IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Ozkaya, M. & Kloukinas, C. (2013). Towards Design-by-Contract based software
architecture design. Paper presented at the 2013 IEEE 12th International Conference on
Intelligent Software Methodologies, Tools and Techniques (SoMeT), 22nd September - 24
September 2013, Budapest, Hungary.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3582/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Towards Design-by-Contract Based Software
Architecture Design

Mert Ozkaya
Department of Computer Science
City University London
London, EC1V OHB, UK
Email: mert.ozkaya.l @city.ac.uk

Abstract—Design-by-Contract (DbC) gained wide familiarity
among software developers for specifying software. It aids in
documenting the behaviour of class methods as contracts between
clients of the methods (pre-) and their suppliers (post-condition).
This not only allows developers to document software behaviour
precisely at such a high-level that can more easily be communi-
cated, but also enables the formal verification of the behaviour.

In this paper, we provide a comprehensive extension to DbC
so that it can also be applied to the level of software architecture
design. We illustrate this through our architecture description
language XCD. Components in XCD have four different types
of interfaces: provided and required interfaces of methods or
emitter and consumer interfaces of events where methods/events
are contractually specified. Contract specification is separated
into functional and interaction contracts thus modularising the
functional and interaction component behaviours. Furthermore,
treating interaction protocols as connectors, XCD allows to
specify connectors with interaction contracts that participating
components adhere to.

The formal semantics of XCD are defined using Finite State
Process (FSP) thus enabling formal analysis of contractually spec-
ified software architectures for quality properties, e.g., deadlock.

I. INTRODUCTION

Since early nineties, several architecture description lan-
guages (ADLs) have been developed, e.g., Darwin [15], Uni-
Con [27], Wright [2], LEDA [7], Koala [29], SOFA [25], and
CONNECT [12]. They allow designers to specify architectures
of large and complex systems. Some (Koala and UniCon) place
their focus on automatic code generation, and some (Darwin,
Wright, LEDA, SOFA, and CONNECT) on formal analysis
of software architectures. Those addressing formal analysis
mostly adopt process algebras (e.g., FSP [16] by Darwin
and CONNECT, CSP [11] by Wright or m-calculus [22] by
LEDA) in specifying the behaviour of software architectures.
The process algebras provide formally defined, mathematical
syntax and semantics leading to formal specifications which
can be rigorously analysed through model checker tools.
However, the syntax of process algebras looks unfamiliar to
the practising designers who might find it hard to specify their
systems as parallel composition of processes [1]. Indeed, a
recent survey about architecture description languages [18]
states that process algebraic ADLs result in steep learning
curve which would make designers invest considerable amount
of effort and time to learn and use the algebraic notations.
Therefore, formal analysis of software architectures goes far
beyond the capabilities of designers, instead requiring expert-
level knowledge of process algebras.

Christos Kloukinas
Department of Computer Science
City University London
London, EC1V OHB, UK
Email: C.Kloukinas@city.ac.uk

Algebraic ADLs, due to their steep learning curve, have not
been successful in attracting industry’s attention; except some
minority they remained within the focus of research commu-
nities only. But, given the importance of formal analysis of
software architectures and thus the early detection of system-
level critical issues, formal behaviour specification is highly
desirable. Thus, it has always been sought a more user-friendly
approach making formal behaviour specification and analysis
as easy as programming in Object Oriented Languages.

One solution that can be considered is the adaptation of the
well-known Design-by-Contract approach [20] to the software
architecture specification. DbC has not only wide familiarity
among developers but also has its formal foundation that is
based on Hoare’s logic [10] and VDM’s rely-guarantee [4]
specification approach, DbC basically allows for specifying
software behaviour in terms of formal contracts. A contract
herein applies in general to class methods and is specified as a
pair of pre- and post-condition where the former states what the
caller of the method is obliged to do and the latter what benefits
are guaranteed by the method supplier. Practitioners prefer
DbC essentially in test-driven developments to specify test
conditions which are used to verify the software quality [13],
[19]. Originally intended for Eiffel [21], DbC has so far been
adopted by many programming languages, e.g., Java through
JML [8], [9]. Allowing contract based behaviour specification
for Java modules, JML is found highly practical by developers
and furthermore supported by various verification tools [6].

With the advent of languages, such as JML, DbC has
proven to be invaluable by developers in specifying and veri-
fying the behaviour of software components (e.g., Java classes
and their methods). Therefore, considering the steep learning
curve with algebras, we strongly believe that if instead DbC
were adopted in specifying the behaviour of software architec-
tures, practitioners could specify their software architectures
both in a more comfortable way and formally. However,
since a software component is not specified at the same level
of abstraction as an architectural component, current DbC
approaches (e.g., JML) do not help on this. Indeed, while
classes only provide methods to their environment as their
interface, architectural components are additionally specified
with required services too that they require from their en-
vironment. Furthermore, objects of classes perform method-
based communication only, whereas architectural components
can perform event-based communication too.

