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Brushing Dimensions —
A Dual Visual Analysis Model for High-dimensional Data

Cagatay Turkay, Student Member, IEEE, Peter Filzmoser, and Helwig Hauser, Member, IEEE

Abstract— In many application fields, data analysts have to deal with datasets that contain many expressions per item. The effective
analysis of such multivariate datasets is dependent on the user’s ability to understand both the intrinsic dimensionality of the dataset
as well as the distribution of the dependent values with respect to the dimensions. In this paper, we propose a visualization model that
enables the joint interactive visual analysis of multivariate datasets with respect to their dimensions as well as with respect to the actual
data values. We describe a dual setting of visualization and interaction in items space and in dimensions space. The visualization of
items is linked to the visualization of dimensions with brushing and focus+context visualization. With this approach, the user is able
to jointly study the structure of the dimensions space as well as the distribution of data items with respect to the dimensions. Even
though the proposed visualization model is general, we demonstrate its application in the context of a DNA microarray data analysis.

Index Terms—Interactive visual analysis, High-dimensional data analysis.
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1 INTRODUCTION

The rapid development of increasingly powerful computers and tlaelditional information about the phenomenon being explored (but are
improving methods for data acquisition lead steadily to more chahcluded for other reasons, e.g., their own absolute scale). If we refer
lenging datasets with respect to their analysis. On the one side, thé¢he cars dataset again, examples of derived dimensions could be the
large number of items in datasets is challenging. On the other sigeice of the same car in different currencies. Analysts are often, for ex-
the increased complexity of datasets, in particular in terms of larg@mple, interested in discovering tiirinsic dimensionalityf the data
numbers of expressions (dimensions) per item, is posing highly intgrhich corresponds to the minimum number of dimensions which can
esting questions. Both challenges have been addressed for many yesptain the relations in the data [21]. Accordingly, multivariate statis-

in statistics research, data mining, machine learning, and visualitiwal analysis is often preceded bylanension reductiophase where

tion. With respect to related visualization research, and in particuldre main goal is to create a lower dimensional space [20] that still con-
with respect to recent activities in visual analytics, a somehow skewtins the essential information from the original dataset. One of the
picture appears. There is ample work on items-based visualizatimost popular methods for dimension reduction is principal component
approaches, where the data items in a dataset are represented eithelysis (PCA). PCA can be used to create a lower-dimensional repre-
explicitly or implicitly in the visualization. On the contrary, there issentation of the data that still captures most of the variance in the data.
much less work, which addresses the dimensions as first-order objdédtsvever, the resulting dimensions are usually difficult to interpret. In
of the visualization. Understanding a dataset’s dimensions, howewis respect, there are studies in statistics research to improve the inter-
such as its intrinsic dimensionality, for example, is often also impopretability of the results by filtering the dimensions prior to PCA [7].
tant for an effective analysis of the data. Accordingly, we see a pre§diese studies try to create sparse representations of principal compo-
ing need to also support this task (understanding the dimensions afemts by identifying and leaving out “redundant” dimensions that do
dataset) with means of interactive visual analysis. not contribute to the overall variance of the dataset [7].

In the context of this paper, dimensions are considered as a mixtureanother important consideration in most of the MVA methods is
of dependent and independent variables. An example would be a Gy assumptions on the underlying data distributions. Popular MVA
dataset about a number of cars (as the items), each of which beingagthods such as PCA or regression analysis, for instance, assume
sociated with several values, such as gas mileage, price, engine g8 the data are normally distributed with respect to their dimensions.
i.e., the dimensions in this data. Analysts often use multivariate s{aowever, many of the high-dimensional datasets in practice fail to ful-
tistical analysis (MVA) techniques, for example, principal componenj this assumption, for instance, due to outliers. Handling of outliers
analysis (PCA), linear discriminant analysis (LDA), clustering, etc., t9ng observing the descriptive statistics of dimensions to assess their
understand the underlying relations between the dimensions and fagmality is crucial when considering the reliability of MVA results.
data items [20]. However, as the dimension count gets larger, apflis aspect of MVA is, therefore, subject to many studies under the
noisy values in dimensions (e.g., outliers) influence the represent@gine of “robustness” in statistics. Such studies try to improve the
information, the output of these methods becomes harder to interpigdistance of analysis methods to outliers and try to make them less
and occasionally less reliable [1]. dependent on the distribution of dimensions [8].

Also it is often so that high-dimensi i - L .
g lonal datasets come with @ num There are several application fields where the relations between the

ber of dimensions which are more important in order to explain tgf% s are at least as important as the relation between the dimensions
underlying phenomena than others. Datasets are also ofte ; ; '
ying p n popul as DNA microarray data analysis [6]. In such areas, methods that

with dimensions which are derived from each other or which carry MoC ] : . - X
operate on items and dimensions at the same time are of great potential

