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Nonlinear eigenvalue problems
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bDepartment of Mathematical Science, City University London,

Northampton Square, London EC1V 0HB, UK
(Dated: March 15, 2014)

This paper presents an asymptotic study of the differential equation y′(x) = cos[πxy(x)]
subject to the initial condition y(0) = a. While this differential equation is nonlinear, the
solutions to the initial-value problem bear a striking resemblance to solutions to the linear
time-independent Schrödinger eigenvalue problem. As x increases from 0, y(x) oscillates
and thus resembles a quantum wave function in a classically allowed region. At a critical
value x = xcrit, where xcrit depends on a, the solution y(x) undergoes a transition; the
oscillations abruptly cease and y(x) decays to 0 monotonically as x → ∞. This transition
resembles the transition in a wave function at a turning point as one enters the classically
forbidden region. Furthermore, the initial condition a falls into discrete classes; in the nth
class of initial conditions an−1 < a < an (n = 1, 2, 3, . . .), y(x) exhibits exactly n maxima
in the oscillatory region. The boundaries an of these classes are the analogs of quantum-
mechanical eigenvalues. An asymptotic calculation of an for large n is analogous to a high-
energy semiclassical (WKB) calculation of eigenvalues in quantum mechanics. The principal
result of this paper is that as n → ∞, an ∼ A

√
n, where A = 25/6. Numerical analysis

reveals that the first Painlevé transcendent has an eigenvalue structure that is quite similar
to that of the equation y′(x) = cos[πxy(x)] and that the nth eigenvalue grows with n like a
constant times n3/5 as n → ∞. Finally, it is noted that the constant A is numerically very
close to the lower bound on the power-series constant P in the theory of complex variables,
which is associated with the asymptotic behavior of zeros of partial sums of Taylor series.

PACS numbers: 02.30.Hq, 02.30.Mv, 02.60.Cb

I. INTRODUCTION

This paper presents a detailed asymptotic analysis of the nonlinear initial-value problem

y′(x) = cos[πxy(x)], y(0) = a. (1)

This remarkable and deceptively simple looking differential equation was given as an exercise in
the text by Bender and Orszag [1]. Since then, it and closely related differential equations have
arisen in a number of physical contexts involving the complex extension of quantum-mechanical
probability [2, 3] and the structure of gravitational inspirals [4]. The properties of solutions to this
equation are strongly analogous to those of the time-independent Schrödinger eigenvalue problem.

The (linear) Schrödinger eigenvalue problem has the form

−ψ′′(x) + V (x)ψ(x) = Eψ(x), ψ(±∞) = 0, (2)

where E is the eigenvalue. For simplicity, we assume that the potential V (x) has one local minimum
and rises monotonically to ∞ as x → ±∞. This eigenvalue problem is not analytically solvable
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except for special potentials, such as the harmonic oscillator potential V (x) = x2. However, it is
possible to find the large-n asymptotic behavior of the nth eigenvalue En by using semiclassical
(WKB) analysis. To leading order the large-n behavior of the eigenvalues of the two-turning-point
problem may be obtained from the Bohr-Sommerfeld condition∫ x2

x1

dx
√
En − V (x) ∼ (n+ 1/2)π (n→∞), (3)

where the turning points x1 and x2 are real roots of the equation V (x) = En. This WKB condition
determines the eigenvalues implicitly for large n. As an example, for the anharmonic potential
V (x) = x4 the large-n asymptotic behavior of the eigenvalues is [5]

En ∼ Bn4/3 (n→∞), (4)

where the constant B is given by B = 3Γ(3/4)
√
π/Γ(1/4).

The quantum eigenfunctions ψ(x) exhibit several characteristic features. In the classically
allowed region between the turning points (x1 < x < x2), the eigenfunctions are oscillatory and
the eigenfunction corresponding to En has n nodes. In the classically-forbidden regions x > x2

and x < x1 the eigenfunctions decay exponentially and monotonically to zero as |x| → ∞. Thus,
at the turning points the behavior of the eigenfunctions changes abruptly from rapid oscillation to
smooth exponential decay.