In this paper, we focus on extending DbC to the level of

software architecture design; so, designers can specify software
architectures in a both formal and user-friendly way. To this
end, we present herein our XCD ADL adopting our extensions
to the DbC and thus enabling DbC-based software architecture
specifications. The rest of the paper firstly describes syntacti-
cally and semantically how XCD components, connectors, and
their configuration are specified in the form of contracts. Next,
the formal semantics of components, connectors and also their
configuration are given in Finite State Process (FSP) enabling
the formal analysis of XCD software architectures. Last part
is the related work where similar works are discussed.

II. A DESIGN-BY-CONTRACT BASED ARCHITECTURE
DESCRIPTION LANGUAGE

Inspired from JML, XCD offers a contractual way of
behaviour specification; but unlike JML XCD serves at the
level of software architecture design which requires further
considerations. Following our initial attempt [14], XCD adapts
the notion of DbC to the features commonly found in compo-
nent models such as CCM [23] and OSGi [24], [28]. Therefore,
contracts can be considered for not only provided services but
also required services, and event services too that explicitly
emit or consume events !. Furthermore, complex interaction
protocols obeyed by components can also be contractually
specified as connector elements of architecture designs.

A. Component Specification

XCD component serve as a high level specification of
functional units in systems. Listing 1 shows the structure of
a component type. Consisting essentially of data and ports,
the former represents the state of the components. Ports are
typically the interaction points with outside that are specified
with a type and size declaration (i.e., the number of instances
derived from the types).

Listing 1: Generic component structure

component Name (parameterx*) {

(data.type data.id;)*

provided port Name[Size] {
method; + }; *

required port Name[Size] {
method; + }; *

emitter port Name[Size] {
event; + }iox

consumer port Name[Size] {
event; + }iox

} As also depicted in Listing 1, the types of ports can be ei-
ther required and provided for making method-call to outside
and providing methods to outside respectively or emitter and
consumer for emitting events to outside and receiving events
from outside respectively. Port type specification consists of
contractually defined method or event actions, where con-
tracts are two fold: interaction (QInteraction) and functional
(QFunctional) contracts. Interaction contracts are specified
with a set of interaction constraints (/C_x in Figure 1),
while functional contracts with a set of functional constraints
(FC_x). The former is for specifying the state at which the
action can be taken, the latter for specifying the acceptable set
of parameters for the actions.

Events in XCD differ from methods in that the former serves for one-way
while the latter for two-way (request-response) communication.

Interaction constraints have precedence over the functional
in that the the former has to be met which then leads to
the latter being checked for a successful action execution.
Moreover, as shown in Figure 1, each port type has its own
specific constraints that are imposed on its action. The rest of
this section illustrates these different constraint types.

[FC_requires_ensures |

l—‘g 14
|

FC_promise_réguires_"

[FC_promises_ensures |
ensures |

IC_promises

d_Event | [Provided_Method

[Emitted_Event | [C

[Required_Port | [Emitter_Port C _Port |

ﬂcumpnnenLType

Fig. 1: Meta-model of component ports

[Required_Method |

[Provided_Port |

1) Required Port: Listing 2 exemplifies a required port
specification through which a client components can make a
request call to a server. Constrained with IC_promises in
lines 2-4, the call for request is delayed until the promised
(pre) condition is met, the component data opened eval-
vating to true. When a connection is opened, then the
FC_promises_requires_ensures in lines 5-12 can be evalu-
ated. There in line 6, the parameter of the request are promised
to be equal to self (i.e., the id of the component). In this
case, upon receiving the response from the provided port of
a server, if the requirement that an exception is not thrown is
satisfied, the data serverReply is ensured to be equal to the
received result; otherwise (lines 10-11), the component state
is not changed.

Listing 2: Required port specification
1 required port client_portl{
2 @Interaction{
3 @promises: \when (opened) ;
4}
5 @Functional{

6 @promises: caller == self;

7 @requires: !\exception;

8 @ensures: serverReply=\result ;
9 Qotherwise

10 @requires: \exception;

1 @ensures: true;
12 }
13 int request (ID caller);

2) Provided Port: Listing 3 exemplifies a provided port
specification. The port server_portl receives calls for the
method request from clients. Upon receiving a call for the
request, first the IC_accepts_rejects in lines 2-6 are eval-
uated. The call is accepted when the initialised data is
true. However, the call is rejected (line 5) if the initialised
evaluates to false, indicating chaotic behaviour. When the
accepts condition is met,then the F'C_requires_ensures in
lines 7-13 are evaluated. If the requirement that the caller
parameter of the received method-call is non-null is met, then
the component data numO frequests is incremented and the

result to be returned is assigned to 3. If however the caller
is unassigned (lines 11-12), then a NulllD_FException is
ensured to be thrown to the client.

