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Abstract

We present a unified framework for pricing calendar spread options on energy commodities
under affine models featuring stochastic volatility, jumps, and Samuelson effects. Expressions
for the joint characteristic function of log-futures prices are derived, enabling efficient calibra-
tion and valuation. An empirical analysis, across WTI crude oil, Henry Hub natural gas, and
ULSD heating oil shows that stochastic volatility models consistently outperform others. Jumps
enhance short-term fit, while volatility dynamics matter more at longer maturities. The Black
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1 Introduction

There are different types of spreads in the energy markets. These are usually based on price differ-

ences of the same commodity at different locations (location spreads) or at different times (calendar

spreads), on differences in grades of the same commodity (quality spreads), or on differences be-

tween input and output prices (production spreads). Among the latter, relevant types include

crack, fracking, and spark spreads. In this work, we focus on calendar spreads on futures contracts

of energy commodities.

A calendar spread involves the simultaneous purchase and sale of contracts on the same com-

modity with different maturities. Calendar spread futures and options are typically used to profit

from time decay (theta advantage), price volatility, or neutral price movements of the underlying

asset. In terms of open interest, calendar spread options (CSOs) are the third most traded type

of option in the energy markets, following European plain vanilla options (PVOs) and American

options. As of September 14, 2023, open interest at NYMEX totalled 6.8 million contracts: CSOs

accounted for 8.83% of this total, European PVOs 49.14%, American options 36.57%, and Asian

options 3.22% (see Table 1 for a classification by energy type).

The objective of this paper is to develop a unified pricing framework for CSOs under a broad

class of affine models, including those with stochastic volatility, jumps, and Samuelson effects. While

Schneider & Tavin (2018) introduced a futures-based stochastic volatility model and computed

the JCF for pricing CSOs, their framework limits its direct applicability to other models. In

contrast, we clearly separate these components and generalize the methodology to a wider class of

affine models. Central to our approach is the derivation of closed-form expressions for the joint

characteristic function (JCF) of log-futures prices. This allows for efficient model calibration and

CSO pricing across different specifications. In addition, we propose a novel approach that leverages

conditioning arguments to price spread options under advanced stochastic volatility models, such as

those where direct computation of the bivariate characteristic function is numerically demanding.

This contributes to a unified and efficient framework for model calibration and CSO pricing.

Several authors have proposed approximation formulas for pricing spread options. Kirk (1995)

was the first to offer an approximate solution, still widely used in practice, by generalizing the

Margrabe (1978) exchange option formula for arbitrary strikes. Numerous extensions of Kirk’s

approach have followed. Bjerksund & Stlensland (2014) proposed a refined version that provides a

very tight lower bound in a bivariate geometric Brownian motion model setting. Venkatramanan &

Alexander (2011) expressed the spread option price as the sum of two compound options, deriving a

new analytical approximation. Dempster & Hong (2002) pioneered the use of the two-dimensional

fast Fourier transform (2D FFT) for pricing generic spread options. The method of Hurd & Zhou

(2010) also requires evaluating a double integral numerically via the 2D FFT, and can become

particularly cumbersome when applied to advanced bivariate models, such as those incorporat-

ing stochastic volatility and time-dampening price volatility (see later in Section 3). In contrast,

Caldana & Fusai (2013) propose a fast and accurate one-dimensional Fourier inversion method.
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Their approach generalizes the lower-bound approximation of Bjerksund & Stlensland (2014) to

any model for which the JCF of the logarithm of the prices in the spread is available in closed form.

Our empirical analysis, based on market data, focuses on three major energy benchmarks: WTI

crude oil, Henry Hub natural gas, and ULSD heating oil. Each model is calibrated in two steps,

first to PVOs on individual futures, then to CSO quotes to capture the correlation structure. The

results show that stochastic volatility models, particularly Heston (1993) and Schneider & Tavin

(2018), provide superior performance in fitting PVO prices. The inclusion of jumps enhances the

fit at short maturities, while stochastic volatility becomes more critical at longer horizons. In

terms of CSO pricing errors, the Heston (1993) model consistently delivers the lowest RMSE and

minimal bias across contracts, with Schneider & Tavin (2018) performing comparably. By contrast,

the Merton (1976) model performs weakest, especially for long-dated spreads. Notably, the Black

(1976) model remains competitive for short- and mid-term contracts.

The remainder of this article is structured as follows. In Section 2, we introduce our methodology

and present the construction of the JCF for CSO pricing. Section 3 details this for different models.

In Section 4, we carry out an empirical analysis using market prices (futures, spreads, and CSOs)

for three energy benchmarks: West Texas Intermediate (WTI) light sweet crude oil, Henry Hub

(HH) natural gas, and New York Harbor ultra-low sulphur diesel (ULSD), a heating oil. Section 5

presents the option valuation results for our panel of models, and compares their accuracy. Section 6

concludes the paper and outlines avenues for future research.

2 Calendar Spread Options

Let F (t, T ) denote the futures price observed at time t with maturity at T , and let f(t, T ) ≡
lnF (t, T ) be the corresponding log-price. In Section 3, we consider models originally developed for

spot prices and adapt them to model futures prices directly. This is motivated by the fact that,

in most cases, commodities are quoted in terms of futures prices, as spot prices are not always

available. Note that when T = t, the futures price with instantaneous maturity coincides with

the spot price, that is, F (t, t) ≡ S(t). Therefore, one can easily move from futures- to spot-based

formulations, should spot price data be available.

This paper focuses on energy commodities. In particular, we analyze benchmarks for crude

oil, natural gas, and heating oil. The futures term structure of each energy commodity reflects

a combination of factors specific to its production, usage, and market dynamics. These include

storage costs, supply and demand conditions, production estimates, seasonal patterns, geopolitical

events, and infrastructure constraints. For example, crude oil prices are heavily influenced by

production forecasts, natural gas exhibits pronounced seasonal effects, and heating oil is affected

by both factors.

CSOs are written on the price difference between two futures contracts with different maturities.

They offer a leveraged instrument for hedging or speculating on changes in the shape of the futures
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term structure1. CSOs are a variant of spread options, whose payoff depends on the difference

between two underlying instruments. Such spreads can be constructed from contracts on different

assets with the same maturity (intercommodity spreads) or from contracts on the same asset with

different maturities (intracommodity spreads). The former includes varieties such as crack and

spark spreads. CSOs correspond to the latter type, and this study focuses exclusively on them.

To formalize, let T1 and T2 denote the maturities of two futures contracts written on the same

underlying asset. The calendar spread s(t, T1, T2) at time t is defined as the difference in prices

between the shorter and longer maturity contracts:

s(t, T1, T2) ≡ F (t, T1)− F (t, T2), (2.1)

where t is the valuation date and T0 is the option expiration date, with 0 ≤ t < T0 < T1 < T2.
2

The arbitrage-free price at time t of a European CSO with strike K is given by

pCSO(t, T0, T1, T2,K) = P (t, T0)EQ
T0

[
max

(
φ ·
(
s(T0, T1, T2)−K

)
, 0
)]

, (2.2)

where the expectation is taken under the risk-neutral measure Q conditional on information at

time T0, P (t, T0) denotes the price at time t of a zero-coupon bond maturing at T0, and φ = 1

(respectively, φ = −1) corresponds to a call-type (put-type) option.

3 Calendar Spread Options Price Modelling

3.1 Models for Futures Price Dynamics

We consider a pool of seven models from the literature. The underlying asset in each model is

quoted in the form of a futures contract. The models included are as follows:

(i) Black (1976) (Bla76): a geometric Brownian motion.

(ii) Merton (1976) (Mer76): an extension of Bla76 incorporating independent and identically

distributed (i.i.d.) jumps in prices.

(iii) Heston (1993) (Hes93): an extension of Bla76 with instantaneous stochastic variance.

(iv) Bates (1996) (Bat96): a combination of Mer76 and Hes93.

(v) Schneider & Tavin (2018) (ST18): an extension of Hes93 with time-dampening volatility

function.

1Certain commodities can be stored, enabling their use in hedging strategies.
2For the CSO market, trading terminates on the business day prior to the termination of trading in the first leg

of the underlying spread. The NYMEX (CME Group) contract specifications can be found here for 1M CSOs on
WTI, here for 3M CSOs on HH, and here for 1M CSOs on ULSD.
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In addition to the futures price F (t, Tj), j = 1, 2, Vt denotes the variance process, W
Fj

t the

Brownian motion associated with the futures price F (t, Tj), W
v
t the Brownian motion associated

with the variance, Nt a Poisson process, and JF the jump size. Key parameters include the futures

price volatility σF > 0, E[dWF1
t dWF2

t ] = ρ dt, ρ ∈ [−1, 1], the variance mean-reversion speed κ > 0,

the long-run variance level θ > 0, the variance volatility σV > 0, the jump arrival intensity λ > 0,

and the jump size distribution parameters µJ ∈ R and σJ ∈ R+.

Our panel spans both Gaussian and non-Gaussian (log) dynamics, as well as uni-factor and

multi-factor structures. In jump models, we assume only idiosyncratic (i.e., uncorrelated) jumps.

We distinguish between models, whose univariate futures price dynamics are summarized in Table 2.