The solutions y(x) to the nonlinear differential equation (1) have many features in common with
the solutions ψ(x) to the Schrödinger equation (2). For any choice of y(0) = a the initial slope
y′(0) is 1. As x increases from 0, y(x) oscillates as shown in Fig. 1. This regime of oscillation is
analogous to a classically allowed region in quantum mechanics. Note that the number of maxima
of the function y(x) in the oscillatory region increases as y(0) increases. With increasing x the
oscillations abruptly cease and the function y(x) then decays smoothly and monotonically to 0 as
x→∞. This behavior resembles that of ψ(x) in a classically forbidden region.

Figure 1 reveals that in the decaying regime the curves merge into quantized bundles. This
large-x asymptotic behavior of y(x) can be explained by using elementary asymptotic analysis. If
we seek an asymptotic behavior of the form y(x) ∼ c/x (x → ∞) and substitute this ansatz into
(1), we find that c = m+ 1/2 (m = 0, 1, 2, 3, . . .). This is just the leading term in the asymptotic
expansion of y(x) for large x. The full series has the form

y(x) ∼ m+ 1/2
x

+
∞∑
k=1

ck
x2k+1

(x→∞). (5)

The first few coefficients are

c1 =
(−1)m

π
(m+ 1/2),

c2 =
3
π2

(m+ 1/2),

c3 = (−1)m
[

(m+ 1/2)3

6π
+

15(m+ 1/2)
π3

]
,

c4 =
8(m+ 1/2)3

3π2
+

105(m+ 1/2)
π4

,

c5 = (−1)m
[

3(m+ 1/2)5

40π
+

36(m+ 1/2)3

π3
+

945(m+ 1/2)
π5

]
,

c6 =
38(m+ 1/2)5

15π2
+

498(m+ 1/2)3

π4
+

10395(m+ 1/2)
π6

. (6)
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FIG. 1: Numerical solutions y(x) to (1) for 0 ≤ x ≤ 24 with initial conditions y(0) = 0.2k for k =
1, 2, 3, . . . , 50. The solutions initially oscillate but abruptly become smoothly and monotonically decaying.
In the decaying regime the solutions merge into discrete quantized bundles.

A. Hyperasymptotic analysis

A close look at Fig. 1 shows a surprising result: Half of the predicted large-x asymptotic
behaviors in (5) appear to be missing. The bundles of curves shown in Fig. 1 correspond only to even
values of m. To explain what has happened to the odd-m bundles, we perform a hyperasymptotic
analysis (asymptotics beyond all orders) [6]. Let y1(x) and y2(x) represent two different curves
in the mth bundle. Even though they are different curves they have exactly the same asymptotic
approximation as given in (5). Then Y (x) ≡ y1(x)− y2(x) satisfies the differential equation

Y ′(x) = cos[πxy1(x)]− cos[πxy2(x)]
= −2 sin

[
1
2πxy1(x) + 1

2πxy2(x)
]

sin
[

1
2πxy1(x)− 1

2πxy2(x)
]

∼ −2 sin
[
π
(
m+ 1

2

)]
sin
[

1
2πxY (x)

]
(x→∞)

∼ −(−1)mπxY (x) (x→∞). (7)

We conclude that

Y (x) ∼ K exp
[
−(−1)mπx2

]
(x→∞), (8)

where K is an arbitrary constant. Thus, while two different curves in the same bundle have
the same asymptotic expansion for large x, they differ by an exponentially small amount. This
result explains why no arbitrary constant appears in the asymptotic expansion (5); the arbitrary
constant appears in the beyond-all-orders hyperasymptotic (exponentially small) correction to this
asymptotic series.

More importantly, this argument demonstrates that two curves can only be in the same bundle
if m is even. If m is odd, the two curves move away from one another as x increases. Thus, while
there is a bundle of infinitely many curves when m is even, we see that there is a unique and discrete
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curve, called a separatrix, when m is odd. The nth separatrix, whose large-x asymptotic behavior
is (2n− 1/2)/x (n = 1, 2, 3, . . .), is unstable for increasing x; that is, as x increases, nearby curves
y(x) veer away from it and become part of the bundles above or below the separatrix. This explains
why there are no curves shown in Fig. 1 when m is odd. Ten separatrix curves are shown in Fig. 2.
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1

2

3

4

x

y

FIG. 2: Numerical solutions to (1) showing ten separatrix curves, which cross the y axis at a−3 = −3.231360,
a−2 = −2.698369, a−1 = −2.032651, a0 = −1.016702, a1 = 1.602573, a2 = 2.388358, a3 = 2.976682,
a4 = 3.467542, a5 = 3.897484, and a6 = 4.284674.

