pressure-time curves of impulsively
accelerated sphere.

Time in unit of a/c

Fig.3.2. Pressure-time curve of impulsively
pulsating sphere.



91-

LOG1 0
6 =£/b

Fig.3.3. Dimensionless peak pressure againsL
dimensionless contact time.

Fig.3.4. Variation of with 6.
max
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LOG1 O

Fig.3.5. Dimensionless peak of transform
against 3.

3 =Vb L OG10

Fig.3.6. Variation of n* with 3
max p



Dimensionless pressure, p/Pmcose

Fig.3.7.
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A Comparison of the exact solution for the

sound radiated by an impulsively accelerated
sphere and approximate solution of that sound
obtained by aerodynamic approach.

radiated by a sphere undergoing a Hertzian acceleration
and approximate evaluation of that sound obtained by
aeroacoustic approach.
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Fig.3.9. Model of colliding spheres.

Fig.3.10. Model of wave path from impactor

to measuring microphone located at
9 = 0°.



Dimensionless pressure, p/p.cv

Fig.3.11.
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Dimensionless pressure-time curve for a
pair of similar spheres of equal sizes.
(9 = 0°).



Dimensionless pressure, p/p cv

Fig.3.12.
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Dimensionless pressure-time curve for a pajr
of similar spheres of unequal sizes (0 - 0°).



Dimensionless pressure, p/o cv

Fig.3.13.
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Dimensionless pressure-time curve for a pair
of dissimilar spheres of equal sizes (6 = 0°).
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Fig.3.14. Dimensionless pressure-time curve for a pair
of dissimilar spheres of unequal sizes.



Dimensionless pressure

Fig.3.15.

Fig.3.16.
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Angle, 0 (degree)

Directional distribution of maximum pressure radiated
by a pair of similar spheres of equal sizes.

Angle, 6 (degree)

Directional distribution of maximum pressure radiated
by a pair of similar spheres of unequal sizes.
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Angle ,0 (degree)

Fig.3.17. Directional distribution of maximum pressure
radiated by a pair of dissimilar spheres of
equal sizes.

Angle ,0 (degree)

Fig.3.18. Directional distribution of maximum pressure
radiated by a pair of dissimilar spheres of
unequal sizes.
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LOG1 0

LOG1 0

8 =£hb

Fig.3.19 Dimensionless rarefactive peak
pressure against B.

(Pair of similar spheres of
equal radii 0 = 0°.)

Fia.3.20. Variation of n with B
max

(Pair of similar spheres
of equal radii 8=0°)
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Fig.3.21. Fourier transform of pressure for a pair

of similar spheres of equal sizes,
(v =152 m/s, r - 0.255 m, 0 = 0°)
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XI o"
Logarithm of dimensionless frequency, log n*

Fig.3.22. Fourier transform of pressure for a pair
of similar spheres of unequal sizes.'
(vQ = 1.52 m/s, r = 0.255m, Q=0 .)



-104-

Fig.3.23. Fourier transform of pressure for a pair

of dissimilar spheres of equal sizes.
(vQ = 1.52 m/s, r = 0.255 m, 0 = 0°.)
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Fig.3.24. Fourier transform of pressure for a pair

of dissimilar spheres of uneaual sizes
(vQ = 1.52 m/s, r = 0.255 m, 'o = 0°.)



Pressure (Pascals)
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Fig.3.25. Variation of n* viith 6
max

Fig.3.26.

(Pair of similar spheres of
equal radii 0=0°)

Sound pressure time history for 2.54 c¢m diameter
steel sphere with an initial impact velocity 2.5 m/s.

(6 = 0° r = 0.375 m)
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(a)

(b)

Fig.3.27. Illustration of element dS for
evaluating the shaded volume.
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Fig.3.28. Dimensionless pressure time curve due to change
of volume of sphere undergoing an elastic
collision.
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LOG1 0 3 =£/b

Fig.3.29. Variation of dimensionless energy
with 3 (Impactee only)

LOG1 O 3=£b

Fig.3.30 Variation of total dimensionless
energy with 3

?-(Pair of similar spheres of equal radii)
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4. RADIATION DUE TO INELASTIC COLLISIONS OF SPHERES

The sound pressure due to inelastic collision of spheres
is studied in this chapter. The theory of inelastic collision
of soft material for two identical spheres is given by Andrews
[58, 59] and a review of this theory is also given by Goldsmith
[43]. According to this theory three distinct periods are
existing during the collision of a pair of identical soft spheres.
Knowing the accelerations during each period one would be able
to predict the sound pressure by making use of the convolution
method. This has been done first by Koss [23], who gave no
expressions regarding sound pressure either in the time or
frequency domains. Koss produced predicted results for the
sound pressure caused by the impact of soft spheres, but he
gave no information on how these results were derived. It is
likely that he calculated the convolution integral numerically.
The present study not only gives details of the numerical
calculation of the convolution integral, but also provides in
addition an analytical solution.

The dimensionless pressure-time and pressure-frequency

are also given.

4.1. Elastic-plastic contact deformation

To study the contact deformation due to collision of a
pair of identical soft spheres, as suggested by Andrews [58, 59]

one should consider three periods which are as follows:
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1. an elastic loading period., 2. an elastic-plastic loading
period., 3. an elastic unloading period. Each sphere may also
be considered as impacting a completely rigid massive plane
surface (E” = and m2 = ) with an initial relative velocity
equal to half the relative velocity of the spheres. During
the first period the Hertz law of contact is valid, and the

following expressions:

1-v2 6 _
5/ = tE " 62 "
L 2 _,5 2
Fax ~ ko c¥e- o : %iax 6 Vo
d = 5.886 ,
0
and A-jCt) = sin = ansinbt  0< t< t4 (4.1)

may be found by using equations given in section 2.5, and assuming
= = A— A = i

(A=B = 2 and q 1) as shown in reference [43]. The pressure

distribution within the contact area of radius R may be expressed

as:

p. —aita? (4.2)

ira™l-v )

where r is a distance from the centre of the circle of the contact

area. It should be emphasised that an area of contact, in general,
has an elliptical shape, but in special cases such as the collision
of a sphere and a massive plane or collision of a pair of spheres

a contact area of circular shape exists. The first period

terminates when the maximum pressure which occurs at the centre
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of contact area (r=0) reaches a critical amount like PQ. Thus
at this instant the radius of the contact area and deformation

can be given as:

. TIPAd-V2)
RI -~ 2F (4.3a)
and " 9
L2 TTP.d-vi-) 2 (4.3b)
| - - al [ E

By making use of equation (2.71) the termination time of

the first period may be evaluated to be:
5/2 N
) ] dot (4.49)
amax
The contact area during the second period consists of two
regions: a plastic region which is a circle of radius , with
a constant pressure distribution PQ and an elastic region which
is an annulus of thickness R-r-| with a pressure distribution

given by equation (4.2). Thus the force in the plastic .circle

and in the elastic annulus are respectively:

F? -“f12f0 (4.5a)

and
Fo=32upd? = ; AE[RL-Y e @
. . > 3 anI-7)
ri ri !

(4.5b)

Inserting the conditions P = PQ at r = rj into the equation

(4.2) gives:
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(4.6)
By making use of the above expression, Fp and may be
written as:
(4.7a)
and
(4.7b)
Thus the total force in the second period is:
(4.8)
where a = —. The equation of motion may now be written as:
al
.2
= mjp a (4.9)
1,Poal o
where n By making use of equation (2.68) the initial

velocity at the beginning of the second period may be expressed

(4.10)

Thus the solution to the differential equation (4.9) is:

a2 -’ Zl?l'nza-]Ci + 1a%2+_a?]2 (4.11)
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When a is maximum the relative velocity a is equal to

zero. Thus from equation (4.11):

Soaxal + (4-12)

To evaluate the approach-time relation, one may write

equation (4.11) in the form:

dz*
] (4.13)
[(1-Z*¥)(1+Z*-K*)
where Z*= , K* = ,and £t =t -t The solution
max amax
to equation (4.13) may be expressed as:
+ (Mmax " Y 1D)sin(nt + 6%) (4.14)

where tan6*= é n ?I— By making use of equation (4.14) the

t
acceleration and duration of the second period may be written

as:

A2(t) = (%ax " J ai)n2sin(nt + 6%) th <t <t + t?

(4.15a)

(4-15b)

Consider now the final period which is an elastic unloading
from amax given by eTuation (4.12) to the permanent deformation

like otF. During this period it may be assumed that the plastic
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region which is created during the second period returns
elastically to the original surface of the sphere, so that
at the end of the period the permanent deformation can be
given by a,F = ;—2 , where ro is the radius of the circle

of the plastic region at the end of the second period.

The total force as given in reference 1431 is:

3/2

Feu = %8 ofBR2 02 1 AR 275
anl-v ) C b

(4.16)

. 2 . . .
Substituting R = a*ctt into the above equation and using

Newton's second law gives:

3/2
)+ ?22(aia - ?22)

(4.17)

By making use of equation (4.6) the radius of the plastic

circle at the end of the second period may be written as:

R = 61Cmax - “Pj = (al“p2 (4.18)

where amd_x is given by equation (4.12). By introducing the
initial conditions (a = A ax and a= 0) the solution to the

non-linear differential equation (4.17) may be expressed as:

-2 9 i/9 _5/0 3/q
YA - Z -Z )

(4.19)
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The duration and acceleration of the third period may now

be given by:

S/ -7z Mamax- ai){l -Z2 2)] dz

(4.20)

and
2 - L . .
A3(t) = n (amax - J aj)cosb*t* t-14+82 <t<t-j+t2+3

(4.21)

where b* = Al
283

and t*=t-(t-] + t2). Equations given in this section as shown by
Koss [23] may be used for evaluating the sound pressure
generated by the collision of soft spheres. Thus by using

equation (3.10) one may find that:

s s X

p(r,e, T) = fT" pUI(r,e, T-c) [A-](®) + A2(d + A3(N)} de

0

t] + 22 <t M9 + 83 + 83

(4.22)
where p(r,0,T) is the sound pressure generated by each sphere.
The total sound pressure can be expressed in the similar form

as given by equation (3.52a).
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4.2. Numerical Solution of Sound Pressure

The sound pressure due to inelastic collision of spheres
may be calculated numerically by employing steps as follows:
1. Calculation of termination time of each period.
2. Numerical estimation of force or acceleration at different
instants during each period.
3. Evaluation of sound pressure at different instants during
each period and after termination of last period.
To make the above steps more clear, let us consider an
instant t defined by 0 < t <t-|, where tj is the termination
time of the first period given by equation (4.4). Equation

(4.4.) is a function of a and may be written as:

t| = f g(a) da (4.23)
0

where g(a) = ~-[1 -("---) To solve (4.23) one may use

0 max
the trapezoidal rule which is a well known method as well as
Simpson's rule for solving an integral numerically. So the

integral on the right hand side of equation (4.23) may be found

approximately to be:

ti - y[g(@)| +2g(a)l +....+2g(a)| +g(a) |
a=0 a=h a=(n-Hh a-nh

(4.24)
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where h = L and n is an integer. By making use of equation
(2.67) the differential form of acceleration during the first

period may be written as:

-a (4.25)

Thus to find the acceleration at different instants during
the first period one must solve a differential equation in the

form of:

(4.26)

Many methods, such as Runge-Kutta, Numerov's and Taylor's
expansion are suggested in references [60 and 61] for solving
the differential equation. Let us now use the Taylor's
expansion method for solving equation (4.26). According to
the Taylor's expansion formula the value of a at instant t = At
may be expressed in terms of successive derivative of a with

respect to t at instant t= 0 as:

2
al =3| +Ati| +-"U-a| +ooe (4.27)

t=At  t=0 t=0 t=0

where At = — and n is an integer.

The initial conditions at instant t = 0 are:

v
al =0, al = N- (4.28)

and the higher order derivatives at the same instant may be
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found to be zero by the use of equation (4.26). The value

of a at t = At may now be simply estimated by substituting
the initial conditions into equation (4.27). Thus the
corresponding a can be evaluated from (4.26). To repeat
the process one needs to estimate the first derivative. It
can be easily shown graphically that:

. al _a|

a| ~  t=(n+DAt " t=(n-DHAt ,

t=nAt 2At

Using now the Taylor’s formula

of a at t = 2At and

second gives:

al -
t=2At

Estimating the

equation (4.29) and

al
t=2At

or more generally,

al -
t=nAt

to estimate the value

ignoring the derivatives of higher than

a| +Ata| + d

t=At t=At ' t=At

(4.30)
value of a at t = At by making use of

substituting into equation (4.30) yields:

2a| -al +(At)"a|

(4.31)
2t | -a| +(At)~al
t=(n-)At t=(n-2)At t=(n-DAt
n >2 (4.32)

Thus, at each iteration one would be able to calculate a

and consequently a.

acceleration may be

Having calculated a both force and

found from (4.25) to be:
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Fl = -m,a| n >0 (4.33a)
t=nAt t=nAt

and

AJ = -a| n A0 (4.33b)

t=nAt t=nAt
To estimate the sound pressure the convolution integral
(4.22) may be written as:

C=t

P(t,0,t) = £ p T(r,O,T—dAi’(c)dC
(=0 1

0< T < t (4.34)

where p” can be given by equation (3.7) after substituting vq
equal to unity. By making use of equation (4.34) the sound

pressure at t= nAt can be expressed as:
C=nAt

p(r,0, nAt) = £ pUT(r,e»nAt-MA,(N)dN
cC=0 U1 I

Ck nAt <<t (4.35)

Using now the trapezoidal rule to calculate (4.35) numerically

gives:

At
p(r,e,nAt) = 2 Pul(r,e,nat-0)A1(0)+2pUI(r,e,nAt-ADAL(AL)

+.... +2plij [r,e,nAt-(n-I )At]Al [(n-1 )At]

z\

+ Pji (~>9,nAt-nAt)A-| (nAt)

0<nAt<t-| (4.36)
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By making use of (4.36) the sound pressure at different
instants of the first period can be evaluated. Consider
now instant t defined by t"<T< t-]+t2, where t? is the duration
of the second period given by equation (4.15b). The duration
of the second period can also be given by equation (4.13) as:

%oiax
=n { 1+ “max)] KN (4737

al

Using the trapezoidal rule to evaluate (4.37) numerically

gi ves:
A2 = [~ (ot)l +2f(a)| _+...2f(a)] _ _+ f(a)l ]
a=0 a=h a=(n-DHh a=nh
(4.38)
where f(a) = 1 [(a™-a) (a- \ h = , and
n is an integer. In order to find the acceleration at different

instants during the second period one must solve a differential

equation in the form of:

a=-n“a+yn (4.39)

with initial conditions:

. at t = tj (4.40)

This can be done easily by using Taylor's expansion method

and following similar procedures as given previously for solving
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equation (4.26).

Thus at any instant during the second period

the force and acceleration can be given by:

F __ = -m,a| n>o0 (4.41a)
t=t-|+nAt t=t1+nAt

Al = -a| n>0 (4.41b)
t=t-|+nAt t=t-j+nAt

A2

where At = — .

found by use of the trapezoidal

p(r,e,t.]+nAt) = ~

t-]< t] + nAt <tj+t2

The sound pressure at t =

t-j+nAt may now be

rule to be:

PUT (r, Ojt-j+nAf-OjA-j (0)

+2p~(r,e,t-1+nAf-At)A-l (At)+....

+2pUL '(r,0,t+hAt-(n-1 ) At] ~[(n-1 )AG

+PUI(r, e, tl+nAt-nAt)Al (nAt) X

Pyj(~»0»t-j +naT~tj)AN(t-])

+2P[jiT (r™Mt-j+nAMt-j+At)] N (t-j+At)

+2pUI [r™t-j+n/ft- Lt-j+(n-1 )aTI]A2 [t
+PJ] [r,e,tl+nAt-(t1+fiAt) JA2(t1+nAl)

(4.42)
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Let us now apply the trapezoidal rule to calculate the

integral on the right hand side of equation (4.20). One can

obtain:
?@I_ +22(@)_ = +...2?202)] _ _+?2)|
z=0 z=h z=(n-Hh z=nh
(4.43)
where £(2) = - = Bayi-z 2P - y (-2,
= 1 = . 0® .
h - —and n is an integer. The differential equation needs

n
to be solved numerically is equation (4.17) with initial

condi ti ons:

al a (4.44a)

and
al =0 (4.44b)

t=tl+t2
By following a similar process as before the force,
acceleration and the sound pressure at tj + t£ < t
can be determined. It is clear that the acceleration at any
instant t is equal to zero. Thus the sound pressure

at instant t = d+nAt can be given by:
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PUI(~,e,d+nAt- t-1)Ao(tl) +........
+2P1]] [r,e,a+nAt-(t1+AD)JA2(t1+AD+...
+2P(jj [r~a+nAt-tt-j+fn-1 )At] ] A2 [t-j + fh-1 ) At]
APjj €@ “d+nAt-(t-| +nAt)JA2(t-| + nAt)

?t APlu [r,e,d+nAi-(t1+t2)]A3(t1+t2)
+2pUl [r,B,a+iiAt-(tl+2+A) JA3(t1+E2+At) +...
+2P(JI [r,e,a+nNnS- [th +1224+(Nn-DH] ] A3

[t]+t2+(n-DAt]+pUI [r.e.a+nAI-ft-j+~+nAt)]

AA3(E]+t2+nAt)
t >d (4.45)
where d = t-j+t2+t2 is the total contact duration, Et =—— and n
n
is an integer. It should be emphasised that the numerical method

described in this section is not necessarily the best method but
it is the simplest one. The accuracy of the results may be
increased if, instead of using equation (4.29) for estimating

the first derivative, the actual equation such as (4.11) and (4.19)
are used. More accurate results can also be obtained by taking
derivatives higher than second into account. Graph: showing

variations of force versus time for 2.54 cm diameter lead spheres
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with an initial impact velocity of 0.55 m/s is given in
Fig.(4.1).

4.3. Sound radiation from a sphere subjected to inelastic
collision by a sphere (Analytical SolutionT

The sound pressure due to inelastic collision of spheres
can also be given analytically by using the convolution integral.
Using acceleration given by equation (4.1) together with
response to unit impulse expressed by (3.7) and substituting
in (3.10) gives:

P-‘(rIOIT§ =-mmmm o cose /-E’(Os£(t-’\)+(1 - £Ssin£(T—?)]
r 0

e NT"~sinb£d£

0 < T <t] (4.46)

The solution to the equation (4.46) is:

-£t
[(B-|-D1 JsinAT+tC-j-E-i )cos £t ] (4.47)
0 < T <ty
where G| = (2l12+b2+2bj>)U-b(I- £)3},
Cl = (2s.2+b2+2bs.)[{-(2jl-b)-j>], DI=(2jt2+b2-2ba) [A+bd - y)],and
a = (2£2+b2-2b{.)[*(2s.+b)-!I].

The contribution of the first
period to the sound pressure at instant T> t! can be obtained

from (4.46) by replacing the upper limit of integral by t-j.
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Thus one may find:

x bt-] « btn
[Bj Sin£(T-t-]|+ —)+Cicos£(t-ti+ -~)

X X X X

_ [(B-j-D-j )SINET+(C-]-E-| )cosETle T

t > t (4.48)
During the second period one must use acceleration given

by equation (4.15b) and establish a new convolution integral

as.
T
- -la-])cose/ [Ncos£(T-b)+ (- 7N)
tl
Sin£(T-t)] sin  £ri( £-t-] )+6]d£
tl< t < t-]+82 (4.49)
The solution to the equation (4.49) can be given by:
(B2+D2)si n [o (t —t-| )+<5*] + (C2-E2)cos [q(T-t" )+6%*]
iBZSi n [£(t -t-] )+6*] K~cos [£(T-t-| )+6*]
-D2Sin[£(T-t-| )-(S*] -E2COS [£(T-t-| )-<S*i e
t-|< T <A]+~2 (4.50)
x PQCa n ” ’
where G9 = --m-- (amax " ]N-]cose’ A2 = (2£2+n2+29£) [E-n(l- M),

2 =(2£2+q2+2q£)[~(2£-q)-£], D2 =(2£2+q2-2q£)[E+q(l - ~-)1 and
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E2 =(2|2+n2—2n£)[’\(2£+n)—<| . The sound pressure at instant

t-| <t ~N-j+t~ may now be written as:

p(rIOIT) = P_i(rlelT)l t p?(rlelT)l (451)
>t ti<T <t

where t = t-]-". The contribution of the second period to

the sound pressure at instant t >t may be deduced from (4.49)

by replacing the upper limit of integral by t. Thus:

£(t-t

t (4.52)

Finally the convolution integral requires to evaluate the
sound pressure during the third period which its acceleration is

given by equation (4.21) can be expressed as:

2 2
p ca 1 T
p3(r,0,t) = ---—-- J----- (Mmax" 3™1 )cos0/["cosi(T-C)+(1-
r t
sin«,(T-c)] e , cosE(c- t)d?

t<t <a (4.53)

where d = t-ji~N+tg. The solution to the equation (4.53) may

be written as:



P3(rse,T) (B3+D3)cosb*(T-t)-(C3-E3)sinb*(T-t)
t <t <d (4.54)
Is pQCaz82 |
WherS G3 = 2?4?+b*V2(“max® 3“1)c°Se ' B3= +b* +2/~km-b*(1- £)]
C3 = (282+b*2+2£t>-)[A(2£-b*)-«.], D3 = (2£2+b*2-2~[8+b*(I- and
E3 = (28 +b*<28.b*)[£(2S.+b*)-8.]. The sound pressure at instant

t < t< a may now be found to be:

(4.55)

Replacing the upper limit of convolution integral (4.53) by

d and evaluating the integral gives:

[-(B3-D3)sin8.(T-d)-(C3-E3)coslI(T-d)]e”s-(T7a) ™

-[(B3+D3)cos)>(T-t)-(C3+E3)sin8(T-t)]e 5 (T":£)

T>d (4.56)
Thus the sound pressure at instant t> d may be expressed

as:
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Analytical and numerical solutions of sound pressure for
impactee are compared in Fig.(4.2). The sound pressure-time
history for a pair of lead spheres is also given in Fig.(4.3).