Listing 3: Provided port specification

1 provided port server_portl/{
@Interaction{

@accepts: \when(initialised);
@Qotherwise

@rejects: \when(!initialised);

2
3
4
5
6}
7 @Functional{
8
9

Qrequires: !'(caller == null);

@ensures: numOfrequests++ && \result = 3;
10 @also
11 @requires: caller == null;
12 @ensures: \throws (NullID_Exception);

13 }
14 int request (ID caller);

15 }

3) Emitter Port: Listing 4 exemplifies an emitter port speci-
fication. There, the port client_port2 emits an event initialise
to a server. Note that unlike methods, event are specified
without return types — only names and parameters allowed in
its signature. Constrained with an IC'_promises, the emission
of the event initialise is delayed until what is promised
is met, i.e., the component data opened is true. When the
client opens its connection, then the F'C'_promises_ensures
in lines 5-8 is evaluated. It states that the actual parameter of
the initialise to be emitted is promised to be the id of the
client which then ensures that the data isInitialised is true.
Note also that due to supporting one-way communication,
unlike two-way required ports emitter event ports do not wait
for a response from the connected consumer ports. Nor do the
consumer ports, unlike provided ports, send response after they
receive an event.

Listing 4: Emitter port specification

1emitter port client_port2{

2 @Interaction{

3 @promises: \when (opened);

4}

5 @Functional{

6 @promises: client == self;

7 @ensures: isInitialised = true;
8}

9 initialise (ID client);

10}

4) Consumer Port: Listing 5 exemplifies a consumer port
specification. The server_port2 receives event initialise
from the emitter port of its clients specified in Listing 4.
Constrained with IC_accepts_rejects, the event initialise
is accepted when the component data initialised is false.
Otherwise, when initialised is true, the rejects condition
holds leading to chaotic behaviour. When the server is not yet
initialised, the event initialise is received successfully leading
to the IC_accepts_rejects in lines 7-11 being evaluated.
There, the client parameter of the received initialise event
is required to be non-null which then ensures that the client
argument is stored in the data initialiser.

Listing 5: Consumer port specification

| consumer port server_port2{
2 @Interaction{

@accepts: \when(!initialised);
Qotherwise
@rejects: \when(initialised);

3
4
5
6}
7 @Functional({
8
9

@requires: ! (client == null);
@ensures: initialised = true &&
10 initialiser = client;

1 }

12 initialise (ID client);

13 }

B. Connector Specification

XCD connectors serve to represent decentralised protocols
for the components interacting with each other. Given its
structure in Listing 6, a connector type is specified with roles
and channels. Each role represents a component interacting via
the connector and it defines the protocol which the component
obeys for avoiding chaotic behaviour. A role is described
with data, and port-variables. The port-variables of a role
essentially represent the respective ports of the components
playing the role. Channels of an XCD connector represent the
communication links between interacting role port-variables
and can have different types, e.g., synchronous, buffered, etc.

< 1C_waits_ensures

¢

Required_Method Emitted Event C Event Provided Method

'

Required_PortVar Emitt: PortVar Provided_PortVar

Role

Connector Type

Fig. 2: Meta-model of connector role port-variables

As shown in Figure 2, port-variable actions are speci-
fied solely with interaction constraints (/C_waits_ensures).
I1C_waits_ensures is specified as interaction contracts that
serves to delay the respective port actions occurring until
a certain condition holds. Through the interaction contracts,
port-variables of roles essentially impose high-level interac-
tion protocols on the component(s) acting as the roles. The
interaction protocols are intended for enforcing components
to behave in a particular manner (i.e., through execution of
certain action order). In doing so, components can be avoided
from getting involved in unexpected (chaotic) interactions
with other components associated with the same connector.
The end result is then a set of components interacting with
their environments successfully to compose the whole system.

As depicted in Listing 6, connector type includes also
parameters to be specified. These parameters represent the
associations between (i) components and connector roles and
(ii) component ports and role port-variables. At configuration
time when component and connector types are instantiated, the

components, along with their ports, are passed as parameters
to the connectors whose roles they play.

Listing 6: Generic connector structure

connector Name (rName{pvName,..},..) {
role rName {

dataj; *

provided port_variable pvName {
method; + }; *

required port_variable Name {
method; + }; *

emitter port_variable Name ({

event; + }iox
consumer port_variable Name {
event; + }iox

}
channel; +

}
Listing 7 exemplifies a connector type specification for

mediating the interaction between a server and a client.
Client role in lines 4-20 are played by client components;
server role in lines 21-37 by server components. The port-
variable client_pvl (lines 6-12) in the client role constrains
the interaction behaviour of the client_portl in Listing 2;
the Qinteraction contract herein delays the calls for method
request until the role data isInitialised is true. The
client_pv2 is matched with client_port2 and it updates the
isInitialised role data when the client_port2 emits event
initialise.

The Qinteraction specified in the server_pvl of the
server role (lines 23-29) constrains the server_portl in List-
ing 3 so that call for method request cannot be accepted
until the role data initialised becomes true. Therefore, client
and server components are prevented from interacting before
they ensure that server is initialised thus avoiding chaos. Just
like client_puv2, the server_pv2 matching with server_port2
updates the initialised role data when the event initialise is
received by the port.

The channel specification in lines 38-41 essentially de-
scribes the component port pair that are to communicate with
each other. Indeed, the client port playing the client_puvl
communicates with the server port playing the server_pvl,
while the one playing the clients_pv2 with the one playing
the server_puv2.

