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Brushing Dimensions –
A Dual Visual Analysis Model for High-dimensional Data

Cagatay Turkay, Student Member, IEEE, Peter Filzmoser, and Helwig Hauser, Member, IEEE

Abstract— In many application fields, data analysts have to deal with datasets that contain many expressions per item. The effective
analysis of such multivariate datasets is dependent on the user’s ability to understand both the intrinsic dimensionality of the dataset
as well as the distribution of the dependent values with respect to the dimensions. In this paper, we propose a visualization model that
enables the joint interactive visual analysis of multivariate datasets with respect to their dimensions as well as with respect to the actual
data values. We describe a dual setting of visualization and interaction in items space and in dimensions space. The visualization of
items is linked to the visualization of dimensions with brushing and focus+context visualization. With this approach, the user is able
to jointly study the structure of the dimensions space as well as the distribution of data items with respect to the dimensions. Even
though the proposed visualization model is general, we demonstrate its application in the context of a DNA microarray data analysis.

Index Terms—Interactive visual analysis, High-dimensional data analysis.

1 INTRODUCTION

The rapid development of increasingly powerful computers and the
improving methods for data acquisition lead steadily to more chal-
lenging datasets with respect to their analysis. On the one side, the
large number of items in datasets is challenging. On the other side,
the increased complexity of datasets, in particular in terms of larger
numbers of expressions (dimensions) per item, is posing highly inter-
esting questions. Both challenges have been addressed for many years
in statistics research, data mining, machine learning, and visualiza-
tion. With respect to related visualization research, and in particular
with respect to recent activities in visual analytics, a somehow skewed
picture appears. There is ample work on items-based visualization
approaches, where the data items in a dataset are represented either
explicitly or implicitly in the visualization. On the contrary, there is
much less work, which addresses the dimensions as first-order objects
of the visualization. Understanding a dataset’s dimensions, however,
such as its intrinsic dimensionality, for example, is often also impor-
tant for an effective analysis of the data. Accordingly, we see a press-
ing need to also support this task (understanding the dimensions of a
dataset) with means of interactive visual analysis.

In the context of this paper, dimensions are considered as a mixture
of dependent and independent variables. An example would be a cars
dataset about a number of cars (as the items), each of which being as-
sociated with several values, such as gas mileage, price, engine size,
i.e., the dimensions in this data. Analysts often use multivariate sta-
tistical analysis (MVA) techniques, for example, principal component
analysis (PCA), linear discriminant analysis (LDA), clustering, etc., to
understand the underlying relations between the dimensions and the
data items [20]. However, as the dimension count gets larger, and
noisy values in dimensions (e.g., outliers) influence the represented
information, the output of these methods becomes harder to interpret
and occasionally less reliable [1].

Also it is often so that high-dimensional datasets come with a num-
ber of dimensions which are more important in order to explain the
underlying phenomena than others. Datasets are also often populated
with dimensions which are derived from each other or which carry no
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additional information about the phenomenon being explored (but are
included for other reasons, e.g., their own absolute scale). If we refer
to the cars dataset again, examples of derived dimensions could be the
price of the same car in different currencies. Analysts are often, for ex-
ample, interested in discovering theintrinsic dimensionalityof the data
which corresponds to the minimum number of dimensions which can
explain the relations in the data [21]. Accordingly, multivariate statis-
tical analysis is often preceded by adimension reductionphase where
the main goal is to create a lower dimensional space [20] that still con-
tains the essential information from the original dataset. One of the
most popular methods for dimension reduction is principal component
analysis (PCA). PCA can be used to create a lower-dimensional repre-
sentation of the data that still captures most of the variance in the data.
However, the resulting dimensions are usually difficult to interpret. In
this respect, there are studies in statistics research to improve the inter-
pretability of the results by filtering the dimensions prior to PCA [7].
These studies try to create sparse representations of principal compo-
nents by identifying and leaving out “redundant” dimensions that do
not contribute to the overall variance of the dataset [7].

Another important consideration in most of the MVA methods is
their assumptions on the underlying data distributions. Popular MVA
methods such as PCA or regression analysis, for instance, assume
that the data are normally distributed with respect to their dimensions.
However, many of the high-dimensional datasets in practice fail to ful-
fill this assumption, for instance, due to outliers. Handling of outliers
and observing the descriptive statistics of dimensions to assess their
normality is crucial when considering the reliability of MVA results.
This aspect of MVA is, therefore, subject to many studies under the
name of “robustness” in statistics. Such studies try to improve the
resistance of analysis methods to outliers and try to make them less
dependent on the distribution of dimensions [8].

There are several application fields where the relations between the
items are at least as important as the relation between the dimensions,
such as DNA microarray data analysis [6]. In such areas, methods that
operate on items and dimensions at the same time are of great potential
interest. Most of the existing MVA methods, however, operate either
on items or on the dimensions and the joint interpretation of these
separate results is not always straight forward. Accordingly, there is a
need for methods that enable the joint analysis of items and dimensions
in such datasets, also by considering the effects of dimensionality and
variable distributions.

Interactive visual analysis has been used extensively to visualize
high-dimensional data and MVA results [10]. The common approach
in the visual analysis of high-dimensional data is to visualize the items
as opposed to different dimensions in linked views and to support the
discovery of relations between expressions by means of interaction.



This approach also provides an aid to derive hypotheses on thein-
trinsic dimensionality of the data. Unless supported by MVA tools,
however, interactive methods alone fail to provide a comprehensive in-
sight on the data, especially as the dimension count gets larger and as
the relations between the dimensions become more complex. A more
“fruitful” analysis requires the integration of computational tools in the
visual analysis cycle as suggested, for example, by Keim et al. [23].
Moreover, an interactive visual analysis solution should also enable
the exploration of the dimensionality of the data by considering the
“redundancy” and “robustness” constraints throughout the analysis.