The non-dimensional form of sound pressure in the far
field can also be easily represented by following a similar
process as given for elastic collision. Thus equation (4.47)

and (4.48) reduce to:

p_CV¥_acosi i &
Py = gUERISC a0 i} EBTsinﬁn %— -{1~2312}cusﬁn E_
r{1+4BT ) 1 1
—[{I+EB]2}sinﬁwE-{1~2E~]2}c05ﬁﬂﬁ}e_ﬁ“ﬁ
0< fi <n, (4.58)
and
p_Cv_acosd n =
p, = 2980 0 (1426, %426, ) [sinmf(#-n +=1)
1 2(1+48,")r ]
aLa M\ ~mB(f-n )
-(1-2g, Jcosma(n=-n,+—) le 1
1 18,
4 (1428, 2-28. ) [sinaB(fon -2}
B LRSI B o7
n Fa
-(1+28, JcosnB(n-n -—]—]IE-'”BEH_”]]I
1 1 B
_2[{1+Eﬁ]2}sinﬁn§—[1—EGTzlcnsﬁwﬁje'"ﬂﬂ
. -
n >0, (4.59)
= A t
where B] = %—, B = %ﬂ . N = ;, and Ny E élu Similarly (4.50)

and (4.52) may be written as:



and

P2

Pe =

D Ca,acose = A A <,
e 1 IA 7 = dﬁzsinTrE?{n-n]+ :g~§i
2(1+48, " )rcoss* B, g
—2{1—2522}c05w§—(€-n1+rg-—i}
m™
Rl e
-(1428,7+28,) [s inn(A-n, +%)
e
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_[]~2§2}C05ﬂéfa-n]+§ij]* E—ﬂB{n—n1}
mB
-[1+2§22—2é23151nnﬁ{a-n]_f:J

B
~ aoa gE —qgB(fi-n )
;{1+252]c05ﬂ8{n—n1~ﬁgilﬂ 1

rl] < T& |'|-I‘|'r'|2 {4.6[}]
Dﬂca]acusﬂ - 205t et n2 x
2(1+4p. Nrcossr | (1#28,°428,) [sinm(n-n;-nyt<= + &)
: BE 8
-(1-28,) cuswﬁ{ﬁ_n]-n2+x_ g
BE 'ITB
- ~ A R n
+{1+2522_262}[sinﬁﬂin-n]-nz_zg.-ﬁi)
BZ =R
~ i n
-(1+232] CDSNB(n~n]~n2_ L

BE R

-(1+28,+28, ) [sinmB (n-n, +95)
me

Lo

-f1-2§2}c05nﬁiﬁ-n1+ §;j]e-ﬂ8[n—n]j
e
-~ 2 A . Ay *
-{]+282 '2&2)[51nn|3{n_n_|_. 5_’\}
me
‘E1+2§2}C05w£{a_n]_ ﬁ;J]e-ﬂB{ﬂ—n]]
B

S

e

AR (4.61)

MM

i &%) mB(n-ny-n,

M A
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~ £
where 3? =T and n? = Finally equation (4.54) and

(4.56) can be expressed

poca1acosQ
P3 = (1+4f2/)rcos6*
X Zx zx zX 3 s’
- [263COSTr3(n-n-| -n” )-4$2 S1 ri7rB( n-n-j -n) ]
n-|+n2<¢ n < 1 (4.62)
and p

POCN\/ cose_33 [_(1 )sin7T0 (N-1)+ (1 -26~2) CQStt 3 (n-1 )]
P3: r(1+4g34) cos6* q2

e-7rB( n-1)

ZX  ZX X

- [263cos7r6(n-n-|-n2)-4P3 sinir™(n-n-j -n)]

zx  zx

e-7T6(n-n-]-n2)

n >1 (4.63)

zx £
b*

where

4.4. Fourier Transform of pressure-time history

The Fourier transform of acceleration may be written as:

A(w) © f A(b)e”1Git dt = ; A(He 1Mt dt (4.64)
-oo 0
where A(t) = aM]sinbt 0 <t <t (4.65a)

A(D) ~Amax" 371 )h2sin[q(t-tl )+6*] t] <t <t-)+t2 (4.65b)
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A(t) = («max- |a-1)n2cosb*(t-t1-t2) t-]+t2 <t <d (4.65¢c)

Substituting (4.65a) to (4.65c) into equation (4.64) gives:

t a tl+t2
AW) = aMl f sinbte”lwtdt+ -3* £ sin[n(t-t-] )+6*eiwt dt
0
A-j d
n f  cosb*(t-1-. -1? )e~b dt
+ Cos6*
tn+tn
(4.66)
alq 2 _ i
_ - e H H
where cost“ q (amax 3 1). Solvm% the integrals oh the

right hand side of equation (4.66) and making some simplifications

yields:
A(w) = A* + iB* (4.67)
where
al*
A* = ~2—2~(wsi nbt” si nojt-|+bcosbt-} coswt-j -b)
W -b
qa-i p 2
- —K 2~ "b* )sin6*sinwt-.
cos 6*%( -q ) (0o -b* )
+q(co2-b*2)cos6*coswt-] -w(qg2-b*2)s Wt+b*(0j2-q2)coswd]
(4.68a)
and
B* = 2 (wsinbt-|Coswt-|-bcosbt-|Sinwt-|)
w -b
qot-i

2 2
- 9 )l Vi~ [ww -b* )sin6*cos(itl
cos<5*(w -q )co "b )

-q((/-b*2)cos6*sin(jit! -(lo(g2-b*2)coswt-b*(w2-g2)sinwa]

(4.68b)
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The Fourier transform of the pressure due to unit impulse

acceleration may also be given by:

paccose 22 ) 22

PuftrjQjw) = —4---- at+ r)+iw(2£€ r-w r-2a&’
(to +4£ r

(4.69)
Using now (4.69) together with (4.67) the transform of
the pressure for a sphere subjected to inelastic collision

by a sphere can be obtained to be:

p(r,e,w) = pUI(r,e,co) (A*+B"i) (4.70)
where A* and B* are given by equations (4.68a) and (4.68b)

respectively. Multiplying (4.70) by its complex conjugate

gives: 5 9 9 5
2 accose 99
Ip(r,9,w) = 7----477—(aWrZ)(A*M
(w +4£4)r
(4.71a)
or

P 3900 A (adB i obA*+8 s
(WA+U4)\V/
(4.71b)

A graph representing variations of |p| against frequency
for a pair of lead spheres is given in Fig.(4.4). In order
to represent |p(r,e,to)| in terms of non-dimensional variables
A*,B*, and pressure due to unit impulse may be written

respectively as:
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e = 058VGE° 1 3 8
2 E [Zn*-rsin(n.lTrB—}S.in{Zn]n*:r]i-Cﬂs{n]wE—]
(4n*"g,"-B") A 1 1
coa{?n]n*ﬂ}—1]
&1% 2
: oo B 5 é ] {Znﬁinﬁ*sin[En]n*n}+c056*{:us{2n] n*y)
cos n - B
2 R R T
23{632-622}n*
e e 51n[2|{n]+n2]n*n]
= 575D cos{Zn*nl]
(4.72a)
0.58v 5 B 4 :
B* = — 9% —  [Zn*—sin(nbBy Jeos(2n n*xw)-cos(n,——r)
(a5, 2-70) 2 18," 1 18,"
s:n{EnTn*n}]
- A B E } Eén*:—ﬂinﬁ*c05(2n1n*ﬂ}-cﬂﬂﬁ*STH(EH}n*ﬂ}
cos n e
2 i
26(B5%-8,7)n*
Wf“{z‘“ﬁng}n*ﬂ
8ylan,"-8%)
555y Jm{an*J}
BE{ﬂﬂ* By -B")
(4.72b)
p,acos? EE
il ‘*““““*“--751{3 -2mxSeanv2e) - 1 800 (24 anx2p g2 ) )
2(anxt+p ) £ g

(4.73)
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where n* = fd and £ = Z—. The non-dimensional form of
pressure may now be given by substituting A*,B* and p j in
equation (4.70) and multiplying the result by its complex
conjugate as already carried out for establishing |p(r,0,w)
A plot of pressure againstn* is given in Fig.(4.5). Graph
showing variations of |A(w)| versus n* is also given in

Fig.(4.6).
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Comparison of analytical and numerical solution of
pressure time histories for 2.54 ¢m diameter lead
spheres with an initial impact velocity 0.55 m/s,
impactee only.

(e =0° r =026 m PQ =5 x 10? Pascals)
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Sound pressure time history for 2.54 cm diameter
lead spheres with an initial impact velocity 0.55 m/s.

(9 =0° r =026 m PQ =5 x 107 Pascals)



Logarithm of amplitude of transform, log |pl (Pascals-seconds,
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Fourier transform of pressure for 2.54 cm diameter
lead spheres with an initial impact velocity 0.55 m/s.

(e =0° r =0.26 m Pq = 5 x 107 Pascals)



Logarithm of dimensionless amplitude of transform, log

blG. 4.5.
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Fourier transform of dimensionless pressure,
impactee only.

(r =026 m, Pq = 5 x 107 Pascals, vq = 0.55 m/s,

a = 1.27 cm)



FIG.4.6. Fourier transform of dimensionless acceleration.
(r =026 m, PQ =5 x 107 Pascals, vQ = 0.55 m/s,

a =1.27 cm)
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5. SOUND PRESSURE RADIATED BY A VISCOELASTIC SPHERE

In this chapter the sound radiated by a viscoelastic
sphere in collision with a metallic sphere is investigated.
The Hertz law of contact provides a useful approximation
in the case of elastic objects. To deal with collisions
in which one or both of the impinging bodies are of visco-
elastic material the Hertz law of contact should be extendect
This has been done by Pao [62] who used the Laplace transform
method to obtain the viscoelastic expression for the force
developed between two surfaceso

Having a knowledge of force-approach relation a numerical
method is developed for solving the sound pressure,, In order
to study the sound pressure in the frequency domain a method
involving the discrete finite transform is introduced,,

5,1, Impact Solution

The force-approach relation given by equation (2060) may

be written in terms of the bulk modulus K = X+ ;%p and rigidity

modulus p in the form:

r_4 oK 3 Pl K2+ J y2 a3/
J (A+B) Nirpj (K-I+°P-1 ) 47Tp2(i<2+ v p2)
(5.1)
where Ki+ ~1 = 1-v12
(5.2a)

4n)il R4 + P])  lEl
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and
A2+ 372 Y
5.2b
4itp 2(N2+ 32N 7TE"2 ( )
In the collison of a metallic body with a material constant
$2 and a viscoelastic body with a material constant dp d2 is

much less than dj and can be neglected. Thus the Laplace

transform of equation (501) in absence of d2 can be given as:

It has been shown by Pao [621 that the solution to the
viscoelastic case is obtainable from the solution to the

elastic case by simply replacing p* by p~[l - X(T)] in the

Laplace transform of the elastic equation. Thus from (5.3)
X(a3/2)  3/A+B Ri
4q
1 1 1(F) (5.49)
where T is called the relaxation function, T = a\t’ , T(0) =0,

and T(oo) = 1.
Neglecting the second term on the right hand side of equation

(5.4) in comparison with the first one, using the inequality

P] O<£<T>)« 3K-], and finding the inverse transform gives:

F="T1"+B [3/2" /1'<t-5>a3/2<c>dc] (5.5)

0
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The equation of motion may now be written as:

m~2
a a3/2- K e
m-j+irA 0 Tk
a3/2<?>
(5.6)
where <t> = spk(l-e v7Kk).

5.2. Numerical solution of sound pressure

The sound pressure due to collison of a metal lic sphere
upon a viscoelastic sphere can be obtained by solving the
corresponding convolution integral numerically. To carry
out this one must first calculate the acceleration at different
instants t = pAt, (n-0,1,2....). The acceleration of a

vi scoelastic sphere of mass mj may be given by:

AR = a (5.7)

ml miIK

15 m-j +m2

where K- and m2 is the mass of the metal 1lic sphere

m"

Thus to find the acceleration one needs to solve the differential

equation (5.6) numerically, which can also be written as:

t N 3/2
a K] fz ,, e k a '<?>
c o 'K
(5.8)
where ¢ = « The initial conditions at instant t = 0
q

are:

= O’ al V (5'9)
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and the higher order derivatives at the same instant may be
found to be zero. Thus by using Taylor's expansion formula

the value of a at instant t = At can be given by:

al =a| + Ata| + d| +.... (5.10)
t=At t=0 t=0 t=0
In the next iteration the new value of a may be estimated
from (4.32) to be:
al -2a| -a| +(Ab)2a| (5.11)
t=2At t=At t=0 t=At
The only unknown on the right hand side of equation (5.117

is the value of d at instant t = At which can be easily

determined by writing equation (5.8) as:

aTPP 3/2 am A
al -yA-p . (5.12)
C t=At 4=0
where
4=At At At~4
I TZ _ Tk 2<£>dN (5.13)
4=0

By making use of the trapezoidal rule, equation (5.13)

can be expressed as:

At-0 At-At
4=At Pk -
M ,ZAt > © Tk a3/2l ¢ ., & Tlll( a3/o\
4=0 /K 4=0 Tk 4=Atz

(5.14)
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Thus the value of & at instant t = At and consequently
the value of o at t = 24t can be determined. The general

form of equation (5.11), (5.12) and (5.14) are respectively:

o) = 20 =1 +{&t}2+':i|
t=(n+1)At t=nAt t(n-1)at t=nat
(5.15a)
4“”] L) 3x’ 411_1\ _anﬂlt
il = —:~—K1 e RS :—K] I| (5.15b)
t=nAt c t=nAt ¢ =0
= nat-0 = nat-At
- C=nAtL g e Why
[ =$E.—ke % o2 vrzke Tk oM *e-
r=0 Tk £=0 k r=nat
5 nAt-(n-1)At
21 e ep R el
4 z=(n-1)At
ﬂ < ﬂﬂt-u
e Tk o¥2 (5.15¢)
k r=nAt

where n is an integer. The force and acceleration can also

be found from (5.7) to be:

Fl g l—u] (5.16a)
t=nat K] t=nnit
and
Al He=lias (5.16b)
t=nAt m. K t=nAt

The duration of contact may be given at instant t = d in
which the calculated force changes its sign. The sound pressure

at instant 1 = nAt may now be given by:
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p(r,e,nAt) = ~-[puj(r,0,nAt-O)A(O)+2pUI(r,e,nAt-At)A(AL)

x

+....+2pjjj [r,0,nAt-(n-I )AtJAI(n-I )At]
+P3ij (r,9,nAt-NAtA(NAD)] (5.173a)

0 <nAt< d

or
p(r,e, nAt) = 2> P|jp(r,9, nAt-O)A(O)+2pUI (r,e,nAt-At)A(AL)
+..e+2pUI[r, e, nAt-(n*-DAt]JAL(Nn*-]) At]
+PUI(r.e,nAt - ndAt)A(ndAt)
nAt > d (5.17b)
where n* = and p” is the pressure due to unit impulse given
by equation (3.7). The sound pressure time histories produced

by the collision of a steel sphere and a viscoelastic sphere

with material properties given in Table (5.1) are illustrated

in Figs. (5.1) to (5.3). The corresponding force-time histories
are also given in Fig.(5.4). The numerical method Gbscribed

in this section may also be used for calculating the sound
pressure produced by collision of elastic spheres. The
differential equation required to be solved numerically is given
by equation (2.67) which can be deduced from (5.8) by substituting

ik =~ and U = 4K(sitgp
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5-3- Discrete finite transform for evaluating the
Fourier transform of pressure-time history

Consider the sound pressure defined by:

p = p(r,e,T) 0 <t < (5.18)
t <0
The Fourier transform of the above sound pressure-time history

may be written as:

p(r,6,w) =f p(r,e,T)e'iWTdT =f p(r,e, T)e-1WTdT
-00 0

(5.19)
The integral on the right hand side of equation (5.19) may
be expressed approximately as a summation of an infinite number

of discrete data each sgDarated by an interval of At. Thus:

n=o0o

p(r,O,w) = At f p(r,e,nAt)e”iwnA
n=0

Because of selection of finite interval of time At the
Fourier transform calculated by (5.20) no longer contains
accurate magnitude and phase information at all frequencies
contained in p(r,e,w), but it accurately describes the spectrum
of p(r,e, T) up to some maximum frequency f which is dependent
upon the sample interval At. To calculate (5.20) one must
find the summation of infinite discrete data and this is not
practical. Therefore it is necessary to select finite number

of samples in the range of t=0 to ?=T. Thus one may write:
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| ax 1 | & ax\ -I2ImIAant
p(r,0,mAf) = At E p(r,0,nAt)e
n=0 (5.21)
where N = and N is the number of samples. Equation (5.21)

does not give a continuous spectrum it means that making use
of '(5.21) only predicts the magnitude and phase information at
certain frequencies such as mAf in the range of f = 0 to f = f
To- use equation'(5.21) one must assume that the function
p(r,0,T) is a periodic function with period T for all time.
This assumption is made whether or not p(r,0,T) is actually
periodic. The number of points in the frequency domain is IND
because the frequency information is broken into two real and

imaginary parts. Thus the maximum frequency f"mlx can be related

to the number of samples in time domain through the relation:

fnax =, (5.22)

where Af = y is called the frequency resolution. To find the
magnitude of transform pressure equation (5.21) may be written

as
n=N-|
p(r,0,mAf) = At E p(r,e,nAT) [cos (2irmAfnAT)
n=0

-isi n(2irmAfnAT)] (5.23)

Multiplying (5.23) by its complex conjugate gives:

n=N-| 2
p(r,e, mAf) [ f (r,e,nAt)cos(2iTmAfNAL)]

E
n=0
n=N-| 2

E f(r,0,nAt)sin(2irmAfnAt)] ;
n=0 >

(5.24)
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or
n=N-|
p(r,0,mAf) E f(r,0,nAt)cos(2iTmAFfnAL)J
n=0
n=N-I
[ E f(r,0,nAD)sin(2irmAfnAt)]Z
n+o
(5.25)
Graph representing variations of transform pressure versus
frequency is given in Fig.(5.5). The time domain samples for

establishing Fig.(5.5) are taken from Fig.(5.3).
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CASE 1. Sphere of rigidity similar to polyethylene.

Pl = 1.03 x 10s N/m2 Tx = I0-6 sec
p2 = 551 x 10® T2 = 10-5
p3 = 1.1 x 108 T3 = 10°°4
= 0.41 x 108 T4 = |
c = 2957 m

CASE 2. Sphere of rigidity similar to nylon.

Pl = 5.72 x 108 N/m2 Tx = 10~7 sec
p2 = 2.89 x 108 T2 = 5 x 106
p3 = 4.55 x 10s 73 = 10-5

= 6.89 x 108 t4 = |
c F 29.57 m*

CASE 3. Sphere of same static rigidity as the nylon

described in Case 2.

Pt = 5.72 x 108 N/m2 Tt = 10 7 sec
P2 = 2.89 x 108 t2 = 1073
P3 = 455 x 10® t3 = 10
P4 = 6.89 x 108 t4 = |
c = 29.57 nT*
TABLE 5.1. Material properties and assumed relaxation times of three

visco-elastic spheres.
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Sound pressure time history for 2.54 cm diameter
sphere with the same properties described in Case 1.

(vQ = 487 m/s, 0 = 0°, r = 0.36 m



Pressure (Pascals)
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Time (microseconds)

Sound pressure time history for 2.54 cm diameter
sphere with the same properties described in Case 2.