C. Configuration Specification

Component types explained in section 2.A can also be
composite thus embodying configuration of component and
connector instances. In doing so, they can represent either the
abstractions for complex functional units where the internal
behaviour is specified via configuration and external via the
ports, or system architectures without any port specifications.

Listing 8 is the composite component type representing the
system architecture of a client-server system. The component
instance cIns is instantiated from the client component type
whose ports are specified in Listing 2 and Listing 4; sIns
is from the server component whose ports are specified in
Listing 3 and Listing 5. The connector type in Listing 7 is
instantiated as csIns. The csIns receives as actual parameters
the component instances and their ports thus associating the
components and the roles they play.

Listing 7: A connector specification

1 connector client2server (

2 client{client_pvl,client_pv2},
3 server{server_pvl, server_pv2}) {
4 role client({

5 bool isInitialised = false;

6 required port_variable client_pvl{

7 @Interaction{

8 waits: \when(isInitialised);

9 ensures: true;

10 }

11 int request (ID caller);

12 }

13 emitter port_variable client_pv2{
14 @Interaction{

15 waits: \when(!isInitialised);
16 ensures: isInitialised = true;
17 }

18 int initialise(ID caller);

19 }

20 }

21 role server({

2 bool initialised = false;

2 provided port_variable server_pvl{
24 @Interaction{

25 waits: \when(initialised);

26 ensures: true;

27 }

28 int request (ID caller);

29 }

30 consumer port_variable server_pv2{
31 @Interaction{

32 waits: \when(!initialised);
33 ensures: initialised = true;
34 }

35 int initialise (ID caller);

36 }
37 }
33 channel clients2server_reqg(client.client_pvl,

39 server.server_pvl);
4 channel clients2server_init (client.client_pv2,
41 server.server_pv2);

49}

Listing 8: A configuration specification

1 component client_server () {

2 component client cIns();

3 component server sIns();

4 connector client2server csIns

5 (cIns{client_portl, client_port2},
6 sIns{sever_portl, server_port2});
7

III. FORMAL SEMANTICS OF XCD

In section 2, we informally explain the semantics of XCD
elements. However, to enable formal verification of software
architectures, a formal-based semantics definition is needed.
Therefore, we provide in this section the formal mappings
of XCD elements to Finite State Process (FSP) [17] process
algebra. This allows encoding XCD architecture specifications
into formal FSP specifications that can be verified for deadlock
and liveness properties via LTSA model checker. Therefore,
designers can detect system errors (e.g., missing or wrong
protocols) early on during the architecture design and correct
their specifications accordingly.

A. Component Semantics

For simplicity, we only consider herein the mappings of
primitive components that do not include component/connector
instances. The semantics below is given in terms of parallel
interaction of FSP processes.

Definition 1 The semantics of a component with data D

and ports pi, .., pn is the composite FSP process:

Pp, |Pp1-~HPpn (1)
where Pp_ is the data process and Ppi,..., P, each is a
composite port process whose definition is:

Pic || Pre,, - |l Pre,, (2)
where Pro is the interaction constraints process and
Prc,,...Prc,,, each is a process for a functional constraints
imposed on a single method/event action taken via the port.

1) Component Data: Acting as component memory, the
data process Pp stores the component data as index variables
of its sub-process D. The process D executes read and write
actions in a random order where the read has index variables
holding the current data values (1), and the write has variables
(V_n) holding the new data values to overwrite the current
values of the D 2.

1Pp = D([InitialValue (V)]) *,

2D ([Name (V) : Type (V) 1) * =(

3 read([Name (V)])* — D ([Name (V)]) *
4 | write ([Name (V)_n:Type(V)])* — D(
5).

[Name (V) _n]) *

Following the pattern above, a client component type
with the data opened, isInitialised, and server Reply whose
types are boolean, boolean, and integer respectively and
whose initial values are false, false, and 0 respectively is
transformed to the below FSP process.

1 P_D = D[false][false][0],

2 D[opened:Bool][isInitialised :Bool]

3 [serverReply:Int] = (

4 read[opened J[isInitialised][serverReply]—
5 D[opened][isInitialised][serverReply]

6 | write[opened_n:Bool][isInitialised_n :Bool]
7 [serverReply_n:Int]—

8 D[opened_n][isInitialised_n]J[serverReply_n]

9).

2) Component Interaction Constraints: As aforementioned,
the interaction constraints for a port are mapped to P;¢. Pro
includes a sub-process Port which firstly locks component
data and performs read action to obtain the component state.
Upon reading the data, then, for each event/method action of
the port, a code snippet is produced in the body part.

1 Pic(ID = 1)= Port,

2 Port=(lock— read ([Name(V): Type(V)])=*
3 — P([Name(V)])),

4P ([Name (V) : Type(V)])* = (

5 Vcu:tionEpo'r‘t.a,ctionList

6 ..body part..
7).

If the port is of emitter/required type, the body
part is produced with the following pattern. There, for
each functional constraint (fc) on the current action
a when wait statement is produced, with the guard

2Note that star (%) implies zero or more, while question mark (?) zero or
one in the FSP mapping patterns.