In this paper, we now present a visual analysis model where the
analysis of items and dimensions is carried out in two linked spaces,
namely items spaceand dimensions space. We utilize the current
knowledge about the interactive visual analysis of data items to also
enable the interactive visual analysis of data dimensions. In our model,
we suggest a setting of linked views, where the analyst interacts with
the items in items space, e.g.,by brushing items, and with the dimen-
sions in dimensions space, f.i.,by brushing dimensions. Firstly, our
model aims to provide more insight with respect to theintrinsic di-
mensionalityof the dataset based on interactions in both spaces. By
selecting useful combinations of dimensions and leaving out redun-
dant ones, the analyst can improve the MVA results according to prior
knowledge and interpretation. Secondly, by interacting with the data
items, the analyst has the opportunity to relate data subsets to MVA
results. With such interactions, the analyst can modify the distribu-
tion of items, e.g., by removing outliers, and observe the change with
respect to MVA results.

In the following, we first exemplify our approach in the context of
an illustrative example (after having discussed related work), before
we then present a model for a dual visual analysis of high-dimensional
data. We describe how the data analysis is performed through trans-
formations and how brushing and focus+context visualization is inte-
grated in the model. Specifically, the contribution of this paper are:

• a novel method for the joint and linked analysis of items and dimen-
sions of high-dimensional data,

• a formal model which describes the transformations, brushing oper-
ations, and focus+context visualizations in the dual analysis frame-
work, and

• a set of procedures and guidelines to preform such a dual visual
analysis of high-dimensional data.

2 RELATED WORK

Interactive visual methods have been used extensively in the analysis
of high-dimensional data. An overview of related studies is available
in surveys by Wong and Bergeron [36] and by Fuchs and Hauser [10].
Coordinated multiple views have proven to provide insight into high-
dimensional datasets by means of linking and brushing in views which
display different aspects of the same data [30]. Examples of such
approaches are realized in the XmdvTool [33], Polaris [31], and in
ComVis [26]. Many efforts have been made to explore multivariate
data with visualization. Jänicke et al. [17] propose the brushing of
multivariate data after a projection to an attribute space which can be
visualized in a 2D view. In cross-filtered views [34], Weaver enables
the exploration of relations between dimensions by cross-filtering data
values from different views.

In order to cope with the complexities as induced by a higher num-
ber of dimensions, dimension reduction methods have been integrated
into the visual analysis pipeline. In VHDR [38], Yang et al. group
dimensions in a hierarchy and create lower-dimensional spaces using
representative dimensions. Their method also provides opportunities
to manually reduce dimensions. Jeong et al. [18] provide a set of in-
teraction mechanisms that operate on PCA results. With modifications
of the parameters of PCA, it is possible to observe changes in the PCA
results.

Visual analysis methods have been used jointly with a number of
computational methods. Fuchs et al. [11] integrated machine learning
with interactive visual analysis to support hypothesis generation. In

MDSteer [35], Williams and Munzner present a steerable multidimen-
sional scaling computation where it is possible to steer the analysis to
the areas which are interesting for the user.

A number of different statistical tools have been integrated into
visualization systems. Guo et al. [14] enable the interactive explo-
ration of multivariate model parameters. They visualize the model
space together with the data to reveal the trends in the data. Gosink et
al. [13] use a query-driven visualization with a statistics-based frame-
work. They utilize query distributions to estimate trends and features.
Correa et al. [4] consider the uncertainties that arise while transform-
ing the data. These uncertainties are integrated in the visualization to
support the interpretation of statistical analysis results.

There are a number of studies where the joint analysis of data items
and dimensions have been investigated. In the Rank-by-Feature frame-
work [29], Seo and Shneiderman rank the relations between dimen-
sions according to user-defined statistical features. The authors present
how a joint analysis framework is useful to steer certain statistical pro-
cesses. However, their approach is limited to computations on the
whole dataset. In our model, we enable the interactive exploration
and comparison of statistical features under different subset selections.
Moreover, we treat dimensions as any other data item and present them
with visual entities in the proposed dimensions space. The successful
utilization of joint analysis of two different spaces in the context of
parameter space navigation is presented by Berger et al. [3]. In an-
other study, Andrienko et al. [2] describes how a dual analysis scheme
is utilized in spatio-temporal datasets. Their approach involves the
dual analysis of spatio-temporal datasets over spatial distributions and
temporal variations. Unlike our model, their approach is specific to
spatio-temporal datasets. In our model, we utilize a similar dual anal-
ysis idea for the general case of high-dimensional datasets.

Another important related work is the Value and Relation (VaR)
display by Yang et al. [37]. In this work, the authors represent the di-
mensions with glyphs, which are projected to a 2D layout using multi-
dimensional scaling. In this work, the actual data items are only rep-
resented through glyphs and the interactive analysis of items together
with dimensions is not possible.

Another important study in relation to our model is by Kehrer et
al. [22], where the authors compute statistical moments from the data
and plot data aggregates as opposed to these moments. In their work,
a set of scatterplots and transformations between them are defined.
Their framework provides mechanisms to explore trends and outliers
in aggregated datasets. This framework displays the benefits of using
statistics in the visual analysis of data aggregates together with data
items. In our work, we define a more general model which operates
on high-dimensional data using statistical analysis methods together
with statistics computations. With our model, we extend the current
approach to the visual analysis of high-dimensional data with the idea
of a joint and linked analysis of data items and dimensions.