In the bivariate case, the Group 1 models (Bla76, Mer76, Hes93, Bat96) have dynamics given in

the general form by

dF (t, Tj)

F (t, Tj)
= σFj

√
Vt dW

Fj

t − λjEQ[eJF − 1
]
dt+

(
eJF − 1

)
dNt, j = 1, 2,

dVt = κ(θ − Vt)dt+ σV
√

Vt dW
V
t ,

(3.1)

with E[dWFj

t dW V
t ] = ρFV dt, ρFV ∈ [−1, 1], for both futures, JF ∼ N (µJ , σ

2
J), F (0, T1) ̸=

F (0, T2) > 0, and V0 > 0. All Group 1 models share similar structural characteristics in their

dynamics and exhibit a common form for the CF terms. Uni-factor models have i.i.d. increments

(Bla76, Mer76), while multi-factor models incorporate stochastic volatility (Hes93, Bat96): for

dNt ≡ 0, we obtain Hes93; for dVt ≡ 0, we recover Mer76, with additional dNt ≡ 0 leading to

Bla76. A second group of models generally includes those featuring time-dampening price volatil-

ity (see Trolle & Schwartz 2009, Schneider & Tavin 2018, Crosby & Frau 2022). Our framework

can accommodate all Group 2 models (more details can be made available upon request), provided

sufficient data are available. For illustration, we focus here on the ST18 model, whose bivariate

dynamics are given by
dF (t, Tj)

F (t, Tj)
= σFj (t, Tj)

√
Vt dW

Fj

t , j = 1, 2,

dVt = κ(θ − Vt)dt+ σV
√

Vt dW
V
t .

(3.2)

These stochastic volatility models with time-dependent price volatility incorporate the Samuelson

effect, that is, the volatility of futures prices increases as the contract approaches maturity. This

occurs because short-dated futures prices are more sensitive to new information (e.g., shocks in

supply and demand or spot prices) than long-dated ones. The precise model depends on the

functional form of σFj (t, Tj): for example, for ST18, σFj (t, Tj) = αj exp(−γj(Tj − t)), where α1 ̸=
α2, α1, α2 > 0, and γ1 ̸= γ2, γ1, γ2 > 0. It is worth noting that ST18 reduces to Hes93 as γ → 0.

Throughout, we assume a common variance process Vt across both futures in the spread.
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3.2 Characteristic Function Approach

Recent literature has proposed several efficient methods for pricing spread options, with particular

emphasis on Fourier-based techniques. Among them, Caldana & Fusai (2013) and Bjerksund &

Stlensland (2014) present a pricing formula in the form of a lower bound. As discussed in Schneider

& Tavin (2018), this lower bound is shown to be extremely tight and is often regarded as the

option price itself3. An alternative method is introduced in Hurd & Zhou (2010), which involves

pricing spread options via a two-dimensional Fourier inversion using, nevertheless, complex gamma

functions. Alfeus & Schloegl (2019) carries out a detailed empirical study of bivariate models,

including those of Black & Scholes (1973) and Heston (1993), and evaluates the performance of the

Hurd & Zhou (2010) method by comparing it with Monte Carlo simulation and the lower-bound

approach of Caldana & Fusai (2013). Their findings show that Caldana & Fusai (2013) consistently

delivers reliable results across the different model specifications. Given the demonstrated accuracy

and efficiency of the lower-bound approach proposed by Caldana & Fusai (2013), which provides a

robust and computationally tractable alternative to more complex inversion techniques, especially

for advanced bivariate models (see Section 3), it stands out as a particularly appealing method for

practical implementation. Its ability to accommodate a broad class of non-Gaussian processes, while

circumventing the need for two-dimensional Fourier inversion, further reinforces its suitability for

empirical work. Besides, given the practical reality that model parameters are never known exactly,

the use of an approximating technique (here a bound), especially one that is highly accurate, does

not constitute an actual limitation of the methodology.

To this end, let us first define the vectors u ≡ (u1, u2) ∈ R2, T ≡ (T1, T2), and F ≡ F(T0,T) ≡(
F (T0, T1), F (T0, T2)

)⊤
. We consider the transform involving the two futures prices forming the

spread s(t, T1, T2), as defined in Equation (2.1), which is given by

ΦF(u) ≡ EQ
t

[
eiu·lnF(T0,T)

]
= EQ

t

[
eiu1 lnF (T0,T1)+iu2 lnF (T0,T2)

]
. (3.3)

Following Caldana & Fusai (2013), the lower bound for the time-t price of a CSO call is given by

LBCSO(t, T0, T1, T2,K) =
P (t, T0)

π
e−δk

∫ ∞

0
e−iukΨF(u) du, (3.4)

where

ΨF(u) =
eiη lnΦF(0,−iα)

iη
(ΦF(η − i,−αη)− ΦF(η,−αη − i)−KΦF(η,−αη)) ,

k = ln (F (t, T2) +K) , η = u− iδ, α =
F (t, T2)

F (t, T2) +K
,

(3.5)

and δ is a damping parameter that introduces exponential decay in the integrand to ensure inte-

grability in the Fourier space. Obviously, to evaluate the CSO price, one must define the JCF in

Equation (3.3) according to the chosen model. For all models considered in this paper, the JCF ad-

3In fact, when the strike K = 0, the lower bound becomes exact and can be seen as a generalization of the
traditional Margrabe formula in non-Gaussian model settings.
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mits an exponential-affine form, with its structure governed by the dynamics of the underlying risk

factors. The functions appearing in the characteristic exponent are solutions to Riccati differential

equations. Notably, under i.i.d. increments, the JCF simplifies considerably.

Proposition 1 Assuming a general affine process with stochastic volatility and jumps, the JCF of

the logarithm of the futures prices in spread (2.1), f(T0, Tj) = lnF (T0, Tj), j = 1, 2, is given by

EQ
t

[
eiu1f(T0,T1)+iu2f(T0,T2)

]
= exp {iu1f(t, T1) + iu2f(t, T2) +A(T0 − t;u1, u2) + C(T0 − t;u1, u2)Vt} .

(3.6)

The functions A(T0 − t;u1, u2) and C(T0 − t;u1, u2) are provided in Table 3b.

Proof. The proof relies on the affine structure of a model. More details are provided in Appendix A.

The solutions for terms A and C of the different models’ ordinary differential equations (ODEs)

are summarized in Table 3b. For models without stochastic volatility, the C term vanishes.

3.3 Conditional Monte Carlo Approach

In general, transform techniques relying on characteristic functions may exhibit slowness and nu-

merical inaccuracy when the evaluation involves special functions, as is the case with the ST18

model. In such settings, a reliable alternative is Monte Carlo simulation, which circumvents these

challenges.

For the ST18 model, this approach is particularly effective since the log-futures prices are jointly

normal conditional on a path of the Brownian motion driving the variance process. This permits the

use of conditional Monte Carlo simulation, namely, the outer (unconditional) pricing expectation

requires evaluating an inner (conditional) expectation across a number of variance sample paths4.

Consequently, the inner expectation can be evaluated either via the conditional-normality-based

lower-bound method, which benefits from a simpler joint characteristic function, or via Ravin-

dran (1993)’s exact expression. While the latter is theoretically exact, its implementation requires

numerical integration, which can be computationally demanding. Therefore, from a practical stand-

point, the lower-bound method retains an attractive balance between accuracy and computational

efficiency.

Key to the conditional Monte Carlo approach are the conditioning arguments specific to ST18,

which we detail in Proposition 2.

Proposition 2 In the ST18 model, f (T0, Tj) has a conditional normal distribution, with mean

f (t, Tj)−
αjρFV κθ

σV γj
e−γjTj

(
eγjT0 − eγjt

)
+

αjρFV

σV
e−γjTj

(
eγjT0VT0 − eγjtVt

)
−
α2
j

2

∫ T0

t

(
e−2γj(Tj−s) − 2ρFV κ

αjσV
e−γj(Tj−s) +

2ρFV γj
αjσV

e−γj(Tj−s)

)
Vsds.

4To this end, the method of Andersen (2008), based on central discretization, can be adapted to ST18, while for
Hes93 readers may alternatively find useful the approach proposed by Kyriakou, Brignone & Fusai (2024).
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The conditional covariance between the log-prices of futures for delivery at times Ti and Tj is given

by

α1α2ρ
(
1− ρ2FV

) ∫ T0

t
e−γ1(T1−s)e−γ2(T2−s)Vsds.

For T1 = T2, ρ = 1 and we obtain the variance. As γ → 0, the model reduces to Hes93, and the

conditional mean and covariance simplify accordingly as

f (t, Tj)−
αjκθρFV (T0 − t)

σV
+

αjρFV

σV
(VT0 − Vt)−

1

2
α2
j

(
1− 2ρFV κ

αjσV

)∫ T0

t
Vsds

and

α1α2ρ
(
1− ρ2FV

) ∫ T0

t
Vsds.

Proof. See Appendix B.

4 Empirical Investigation and Model Calibration

In this section, we present our empirical experiment. We begin by describing the dataset and

proceed to outline the procedure used for the calibration exercise.

4.1 Market Data

We begin by describing the market data used to calibrate the models. The dataset consists of

futures prices and their corresponding PVOs, spreads on futures and the corresponding CSOs, all

written on three energy benchmarks: WTI light sweet crude oil, HH natural gas, and ULSD heating

oil. These contracts are listed on NYMEX and quoted in USD5. We use official market data from

the Exchange as of February 8, 2023. It is worth noting that, although CSOs are listed also on other

energy benchmarks (e.g., Chicago ethanol Platts, European low sulphur gasoil, RBOB gasoline),

we have excluded due to zero traded volume on the observation date.