Viccaction. @interaction Promises(ic). This states that an ac-
tion is performed when at least one of the interaction con-
straints (promsises) is met. Upon its satisfaction, the even-
t/method action is emitted/sent, as in line 3, which stores the
promised values of the parameters (obtained via fc) as its
index variables. In case the port is required type, the process
is blocked until it gets synchronised with the provided port
process on the response action, as in line 4, which includes
in its index variables the result/exception. Then, the control
is passed to the process Pp¢ through the internal action in
line 5. Note that it is the Pr¢ that executes the functional
constraints thus updating component data. Pr¢c then responds
with another internal action as in line 7 where new data
values are stored in the index variables (V' _n). The component
memory is updated with the new data values by executing
write action, and then the memory is released with unlock.

1 vcha,ction.@f’u,'nctio'n.al) .

2 When(viCGaction4@interaction promises (1c))

3 port_action_e/r ([promises(fc,arg)])x—

4 (port_action_r ([promises(fc,arg)]) =[r:RES][e:EX])?
5 — internal_action ([Name(arg)]) *=([Name(V)]) =

6 ([r]le])?

7 — internal_action ([Name(arg)]) *([Name(V)]) *

8 ([Name(V_n) : Type (V)]) =

9 — write ([Name(V_n)]) =

10 — unlock— Port

Below is the FSP process for instance that is obtained
by transforming the required port of the client component,
client_portl specified in Listing 2:

1 Prc(ID = 1)= Port,
2 Port=(lock—

3 write [opened:Bool][isInitialised :Bool]
4 [serverReply:Int]—
5 Plopened][isInitialised][serverReply]),

s P[opened:Bool][isInitialised : Bool]

7 [serverReply:Int] = (

8 when(opened)

9 request[ID]— request[ID][r:RES][e:EX]

10 — internal_request[ID][opened][isInitialised]
1 [serverReply J[r][e]

12 — internal_request[ID][opened][isInitialised]
13 [serverReply][opened_n:Bool]

14 [isInitialised_n :Bool][serverReply_n:Int]

15 — write[opened_n][isInitialised_n]

16 [serverReply_n]

17 — unlock— Port

If the port is of consumer/provided type, the body part,
following the below pattern, includes a single when wait
statement, with its guard \/; . iion @interaction @CCEPES(iC).
This states an action is accepted when at least one of the
interaction constraints (accepts) are met. Thus, this leads to the
event/method action being executed as in line 2. Next, just like
emitter/required ports, the control is passed to the process Prc
through the internal action in line 3. Pr¢c then responds with
another internal action as in lines 4-6 where new data values
are stored in the index variables (V_n) and in the case of
provided ports so are the result/exception ([r : RES][e : EX]).
The component memory is updated with the new data values
by executing write action, and then the memory is released
with unlock. In the case of provided ports, a response action
is executed as in line 9 which includes as index variables the
action arguments and result/exception.

Besides accepts in @Qinteraction, another alternative

when statement is for rejects, as in lines 11-12, whose
satisfaction leads to ERROR state due to chaotic behaviour.

1 When(viceaction4@int87‘action accepts (1c))

> port_action_c/p ([Name(arg) : Type(arg)]) =

3 — internal_action ([Name(arg)]) *([Name(V)]) *
4 — internal_action ([Name(arg)]) *([Name(V)]) =
5 ([Name(V_n) : Type (V)]) =

6 ([r:RES][e:EX])?

7 — write ([Name(V_n)])*

8 — unlock

9 (— port_action_p([arg]l)* [r][e])?

0w — Port

1 | When(VTejectseaction.interactianreJeClS)

12 port_action_p ([Name(arg) : Type(arg)]) *— ERROR

From the server ports specified in Listing 3 and Listing 5,
one can conclude that the server component has three data:
initialised, initialiser, and numO frequests whose types
are bool, int, and int respectively. Thus, the provided port of
the server component, the server_portl specified in Listing 3,
is for instance encoded as follows.

1 Prc(ID = 1)= Port,
2 Port=(lock—

3 write[initialised :Bool][initialiser :Int]

4 [numOfrequests: Int] —

5 Plinitialised][initialiser][numOfrequests]),
¢P[initialised :Bool][initialiser :Int]

7 [numOfrequests:Int] = (

s when(initialised)

9 request[caller:Int]

10 — internal_request[caller][initialised]

1 [initialiser][numOfrequests]
12 — internal_request[caller][initialised]

13 [initialiser][numOfrequests]

14 [initialised_n :Bool] [initialiser_n:Int]
15 [numOfrequests_n:Int][r:RES][e:EX]

16 — write[initialised_n][initialiser_n]

17 [numOfrequests_n]

18 — unlock— request[caller]J[r][e]— Port

19 | when(!initialised)

20 request[caller:Int]— ERROR

21).