(v0 = 487 m/s, 9=0°, r = 0.36 m)
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Sound pressure time history for 2.54 cm diameter
sphere with the same properties described in Case 3.

(vO = 487 m/s, e =0° r = 0.36 m)
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FIG.5.4. Force-time curves due to collision of steel sphere
and visco-elastic sphere described in Table 5.1.
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FrequencyC Gertz)

Fourier transform of pressure for sphere with the
pressure time history as given in Fig.5.3.
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6. SOUND RADIATION FROM TRANSIENT VIBRATION OF SOLID SPHERE

In Chapter Two Lamb's solution to the equations of motion
for a sphere were introduced. These solutions are transferred
to the spherical polar co-ordinates in this chapter and the
results are compared with those developed through an alternative
method. The results obtained by this new and more complete
approach can also be used for studying the vibration of a hollow
sphere.

Frequency equations for both torsional and spheroidal
vibrations are derived and their successive roots for different
orders are tabulated.

The orthogonality in both types of vibration have been
established for the first time.

The orthogonality conditions allow the normalised modes to
be calculated and enable the possibility of determining the
responses to different excitation functions.

The modal shapes of torsional and spheroidal vibrations are
studied and three dimensional diagrams of the surface mode
shapes are provided.

Finally the response due to collision of a pair of spheres
is obtained and used for the derivation of sound radiation by

the transient vibration of spheres.

6.1. Vibration of elastic spheres
It has been shown in section (2.8) that the solution of

the system of equations (2.86a) to (2.86c) are of two distinct
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types, The first type may be given by the expression in the

form of (2.126) as

9X 9X

un = (y aT- - z #2(K2r) (6Ja)
9X 3X

Vn = (z SF - x AN <6-1b’

ax ax
x aF"y A (K2pr (6-lc

%

where and is the velocity of distortional wave.
Since the above modes of vibration make no change of volume
(dilatation equal to zero), thei vibrations of the first class
are purely transversal.

The modes of vibrations of the second class can be, represented

in terms of expressions in the form of (2.128) as:

I 2 2n+3
r

v (2n+D(2n+3)

(6.2a)

2 2n+3
r
n
n+1 (2n+D)(2n+3)

r2n+l (6.2b)

s 2 .2n+3
r

n 2n+1)(2n+3)

(6.20)
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= = L
where § Lhﬂh{K]T], K]

of dilatational waves.
(r,d,y) in which

X = rsingcosy,

E-_'l
1
Consider now spherical coordinates

¥ = rsinasiny,

2= rcosf

and C, ={E%3E—i% is the velocity

(6.3)

The components of displacement in directions, r,8,0 can be

related to Gn’ ;n and ;n through the matrix relation

# ~ g
u sinfgcosy
r
uCI = cosgcosy
u -5iny
N r_Lr/ I\ !

singsind

cos@sinyg

cosiy

S

cosg

-5ind

0

=3

=k

’ =3

(6.4)

Also by representing the gradient in both coordinates one

obtains:
E—-\ singcosiy
%
I - singsing
ay
T cosh
| .9Z ] L.

cosfcosy

cosgsiny

-sind

-

-siny

cosy

(6.5)

In equation (6.%a) to (6.1c) in is a solid harmonic of degree

n and may be written as:

= n, m
Kn = Anr Pn (cosa)

s i nmy
cosmy

where an{cnsa} is the associated Ledendre function.

(6.6)

Substituting

for solid harmonic in into equation (6.1a) to (6.1c) and using

the matrix transformation (6.5) gives:
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’ M cosay>mnmip LM p m(cose) Cosmip :
Bn rg(cosmlps' mF u ' Mo ( )SI nmip cosecosip}

(6.7a)

d s i nmip m cosin N
P m(cose) m(cose g
de cosm|pCOSIp sinQ pn ( ) Si nmipCose5|n|p}

"\/K2r) (6.7b)
= -A rnmP m(cose)cosmtj (KO9r)
n n v 'sinrmpn 2 7 (6.7¢)

Using now (6.7a) to (6.7c) together with matrix transformation

(6.4) vyields:
ur =0 (6.83)
u f+A m 0 rnP m(cose)™ Kor CoS>*
0 n sine n ( ) ( ;smmip (6.8b)
u. = \X/n AP m(cose)ip (K,r)sinr*
ip n d0 n n 2 'cosmip (6.8c)

Thus for transversal vibrations of a solid sphere the component
of displacement in directions r,0,ip may be given by equations
(6.8a) to (6.8c) respectively. In this type of vibrations there

is neither dilatational nor radial displacement.

In order to find uf, uQ and u® for the set of equations (6.2a)

to (6.2c) one may similarly introduce the solid harmonics Wn and ?(n

as
Bnrnpnm(cos0) S I nimp

cosmip (6.9a)

$n = Dnfnpnm(cose) SinMip (6.9b)

cosmip
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Substituting for and 0 into equations (6.2a) to (6.2c)

and using the matrix transformation (6.5) gives:

X
-l In+1)ipn(K-1r)  (2n+1 xpn_n (K-jr)3

>1MMP ihGcosib -
cosmip y

X,

p-(n+D*n(K1r)+Dn[n*n(K2r)-(2n+1)*n_1(K2r)] |

d )
4o PpmieoSSIEmE cosocos

n-1
* rn+| J2(n+1)*n(K1r)+DNn[n*n(K2r)-(2n+D*n-1(K2r)J
z
m P M < sin*
sine n g\(’:\?'?"selgn;p >t (6.10a)
= n_1 J2[n+1)I'n(K1r)-(2n+IH
Vn r r_]_.(,IX’I\r) X+nDnipn(K2r)
Xt
COcos<C =P sinesin*
rn-1 Bn < I
N+l 2(n+1)ipn(K-] r)+Dn nipn(K2r)-(2n+1)ipn_1 (K2r)
fl
® Pnm(cos0)cisSCOSOSI™
n-1 B
T T -~2(n+ );pn(K r)+Dn nipn(K2r)-(2n+1)ip i)
n+l LK1 k n”l 2 7J
/

sine % m(cose)sin5 cos* (6.10b)



162-

- n1 B, . . .
w, o " (nH)ipn(Ktr)-(2n+)ipn_1(Kfrjp-nDnipn(K2r)

n
IKl

P m(cose)si" k cose

n v ‘cosmip
n-1 b r
+ r_f —2< n+l)ipn(K-jr)+Dn N~ (K2r) -(2n+l)
n+ .
IKi k
£+ P m(cosO)sirwW sin0O
d0 n kCUSO;cosr# s,no (6.100)

The components uf, uQ and may now be found from (6.4)

to be:

ur rn-1 "B (n+1)ipn(K-jr)-(2n+1))ipn_1 (K]

(6.11a)

z Z X
n-1 B
Ue rn+| l&(n+')il3p10,§}r,1+DnnInipn(KZr)—(Zn+|)ipn_1(|<2r)

zl

36 pn (cose'cosmip (6.11b)
-I- rn-l Bn z >
Ui 4] (n+l )|pH( KJI_r),+QH nipn(K2r)-(2n+1)ipn_1 (K2r)Z

7+

P m(cose)cosk (6.110)
sinO n 'sinmip
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It can be seen from equations (6.11a) to (6.11c) that
except for the case n=m=0 the vibration of what is called
second class are accompanied by both distortional and
dilatational waves.

The terms torsional and spheroidal vibrations are also
used by some writers such as Schreiber et al [63] to distinguish
both types of vibrations which are referred in this section

as vibrations of the first and the second class respectively.

6.2, Solution of equations of motion (Alternative approach)

The equations of motion of an isotropic elastic solid,

given by equations (2.81a) to (2.81c) may be written in vector

form as;
als )
p —x- =(1 +p)grad div S+ pv S (6.12)
'3t
where § is the displacement vector. For purely torsional

vibrations dilatation (div S_=0) and equation (6.12) reduces to:

ou
r

6.13b
oo™ ( )



32U i 2y
_2’i % 3 Y
3r r 3r r2 302

g Uy U, , alu,

+1 ( o, |
Sin0_3p C&Wé o2 2 a2 (6 ,13c)

where Ur‘-é and U|p are components of displacement vector in
directions r,0, and ip respectively. Consider now a solution in

the form:

Ur (6.14a)

siff Prm(coselgagip e”iwt

(6.14b)
U, P~ cose)sl''

do n ‘cosmip
(6,14c)

Substituting these solutions into equations (6.13a) to (6.13¢)

gives:

(6.15a)

+ /2 L(r)cot9 He pm'(cosB) = -K22fe(r)Pnm(cose)
(6.15b)
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" 2
'(r) + .

d---./m(cosO) + COtge-~-y P m(cos9)
de n dez n

2
sin2e de P" (C0S9)

X.
sin2e "e 5 =se’]

"7 — 7 2Zm2f»(r)Pnra(cOS0) = -K22M\1r)3e pnm<cose)

(6.15¢)

By making use of equation (6.15a), (6.15b) and (6.15c)

can be written as:

r2f~(r) +2rfg(r) (6.16a)

(6.16b)

In order to deduce (6.16a) and (6.16b) from equation (6.15b)

and (6.15c) one should notice that:

2 2
™7 P m(cosO0) + cotge p m(cose)----—-- P m(cos0)
de2 n de n sin2e n

= -n(n+1)Pnm(cos9) (6.17a)

and

p m(cosO0) + cotge P m(cose)----- P m(cos0)
de3 n do2 n sin2e de n

¢ Pom(cos0) + m2p m(cose)

sin 0 de sin 0 n

="*n(n+I) Pnm(cose) (6.17b)
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It has been shown in section (2.2) that the solution to
the equation such as (6.16a) and (6.16b) can be expressed in

terms of spherical Bessel functions. Thus:

ANW = + \/n(K2r) <6"18a)

and

fe = (6.18b)

where J™NNr) and y™~r) are spherical Bessel functions of the
first and second kind respectively. For a solid sphere one

should seek a solution which is finite at the origin. Thus upon

making An = 0 the displacements due to torsional vibrations can

be written as:

(6.19a)

= g §|'r-1r(|)_ P Jn(k2|t'\sci:15nr2iig (6.19b)

) An do nnl(cose)jn(K§r')ciis?l1>i: (6.190)
Consider now a second type of solution in the form:

S = grad(j) + curl (6.20)

where $ and H are scalar and vector potentials respectively.

Substituting the above solution into equation (6.12) gives:

= (6.21a)

<l at

and
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9=
Vo =243 (6.21b)
Q st

To satisfy equations (6.21a) and (6.21b) one may assume

solutions in the form:

* = -R(r)P m(cose)si™\Vrt
nv ' cosmip (6.22a)

Hr =0 (6.22b)

H, = ><a P m(cOS6)COSNINt

0 0 sine n sinmip (6.22¢)

H = —\/V £a P m(cos9)sin*eilllt

ip ip d0o n cosmip (6.22d)
where Hf, HQ and are components of vector potential H in
directions r,0 and ip respectively. Substitution of the above

assumed solutions into equations (6.21a) and (6.21b) suggests
that the radial dependent functions should be expressed in terms
of spherical Bessel functions of the first and second kind.

Thus one may write:

|n:|ﬁ$K1,r) +legj1<[r) (6.23a)
- f (6.23b)
5n'n(K2r) + Bnyn(K2r) (6.23c)

Using now equation (6.2a) together with the assumed solution
(6.22a) to (6.22d) and finding the components of the displacement

vector in directions r,0 and ip gives:
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(6.24a)
d p m(cose) St nmip (6,24b)
de n cosmip
u. R _JL_ Pmfcns0icsmp o1 W (g 5qc)
sin9 n Si nmip
where primes denote differentiation with respect to r. Substituting

from (6.23a) to (6.23c) into equation (6.24a) to (6.24c) yields:
ur = - 'n[ni"n-I(KIND-(n+1)jn+I(<InN]s?T

+gn[nyn-1(K1r)-(n+1)yn+1(KIr)J 2HT1

n(n+I) . Sinmip
r D nJ n$ K?r),+D ny n%K?r) (cose) cosmif

(6.25a)

L .
rLer S B )~ FhT 0 (KDFD R (G

- njN-1(K2r)-(n+1)jn+1(K2r) JALny

, Nn-1(K2r)
K2 ;
x d_p ,Sirw
-(n+Dyn+1(K2r) 5 1 x de n & Jcosmili

(6.25b)

1 . 1 fp .
¥ r IlsnJ n (Kir)+Bnyn (Kl’r)J ) FILB 'n(Kgr)ﬁ‘%n}imS§?r)

x "™— P m(cose) cosmip (6.25¢)
sine n sinmip
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Requirement that these solutions be finite at r = 0 may
be accomplished by selecting B = D =0. Thus for a solid

sphere the modes of the second class or spheroidal modes can

be given by:
. +I , ;
ar - Bk ik D Snaa v L)
l >
p m sinnfP
n (cose)cosmlp- (6.26a)
Jum—KFK2x) U K2rJdx/K2xJ
(6.26b)
/_
B
u o 3 (K - Dpk2 In-I(K2r)" K2rin(K2r)*
?— f
JSine pnm(88§ﬁ>sﬁgﬂ1?p (6.260)

To express the solutions given in this section in terms of

function ip one may simply write:

\/7kir)= %(Kir)'njn(Kir)

and

N\/K2r) = nn™K2r''"'njn~K2r) (6.27a)
where

nn = IX3X5X....ccceerrenns x(2n+1) (6.27b)

It can also be easily shown that the results obtained in this

section lead to the same results as given in section (6.1), by



-170-

substituting (6.27a) into corresponding equations and taking

(6.28a)

(6.28b)

(6.28c)

6.3. Frequency equation

The stress-strain relations in spherical coordinates may

be written as:

au
orr - afF" (6.29a)
°r0 p~r 30 3r r7 (6.29b)
o -u 1 9L=‘r+ ouis  Uib
rip P$<rsin9 Sip 3r r (6.29¢)
where A = divS is the dilatation. For torsional vibrations of

the sphere the above stress-strain relations may be given by:

o, ° 0 (6.30a)

Bf ) 3" P m(COs6)cos™ iwt (g 30p)

ar0 r 0O sinO n v 'sinmip
.1 f) P m(cos9)sirWw el"l
°rip r r de n 01 cosmtj) e (6.300)
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Similarly, for spheroidal vibrations one may obtain:

0 n(n+DOf1- L F£)' P m(cose)St m<(' eiat
rr r B r ’ypjx n ‘cosmip
(6.31a)

Gr9 -

4- Pm(cosQ)sir=* eiwt
de nv 'cosmip (6.31b)

0 rip

s PaM(COSelGsgg < (6,310)

The boundary conditions at the surface of the solid sphere

(r=a) are:

a =0 =0. =20 (6.32)

It can be easily found that for torsional vibrations of

spheres the above boundary conditions can be satisfied if

(6.33)

Thus the frequency equation of torsional vibrations of solid

spheres may be written as:
(n-Djn(K2a) - Kajn+1(K2a) = 0 (6.34)

For a certain n there is an unlimited number of roots which
can be expressed in the form Q , (£=1,2,3,....). The successive

roots of equation (6.34) for a different value of n are tabulated
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in Table (6.1). To satisfy the boundary conditions on the
surface of sphere subjected to spheroidal vibrations equation

(6.31a) to (6.31c) may be written as:

: AK12R| ) zuﬁa“| D 15 | }] = 0
r=a r=a llj r=a JJ.r..za
(6.35a)
Ao 1 pa n{n"'-l'}' T
=R'| -<R| ) +5f | - =L f | - =0
8 r=a 2 re=a az L a2 Ye=a ¥ r=a
(6.35b)
2o 1 2 z n(n+1} " <
+ HR'| - —R] )+ 5= * T e =0
S =g rea a® Orsa  a® Yrea Orea
(6.35¢)

provided the first two of these equations are satisfied, the third
one automatically would be satisfied because of {fEl = ff¢ )

Substituting for R and f, into equations (6.35a) and (6.35b) gives:

y
K 2az' (Kia)-2n(n-1)J (K,a)-4K.aj . (K aﬂ B
2 & dptH Int™ 101V M%) B
+2n(n+1) E{n—]}jn{Kza}-Kzajnﬂ(}CZa}J Dn =0
(6.36a)
[2{"']}jnfkla}'2K1ajn+]{K1aﬂﬁn+[2“'"2”71{}(2‘3}
- ZKEEJHH{Kza}mzzazjn{}iza}]Dn = (6.36b)
It is more convenient for our analysis to form new equations

by simply mulitiplying equation (6.36b) by n and -(n+1) separately

and adding with equation (6.36a). Thus.



-173-

"1 £ 27
ZI(;EZ'er(K1a)—2(n+2)K1 ajn+1 (Wija) Bn+InK2\/jn(K2a)
n

-2n(n+2)K2ajn+1(K2a) Dp =° (6.37a)
(K-ja) (n+1 )K22a2jn(K2a)
2 0 \/x2
—2(i;-I)K2ajn_.|(K2a)1_DR =0 (6.37b)
z

The ratio D~/BN and the frequency equation may now be given

by:

D K?22a2i (K,a)-2(n-I)K1laj
SN R 015 [ M— (6.35)
Bn (n+1) h<2 a™~n(K2a)-2(n-1)K2ajn_1(K2a)j

nK22a2jn(K2a)-2n(n+2)K2ajn+i(K2a) K22a2jn(K]a)

" z

-2(n-DKiajn_1(K-|a)

z*

2(n+2)Klajn+1 (K12)-K22a2in(Kia) () K22a2jn(K2a)

A(n-D ajrtha) (6.39)

In order to solve the frequency equation (6.39) numerically
one needed to know theriio K-j/K2. This ratio can be expressed

in terms of Poisson's ratio v as:

1-2v (6.40)
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The successive roots of equation (6.39) for different
values of n and the Poisson's ratio v = 0.29 are tabulated

in Table 6.2.

6.4. Orthogonality and normalisation of torsional modes

The natural modes of torsional vibrations of solid spheres

can be given by equations (6.19a) to (6.19c) in the form:

= 6.42a

Ur ,NmE 0 ( )
- +A 0. sifl6 Bn rco AnAnwASTR (6.42b)

uip,nmg = Anntf. 9'1&nm(cos%\)ink“nEE’\ﬁ!)nsnn}m (6.42¢c)
r _ -

where 02 = K?a T and Kl?a are successive roots of the

characteristic equation given by expression (6.34). Multiplying

equations (6.42b) and (6.42c) by uQ and u”® pS* respectively

and integrating over the volume of the sphere gives:

a 7
21 6 m.s
pUO,NME'UO, psq fm ms fz~rdr f sin 0
0 0
p m(cosO)P s(cos0)sin0dO (6.43a)
n P
216 ir 2. vd
1D= %,nmE ui'p,psq' D = o s f z}z2r dr £
m
0 0

Pnm(cose) Jg P s(cose)sinede (6.43b)
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where 6mfS is the Kronecker delta, €, = 1, e, = 2, (m=l_, = _,
Z1 ANMAANANACAN (6.44a)
and
Z2 ™ flpsqdp(pq (6.44b)

Consider now the Legendre's associated differential equation

which can be written as:

(1-X2)~2 Pnm(x) -2X Pnm(X)+[n(n+D- —~P™~FfX) =0

(6.45)
Multiplying (6.45) by P m(X) gives:
r
2
(1 -X2)Ppm(X —=» Pnm(X)-2XPpm(X)”"yPnm(X)
m(X)Prin,(X)-n(n+I )Ppm(X)Pnm(X) (6.46a)
gy (1 -X2)Ppm(X)NPnm(X) = -%m Ppm(X)Pnm(X) + (1-X2)
3XPpnl(OX)HHNmMOX)™ n(rl+1)Ppn' (X)Pnm(X) (6.46b)
Integrating both sides yields:
2n(n+l) , (n+m)! (6.47)

2n+l (n-m)! np
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By making use of (6.47) equations (6.43a) and (6.43b) can

be represented in the form of a single expression as:

a
4irn(n+I) (n+m) £ z-~Nz~.orNdr

em(2n+)(n-m)  “ms np (6.48)

To solve the integral on the right hand side of equation

(6.48) one may consider the following differential equation:

r2 2
0 pg - n(n+|)>zl =0 (6.49a)
b2
o2 A n(n+l) z? = 0 (6.49b)
. ng c 3
2

which have as their solutions zj = A ) and z2 =Anmg'M~nqCH

nmn n (Wn£C2

respectively. Multiplying the first equation by z?, the second

by z] and subtracting gives:

' 2
(cj:lrfrz [z2Z'] ng 7% n«?zlz2 (6.50a)
L2
or
2 2 a
W ng~ w n£ 2 2N &
c, frizndr 1T 727107177 (6.50b)
b2 0 " "o

In order to find the value of the right hand side of equation
(6.50b) at r=a the characteristic equation of torsional vibrations

of spheres, given by expression (6.33) can be written as:
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= 0 (6.51a)

and

(6.51b)

Multiplying the first equation by z», the second by zj and

subtracting, gives:

727 (6,52)

Thus:

Vq (6.53a)

Also from (6.50b)

(“nUCA'n+I (6.53b)

Upon using expression (6.53a) and (6.53b) equation (6.48) can

be written as:

X,

Ellkb, nmflAD,psq +uij),nm£ Uip,psqy 9P

27in(n+1) (n-Hn )! -2 3
cm(2n+1)(n-m) M nm£”a AN )~IJn-|

(6.54)
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The orthogonality of the torsional modes may now be given

by:

P [Jfe ,nm£ ,Ue ,psq +Ify ,nn£ ,psq? dD 0 (6.55)

which is true whenever inequality between any pair of corresponding

indices exist. The natural modes of torsional vibrations can

also be normalised by mutliplying both sides of equation (6.54)

by the density and equating the result to unity. Thus:

f n _ 2pm(n+1) (n+m)l a2 3
D le]I 5 cm(2n+|?(n-m)1 nm£a
In2(wn A~ "n-l jn+l(V@-) = 1 (6.56a)
2]
or
2 £m(2n+1)(n-m)!