Each underlying commodity has its own conventions for trading months and maturity dates,

which are detailed later. Contracts are identified by their delivery month, which follows the maturity

month6. We adopt the industry convention of naming contracts using the delivery month letter

followed by the final digit of the year. For example, H3 refers to a contract delivered in March 2023

(maturing in February 2023).

5Prices are quoted in: USD per barrel for WTI, USD per MMBtu (million British thermal units) for HH, and
USD per gallon for ULSD.

6Delivery months are denoted by letters: F (Jan), G (Feb), H (Mar), J (Apr), K (May), M (Jun), N (Jul), Q
(Aug), U (Sep), V (Oct), X (Nov), Z (Dec).
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4.1.1 Crude Oil

Our first dataset consists of 1M futures spreads and the corresponding 1M CSOs written on WTI

crude oil. Futures prices and spreads are listed in Table 4a, PVO prices in Table 5a, and CSO prices

in Table 6a. We include 10 one-month spread contracts, labelled Spr.i, where i refers to the i-th

1M spread contract available: CLH3–J3 (Spr.1) to CLZ3–F24 (Spr.10) Each spread features up to

seven moneyness levels. The dataset comprises 91 options: 45 puts (49.45%) and 46 calls (50.55%),

of which 75 (82.42%) are at-the-money (ATM) or out-of-the-money (OTM), and 16 (17.58%) are

in-the-money (ITM) which we exclude from our analysis.

Trading months include all consecutive months for the current year and the next five years, plus

June and December contracts extending beyond six years. The last trading day is three business

days before the 25th calendar day of the month preceding the delivery month. The minimum price

change is 0.01 USD per barrel.

4.1.2 Natural Gas

The natural gas CSOmarket is highly concentrated, with liquidity primarily in two spread contracts:

i) a 1M spread covering March–April (transition from winter to summer), and ii) a 3M spread

covering October–January (transition from summer to winter). In practice, no options are traded

for other months. Our dataset includes only the 3M futures spreads on HH natural gas and the

corresponding 3M CSOs, as there are no trades on the 1M spread. Futures prices and spreads are

listed in Table 4b, PVO prices in Table 5b, and CSO prices in Table 6b. The only quoted spread

contract is NGV3–F4 (Spr.8), for which we have eight options: four calls and four puts, seven of

which are OTM.

Trading months include the current year and the next 12 years. A new calendar year is added

upon expiry of the December contract. The last trading day is three business days before the first

calendar day of the delivery month. The minimum price change is 0.001 USD per MMBtu.

4.1.3 Heating Oil

Our third dataset consists of 1M futures spreads and the corresponding 1M CSOs written on ULSD.

Futures prices and spreads are reported in Table 4c, PVO prices in Table 5c, and CSO prices in

Table 6c. Only two 1M spread contracts are quoted in the market: HOH3–J3 and HOJ3–K3. The

dataset includes 16 options: eight calls and eight puts, eight of which are OTM.

Trading months extend through the current year plus three additional years and one month.

A new calendar year is added after the expiration of the December contract. Trading ends at the

close of business on the last business day of the month preceding the delivery month.
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4.2 Descriptive Insights and Price Dynamics

For each benchmark, we analyze one year of historical data, spanning from June 1, 2022 to May 31,

2023. Figure 1 presents futures prices for different maturities: F1, F2, F4, F7, and F13. Figure 2

displays spread prices for 1M, 3M, 6M, and 12M contracts. The futures time series for the three

benchmarks frequently exhibit jumps, primarily due to temporary imbalances between supply and

demand (see, e.g., D’Ecclesia, Magrini, Montalbano & Triulzi 2014 for crude oil) or economic news

affecting the market. The presence of jumps in futures prices and spreads can be observed in both

figures. Also well-known stylized fact in energy markets is that near-maturity futures tend to be

more volatile than long-term ones, resulting in larger spreads for longer maturities. This pattern is

clearly observable in the figures, where spreads vary in both sign and magnitude. Figure 3 depicts

front-month (F1) futures prices alongside the corresponding ATM implied volatilities, with obvious

signs of stochastic behavior. The leverage effect, that is, a negative correlation between price and

volatility, is apparent in crude oil and heating oil. In contrast, natural gas exhibits the so-called

inverse leverage effect. Over the observation period, the correlations between log-price and volatility

changes are for WTI, -62.11%; HH, 15.32%; and ULSD, -12.94%. Overall, this evidence supports

the use of jump and stochastic volatility models.

We further examine the term structure of futures prices and spreads as observed on February

8, 2023. Figure 4 illustrates this structure across 36 rolled-over monthly contracts. As shown

in Figure 4a, the crude oil market is predominantly in backwardation, a downward-sloping term

structure, except for the first two contracts (F1 and F2) which are in contango (upward-sloping).

In backwardation, current inventories are valued more highly than deferred deliveries, discouraging

storage. Conversely, in contango, holding inventory for future sale can yield a premium, net of stor-

age costs. Figure 4b reveals that natural gas is in contango, with a strong seasonal component. The

winter season (November–March), known as the withdrawal phase, is characterized by heightened

volatility, while the summer season (April–October), the injection phase, is typically more stable.

Due to elevated demand during winter, those contracts often trade at a premium, resulting in local

backwardation, while summer contracts tend to exhibit contango. The 3M CSO analyzed in our

study (see Table 6b) corresponds to the October–January spread (Spr.8), which coincides with the

first trough in the red dotted line of Figure 4b. Finally, Figure 4c shows that ULSD futures exhibit

consistent backwardation across all maturities.

4.3 Model Calibration

We implement calibration between market and model prices in two steps.
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In the first step, we calibrate all model parameters except for the correlation between the two

futures. The objective function is constructed using prices of European PVOs written on each of

the two futures forming the spread. Specifically, we solve

min
σ̄1,σ̄2,ϕ

{
N1∑
i=1

[
pPVO(Ki, T1)− p̂PVO(Ki, T1; σ̄1, ϕ)

V2(Ki, T1)

]2
+

N2∑
i=1

[
pPVO(Ki, T2)− p̂PVO(Ki, T2; σ̄2, ϕ)

V2(Ki, T2)

]2}
,

(4.1)

where pPVO and p̂PVO denote the market and model option prices weighted by squared Black vegas

V (see Cont & Tankov 2004) evaluated at the implied volatilities of the market option prices, N1

and N2 are the number of PVOs/strikes for the first and second futures, and σ̄1 and σ̄2 for the first

and second futures are for Group 1 models σ̄j = σFj ; for the ST18 model σ̄j = {αj , γj}. ϕ is the

vector of remaining model parameters: for the stochastic volatility process, ϕ = {θ, κ, σV , V0, ρFV };
for the compound Poisson process, ϕ = {µJ , σJ , λ}. PVO model prices for all Group 1 models and

the ST18 model are computed with high accuracy using, respectively, the COS method (Fang &

Oosterlee 2008) and conditional Monte Carlo simulation. For the latter, we rely on the fact that the

futures log-price follows a normal distribution conditional on a path of the variance process, which

allows the Black formula to be nested within the pricing expectation (see also related discussion in

Section 3.3).

In the second step, we calibrate only the correlation parameter ρ between the two futures,

keeping all other parameters fixed at the values obtained in the first step. The objective function

is based on CSO prices and reads:

min
ρ

N∑
i=1

[pCSO(Ki, T1, T2)− p̂CSO(Ki, T1, T2; σ̄1, σ̄2, ϕ, ρ)]
2 , (4.2)

where N is the number of CSOs/strikes for a given spread. As a proxy for the CSO model prices

p̂, we use the very accurate lower bound LBCSO in Equation (3.4) for Group 1 models, computed

using Gauss–Kronrod quadrature with suitably chosen damping parameter δ. The relevant joint

characteristic function is provided in Equation (3.6). Although the exact same approach can be

applied to ST18, we instead adhere to the conditional Monte Carlo approach outlined in Section 3.3,

for the reasons explained therein.

Ultimately, to assess model fit, we compute three standard error metrics: the mean error (ME),

the mean absolute error (MAE), and the root mean squared error (RMSE), defined as

ME =
1

N

N∑
i=1

(
p̂i − pi

)
, MAE =

1

N

N∑
i=1

∣∣p̂i − pi
∣∣ , RMSE =

√√√√ 1

N

N∑
i=1

(p̂i − pi)2. (4.3)
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5 Model Results and Analysis

In what follows, we present the results of our empirical analysis, based on the calibration of our

pool of models to the market data described in Section 4. All models listed in Section 3 are

calibrated following the procedure outlined in Section 4.3. In summary, we recall that the models are

calibrated on PVOs written individually on the two futures composing the spread. The correlation

coefficient between the two futures (in log scale) is then estimated based on the CSO quotes. In

particular, we use different term contracts depending on the benchmark: for WTI, the 1M CSO

contracts are the most liquid; for HH (ULSD), the most liquid CSO contract is the 3M (1M).

The resulting parameter estimates are reported in Table 7, with the associated PVO fitting error

statistics provided in Table 8.