3) Component Functional Constraints: As aforementioned,
the process Ppc is produced for each event/method action
of a port to compute the respective functional behaviour
specified via Q functional contract. The control is passed
from Pjc to the Ppe through the internal action in lines 3-
4. Note that in the case of required ports, the internal action
includes also [r:RES] [e:EX] which are the index variables
communicating the result/exception received from the response
action (port_action_r) in Pro. Then, for each functional
constraint (fc) on the action, a when statement is produced
whose guard is the requires condition of the fc. When the
guard is true, the internal action is responded to the Prc again
along with new data values (ensures(V')), derived from the
ensures of the fc, as index variables. Note that if the port
is provided the result/exception calculated are also passed as
index variables ([r][¢/] in line 8).

1 vactioneport.actianList

» Ppc(D=1) = (

3 internal_action ([Name(arg):Type(arg)]) =

4 ([Name(V) : Type (V) 1)* ([r:RES][e:EX])?

5 ﬁ(vfce@functional

6 when (requires(fc))

7 internal_action ([Name(arg)]) *([Name(V)]) *
8 (ensures (V)]) «([r’][e’])?

9 —>PFC

Following is, for instance, the FSP process for func-
tional constraints on the method request provided by the the
server_portl specified in Listing 3.

1 Prc(ID =1) = (

> internal_request[caller:ID][initialised :Bool]
3 [initialiser:Int][numOfrequests:Int]

4 —(when(caller != NULL)

5 internal_request[caller][initialised]

6 [initialiser J[[numOfrequests]

7 [initialised][initialiser]

3 [numOfrequests +1][3][NOException] — Prc
9 | when(caller == NULL)

10 internal_request[caller][initialised]

1 [initialiser][numOfrequests]

12 [initialised J[initialiser][numOfrequests]
13 [NULL][NULLIDException] — Prc)

1;1).

B. Connector Semantics

Like components, the semantics of connectors are also
defined in terms of parallel interaction of FSP processes.

Definition 2 The semantics of a connector with roles r1,...,
7 channels chq,..., chy, is the composite process:
P7'1 . | PT"VL (3)
where P,i..., P, each is a role process whose definition is:
].DDT | va1 - H van (4) .
where Pp_ is the data process and P,,,,..., Pp,, €ach is a
port-variable process that represents the interaction constraints
imposed on method/event actions taken by the port-variable.

While role data is mapped to a process in the same way
as the component data, port-variables in a role are mapped in
a different way from component ports. This is due to port-
variable imposing solely interaction constraints on actions.

Below is the pattern followed in mapping a port-variable
of any of the four types into an FSP process (P,,). Firstly,
role memory is locked and data are read as in line 2. Next, in
lines 5-10, the interaction constraints of the port-variable are
evaluated. For each action of the port-variable, a set of when
wait statement is produced each corresponding to a unique
waits clause specified in the action’s @Qinteraction contract.
The guard of each when is the condition specified via the
respective waits clause. Upon satisfaction of any of the when
guards, i.e., the Qinteraction of the action is met, then the
event/method action is executed as in line 8. This is followed
by the write action which updates the role memory with the
new data values (V_n) imposed by the ensures of the ic.

1 Ppy (ID = 1)= Port_var,

2 Port_var=(lock— read ([Name(V):Type(V)])*
3 — Pv([Name(V)]) %),

4Pv ([Name (V) : Type(V)])* =

5 (vactio’nEportvar.actionList

6 Vwaitseaction.@interaction

7 when (waits)

8 pv_action_e/m([Name(arg) : Type(arg)]) *
9 —write ([Name(V_n)])* — unlock

10 — Port_var

).

Following the above pattern, the server_pvl in Listing 7
is, for instance, transformed to the following FSP process.

1 Ppy (ID = 1)= Port_var,
> Port_var=(lock— read[initialised :Bool]

3 — Pv[initialised]),
4Pv[initialised :Bool] = (

5 when(initialised)

6 request[caller:Int] —write[initialised]
7 —unlock— Port_var).

Channels of a connector are mapped to relabelling func-
tions (/) employed in the composite process corresponding
to the connector. The relabelling function, for each channel,
re-names the actions taken by the provided/consumer port-
variable in one end of the channel to the names of the
respective actions taken by the required/emitter port-variable
in the other end. This enables the port-variable processes to
synchronise on these actions.

C. Configuration Semantics

Just like component and connector types, configuration of
system architectures is encoded into a set of FSP processes.

Definition 3 The semantics of a configuration with its com-
ponent instances ci,..,c, and connector instances cni,..,Cn, is
the composite process:

lecer.cn (¢ s Pp. || 71t Ppy || ot Pp,, || Pears) (5)
where, for each component c, its data process is Pp_, the
data process for each role the component plays is Pp,; and
P55 for the component ¢ playing a set of roles rs is another
composite process:

Ppi2pvs - | P n2pVs (6)
where P2, each represents a port of the component matching
with a set of port-variables pvs and is also a composite process:

c1: PplIm1: Ppoys ooy [|Tn Py, (7)
where P, represent a single port of the component and P,
each a single port-variable matching with the port and all are
primitive processes.