interest. Most of the existing MVA methods, however, operate either
on items or on the dimensions and the joint interpretation of these
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This approach also provides an aid to derive hypotheses omthe MDSteer [35], Williams and Munzner present a steerable multidimen-
trinsic dimensionality of the data. Unless supported by MVA toolssional scaling computation where it is possible to steer the analysis to
however, interactive methods alone fail to provide a comprehensive the areas which are interesting for the user.
sight on the data, especially as the dimension count gets larger and a& number of different statistical tools have been integrated into
the relations between the dimensions become more complex. A morsualization systems. Guo et al. [14] enable the interactive explo-
“fruitful” analysis requires the integration of computational tools in theation of multivariate model parameters. They visualize the model
visual analysis cycle as suggested, for example, by Keim et al. [28pace together with the data to reveal the trends in the data. Gosink et
Moreover, an interactive visual analysis solution should also enakdk [13] use a query-driven visualization with a statistics-based frame-
the exploration of the dimensionality of the data by considering theork. They utilize query distributions to estimate trends and features.
“redundancy” and “robustness” constraints throughout the analysisCorrea et al. [4] consider the uncertainties that arise while transform-
In this paper, we now present a visual analysis model where tigy the data. These uncertainties are integrated in the visualization to
analysis of items and dimensions is carried out in two linked spacesipport the interpretation of statistical analysis resullts.
namely items spaceand dimensions space We utilize the current  There are a number of studies where the joint analysis of data items
knowledge about the interactive visual analysis of data items to algfd dimensions have been investigated. In the Rank-by-Feature frame-
enable the interactive visual analysis of data dimensions. In our modgbrk [29], Seo and Shneiderman rank the relations between dimen-
we suggest a setting of linked views, where the analyst interacts wiffans according to user-defined statistical features. The authors present
the items in items space, e.gy brushing itemsand with the dimen- how a joint analysis framework is useful to steer certain statistical pro-
sions in dimensions space, fiy brushing dimensionsFirstly, our cesses. However, their approach is limited to computations on the
model aims to provide more insight with respect to theinsic di- whole dataset. In our model, we enable the interactive exploration
mensionalityof the dataset based on interactions in both spaces. Bid comparison of statistical features under different subset selections.
selecting useful combinations of dimensions and leaving out redugoreover, we treat dimensions as any other data item and present them
dant ones, the analyst can improve the MVA results according to pri@ith visual entities in the proposed dimensions space. The successful
knowledge and interpretation. Secondly, by interacting with the daglization of joint analysis of two different spaces in the context of
items, the analyst has the opportunity to relate data subsets to Myérameter space navigation is presented by Berger et al. [3]. In an-
results. With such interactions, the analyst can modify the distribgther study, Andrienko et al. [2] describes how a dual analysis scheme
tion of items, e.g., by removing outliers, and observe the change wigytilized in spatio-temporal datasets. Their approach involves the
respect to MVA results. dual analysis of spatio-temporal datasets over spatial distributions and
In the following, we first exemplify our approach in the context otemporal variations. Unlike our model, their approach is specific to
an illustrative example (after having discussed related work), befoggatio-temporal datasets. In our model, we utilize a similar dual anal-
we then present a model for a dual visual analysis of high-dimensioRgjs idea for the general case of high-dimensional datasets.
data. We describe how the data analysis is performed through transanether important related work is the Value and Relation (VaR)
formations and how brushing and focus+context visualization is intgsplay by Yang et al. [37]. In this work, the authors represent the di-
grated in the model. Specifically, the contribution of this paper are: mensjons with glyphs, which are projected to a 2D layout using multi-
dimensional scaling. In this work, the actual data items are only rep-
Pesented through glyphs and the interactive analysis of items together
with dimensions is not possible.

e aformal model which describes the transformations, brushing oper-Another important study in relation to our model is by Kehrer et
ations, and focus+context visualizations in the dual analysis franfd- [22], where the authors compute statistical moments from the data
work, and and plot data aggregates as opposed to these moments. In their work,

a set of scatterplots and transformations between them are defined.

e a set of procedures and guidelines to preform such a dual visUdeir framework provides mechanisms to explore trends and outliers

e anovel method for the joint and linked analysis of items and dime
sions of high-dimensional data,

analysis of high-dimensional data. in aggregated datasets. This framework displays the benefits of using
statistics in the visual analysis of data aggregates together with data
2 RELATED WORK items. In our work, we define a more general model which operates

Interactive visual methods have been used extensively in the analy@ishigh-dimensional data using statistical analysis methods together
of high-dimensional data. An overview of related studies is availabth statistics computations. With our model, we extend the current
in surveys by Wong and Bergeron [36] and by Fuchs and Hauser [18pproach to the visual analysis of high-dimensional data with the idea
Coordinated multiple views have proven to provide insight into higtef & joint and linked analysis of data items and dimensions.
dimensional datasets by means of linking and brushing in views which Throughout this paper, we utilize a number of multivariate statisti-
display different aspects of the same data [30]. Examples of sueil analysis methods such as principal component analysis (PCA) and
approaches are realized in the XmdvTool [33], Polaris [31], and limear discriminant analysis (LDA). PCA is a popular, unsupervised
ComVis [26]. Many efforts have been made to explore multivariatdimension reduction method that is widely used in multivariate statis-
data with visualization. Janicke et al. [17] propose the brushing tital analysis [20]. The goal of PCA is to create a lower-dimensional
multivariate data after a projection to an attribute space which can p@jection of an originally high-dimensional dataset while preserving
visualized in a 2D view. In cross-filtered views [34], Weaver enablegs much of the variance in the data as possible. PCA creates an or-
the exploration of relations between dimensions by cross-filtering ddtwgonal coordinate system where the axes are called principal com-
values from different views. ponents PC). ThesePCs are all linear combinations of the original

In order to cope with the complexities as induced by a higher nurdimensions where the weights are referred to asaheings LDA is
ber of dimensions, dimension reduction methods have been integrategtipervised dimension reduction method that finds a linear combina-
into the visual analysis pipeline. In VHDR [38], Yang et al. grougion of the original dimensions by considering class labels [20]. LDA
dimensions in a hierarchy and create lower-dimensional spaces usiigmpts to maximize the class discrimination while reducing the di-
representative dimensions. Their method also provides opportunitiggnsionality of the data. LDA is used as a classifier or as a dimension
to manually reduce dimensions. Jeong et al. [18] provide a set of #igduction method. One important point is that both methods assume
teraction mechanisms that operate on PCA results. With modificatidhe data to be normally distributed.
of the parameters of PCA, it is possible to observe changes in the PCAn addition to PCA and LDA, we also make use of certain descrip-
results. tive statistics, namely the meap)( the standard deviatioro{, the