From our PVO calibration results, it is evident that stochastic volatility models consistently

outperform. For WTI, the Bat96 model improves upon Hes93 for the first two maturities: introduc-

ing jumps enhances the fit for short maturities, while stochastic volatility has a more pronounced

impact on longer maturities. Since the Mer76 model performs worse than Hes93 across all maturi-

ties, the combination with stochastic volatility appears essential. For HH, where we have options

of only one short maturity, the Mer76 and Bat96 models outperform Hes93; however, this may be

less representative due to the limited number of contracts. For ULSD, all models yield very low

RMSEs, making it difficult to distinguish a clearly superior model. In terms of the correlation be-

tween log-returns and volatility increments, we observe sign differences for HH (negative in Hes93,

positive in Bat96), whereas for WTI both models produce negative correlation and for ULSD both

produce positive correlation.

For HH, the ST18 model significantly improves upon Hes93 by halving the RMSE; moreover,

volatility for the shorter-dated future is larger than that for the longer-dated one (γ2 > γ1). In

contrast, WTI, which is not a seasonal commodity, does not exhibit a consistent Samuelson pattern,

with both γj , j = 1, 2, being practically zero overall. Hence, ST18 tends to revert to the Hes93

model in this case. For ULSD, although a Samuelson effect is clearly present, the impact on the

RMSE is marginal as said earlier.

Having obtained the parameters by calibrating to PVO market prices, we next compare the

resulting model CSO prices with corresponding market prices. From Table 7, we first observe that

the implied correlation from WTI CSO prices is equal to 1 across all contracts and models. Note

that this refers to the correlation between log-futures prices; even when this correlation is perfect,

the spread of futures prices retains some volatility, and the corresponding option has nonzero time

value. For HH and ULSD, the implied correlation differs slightly across models and is above 0.90.

These high correlations can be attributed to the narrow maturity gaps of the futures forming each

spread. Some further insight is provided in Figure 5 (illustratively for Hes93 only, and computed

using 2D FFT), which displays the marginal and joint probability densities of the futures underlying

the spreads for each benchmark. While the bivariate densities are quite concentrated, reflecting

the high correlations, this does not imply vanishing volatility in the spread itself.
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A few comments are in order based on Table 9, which presents the CSO pricing errors across

different CSO maturities and commodities. For WTI, Mer76 exhibits the weakest performance

overall, particularly for longer-dated CSOs (e.g., RMSE reaches 5.1665 for CSO 10). A consistently

high negative ME across CSOs 4–10 indicates a strong downward pricing bias. Bat96 shows mixed

performance, with errors increasing with maturity. RMSE ranges from 0.0130 to 0.1204 (mid-

to long-term CSOs), and ME similarly shows a mild negative bias. While the model performs

reasonably well in the short- to mid-term, it tends to underperform for longer maturities, due to

possible overfitting during the PVO calibration. On the other hand, Hes93 achieves the best overall

performance. It delivers the lowest RMSE across all CSOs, with results that are consistent and

stable. RMSE ranges from 0.0146 to 0.0496, with an average of 0.0383. ME values are close to

zero, indicating no significant bias. Furthermore, ST18 performs equally well, as the two additional

parameters have negligible influence in the PVO calibration for the considered markets. Lastly,

Bla76, despite being a constant-volatility model, performs competitively, especially in short- and

mid-term contracts, with an overall RMSE of 0.0449. ME and MAE are small, indicating no major

pricing bias. For HH, Hes93 and ST18 remain the best-performing models, followed by Bla76.

For ULSD, Bla76 outperforms Bat96, ST18, and Hes93, which exhibit similar RMSE levels. This

observation aligns with market practice, where simpler models are often used even for relatively

complex derivatives such as CSOs. Contrary to the PVO market, the CSO market is considerably

smaller attracting fewer advanced operators (see the relevant discussion in the introduction of the

paper and Table 1, which reports the open interest in energy options on NYMEX).

6 Conclusion

In this paper, we derive expressions for the joint characteristic function of log-futures prices under

a broad class of affine models, accommodating both stochastic volatility and jumps, as well as

time-dampening features when present. In addition, we introduce a novel methodology based on

a conditioning arguments for pricing spread options under advanced stochastic volatility models,

such as ST18, where computing the bivariate characteristic functions typically poses significant

computational challenges. Our unified approach enables model calibration and provides a tractable,

consistent framework for pricing calendar spread options on energy commodities.

Our empirical analysis, based on market data, focuses on three major energy benchmarks: WTI

crude oil, Henry Hub natural gas, and ULSD heating oil. We calibrate each model to the prices

of PVOs and subsequently to CSO quotes, using a two-step procedure. The results show that

stochastic volatility models, particularly Hes93 and ST18, offer superior performance in fitting

PVO prices. The inclusion of jumps improves the fit for short maturities, while stochastic volatility

is especially effective for longer maturities. When evaluating CSO pricing errors, the Hes93 model

consistently delivers the lowest RMSE and minimal bias across contracts, with ST18 performing

equally well. In contrast, the Mer76 model exhibits the weakest fit, particularly for long-dated
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spreads. Interestingly, the Bla76 model performs competitively for short- and mid-term contracts,

in line with market practices that favour parsimonious models for CSO trading.

Future research could extend this framework to other types of spread options, and explore more

explicitly the effects of seasonality and storage costs within the modelling setup.

Tables and Figures

Table 1: Open interest

Option Type No. Contracts Percentage (%)

Crude Oil 3,130,512 46.28%
Crude Oil (American) 2,366,500 34.98%
WTI Average Price 198,179 2.93%
WTI Crude Oil 1M Calendar Spread 167,750 2.48%
Crude Oil Financial 1M Calendar Spread 155,535 2.30%
WTI-Brent Crude Oil Spread 85,925 1.27%
Light Sweet Crude Oil European Financial 56,494 0.84%
Brent Last Day Financial European 29,297 0.43%
Micro WTI Crude Oil 17,542 0.26%

Natural Gas 3,569,858 52.77%
Natural Gas (European) 3,148,464 46.54%
Natural Gas (HH) Last-day Financial 1M Spread 156,253 2.31%
Natural Gas (HH) Last-day Financial 3M Spread 103,050 1.52%
Natural Gas (American) 88,254 1.30%
Natural Gas (HH) Last-day Financial 71,950 1.06%

Refined products 57,474 0.85%
NY Harbor ULSD Average Price 19,835 0.29%
NY Harbor ULSD 18,882 0.28%
NY Harbor ULSD 1M Calendar Spread 14,800 0.22%

Total 6,764,434 100.00%

Notes: In this table, we present the open interest in energy option contracts on NYMEX as of September 14, 2023. CSO
contracts (highlighted in blue) account for 8.83% of the total. We list option contracts that represent at least 0.1% of the total
open interest for each individual underlying. Source: CME Group.
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Table 2: Univariate future price dynamics

Model Dynamics

[
Volatility Jumps

Bla76 dF (t,T )
F (t,T ) = σFdW

F
t σF constant

Mer76 dF (t,T )
F (t,T ) = −λEQ

t

[
eJF − 1

]
dt+ σFdW

F
t +

(
eJF − 1

)
dNt σF constant JF ∼ N (µJ , σ

2
J)

Hes93 dF (t,T )
F (t,T ) = σF

√
VtdW

F
t σF constant[

dVt = κ (θ − Vt) dt+ σV
√
VtdW

V
t σV constant

Bat96 dF (t,T )
F (t,T ) = −λEQ

t

[
eJF − 1

]
dt+ σF

√
VtdW

F
t +

(
eJF − 1

)
dNt σF constant JF ∼ N (µJ , σ

2
J)

dVt = κ (θ − Vt) dt+ σV
√
VtdW

V
t σV constant

ST18 dF (t,T )
F (t,T ) =

n∑
i=1

σFi(t, T )
√
Vi,tdW

Fi
t σFi(t, T ) = αie

−γi(T−t)

dVi,t = κi (θi − Vi,t) dt+ σV,i
√

Vi,tdW
Vi
t σVi constant

Notes: This table presents the univariate factor dynamics, in addition to the stochastic volatility dynamics and the volatility functions, where applicable.
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Table 3: System of ODEs in bivariate models

(a) ODE terms

Model ∂A(T0 − t;u1, u2)/∂(T0 − t) ∂C(T0 − t;u1, u2)/∂(T0 − t)

Bla76 b0

)
0

Mer76 b0 + Λ(u1, u2)
)

0

Hes93 κθC(T0 − t;u1, u2)
)

b0 + b1C(T0 − t;u1, u2) + b2C
2(T0 − t;u1, u2)

Bat96
)
κθC(T0 − t;u1, u2) + Λ(u1, u2)

)
b0 + b1C(T0 − t;u1, u2) + b2C

2(T0 − t;u1, u2)

ST18 κθC(T0 − t;u1, u2)
)

b0 + b1C(T0 − t;u1, u2) + b2C
2(T0 − t;u1, u2)

(b) ODE solutions

Model A(τ ;u1, u2) C(τ ;u1, u2)

Bla76 τb0

)
0

Mer76 τ
(
b0 + Λ(u1, u2)

)
0

Hes93 − κθ
2b2

(
(b1 + d)τ + 2 ln 1−ge−dτ

1−g

)
− b1+d

2b2

(
1−edτ

1−ge−dτ

)
Bat96 . − κθ

2b2

(
(b1 + d)τ + 2 ln 1−ge−dτ

1−g

)
+τΛ(u1, u2) . − b1+d

2b2

(
1−edτ

1−ge−dτ

)
ST18 κθγi

b2

(
βiτ − µizi+ln g(zi)

γi
+ µi

ωi

)
γi
b2

(
βi + µizi + zi

g′(zi)
g(zi)