; nm£  2rpn(n+Il) (n+m)! x a3
a

(6.56b)

where p is the density of the homogeneous sphere under consideration.

The spherical Bessel functions of order n-1 and n+l in equation

(6,56b) can be written in terms of spherical Bessel function of

order n by using the characteristic equation given by expression

(6.34) and noting that:

which is derivable based on the properties of the spherical Bessel

function, Thus:
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-2 2e (2n+l )(n-jr)! co2 Eaz
A _ ol n
nm£" 3Mn(n+D(n+m)l  x <0)2 na2
r.2- 2r EA
C2 JIn ( nHC2\ - (n-D(n+2)
¢? J
(6.58)
4 _ 3 .
where M = -“pTra is the mass of sphere. The normal modes of
torsional vibrations may now be given by:
H 13
2em(2n-+)(n-m) =amn(“N”"
A3Mn(n+l) (n-HN)! a f2ngar 1
'y 9! -<n-D(n+2)
2 2 )
P m(cos9) ‘
n cosmtp
sin0 X sinmip (6.59a)
2em(2n+l )(n-m) Q'1
"y
u |p,nm£ 3Mn(n+1) (n-hn)!
C2*nAnLC -(n-D(n+2)
2 Q
N .
_p m(coselx sirw (6.59b)

de n cosmip

6.5. Modal shapes of torsional vibrations
The normal modes of torsional vibrations given by equations

(6.59a) and (6.59b) in case n=| may be expressed as:

J(A%A) X gi!'\? plm(cose)xcosmip

J Xsinmp
(6.60a)
[em(l -m) fl ‘o
Vlamy x 48 P m(COSE!)Xsisilf
(6.60b)
where m is either zero or one. In case of zonal harmonic (m=0)

equations (6.60a) and (6.60b) reduce to:
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u0JM =0 (6.61a)
: NG
Viof ¢ 7n jAkAI“ sine <6-61b)

Thus each of the thin concentric spherical layers oscillate
as a whole about the z axis. The characteristic equation given

by expression (6.34) can be written as:
J2(K2a) = 0 (6.62)

The roots of equation (6.62) from Table 6.1 are:

K?a = 5.763,9.095,12.322,........ (6.63)
To find the positions of the spherical nodes, i.e.surfaces
across which there is no displacement one may write:

j-I(K2r) =0 (6.64)

The roots of equation (6.64) are:

K2r = 4.493,7.725,10.904 (6.65)

Thus the positions of the spherical nodes for the first three
modes whose non-dimensional frequencies are given by expression

(6,34) may be found to be:

o 0.78 (1st mode) (6.66a)



-181-

0.49, 0.85 (2nd mode) (6.66b)

|

M

0.365, 0.627, 0.885 (3rd mode) (6.66¢)

There are also internal spherical surfaces across which

no stress exists. Upon equating equation (6.30b) to zero one
obtains:

j2(K2r) = 0 (6,67)
or

K2r = 5.763,9.095,12.322........ (6.68)

Thus the positions of these surfaces for the second and

third modes are respectively.

s - 0.63 (2nd mode) (6.69a)
3 0.467,0.738 (3rd mode) (6.69b)
Consider now the case of sectorial harmonic (m=n=l). The

normalised displacements given by equations (6.60a) and (6.60b)
can be written as:
=5 1 k20  cosip
0,1 K ZK j| (K2a) x sinip (6.70a)

i Ji(Kzr) n o0 sm
V1U 41 jn(K,a) cose x costl) (6.70b)
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There are two distinct groups of displacements depending
upon whether the upper or lower functions of are selected.
It can also be easily verified that the position of spherical
nodes and zero stress surfaces remain unchanged. Let us now
investigate the second harmonic (n=2). The normalised
displacements given by equations (6.59a) and (6.59b) may be

wri tten as:

f5c (2-m) 1T2
- om JL_ p m(cose)xcosmip

U9,2m£ 9M(2+m)! sinQ 2 sinmip
(6.71a)
5c¢c(2-m)I™N
_ m sinmi0
Uip,2mE  9M(2+m)! (Cose)xcosmip
(6.71b)
where m = 0,1,2. Substituting the values of m into equations

(6.71a) and (6.71b) gives:

UO,ZOE: 0
Aaj2A2A (Zonal harmonic
1 .
- -sin20 =
jK2a)2-4]Aj2(K2a) " m=0)
(6.72a)
/5 Koaj2(kar) COSOXCOSt
78 x Y (k2a)2-4] Tijonay Si nip
/5 K2aj2(Kar) €os2exsint <Te-seral.
i),2H 73 X > 2) cosip mrlell)rmonic

(6.72b)
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-s'inOxgg\giiE
(Sectoral
harmonic
L Khgip(rt m=2)
%,22r é% x x 17,.S2"717
(6.720)

The characteristic equation may be found from expression

(6.34) to be:

A2Azal\ " /\2a/\3A2aA (6.73)

The roots of (6.73) from Table 6.1 are:

K,a = 2.501, 7.136,10.514 (6.74)

To find the positions of the spherical nodes one may write:

J2(K2r) =0 (6.75)
or
K?r = 5.763,9.095,12.322........ (6.76)
Thus the positions of the spherical nodes are given by:
;- 0.807 (2nd mode) (6.77a)
3 - 0.548,0.865 (3rd mode) (6.77b)
The positions of the zero stress surfaces may also be written
as:

S - 0.35 (2nd mode) (6.78a)
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3 0.238,0,679 (3rd mode) (6.78b)

Plots showing variations of the normalised displacement
along the radius of sphere are shown in Fig.(6.1). The three
dimensional diagrams of the surface mode shapes are also given

in Fig.(6.2).

6.6. Orthogonality and normalisation of spheroidal modes
The natural modes of spheroidal vibration of solid spheres

can be derived from equations (6.24a) to (6.24c) to be:

u = -F Jr)‘.P m(cose)sinm_t (6.79a)
r,nm£ nmr n X cosmip
= 'E%nmJ>/(rS—(2:I1pnm( ,dssinmi (6.79b)
u9,nme = cos0)cosim .
=4+G ,(r). MmOPm(cose)< (6.79¢)
uip,nm£ nmV ' sine n sinmip
where
y - - " 6.80a
Fomelr ( )

Gnm$/r) r A‘nmfdn”~n£CA r DnmA'nAnAC2" _Dnmf) nAnWA

(6.80b)

Multiplying equations (6.79a) to (6.79c) by ur,psq, ue,psq

and u® psq respectively and integrating over the volume of sphere

gi ves
A6 a 2
ppur ,nm£Wr,psqdD ~ fF rN.F___ (r).rdr
m ms nmE.{ pPsq
f P m(cos9) (cosO)sinQdO (6.81a)

0O n



-185-

21TP 6
/p”o ,NME % ,Psq Mmoo ms
; Zepnm(cos9) (cos0)sin0d0 (6.81b)
/pii /G a(r)',G (rl).r’\dr
D Psq o nm£ psqv
T
/ -S—P m(cos0)P S(cos0)sin0d0 (6.81¢)

o sin 9 n

where p is the density, e =1, and em = 2 (m=l,2,...). Using

now (6.47) gives:

/ dD
Dp U
a
4iTpn(n+l (n+m)! . r re n(r).G (r).r™dr
em(2n+l)(n—m)! ms np o nm& ' psgf !
(6.82)
Al so
T )
/ P m(cos0).P m(cos©)sin0dO0 6 (6.83)
o n 2n+l np

Thus (6.81a) can be written as:

e — 6 /Fm\;r)FS

Epur,nmf'ur,psq e (2n+D(n-m)! ms np o

(6.84)

Adding (6.82) and (6.84) vields:

u .u
a
4iTp(n+m) !
fm(2n+I(n-m)! 6m56np X gl’EnmE(r)'Fpsq (r)+n(n+1)
X

GnmE’.;r)'Gpsq (r) r dr (6,85)

(r)./dr
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The integral on the right hand side of equation (6.85)

when m=s and n=p can be found to be:

d

S [}nmﬂfrl.anqfr}+n(n+l}Gnmﬁ{r}.ﬁnnq(r{]rfdr

0

a
= Jﬂ'[r‘zﬁ'.lR'2+n{n+1}R-|R2] r - n{n+1) J" (R,Y

+rR' +rR2Y']]dr

ASRULPAS

d
=n{nt1)SRIY 4R Y +rRo Y, Y dr+ n(n+]
P e (n+1)

d

d
+ n{n+1]r V¥ otrY ' Yo )dr + n{n+]}f{r‘2‘f']‘l“2 n(n+1)Y.Y,)dr

. 12
(6.86)
where
=f ] LE = [ 3 LELF
R] Bnmﬁjn{mnit1}’ ?1 [Jnrnf,‘]n["m'nﬁé,lizjI
RE 5 Bnmﬂ Jple “ng E o) and ~|r2 nmq n an )

It can be easily shown that Y] nng [mnic =) and ¥ o= nqu (w =}

an2
are solutions of the equations:

2
2 1] ] 2 =
rey" +2ry 1+Eu me.cLz -nl[n+1}]‘f1 =0 (6.87a)
2
20 o
rYtorery ! tHw an—§ -n(n+1) Yo =0 (6.87h)
2

2 : g - ? e
Multiplying the first equation by w anz, the second by nivl

and subtracting gives:

24 s Zondipeie, e i
“ha aF—{r Y'iY5)-w niﬁ?{r Y 2Y1}—{m nq Y ni}

EE?']?’2+n{n+]}?1Té] (6.88a)
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or
a
t2nq - “2nP /AYAY'MNntn+DY AN Jdr

(6.88b)

Thus (6.86) can be written as:

AN %mJI(r)-Fnnig(r)+n(n+>\/\/r)-GnnK|(r) Jr2dr

2 > a

w p !1JO - n(n+1) (co nq coznt’ Mg
a

- n(n+1) scoznq - cozng) fVJ + n(n+|)'$c02n
0

-¢2 J
n

q V

) 2 "la
+n(n+l)co g 'r -ntn+qu: Y oryy )

0

(6.89)
Equations (6.35a) and (6.35b) may now be used for estimating
the value of the above integral at r=a. Thus by substituting R*

and Y] for R and fA one may obtain:

WP, 2
—gjf\a R,| -2n(n+)R | +4aR' | -2n(n+D(Y.] -aY'| )=0
r-a r=a r=a r~a r=a

(6.90a)
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r-a )+ 2Y1 -2n(n+1)Y

1|

+ 2aY =0 (6.90b)

The new set of equations may be furnished by combining both

equations after multiplying the second one once by n and then by

-(n+1). Thus:

<2 s
—/\ -
az-2n(n+2) (R1 Y] )e2neaR, v )=0
<C26 r=a r=a r=a r=a
(6.91a)
X
R1 - (n+-))Y, -2(n-Da R
r=a or=a> r=a
X,
-(n+DY! =0 (6.91b)
r=a>
Similarly,
X,
T? o
o, 242 (2 42 )+2(n+2)aR* +ny' )=0
< ) r=a r=a r=a r=a
(6,92a)
rc02 . “ ‘ “
—nVv-2(n2-bh o, “(n+1)Y -2(n-ha R',,
Lc2 J r=a r=aj k
r=a
X.
“(n+DY?2 =0 (6.92b)

r=a)
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2
Multiplying (6.91a) by « nq(R2 +nY2 ), (6.92a) by
r=a r=a
w nEARI + nY ) and subtracting gives:

n§’<c02 ) E-coz . MR1IR2+n(R2Y1+RTY2)+nAY1Y2 !

-a “Int. 3

2
® =0 (6.93a-}

Applying the same procedure on equations (6.91b) and (6.92b)
yields:
? i

r ¢
(n+1) (cozng- C°2nq YIR1R2-(N+I)(R2Y1+R1Y2)+(n+1)ZY1Y2

v F=a

+ a COZnE R1IR"2-(n+1)(R1Y'2+Y1R'2)+(n+1)2Y1Y"2

x r=a

coznq R2R, 1-(n+1)(R2Y'-1+Y2R,: )H(n+D2Y" 1Y2  _

(6.93b)

Multiplying (6.93a) by (n+l), (6.93b) by (-n) and adding

gives:

2 2 —_ \\ _
nq w nf£a R. r/ n(n+1)("2ng-"2n{.)

> r=a >r=a

b V1] (13 2
+ n<n+ ( 2nq- 2na +n(n+l Jo  a (Y'YJ

r=a

-0 (6.94)
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By making use of (6.94) expression (6.89) can be written
as:
o fnmMAr~"FamgAr*+n*n+12GnmAr' ,Gnmgq
£/q (6.95)

Also from (6.86)

2rmS,(r)+r,(n+1)G2nmS,(r) 2 - ?: r2R"2 +n(n+|)R12jdr
0

Ia
-2n(n+1) rR-jY-j * n(n+l) rY-
0 Jo

+n(n+l) FfpY12 +n(n+)Y 21

dr 6.96
ok 1 1] ( )

To simplify the integrals on the right hand side of equation

(6.96) equation (6.87a) may be multiplied by Y to give:

2
ar a S,
£ AW 12+n(n+)Y12 dr - nf f r‘ 7dr+ J?&V'¥i (6,97a)
0 > C 2 0
12
Similarly,
4+ 2n' 2+n(n+)R 2 ’ ) 5 a
f r~R dr = f r Rl dr+ r R,)RI
0< (| [ > C 2 0 0
(6.97b)
Thus (6,96) can be written as:
2 a
F2 m.(r) + n(n+l)G2 (r) radr rq f 2R-'2d
[ nmV k1 nm& cy o' ™ dr
0 bl
ol a s
+ r*R'-jR, r
FRe) -2n(n+l) R n(n+1) rY-j
0 T1J
>0
w2 2 2 r2 a
+nn+D) —5% ey dr + r Y (6,98)

P 0
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Substituting for R| and Y| into equation (6.98) and using

(6.53b) gives:

F2nm£(r)+n("+1)G2nmM/rt
(DFACED 2 u nmyT W (6.993)

where
ZB > 2

n£ ” 2n DnmE Jn&wn(,)El_)”(nH)'}lnswngcli?!

<B2

- (2n+3)w =2nm’£\}“n,'-_"a),Sjn+|z nt&S
n L!
nmE
, f-2
C, I ’ a2 B nmZ
+ n(n+H» + Y nfr 2 D2
bl <« nmmg

C 2

2 a_x, A2 a 2 ax
3 n‘< + 'wea—) + n(n+l) J ( ‘
Jinkeret I n+racr) o ¥ niWhec

X

+] 2n+‘ (W nLO(]J:r? (6.99b)

J

Upon using (6.95) and (6.99a) equation (6.85) can be written

as.
.u
- 2irp(n+m r2 6 6 6
|rp& (n m)! U nm£a’/\n£A ms np £q (6.100)
The orthogonality of the spheroidal modes may now be represented

by:

fp u d = 0

D <

(6.101)
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which is true whenever inequality between any pair of corresponding
indices exist. In order to normalise the natural modes of
spheroidal equations (6.100) should be equated to unity. Thus:

2crn(2n+D(n-m)l

nmE 3M(n+m)! (6.102)

where M = ’A\pua3 is the mass of sphere. The normal modes of

spheroidal vibrations may now be given by:
z

2em(2n+1)(N-mM)!X ANmE
n£ N
— I <<nt (n+m)! J a D, L Jn-1(“nUCA
x nmf |
X
(n+1) . rox n(n+l) _ S L \p m, xSinmip
r  Jnwn”Chy r INhe n cosmip
Z
(6.103a)
2cm(2n+D(Nn-m)! ApmA
i r
TN} = gt
o, X
nk. / rx n ./ rox
C2 ~n-1 wn£QC2 r ~n wn£C X
2 >
z
(6.1d3b)
22em(2n+Il )(n-m)! S.,
[t = + - ~
4>,nm£ 3M?nJ, (n+m)! . a r Jn(WnEC-P
@}
ne ./ rx n .| rx x P _m(cose)cosm|’
C2 %% -Vwn£QC2 r Jn wn£C2 X swO n w'sinmip

(6.103c)
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6.7. Modal shapes of spheroidal vibrations
The normal modes of spheroidal vibrations given by equations

(6.103a) to (6.103c) in case n=0 may be written as:

ur,00£= 2 Kla OBOQ£ (6.104a)
00£
ue.00f U UOOE 0 (6.104b)
where
ne wm JO(KIa)jZKia)+Jo2(Kla)+l2(Kla)
17 2008
(6.105)
X KV 5
- 1 00E
The characteristic equation given by expression (6.39) reduces
to:
4K]aj! (Kla)-K22a2jQ(Kla) = 0 (6.106)
Substituting for j-j(K~a) from (6.106) into equation (6.105)
gi ves:
_ R2
Fo- Mt R 22 o2 008 5 2lliay (Bi107)
D 00f£
Thus (6.104a) can be simplified as:
i_ItKA
- qaj-tK®)
ur,00£  3M(K24a4+16K}2a2-1 2K22a2, - (qa)—- (6.108)

Since the only non zero component of vector displacement is

the radial one, therefore the motion everywhere is in the direction
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of the radius vector. The roots of equation (6.106) for the

Poisson's ratio v= 0.29 from Table 6.2 are:

Kja = 2.6528,6.086,9.2974............. (6.109)

By examining the roots of the characteristic equations for
different Poisson's ratios, one can easily find that for any
particular mode the value of K-ja increases as Poisson's ratio
increases, and vice versa. As an example, the roots of
equation (6.106) for v = 0.25 are:

~a = 2.563, 6.058, 9.279 (6.110)

To find the position of the spherical nodes one may write:

FA~F) =0 (6.111)

whose roots are:

K}r = 4.493,7.725,10.904 (6.112)

Thus the positions of the spherical nodes for the second and

third modes are respectively,
— = 0.739 (2nd mode)
a v = 0.29 (6.113)
£= 0.483, 0,83 (3rd mode)

0.25

Similarly, for v

— =0.741 (2nd mode)
a (6.114)

3 0.484, 0.832 (3rd mode)
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Thus for the f&th mode of the harmonic n=0, there are 2-1
spherical surfaces across which there is no displacement. To
investigate the position of the zero stress surfaces equation

(6.31a) may be written as:

x 22
4K]r31{K]rJ - Kyr JD{KTFJ = ( (6.115)

The roots of equation (6.115) for v = 0.29 are given by (6.109).