Visual analysis methods have been used jointly with a number sifewnessgkew, the kurtosis Kurt) and interquartile-range (IQRM
computational methods. Fuchs et al. [11] integrated machine learnican be estimated by the average of the values in the dasthe stan-
with interactive visual analysis to support hypothesis generation. diard measure of variabilitgkewindicates if a distribution is centered,
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Fig. 1. An illustrative example for a joint visual analysis of items and dimensions of the “Boston Housing Prices” dataset. Three scatterplots are set
up first: a) $;: house prices (MV) vs. crime rate (CR), b) $: the first two principal components (PC1 vs. PC2), c) S3: mean (u) vs. standard deviation
(o) values for all the dimensions of the data. d) The main trend in the data is selected in ;. e€) y and o values are re-computed for the selected
items and changes are visualized in S3. f) Dimensions that deviate less are selected for a re-computation of the PCA. g) PCA results (before and
after) are visualized in a F+C style.

or not, whilekurt indicates the peakedness of a distribution QR  pered line to ease their identification. In Figure 1-e, we see that while
is a robust statistics that also describes the variance of a distributiothe values for some of the dimensions changed prominently, some of
them are not much affected by the selection. A simple first interpre-
3 AN ILLUSTRATIVE DUAL ANALYSIS EXAMPLE tation of the resulting visualization is that the dimensions that did not
' deviate so much due to the selection, possibly can be considered to be
Before we present our more formal model further below, we first d?e'ss sensitive to non-standard values of MV and CR. We then select
scribe an illustrative example where a visual analysis of data itemsﬂlﬂ':é most “stable” dimensions & and PCA is applied éutomatically
carried out together with a visual analysis of the dimensions. Our a ing only the dimensions selected in Figure 1-f. We then project all
here is not to aIready_provide acomprehen_sive guide, butto inform e items to the newly computed principal comp'onents and send the
demonstrate the basics of our dual analysis model. resulting values t&. Through a focus+context visualization of the
QN6 different projections of the items B, we can clearly see that the
X . . . \ ! rojection results changed dramatically (Figure 1-g). An interestin
which with values inm dimensions (columnaj, € A (set of dimen- gplijt into two groups Wit% respect to the):w(eWgPCl, fogr)example, can bge
sions). In the following, we denote thé" value of thej™" item as Jpcorveq n 'such an explorative setting, the analysis may not always

Xj k. Forthis firstillustration, we study the well-known "Boston Neigh+,nerge to the mathematically best-possible resuit. However, through

in a tabular form withn items (rows)x; € Q (set of items), each of

between housing prices and other factors in the area of Boston,
sachusetts. It consists of 506 samptgsand 14 dimensions (i.e.,

|2L§I;’2§/ :llIALLe: :ﬁgwﬁgr&gr&gg'& enr::':r}i/ltc;ifg:i%r:freart?@t%ﬁ;,' The above .prese.nted ;hort i.IIustration brings up new .opportunitie.s
(CR), ‘proportion of houses built before 1940’ (AG) and ‘proportio for the e_maly5|s of h_|gh-d|r_nen5|onal data. Such a dual v_|sua| analy_s|s
of IoWer status of the population’ (LS) Tof both items and dimensions leads to a novel perspective on looking
. - : ... at high-dimensional data. In the following section, we formalize this
In our analysis, we utilize PCA to understand the intrinsic d'merb'ual analysis idea in the form of a model by defining the underlying

sionality of this dataset. To reduce the effects of outliers on PCA, W@\inqgbrushing and focus+context (F+C) visualization mechanisms.
analyze the data to determine outlier-free dimensions. We compare

PCA results based on all dimensions and those computed for only
lected dimensions, in order to achieve a better interpretation of t
analysis results. Analysts are often faced with high-dimensional data which comes in a
To enable the comparability of dimensions, the analysis starts withebular form where items are rows and dimensions are columns. In
normalization of the dimensions. To normalize the dimensions, we agnventional visual analysis approaches that involve multiple coor-
ply linear scaling to the unit interval in this case. We then estimate tidenated views, items are visualized using visualizations like scatter-
mean (1) and standard deviatiow] of all the columns (dimensions), plots, histograms or parallel coordinates. In such visualizations, the
in order to get a first impression of the included data distributions. Vilems are plotted in the views as opposed to the dimensions of the
apply PCA to all the dimensions and project the data onto the first twlata. The visual analysis of data items is often carried out using link-
principal componentsRC1, PC2). We continue with the visualization ing&brushing and focus+context visualization. Our dual visual analy-
of the items in a scatterpl&® (Figure 1-a) with axes CR and MV and sis concept builds upon these conventional practices and proposes the
another scatterpl®, (Figure 1-b) with axe®C1 andPC2. Addition-  visual analysis of data in two linked spaces, hamelitems space,|
ally, we plot theu and o values of all dimensions in a scatterp® and indimensions space .DWith items space we refer to a visual-
(Figure 1-c). ization domain where each visual entity in a visualization corresponds
We then start the interactive analysis by brushing (selecting) a sub-a data item. In the dimensions space, however, each visual entity
set of items inS;. This brush leaves out the larger values of MV andepresents a dimension of the data. To illustrate, if we visualize the
CR and selects the items which (roughly) amount to the main trehgusing data in both of the spaces, using scatterplots, a point in items
in the data (Figure 1-d). As a next step, theand o values are es- space corresponds to a single house, whereas in the dimensions space
timated (automatically) for the selected items and serfizsto As a  a single point represents a dimension, crime rate by town, for instance.
result,S; gets updated to show the dimensions’ statistics with respeBy separating the visual analysis space into two, we provide opportu-
to both the items selection as well as with respect to all of the iterngiies for the joint and parallel analysis of items and dimensions.
(Figure 1-e). Theu ando values corresponding to the selected subset A conceptual sketch of our model is depicted in Figure 2. Here,
are highlighted (with orange color), while the originaland o val- items space includes the visualizations of MVA results (such as a
ues (corresponding to the entire dataset) are presented as referengarjection on principal components). The analyst iteratively per-
gray). The two points in the scatterplot which correspond to the saftems item and dimension selections in order to observe the changes
dimension (entire dataset vs. selected subset) are connected with antalimension statistics as well as MVA results. The duality in the