While the separatrix curves are unstable for increasing x, they are stable for decreasing x and
thus it is numerically easy to trace these curves backward from large values of x down to x = 0.
We treat the discrete point an (n = 1, 2, 3, . . .) at which the nth separatrix crosses the y axis as
an eigenvalue. The curves y(x), whose initial values y(0) = a lie in the range an−1 < y(0) < an,
have n maxima. Our objective in this paper is to determine analytically the large-n asymptotic
behavior of the eigenvalues. We will establish that

an ∼ A
√
n (n→∞), (9)

where A = 25/6. The constant A is a nonlinear analog of the WKB constant B in (4).
Hyperasymptotics also plays a crucial role in quantum theory. Because the Schrödinger eigen-

value problem (2) is second order, the asymptotic behavior of ψ(x) as x→∞ contains two arbitrary
constants. However, there is only one constant C in the WKB asymptotic approximation

ψ(x) ∼ C[V (x)− E]−1/4 exp
[∫ x

ds
√
V (s)− E

]
(x→∞). (10)
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There is a second constant D, of course, but this constant multiplies the subdominant (expo-
nentially decaying) solution, and thus this constant does not appear to any order in the WKB
expansion. The constant D remains invisible except at an eigenvalue because only at an eigenvalue
does the coefficient C of the exponentially growing solution (10) vanish to all orders in the large-x
asymptotic expansion, leaving the physically acceptable exponentially decaying solution

ψ(x) ∼ D[V (x)− E]−1/4 exp
[
−
∫ x

ds
√
V (s)− E

]
(x→∞). (11)

B. Organization of this paper

The principal thrust of the analysis in this paper is an asymptotic study of the separatrices,
which for large x are approximated by the formula in (5) with m odd. Thus, we let m = 2n − 1
and we scale both the independent and dependent variables in (1):

x =
√

2n− 1/2 t, y(x) =
√

2n− 1/2 z(t), (12)

and let

λ = (2n− 1/2)π. (13)

The resulting equation for z(t) is

z′(t) = cos[λtz(t)]. (14)

With these changes of variable, the nth separatrix [which behaves like (2n−1/2)/x as x→∞] now
behaves like 1/t as t→∞. Also, for large λ the turning point (the point at which the oscillations
cease and monotone decreasing behavior begins) is located at t = 1.

In Sec. II we begin by examining the differential equation (1) numerically. We then show
numerically that for large λ the solution z(t) to the scaled equation (14) that satisfies the initial
condition z(0) = 21/3 is oscillatory until t = 1, at which point it decays smoothly like z(t) ∼ 1/t as
t→∞. We also show that the amplitude of the oscillations is of order 1/λ for large λ. Hence, in the
limit λ→∞ the function z(t) converges to a smooth and nonoscillatory function Z(t) that passes
through 21/3 at t = 0 and through 1 at t = 1. Thus, the nth eigenvalue is asymptotic to A

√
n as

n→∞, where A = 25/6. In Sec. III we perform an asymptotic calculation of Z(t) correct to order
1/λ and use this result to obtain the number A in (9). In Sec. IV we suggest that the techniques
presented in this paper may apply to many other nonlinear differential equations. As evidence, we
present numerical results regarding the first Painlevé transcendent. We also conjecture that the
number A in (9) may be related to the power-series constant P , which describes the asymptotic
behavior of the zeros of partial sums of Taylor series of analytic functions.