Thus the position of the zero stress surfaces can be found to

be:

W=

0.436 (2nd mode)
(6.116)

=

0.285,0.6546 (3rd mode)

Consider now the harmonic n=1. The normalised displacement

may be written as:

. 2Em{1~m}! 2 BTmR[ : 2he
u'f",-lrﬂf._ = M.E:-l-ﬂ“{_”'m d Er HK].]U(K-ITII" F -]‘I{K-Ir}
Tme

5inmp

2o m
"y 3y (Kor) [Py (cos8) Locm (6.117a)

2e,(1-m) 1) % [By . 1 _
U me™ TIwE | = v 31 (K- | Kpdp(Kor)
1% D1m£

1. d om s inmp
- v 31{K2rq i Pl {CDSB)casm$ (6.117b)
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2e {1-m B
Y, Ime” 4{ (mJ s r 37Ky - [ZJDEKZF}

0 m cosmj
31{K2Ti} e {COSHJSiﬁnw (6.117¢)

where m is either zero or one,

B 2j.(K,a)

i L i EK ET (6.118)
D UALE

me

and

= 2
EIR J] {K a} '}HK] [} _;TE;ET + E; E;TEE—j

-2

S e R K | o (e

» 2 Vi 2( 22 15 oS A PR 4}{12a2+2K22a2
J] {K]a} K1 j] {Kza}

(6.119)
The characteristic equation may be found from expression (6.39)
to be: 1

[K22a231 ( Kza}-E-Kzajz{KEa]] 31(Kqa)=2

‘?K1aj2{K]a}

Kzzazj]{K]a]]j]EKza} (6.120)

: LIS Jp(Kpa) :
Using (6.120) and substituting for E;TKEE} into eqguation (6.119)

gives:

{Kla)
Em' 5 a -61{2 a +BK1| a +2q}<1 e

2
Jq (Kza}[KM 22... 22 2232
s i1 (K)

in(K a)
- BK,aK 2 2
Jas2ns 31{K1a] (6.121)
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The roots of character!stic equation from Table 6.2 are:

K?a = 3.5132, 7.057,7.9992.......... (6.122)

The positions of the spherical surfaces across which the

only non-zero component of vector displacement is the radial

one are:

; 0.625 (1st mode)
.
0.47,0.81 -
3 (2nd mode) 0 29 (6.123)
; 0.22, 0.82  (3rd mode)

The positions of the zero stress surfaces are given by:

0.498 (2nd mode)

v = 0.29 (6.124)

7-
d

0.439,0.882 (3rd mode)

Graphs showing variations of the normalised uf and uQ along
the radius of sphere are given in Figs.(6.3) and (6.4) respectively.
The three dimensional diagrams of the surface mode shapes are also

given in Fig,(6.5).
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6-8. Response of a sphere to a radial concentrated force
Consider a solid sphere of radius a subjected to a radial

concentrated force of amplitude F(t) as shown in Fig.6.6. The

equations of motion in terms of stresses may be written as:

S0
Sty 7<2(Jrr-{Te0—\/arecot9e)

(6.125a)

S0 Sopy
Sr;'e ' 1 ag(?e + rsjn—0 di/qlp ¥ 'inip)COtg0+30r6/\

>2%
(6.125b)
S So i S
rip , 1 7+ W,
st * 309” sin0 S?EV 2<VV/20ey0190)
alu
=p—< (6.125c)
at

where 6(_r-rO )is the three dimensional Dirac delta function and

may be represented in spherical polar coordinates as:

6(r-ro)6(e-e0)6(p-ho

2 .
ro sinQ

6(r-ro)= (6.126)

The left hand side of equation (6.125a) to (6.125c) may be
represented in terms of components of displacement and their
derivatives with respect to spherical polar coordinates. The new
set of equations have many terms, therefore to avoid representing

these lengthy equations one may write:
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92U

[ J— £  F)6(r - ro) (6.127a)
ot

G* —p (6.127b)
o&U

We —p e (6.127c)

where F*, G* and W* are the left hand side of new set of equations

as described above. Let us assume now a solution in the form:
00 n co
U\ (r,0,ip,t) = X X X u .qd)
n=0 m=0 £=1 r,nm£ nmf (6.128a)
) ORI )
UV(r,e,lp,t) = X X X u q(®) (6.128b)
n=0 m=0 £=1 O,nm£ nmf
. 0w n
u (r,9,ip,t) = 2 X X u . q.(®
Y

n=0 m=0 £=1 ip,nm£ nm£

where-ur,nm£, ue>nm£,ur~nmfare the eigenfunctions given by expression

(6.79a) to (6.79c) and q(t) are associated generalised coordinates.
nm£

Substituting the above solutions into equations (6.127a) to

(6.127c) gives:

0w oo o N 00
X X X f qg -p X X Xu

n=0 m=0 £=1 nm£ nméE n=0 m=0 £=1 r,nm£ nm£

=-F(t)6(r - rO) (6.129a)
00 n 00 n
X x £9° 9 o ¥ x Xu ¢ =0 (6.129b)
n=0 m=0 £=1 nmf nmf n=0 m=0 £=1 O,nm£ nmf
00 n ‘;g i 00 n 0
X X w q -p X X Xu q = 0 (6.1290)

n=0 m=0 £=1 nm£ nmf n=0 m=0 £=1 ip,nm£ nm£
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Multiplying equations (6.129a) to (6.129c) by uf psq, ul psq

Vpsq respectively, adding them together and integrating over

the volume of the sphere yields:

n
y E E U f* +U g* + U w* q dD
D n=0 m=0 £=1 r,psq nmf O,psq nmf ijj,psq nmfz nm£

pPf B B E u +u u +u u
D n=0 == = K r,nm£ r,psq 9,nm£ O,psq tp,nm£ ip,psq?

dD =-F(t) fu ¢ (r-r ) dD (6.130)
D r,psq —
In order to simplify equation (6.130) one may consider the
free vibration problem. Since the eigenfunctions must satisfy

the equations of motion in the absence of external forces one may

wri te:
f nm£ nfur,nm£ (6.131a)
9 nmf n£U0,nm£ (6.131b)
w nmé n£Uip,nm£ (6.131¢c)

Multiplying eﬁquations £6.131a) to £6.131c) b_){ ur,psq’ uﬁ,psq’

ur psp respectively and adding them together gives:

(6,132)
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By making use of (6,132) equation (6,130) may be written

as.
F O 2 w0 2
-Pr E w n
D n=0 m=0 £=1 "%
X,
+u u q dD
ip,nm£ ip,psqz nm£
n
0o oo Z
-p E E E U u

D n=0 m=0 £ r,nmM£ r,psq
X
+U u q dD
ip,nm£ <p,psqy nméE

=-F(t) f u 6(r-r ) dD (6 .133)
D rpsq —

Using now the orthogonality of the eigenfunctions given by

expression (6.101) equation (6.133) reduces to:

z X

PD u ﬂlpsq dD

D psq
.134)
or

L+ 2-
%mE W nE%mE .135)
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The solution to equation (6.135) can be easily obtained

through standard techniques, and it appears as:

sineo t
= %m30)cos" n™ + \/\0)
nf

(6.136)

‘dD

g pf u?
DL

where Qnm£(0) and 3nm£(0) are the initial generalised displacement

and initial generalised velocity respectively, and

(6.137)

For any form of radial concentrated force acting at the

position r=ro,9 0Q and ip= equation (6.137) reduces to:
(1) (6.138)

Substituting (6.138) into equation (6.136) and assuming

(6.139)
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The response may now pe obtained by substituting (6.139)

for IntO eiuation (6.128a) to (6.128c). Thus:
00 n 00
E E E
n=0 m=0 £=1
t
f F(4)sinwn£(t-N)dt
0
X = 2 ) 2 (6.140a)
B'F r,nm£+u 0,nm£+u ip,nmyj dD
n co
uA(r,0,ip,t) = E E E y r,nm£
n=0 m=0 £=1 puiU
t
F 1 N\ N\
6 (JS'anX(t )d
X r2 2 (6.140Db)
D [u r,nm£+u O,nmE+H
n
I (r,0,ipt)= E E Y o.rnmé
n=0 m=0 le
t
f F(Jsinwn£(t-Jd?
I (6,140¢)
Uzr nm£+u dD
d 12
or in terms of normalised modes:
n U*
u(oipt) = E E E
! n=0 m=0 f£=1 wn£

t

x f F(c)sinunli(t-c)d5 (6.141a)
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t

x £ F(™)sincnn£(t-")dc (6.141b)
t

x f F(™N)sinwn£(t-<;)dn (6.141¢c)

where u*r,nm?.’ ue,nm)>’ and uVnntf.are given by ecluatio"s (6.103a)
to (6.103c) respectively. As an illustration let the applied

force be in the form of a step function of magnitude F$,

F(t) = FsH(t) (6.142)

and evaluate the integral:

t F
f F$H(t )sinwn£(t-T)dr = ~-(1 - cosw”t) (6.143)

Upon assuming rQ a, and 0Q = it the response may be represented

as.
2(2n+1)(-1)na2Fs

co

L' (r,e,t) = ? &

r n=0 £=1
‘ Flng fo.a. v,
5n. _C Jﬁ‘!-III nS>C1)
D .
n(n+D,. f a r nf (n+1)i ( r_J]

r Jn' nHC|j
nf

#COSN\/T)3e Pn(cosb6)

(6.144a)
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2(2n+1)(-1)na2Fs

00

B
£=1

RO A i) O 1 (U,

P r rr n£C)
1

n£
~nt . ! r - '>nT+)i} X (1-cos™n£
s C2 JIn-1 3 C
(6.144b)
un(r,e,t) =0 (6.144c¢)
(-Dn, m=0
Note that: (6.145)

o, otherwise

To represent the response in frequency domain one may simply

evaluate the Fourier transforms of equations (6.144a) and (6.144b)

Thus.
So(rem - - £ % 2(2n+h(ha Fel
n=0 J}»>=1
n(n+1)
a n-1
(n-rkl)éniwnE EIFX> - n("+1)J ¢ 3 )+ (cose)

r n n8.C? n
(6.146a)
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and
o 2(2n+'|](-1} a F 1

I o T o s
AR RN ? 2
n=0 =1 EHEnﬁwl[m ng W )

B W
“nk | k. (nt+ I]
"_[c 3y 1 (e nit]ﬂ

n_
Dnil 1
- B o) “*‘” - (w B
D E 1
n

e
0,
ng. ¥ Ty r d
- _C‘Z Jn_](mniq]- = J”EMMQﬂ EE’HECDSBH
(6.146b)

In order to take into account the effect of viscous damping

equations (6.127a) to (6.127c) can be modified as:

2%, B,
F* =o st Y E R (6.147a)
atE at L
U, 3, }
G* =p + 4 (6.147b
72 At
azu¢ - oU :
W* =p T 6.147c)
7 ot

where o is the coefficient of viscous damping. By repeating

the similar procedure as given for undamped problems, one obtains:

N _(t)

nmi

_ 2 i P db
“IEJ roome ™Y o, nme Y QJ,nmE]

D
(6.148)
where Bni's are the viscous damping factors. The solution of

: - 2 )
el 4 EBannEqnmf Y e nme”

nm
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(6.148) can be easily obtained by means of the Laplace transformation

(see for example Meirovitch 64 ). Thus:
(r fl A1 F™e sinw*n£(t-~N)d»
r,nmr o o™/ 0
* X 2 +2 ™ "D
© B pgt r,nm£ u enm£ u ip,nmE

(6.149)

where U*n(,= ~~/1- B2nr Substituting (6.149) into equations (6.128a)

to (6.128c) gives:

ur, NN ur,nm£rro’0o0" o
E X

W nf

sinco* (t-3dr

u

dL

n w U0,nm<Ir *ur ,nm£/ro,00°%)
E E S
m=0 £=1

Pw nf£

t AnEwnE(t N 0 X \ .
f F(?)e Slnw n/t"™~"™
0

X
£ ru2 + u2 +u2 1 dD
dl r,nm£E e,nm£ ip,NnmE£j

(6.150b)

%, nM&(r"<='ur ,nmjj ro

F(de

2 A2 ~ o2 s D
r,nm£ u enm£ U ip,nm£

(6.150¢)
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or in terms of normalised modes:;

E e
m=0 £=1
t
f F(de
(0]
00 n
E E (:?)

00

U (r,eip,t)=T E E
n=0 m=0 £=1

t
f F(M)e
0

sinM*n], (t-?)d?

sin w*,.~(t-c)dc

U*

sin a)*n],(t-c)d<;

(6.151a)

(6.151b)

(6.151¢)

Assume now a forcing function given by equation (6.142) being

applied at position rQ g,

easily found to be:

IT. The response can be

2(2n+D(-Dna2Fs

00 00
E E

n=0 »=1

ICI III_I /\n£C/\ a

AnS.

n(n+l) . |/

a Jn ’\n’\é’\ X

- (n+1) (0 2\

SMSNA

Inwi

[ r
Jd1 "Nn=1Mnii
Dn«.

I X
cf

(6.152a)
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2(2n+D(-)na2Fc

where

T",“ n <l'<)_

(6.153)

The Fourier transforms of equations (6.152a) and (6.152b) are
respecti vely:

,»  m 22n+D(-Dna2F i

'V (r.0,0)) = - £ ? T =
n=° s=1 3M?n~*(W nJ,-U +=2227~")
An£
LCl In-1
Bnf PW- / rx
D LC! In-I(wn£C |
n£
(n+1) + |/ r

Ina £C_?Z nLTU InU'NT/} Pn<cos&
r n*wn£C-

(6.154a)
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2(2n+D(-Dna2Fsi
UB.;,(r,e>M') =- F

n=0 £=1 3M5nII“(** nE-* +26nL“nLiws

6.9. Response due to collision
Consider a pair of colliding spheres as shown in Fig.(3.9)

Displacement of each sphere at the contact point can be easily

written as:

t t t
1 00 Snf
Ut - fdt f F(t)dt + & E f F(™)sincon£(t-~)d»
mh 0 n=0 £=1 wnf
(6.155a)
t
{ t t . Snf
vz vt fdt/F(t)dt -f f F(N)sinw~t-c)dc
o 0 n=0 £=1 wnf
(6.155b)
where vQ is the initial relative velocity,
(6.156a)
0= 0) (6.156b)
and m| and are the masses of the spheres. The approach a may

now be given by:
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t t
d - y2-ul = vOt - K] / dt / F(t)dt
0 0
t

00 00 $n£

E E W f F(<;)sinu)n£(t-c)dn

n=0 =1 "nf

00 00 Sn& t

E E ¢ / F(O)sinwn£(t-t)d£ (6.157)

n=0 #1 "nf o

z\ z\

where Kj and <2 are given by equations (2.66) and (2.61) respectively.
It can be easily shown by means of Laplace transformation that the

displacement of rigid body of mass M under action of a force F(t)

is
1 fE-LF(™N)dN (6.158)
0
Thus equation (6.157) may be written as:
r 2/3
a=(z-) =vt K- /(t<)f(Od?
Ko 0
t
oo Sn&
- E E f F(N)sina) £(t-N)d™
n=0 ** 0
t
w  INE -
- E E (|. i f F(c)sin uyn£(t-ddC (6.159)
n=0 =1
To solve the equation (6.159) the contact force may be assumed
to be constant during any time interval At. The time interval At

may be chosen as some small fraction of the fundamental period of

vibration of the small sphere. Thus the value of approach at

t=2At may be given by:
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al = 2v_At
t=2At 0

-F? (2At-~Ax2At)(2At)-(2At-W)AL

00 S
E g ngg coswn” (2At-At)-x:oswn”(2At-0)
n=0 £=1

Jcoswn”( 2At-2At) -coscoNf 2At-At

COnE

00 00 Sn£ rh
nEO E 0 p 0 p coscon( 2At-At) -cosw  ( 2At-0)
=V £=1 "nf£ L nf <

B rcoscE,nE(zAt-ZAt) - coscoN A2AL-Al]] (6.160)

By repeating the process one obtains:

Flk2/3
al )
t = kAt K2
k 00 00 Sn£
E FJ E E ) cosu)n£( k-j) At-coscon£( k-j+1) At
j=I n=0 £=1 @ nt

k S
0 o
E F, E E M cosconf(k-j)At-coscon£(k-j+1)At

I 20 f=1 &
I n=0 £=1 @gng
(6.161)

Graphs representing force-time history for a pair of colliding
spheres is given in Fig.(6.6).

Consideration of this graph verifies that for the size of
spheres being investigated the force-time history may be approximated

as a half sine pulse. Thus:

F(t) = VV/inbt (6162
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and

1 F
fmax sWsinU|U(t-C)dC = -"~N(bsin™t-"sinbt)

t< d (6.163a)
d F
/P nax SINDZSINWN)I(t-C)dS = -™ax2  peinos /" d)+bsi, 1MIUL
v b nf

t> d (6.163b)

where d is the duration of contact. The response at pos|t|0n

r-a, 6= 0 of sphere (1) may now be given by:

U(r=a,0=0,t) = 2 7?2 {1 (bsinm t-rn sinbt)
n=0,=I ~(b2-") ™
t <d (6.164a)

(-1)nFmaxSn,

E E bsin“njJt"d)+bsin“niit

Ur(r=a,e=0,t) «
n=0 f£=1 “nNfa2-"'2n?

(6,164b)
t>d

Differentiating twice with respect to t to obtain the acceleration

gives:

'E % (_I)an S £
---------- r-]ja-)g--[]--%bsi'n'l:>'t—w sinw  t)

n=0 £=1 (b2 —w2n£)

t <d (6.165a)
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92Ur (-1)nbFmaxMn?n£
am E -sinot-dj-sino”t
o2 £ (b2 an

t > d (6.165b)

The effect of viscous damping may be taken into account by

following similar procedures as given in section (6.8). Thus:
U (r-a,0-0,t) " EE - —max J'sinbesince* 0O(t~e)
n=0M conf£ 0
t< d (6.166a)
00 (-bhnF S d
Ur(i"=a,0=0,t) = E E - *max n" /sinb~sinio* ,,(t-c)
n=0 H=1 o n, 0 nZ
t> d (6.166b)
where
1 -B Jt-c)
J'sinb<;sinw*n],(t-<;)e z dr

+(b~ i ~;
cosbt+(b™Ny)sinbt4 7 COSh)* N2 -<bHa) %A

“2nf£ + (b+a,*nj/ R
X /S

6NnAjtcosbt+(b-M*Nn”/sinbt - b-M*NnPsin“*n"?]

(6.167a)
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/sinbAsinw*  (E-~)e n d?
0 n

5, EgnA"™cos™ n/t-d)+(b+oitnPsinM*na(t-d)Je
< +VN*k N/

[BNrtL£costd*n? —-(b+™NNpsinMVWV Je
(b +% P2

+ (b-“*NAsin“* N?0e 3nAN

"2 fi2 2 7 fh * 2

en™nfE+ (b -"nP

ESnn“ndlcos“*nPt-d)-(b-“*nPsinwtnPt-d)]e

%2ru“2n? (b - VP~

t > d (6.167b)

The response and acceleration in frequency domain may now

be represented as:

bF _
U (r=a,e=0,a) = .. (I+e_itod) ? @
(6,168a)
2 <1}X

Y nfce™ +2i6NAan

(6.168b)
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6.10. Sound generated by transient vibration of solid spheres

Consider a solid sphere of radius a subjected to force-time
history given by expression (6.162) at position r=a, and 0= it.
The acceleration of the sphere at its surface may be assumed to
be the sum of both rigid body and vibratory acceleration. Thus
the Fourier transform of the total acceleration at the surface
of sphere can be written as:

U fr=a,(9,io} - -pm%(—(l_-ir-éitocs\ttCOsS—W'z ¢
r b n=0 £=1

(-1 %ns izp (cose) T
! oL (6.169)

where M is the mass of the sphere. The velocity potential
satisfying the acoustic wave equation for a spherical symmetric

field is given by equation (2.38) and may reappear here as:

$ = <t>(re<i)eiwt (6.170)

where

<f>(reco) = 2 A* h (2\I<r)P (cose) (6.171)
n=0 nn n

Suppose now sphere being located at the centre of the field
and behaves as a source of sound. The boundary condition which

must be satisfied is:

(6.172)



-217-

where Ur is the radial velocity at the surface of sphere. By
the properties of the Fourier transform it can be easily shown
that:

(6.173)

Substituting for Uf and O(r,0,w) into equation (6.173) gives:

X
00

= - E A* P (cose
n=0 " n=0 )J r=a n( )
(6,174)
where
B*n F (6.175a)
= 0 otherwise,
(6.175b)
and 5
(6.175¢)

“2njT"2 +2i(Wnj=>"

The spherical Hankel function in equation (6.174) may be
expressed in terms of spherical Bessel functions of the first and
second kinds, and then differentiated. The result can be

reproduced in terms of Hankel function and written as:

(6.176)
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Substituting (6,176) into equation (6.174) gives:

B*n-(-1)nG*n

2 hn(2)(Ka)-Khn~)(Ka) (6.177)

The potential 4(r,9,w) given by equation (6.171) may now

be written as:

<f)(r,0,w) = Pn(cose)

n=0 2. hn(2)(Ka)-Khn+1(2)(Ka)

(6.178)

In order to find the relation between pressure and potential
function in the frequency domain one may simply transform both

sides of equation (2.12) to obtain:

p(r,9,w) = pQ iaxj>(r,0,u)) (6.179)

where pQ is the density of the air. Substituting (6.178) into

equation (6.179) igives:

E 2 h A(Ka) - Kh 32 () pn(cose)

n-0 a n v n+l

(6.180)

As an illustration of the result let us examine the case n=0.