Note that component data, role data, port, and port-variable
processes are all produced in the way explained in section
3. For each instance of the component, role, port and port-
variable, these respective processes are instantiated through
prefixing feature of FSP (i.e., process actions are prefixed
with labels). As shown above, we use labels as ids of the
elements, e.g., component id c;4. It is then the prefix labels
that determines during the verification which action belongs
to whom.

Synchronous communication among processes Port (F,)
and port-variable (F,,) processes in formula 7 communicate
with each other through synchronisation on actions. As shown
below, if a port-variable is of required/emitter type, its process
actions are re-named to the respective actions of the matching
port enabling them to get synchronised with each other.

1 port_action_e/r / pv_action_e/r

In the case of provided/consumer types, as shown below, the
re-naming process is a bit more complicated. (1) in the below
pattern is performed by the provided/consumer port-variable
processes as mentioned in section 4. Re-naming the provid-
ed/consumer port-variable actions to those of the connected
required/emitter port-variables, synchronous communication
between the connected port-variables are enabled. Then in

step 2, the re-named actions of the consumer/provided port-
variables are again renamed to the actions of the associated
port, i.e., the required/emitter port due to having been renamed
to required/emitter port-variable actions in (1). When the step
3 is completed and the provided/consumer port actions are also
re-named to the same actions of the required/emitter ports as
in (2), then the ports that are connected via their port-variables
can communicate synchronously in a way that is restricted by
their port-variable processes.

| pv_action_e/r / pv_action_c/p
> port_action_e/r / pv_action_e/r
3 port_action_e/r / port_action_c/p

IV. RELATED WORK AND DISCUSSION

DbC is quite new to the area of software architecture speci-
fication. It has so far been mainly considered for programming
languages facilitating the checking of software correctness.
JML is one of the well-known examples [6], [8], [9] allowing
to specify executable contracts for Java classes and interfaces.

Beugnard et al.’s approach [3] is considered highly inspir-
ing that applies DbC to component based software engineering.
They proposed four types of component contracts: basic,
behavioural, synchronisation, and quality-of-service contracts.
However, components, just like Java classes, are considered
here only with provided interfaces ignoring explicit specifica-
tion of required interfaces and also interfaces of events. Fur-
thermore, focussing on components only, Beugnard et al. does
not consider contractual specification of complex connectors,
i.e., interaction protocols.

There are a very few attempts towards applying DbC
to software architecture specification, e.g., RADL [26] and
CBabel [5]. RADL, above all, supports only methods that
can be provided or required, neglecting explicit specification
of events. Furthermore, their consideration of contracts serve
basically to check compatibility of components, i.e., whether
their required and provided ports (inter)operate as expected; the
behaviour of components are specified using finite state ma-
chine. CBabel ADL, by contrast, supports explicit specification
of events too. However, they apply contracts to coordination
aspect of software architectures; component behaviour cannot
be contractually specified.

As aforementioned, most of the formal ADLs (e.g., Darwin
[15], Wright [2], LEDA [7], SOFA [25], CONNECT [12], and
etc.) adopt process algebra notations which are found unusual
among industry. Indeed, specifying behaviour of components
and connectors in terms of concurrently executing processes
and their parallel interaction is commonly considered as com-
plicated thus error-prone. Whereas, with formal DbC contracts,
component behaviours are specified simply by defining when
a component is to take an action (pre-condition) and what
is expected to happen then (post-condition). Indeed, the XCD
specification of client-server system in section 2 describes
exactly the same behaviour as its mapping to FSP presented
in section 3 and 4, surely in a more user-friendly way.

To maximise the expressiveness of contracts in specifying
the behaviours of components and connectors, we apply a
number of extensions. First, contracts are specified in two
forms, i.e., functional and interaction, where the former allows

to specify functional behaviour of components and the latter
either to specify their interaction behaviour or the interaction
protocol of connectors. Furthermore, with the introduction
of new contract clauses, e.g., promises, waits, accepts,
and rejects, designers are allowed to express behaviour of
method/event actions in a more precise and complete way.

V. CONCLUSION

In this paper, we presented a series of extensions to DbC
for adapting it to software architecture design. Unlike current
DbC implementations, we considered a more systematic and
comprehensive approach. Using our XCD language, designers
can specify the behaviour of their components in terms of
explicit interaction and functional contracts where the former
describes the interaction behaviour and the latter the functional
behaviour. Furthermore, components can have four types of
ports (interfaces) — required, provided, emitter, and consumer
— allowing designers to apply contracts not only on the actions
provided to outside, but also required actions from them and
on events emitted/consumed too.

Treating interaction protocols explicitly as connectors in ar-
chitectural designs, XCD also enables the contractual specifica-
tion of connectors. They are specified with interaction contracts
for participating components. Thus, components interacting
through the connectors are ensured to adhere to interaction
protocols in their behaviours.

Furthermore, we present the formal semantics of XCD
by means of the mapping algorithms of XCD elements to
processes in Finite State Process (FSP). Therefore, it is made
evident how easy it is to perform formal verification of XCD
specifications against safety and liveness properties.

VI. ACKNOWLEDGEMENTS

This work has been partially supported by the EU project
FP7-257367 IoT@Work — “Internet of Things at Work™.