II. NUMERICAL STUDY OF (1) AND (14)

We begin our analysis of (1) by constructing the Taylor series expansion

y(x) =
∞∑
n=0

bnx
n (15)
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of the solution y(x). To find the Taylor coefficients bn we substitute this expansion into the
differential equation and collect powers of x. The first few Taylor coefficients are

b0 = y(0) = a,

b1 = 1,
b2 = 0,
b3 = −1

6π
2a2,

b4 = −1
4π

2a,

b5 = 1
120π

4a4 − 1
10π

2,

b6 = 1
18π

4a3,

b7 = − 1
5040π

6a6 + 2
21π

4a2,

b8 = − 1
180π

6a5 + 31
480π

4a,

b9 = 1
362880π

8a8 − 161
6480π

6a4 + 17
1080π

4. (16)

We then observe that we can reorganize and regroup the terms in the Taylor series. For example,
the first terms in b1, b3, b5, b7, b9, and so on, give rise to the function

1
πa

sin s

and the first terms in b4, b6, b8, b10, and so on, give rise to

1
8π2a3

[
2s sin(2s) + cos(2s)− 2s2 − 1

]
,

where s = πax. This partial summation of the Taylor series, a procedure used in multiple-scale
perturbation theory to eliminate secular behavior [7], shows that the solution y(x) is approximately
a falling parabola with an oscillatory contribution whose amplitude is of order 1/a. This is what
we observe in Fig. 1. The partial summation suggests that a and y are both of order

√
n and

motivates the changes of variable (12) and (13), which give the scaled differential equation (14).
As λ in (14) tends to ∞, the oscillations disappear. (This is demonstrated in Sec. III.) The

resulting curve Z(t), which begins at Z(0) = 21/3 and passes through Z(1) = 1, is shown as a
dashed line (red in the electronic version) in Fig. 3 (upper panel). Also shown are the first four
eigencurve (separatrix) solutions to (14) (blue, cyan, magenta, and green in the electronic version),
which have one, two, three, and four maxima. Note that these eigensolutions rapidly approach the
limiting dashed curve as the number of oscillations increases. The lower panel in Fig. 3 indicates
the difference between the dashed curve and the solid curves plotted in the upper panel.

For large values of λ the convergence to the limiting curve Z(t) is dramatic. In Fig. 4 we plot
Z(t) in the upper panel and the difference between Z(t) and the n = 500, 000 separatrix curve
(eigencurve) in the lower panel. Note that the difference is of order 1/n (10−6). On the basis of
these numerical calculations we used Richardson extrapolation [8] to calculate the coefficient A to
an accuracy of one part in 1010 and we conjectured reliably that A = 25/6.

The convergence of z(t) (which is rapidly oscillatory when 0 ≤ t ≤ 1) to Z(t) (which is smooth
and nonoscillatory) as λ → ∞ strongly resembles the convergence of a Fourier series. Consider,
for example, the convergence of the Fourier sine series to the function f(x) = 1 on the interval
0 < x < π. The 2N + 1 partial sum of the Fourier sine series is

S2N+1(x) =
4
π

N∑
n=0

sin[(2n+ 1)x]
2n+ 1

. (17)
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FIG. 3: Upper panel: Numerical plots of the first four separatrix solutions z(t) (eigensolutions) to (14) (blue,
cyan, magenta, and green in the electronic version). These solutions have one, two, three, and four maxima.
As λ increases, these curves approach the solution to (14) for λ = ∞ (dashed curve) (red in the electronic
version). [The λ =∞ curve is called Z(t) and satisfies the differential equation (31).] Lower panel: A plot
of the differences between the solid curves and the dashed curve.

As can be inferred from Fig. 5, which displays the partial sums for N = 5, 20, 80, as N increases,
S2N+1(x) approaches 1 (except for values of x near x = 0 and x = π) in a highly oscillatory fashion
that strongly resembles the approach of z(t) to Z(t) in Fig. 4.

III. ASYMPTOTIC SOLUTION OF THE SCALED EQUATION (14)

The objective of the asymptotic analysis in this section is to solve (14) for large λ and to verify
the result in (9); namely, that A = 25/6. We begin by converting the differential equation in (14)
to the integral equation

[z(t)]2 − [z(0)]2 + t2/2 + η(t) = O(1/λ) (λ→∞), (18)

where

η(t) =
∫ t

0
ds s cos[2λsz(s)]. (19)

To obtain this result we multiply (14) by z(t)+tz′(t), integrate from 0 to t, and use the double-angle
formula for the cosine function.