Throughout this paper, we utilize a number of multivariate statisti-
cal analysis methods such as principal component analysis (PCA) and
linear discriminant analysis (LDA). PCA is a popular, unsupervised
dimension reduction method that is widely used in multivariate statis-
tical analysis [20]. The goal of PCA is to create a lower-dimensional
projection of an originally high-dimensional dataset while preserving
as much of the variance in the data as possible. PCA creates an or-
thogonal coordinate system where the axes are called principal com-
ponents (PC). ThesePCs are all linear combinations of the original
dimensions where the weights are referred to as theloadings. LDA is
a supervised dimension reduction method that finds a linear combina-
tion of the original dimensions by considering class labels [20]. LDA
attempts to maximize the class discrimination while reducing the di-
mensionality of the data. LDA is used as a classifier or as a dimension
reduction method. One important point is that both methods assume
the data to be normally distributed.

In addition to PCA and LDA, we also make use of certain descrip-
tive statistics, namely the mean (µ), the standard deviation (σ ), the
skewness (skew), the kurtosis (kurt) and interquartile-range (IQR).µ
can be estimated by the average of the values in the data,σ is the stan-
dard measure of variability,skewindicates if a distribution is centered,
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Fig. 1. An illustrative example for a joint visual analysis of items and dimensions of the “Boston Housing Prices” dataset. Three scatterplots are set
up first: a) S1: house prices (MV) vs. crime rate (CR), b) S2: the first two principal components (PC1 vs. PC2), c) S3: mean (µ) vs. standard deviation
(σ ) values for all the dimensions of the data. d) The main trend in the data is selected in S1. e) µ and σ values are re-computed for the selected
items and changes are visualized in S3. f) Dimensions that deviate less are selected for a re-computation of the PCA. g) PCA results (before and
after) are visualized in a F+C style.

or not, whilekurt indicates the peakedness of a distribution andIQR
is a robust statistics that also describes the variance of a distribution.

3 AN ILLUSTRATIVE DUAL ANALYSIS EXAMPLE

Before we present our more formal model further below, we first de-
scribe an illustrative example where a visual analysis of data items is
carried out together with a visual analysis of the dimensions. Our aim
here is not to already provide a comprehensive guide, but to informally
demonstrate the basics of our dual analysis model.

As also generally in this paper, we assume that our datasets come
in a tabular form withn items (rows)x j ∈ Ω (set of items), each of
which with values inm dimensions (columns)dk ∈ ∆ (set of dimen-
sions). In the following, we denote thekth value of the j th item as
x j,k. For this first illustration, we study the well-known ‘Boston Neigh-
borhood Housing Prices’ dataset [16]. This dataset contains informa-
tion gathered by the U.S Census Service to understand the relation
between housing prices and other factors in the area of Boston, Mas-
sachusetts. It consists of 506 samplesx j and 14 dimensionsdk (i.e.,
|Ω|= 506,|∆|= 14). Some of the dimensions that we refer to later are:
‘median value of owner-occupied homes’ (MV),‘crime rate by town’
(CR), ‘proportion of houses built before 1940’ (AG) and ‘proportion
of lower status of the population’ (LS).

In our analysis, we utilize PCA to understand the intrinsic dimen-
sionality of this dataset. To reduce the effects of outliers on PCA, we
analyze the data to determine outlier-free dimensions. We compare
PCA results based on all dimensions and those computed for only se-
lected dimensions, in order to achieve a better interpretation of the
analysis results.

To enable the comparability of dimensions, the analysis starts with a
normalization of the dimensions. To normalize the dimensions, we ap-
ply linear scaling to the unit interval in this case. We then estimate the
mean (µ) and standard deviation (σ ) of all the columns (dimensions),
in order to get a first impression of the included data distributions. We
apply PCA to all the dimensions and project the data onto the first two
principal components (PC1, PC2). We continue with the visualization
of the items in a scatterplotS1 (Figure 1-a) with axes CR and MV and
another scatterplotS2 (Figure 1-b) with axesPC1 andPC2. Addition-
ally, we plot theµ andσ values of all dimensions in a scatterplotS3
(Figure 1-c).

We then start the interactive analysis by brushing (selecting) a sub-
set of items inS1. This brush leaves out the larger values of MV and
CR and selects the items which (roughly) amount to the main trend
in the data (Figure 1-d). As a next step, theµ andσ values are es-
timated (automatically) for the selected items and sent toS3. As a
result,S3 gets updated to show the dimensions’ statistics with respect
to both the items selection as well as with respect to all of the items
(Figure 1-e). Theµ andσ values corresponding to the selected subset
are highlighted (with orange color), while the originalµ and σ val-
ues (corresponding to the entire dataset) are presented as reference (in
gray). The two points in the scatterplot which correspond to the same
dimension (entire dataset vs. selected subset) are connected with a ta-

pered line to ease their identification. In Figure 1-e, we see that while
the values for some of the dimensions changed prominently, some of
them are not much affected by the selection. A simple first interpre-
tation of the resulting visualization is that the dimensions that did not
deviate so much due to the selection, possibly can be considered to be
less sensitive to non-standard values of MV and CR. We then select
the most “stable” dimensions inS3 and PCA is applied automatically
using only the dimensions selected in Figure 1-f. We then project all
the items to the newly computed principal components and send the
resulting values toS2. Through a focus+context visualization of the
two different projections of the items inS2, we can clearly see that the
projection results changed dramatically (Figure 1-g). An interesting
split into two groups with respect to the new PC1, for example, can be
observed. In such an explorative setting, the analysis may not always
converge to the mathematically best-possible result. However, through
the selection of suitable statistics and the use of interactive brushing,
the analysis leads to both additional insight on the data and results that
are easier to interpret. Guidelines for a robust analysis process are
provided in Section 6.