REFERENCES

[1] Alessandro Aldini, Marco Bernardo, and Flavio Corradini. A Process
Algebraic Approach to Software Architecture Design. Springer, 2010.

[2] Robert Allen and David Garlan. A formal basis for architectural
connection. ACM Trans. Softw. Eng. Methodol., 6(3):213-249, 1997.

[3] Antoine Beugnard, Jean-Marc Jézéquel, and Noél Plouzeau. Making
components contract aware. IEEE Computer, 32(7):38-45, 1999.

[4] Dines Bjgrner and Cliff B. Jones, editors. The Vienna Development
Method: The Meta-Language, volume 61 of Lecture Notes in Computer
Science. Springer, 1978.

[5] Christiano Braga and Alexandre Sztajnberg. Towards a rewriting
semantics for a software architecture description language. Electr. Notes
Theor. Comput. Sci., 95:149-168, 2004.

[6] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst,
Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll.
An overview of JML tools and applications. STTT, 7(3):212-232, 2005.

[7] Carlos Canal, Ernesto Pimentel, and José M. Troya. Specification and
refinement of dynamic software architectures. In Patrick Donohoe,
editor, WICSA, volume 140 of IFIP Conference Proceedings, pages
107-126. Kluwer, 1999.

[8] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.
Beyond assertions: Advanced specification and verification with JML
and ESC/Java2. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem P. de Roever, editors, FMCO, volume 4111 of Lecture
Notes in Computer Science, pages 342-363. Springer, 2005.

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Yoonsik Cheon and Gary T. Leavens. A simple and practical approach
to unit testing: The JML and JUnit way. In Boris Magnusson, editor,
ECOOP, volume 2374 of Lecture Notes in Computer Science, pages
231-255. Springer, 2002.

C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576-580, 1969.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666-677, 1978.

Valérie Issarny, Amel Bennaceur, and Yérom-David Bromberg.
Middleware-layer connector synthesis: Beyond state of the art in
middleware interoperability. In Marco Bernardo and Valérie Issarny,
editors, SFM, volume 6659 of Lecture Notes in Computer Science, pages
217-255. Springer, 2011.

David Janzen and Hossein Saiedian. Test-driven development: Con-
cepts, taxonomy, and future direction. IEEE Computer, 38(9):43-50,
2005.

Christos Kloukinas and Mert Ozkaya. Xcd - Modular, realizable
software architectures. In Corina S. Pasareanu and Gwen Salaiin,
editors, FACS, volume 7684 of Lecture Notes in Computer Science,
pages 152—169. Springer, 2012.

Jeff Magee and Jeff Kramer. Dynamic structure in software architec-
tures. In SIGSOFT FSE, pages 3—14, 1996.

Jeff Magee and Jeff Kramer.
programs (2. ed.). Wiley, 2006.

Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Analysing the
behaviour of distributed software architectures: a case study. In FTDCS,
pages 240-247. IEEE Computer Society, 1997.

Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione,
and Antony Tang. What industry needs from architectural languages:
A survey. IEEE Transactions on Software Engineering, 99, 2012.

Concurrency - state models and Java

E.M. Maximilien and L. Williams. Assessing test-driven development
at IBM. In 257 Intl. Conf. on Software Engineering, pages 564—569,
May 2003.

Bertrand Meyer. Applying “Design by Contract”.
25(10):40-51, 1992.

Bertrand Meyer, Jean-Marc Nerson, and Masanobu Matsuo. Eiffel:
Object-oriented design for software engineering. In Howard K. Nichols
and Dan Simpson, editors, ESEC, volume 289 of Lecture Notes in
Computer Science, pages 221-229. Springer, 1987.

IEEE Computer,

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, i. Inf. Comput., 100(1):1-40, 1992.

OMG. Common object request broker architecture (CORBA) specifi-
cation, version 3.3 — Part 3: CORBA component model. Specification
formal/2012-11-16, OMG, November 2012. //omg.org/spec/CORBA/3.
3/.

OSGi Alliance. OSGi core release 5. Specification, March 2012. //
osgi.org/.

Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for
software components. [EEE Trans. Software Eng., 28(11):1056-1076,
2002.

Ralf Reussner, Iman Poernomo, and Heinz W. Schmidt. Reasoning
about software architectures with contractually specified components.
In Alejandra Cechich, Mario Piattini, and Antonio Vallecillo, editors,
Component-Based Software Quality, volume 2693 of Lecture Notes in
Computer Science, pages 287-325. Springer, 2003.

Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross,
David M. Young, and Gregory Zelesnik. Abstractions for software
architecture and tools to support them. IEEE Trans. Software Eng.,
21(4):314-335, 1995.

Andre Luiz Camargos Tavares and Marco Tulio de Oliveira Valente.
A gentle introduction to OSGi. ACM SIGSOFT Software Engineering
Notes, 33(5), 2008.

Rob C. van Ommering, Frank van der Linden, Jeff Kramer, and Jeff

Magee. The koala component model for consumer electronics software.
IEEE Computer, 33(3):78-85, 2000.