g_rovided in Section 6.

e-
ae THE DUAL ANALYSIS MODEL
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Fig. 2. The dual analysis model sketched. Visual analysis is per- . Analysis
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entities correspond to items in items space and dimensions in dimen- M
sions space. Analysis advances iteratively by selecting items and di-
mensions. The interactions enable the joint and linked exploration of Brush Update
dimension statistics and multivariate analysis (MVA) results. Dimensions: Statistics:
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model is achieved by linking the visualizations in the two spacegiy 3. jtems space views both visualize normalized dimensions, e.g.,

In order to fully accomplish this link, we formulaterushingand  cr or Mv in housing data, and derived dimensions, e.g., PCA results

fOCUS+COﬂt€Xl\/ISU&|IZ&IIOI’] mechar"sms, as We“ as tranSfOI‘matIOI’]SCl or PC2. Dimensions space views visualize dimensions as opposed

which are needed to establish the relation between the two spacesio statistics, such as i or . Here, the initial setup is done by computing
PCs (1), u and o (2). Brushes from items space (3) triggers F+C vi-

4.1 Data Transformations sualizations in dimensions space by going through transformations (4).

The iterative analysis of items and dimensions is at the core of ogifnilarly, brushes from dimensions space (5) updates the MVA resuilt vi-

model. During a typical iteration, the focus of the analysis move_céjallgatlon throug_h _transformatlons (6). This interactive loop continues

from one space to the other. In order to achieve the transitions [gratively by modifying the selections on both sides.

tween items and dimensions space, our model requires a set of data

transformations.

From dimensions space D to items space I: The basis for the

first type of transformations relates to the MVA methods that opedggregation of data items. Here, we mainly consider statistisslés

ate on the dimensiom. Such methods are here denotedfoyWe Wwe conside ass, the result of the transformation are thevalues for

generalize transformationfs to operations that createnew data di- each and every dimension in the data. Initfiéteration of the analysis

mensions when applied. In the illustrative example in Section 3, PGe transformation which computgew values per dimension using

is an example of such ah transformation. Throughout the iterativesis defined asT, (s) : Q' 5 QF whereQ" = {Xe;1, ..., Xerg} With any

analysis loop, thé!" transformation of data throughis defined as: Xa being a full new rowka = {Xa 1, ..., Xam} ande = z{;&pt\_ Here,
TH(F) A 1y Al whereai = {dc11,...,de1 } with anyd, being a full Q' C Q represents a selection of items. In the course of the analysis,

new columnda = {Xy 4, ..., Xn.a} T andc= Z{;(l)\m- Note that, in these the analyst can makeof these transformations where she produces

transformations, all the items are projected onto the new dimensidh§ final set of computed valuds" = {Q°,....0%). To generalize,

andA’ C A represents a selection of dimensions of the data before figgarding the set of possibsefunctions or statistics, it is possible to

transformation. At a certain point in the iterative loop, where the angonsider descriptive statistics such as mean, variance, skewness, kur-

lyst have made of these transformations, the final set of dimension®sis and more elaborate values like statistical test results or robust

is denoted ad™ = {A°, ... AV} with A® = A, i.e., the original data estmates. . . . .

dimensions. The selection of dimensions and itemsQY’ is formulated through
Although we exemplify PCA as oné method, it can also be any & degree-of-interesti6i) mechanism. Similar to fuzzy set definitions,

other MVA tool which creates a mapping of the original dimensions. We defineA” = (A,doiy) and Q' = (Q,doig) wheredoi and doig

is possible to consider methods like multidimensional scaling (MDSy€ Mappings to define selection degrees. In the case of binary se-

and factor analysis (which are other dimension reduction technique§fgtions, where an item is either selected or not, selections are de-

clustering (which maps the data items to class labels), and LDA (whififed asdoig : Q — {0,1}. In the case of continuoudoi values,

maps the data items to known classes) [20]. where items are selected to a certain degree, selections are defined
As an initial transformation, which usually precedes the statistic&Fdoio : Q — [0,1]. Such a continuous selection mechanism can be

analysis as well as the visualization, we normalize the dataset so tRgfieved through smooth brushes [5]. The addition of smooth brushes

values in all the dimensions are quantitative and comparable. Normiiiings the possibility of weighing the dimensions prior to a dimension

ization also ensures that all of our dimensions are suitable for vigigduction operation, for instance.

alization in a scatterplot, histogram, etc. Moreover, normalization is ] ] o

an essential step for most of the multivariate analysis processes [##% Brushing & Focus+Context Visualization

This normalization step is denoted wit§(N) whereN is a normal-  The conventional visualization of high-dimensional data in items

ization method, such as linear normalization to the unit interval @pace is achieved by plotting the items with respect to the original

z-standardization [27]. The resultsB§(N) is denoted with\! where  dimensions and the derived dimensions, -, The visualizations

]AH = 4. in dimensions space, however, visualize dimensidras opposed to
From | to D: We use transformatiorssto iterate from items space the statistics computed By (s)" operations, i.e. Q. We denote the

to dimensions space. Examplessafan be descriptive statistics or anviews in items space with; and views in dimensions space with.
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Fig. 4. Focus+context visualizations in scatterplots of two different PCA

results (a) and of two sets of statistics o, u (b). The recomputed values  Fig. 5. The proposed dual analysis extended to parallel coordinates

are in focus after the selection, and the values from before the selection  plots (PCP). a) PCP from items space visualizing items over the first

are provided as context. Depending on the point count, two different  three principal components. b) PCP from dimensions space visualizing

styles are employed (with and without lines). g, kurt, skewand IQR values for the dimensions.