Thus: poCba2\/\/ 2(1+e~i0jd)e"IM(a)

PO(ra>) = = b2 -u?)(C+iwa)

S
0 (6.181)

E [

g=1 a) orW2 +2ie0AL£L)
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where C = is the velocity of the sound in the ijr. To represent
the sound pressure in time domain one must find the inverse
transform This can be done easily by finding the residues of

function QeICOt at its pdies. Thus:

C
aT

2
n(r,T) = -2---mmmr < ¢ ae
2 r J195 (C2+a2b2)(C2+a2i2or2aCBoAjl )

)](120j1-b2)a+2CB0 03 cosT-b|f(w20jl-b2)C-2b2aB

OAJsinbT
(C2+b2a2) ((h2. AN A\b2620/0d

r h2H?22ceode 0f  cosm ¥(kt
w  32+c2-2aCBo™oP[(Movh2-e20/0P2+4620/ © 20"

Oflifc 0£+b C(Jzoer/\o£|d
WO/ ofa 40 uCWW  *20rh2-620/ OP2+eI0AN 2o,
t <d (6.182a)
and
p Ca2bF
pR(riz) = 2 0s/K2, 2.2Wr2. 2 2
'léE q.a25 3’8’6 +a"o or’ZaE%Q’\o’\

« 0J[(yorbZ)aWo?ZbZCBoJ|COSW \aht +coswHOA(T-d)e je T

(“\/c2-2aCB0?W

p-"np

2iIN“\/+sin(i)VVT-d)e J

¢ >d (6.182b)
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A

where t= t - — Calculations of sound pressure in time
domain can be carried out by means of inverse discrete Fourier

transform. The method is similar to forward transform given

in section (5.3.),
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Value of n 2=1 2=2 2=3 2=4 2=5

1 * 5.763 9.095 12.322 15.514
2 2.501 7.136 10.514 13.771 16.983
3 3.865 8.444 11.881 15.175 18.412
4 5.095 9.712 13.210 16.544 19.809
5 6.266 10.950 14.510 17.885 21.180
6 7.404 12.166 15.787 19.204 22.529
7 8.520 13.364 17.045 20.503 23.860
8 9.621 14.548 18.287 21.786 25.174
9 10.711 15.720 19.515 23.054 26.473
10 11.792 16.882 20.731 24.310 27.760

TABLE 6.1. Non-dimensional frequency of torsional vibration of spheres
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Value of n 2=1 2=2 2=3 2=4 2=5

0 4.894 11.229 17.153 23.01 28.842
1 * 3.513 7.056 7.999 10.711
2 2.645 4.985 8.499 10.257 12.202
3 3.934 6.584 9.856 12.303 13.762
4 5.04 8.191 11.197 14.066 15.479
5 6.075 9.756 12.543 15.593 17.319
6 7.076 11.259 13.905 17.004 19.156
7 8.058 12.696 15.289 18.366 20.9

8 9.028 14.066 16.69 19.709 22.51
9 9.99 15.379 18.099 21.046 24.002
10 10.946 16.645 19.505 22.385 25.415

TABLE 6.2. Non-dimensional frequency of spheroidal vibration

of sphere. (Poisson ratio = 0.29)
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Distance along the radius = r/a

FIG.6.1. Variation of normalised displacement of torsional
vibration of sphere along the radius (h = 2)
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FIG.6.2. Diagrams of the surface mode shapes of torsional vibration

(* Nodal point)



-228-

(Upper function)

FIG.6.2. (Continued)
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(Upper function)

FIG.6.2. (Continued)



-230-

FIG.6.2. (Continued)
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FIG.6.2. (Continued)
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FIG.6.5. Diagrams of the surface mode shapes of spheroidal vibration
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(Upper function)

FIG.6.5. (Continued)
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FIG.6.5. (Continued)
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FIG.6.5. (Continued)



FIG. 6.5. (Continued)
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FIGURE 6.6. FORCE-TIME CURVES FOR A PAIR OF COLLIDING SPHERES
OF RADII 1.27 cm and 7.112 cm (Eq.(6.161), n= O,
and £ = 1,5)

1
2

Vibration terms excluded

Vibration terms included
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7. SOUND RADIATION FROM TRANSIENT VIBRATIONS OF HOLLOW SPHERES

The transient vibration of hollow spheres, together with the
sound generated from this vibration, receives attention in this
chapter. This study is very similar to that given for solid
spheres except that spherical Bessel functions of the second kind,
which played no part in the solid sphere investigation, should
now be taken into account. In order to satisfy the object of
this chapter, the following studies are carried out:

(@) The frequency equations for both torsional and
spheroidal vibrations are derived and their successive
roots for different order and different ratio of
inner to outer radii are tabulated.

(b) Orthogonality is examined and diagrams showing
variations of the normalised displacement across
the thickness of hollow spheres are given.

(c) Finally, the sound pressure caused by transient

vibration of a hollow sphere is considered.

7.1. Vibration of Hollow Sphere

Vibrations of a hollow sphere can be easily studied by
following similar procedures as given for a solid sphere. In
order to carryout this study, let us consider a hollow sphere
of inner and outer radii of a* and a, respectively. Unlike
the solid sphere the Bessel functions of the second kind with
the non-zero coefficients should be introduced into the formula

representing displacement, since their presentation yield to



-248-

the finite solution at both r=a and r=a*. Thus displacements
due to torsional and spheroidal vibrations of hollow spheres

are respectively:

u_ =0 (7.1a)

m ) A
sing "SR

(7.1b)

AP =5

(7.10)

Kl
ur 2n+l

K1
+ Bn 2n+l

n(n+) NWN<KK2r)+Vn(K2" ~Pnm(cose DS
r

(7.2a)

1

= {7 Brydinfty™d ¢ Bn%nykl"i)_].

x )
- Dn ndn_1(K2r)-(n+Djn+1(K2r)

x > K
- Dn nyn-fFK2r>_<n+l >yn+i (K2r

X

(7.2b)
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¢

R —I{K20)-(n+1)jn+I(K?r) K2
Dn 2 12n+1

x <k— P "(cose)0051"*
2n+F sinO n v sinmip

(7.20)

7.2. Frequency equation

The stress-strain relation given by equations(6.30a) to (6.30c)
and (6.31a) to (6.31c) may be used for the derivation of the frequency
equations for both torsional and spheroidal vibrations of a hollow
sphere. The boundary conditions which should be satisfied at both

r=a and r=a* can be written as:

(7.3)

For torsional vibration the above boundary conditions can be

satisfied if:

(7.3a)

=0 (7.3b)

Thus the frequency equation of torsional vibrations of hollow

spheres may be written as:
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(n-1)Jn(K2a)-K2ajn+1(K2a)

(7.4)
The ratio A /A may a”so be Qiven by:
AL (n-Dyn(K2a)-K2ayn+1(K2a)

A (n-T) j(K2a) -K2an+1 (K2a) (7.5)

The successive roots of equation (7.4) for different ratios

*

a and n are tabulated in Tables (7.1) to (7.4). To derive the
frequency equation of spheroidal vibration the boundary conditions

given by expression (7.3) may be written as:

n(n+l)

) f =0

(7.6a)

2 i n(n+l1)
2

(7.6b)

(7.6¢0)



Substituting for

gi ves

where:

JX

all
a2l

a3l

41

®11

al2

al4

al2

a22

a32

42

al3

a23

a33

43
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n(n+1)
r=a a*
(7.6d)
(7.6e)
2 =i T n(n+Df |
_ a*2 e'r=a* a*2 <Pr=a*
r=a
(7.6f)

_fli

e 'r=a*

and from equations (6.23a) to (6.23c)

al4 B, 0

a24 B n 0

a34 Dn 0

a D, 0 (7.8)
44 X x

K22a2jn(Kla)-2n(n-1)Jn(K3a)-4Klaln+1(K1a)

K22a2yr/ Kla) "2n(n“1)yrJ K A _4Klayn+! Kla

2n(n+1) (n-DNIn(K2a)-k2ajn+1(K2a)

2n(n+1) (n-Dyn(K2a)-Kayn+1(K2a)

(7.9a)

(7-9b)

(7.90)

(7.9d)

=0
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a2l = 2(h-D)Kla)-2Klajft+1(K1la) (7.9e)
522 = 2(n-)yn(Kla)-2Klayri+1(K1a) (7.9F)
a23 = 2(I-n2)jn(K2a)-2K2ajn+1(K2a)+K22a2jn(K2a) (7.99)
a24 = 2(I-n2)yn(K2a)-2K2ayn+1(K2a)+K22a2yn(K2a) (7.9h)

The remaining two rows can be obtained from the first two by
substitution of a* for a. In order to find a nontrivial solution

of equation (7.8) determinant a” must be equated to zero. Thus:

(a34a42 a44a32)+(a3ia43"a33a4])(ai4a22 a24al2”

B D
The ratios — " and — may be found to be:

B, Sn Sn

|In = al¥ a24a33~a23a34"+a2fal3a34~al4a33”+a3fal4a23~al3a4”

gn al2”a23a34"a24a33”+a22”al4a33"al3a34"+a32”al3a24~al4a23n

(7.11a)
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(7.11c)
The successive roots of equation (7.10) for different ratios

P and n are tabulated in Tables (7.5) to (7.8).

7.3. Orthogonality and normalisation of torsional modes

The natural modes of torsional vibration of hollow spheres can

be given by equations (7.1a) to (7.1c) in the form:

ur,nm£ (7.12a)
m B m, Xcosmip
=)y sine Pn ' os0'sinmip
(7.12b)
d Sinmip
AN AN VAS2VAN AN
% nmé \m£0n*wnt ¢ nmAntwnfe™ (cose) cosmip
(7.12c)

Multiplying equations (7.12b) and (7.12c) by uOjpsq and u”psq
respectively, and following the same procedure as given in section

(6.4) gives:



-254-

/lu U
D k
1 2 2
*en(aneb(nmy ms pn £,z 290 dr
(7.13)
where
71 AmmEJr/“ndl C2°+AnmX.yn”0)nS. Ez) (7.14a)

22 %sqIp(Tpq C27+Apsqyp”Tpq

Since equations (7.14a) and (7.14b) satisfy the Bessel

differential equations one easily obtains:

r=b

(7.15)

Upon using equations (7.3a) and (7.3b) the orthogonality

to torsional modes can be given by:

fD: U0 ,nm£u0 ,psqg+uip,nmé£ “uip,psq (7.16)

which is valid whenever unequality between any pair of
corresponding indices exist. To normalise the modal functions
one requires to solve the integral (7.16) for the case of

n=p, m=s and £=q. Thus:
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NI

= 2Ppn(n+l )(.n+m) | 52 3
g.- P . dD Em(2n+D(n-m)! A nm&a
2 % WO )

2, ea?

i (XD +HA™, (n) gA “nm” ’
INH(ZTN)+5  \/iN/s =3 RALAE
k nmH L mm*
Ve
+ §§<3|; (B n A4 Won ]IFWE\ Z//\I\']\/:,,a*)
T yn+I(
Z nm£ Z nm£
(7-17)

The normal modes of torsional vibration may now be written

as.
AnmA m
] /\ R
Anm£ I'n(Wn& + — Yn (“neco’ sinQ
(7.18a)
0 . Anme £c3 d P m(cose)sinmt
Yonunt . yn(wncl 40 7T ‘cosmip
nmg
(7.18b)
where:
a 2 = em(2n+)(n-m)l y { . ﬂnm% 2
nmf£  2pTrm( n+1) (n+m) 33 A
nm£
. (ra)+ Anme W N & A
"JIn1 2 7 A Yn.l s
nm£ nmé z 7
a*3 £ 0 ~ 2 a*x3
a4 nmey (CSWV 2 j \;Aa*)
a3 A Inved 1 a3 ‘n-Vc?
nm£ ’
Anmé Sk ol

+ R yn—|—A2 a*) (719)
nm£
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Plots showing variations of the normalised displacement

along the thickness of hollow spheres are given in Fig.(7.1).

7.4. Orthogonality and normalisation of spheroidal modes

The natural modes of spheroidal vibrations of a hollow sphere

can be given by equations (7.2a) to (7.2c) in the form:

u =-F(r) .P ml.’,chF:l]ISiﬂmu'I (7.20a)
L, nmi AR cosmi
B o d sinmy
Yo nma G{rjnmi Thilr "(cos E}cnsmw (7.20b)
S m m cosm
Uy ome, +G{r}nmi' £ Pn (EGSE}sinm¢ (7.20c)
where
: ) iy §n+ )
F‘:'r*}nmﬁ', 3 Enmi‘]nimnz c]j+ﬁnyn{3ni c
D L T T e | | S (250 1 )
nme Nt ng CE nmL= n ngc2 G
iy e Pt 8 S L e S
nmz T [CameTnt¥ng ¢’ U nmeTn “hgc] r|“nmgIn ngc

)

= r = .1 r =
Domg¥n (w “ng czﬂ x DnmLJntwngEE)' nmiyn(“r‘-ic2
(7.21b)

By following similar procedure as given in section (6.6)

one obtains:
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u u dd
gjSTfca-. w,,, *
nmvﬁfl)psq
a*
+ n(n+1)G(r)nrnVG(r)psq”* 7
rdr (7.22)

The integral on the right hand side of equation (7.22) when

m=s and n=p may be found to be:

f F(r) nm_7Z7 (r)nnK, +n(n+1)G(r)nmFG(r)nmgz
b
a
=7 [A :
"1RI24+n(n+)R]JR2 dr -n(n+Df (R™N4+rR ~rR-jY *2)dr
a* a*
a
- n(n+D + n(n+D7 (YAArYAY
a*
+ n(n+Y1Y2 dr
(7.23)
where
RI ~nm"'n’wnfc-j +BnmfYn nfe-| (7.24a)
YI  “mmfIn”n£c2+Dnmfyn”n£c2’ (7.24b)
R2  Gnnig“n~"nqcl’+Bnmagyn~jinqcd (7.24¢c)
and

Y2  Dnmg'3n”~°nqc2”*+Dnmgyn”~wnqgc2' (7.24d)
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Since equations (7.24a) to (7.24d) satisfy the Bessel

differential equation, it can be easily shown that:

FIFNMVE g+n(n+1)6(rnmd-G(rynmg 2dr

a*

a 2 r
1 2 F2R-R, FOR'
2 2 Ungt 12 S wnd~ N
nq|\\ nd a* a*

ANY

T -
- n(n+1)(U2nq 2 £) [rRAJ3  -n(n+)(<n2ng- U2njly[rR2YI n
won

ax a*
1a 2 a
+ n(n+H(w2ng- <7~ : r2Y' Y,
J!a* +n(n+l)(jo ng L 12, ..

2
- n(n+D)w (7.25)

Using the boundary conditions given in section (7.2) and

substituting for R and fA from (7.24a) and (7.24b) gives:

S 8R4l -2n(r>+)Ri -2n(n+I)(Y!
c2 r=a r=a r=a
-ayx | ) =0 (7.26a)
r=a
- 2017 2Y1 -2n(n+1)Y]
r=a r=a
+2aY Y = 0 (7.26b)
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wznm
5 R, | —2n{n+1]RT| +4a*R', |
. r=a* =g # r=a*
-2n{nt1)(Y, | -a*y!, | =X 260
r=a* r=a*
—Z{R.|| —a*R']| )+ E‘f.l| —2n{n+1]‘:'.|i'
r=a* r=a* = r=a*
2
| “ g oy
+2a*Y .|| +-C—2ra T]| =0
r=a* i r=a*
(7.26d)

- By following similar procedures as given in section (6.6)

one obtains:

2 [ :l 2 [ J 2 2
W a R -n(n+1)(w - . )
nq 52 e z2'] L ng ni

i Pl
[R'IY2+R2T1] n{n+1)(w ng % nt! E1T2]r=a

2
+ ni{ntl)w . E']vzzl = n{n+1}m2nm a[‘r'l‘rlz} s
(7.27a)

P f 2 | _ 2 i
0 nqa*[n ]Rz]r=a*_ w ”ﬂa*E ERT]FB* nint1)(w nq_{” !‘IE,}

Pl pa
[-ET +R ] r=a* +n{n+1) (w nq'w HE} E‘!?Z]rrza*

E ! 2 * I sl
tn(ntl)w nqa*E 1?2]r=a - n(n+1)u ng? E’rlY 2]r=a*_ 0
(?.2?[:])
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Thus:

d

i* F(r}nmE,F{r}nmqm{nHJG{r}nmR.G{r}nmq]r dr = 0
ki (7.28)

Also from (7.23),

a d

2 2 i 2
7 [Fr) patntre 12 mmJ*’ 5 f[ v ot o

d 2“&
-2n{n+1) [rR]‘I'J + n(n+1) E“r] J

a* a¥
g ~
+ n(ntl) S [rz‘f']zml[nﬂ}l‘f]EJ dr (7.29)
a‘k‘

The Bessel differential equation in the form of equation
(6.87a) may now be used for simplifying the integrals on the

right hand side of equation (7.29). Thus one obtains:

a
2 pd 2
i*[F_{r}nmfn{nﬂ )G {r}nmﬂ]r dr
2 a
w a a
- —% 5 rfRdr +E~2R'.|R.|] _2n(n+1) [rRﬂ’J
cy a* a*® a*
L mZ a a
+ n{n+1) [ﬂ’]z] tn{n+l) —“% ifi rz‘rlzdr +E‘2‘|‘T']":‘];|
AGT Cy a* a*

(7.30)
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or
9 F? .
'UF rzdr
a
2
% w ”§E Ri . - ljrifn+IjR”r -SR-jR”r2
ci ~a
0
-2n(n+1) [ri™NY
n(n+1) a )
+
I r
S 23
3Y4Y! r AMEANE (7.31)
/\a*
where
- i~ Ang, , r.
* Bomk P jn(‘| cj “n+VAWc-p
Ju
7.32a
o yn+l o ( )
0 >D
J ¢ ryx nf. , r v nmf
Y'l “nmE ¢ JnétoanZcZ In+1"n«c
(7.32b)
Upon using (7.28) and (7.31) equation (7.22) can pe written
as:

ddD

47Tp(.n+m) j
cm(2n+DH(n-m)!
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The orthogonality of the spheroidal modes may now be

given by:

aP %,nmV%,psq+u9,nmrue,psq+uip,nmrue,psqldD 0

((7.34)
which is true whenever inequality between any pair of corresponding
indices exist. The normal modes of spheroidal vibration may

be found to be:

u r,nmg£  Bnm& nl 13 cl (2n+l)

> ton£

n+ 1£t°n’\_c} ¢l (2n+])

n(n+l) rdnm% 0pmt Si
r ARME Jv'nAwn/\C2/\+ "n/~]n£C9 H | .%,{B
nm£
(7.35a)
AnmE
s nm
Bnm%
1
r
| to E 0 % -z
1 “ . _n nm
-+ i1 conay v
z ' nmf

— C/lyn+1(MniA-)J quIT ®

(7.35b)



m cosmtp

£
CZ(EHH-) X sino s i nmip
(7.35¢)
where

cm(2n+1)(n-m)!
(7.36)

nmEg  4irp( n+m)!
Graphs showing variations of the normalised u and up
along the thickness of hollow spheres are given in Figs,'(7.2) and

(7.3) respectively.

7.5. Sound generated by transient vibration of hollow spheres

The general equations (6.141a) to (6.141c) given in chapter
6 can be used for finding the response of a hollow sphere to any
type of radial concentrated force. As an illustration, let us
examine a force in the form of half sine pulse acting at the
position r=a and 0= ir. By following similar procedures as given
for solid sphere the response at position r=a and 0= 0 can be

easily found to be:
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(bsinw?t - ~sinbby) t<d  (7.37a)

0 00

n=0 £=1

S A+ i AA
jbsinwn~(t-d)+ bsSjort] > d o oo

where u* 0 is given by equation (7.35a) after substituting
m=0. By taking into account the effect of viscous damping

the acceleration in frequency domain may be expressed as:

. i/b?F . A
ur(:r=ae=0o) = - (b.z_m_al)(l+e1 )
o (-1)%*2r;n£(r-a,e=K)

"=0 £=1 .y + 2i6nAjlU (7.38)

By following similar procedure as given for solid sphere

the sound pressure can be found to be:
| (-DnG*n-B*n)hn(2\KTr)

oa
1

=0 i hn(2)(Ka)-Khn+1(2)(Ka) "T(C0%e)
£ (7.39)
n=0
where
=1 (7.40a)

= 0 otherwise
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bF
max

iw(b2-w2) (17.40b)

(7.400)

The sound pressure in the time domain may be obtained by

means of the inverse discrete Fourier transform.



Value of n

O o0 =N o0 N A W oo -

—_
o

TABLE

7.1.