The above presented short illustration brings up new opportunities
for the analysis of high-dimensional data. Such a dual visual analysis
of both items and dimensions leads to a novel perspective on looking
at high-dimensional data. In the following section, we formalize this
dual analysis idea in the form of a model by defining the underlying
linking&brushing and focus+context (F+C) visualization mechanisms.

4 THE DUAL ANALYSIS MODEL

Analysts are often faced with high-dimensional data which comes in a
tabular form where items are rows and dimensions are columns. In
conventional visual analysis approaches that involve multiple coor-
dinated views, items are visualized using visualizations like scatter-
plots, histograms or parallel coordinates. In such visualizations, the
items are plotted in the views as opposed to the dimensions of the
data. The visual analysis of data items is often carried out using link-
ing&brushing and focus+context visualization. Our dual visual analy-
sis concept builds upon these conventional practices and proposes the
visual analysis of data in two linked spaces, namely initems space I,
and indimensions space D. With items space we refer to a visual-
ization domain where each visual entity in a visualization corresponds
to a data item. In the dimensions space, however, each visual entity
represents a dimension of the data. To illustrate, if we visualize the
housing data in both of the spaces, using scatterplots, a point in items
space corresponds to a single house, whereas in the dimensions space,
a single point represents a dimension, crime rate by town, for instance.
By separating the visual analysis space into two, we provide opportu-
nities for the joint and parallel analysis of items and dimensions.

A conceptual sketch of our model is depicted in Figure 2. Here,
items space includes the visualizations of MVA results (such as a
projection on principal components). The analyst iteratively per-
forms item and dimension selections in order to observe the changes
in dimension statistics as well as MVA results. The duality in the
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Fig. 2. The dual analysis model sketched. Visual analysis is per-
formed over two spaces, items space and dimensions space. Visual
entities correspond to items in items space and dimensions in dimen-
sions space. Analysis advances iteratively by selecting items and di-
mensions. The interactions enable the joint and linked exploration of
dimension statistics and multivariate analysis (MVA) results.

model is achieved by linking the visualizations in the two spaces.
In order to fully accomplish this link, we formulatebrushing and
focus+contextvisualization mechanisms, as well as transformations
which are needed to establish the relation between the two spaces.

4.1 Data Transformations

The iterative analysis of items and dimensions is at the core of our
model. During a typical iteration, the focus of the analysis moves
from one space to the other. In order to achieve the transitions be-
tween items and dimensions space, our model requires a set of data
transformations.

From dimensions space D to items space I : The basis for the
first type of transformations relates to the MVA methods that oper-
ate on the dimensions∆. Such methods are here denoted byf . We
generalize transformationsf to operations that createl new data di-
mensions when applied. In the illustrative example in Section 3, PCA
is an example of such anf transformation. Throughout the iterative
analysis loop, theith transformation of data throughf is defined as:

T i
D( f ) : ∆′ f

→ ∆i where∆i = {dc+1, ...,dc+l} with anyda being a full
new columnda = {x1,a, ...,xn,a}

T andc=∑i−1
t=0 |∆

t |. Note that, in these
transformations, all the items are projected onto the new dimensions
and∆′ ⊆ ∆ represents a selection of dimensions of the data before the
transformation. At a certain point in the iterative loop, where the ana-
lyst have madey of these transformations, the final set of dimensions
is denoted as∆+ = {∆0

, ...,∆y} with ∆0 = ∆, i.e., the original data
dimensions.

Although we exemplify PCA as onef method, it can also be any
other MVA tool which creates a mapping of the original dimensions. It
is possible to consider methods like multidimensional scaling (MDS)
and factor analysis (which are other dimension reduction techniques),
clustering (which maps the data items to class labels), and LDA (which
maps the data items to known classes) [20].

As an initial transformation, which usually precedes the statistical
analysis as well as the visualization, we normalize the dataset so that
values in all the dimensions are quantitative and comparable. Normal-
ization also ensures that all of our dimensions are suitable for visu-
alization in a scatterplot, histogram, etc. Moreover, normalization is
an essential step for most of the multivariate analysis processes [27].
This normalization step is denoted withT1

D(N) whereN is a normal-
ization method, such as linear normalization to the unit interval or
z-standardization [27]. The results ofT1

D(N) is denoted with∆1 where
∣

∣∆1
∣

∣= |∆|.
From I to D: We use transformationss to iterate from items space

to dimensions space. Examples ofs can be descriptive statistics or an
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Fig. 3. Items space views both visualize normalized dimensions, e.g.,
CR or MV in housing data, and derived dimensions, e.g., PCA results
PC1 or PC2. Dimensions space views visualize dimensions as opposed
to statistics, such as µ or σ . Here, the initial setup is done by computing
PCs (1), µ and σ (2). Brushes from items space (3) triggers F+C vi-
sualizations in dimensions space by going through transformations (4).
Similarly, brushes from dimensions space (5) updates the MVA result vi-
sualization through transformations (6). This interactive loop continues
iteratively by modifying the selections on both sides.

aggregation of data items. Here, we mainly consider statistics ass. If
we considerσ ass, the result of the transformation are theσ values for
each and every dimension in the data. In ther th iteration of the analysis
the transformation which computesg new values per dimension using
s is defined as:Tr

I (s) : Ω′ s
→ Ωr whereΩr = {xe+1, ...,xe+g} with any

xa being a full new rowxa = {xa,1, ...,xa,m} ande= ∑r−1
t=0 |Ω

t |. Here,
Ω′ ⊆ Ω represents a selection of items. In the course of the analysis,
the analyst can makez of these transformations where she produces
the final set of computed valuesΩ+ = {Ω0

, ...,Ωz}. To generalize,
regarding the set of possibles functions or statistics, it is possible to
consider descriptive statistics such as mean, variance, skewness, kur-
tosis and more elaborate values like statistical test results or robust
estimates.