It is worthwhile to mention that the columns of our dataset are treatdd® Extensions to the Model
as rows in dimensions space. Accordingly, our approach can alsolbis possible to extend the proposed dual analysis method to also in-
thought of as transposing the dataset and performing the visual analgrporate different visualization techniques, e.g., parallel coordinates
sis using a different perspective in dimensions space. In the illustratpiets (PCP). While lines in a PCP represent data items in items space,
example in Section &; andS, are examples of) andSs is an exam- they represent dimensions in dimensions space. Accordingly, axes of a
ple of \p. PCP in items space are the original dimensions of the dataset and they
We follow the conventional linking&brushing mechanism betweegorrespond to differer@" in dimensions space. An example of these
the views that are in the same space; i.e., when certain item¥jin gual PCPs can be seen in Figure 5. In order to visualize the deviations
are brushed, the same items are highlighted in oihgrusing a fo- and employ our dual focus+context approach in a PCP, comparative
cus+context visualization and the same mechanism works alsg $or visualization methods, like Temporal Parallel Coordinates [19] can be
In order to define the links between views from different spaces, wiilized. Another possible extension is to employ glyphs as the visual
extend this mechanism by handling the brushes througtf theds  entities in dimensions space [37]. One can think of glyphs where each
transformations. The transitions between the two spaces and illusifigual channel represent differe@t” values.
tions for the associated F+C visualizations scheme are illustrated inln its current state, the model is designed for datasets that come in
Figure 3. a 2D tabular form. However, it is possible to extend the model to 3D
A brush inV; is defined as) - Q — o whereQ' C Q. In order to data tables, e.qg., to datasets where the third dimension is time. In the

transferB, to dimensions space, brushed ite@sare transformed by Sgr?tli g: ;I}\I/?ésu glﬁzsﬁéhng%tﬁ[z%s’ O\EUS géat;%nselgé;e(;\;stasr::fneisa rri Cr%r_]_
Ti(9)" using the currens. The resulting value®™ update visualiza- ted by a curve over time inpa functio,n | Iat In dimensions s apce
tions in dimensions space. An example of such a brushing operat%‘?{] Y plot. pace,

can b seer i Figure 1-.¢. Heceandy values (Le.stransforma: 1S/ 28" SUve reprecente dmension over tme, e psfon
tions) are re-computed for the selected item&;irand the computa- P

tions updateS; !n a function plot in dim.ensi(.)ns space. In Figure 6, this mechanism.is
) , , illustrated. Here, we visualize measurements from a weather station

A brush inVp is defined aBp : A — A with A CA. Bp is trans- in Bergen, Norway. The dataset contains daily measurements, such
ferred to items space by going through the transformalieqf)'.  as temperature, pressure, precipitation, for all the years between 2000
And, the resultingd updateV;s accordingly. An example for this and 2010. In Figure 6-a, each curve represents the temperature values
type of operation can be seen in Figure 1-f,g. Here, the dimensions fmeone year. On the other side, in dimensions space, we conapute
selected ir53 and the selection of dimensions is an input to the PChalues for each dimension over time. And the result is a curve for each
operation. dimension plotted against values as seen in Figure 6-b.

In a typical F+C visualization, the common interpretation of focus
are the selected items and the context is the rest. In our model, we PROTOTYPE IMPLEMENTATION OF THE MODEL
slightly extend this definition of F+C visualization. Focus and context/e implemented our model in an interactive visual analysis environ-
are two different visualizations of the same items, that are computetent where we enable linking&brushing and focus+context visualiza-
using different subsets of the dataset. The results of the last transfor-
mation (f or s) is set as the focus and those of the preceding one as the
context. Notice that each point in a scatterplot is drawn twice, once Tempoyal Data ftem Temporal Data Dimension
with the old and once with the new value. Here, we follow a simple»| . % o] '
strategy to show the results. If the point count is large, we plot fo-

T R
cus and context in different colors (Figure 4-a). If the point count is . 1! Wl i " 'I'f
small, we additionally connect the related points with a tapered line I Vias ﬁullk ')L'J" [ i
i is si ion i i i st et "'J”‘-uﬂ'f- '“‘) N i | L / TRl
(Figure 4-b). Although this simple solution is adequate for illustrative .-;Iﬂ.l-'.- o £ "1 "'“'NL il sl \l M"I
purposes in this paper, one should think of more intelligent ways to /' N v Al ‘F" I}
achieve comparative visualizations, e.g., difference views [24]. -1 ] : ) Aalbay 2 ol i b okt
One important point to mention, also, is that, in the F+C visual- @ Time o T Time
izations of the first type of views, the focus is computed as a “lazy
evaluation”, i.e., the focus of a view, is linked to a brush and it is config. 6. A dual analysis of temporal data. a) An items space visualization
puted automatically as the brush moves. This approach is necessdmjaily average-temperature values from a weather station in Bergen,
for the sake of interactivity in the model. Additionally, the context oNorway. b) A dimensions space visualization where each curve corre-
the views can be updated at any point throughout the analysis. Wittpnds to a dimension. The values are ¢ values that are computed for
such an extension, it is possible to compare the statistics and analgsigh time-step.

results of any different item-dimension subsets.