)
(c) ODE parameters

Model b0 b1 b2

Bla76 −1
2

( 2∑
j=1

(u2j + iuj) · σ2
Fj

+ 2ρ
2∏

j=1
uj · σFj

)
− −

Mer76 −1
2

( 2∑
j=1

(u2j + iuj) · σ2
Fj

+ 2ρ
2∏

j=1
uj · σFj

)
− −

Hes93 −1
2

( 2∑
j=1

(u2j + iuj) · σ2
Fj

+ 2ρ
2∏

j=1
uj · σFj

)
−κ+ σV ρFV

2∑
j=1

iuj · σFj
1
2σ

2
V

Bat96 −1
2

( 2∑
j=1

(u2j + iuj) · σ2
Fj

+ 2ρ
2∏

j=1
uj · σFj

)
−κ+ σV ρFV

2∑
j=1

iuj · σFj
1
2σ

2
V

ST18 −1
2

( 2∑
j=1

(u2j + iuj) · σ2
Fj
(t, Tj) + 2ρ

2∏
j=1

uj · σFj (t, Tj)
)

−κ+ σV ρFV

2∑
j=1

iuj · σFj (t, Tj)
1
2σ

2
V

Notes: Panel (a) presents the ODE terms for the components of the characteristic exponent in the JCF defined in Equation (3.6);
Panel (b) presents the ODE solutions; and Panel (c) the associated ODE parameters. The jump-related term Λ(u1, u2) is given in
Equation (A.4); the functions g(zi) and g′(zi) are defined in Equation (A.9); zi, βi, µi for ST18 are specified in Equation (A.11).

For Hes93 and Bat96, we use d =
√

b21 − 4b0b2 and g = (b1 − d)/(b1 + d).
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Table 4: Market data – futures and spreads

(a) WTI

Contract Spr.1 Spr.2 Spr.3 Spr.4 Spr.5 Spr.6 Spr.7 Spr.8 Spr.9 Spr.10

F1 RIC CLH3 CLJ3 CLK3 CLM3 CLN3 CLQ3 CLU3 CLV3 CLX3 CLZ3

Mty. 21/02/23 21/03/23 20/04/23 22/05/23 20/06/23 20/07/23 22/08/23 20/09/23 20/10/23 20/11/23

Del. 03/23 04/23 05/23 06/23 07/23 08/23 09/23 10/23 11/23 12/23

Val. 78.47 78.69 78.84 78.81 78.56 78.18 77.71 77.21 76.70 76.21

F2 RIC CLJ3 CLK3 CLM3 CLN3 CLQ3 CLU3 CLV3 CLX3 CLZ3 CLF24

Mty. 21/03/23 20/04/23 22/05/23 20/06/23 20/07/23 22/08/23 20/09/23 20/10/23 20/11/23 19/12/24

Del. 04/23 05/23 06/23 07/23 08/23 09/23 10/23 11/23 12/23 01/24

Val. 78.69 78.84 78.81 78.56 78.18 77.71 77.21 76.70 76.21 75.71

Spr. RIC CLH3-J3 CLJ3-K3 CLK3-M3 CLM3-N3 CLN3-Q3 CLQ3-U3 CLU3-V3 CLV3-X3 CLX3-Z3 CLZ3-F24

Mty. 21/02/23 21/03/23 20/04/23 22/05/23 20/06/23 20/07/23 22/08/23 20/09/23 20/10/23 20/11/23

Del. 03/23 04/23 05/23 06/23 07/23 08/23 09/23 10/23 11/23 12/23

Val. -0.22 -0.15 0.03 0.25 0.38 0.47 0.50 0.51 0.49 0.50

XXX
(b) HH

Contract Spr.1 Spr.2 Spr.3 Spr.4 Spr.5 Spr.6 Spr.7 Spr.8 Spr.9 Spr.10

F1 RIC NGH3 NGJ3 NGK3 NGM3 NGN3 NGQ3 NGU3 NGV3 NGX3 NGZ3

Mty. 24/02/23 29/03/23 26/04/23 26/05/23 28/06/23 27/07/23 29/08/23 27/09/23 27/10/23 28/11/23

Del. 03/23 04/23 05/23 06/23 07/23 08/23 09/23 10/23 11/23 12/23

Val. 2.396 2.477 2.646 2.840 3.017 3.075 3.044 3.122 3.546 3.944

F4 RIC NGM3 NGN3 NGQ3 NGU3 NGV3 NGX3 NGZ3 NGF24 NGG4 NGH4

Mty. 26/05/23 28/06/23 27/07/23 29/08/23 27/09/23 27/10/23 28/11/23 27/12/23 29/01/24 27/02/24

Del. 06/23 07/23 08/23 09/23 10/23 11/23 12/23 01/24 02/24 03/24

Val. 2.840 3.017 3.075 3.044 3.122 3.546 3.944 4.183 4.057 3.654

Spr. RIC NGH3-M3 NGJ3-N3 NGK3-Q3 NGM3-U3 NGN3-V3 NGQ3-X3 NGU3-Z3 NGV3-F4 NGX3-G4 NGZ3-H4

Mty. 24/02/23 29/03/23 26/04/23 26/05/23 28/06/23 27/07/23 29/08/23 27/09/23 27/10/23 28/11/23

Del. 03/23 04/23 05/23 06/23 07/23 08/23 09/23 10/23 11/23 12/23

Val. -0.444 -0.540 -0.429 -0.204 -0.105 -0.471 -0.900 -1.061 -0.511 0.290

XXX
(c) ULSD

Contract Spr.1 Spr.2 Spr.3 Spr.4 Spr.5 Spr.6 Spr.7 Spr.8 Spr.9 Spr.10

F1 RIC HOH3 HOJ3 HOK3 HOM3 HON3 HOQ3 HOU3 HOV3 HOX3 HOZ3

Mty. 28/02/23 31/03/23 28/04/23 31/05/23 30/06/23 31/07/23 31/08/23 29/09/23 31/10/23 30/11/23

Del. 03/23 04/23 05/23 06/23 07/23 08/23 09/23 10/23 11/23 12/23

Val. 2.8933 2.8576 2.7997 2.7585 2.7403 2.7302 2.7273 2.7232 2.7164 2.7064

F2 RIC HOJ3 HOK3 HOM3 HON3 HOQ3 HOU3 HOV3 HOX3 HOZ3 HOF24

Mty. 31/03/23 28/04/23 31/05/23 30/06/23 31/07/23 31/08/23 29/09/23 31/10/23 30/11/23 29/12/24

Del. 04/23 05/23 06/23 07/23 08/23 09/23 10/23 11/23 12/23 01/24

Val. 2.8576 2.7997 2.7585 2.7403 2.7302 2.7273 2.7232 2.7164 2.7064 2.6982

Spr. RIC HOH3-J3 HOJ3-K3 HOK3-M3 HOM3-N3 HON3-Q3 HOQ3-U3 HOU3-V3 HOV3-X3 HOX3-Z3 HOZ3-F24

Mty. 28/02/23 31/03/23 28/04/23 31/05/23 30/06/23 31/07/23 31/08/23 29/09/23 31/10/23 30/11/23

Del. 03/23 04/23 05/23 06/23 07/23 08/23 09/23 10/23 11/23 12/23

Val. 0.0357 0.0579 0.0412 0.0182 0.0101 0.0029 0.0041 0.0068 0.0100 0.0082

Notes: In this table, we report the futures prices and their spreads quoted on February 8, 2023. For WTI and ULSD, we consider
1M spreads, while for HH we consider 3M spreads. WTI prices are quoted in USD/barrel, HH prices in USD/MMBtu, and
ULSD prices in USD/gallon. Spreads associated with the quoted CSOs listed in Table 6 are indicated in gray. Abbreviations:
RIC (Reuters Instrument Code), Mty. (Maturity), Del. (Delivery month), Val. (Value).
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Table 5: Market data – PVO prices

(a) WTI

Type K F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 ITM OTM Total

Put 70.0 0.08 0.96 1.93 2.89 3.68 4.49 5.24 5.86 6.50 7.05 7.57 – 11 11
70.5 0.10 1.05 2.06 3.04 3.84 4.66 5.43 – – 7.26 – – 8 8
71.0 0.11 1.14 2.19 3.20 4.01 4.84 5.62 6.26 – 7.47 – – 9 9
71.5 0.13 1.25 2.33 3.36 4.18 5.03 5.81 – – 7.68 – – 8 8
72.0 0.16 1.36 2.48 3.52 4.36 5.22 6.01 – – 7.90 – – 8 8

Call 80.0 0.95 3.13 4.63 5.81 6.52 7.11 7.55 7.82 8.06 8.23 8.31 – 11 11
80.5 0.78 2.91 4.40 5.58 6.30 6.89 7.34 – 7.85 8.02 – – 9 9
81.0 0.64 2.70 4.18 5.36 6.08 6.68 7.13 7.40 – 7.89 – – 9 9
81.5 0.52 2.50 3.97 5.15 5.86 6.47 6.92 – – 7.63 – – 8 8
82.0 0.43 2.31 3.76 4.94 5.66 6.26 6.72 – – 7.43 – – 8 8

ITM – – – – – – – – – – – –
OTM 10 10 10 10 10 10 10 4 3 10 2 89
Total 10 10 10 10 10 10 10 4 3 10 2 89