The selection of dimensions∆′ and itemsΩ′ is formulated through
a degree-of-interest (doi) mechanism. Similar to fuzzy set definitions,
we define∆′ = (∆,doi∆) and Ω′ = (Ω,doiΩ) wheredoi∆ and doiΩ
are mappings to define selection degrees. In the case of binary se-
lections, where an item is either selected or not, selections are de-
fined asdoiΩ : Ω → {0,1}. In the case of continuousdoi values,
where items are selected to a certain degree, selections are defined
asdoiΩ : Ω → [0,1]. Such a continuous selection mechanism can be
achieved through smooth brushes [5]. The addition of smooth brushes
brings the possibility of weighing the dimensions prior to a dimension
reduction operation, for instance.

4.2 Brushing & Focus+Context Visualization

The conventional visualization of high-dimensional data in items
space is achieved by plotting the items with respect to the original
dimensions and the derived dimensions, i.e.,∆+. The visualizations
in dimensions space, however, visualize dimensions∆ as opposed to
the statistics computed byTI (s)r operations, i.e.,Ω+. We denote the
views in items space withVI and views in dimensions space withVD.
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Fig. 4. Focus+context visualizations in scatterplots of two different PCA
results (a) and of two sets of statistics σ , µ (b). The recomputed values
are in focus after the selection, and the values from before the selection
are provided as context. Depending on the point count, two different
styles are employed (with and without lines).

It is worthwhile to mention that the columns of our dataset are treated
as rows in dimensions space. Accordingly, our approach can also be
thought of as transposing the dataset and performing the visual analy-
sis using a different perspective in dimensions space. In the illustrative
example in Section 3,S1 andS2 are examples ofVI andS3 is an exam-
ple ofVD.

We follow the conventional linking&brushing mechanism between
the views that are in the same space; i.e., when certain items in aVI
are brushed, the same items are highlighted in otherVI s using a fo-
cus+context visualization and the same mechanism works also forVDs.
In order to define the links between views from different spaces, we
extend this mechanism by handling the brushes through thef ands
transformations. The transitions between the two spaces and illustra-
tions for the associated F+C visualizations scheme are illustrated in
Figure 3.

A brush inVI is defined asBI : Ω → Ω′
whereΩ′

⊆ Ω. In order to
transferBI to dimensions space, brushed itemsΩ′

are transformed by
TI (s)r using the currents. The resulting valuesΩ+ update visualiza-
tions in dimensions space. An example of such a brushing operation
can be seen in Figure 1-d,e. Here,σ andµ values (i.e.,s transforma-
tions) are re-computed for the selected items inS1 and the computa-
tions updateS3.

A brush inVD is defined asBD : ∆ → ∆
′
with ∆

′
⊆ ∆. BD is trans-

ferred to items space by going through the transformationTD( f )i .
And, the resulting∆

′
updateVI s accordingly. An example for this

type of operation can be seen in Figure 1-f,g. Here, the dimensions are
selected inS3 and the selection of dimensions is an input to the PCA
operation.

In a typical F+C visualization, the common interpretation of focus
are the selected items and the context is the rest. In our model, we
slightly extend this definition of F+C visualization. Focus and context
are two different visualizations of the same items, that are computed
using different subsets of the dataset. The results of the last transfor-
mation (f or s) is set as the focus and those of the preceding one as the
context. Notice that each point in a scatterplot is drawn twice, once
with the old and once with the new value. Here, we follow a simple
strategy to show the results. If the point count is large, we plot fo-
cus and context in different colors (Figure 4-a). If the point count is
small, we additionally connect the related points with a tapered line
(Figure 4-b). Although this simple solution is adequate for illustrative
purposes in this paper, one should think of more intelligent ways to
achieve comparative visualizations, e.g., difference views [24].

One important point to mention, also, is that, in the F+C visual-
izations of the first type of views, the focus is computed as a “lazy
evaluation”, i.e., the focus of a view, is linked to a brush and it is com-
puted automatically as the brush moves. This approach is necessary
for the sake of interactivity in the model. Additionally, the context of
the views can be updated at any point throughout the analysis. With
such an extension, it is possible to compare the statistics and analysis
results of any different item-dimension subsets.

(a) (b)

Fig. 5. The proposed dual analysis extended to parallel coordinates
plots (PCP). a) PCP from items space visualizing items over the first
three principal components. b) PCP from dimensions space visualizing
σ , kurt, skewand IQR values for the dimensions.

4.3 Extensions to the Model
It is possible to extend the proposed dual analysis method to also in-
corporate different visualization techniques, e.g., parallel coordinates
plots (PCP). While lines in a PCP represent data items in items space,
they represent dimensions in dimensions space. Accordingly, axes of a
PCP in items space are the original dimensions of the dataset and they
correspond to differentΩ+ in dimensions space. An example of these
dual PCPs can be seen in Figure 5. In order to visualize the deviations
and employ our dual focus+context approach in a PCP, comparative
visualization methods, like Temporal Parallel Coordinates [19] can be
utilized. Another possible extension is to employ glyphs as the visual
entities in dimensions space [37]. One can think of glyphs where each
visual channel represent differentΩ+ values.

In its current state, the model is designed for datasets that come in
a 2D tabular form. However, it is possible to extend the model to 3D
data tables, e.g., to datasets where the third dimension is time. In the
dual analysis of such datasets, visualizations in items space are con-
ventional visualizations of temporal data, i.e., each data item is repre-
sented by a curve over time in a function plot. In dimensions space,
however, each curve represents a dimension over time. We performs
transformations on each temporal dimension and visualize the results
in a function plot in dimensions space. In Figure 6, this mechanism is
illustrated. Here, we visualize measurements from a weather station
in Bergen, Norway. The dataset contains daily measurements, such
as temperature, pressure, precipitation, for all the years between 2000
and 2010. In Figure 6-a, each curve represents the temperature values
for one year. On the other side, in dimensions space, we computeσ
values for each dimension over time. And the result is a curve for each
dimension plotted againstσ values as seen in Figure 6-b.