2.5
3.864
5.094
6.266
7.403
8.520
9.621
10.711
11.792
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5.799
7.118
8.438
9.711
10.950
12.166
13.364
14.548
15.720
16.882

9.310
10.479
11.843
13.197
14.507
15.787
17.045
18.287
19.515
20.731

12.902
13.827
15.094
16.490
17.866
19.199
20.502
21.786
23.054
24.310

16.598
17.310
18.371
19.696
21.114
22.505
23.853
25.172
26.473
27.760

Non-dimensional frequency of torsional vibration

of hollow sphere (b/a

= 0.2)



Value of n 9 =1

2 2.475
3 3.850
4 5.088
5 6.263
6 7.403
7 8.519
8 9.621
9 10.711
10 11.792

TABLE 7.2. Non-dimensional frequency of torsional vibration

= 0.4)

6.357
7.237
8.358
9.593
10.859
12.111
13.335
14.534
15.714
16.879

of hollow sphere.

11.141
11.639
12.363
13.288
14.380
15.589
16.863
18.153
19.431
20.683

2=4

16.171
16.499
16.986
17.625
18.411
19.355
20.389
21.554
22.801
24.093

21.296
21.540
21.902
22.381
22.974
23.676
24.486
25.403
26.423
27.542
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Value of n 2 =1 2=2 2=3 2 =4 2 =5
1 * 8.443 16.020 23.772 31.574
2 2.373 8.872 16.235 23915 31.681
3 3.736 9.484 16.552 24.127 31.840
4 4.986 10.248 16.968 24.407 32.051
5 6.182 11.134 17.476 24.754 32.313
6 7.342 12.116 18.070 25.164 32.625
7 8.477 13.169 18.744 25.636 32.986
8 9.592 14.275 19.492 26.166 33.394
9 10.691 15.416 20.307 26.752 33.849
10 11.779 16.580 21.185 27.392 34.347

TABLE 7.3. Non-dimensional frequency of torsional vibration of

hollow sphere. (b/a = 0.6).



Value of n 2 =1
1 *
2 2.199
3 3.477
4 4.663
5 5.814
6 6.946
7 8.066
8 9.178
9 10.284
10 11.384

15.943
16.103
16.341
16.652
17.034
17.482
17.991
18.556
19.173
19.838
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31.535
31.614
31.734
31.892
32.089
32.323
32.595
32.903
33.246
33.623

47.203
47.256
47.336
47.442
47.574
47.732
47.915
48.124
48.358
48.617

62.891
62.931
62.991
63.070
63.170
63.288
63.427
63.585
63.762
63.958

TABLE 7.4. Non-dimensional frequency of torsional vibration of

(b/a =0.8)

hollow sphere.



Value of n 2 =1

(e

4.725

—_
*

2.556
3.914
5.038
6.075
7.076
8.058
9.028
9.990
10.946

O© 0 9 O w» B~ w o

—_
(=

TABLE 7.5. Non-dimensional frequencyof spheroidal vibration

10.260
3.565
4.870
6.543
8.181
9.754
11.259
12.696
14.066
15.380
16.645

of hollow sphere.

(b/a = 0.2
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16.095
7.541
8.007
9.430

11.052

12.511

13.900

15.288

16.690

18.100

19.505

and Poisson’s ratio

22.746
8.021
10.245
12.143
13.802
15.465
16.967
18.358
19.707
21.046
22.385

0.29)

29.713
11.583
12.014
13.170
15.090
17.145
19.093
20.878
22.503
24.000
25.415



Value of n 2 =1
0 4.070
1 *
2 2.165
3 3.534
4 4.820
5 5.981
6 7.042
7 8.047
8 9.025
9 9.989
10 10.946

TABLE 7.6. Non-dimensional frequency of spheroidal vibration

10.781
3.763
4.832
6.327
7.864
9.408
10.957
12.477
13.931
15.305
16.608

of hollow sphere.
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19.855
7.868
9.298
9.557

10.327

11.489

12.888

14.418

16.015

17.628

19.209

29.332
9.626
10.116
12.294
14.184
15.441
16.383
17.387
18.541
19.854
21.310

(b/a = 0.4 and Poisson’s ratio - 0.29)

38.903
12.690
14.115
15.081
15.919
17.303
18.990
20.550
21.859
23.025
24.184



Value of n 9 =1

(=)

3.453

—_
*

1.710
2.693
3.812
5.004
6.213
7.405
8.562
9.675
10.744

O© 0 9 O Ww» A ow N

—_
(==}

TABLE 7.7. Non-dimensional frequency of spheroidal vibration

14.963
3.846
5.049
6.588
8.127
9.556

10.820

11.925

12.945

13.966

15.038

of hollow sphere.
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29.213
9.083
10.461
12.054
13.228
13.713
14.373
15.314
16.460
17.703
18.964

(b/a = 0.6 and Poisson’s ratio

o=4

43.626
14.333
13.882
13.719
14.382
16.094
17.943
19.703
21.240
22.491
23.554

0.29)

58.078
16.852
17.930
19.091
20.288
21.462
22.550
23.582
24.725
26.096
27.603
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Value of n 2 =1 2 =2 2=3 2 =4 2 =35
0 3.016 29.155 58.049 87.002 115.969
1 * 3.631 16.146 28.856 31.914
2 1.369 4.961 16.689 28.445 32.566
3 1.850 6.599 17.450 28.034 33.340
4 1.424 8.310 18.386 27.672 34.191
5 3.169 10.026 19.456 27.384 35.098
6 4.023 11.720 20.628 27.107 36.052
7 4.943 13.374 21.870 27.107 37.044
8 5.925 14.971 23.149 27.171 38.068
9 6.945 16.492 24.416 27.429 39.118
10 8.139 17.914 25.592 27.971 40.191
TABLE 7.8. Non-dimensional frequency of spheroidal wvibration

of hollow sphere.
(b/a = 0.8 and Poisson’s ratio 0.29)
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Distance along the thickness = r-b/a-b

VARIATION OF NORMALISED DISPLACEMENT OF TORSIONAL
VIBRATION OF HOLLOW SPHERE ALONG THE THICKNESS
(n = 2, and b/a =0.6)
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8. EXPERIMENT

This chapter deals with the description of the experimental
set up and design of the test rig. The main objectives of
these experiments were to measure the sound pressure-time histories
generated by collision of two balls at different impact velocities
and different directions, and to investigate the sound pressure
due to elastic vibration of spheres. The results will be

discussed and compared with the predicted results later in Chapter 9.

8.1. Specimens and Suspension

The characteristics of the steel balls used in the experiments
are given in Table (8.1). Each of the pair of colliding balls
were suspended by either fishing lines or steel wires depending
upon the weight of the balls used during the experiments. To
suspend the balls by fishing lines a pair of small holes were spark
eroded at symmetrical positions with respect to the centre of each
ball and a small hook was cemented into each hole by using araldite.
A frame consisting of two vertical and one horizontal bars was
placed inside the anechoic chamber. On the horizontal bar was
fitted two small rectangular pieces each possessing a pair of hooks
from which the balls were suspended. The distance between the
hooks could be adjusted according to the size of the selected pair
of colliding balls. To suspend the forged steel balls by steel
wires a pair of holes were made at symmetrical positions with
respect to the centre of each ball and a 3/8" bolt was screwed
into each hole. A schematic diagram of balls suspension is given

in Fig.( 8.1).
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8.2. Design of the Test Rig

In order to measure the sound pressure in different directions
about the contact point it was required to rotate the microphone
on the imaginary circle centred at the impact point. To carry
out this task a test rig as shown in Fig.(8.2) was designed.

This structure consisted of a base plate | on which the
horizontal arms 2 and 3 were mounted. Located within the base
are ball races which enable the arms to rotate freely about the
fixed axis z.z The impact point of the balls is also arranged
to lie on the axis zz. The pointers 4 and 5 attached to the
horizontal arms could be positioned in any of 360 holes drilled
in two concentric circles on the face of a circular plate 6 which
was connected to the base | through V bolts. The wvertical stand
7 carrying the microphone holder 8 was assembled on the horizontal
arm 2 through sliding base 9 which could be clamped at any position.
The whole structure enabled the position of the microphone with
respect to the impact point to be estimated with the aid of scales
mounted on both the horizontal arm and vertical stands. It should
be emphasised that the direction of the swing of the balls was
chosen as a reference for estimating the angular coordinate of
the microphone position. To maintain the same distance from the
contact point during rotation of the horizontal arm the axis of
shaft 10 zz, passing through the centre of base 2 was checked by
a plumb-line to ensure that the impact point of the spheres was

lying on the axis zz.
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To reduce the interference of the sound reflecting back
from the microphone holder a conical shape of microphone holder
was found suitable. To release the balls an electromagnetic
holder 11 was attached by sliding part 12 to the vertical stand
13, along which it could slide and be clamped. A scale
graduated in mm was mounted on the vertical stand 13 to measure

the drop height of the balls.

8.3. Fourier analyzer/54SIC Hewlett Packard

Since the Fourier analyzer played the main role in displaying
and analysing the experimental results a brief note about how it
works may be found to be useful

The instrument transforms data from the time domain to the

frequency domain by means of the discrete finite transform”(D.F.T.).

This transformation is carried out quickly by means of a special
algorithm, the fast Fourier transform (F.F.T). For example, 1024

data points in the time domain are transformed into the frequency

domain in 55 ms. The resolution Af between lines in the frequency

spectrum is related to the total time of the record T by:

The time T, the sampling time At and the number of data points

N are related by:
T = N At

The highest frequency in the spectrum F is given by:

lllaA
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The highest possible value of Fmax with the Fourier analyzer
is 100 kHz.

In using the Fourier analyzer it is important to ensure that
that there are no aliasing errors. This is achieved by passing
the analog time data through a low pass filter before the data is
sampled by the analog to digital converter. The cut-off of the
low pass filter was selected to be Fmax or less.

A main feature of the Fourier analyzer is a keyboard on which
the user can punch keys for a variety of mathematical functions
to be performed on the frequency data. More information about

this may be found in the manufacture application note (see ref.(65)).

8.4. Anechoic chamber

The anechoic chamber used during the experiment was designed

by Anderson 66 and is situated on level | in the Department of
Mechanical Engineering. The chamber is a 50 mm thick concrete box
mounted on rubber pads which act as vibration isolators. Polyurethane

foam wedges (Dunlop DPI03) of length 600 mm line the chamber leaving
a maximum working space of 4.5 m x 3 m by 3.37 m high. The
background noise in the chamber is 30 dB(.A) and is mainly structure-
borne sound of low frequency. A good anechoic chamber should, by
definition, be echo-free. The walls need to be perfectly absorbing,
so that free-field conditions are achieved. For a point source

of sound in a free-field the intensity of sound is inversely
proportional to the square of the distance from the source. Thus
the inverse square law test is the most sensitive test of the
quality of an anechoic chamber, and a good room should exhibit

very small deviations from the inverse square law. Details
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about the inverse square law test carried out by Anderson

can be found in ref. 66 . Service ducts for electricity,
water pipes, air tubes, microphone cables, etc., are underneath
the chamber. A control cabin is adjacent to the chamber and
contains standard B8K analysis equipment and the Hewlett

Packard Fourier analyzer.

8.5. Acoustic measurements

The sound measuring system consisted of aBruel and Kjaer
% inch condenser microphone (type 4135) and a type 2608 measuring
amplifier. The output of the measuring amplifier was connected
to the input of the Fourier analyzer. After each collision the
pressure-time pulse could be displayed on the oscilloscope of
the Fourier analyzer and stored on a magnetic disc. A Bruel and
Kjaer \ inch condenser microphone (type 4133) was used to trigger
the scope. This was necessary because of the fast transient
nature of the pulse. The triggering microphone was attached
to another measuring amplifier, whose output was connected to
the external trigger of the Fourier analyzer. To prevent reflections
of the sound pulse off the triggering microphone from reaching the
measuring microphone the triggering microphone was positioned at
a suitable distance away from the measuring microphone.

A schematic diagram of the apparatus used for the acoustic
testcis given in Fig,(8.3). To calibrate the measuring system,
a Bruel and Kjaer type 4220 pistonphone was used. This produces
a sound level of 124 dB re 20 ppa, plus or minus a correction

factor which depends upon the barometric pressure. The apparatus
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was set up as shown in Fig.(8.3) except for the trigger circuit
which was not required. The pistonphone was then placed over
the \ inch microphone and the range setting of the measuring
amplifier was set on the 0.3V full scale deflection. A sine
wave form signal generated by the pistonphone was displayed on
the oscilloscope and the peak amplitude was noted. For every
collision the impactor was held back against the electromagnet
and its circuit was broken through the switch placed in the
control room. The impact velocity vQ is determined from the
drop height of the ball, hp, by using the relation, vq = (Zgth)%

where g” is the gravitational acceleration.

8.6. Acceleration measurement

Surface acceleration of the impactee was measured by means
of a Bruel and Kjaer accelerometer type 8309 with a calibration
constant of 0.0184 mV/ms—2. The accelerometer was screwed into
a hole which had been prepared on the side opposite to the impact
point. The accelerometer was connected to a Bruel and Kj.ger
precision sound level meter. The output of the sound level meter
was connected to the Fourier analyzer so that the acceleration
time histories can be displayed. A Bruel and Kjaer inch
condenser microphone (type 4133) was used to trigger the scope.
The triggering microphone connected via a measuring amplifier to
the external trigger of the Fourier analyzer. A schematic
diagram of the apparatus used fort.the acceleration measurement
is given in Fig.(8.4). To calibrate the measuring system a
function generator type,(.TWG 501) was used and its input was

measured by a voltmeter. The function generator was connected
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to sound level meter, whose output was connected to the input
of the Fourier analyzer. It was found that with the sound
level meter on 110 dB an input of 99 mV gave an output of 2.68
Volts on the Fourier analyzer. Thus a simple calculation

shows that the calibration constant for the system is given
by IV = 2007.6 m/s2.
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Diameter (" 1 357
") ? 64
Diameter (cm) 2.54 5.08 14.17*
Type Non- non- Forged
corrodable corrodable
Hardness 55 - 56 55 - 56 -
(Rockwel 1)
Weight 66 528 11800
(9)
Densi tv
(g/cm3) 7.8 7.8

TABLE 8.1. CHARACTERISTICS OF THE BALLS USED FOR THE TESTS.

* Average Diameter

100 cm

Side view

FIGURE 8.1. SCHEMATIC OF BALL SUSPENSION
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FIGURE 8.4. GENERAL ARRANGEMENT OF ACCELERATION MEASUREMENT AND
APPARATUS USED IN CALIBRATION. CM: Condenser Microphone,
MA: Measuring amplifier, AM: Accelerometer, SLM: Sound
Level meter, FA: Fourier analyser, VM: Voltmeter,
FG: Function generator.



-298-

9. DISCUSSION AND CONCLUSIONS
Predicted results obtained in previous chapters, together
with the experimental results, are discussed and conclusions

drawn.

9.1. Force-time history

The validity of the Hertz law of contact relating force and
approach through equation (2.60) has been investigated for many
impact problems by Goldsmith [43] and proved to be adequate. The
numerical methods for calculating force-time history in absence
and presence of the terms due to transient vibration of colliding
spheres are given in sections (2.6) and (6.9) respectively.
Graphical representation of these solutions are shown in Figures
(2.2.) and (6.6). Solutions based on assumption of half sine
pulse is also represented graphically in Fig.(2.2). Comparison
of the results show a difference in slope of the curves at the
beginning and at the end of contact. Apart from these differences
good agreement between both solutions may be observed. Thus one
may conclude that analytical representation of force-time history

as a half sine pulse is a good approximation.

9.2. Impulsively accelerated and pulsating spheres

Graphs representing pressure-time histories at 6= 0° and 60°
for an impulsively accelerated sphere is given in Fig.(3.1). At

the wave front i.e. t= 0, pressures are maximum and their peak

values may be given by P=P”cose'. As e increases from 0° to 90°

the peak value at the wave front decreases and this is the same
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also for the rarefactive peak which is forming later in time.

Pressure-time curve of impulsively pulsating sphere as
shown in Fig.(3.2) has the same switch on value as the
impulsively accelerated one given for 6 = 0°. Unlike the
impulsively accelerated sphere the sound pressure radiated by
an impulsively pulsating sphere decays exponentially with time
and forms no rarefactive peak. It is also independent of 9.

In Fig.(3.7) both the exact solution of the sound radiated
by an impulsively accelerated sphere and approximate evaluation
of that sound obtained by the aerodynamic approach are compared.

Both pressure decay rates and switch-on values agree very closely.

9.3. Sphere undergoing a Hertzian acceleration

The logarithmic plot of dimensionless peak pressure amplitude
against non-dimensional contact time 9 is given in Fig.(3.3).
Observation of this graph suggests that the variation of peak
amplitude with respect to 9 can be approximated by the straight

lines shown at the same Figure. Thus one finds:

P'max -0.45
PACOSO - 0.5256 for 0 < 0.3,
P'max -0.98
PNCOSO ~ 0.280 for 0.3 <0< |
and
max - 1.73
= 0.280 for o> 1

PMCOS0
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The non-dimensional contact time 3 can be related to the impact

velocity through equation (3.41b) and it is not difficult to

show that:

= 555.37

where units are all in the SI system. This equation together

with the approximate relations given for peak amplitude may be

used for predicting the peak pressure when one or some of the

variables such as size of colliding spheres, modules of elasticity,

and etc. change. Since the non-dimensional contact time 6 varies

with the inverse of impact velocity to the power 0.2 the proportionality

of the peak pressure amplitude and impact velocity can be written

as.
P av 1.09 for 3 < 0.3
max 0
p avl'2 for 0.3 < 3 < 1!
max 0

and
Pflax av01'35 for 3 > 1

The dimensionless time n for which the peak occurs is also
plotted logarithmically versus 3 and is shown in Fig.(3.4).
Approximation based on representation of this graph with the

straight lines for different regions of 3 suggests that:
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X ‘0.17

nmax = 0.613 for 3 < 0.3

N -0.36

nmax = 0.483 for 0.3 <0 < 1
and

N -0.72

Nax = 0.483 for 3 >1

Thus for all values of 3 within the range of 0.1 <6 < 10
the value of n never exceeds unity.

Due to max the dependency of the peak pressure on cosO
its directional distribution is symmetrical about 0 = 90° and
depending upon whether 0 < 0 < a compressive peak or |- < 9 < t
a rarefactive peak can be generated.