XXX
(b) HH

Type K F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 ITM OTM Total

Put 2.30 – – – – – – – 0.2483 – – 0.1042 – 2 2
2.35 – – – – – – – 0.2627 – – – – 1 1
2.36 – – – – – – – 0.2656 – – – – 1 1
2.40 – – – – – – – 0.2777 – – 0.1232 – 2 2
2.44 – – – – – – – 0.2903 – – – – 1 1

Call 4.30 – – – – – – – 0.1918 – – – – 1 1
4.35 – – – – – – – – – – 0.7943 – 1 1
4.42 – – – – – – – – – – 0.7724 – 1 1
4.50 – – – – – – – 0.1591 – – 0.7485 – 2 2
4.55 – – – – – – – 0.1520 – – – – 1 1

ITM – – – – – – – – – – – –
OTM – – – – – – – – 8 – – 5 – 13 –
Total – – – – – – – – 8 – – 5 13

XXX
(c) ULSD

Type K F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 ITM OTM Total

Put 2.40 0.0013 0.0180 0.0426 – – – – – – – – – 3 3
2.41 – – 0.0446 – – – – – – – – – 1 1
2.42 – – 0.0467 – – – – – – – – – 1 1
2.43 0.0019 – – – – – – – – – – – 1 1
2.49 – 0.0298 – – – – – – – – – – 1 1

Call 2.90 0.0911 0.1413 – – – – – – – – – – 2 2
2.91 – – 0.1545 – – – – – – – – – 1 1
2.92 0.0825 0.1337 – – – – – – – – – – 2 2
2.93 0.0784 0.1300 0.1478 – – – – – – – – – 3 3
2.94 0.0746 – – – – – – – – – – – 1 1

ITM – – – – – – – – – – –
OTM – 6 5 5 – – – – – – – – 16 –
Total 6 5 5 – – – – – – – – 16

Notes: In this table, we present quoted (ITM excluded) PVO prices associated with the underlyings in Table 4. For WTI,
PVO prices are available for 11 contracts (8 of which have prices for all strikes), while for HH, prices are available for only 2
contracts, and for HO, for only 3 contracts.
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Table 6: Market data – CSO prices

(a) WTI

Type K Spr.1 Spr.2 Spr.3 Spr.4 Spr.5 Spr.6 Spr.7 Spr.8 Spr.9 Spr.10 ITM OTM Total

Put -0.50 0.01 0.03 0.05 0.07 0.04 0.06 0.02 0.04 0.04 0.04 – 10 10
-0.40 – 0.04 0.06 0.08 – – – – – – – 3 3
-0.30 – 0.06 – – – – – – – – – 1 1
-0.25 0.05 0.08 0.09 0.11 0.07 0.10 0.05 0.08 0.07 0.08 – 10 10
0.00 0.25 0.25 0.19 0.17 0.15 0.17 0.12 0.15 0.15 0.16 2 8 10
0.50 0.73 – – – – – – – – – 1 – 1
0.75 0.97 0.92 0.77 0.63 0.64 0.57 0.57 0.57 0.60 0.59 10 – 10

Call 0.00 0.04 0.11 – – – – – – – – – 2 2
0.25 – 0.07 – – – – – – – – – 1 1
0.30 – – 0.12 0.23 0.38 0.46 – – – – 2 2 4
0.50 0.01 0.04 0.09 0.18 0.33 0.37 0.39 0.41 0.42 0.42 1 9 10
0.75 – – – – 0.28 0.30 0.32 – 0.35 0.35 – 5 5
1.00 – – – 0.10 0.23 0.24 0.27 0.28 0.30 0.29 – 7 7
1.25 0.01 – – – – – – – 0.25 0.24 – 3 3
1.50 0.01 – – – 0.15 0.16 0.18 0.20 0.22 0.21 – 7 7
2.00 0.01 – – – 0.09 0.11 0.11 0.14 0.16 0.14 – 7 7

ITM 3 2 1 1 2 2 1 2 1 1 16
OTM 7 7 6 7 8 8 8 6 9 9 75
Total 10 9 7 8 10 10 9 8 10 10 91

XXX
(b) HH

Type K Spr.1 Spr.2 Spr.3 Spr.4 Spr.5 Spr.6 Spr.7 Spr.8 Spr.9 Spr.10 ITM OTM Total

Put -2.00 – – – – – – – 0.141 – – – 1 1
-1.50 – – – – – – – 0.202 – – – 1 1
-1.25 – – – – – – – 0.256 – – – 1 1
-1.00 – – – – – – – 0.337 – – 1 – 1

Call -1.00 – – – – – – – 0.278 – – – 1 1
-0.75 – – – – – – – 0.143 – – – 1 1
-0.50 – – – – – – – 0.055 – – – 1 1
-0.25 – – – – – – – 0.013 – – – 1 1

ITM – – – – – – – 1 – – 1
OTM – – – – – – – 7 – – 7
Total – – – – – – – 8 – – 8

XXX
(c) ULSD

Type K Spr.1 Spr.2 Spr.3 Spr.4 Spr.5 Spr.6 Spr.7 Spr.8 Spr.9 Spr.10 ITM OTM Total

Spread – 0.0357 0.0579 – – – – – – – – – – –

Put 0.00 0.0166 – – – – – – – – – – 1 1
0.07 0.0543 0.0674 – – – – – – – – 2 – 2
0.20 0.1673 0.1571 – – – – – – – – 2 – 2
0.25 0.2161 – – – – – – – – – 1 – 1
0.35 0.3151 – – – – – – – – – 1 – 1
0.55 0.5141 – – – – – – – – – 1 – 1

Call 0.00 0.0523 – – – – – – – – – 1 – 1
0.07 0.0201 0.0560 – – – – – – – – – 2 2
0.20 0.0034 0.0165 – – – – – – – – – 2 2
0.25 0.0023 – – – – – – – – – – 1 1
0.35 0.0016 – – – – – – – – – – 1 1
0.55 0.0010 – – – – – – – – – – 1 1

ITM 6 2 – – – – – – – – 8
OTM 6 2 – – – – – – – – 8
Total 12 4 – – – – – – – – 16

Notes: In this table, we present all quoted CSO prices associated with selected spreads from Table 4 (highlighted in gray):
for WTI, we report prices for ten 1M spreads; for HH, CSO prices are available for the eighth 3M spread; and for ULSD, we
report prices for the first and second 1M spreads. ATM and OTM option prices are shown in gray. WTI prices are quoted in
USD/barrel, HH prices in USD/MMBtu, and ULSD prices in USD/gallon.
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Table 7: Calibrated models

(a) WTI

Model Param. Spr.1 Spr.2 Spr.3 Spr.4 Spr.5 Spr.6 Spr.7 Spr.8 Spr.9 Spr.10
Bla76 σ1 0.2325 0.3349 0.366 0.3798 0.3848 0.3883 0.3878 0.387 0.383 0.3811

σ2 0.3349 0.366 0.3798 0.3848 0.3883 0.3878 0.387 0.383 0.3811 0.3791
ρ 1 1 1 1 1 1 1 1 1 1

Mer76 σ1 0.2158 0.3038 0.3282 0.3368 0.3366 0.3322 0.317 0.3281 0.2633 0.3083
σ2 0.3054 0.3293 0.338 0.3388 0.3372 0.3294 0.3142 0.3244 0.2578 0.3028
ρ 1 1 1 1 1 1 1 1 1 1
λ 0.1746 0.1415 0.1339 0.1126 0.1009 0.1646 0.2793 0.1143 0.6364 0.1869
µJ -0.4827 -0.6633 -0.734 -0.9341 -1.1321 -0.7159 -0.5216 -1.0515 -0.3987 -0.7148
σJ 0.26 0.3161 0.349 0.4021 0.4129 0.3672 0.151 0.5229 0.0392 0.3478

Hes93 σ1 0.4604 0.4451 0.4645 0.4802 0.474 0.4842 0.4793 0.4875 0.4857 0.4922
σ2 0.4161 0.4488 0.4584 0.4843 0.4808 0.4828 0.474 0.488 0.4827 0.4906
ρ 1 1 1 1 1 1 1 1 1 1
V0 0.002 0.353 0.4061 0.5824 0.6705 0.6051 0.5292 0.6537 0.6349 0.6505
σV 3.6371 1.1831 0.8796 0.8624 0.7914 0.8333 0.8307 0.4733 0.5247 0.6441
κ 5 4.3438 2.6708 1.3681 0.658 1.2307 1.7234 0.1506 0.5922 1.9709
θ 2.5556 1.2707 1.3273 0.8801 0.7156 0.8638 0.9631 0.6413 0.7717 0.568
ρFV -0.28 -0.7537 -0.8696 -0.677 -0.6719 -0.7119 -0.808 -0.9634 -0.9915 -0.6605

Bat96 σ1 0.3409 0.4596 0.4973 0.514 0.5213 0.5215 0.5148 0.5081 0.5208 0.5165
σ2 0.4936 0.5073 0.5202 0.5243 0.5298 0.5246 0.5156 0.5177 0.5187 0.5144
ρ 1 1 1 1 1 1 1 1 1 1
V0 0.4047 0.4965 0.5022 0.5293 0.5395 0.54 0.5379 0.7951 0.5357 0.5504
σV 0.6776 0.5169 0.5368 0.6863 0.6687 0.6496 0.6147 0.4707 0.4639 0.5733
κ 2.3897 1.5078 2.0582 0.8198 0.319 1.0548 1.4464 0.9425 0.074 1.179
θ 0.4004 0.3723 0.4556 0.4594 0.4763 0.4719 0.4767 0 0.4557 0.1432
ρFV -0.9099 -0.9133 -0.9227 -0.6638 -0.6714 -0.7521 -0.8171 -1 -0.8953 -0.716
λ 0.7517 0.2589 0.2455 0.248 0.2688 0.3126 0.3343 0.1913 0.3011 0.3106
µJ -0.0176 -0.2044 -0.2329 -0.1636 -0.1242 -0.1814 -0.219 -0.0249 -0.1745 -0.1565
σJ 0.1525 0.0917 0.0521 0.1107 0.0921 0.1027 0.1172 0.0061 0.0962 0.0942