5 PROTOTYPE IMPLEMENTATION OF THE MODEL

We implemented our model in an interactive visual analysis environ-
ment where we enable linking&brushing and focus+context visualiza-

(a) (b)

Temporal Data Item

Temp

Time Time

s

Temporal Data Dimension

Fig. 6. A dual analysis of temporal data. a) An items space visualization
of daily average-temperature values from a weather station in Bergen,
Norway. b) A dimensions space visualization where each curve corre-
sponds to a dimension. The values are σ values that are computed for
each time-step.



Table 1. Possible multivariate statistical tools ( f transformations) and
corresponding statistics s for the dual analysis setting

Analysis f s

Dimension reduction
(unsupervised)

PCA, MDS loadings, mean, variance, me-
dian, skewness, kurtosis, IQR

Dimension reduction
(supervised)

LDA, SVM variance, information theory

Finding groups in data Clustering mean, variance, median, IQR

tions of data in scatterplots and other views. We implemented two
types of scatterplots, with two types of F+C visualization, as already
discussed above. Our aim with the prototype implementation is to
showcase the utilization of the system using simple visualization solu-
tions.

Our implementation utilizes composite brushing, as proposed by
Allen and Ward [25], as the underlying brushing mechanism. In
this mechanism, each brush is combined with existing brushes by
a Boolean operatorop with op∈ {∪,∩,¬}, where∪ represents the
union,∩ represents the intersection and¬ represents the not operator.
To ensure an easier utilization of different types of views, the visual-
ization space is physically divided into two, one to show items space
and the other one for dimensions space. Additionally, to include a
wider range of MVA tools into the system, we integrate theR statisti-
cal computation package into our system [32].

6 DUAL ANALYSIS PROCEDURES

The dual analysis process provides a number of opportunities in the
visual analysis of high-dimensional data. Here, we provide a guide
for selecting and using the transformations and visualizations in the
proposed dual setting.

6.1 Selecting Transformations

Depending on the type and the goal of the analysis, the analyst deter-
mines the multivariate statistical analysis tools and statistics to utilize.
The selected tools and statistics then correspond to the transformations
in our model. In Table 1 we provide a non-exhaustive list of common
MVA tools f and statisticss that are suitable for the dual analysis
scheme. Note that the dual analysis model is not specific to any of
these methods.

One important type off transformations are unsupervised dimen-
sion reduction methods such as PCA and MDS. The reliability of the
results of such methods depend on the normality and “outlier-freeness”
of the data columns. Additionally, to improve the interpretability of
the results, redundant dimensions should be discarded. Principle com-
ponent loadings,σ and the interquartile range (IQR) can be used to
assess the dimensions’ redundancy whileµ, σ , skewness and kurtosis
can be used to evaluate normality and the existence of outliers. Similar
s transformations are preferred for clustering, where the quality of the
results is affected by a high number of dimensions as well as outliers
in the data.

In supervised dimension reduction methods like LDA and Support
Vector Machines (SVM), the normality of the data is not required.
However, the selection of dimensions is crucial with respect to the
quality of the results, also. In order to determine important dimen-
sions,σ , IQRor information theoretic measures can be utilized [15].

In all of these methods, filtering dimensions prior to the analysis
both improves the quality and interpretability of the results. Therefore,
dimensions need to be evaluated in terms of their variance (saliency)
and/or entropy [15]. Dimensions that are poor in information content,
i.e., with a low variance, low entropy, near-zero loadings in PCs, can
be marked as “redundant” and left out from the analysis.

6.2 The Analysis Process

In the following, we provide a task-based guideline to carry out an
analysis in the proposed dual framework:

• To understand the relations between dimensions: A subset of items
are selected first. As a result, the changes ins values in dimensions
space reveal the correlation between dimensions with respect to the
selections. Larger deviations ins values indicate a higher correla-
tion.

• To explore the dimensions that determine the main trend or the out-
liers in the data: Items that correspond to the main trend or outliers
are selected in a lower-dimensional projection of the data. Devia-
tions in dimensions space reveal such dimensions.

• To leave out/select dimensions: Dimensions are evaluated in terms
of the information they contain through the use of certains such as
σ , principal component loadings and entropy.

We follow these guidelines and go through the steps of a detailed anal-
ysis process that is similar to the one we presented earlier in Section 3.

In this analysis, we aim to explore the relation between dimensions
and find lower-dimensional representations of the data to derive new
hypotheses. Hence, we set PCA to be our mainf andσ , µ, skew, and,
kurt to bes transformations.

The analysis starts with the normalization step (T1
D), where the data

is scaled, for example, to the unit interval and followed by the com-
putation ofσ , µ, kurt andskewvalues for all the dimensions using
all the items. Additionally, we perform PCA on the data using all the
dimensions.

In the next part of the analysis, we try to understand the relations
between dimensions. The changes in basic descriptive statistics (such
asµ andσ ) due to brushes in items space are easy to interpret and pro-
vide information on the correlations between dimensions. Therefore
in this step, we chooseµ and σ as the visualization axes in dimen-
sions space. We visualize the items in a scatterplot with axes CR vs.
AG (V0

I ) and dimensions in a scatterplot ofµ vs.σ (V0
D).