The problem is now to calculate η(t). To do so, we observe that η(t) is just one of an infinite
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FIG. 4: Upper panel: Numerical solution z(t) to (14) corresponding to n = 500, 000. No oscillation is visible
because the amplitude of oscillation is of order 1/λ when λ is large. Lower panel: Difference between the
n = 500, 000 eigencurve z(t) and the λ =∞ curve Z(t). Note that the difference is highly oscillatory and is
of order 10−6.

set of moments An,k(t), which are defined as follows:

An,k(t) ≡
∫ t

0
ds cos[nλsz(s)]

sk+1

[z(s)]k
. (20)

Note that η(t) = A2,0(t).
For large λ these moments satisfy the linear difference equation

An,k(t) = −1
2An−1,k+1(t)− 1

2An+1,k+1(t) (n ≥ 2). (21)

To obtain this equation we multiply the integrand of the integral in (20) by

z(s) + sz′(s)
z(s)

− sz′(s)
z(s)

. (22)

(Note that this quantity is merely an elaborate way of writing 1.) We then evaluate the first part
of the resulting integral by parts and verify that it is negligible as λ → ∞ if t ≤ 1. In the second
part of the integral we replace z′(t) by cos[λtz(t)] and use the trigonometric identity

cos(na) cos(a) = 1
2 cos[(n+ 1)a] + 1

2 cos[(n− 1)a].

By using repeated integration by parts, we verify that η(t) in (19) can be expanded as the series

η(t) =
∞∑
p=0

α1,2p+1A1,2p+1(t), (23)
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FIG. 5: Convergence of the N = 5, 20, and 80 partial sums in (17) of the Fourier sine series for f(x) = 1.
The partial sums of the Fourier series converge to 1 as N → ∞ in much the same way that z(t) converges
to Z(t) as λ→∞. Like the behaviors in Figs. 3 and 4, as N increases, the frequency of oscillation increases
and the amplitude of oscillation approaches zero.

where the coefficients αn,k are determined by a one-dimensional random-walk process in which
random walkers move left or right with equal probability but become static when they reach n = 1.
The initial condition for the random walk is that αn,0 = 0 if n 6= 2 and α2,0 = 1. The coefficients
αn,k obey the difference equations

2α1,k + α2,k−1 = 0, (24)

2α2,k + α3,k−1 = 0, (25)

2αn,k + αn−1,k−1 + αn+1,k−1 = 0 (n ≥ 3). (26)

(Note that αn,k = 0 if one of the subscripts is odd and the other is even.) The difference equations
(25) and (26) can be solved in closed form, and we obtain the following exact result for n ≥ 2:

αn,k =
(−1)n(n− 1)k!

2k(k/2 + n/2)!(k/2− n/2 + 1)!
, (27)

which holds if n and k are both even or both odd. Finally, we use equation (24) to obtain

α1,2p+1 = −1
2α2,2p = − (2p)!

22p+1p!(p+ 1)!
= − Γ(p+ 1/2)

2
√
π (p+ 1)!

, (28)

where the duplication formula for the Gamma function was used to obtain the last equality.
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Thus, the series in (23) for η(t) reduces to the series of integrals

η(t) = − 1
2
√
π

∞∑
p=0

Γ(p+ 1/2)
(p+ 1)!

∫ t

0
ds z′(s)

s2p+2

[z(s)]2p+1
,

which is valid for t ≤ 1. This series can be summed in closed form:

η(t) =
∫ t

0
ds z(s)z′(s)

√
1− s2/[z(s)]2 −

∫ t

0
ds z(s)z′(s). (29)

There is no explicit reference to λ in this expression, so we pass to the limit as λ→∞. In this limit
the function z(t), which is rapidly oscillatory (see Fig. 4), approaches the function Z(t), which is
smooth and not oscillatory. We therefore obtain from (18) an integral equation satisfied Z(t):

[Z(t)]2 − [Z(0)]2 + 1
2 t

2 −
∫ t

0
dsZ(s)Z ′(s) +

∫ t

0
dsZ(s)Z ′(s)

√
1− s2/[Z(s)]2 = 0. (30)

We differentiate (30) to obtain an elementary differential equation satisfied by Z(t):