. - - ) 6.2 The Analysis Process
Table 1. Possible multivariate statistical tools (f transformations) and . . o
Corresponding statistics s for the dual ana]ysis Setting In the -f0|.|0W|ng, we prOVIde a task-based guldellne to carry out an
analysis in the proposed dual framework:

Analysis f s

e To understand the relations between dimensions: A subset of items
Dimension reduction PCA, MDS loadings, mean, variance, me-  are selected first. As a result, the changesvalues in dimensions

(unsupervised) dian, skewness, kurtosis, IQR space reveal the correlation between dimensions with respect to the
selections. Larger deviations #nvalues indicate a higher correla-

Dimension reduction LDA, SVM variance, information theory tion.

(supervised)

e To explore the dimensions that determine the main trend or the out-
Finding groupsindata  Clustering mean, variance, median, IQR liers in the data: Items that correspond to the main trend or outliers
are selected in a lower-dimensional projection of the data. Devia-

tions in dimensions space reveal such dimensions.

To leave out/select dimensions: Dimensions are evaluated in terms
of the information they contain through the use of cerggnich as
g, principal component loadings and entropy.

tions of data in scatterplots and other views. We implemented two
types of scatterplots, with two types of F+C visualization, as already
discussed above. Our aim with the prototype implementation is to

showcase the utilization of the system using simple visualization sole follow these guidelines and go through the steps of a detailed anal-

tions. gsis process that is similar to the one we presented earlier in Section 3.
Our implementation utilizes composite brushing, as proposed by |n this analysis, we aim to explore the relation between dimensions

Allen and Ward [25], as the underlying brushing mechanism. land find lower-dimensional representations of the data to derive new

this mechanism, each brush is combined with existing brushes Bypotheses. Hence, we set PCA to be our nfaamdo, 1, skew and,

a Boolean operatoop with op € {U,N, =}, whereU represents the kurt to bes transformations.

union, N represents the intersection andepresents the not operator.  The analysis starts with the normalization st@,é)( where the data

To ensure an easier utilization of different types of VieWS, the Visqu Sca|ed’ for examp|e, to the unit interval and followed by the com-

ization space is physically divided into two, one to show items spag@tation ofo, p, kurt and skewvalues for all the dimensions using

and the other one for dimensions space. Additionally, to includegd the items. Additionally, we perform PCA on the data using all the
wider range of MVA tools into the system, we integrate Bstatisti- dimensions.

cal computation package into our system [32]. In the next part of the analysis, we try to understand the relations
between dimensions. The changes in basic descriptive statistics (such
6 DUAL ANALYSIS PROCEDURES asp ando) due to brushes in items space are easy to interpret and pro-

ide information on the correlations between dimensions. Therefore
Ethis step, we choosg and o as the visualization axes in dimen-
fons space. We visualize the items in a scatterplot with axes CR vs.
& (V%) and dimensions in a scatterplotpfvs. o (V3).

We select the areas with old housed/fhin Figure 7-a. In dimen-

sions space (ih’g), we observe hovo and u values deviate after the
brushing operation. Here, we see tbatalues for LS dropped signif-
Depending on the type and the goal of the analysis, the analyst deteantly, this is due to the fact that the selection of high AG values is
mines the multivariate statistical analysis tools and statistics to utilizeampling the lower population (LS) dimension unevenly. We interpret
The selected tools and statistics then correspond to the transformatithis observation as follows:
in our model. In Table 1 we provide a non-exhaustive list of common High values of AG are related to very low values of LS, while low
MVA tools f and statisticss that are suitable for the dual analysisAG values lead to a much broader range of values for LS. In other
scheme. Note that the dual analysis model is not specific to anywbrds, only a very low proportion of the lower status of the population
these methods. is living in areas with old houses. When focusing on areas with a
One important type of transformations are unsupervised dimentower proportion of old houses, there is no limitation with respect to
sion reduction methods such as PCA and MDS. The reliability of thbe proportion of the lower status population. This “change point”
results of such methods depend on the normality and “outlier-freenegs’the relation between AG and LS was thus discovered by the big
of the data columns. Additionally, to improve the interpretability ofleviation ofy and o when using all or just the selected data. On the
the results, redundant dimensions should be discarded. Principle c@@ntrary, we see that there is almost no change ipthedo values on
ponent loadingsg and the interquartile range (IQR) can be used tthe dimension MV, indicating about the same behavior of the selected
assess the dimensions’ redundancy whiler, skewness and kurtosis and the original data points.
can be used to evaluate normality and the existence of outliers. Similain order to verify these impressions, we visualize the AG dimension
stransformations are preferred for clustering, where the quality of tlas opposed to both LS and MVH(,VF). We see iI’V|2 in figure 7-a that
results is affected by a high number of dimensions as well as outliensareas with old houses, the proportion of lower society is also very
in the data. low. In \/,1, we see that MV values vary over a wide range of values
In supervised dimension reduction methods like LDA and Suppdar the selected houses (i.e., in areas with older houses). Therefore, it
Vector Machines (SVM), the normality of the data is not requireds not possible to talk about a correlation between MV and AG.
However, the selection of dimensions is crucial with respect to the The second phase of the analysis involves the elimination of outliers
quality of the results, also. In order to determine important dime#e refine the PCA results. To determine outliers, we use the PCA re-
sions,o, IQR or information theoretic measures can be utilized [15].sults (which are already biased by the outliers) that are obtained earlier
In all of these methods, filtering dimensions prior to the analys®y,*)- Vi* in Figure 7-b shows how PCA results change after removing
both improves the quality and interpretability of the results. Thereforthe outliers with the brush nvr,S. The updated PCA results now dis-
dimensions need to be evaluated in terms of their variance (salienplgy two groups of items, however there is still substantial variation in
and/or entropy [15]. Dimensions that are poor in information conterthe groups.
i.e., with a low variance, low entropy, near-zero loadings in PCs, can Additionally, the effects of outlier removal are observed through the
be marked as “redundant” and left out from the analysis. changes in dimensions space. In Figure 7-b (2), we observe: theat