We select the areas with old houses inV0
I in Figure 7-a. In dimen-

sions space (inV0
D), we observe howσ andµ values deviate after the

brushing operation. Here, we see thatσ values for LS dropped signif-
icantly, this is due to the fact that the selection of high AG values is
sampling the lower population (LS) dimension unevenly. We interpret
this observation as follows:

High values of AG are related to very low values of LS, while low
AG values lead to a much broader range of values for LS. In other
words, only a very low proportion of the lower status of the population
is living in areas with old houses. When focusing on areas with a
lower proportion of old houses, there is no limitation with respect to
the proportion of the lower status population. This “change point”
in the relation between AG and LS was thus discovered by the big
deviation ofµ andσ when using all or just the selected data. On the
contrary, we see that there is almost no change in theµ andσ values on
the dimension MV, indicating about the same behavior of the selected
and the original data points.

In order to verify these impressions, we visualize the AG dimension
as opposed to both LS and MV (V1

I ,V2
I ). We see inV2

I in figure 7-a that
in areas with old houses, the proportion of lower society is also very
low. In V1

I , we see that MV values vary over a wide range of values
for the selected houses (i.e., in areas with older houses). Therefore, it
is not possible to talk about a correlation between MV and AG.

The second phase of the analysis involves the elimination of outliers
to refine the PCA results. To determine outliers, we use the PCA re-
sults (which are already biased by the outliers) that are obtained earlier
(V3

I ). V4
I in Figure 7-b shows how PCA results change after removing

the outliers with the brush inV3
I . The updated PCA results now dis-

play two groups of items, however there is still substantial variation in
the groups.

Additionally, the effects of outlier removal are observed through the
changes in dimensions space. In Figure 7-b (2), we observe thatµ vs.
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Fig. 7. A dual analysis of the housing dataset. a) Houses in areas that have a large proportion of old houses (high AG values) are selected in V0
I .

V0
D is updated using new µ and σ values (1). Deviations in V0

D indicate a correlation between dimensions w.r.t. the selection. The most deviating
(LS) and the least deviating (MV) dimensions are plotted for a deeper analysis. The variance of the selections (in V1

I and V2
I ) justifies the deviations

in V0
D. b) Outliers are removed in V3

I and PCA is applied with the selected items. V4
I is updated with the new results (2). As a result of the selection

in V3
I , one of the dimensions is marked in V0

D as the source of the outliers. Before operation (3), the current PCA results are set as the context of
V4

I . Normally distributed dimensions, w.r.t. kurt and skewvalues in V1
D, are selected (3). Updated PCA results now display two groups. One of the

groups is selected in V4
I and V0

D now reveals the dimensions that distinguish the selected group.

σ values for the Tax-rate (TAX) dimension changed significantly. We
mark the TAX dimension as the source of these outliers and remove
this dimension (with a¬ brush which is not shown in the image) from
the analysis before we move on to the next step. As an intermediate
operation, we set the current PCA results (obtained by removing the
outliers) as the context of our new visualization (V4

I ).
We would now like to evaluate the dimensions’ normality to decide

whether to include them in the analysis. Therefore, we continue the
analysis in dimensions space. Sincekurt andskewvalues are indica-
tors of normality, i.e., both the skewness and kurtosis for normal distri-
bution are 0, we select dimensions through thekurt vs.skewplot (V1

D).
We select dimensions (marked with 3 in the figure) which are more
likely to follow a normal distribution by selecting dimensions with
values around 0. The updated PCA plot displays two well-separated
groups that have less variance throughout the group.

We perform a final brush inV4
I to understand which of the dimen-

sions are more distinctive for these groups (Figure 7-b, 4). We se-
lect the larger group on the left and observe the changes inµ vs. σ
values. Here, we discover four dimensions: “nitric oxides concentra-
tion”, “number of rooms”, “pupil-teacher ratio”, “proportion of black
by town” to be the distinctive dimensions. These dimensions can now
be used for further analysis, e.g., in clustering the houses.

The proposed dual analysis method continues iteratively with inter-
actions between the two spaces. Since the analyst gets an immediate
feedback of the interactions, item and dimension selections are refined
iteratively until the analyst is satisfied with the results. Note that, the
above analysis presents the interpretations of a set of specific statistics
and statistical tools. The interpretations of the views and interactions
needs to be formulated on the nature of the problem and statistics used.

7 USE CASE: MOLECULAR CLASSIFICATION USING DNA MI-
CROARRAYS

DNA microarrays and high-density oligonucleotide chips are impor-
tant monitoring technologies used in cancer research [6]. This mon-
itoring is applied to different tissue samples which are known to be
taken from a specific type of tumor. The resulting dataset then con-

tains the expression levels of thousands of genes for these different
samples. In molecular level cancer research, these datasets are ana-
lyzed to distinguish between cancer classes or even to discover new
types of cancers. Two of the main goals in this research which in-
volves statistical approaches are: classifying the samples into classes
of tumors and identifying important genes which plays a role in this
classification [6]. The statistical analysis of such data has always been
a challenge as the dataset contains a very large number of genes (di-
mensions) compared to the number of tissue samples (items). As the
analysts are interested in identifying both the groups of genes and the
groups of samples, in the analysis of microarray data, one has to ana-
lyze both the original and the transposed version of the dataset.

In this use-case, we work on a gene expression dataset provided by
Golub et al. [12]. Here, the samples are known to come from two types
of acute leukemia, namely acute lymphoblastic leukemia (ALL) and
acute myeloid leukemia (AML). The dataset consists of 7129 genes
taken from 38 different tissue samples where 27 are known to be ALL
and the rest AML. We treat the dataset in the form that, genes are
items (Ω) and samples are dimensions (∆) as it is the standard way in
statistical analysis of microarray data [9].