ST18 α1 0.461 0.4448 0.4646 0.4802 0.474 0.4844 0.488 0.4879 0.4857 0.4844
α2 0.4158 0.4487 0.4586 0.4841 0.4807 0.4829 0.4758 0.5337 0.4826 0.4826
γ1 0.0001 0 0 0 0.0001 0.0001 0.00387 0 0 0
γ2 0 0 0.0001 0 0.0001 0.0001 0.0001 0.00585 0 0.0001
ρ 1 0.965 0.96 0.965 0.965 0.965 1 1 0.9 0.965
V0 0.002 0.353 0.4061 0.5824 0.6705 0.6051 0.5292 0.6537 0.6349 0.6505
σV 3.6371 1.1831 0.8796 0.8624 0.7914 0.8333 0.8307 0.4733 0.5247 0.6441
κ 5 4.3438 2.6708 1.3681 0.658 1.2307 1.7234 0.1506 0.5922 1.9709
θ 2.5556 1.2707 1.3273 0.8801 0.7156 0.8638 0.9631 0.6413 0.7717 0.568
ρFV -0.28 -0.7537 -0.8696 -0.677 -0.6719 -0.7119 -0.808 -0.9634 -0.9915 -0.6605

(b) HH

Spr.8
0.6027
0.5746
0.915
0.3035
0.0833

1
1.6749
-0.3715
0.3364
0.4728
0.4218
0.9

0.001
2.2822
4.9983
2.5935
-0.9501
0.3485
0.082
1

0.4282
1.2586
3.1104
0.9146
0.7708
1.5435
-0.3883
0.3623
0.4696
0.402
0.0001
0.0622

1
0.001
2.2822
4.9983
2.5935
-0.9501

(c) ULSD

Spr.1 Spr.2
0.3379 0.3642
0.3642 0.3725
0.935 0.92
0.3293 0.3256
0.3421 0.3196
0.965 0.995
0.0708 0.1426
0.5471 0.5193
0.2156 0.3938
0.4638 0.4559
0.4797 0.4554
0.925 0.905
0.4977 0.6021
2.4725 4.2577
1.9992 1.7912
1.3478 1.7451
0.2707 0.3619
0.4662 0.4704
0.4864 0.4794
0.935 0.96
0.4986 0.5175
1.198 1.617
1.741 1.3089
1.097 0.9549
0.1791 0.611

0 0.1559
-0.003 -0.3856
0.01 0.025

0.5036 0.4803
0.4844 0.476
0.7743 1.0256
1.048 1.0365
0.935 0.915
0.4977 0.6021
2.4725 4.2577
1.9992 1.7912
1.3478 1.7451
0.2707 0.3619

Notes: This table presents the calibrated parameter values for all models, reported separately for each underlying.
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Table 8: PVO pricing errors

(a) WTI

Model Spr.1 Spr.2 Spr.3 Spr.4 Spr.5 Spr.6 Spr.7 Spr.8 Spr.9 Spr.10

Bla76 0.0983 0.1384 0.1546 0.1679 0.1835 0.1963 0.2014 0.2039 0.2232 0.2321
Mer76 0.0108 0.0120 0.0107 0.0096 0.0100 0.0082 0.0059 0.0076 0.0089 0.0092
Hes93 0.0077 0.0031 0.0022 0.0027 0.0027 0.0022 0.0024 0.0024 0.0029 0.0056
Bat96 0.0035 0.0028 0.0023 0.0027 0.0027 0.0022 0.0024 0.0023 0.0028 0.0061
ST18 0.0077 0.0031 0.0022 0.0027 0.0027 0.0022 0.0024 0.0022 0.0029 0.0056

(b) HH

Model Spr.8

Bla76 0.0425
Mer76 0.0020
Hes93 0.0235
Bat96 0.0017
ST18 0.0101

(c) ULSD

Model Spr.1 Spr.2

Bla76 0.0012 0.0042
Mer76 0.0004 0.0004
Hes93 0.0003 0.0004
Bat96 0.0007 0.0002
ST18 0.0003 0.0003

Notes: This table reports the RMSE, defined in Equation (4.3), for pricing PVOs across three energy commodities,
covering all models.
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Table 9: CSO pricing errors

(a) WTI

Model Stat. Spr.1 Spr.2 Spr.3 Spr.4 Spr.5 Spr.6 Spr.7 Spr.8 Spr.9 Spr.10

Bla76 ME -0.0460 -0.0172 0.0029 0.1283 0.0067 0.0050 0.0030 0.0050 0.0052 0.0037
MAE 0.0519 0.0367 0.0210 0.1283 0.0553 0.0285 0.0471 0.0349 0.0508 0.0401
RMSE 0.0757 0.0424 0.0230 0.1379 0.0595 0.0328 0.0516 0.0395 0.0577 0.0449

Mer76 ME -0.1300 -0.4882 0.0029 -1.1629 -1.3726 -1.6879 -3.4684 -2.4918 -3.8305 -5.1662
MAE 0.1300 0.4882 0.0210 1.1629 1.3726 1.6879 3.4684 2.4918 3.8305 5.1662
RMSE 0.1325 0.4888 0.0230 1.1636 1.3749 1.6885 3.4690 2.4925 3.8310 5.1665

Hes93 ME -0.0011 0.0067 0.0024 0.0034 0.0059 0.0044 0.0028 0.0048 0.0051 0.0036
MAE 0.0121 0.0265 0.0126 0.0185 0.0417 0.0191 0.0405 0.0326 0.0435 0.0341
RMSE 0.0177 0.0283 0.0146 0.0217 0.0451 0.0236 0.0443 0.0368 0.0496 0.0383

Bat96 ME -0.0134 0.0067 0.0023 -0.0967 -0.0919 -0.0892 -0.0353 -0.2883 -0.0246 -0.1081
MAE 0.0139 0.0263 0.0112 0.0967 0.0919 0.0892 0.0497 0.2883 0.0415 0.1081
RMSE 0.0248 0.0282 0.0130 0.1008 0.1166 0.0995 0.0681 0.2931 0.0604 0.1204

ST18 ME -0.0005 -0.0326 0.0193 -0.0656 -0.1087 -0.1156 -0.1528 -0.1968 -0.0064 -0.0871
MAE 0.0115 0.0326 0.0242 0.0656 0.1087 0.1156 0.1653 0.1968 0.0613 0.0881
RMSE 0.0002 0.0015 0.0008 0.0045 0.0159 0.0148 0.0353 0.0511 0.0050 0.0106

(b) HH

Model Stat. Spr.8

Bla76 ME -0.0013
MAE 0.0013
RMSE 0.0264

Mer76 ME -0.0479
MAE 0.0479
RMSE 0.0486

Hes93 ME 0.0142
MAE 0.0142
RMSE 0.0166

Bat96 ME -0.0382
MAE 0.0382
RMSE 0.0389

ST18 ME -0.0121
MAE 0.0121
RMSE 0.0152

(c) ULSD

Model Stat. Spr.1 Spr.2

Bla76 ME 0.0011 0.0003
MAE 0.0017 0.0005
RMSE 0.0019 0.0006

Mer76 ME -0.0038 -0.0138
MAE 0.0043 0.0142
RMSE 0.0046 0.0198

Hes93 ME 0.0010 -0.0010
MAE 0.0015 0.0021
RMSE 0.0017 0.0025

Bat96 ME 0.0014 -0.0016
MAE 0.0017 0.0037
RMSE 0.0018 0.0041

ST18 ME 0.0013 -0.0009
MAE 0.0018 0.0021
RMSE 0.0020 0.0022

Notes: In this table, we report three error statistics, ME, MAE, and RMSE, defined in Equation (4.3), for each
spread, covering all models.
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Figure 1: Time series of futures prices

(a) WTI

(b) HH

(c) ULSD

x
Notes: Each figure displays price plots (in USD) for five different futures contracts for WTI, HH, and ULSD.
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Figure 2: Time series of spreads

(a) WTI

(b) HH

(c) ULSD

x
Notes: Each figure displays spread plots (in USD) for four different contracts for WTI, HH, and ULSD.
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Figure 3: Time series – front contract futures prices and volatilities

(a) WTI

(b) HH

(c) ULSD

x
Notes: The figures display the front futures prices and the 30-day ATM implied volatilities for WTI, HH, and ULSD.
Prices (left vertical axis) are expressed in USD, while volatilities (right vertical axis) are expressed in decimal form.
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Figure 4: Term structures – futures prices and spreads

(a) WTI

(b) HH

(c) ULSD

x
Notes: In this figure, we present the term structure of futures contracts, as well as the 1M and 3M spreads for WTI, HH,
and ULSD, across 36 consecutive contract months. The observation date is February 8, 2023. Along the horizontal axis,
we indicate the contract maturity (first maturity corresponds to February 2023 and first contract month is March 2023).
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Figure 5: Futures log-price densities under the Hes93 model

(a) WTI

(b) HH

(c) ULSD

x
Notes: In these figures, we present the marginal and joint PDFs of the futures log-prices for the three benchmarks under
the Hes93 model.
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A Joint Characteristic Function of Log-Futures Prices

Consider the bivariate transform involving the spread s(t, T1, T2) in Equation (3.3)

ΦF(u1, u2) = EQ
t

[
eiu1 lnF (T0,T1)+iu2 lnF (T0,T2)

]
. (A.1)

With τ = T0−t, for an affine process with stochastic variance Vt, the JCF is given by Equation (3.6)

EQ
t

[
eiu1f(T0,T1)+iu2f(T0,T2)

]
= exp

{
B1(τ ;u1, u2)f(t, T1) +B2(τ ;u1, u2)f(t, T2)

}
× exp

{
A(τ ;u1, u2) + C(τ ;u1, u2)Vt

}
.