Z(t)Z ′(t) + t+ Z ′(t)
√

[Z(t)]2 − t2 = 0. (31)

This differential equation is easy to solve because it is homogeneous; that is, the equation can
be rearranged so that Z(t) is always accompanied by a factor of 1/t. Such an equation can be
solved by substituting Z(t) = tG(t) to reduce (31) to a separable differential equation for G(t).
The general solution for G(t) is

K

t3
=
(
1 + 3[G(t)]2

) (
G(t) +

√
[G(t)]2 − 1

) √[G(t)]2 − 1− 2G(t)√
[G(t)]2 − 1 + 2G(t)

, (32)

where K is an arbitrary constant. The condition that G(1) = 1, which is obtained by substituting
(12) into (5) and (6) and taking the limit n → ∞, then determines that K = −4, and we obtain
the exact result that Z(0) = 21/3. We thus conclude that A = 25/6. This establishes the principal
result of this paper.

IV. DISCUSSION AND DESCRIPTION OF FUTURE WORK

A. First Painlevé transcendent

We believe that the asymptotic approach developed in this paper may be applicable to many
nonlinear differential equations having separatrix structure. One example is the differential equa-
tion for the first Painlevé transcendent

y′′(x) = [y(x)]2 + x. (33)

How do solutions to this equation behave as x→ −∞? It is clear that when x becomes large and
negative, there can be a dominant asymptotic balance between the positive term [y(x)]2 and the
negative term x, which implies that y(x) can have two possible leading asymptotic behaviors:

y(x) ∼ ±
√
−x (x→ −∞), (34)

which is valid because the second derivative of
√
−x is small compared with x as x→ −∞.
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This problem is interesting because the asymptotic behavior y(x) ∼ −
√
−x is stable but the

asymptotic behavior y(x) ∼
√
−x is unstable. To verify this, we calculate the corrections to these

two asymptotic behaviors. When x is large and negative, the solution to (33) oscillates about and
decays slowly towards the curve −

√
−x [1]:

y(x) ∼ −
√
−x+ c(−x)−1/8 cos

[
4
5

√
2(−x)5/4 + d

]
(x→ −∞), (35)

where c and d are two arbitrary constants. The differential equation (33) is second order and, as
expected, this asymptotic behavior contains two arbitrary constants.

On the other hand, the correction to the +
√
−x behavior has an exponential form

y(x) ∼
√
−x+ c±(−x)−1/8 exp

[
±4

5

√
2(−x)5/4

]
(x→ −∞). (36)

Thus, if c+ 6= 0, nearby solutions veer away from the curve
√
−x as x → −∞. The special

solutions that decay exponentially towards
√
−x form a one-parameter and not a two-parameter

class because c+ = 0. The vanishing of c+ gives an eigenvalue condition on the choice of initial slope
y′(0). For each value of y(0) there is a set of eigencurves (separatrices). These curves correspond
to a discrete set of initial slopes y′(0).

We have performed a numerical study of the solutions to (33) that satisfy the initial conditions
y(0) = 1 and y′(0) = a. There is a discrete set of eigencurves whose initial positive slopes are
a1 = 0.231955, a2 = 3.980669, a3 = 6.257998, a4 = 8.075911, a5 = 9.654843, a6 = 11.078201, a7 =
12.389217, a8 = 13.613878, a9 = 14.769304, a10 = 15.867511, a11 = 16.917331, a12 = 17.925488.
(There is also an infinite discrete set of negative eigenvalues.) The first two of these curves are
shown in the left panel and the next two are shown in the right panel of Fig. 6. Note that the
separatrix curves do not just exhibit n maxima as do the dashed curves in Fig. 2. Rather, these
curves pass through increasingly many double poles. The curve corresponding to a1 approaches
+
√
−x from above and the curve corresponding to a2 approaches +