The task in this use-case is to find a good classifier that distinguish
the tissue samples into ALL and AML types. In order perform the
classification, we use LDA as an integrated MVA tool. Our aim is to
select a number of genes that are more important in the classification of
the tissues and thus, improve the performance of the classifier. Without
any modification, i.e., using all the samples and all the genes, LDA is
able to classify 29 of the 38 samples correctly.

In DNA microarray data analysis, outlier genes are of more impor-
tance in the classification of the tissues [9]. Therefore, we focus the
analysis on selecting the genes. We, firstly, plot the genes in a scatter-
plot using PCA and secondly, select outlier genes from the plot to per-
form the classification with the selected genes. We utilize our model
to achieve more reliable PCA results, thus improving the classification
performance.

We observe the genes in a visualization of PC1 vs. PC2 in items
space. With such a visualization, we aim to separate the more “im-
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portant” genes and filter out the less interesting ones (Figure 8-a). We
visualize the tissues in dimensions space and update PCA results by
selecting the tissues (dimensions in this case). To visualize the tissues,
we utilize the loadingsll of the PCs as ours function. The loadings
are the weights of each single tissue (dimension) in the resulting PCs
and they indicate how much a tissue contributes to the principal com-
ponent. In Figure 8-b, tissues are plotted againstll values (for PC1
and PC2). Here, the ones with higher loadings (in absolute values) are
more important variables and the ones with close-to-zero loadings are
considered as redundant. We leave out redundant samples (Figure 8-
c) and visualize the updated PCA results (Figure 8-d). Here, we see
that, we get a smaller number of outlier genes. We select the outlier
genes and apply LDA using only these genes. We observe that with
this setting, LDA is able classify 30 samples correctly.

We continue the analysis by visualizing the tissues in a
interquartile-range (IQR) vs. σ scatterplot. Bothσ andIQR are mea-
sures of variability, howeverσ is easily affected by outliers. As a
result, if there is a large deviation betweenIQR andσ values of a di-
mension, this dimension is likely to contain outliers. In Figure 8-e,
we remove such dimensions and re-compute PCA with the selected
dimensions. As a result, we observe that we get a more reliable PCA
result (Figure 8-f). By selecting the outliers, we observe that LDA
classified 34 samples correctly. Additionally, we select a group of out-
lier genes (Figure 8-g) to explore how the tissues relate to this selected
group. In Figure 8-h, we see that while theµ andσ values for most of
the tissues change in a similar manner, one tissue is clearly an outlier.

In this use-case, we demonstrate how our model brings new possi-
bilities to the analysis of DNA microarrays. Additionally, we demon-
strate how a statistical tool LDA, is used as a validation step. At each
iteration, LDA results provides an immediate feedback if the current
selection improved the results or not.

8 CONCLUSION

In this paper, we introduce a visual analysis model that enables the
dual analysis of items and dimensions of high-dimensional data. The
iterative and joint analysis of the data is performed over two linked

spaces: items space and dimensions space. The analysis iterates
through the interaction with the items in items space and with the di-
mensions in dimensions space. In our model, dimensions are the basic
visual entities of the visual analysis in dimensions space. Such an ap-
proach enables us to extend the knowledge in the interactive visual
analysis of data items to the visual analysis of dimensions. To the best
of our knowledge, our model is one of the first IVA approaches, where
the dimensions are interactively and iteratively analyzed as first-order
visual entities together with the actual data items.

We present a formal definition of our model by defining: i) the data
transformations that are used to iterate from one space to the other; ii)
brushing and F+C visualization to achieve the linking of views. We
define how MVA tools and statistics are tightly integrated into the dual
analysis concept. Additionally, we present a set of possible analysis
procedures that involve the joint interaction of items and dimensions.
Finally, we evaluate the model in the context of a DNA microarray data
analysis, where the analysis of data items and dimensions is equally
important.

MVA tools provide elaborate mechanisms to explore high-
dimensional data. They are used for several purposes such as explain-
ing the relations between dimensions, classifying items into groups
or predicting the classes of items. One of the problems with these
methods is that, they treat all the dimensions of the data equally and
consider them in the computations even though they may not be rele-
vant. In certain cases, the relevance of the dimensions can be compu-
tationally determined, e.g., by looking at the correlation between di-
mensions. In some other cases, however, the relevance of a dimension
can only be determined by the analyst’s preferences or prior knowl-
edge about the data. Moreover, the effects of data item distributions
need careful attention while dealing with MVA tools. Such considera-
tions are only possible with the careful inspection of data subsets by an
expert. With the presented model, we exploit the tight integration of
MVA tools in the visual analysis process and enable the user to reflect
her preferences to the analysis. Here, the analyst is given the possibil-
ity to steer the MVA tool by means of interactivity and as a result, both
the outcome of visual analysis and the performance of MVA methods



are improved.
In this paper, we do not focus on specific MVA tools or specific

statistics. Therefore, we picked some of the well-known tools and
statistics such as PCA, LDA,µ, σ , skew, kurt, andIQR. The concept
of dual analysis can have utilizations with different MVA tools. We
plan to work on visualizations and advanced interaction mechanisms
that are more specific to certain MVA tools. We will further investigate
the utilization of our model in the context of other application domains
where the dual analysis concept could prove to be helpful.

As a future work, we will extend our model to include statistics that
consider pairs of dimensions, e.g., correlation, regression. Addition-
ally, as another extension, we plan to include visualizations that can
provide a formal validation for the interactions, e.g., projection preci-
sion [28].

We think that the presented model brings up new opportunities in
the analysis of high-dimensional data. By looking at the data from
two different perspectives with the help of MVA tools, it is possible to
build elaborate and specialized visual analysis frameworks.
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