The logarithmic plot of dimensionless peak of transform
against non-dimensional contact time 0 is given in Fig.(3.5) and

can be approximated by straight lines for different regions of

0. Thus one may write:
p
|-~ = 0.49 for 0 < 0.3
-0.26
|-~-] = 0.353 for 0.3 < 3 «l
L
and
-0.91
IPmax = 0.35 3 for 3 > |
PL

The value of dimensionless frequency n* for which the
transform peak occurs is also plotted logarithmically against 3
and is shown in Fig.(3.6). It can be easily shown that these

values can be approximately given by:
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n*rnax = 0.638 for. B < 0.7
n*max = (.58 U for 0.7, < g <25
and
n*max = 0.683 for g>2.5
Dimensionless pressure time curves for a pair of colliding
spheres are given in Fig.(3.11) to (3.14). There are seven

dimensionless parameters 51,52, ﬁ,E],iz,D and n which take part
in predicting the resultant dimensionless pressure. The
dimensionless time delay n' may be expressed in terms of B and

Bz as:
1 1 cosé
n' = (g + )
B] B2 m

The pressure generated by the impactor reaches the microphone
after the above dimensionless time delay has elapsed. Thus the
value of the first compressive peak would be unaffected by the
pressure contribution of the second sphere if the dimensionless

time n . ffor wnich the compressive peak occurs is less than n'.

ma
It can be easily shown that the value of n' at g = 0° for colliding
spheres of equal and unequal sizes rever could be less than ;%—
1

and ;%; respectively. By examining different values of B and
observing the time for which the peak occurs one would be able

to find an upper bound value of B below which ﬁmax< n'. Thus for
a pair of colliding spheres of equal and unequal sizes an upper
bound value of g below which amax{nl may be given by dee 2.79

and By = 0.53 respectively. For any pair of colliding spheres
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the first compressive peak would reamin unaffected by arrival
of sound pressure from the second sphere, if the dimensionless
contact time 6" has a lower value than the corresponding upper
bound value. This can also be confirmed by comparing the
values of the first compressive peak in Figs.(3.11) to (3.14),
with those which could be estimated by using expressions given
previously for a single sphere. In order to study the effect
of the replacement of the impactee by another impactee of the
same size but different material one may write:

0.4,I-v2>0.4 -0.2
6 = 637.95 P (——) vQ

and 0

i 2' '0-4
U ©50.85 o0 Haibyp A4 10 6.4,(“ Coy B0
X

[ -v X

where 6 and 8X are dimensionless contact times before and after
replacement of the impactee respectively. The ratio of 3X to 3

may now be written as:

Depending upon the value of the right hand side of above
expression one would be able to predict the outcome of this
replacement. As an example let the impactee of a pair of
colliding steel spheres in Fig.(3.11) be replaced by a copper

sphere of the same size. As a result of this replacement one

0

8.2
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obtains ~ - 1.15. Since 3 >3 and the fact that p /P.,
decreases as 3 increased, one should expect to obtain a
lower value of Pmax/P~ In case of the new arrangement.
This can also be confirmed by comparing the values of first
Pmax~N In #'9S .(3.11) and (3.13). To consider the effect
of the replacement of the impactee by another impactee of
the same material but different size, a similar procedure

yields:

tA = 1.148

If the size of impactee of colliding steel spheres in

Fig.(3.11) increases by a factor 2, one obtains 3X/3= 0.594.
Thus as a result of this replacement a greater value of Bnax/P'N
should be expected. Comparisons of the first Blmax/PN in
Figs.(3.11) and (3.12) justifies this prediction. (Note that:

Pmax 1+M
0o o 1.17M
For a pair of similar spheres of equal sizes the pressure

profiles are functions of five parameters only. These parameters
are and n. By substituting ' , C = ' 9 = 0°,
and n' = 2— in equations (3.60a) to (3.60d) and neglecting the
difference between r, r* and r* in the denominator of the result,
one would be able to express the resultant pressure in terms of

6 and n only. The logarithmic plot of dimensionless rarefactive

peak amplitude against 3 is given in Fig.(3.19). Approximations
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based on representation of this graph with the straight lines

for different regions of 6 suggests that:

P‘max -0.52
0.5473 for 6 < 1
1.78
= 0.5476 for 1 < 8 <1.5
and
-3
1.143 for 3 >1.5

The proportionality of the rarefactive peak amplitude and

impact velocity may be given by:

Pmaxa Vo for 3 < |
a V T-35
?’max 0 for 1 < 3 <1.5
and
V b6
Pmaxa 0 for 3 >1.5

The dimensionless time n for which the rarefactive peak
occurs is also plotted logarithmically against 3 and is shown
in Fig.(3.20). It can be easily shown that these values can

be approximately given by:

-0.8
max 1.143 3«1
-0.46
nmax 1.143 1< 3 <3
and
. -0.16
n 0.83 3 3 < 10

max
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The directional distribution of the sound radiated by
a pair of similar spheres of equal and unequal sizes are given
in Figs.(3.15) and (3.16), respectively. The sound distribution
for colliding spheres of equal sizes in syrrmetrical about a line
joining the centres of the spheres and about a line perpendicular
to this line through the contact point. The minimum pressure
occurs at angle 0 = 90°. The sound distribution for colliding
spheres of unequal sizes is also symmetrical about a line joining
the centres of the spheres and no symmetry about the perpendicular
direction exists. The sound pressure is minimum at angles of
0= 90° and 270°. The directional distributions of the sound
radiated by a pair of dissimilar spheres of equal and unequal
sizes are also given in Figs.(3.17) and (3.18) respectively.

The same behaviour as mentioned for the pair of similar spheres
can be observed in Figs.(3.17) and (3.18).

In Figs.(3.21) to (3.24) are shown the transforms for the
pressure-time results given in Figs.(3.11) to (3.14). The levels
of transforms are constant for a limited bank of low frequencies
and peak in the region of n* = 0.3-0.4. For a pair of similar

spheres of equal sizes the dimensionless pressure transforms

are functions of five dimensionless parameters. These parameters
ri r2 0
are and n** By substitutin9 6] = IT" A2 = a—’ and e= 0

in equation (3.64) and neglecting the difference between r, rj and
r™ in the denominator of the result, the dimensionless pressure
transforms can be expressed in terms of 0 and n* only. The

logarithmic plot of dimensionless frequency n* for which the
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transform peak occurs against 3 is given in Fig.(3.25). It

can be easily shown that:

n* = 0.7B for B < 0.7
max
n* = 0.58 BOM4S ¢4 0.7< B < 2.5
max
and
n* = 0.89 for B >2.5
max
Thus for all values of B within the range 0.1 <B < 10 the
value of n* never exceeds unity. The value of n*=| can be
max

interpreted as the frequency associated with the duration of
the contact. The value of fmax for which the transform Peak

occurs may also be given by:

76.4

f ' for B <0.7
max a
-0.55
f - 63.3 B for 0.7< B < 2.5
max a
and
97.2 1
f ’ B for B >2.5
max a

It may be interesting to note that for a pair of colliding
spheres at radii a# = a®< 0.38 cm and B < 0.7 the Fourier
transform of pressure time history peaks above the audible
frequency region and the audible sound will be due to lower
amplitude portions of the transform.

The saind pressure-time history calculated both analytically

and numerically are compared in Fig.(3.26). No significant
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difference between the results can be observed. Thus the
half sine pulse approximation is adequate in most calculations.
In Fig.(3.8) both the exact solution for the sound
radiated by a sphere undergoing a Hertzian acceleration and
approximate evaluation of that sound obtained by aeroacoustic
approach are compared. Both curves are identical for a
certain period of time and agree very closely afterward.
The only advantage of the aerodynamic approach is that the

final formula are slightly simpler.

9.4. Radiation due to change of Volume of Sphere

The dimensionless pressure-time trace due to change of
volume of 2.54 cm diameter colliding spheres is shown in Fig.(3.28).
If the values of velocity and distance are chosen to be the same
as those given in Fig.(3.26) it can be calculated that the maximum
sound pressure is 0.53 x 10 Pa. Pressure of this magnitude
may be neglected in comparison with the rigid body sound pressure
radiated by colliding spheres of the same size, for which results

are shown in Fig.(3.26).

9.5. Acoustic Energy

The acoustic energy radiated by an impulsively accelerated
sphere in the far field is given by equation (3.90) and may be
written in terms of velocity and mass of air displaced by the

sphere as:
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Thus energy radiated by an impulsively accelerated sphere
is equal to half the kinetic energy of air displaced by the
sphere. It can be easily shown from equation (3.87) that

at the surface of the sphere

=l

ol L
Bys, S amys
where M is the mass of sphere. In Fig.(3.29) is shown the
logarithmic plot of dimensionless energy against g for a
sphere undergoing a Hertzian acceleration. Approximation
based on representation of this graph with the straight lines

in different regions of B suggests that:

E -0.36
s 0.26p8 forR s Rl
E -1.14
B " 0.138 for 0.4< g < 1
and
E -2.67
- 0.13g for g>1
g -
where E* =20 mov . When the impactor is a similar sphere
(T 2 A

of the same size as the impactee (E* = EISJ one may conclude
that energy never exceeds the kinetic energy of air displaced
by the impactee. The proportionality of the energy and impact

velocity may be written as:

Ec v i for B8 < 0.4
Eu v 2.23 for 0.4 < B <1



-310-

and

’ 2 .53
Ea vq for 3 > 1

In order to calculate the total energy radiated by a pair
of similar spheres of equal size it is assumed that ej = 6 = 6
and rij = ™ = r. Such assumptions allow the total dimensionless
pressure to be expressed in terms of 3, n and e. The logarithmic
plot of total dimensionless energy against 3 is given in Fig.(3.30).

an it can beasily shown that:

E -0.3
= 0.73 for 3 < 0.4

EIS
for 0.4 < 3 <0.8
for 0.8< 3 < 1.5

and
for 3 >1.5
Once n one conclude that the total energy radiated

by a pair of colliding spheres is less than kinetic energy of
air displaced by the impactee. It may also be interesting to
note that since for a pair of colliding steel spheres the ratio
(pPQ/p = 1.5 x 10 N), therefore the total radiated energy wvill
never be greater than 1.5 x 10 times the kinetic energy of the
impactee. This in turn means that only about less than one-six

thousandth of the kinetic energy of the impactee may be
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radiated as< acoustic energy.

9.6. Radiation of sound due to inelastic collision of spheres

A typical force time history for the collision of a 2.54 cm
diameter lead sphere is given in Fig.(4.1). Observation of
this graph shows that the force increases slowly during the
elastic-plastic loading and decays rapidly during the elastic
unloading period. The duration of the elastic-plastic period
is much greater than the duration of the elastic loading and
elastic unloading periods. Thus the major part of the duration
of the contact is allocated to the elastic-plastic loading period
For the lead spheres considered in Fig.(4.1) the duration of the
contact and duration of the elastic-plastic loading period are
353.7 ps and 331.8 ps, respectively. The analytical and
numerical solutions of pressure time history radiated by the
impactee are compared in Fig.(4.2). There is a slight difference
between both solutions in the region of rarefactive peak and that
should be due to the difference of the analytical and numerical
estimation of the duration of the elastic-plastic period.
Consideration of these graphs also show that a low sound can be
radiated until the elastic unloading period is started. This
is because of the fact that the accerlation increases slowly.
It can also be noticed that because of the abrupt slope of the
acceleration more sound can be generated during the elastic
unloading period. In Fig,(4.3) is shown the sound presssure
radiated by a pair of colliding lead spheres. Unlike the

pressure time history of a pair of colliding steel spheres of
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the same sizes the amplitude of the second compressive peak is
higher than the first one. This is due to slow rate of deceleration
of the impactor which prevents a high sound pressure being radiated
before the time equal to the time delay plus the time taken for
both first and second periods to be completed. The Fourier
transform of total pressure time history is shown in Fig.(4.4).

The transform peaks at frequencies 2.3 and 4.7 kHz. The transforms
of dimensionless pressure time history and acceleration for the
impactee are given in Figs.(4.5) and (4.6) respectively. Comparison
of these Figures shows that the lesser amplitude peaks in pressure

transform are associated with the transform of the acceleration.

9.7. Radiation of sound due to collision of viscoelastic spheres
Typical examples of pressure time history for viscoelastic
spheres with the properties described in Table 5.1. are given in
Figs.(5.1) to (5.3). The force time history due to collision of
viscoelastic and steel spheres for each example are also given in
Fig.(5.4). Observation of these graphs indicate that the amplitude
of the peak pressure increase as the amplitude of the force increase
and shorter contact durations register shorter pressure time traces.
In Fig.(5.5) is shown the transform for the pressure time result
given in Fig.(5.3). The position of the main peak and lesser
amplitude peaks may be approximately given by % 3_O 55, 2/d, 3/d

and etc. respectively.

9.8. Vibration of solid and hollow spheres
The radial displacement for torsional vibration is zero. Thus

the motion except case of zonal harmonic (m =0) is a combination
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of two displacements, namely u0 and uIp . The radial dependent
function appearing in both u* and u expressions are identical.
Distribution of normalised radial dependent functions along the
radius of spheres for different values of n and % are given in
Figs.(6.1) and (7.1). The nodal points give the position of
spherical surfaces across which there is no displacement. The
number of these surfaces depend on £ and may be expressed as y-1
The fundamental mode for given n is that with £ = 1. If n >2
distribution of radial dependent function of displacement for
fundamental mode registers no node. Thus by analogy for n = 1
there is no fundamental mode. In Fig.(6.2) the surface mode
shapes are given for different values of n and m. If n=1m
must be either zero or one and the surface motion corresponding
to these values of n and m are simply rotation about one of the
axis. In case n = 2 and m = 0, the upper and lower hemispheres
of surface rotate in opposite directions and a nodal circle can
be formed.

For spheroidal vibrations the motion, except for case of
zonal harmonic (m = 0) is a combination of three displacements,
namely uf, uQ and u . The radial dependent function in both u0
and u, expressions are identical. Distribution of radial
dependent functions appearing in u and us expressions for
different values of n and are given in Figs.(6.3) ,(6.4), (7.2)
and (7.3). The number of spherical surfaces across which there
is no displacement, apart from the case n = 0, can no longer be

given by £-1. As well as torsional vibration there should be
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no fundamental mode corresponding to case n = 1. Regardless
of value of m (m = 0, or m = 1) the motion in case n = 1 is
merely translation in direction of one of the axis. Such motion

is not a free oscillation and needs an external force to be

sustained. Thus the frequency equation has no root corresponding
to £= 1. This in turn explains why there is no fundamental
mode corresponding to case n = 1. In Fig.(6.5) the surface mode

shapes are given for different values of n and m. All the points

undergo oscillation and no nodal point exists.

9.9. Experimental Results

As the theory indicates the pressure-time history generated
by a pair of colliding spheres is a function of angle 0. Thus
the agreement between theoretical and experimental results should
be examined for different angles. The agreement also depends

on how accurately results could be predicted by the ray theory

assumption. The theoretical and measured pressure-time traces
are compared in Figs.(9.1) to (9.4). The results agree well for
0 = 0°, 40°, and 60°. For 9 = 90° discrepancy can be observed

and this might be due to reflection of sound wave between colliding
spheres.

The theoretical and measured Fourier transform of pressure
time histories as a function of angle (e) are compared in Figs.(9.5)
to (9.8). The predicted result was obtained by using D.F.T. method;
and the resolution was chosen to be the same as the one selected

on the Fourier analyser. Once again the experimental results

verify the theoretical ones for all angles except for 0 = 90°.



-315-

The value of f for which the transform peak occurs confirms

the relation fmax = suggested previously. In Fig.(9.9)

the measured transforms for various sizes of spheres are shown.

The transforms peak at frequencies 6, 3 and 1.1 kHz, which are
inversely proportional with the radii of spheres. Observation

of Fig.(9.10) showing measured transforms as a function of angle

6 also indicates that the position of transform peak is independent
of 6. The pressure transform for a 5.08 cm diameter colliding
sphere is shown in Fig.(9.11). Peaks at frequencies 55 and 82

kHz respectively correspond to the first and second lowest
fundamental frequencies of spheroidal vibration of a sphere. The
theoretical and experimental polar distribution of both compressive
and rarefactive peaks compared in Fig.(9.12) and (9.13).

Measured and predicted compressive peaks agree well for all

except 0 = 80° and 90°. Once again the reflection of the sound
wave between colliding spheres could be the cajse of the discrepancy.
For the rarefactive peak the agreement also very much depends on
the accuracy with which one can predict the time delay between
arrival of the sound from impactee and the impactor. In Fig.(9.14)
both predicted and measured energy integrations are compared and
good agreement can be observed. The compressive and rarefactive
peaks are respectively plotted logarithmically in Figs.(9.15) and
(9.16) as a function of velocity for 0 = 0°. The graphs are
straight lines with slope 1.2.

The logarithmic plots of measured and predicted energy

integration as a function of velocity for 0= 0° and 0 = 40° are
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compared in Figs.(9.17) and (9.18). These logarithmic plots
suggest that the energy integration is proportional to the
impact velocity to the power 2.4.

The measured and predicted Fourier transform of acceleration
are compared in Figs.(9.20) to (9.23). Predicted results are
obtained by using equation (6.169) with no damping. Thus the
finite peak values, as w tends to are due to the selection
of resolution frequency and can be varied by variation of the
resolution frequency. All modes up to frequency of 70 kHz are
included in predicted results. For the lower modes there is
a reasonable degree of agreement between the theoretical and
experimental results. However discrepancy appearing in higher
modes is rather peculiar. In the comparison of the predicted
and measured results the resolution in the D.F.T. is the same,
and hence any leakage losses should be the same. Thus a direct
comparison may be made between theory and experiment in Figs.
(9.24) and (9.25). In both theoretical and experimental curves
no absolute values can be assumed. The results can only be

regarded as a guide to actual response levels.

9.10. Conclusions
Conclusions with regard to rigid body sound are:

1)  The force-time history for the case of elastic collision of
spheres can be approximately given by a half sine pulse even

when vibratory terms are included.



2)

3)

4)

5)

6)

7)

8)

9)
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Both compressive and rarefactive peaks for an impulsively
accelerated sphere decrease as 9 increases.

The pressure-time curve of a pulsating sphere forms no
rarefactive peak and it is also independent of 0.

The aerodynamic approach for predicting the sound of an
impulsively accelerated sphere has been compared with the
exact solution and found to agree very closely.

Empirical formula relating peak pressure and dimensionless
contact time have been found for a single sphere undergoing
a Hertzian acceleration.

The equation involving the dimensionless contact time and
the impact velocity together with the empirical formula
enables one to predict the peak pressure when one or some
of the characteristics of colliding spheres, such as size,
modulus of elasticity, etc., are known.

For the collision of the metallic spheres the peak pressure
generated by a single sphere occurs after a time less than
the duration of the contact of that particular collision.
Empirical formulae relating peak of Fourier transform and
dimensionless contact time have been found for a single
sphere undergoing a Hertzian acceleration.

Empirical formulae relating frequency associated with the
peak of transform and dimensionless contact time have been

found for a single sphere undergoing a Hertzian acceleration.



10)

11)

12)

13)

14)
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A typical sound pressure-time trace for a pair of colliding
spheres is like a damped sine wave. The initial peak
might be compressive or rarefactive followed by a secondary
peak normally higher than the initial one.

Depending upon whether the initial peak is compressive or
rarefactive the secondary peak is either rarefactive or
compressive respectively.

For most of the duration of the collision of equal radii
metallic spheres the first compressive peak at 0= 0° would
be unaffected by the pressure contribution of the second
sphere.

Empirical formulae relating the dimensionless rarefactive
peak amplitude and dimensionless contact time have been
found for a pair of similar spheres of equal sizes. The
dimensionless time for which the rarefactive peak occurs

is also investigated and expressed empirically in terms

of dimensionless contact time.

The directional distribution of the sound radiated by a pair
of colliding spheres of equal sizes is symmetrical about a
line joining the centres of the spheres and about a line
perpendicular to this line through the contact point. The
directional distribution of the sound for a pair of colliding
spheres of unequal sizes is also symmetrical about a line
joining the centres of the spheres and no symmetry about

the perpendicular direction exists.
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15) Empirical formula relating frequency at which the peak
of transform occurs and dimensionless contact time have
been found for a pair of colliding spheres.

16) Energy radiated by an impulsively accelerated sphere is
equal to half the kinetic energy of air displaced by the
sphere.

17) Empirical formula relating energy and dimensionless contact
time are given for a sphere undergoing a Hertzian
acceleration.

18) For spheres of the same size energy never exceeds the
kinetic energy of air displaced by the impactee.

19) The total energy radiated by a pair of colliding steel
spheres will never be greater than 1.5 x 10_4 times the
kinetic energy of the impactee.

20) The sound pressure in the far field has been calculated
for plastic and visco-elastic spheres.

21) The sound pressure due to collision of a pair of visco-
elastic spheres of the same material may be found by
assuming each sphere individually colliding with a rigid
massive metallic plane with an initial relative velocity
equal to half the relative velocity of the spheres.

22) Materials which are similar when judged by their static
rigidity may behave differently as radiators of sound if
their visco-elastic functions are not the same.

23) Numerical methods given for the visco-elastic case may

also be applied for elastic case by simply assuming =00,



are: -

1)

2)

3)

4)

5)
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Conclusions with respect to transient vibration sound

Orthogonality conditions have been shown to be satisfied
for both torsional and spheroidal modes.

The response of spheres to any excitation could be
calculated and has been calculated for step acceleration
functions and Hertzian acceleration function.

Modal shapes have been established and illustrated
graphically.

The sound pressure due to transient vibration of spheres
has been calculated.

Theoretical and experimental results are compared and

their compatibility has been discussed.
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Pressure (Pascals)

FIGURE 9.12. POLAR DISTRIBUTION OF POSITIVE PEAK PRESSURE
FOR 2.54 c¢m DIAMETER SPHERES.
(v =1.5m/s, r = 0.375 m)

* Measured; Calculated.

<15

co

FIGURE 9.13. POLAR DISTRIBUTION OF NEGATIVE PEAK PRESSURE
FOR 2.54 c¢m DIAMETER SPHERES.
(V\Q = 1.5 m/s, r = 0.375 m)

*  Measured; Calculated.
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LOG1 O

Pressure (Pascals)

LOG1 0O
Impact Velocity (m/s)

I POSITIVE PEAK PRESSURE VS IMPACT VELOCITY
FOR 2.54 cm DIAMETER SPHERES.
(r ¥ 0.375, e = 0°

*  Measured; Calculated.
LOG1 0
— 2_
=)
©
(&)
wv
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&
&
)
wv
wv
g
o
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-1 0 |
LOG1 0

Impact velocityf m/s)

FIGURE 9.16. NEGATIVE PEAK PRESSURE VS IMPACT VELOCITY
FOR 2.54 cm DIAMETER SPHERES.
(r = 0375 m, e = 0°

* Measured; Calculated.
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LOG1 0

LOG1 0
Impact velocity (m/s)

FIGURE 9.17. ENERGY INTEGRATION VS IMPACT VELOCITY

FOR 2.54 c¢m DIAMETER SPHERES.
(r = 0.375 m, 6 = 0°

* Measured; Calculated.

Impact velocity (m/s)

FIGURE 9.18. ENERGY INTEGRATION VS IMPACT VELOCITY
FOR 2.54 cm DIAMETER SPHERES,
(r = 0.375 m, o = 40°)

* Measured; Calculated.
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