√
−x from below. The curves

corresponding to a3 and a4 also approach +
√
−x from above and below, but these curves first pass

through one double pole. Similarly, the curves corresponding to a5 and a6 pass through two double
poles, and the curves corresponding to a2n−1 and a2n pass through n double poles. The key feature
of these separatrix curves is that after passing through n double poles, they approach the curve
+
√
−x exponentially fast as x → −∞. If y′(0) lies in between two eigenvalues, the curve either

oscillates about and approaches the stable asymptotic curve −
√
−x as in the left panel of Fig. 7

or else it lies above the unstable asymptotic curve +
√
−x and passes through an infinite number

of double poles as in the right panel of Fig. 7.
We have used Richardson extrapolation [8] to find the behavior of the numbers an for large n,

and we obtain a result very similar in structure to that in (9). Specifically, we find that

an ∼ Cn3/5 (n→∞), (37)

where C = 4.28373. The constant C appears to be universal in that it is seems to be the same
for all values of y(0). We are currently trying to apply our analytical asymptotic methods to this
problem to find an analytic calculation for the number C.

B. Conjectural connection with the power-series constant

There is a possible link between this work and the power-series constant P in the theory of
complex variables; P is defined as follows. Let F be the class of functions f(z) that are analytic
in the unit circle |z| < 1 but singular on the unit circle. If f ∈ F , the radius of convergence of the
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FIG. 6: Eigencurve solutions to the first Painlevé trenscendent. The eigencurves pass through y(0) = 1 and
the slopes of the curves at x = 0 are the eigenvalues an. As x → −∞, the eigencurves approach +

√
−x

exponentially rapidly. Left panel: first two eigencurves corresponding to the eigenvalues a1 = 0.231955
and a2 = 3.980669. The a1 curve approaches +

√
−x from above and the a2 curve approaches +

√
−x from

below. Right panel: The next two eigencurves for the Painlevé transcendent corresponding to the eigenvalues
a3 = 6.257998 and a4 = 8.075911. Note that the second pair of eigenvalues passes through one double pole
before approaching the curve +

√
−x.

Taylor series f(z) =
∑∞

k=0 akz
k is 1. The nth partial sum

Sn(z) =
n∑
k=0

akz
k (38)

of the Taylor series is a polynomial in z. We define the real number ρn(f) as the modulus of the
zero of Sn(z) that is most distant from the origin. Next, we define the infimum limit ρ(f) of the
sequence of numbers ρn(f):

ρ(f) ≡ lim inf
n→∞

ρn(f) = lim
n→∞

[
inf
k>n

ρk(f)
]
. (39)

Finally, we define the power series constant P as the supremum of ρ(f) over all functions f in F :

P ≡ sup
f∈F

ρ(f). (40)
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FIG. 7: Non-eigenvalue solutions to the first Painlevé transcendent. If y(0) = 1 but y′(0) is not one of the
eigenvalues an, the curve either oscillates about and approaches the stable asymptotic curve −

√
−x as in the

left panel or else it lies above the unstable asymptotic curve +
√
−x and passes through an infinite number

of double poles as in the right panel.

The quest to determine P was initiated by Hayman [9]. The precise value of P is still not
known, but lower and upper bounds on P have been established. The power series constant was
known to lie in the interval 1 ≤ P ≤ 2 until Clunie and Erdös [10] improved these bounds to√

2 ≤ P ≤ 2, and Buckholtz [11] sharpened these bounds to 1.7 ≤ P ≤ 121/4. These bounds were
further optimized by Frank [11] to

1.7818 ≤ P ≤ 1.82. (41)

The bounds (41) appear to be the best known to date.
To illustrate, we compute ρ(f) for some specific functions. For the class of functions

fτ (z) =
∞∑
k=0

exp[iπτ(k2 + k)] zk (42)

the sequence ρn(f) has a limit as n→∞. For example, it is easy to show that for τ = 1/4,

f1/4(z) =
(
1 + iz − iz2 − z3

) (
1 + z4

)
. (43)

For this function ρ20

(
f1/4

)
≈ 1.69999, ρ21

(
f1/4

)
≈ 1.70000, ρ22

(
f1/4

)
≈ 1.70001, ρ23

(
f1/4

)
≈

1.70002, ρ24

(
f1/4

)
≈ 1.70002, ρ25

(
f1/4

)
≈ 1.70002. This sequence converges to the zero of largest
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modulus, z = −
(
1 + i+

√
2i− 4

)
/2, of the function f1/4(z). This limit is close to the value of P .