The dual analysis process provides a number of opportunities in §
visual analysis of high-dimensional data. Here, we provide a gui
for selecting and using the transformations and visualizations in t
proposed dual setting.

6.1 Selecting Transformations
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Fig. 7. A dual analysis of the housing dataset. a) Houses in areas that have a large proportion of old houses (high AG values) are selected in V|°.
vg is updated using new p and o values (1). Deviations in VS indicate a correlation between dimensions w.r.t. the selection. The most deviating
(LS) and the least deviating (MV) dimensions are plotted for a deeper analysis. The variance of the selections (in V|1 and V|2) justifies the deviations
in V2. b) Outliers are removed in \/,3 and PCA is applied with the selected items. V,“' is updated with the new results (2). As a result of the selection
in V}°, one of the dimensions is marked in vg as the source of the outliers. Before operation (3), the current PCA results are set as the context of
V|4. Normally distributed dimensions, w.r.t. kurt and skewvalues in VE}, are selected (3). Updated PCA results now display two groups. One of the
groups is selected in \/,4 and vg now reveals the dimensions that distinguish the selected group.

o values for the Tax-rate (TAX) dimension changed significantly. Wins the expression levels of thousands of genes for these different
mark the TAX dimension as the source of these outliers and remas@&mples. In molecular level cancer research, these datasets are ana
this dimension (with a» brush which is not shown in the image) fromlyzed to distinguish between cancer classes or even to discover new
the analysis before we move on to the next step. As an intermediatpes of cancers. Two of the main goals in this research which in-
operation, we set the current PCA results (obtained by removing thalves statistical approaches are: classifying the samples into classes
outliers) as the context of our new visualizatiMf‘I. of tumors and identifying important genes which plays a role in this
We would now like to evaluate the dimensions’ normality to decidelassification [6]. The statistical analysis of such data has always been
whether to include them in the analysis. Therefore, we continue thechallenge as the dataset contains a very large number of genes (di-
analysis in dimensions space. Sinaet andskewvalues are indica- mensions) compared to the number of tissue samples (items). As the
tors of normality, i.e., both the skewness and kurtosis for normal distenalysts are interested in identifying both the groups of genes and the
bution are 0, we select dimensions throughkbg vs. skewplot (VE}). groups of samples, in the analysis of microarray data, one has to ana-
We select dimensions (marked with 3 in the figure) which are mohgze both the original and the transposed version of the dataset.
likely to follow a normal distribution by selecting dimensions with  In this use-case, we work on a gene expression dataset provided by
values around 0. The updated PCA plot displays two well-separatg@lub et al. [12]. Here, the samples are known to come from two types
groups that have less variance throughout the group. of acute leukemia, namely acute lymphoblastic leukemia (ALL) and
We perform a final brush ikj* to understand which of the dimen- acute myeloid leukemia (AML). The dataset consists of 7129 genes
sions are more distinctive for these groups (Figure 7-b, 4). We seken from 38 different tissue samples where 27 are known to be ALL
lect the larger group on the left and observe the changesvs. 0 and the rest AML. We treat the dataset in the form that, genes are
values. Here, we discover four dimensions: “nitric oxides concentraems Q) and samples are dimensiors @s it is the standard way in
tion”, “number of rooms”, “pupil-teacher ratio”, “proportion of black statistical analysis of microarray data [9].
by town” to be the distinctive dimensions. These dimensions can NowThe task in this use-case is to find a good classifier that distinguish
be used for further analysis, e.g., in clustering the houses. the tissue samples into ALL and AML types. In order perform the
The proposed dual analysis method continues iteratively with intejtassification, we use LDA as an integrated MVA tool. Our aim is to
actions between the two spaces. Since the analyst gets an immediatect a number of genes that are more important in the classification of
feedback of the interactions, item and dimension selections are refifigé tissues and thus, improve the performance of the classifier. Without
iteratively until the analyst is satisfied with the results. Note that, thgny modification, i.e., using all the samples and all the genes, LDA is
above analysis presents the interpretations of a set of specific statisgi§i to classify 29 of the 38 samples correctly.
and statistical tools. The interpretations of the views and in?er.actions n DNA microarray data analysis, outlier genes are of more impor-
needs to be formulated on the nature of the problem and statistics U$§fce in the classification of the tissues [9]. Therefore, we focus the
analysis on selecting the genes. We, firstly, plot the genes in a scatter-
7 Usk CASE: MOLECULAR CLASSIFICATION USING DNA Mi- g0t using PCA and secondly, select outlier genes from the plot to per-
CROARRAYS form the classification with the selected genes. We utilize our model
DNA microarrays and high-density oligonucleotide chips are impoto achieve more reliable PCA results, thus improving the classification
tant monitoring technologies used in cancer research [6]. This md#erformance.
itoring is applied to different tissue samples which are known to be We observe the genes in a visualization of PC1 vs. PC2 in items
taken from a specific type of tumor. The resulting dataset then caspace. With such a visualization, we aim to separate the more “im-
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Fig. 8. An analysis of microarray data. The task is to select a small number of genes (preferably outliers) for the discrimination of tissues. a) PCA
is applied on the genes. There is a large variation and a large number of outliers. b) Tissues are plotted against their PCA loadings IlIs for PC1 and
PC2, where zero loadings indicate redundancy. c) Tissues with large loadings are selected. d) Less number of outlier genes due to the new PCA
results. e) Tissues are visualized in a o vs. IQR plot for the selection of tissues with a smaller number of outliers. f) PCA is computed using the
selected tissues. g-h) Analyzing the properties of tissues w.r.t. the genes. For a selected group of genes, an outlier tissue is discovered.