(A.2)

With B1(τ, u1, u2) = iu1, B2(τ, u1, u2) = iu2, the functions A(τ ;u1, u2) and C(τ ;u1, u2) satisfy the

ODE system
∂A(τ ;u1, u2)

∂τ
= b0 + κθC(τ ;u1, u2) + Λ(u1, u2),

∂C(τ ;u1, u2)

∂τ
= b1C(τ ;u1, u2) + b2C

2(τ ;u1, u2),

(A.3)

subject to the initial conditions A(0;u1, u2) = C(0;u1, u2) = 0. The jump components read

Λ(u1, u2) =

2∑
j=1

λ(nJj − iujmJ),

mJ = exp
{
µJ + 1

2σ
2
J

}
−1, nJj = exp

{
iujµJ − 1

2σ
2
Ju

2
j

}
−1.

(A.4)

For each model in its bivariate form, the ODE terms ∂A(·)/∂τ , ∂C(·)/∂τ can be found in Table 3a,

the solutions A(·), C(·) in Table 3b, and the ODE parameters b0, b1, b2 in Table 3c.
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A.1 Group 1 Models

For j = 1, 2, we obtain the following expressions for b0, b1, b2. For the Bla76 and Mer76 models, we

have that C(·) = 0 and

b0 = −1
2

( 2∑
j=1

(u2j + iuj) · σ2
Fj

+ 2ρ
2∏

j=1

uj · σFj

)
. (A.5)

For the Hes93 and Bat96 models, we additionally have

b1 = −κ+ σV ρFV

2∑
j=1

iuj · σFj , (A.6)

b2 =
1
2σ

2
V . (A.7)

A.2 Group 2 Models

For j = 1, 2, we get the following set of results7:

b0 = −1
2

(
2∑

j=1

(u2j + iuj) · σ2
Fj
(t, Tj) + 2ρ

2∏
j=1

uj · σFj (t, Tj)

)
,

b1 = −κ+ σV ρFV

2∑
j=1

iuj · σFj (t, Tj), b2 =
1
2σ

2
V .

(A.8)

The functions g(zj) and g′(zj) are linear combinations of Kummer’s M and Tricomi’s U hyperge-

ometric functions:

g(zj) = k1,jM(aj , bj , zj) + k2,jU(aj , bj , zj),

g′(zj) =
aj
bj
k1,jM(aj + 1, bj + 1, zj)− ajk2,jU(aj + 1, bj + 1, zj),

(A.9)

with coefficients

k1,j =

aj
U(aj + 1, bj + 1, 1

ωj
)

U(aj , bj ,
1
ωj
)

− βjωj − µj

aj
bj
M(aj + 1, bj + 1, 1

ωj
) + ajM(aj , bj ,

1
ωj
)
U(aj + 1, bj + 1, 1

ωj
)

U(aj , bj ,
1
ωj
)

,

k2,j =
1− k1,jM(aj , bj ,

1
ωj
)

U(aj , bj ,
1
ωj
)

, k3,j = −µj

ωj
.

(A.10)

7b0(t, T1, T2) and b1(t, T1, T2) are functions of time, but we refer to them simply as b0 and b1.
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Specifically for the ST18 model, we have that8

aj = −
(
µjbj + c1,j

κjωj

2γj

)
, bj = 1− βj , zj =

e−γj(T0−t)

ωj
,

βj = −c0,j
γj

, µj = −1
2

(
1 + c1,j

ωj

γj

)
, ωj =

ω±γj√
c21,j − 4d2,j

,
(A.11)

where9

ω± = −1,

c0,j = −κ,

c1,j = −σV ρFV iuj · σFj (T0, Tj),

d2,j = −1
2b2
(
(u2j + iuj) · d2,yj + 1

2d2,12
)
, d2,yj = σ2

Fj
(T0, Tj),

(A.12)

and

d2,12 = 2ρ
2∏

j=1

uj · d2,yj , (A.13)

with σFj (T0, Tj) = αje
−γj(Tj−T0) being the T0-time price volatility function for maturity Tj .

B ST18 Model Conditional on Variance Path

LetW
Fj

t = ρFV W
V
t +

√
1− ρ2FV Xt, whereW

V and X are independent standard Brownian motions.

We then obtain for the log-futures price in the ST18 model,

df (t, Tj) = −1

2
α2
je

−2γ(Tj−t)Vtdt+ αjρFV e
−γj(Tj−t)

√
VtdW

V
t + αj

√
1− ρ2FV e

−γj(Tj−t)
√
VtdXt.

(B.1)

In addition,

dVt = κ (θ − Vt) dt+ σV
√
VtdW

V
t

from which it follows that√
VtdW

V
t =

dVt − κ (θ − Vt) dt

σV
,

e−γj(Tj−t)
√

VtdW
V
t =

e−γj(Tj−t)

σV
dVt −

κθ

σV
e−γj(Tj−t)dt+

κ

σV
e−γj(Tj−t)Vtdt. (B.2)

8These expressions are obtained following the indications in (Frau & Fanelli 2024, Sec. B.2) (this work provides
an alternative framework consistent with the 2-terms CF schedule we propose in this work).

9c1,j(T0, Tj) and d2,j(T0, Tj) are functions of time, but we refer to them simply as c1,j and d2,j .
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Furthermore,

d
(
eγjtVt

)
= γje

γjtVtdt+ eγjtdVt ⇒

eγjT0VT0 = eγjtVt + γj

∫ T0

t
eγjsVsds+

∫ T0

t
eγjsdVs ⇒∫ T0

t
eγjsdVs = eγjT0VT0 − eγjtVt − γj

∫ T0

t
eγjsVsds. (B.3)

Substituting (B.3) into (B.2) and integrating, we obtain∫ T0

t
e−γj(Tj−s)

√
VsdW

V
s =

e−γjTj

σV

∫ T0

t
eγjsdVs −

κθ

σV
e−γjTj

∫ T0

t
eγjsds+

κ

σV
e−γjTj

∫ T0

t
eγjsVsds

=
e−γjTj

σV

(
eγjT0VT0 − eγjtVt

)
− γje

−γjTj

σV

∫ T0

t
eγjsVsds

− κθ

σV γj
e−γjTj

(
eγjT0 − eγjt

)
+
κe−γjTj

σV

∫ T0

t
eγjsVsds.

Returning to (B.1), we obtain

f (T0, Tj) = f (t, Tj)−
1

2
α2
je

−2γjTj

∫ T0

t
e2γjsVsds+ αjρFV e

−γjTj

∫ T0

t
eγjs

√
VsdW

V
s

+αj

√
1− ρ2FV e

−γjTj

∫ T0

t
eγjs

√
VsdXs

= f (t, Tj)−
1

2
α2
je

−2γjTj

∫ T0

t
e2γjsVsds

+αjρFV

[
e−γjTj

σV

(
eγjT0VT0 − eγjtVt

)
− γje

−γjTj

σV

∫ T0

t
eγjsVsds

− κθ

σV γj
e−γjTj

(
eγjT0 − eγjt

)
+

κe−γjTj

σV

∫ T0

t
eγjsVsds

]
+αj

√
1− ρ2FV e

−γjTj

∫ T0

t
eγjs

√
VsdXs.

= f (t, Tj)−
αjρFV κθ

σV γj
e−γjTj

(
eγjT0 − eγjt

)
+

αjρFV

σV
e−γjTj

(
eγjT0VT0 − eγjtVt

)
−1

2
α2
j

∫ T0

t

(
e−2γj(Tj−s) − 2ρFV κ

αjσ
e−γ(Tj−s) +

2ρFV γj
αjσV

e−γ(Tj−s)

)
Vsds

+αj

√
1− ρ2FV e

−γjTj

∫ T0

t
eγjs

√
VsdXs.
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Conditional on the variance path, we finally get that f (T0, Tj) has a normal distribution with mean

f (t, Tj)−
αjρFV κθ

σV γj
e−γjTj

(
eγjT0 − eγjt

)
+

αjρFV

σV
e−γjTj

(
eγjT0VT0 − eγjtVt

)
−1

2
α2
j

∫ T0

t

(
e−2γj(Tj−s) − 2ρFV κ

αjσV
e−γ(Tj−s) +

2ρFV γj
αjσV

e−γ(Tj−s)

)
Vsds

and variance

α2
j

(
1− ρ2FV

)
e−2γjTj

∫ T0

t
e2γjsVsds.
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