The function

f3/8(z) =
(

1 + e3iπ/4z + eiπ/4z2 + iz3 − iz4 − eiπ/4z5 − e3iπ/4z6 − z7
)
/
(
1 + z8

)
(44)

gives a ρ(f) that is even closer to P : ρ
(
f3/8

)
≈ 1.7804. In general, to determine ρ(f) accurately

we terminate the Taylor series at sufficiently large n and evaluate ρn(f). In Fig. 8 we display
our numerical results for ρ50(fτ ) obtained from the partial sum S50(z). The maximum values are
ρ50(f0.3780) = ρ50(f0.8780) ≈ 1.7818, which agree with the best known lower bound for P to the
precision of the computation.

FIG. 8: Plot of ρ50(fτ ) as a function of τ . At the optimal value of the parameter τ the maximum of the
curve is close to 1.7818.

It is not always true that the sequence ρn(f) has a limit. The infimum limit in (39) is used
because it always produces a definite limit, even if the ordinary limit is ambiguous. For example, the
function f(z) = (1− z/10)/(1− z4) gives the partial sequence . . ., ρ40(f) ≈ 1.00362, ρ41(f) = 10,
ρ42(f) = ∞, ρ43(f) = ∞, ρ44(f) ≈ 1.00328, ρ45(f) = 10, ρ46(f) = ∞, ρ47(f) = ∞, ρ48(f) ≈
1.00307, ρ49(f) = 10, . . .. (We adopt the convention in Ref. [11] that ρn(f) =∞ when the partial
sum Sn(z) is a polynomial of degree less than n.) There is no definite limit for this sequence ρn(f),
but the infimum limit gives ρ(f) = 1, which is well below the value of P .

It is astonishing that A in (9) agrees with the best known lower bound for the power-series
constant P in (41). There is a plausible connection between the P and the asymptotic behavior
of eigenvalues: On one hand, P is associated with the zero of largest modulus of a polynomial,
namely, the nth partial sum of a Taylor series. On the other hand, a conventional linear eigenvalue
problem of the form Hψ = Eψ may be solved by introducing a basis and replacing the operator
H by an n × n matrix Hn. We then determine the eigenvalues numerically by calculating the
zeros of the secular polynomial Det(Hn−IE). Finding the asymptotic behavior of the high-energy
eigenvalues corresponds to finding the largest zero of the secular polynomial as n, the degree of
the polynomial, tends to infinity. We do not know whether our constant 25/6 agrees exactly with
the lower bound on P and we leave this observation as coincidence. We hope to elaborate on the
precise relation in a future paper [12].
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C. Final comments

In this paper we have focused on separatrix behavior, which is a consequence of instabilities of
nonlinear differential equations. We have interpreted separatrices as being eigenfunctions (eigen-
curves). The corresponding eigenvalues are the initial conditions that specify the separatrix curves.
For the differential equation y′(x) = cos[πxy(x)], we have shown that the nth eigenvalue grows
like 21/3

√
2n for large n. We have also done a numerical study of eigenvalues and separatrices

associated with the first Painlevé transcendent. To the currently known precision, the number 25/6

appears in another asymptotic context, namely, as the lower bound 1.7818 on the power series
constant P . We conjecture that the number 25/6 may even be the exact value of P .

We have studied here the asymptotic behavior of large eigenvalues. For linear eigenvalue prob-
lems this limit is accessible by using WKB theory but for the nonlinear eigenvalue problem studied
here the large-eigenvalue limit is accessible because the problem becomes linear in this limit; in-
deed, the large-eigenvalue separatrix curve was found by reducing the problem to a linear random
walk problem that can be solved exactly. The strategy of transforming a nonlinear problem to an
equivalent linear problem is reminiscent of the Hopf-Cole substitution that reduces the nonlinear
Burgers equation to the linear diffusion equation, the inverse-scattering analysis that reduces the
nonlinear Korteweg-de Vries equation to a linear integral equation, of the Bäcklund transformation
that linearizes some integrable nonlinear wave equations. We believe that the techniques intro-
duced here to determine the asymptotic behavior of large eigenvalues may apply to other nonlinear
differential equations having instabilities and separatrix behavior.
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