portant” genes and filter out the less interesting ones (Figure 8-a). Weaces: items space and dimensions space. The analysis iterates
visualize the tissues in dimensions space and update PCA resultgtpugh the interaction with the items in items space and with the di-
selecting the tissues (dimensions in this case). To visualize the tissursnsions in dimensions space. In our model, dimensions are the basic
we utilize the loadingsl of the PCs as ous function. The loadings visual entities of the visual analysis in dimensions space. Such an ap-
are the weights of each single tissue (dimension) in the resulting P@sach enables us to extend the knowledge in the interactive visual
and they indicate how much a tissue contributes to the principal coamalysis of data items to the visual analysis of dimensions. To the best
ponent. In Figure 8-b, tissues are plotted agaihsalues (for PC1 of our knowledge, our model is one of the first IVA approaches, where
and PC2). Here, the ones with higher loadings (in absolute values) #re dimensions are interactively and iteratively analyzed as first-order
more important variables and the ones with close-to-zero loadings &®ual entities together with the actual data items.

considered as redundant. We leave out redundant samples (Figure &y present a formal definition of our model by defining: i) the data
¢) and visualize the updated PCA results (Figure 8-d). Here, we Sggnsformations that are used to iterate from one space to the other; ii)
that, we get a smaller number of outlier genes. We select the outlig{,shing and F+C visualization to achieve the linking of views. We
genes and apply LDA using only these genes. We observe that Wikine how MVA tools and statistics are tightly integrated into the dual
this setting, LDA is able classify 30 samples correctly. _analysis concept. Additionally, we present a set of possible analysis
~ We continue the analysis by visualizing the tissues in grocedures that involve the joint interaction of items and dimensions.
interquartile-rangel QR) vs. o scatterplot. Botto andIQR are mea-  Fingjly, we evaluate the model in the context of a DNA microarray data

sures of variability, howeveo is easily affected by outliers. As a analysis, where the analysis of data items and dimensions is equally
result, if there is a large deviation betweldR and o values of a di- important.

mension, this dimension is likely to contain outliers. In Figure 8-¢,

we remove such dimensions and re-compute PCA with the select . .
dimensions. As a result, we observe that we get a more reliable pEiR1ensional data. They are used for several purposes such as explain-

result (Figure 8-f). By selecting the outliers, we observe that LDA'9 the.rellations between dimensions, classifying items intq groups
classified 34 samples correctly. Additionally, we select a group of ofif Predicting the classes of items. One of the problems with these

lier genes (Figure 8-g) to explore how the tissues relate to this selecf@ﬁth.c’ds IS thaF, they treat all t.he dimensions of the data equally and
group. In Figure 8-h, we see that while thendo values for most of consider them in the computations even though they may not be rele-
’ \éarnt. In certain cases, the relevance of the dimensions can be compu-

the tissues change in a similar manner, one tissue is clearly an outl ; ) . '
9 y ég}_lonally determined, e.g., by looking at the correlation between di-

In this use-case, we demonstrate how our model brings new po mensions. In some other cases, however, the relevance of a dimension
bilities to the analysis of DNA microarrays. Additionally, we demon- : : ' . ;
n only be determined by the analyst's preferences or prior knowl-

strate how a statistical tool LDA, is used as a validation step. At eagﬁ ; AT
iteration, LDA results provides an immediate feedback if the currefit 9 about the data. Moreover, the effects of data item distributions

selection improved the results or not. need careful attent_ion while dealing wi_th MVA_tooIs. Such considera-
tions are only possible with the careful inspection of data subsets by an
expert. With the presented model, we exploit the tight integration of
MVA tools in the visual analysis process and enable the user to reflect
In this paper, we introduce a visual analysis model that enables ther preferences to the analysis. Here, the analyst is given the possibil-
dual analysis of items and dimensions of high-dimensional data. Tityeto steer the MVA tool by means of interactivity and as a result, both
iterative and joint analysis of the data is performed over two linketthe outcome of visual analysis and the performance of MVA methods

MVA tools provide elaborate mechanisms to explore high-

8 CONCLUSION



are improved. [16]

In this paper, we do not focus on specific MVA tools or specific
statistics. Therefore, we picked some of the well-known tools and
statistics such as PCA, LDA, o, skew kurt, andIQR. The concept [17]
of dual analysis can have utilizations with different MVA tools. We
plan to work on visualizations and advanced interaction mechanisms
that are more specific to certain MVA tools. We will further investigatgl]g]
the utilization of our model in the context of other application domains
where the dual analysis concept could prove to be helpful. 19]

As a future work, we will extend our model to include statistics that
consider pairs of dimensions, e.g., correlation, regression. Additiopg
ally, as another extension, we plan to include visualizations that can
provide a formal validation for the interactions, e.g., projection pregjz1)
sion [28].

We think that the presented model brings up new opportunities [22]
the analysis of high-dimensional data. By looking at the data from
two different perspectives with the help of MVA tools, it is possible td23]
build elaborate and specialized visual analysis frameworks.
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