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Abstract 

Research into the effect of phonetic complexity on phonological acquisition has a long history in 

spoken languages. This paper considers the effect of phonetics on phonological development in a 

signed language. We report on an experiment in which non-word-repetition methodology was adapted 

so as to examine in a systematic way how phonetic complexity in two phonological parameters of 

signed languages – handshape and movement – affects the perception and articulation of signs. 91 Deaf 

children aged 3-11 years acquiring British Sign Language (BSL), and 46 hearing non-signers aged 6-

11, were tested. For Deaf children, repetition accuracy improved with age, correlated with wider BSL 

abilities, and was lowest for signs that were phonetically complex. Repetition accuracy was correlated 

with fine motor skills for the youngest children. Despite their lower repetition accuracy, the hearing 

group were similarly affected by phonetic complexity, suggesting that common visual and motoric 

factors are at play when processing linguistic information in the visuo-gestural modality.  
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Introduction 

 Deaf people around the world have created visual ways of talking to each other. Through many 

generations of users coming together in schools and associations for Deaf1 people, languages such as 

American, British and Nicaraguan Sign Language have been created (Woll, 2003; Senghas, Kita, & 

Özyürek, 2004). Not until the mid-twentieth century, however, did linguists demonstrate that signed 

languages obey linguistic principles in a way that separates them from mere pantomime and gesture 

(Klima & Bellugi, 1979; Stokoe, 1960). This work revealed that signed and spoken languages share 

basic linguistic properties, despite the radical modality differences in reception and expression. 

Furthermore, children who are exposed to signed languages from birth show remarkable parallels in 

onset, rate and patterns of development compared to children learning spoken languages: first signs and 

early sign combinations appear at a similar time to first words and early word combinations, and syntax 

is also mastered along a similar timescale (Petitto et al, 2001; Chamberlain, Morford, & Mayberry, 

2000; Morgan & Woll, 2002; Schick, Marschark, & Spencer, 2005).   

Nevertheless, modality does shape how linguistic structure is expressed (Meier, Cormier, & 

Quinto-Pozos, 2002; Sandler & Lillo-Martin, 2006), and this is particularly true for phonology, where 

the effects of phonetics are most keenly felt (Sandler & Lillo-Martin, 2006). Research into the effect of 

phonetic complexity, both perceptual and articulatory, on phonology and on phonological acquisition 

has a long history in spoken languages (e.g. Jakobson, 1941; Stampe, 1973), and has returned to the 

fore with the advent of Optimality Theory and its emphasis on markedness2 (McCarthy, 2004).  

                                                 
1 Following the conventions of the sign language literature, we use Deaf with an uppercase (D) to refer to members of the 

community that use BSL. We use deaf with a lowercase (d) only when discussing the effects of hearing loss. 

2 Marked structures are those that are less common cross-linguistically, and such structures tend to be acquired later by 

children (Jakobson, 1941). As a first approximation, marked phonological structures tend to be more complex than 

unmarked, notwithstanding disagreements over exactly how complexity is best measured (Gierut, 2007).  
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The purpose of the present study is to investigate the impact of phonetic complexity on 

children’s ability to carry out a phonological task – the repetition of nonsense signs. We tested two 

groups: Deaf children who are acquiring British Sign Language (BSL) as a first language (aged 3-11 

years), and hearing children with no experience of signing (aged 6-11 years). This method gives us the 

opportunity to investigate two things: (1) the systematic manipulation of phonetic (i.e. visual and 

motoric) complexity in two phonological parameters - handshape and movement - enables us to 

investigate how phonetic complexity impacts on children’s accuracy in perceiving and articulating 

nonsense signs and how this changes during development, and (2) the comparison of children who 

regularly use sign language (Deaf children) to children with no experience of sign language (hearing 

children) enables us to determine whether the effects of sign language phonetics are universal, and to 

what extent sign language processing is affected by language experience and language-specific 

phonological knowledge.  

In the remainder of this introduction, we first discuss the acquisition of phonology and the 

relationship between phonetics and phonology in children who are acquiring a spoken language. We 

then provide a background to sign language phonology, concentrating on the parameters ‘handshape’ 

and ‘movement’, as they are the focus of our experimental work. We go on to discuss children’s 

acquisition of sign language phonology, and then introduce the methodology that we adjust for use in 

our study: non-word repetition. Finally, we outline our hypotheses and predictions. 

The acquisition of spoken language phonology and the relationship between phonetics and phonology  

There have been many studies detailing phonological development in hearing children (e.g. 

Smith, 1973; Locke, 1983; Vihman, 1995; Bernhardt & Stemberger, 1998). Children’s first 

phonological forms can be strikingly different to the standard forms used by adults. For example, 

young English-speaking children frequently reduce consonant clusters to single consonants (e.g. frog 

→ [eNf]), and substitute phonemes (e.g. fish → [eHr]). These errors are generally fairly systematic and 
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predictable, and result in simplified forms: a singleton consonant is less complex than a cluster, and the 

/R/ in fish has been replaced by the earlier acquired phoneme /r/. Prosodic structure is also simplified in 

early child language, for example, by the deletion of unfooted syllables (Demuth, 1996)  

 Taken together, the afore-mentioned examples can be characterised as the substitution of 

complex or ‘marked’ phonological structures by simple, ‘unmarked’, structures. There is a long 

tradition of seeing phonological markedness as having its grounding in phonetics (e.g. Stampe, 1973), a 

view that has had a resurgence with the popularity of constraint-based models of phonology (see Hayes 

& Steriade, 2004; McCarthy, 2004). For example, clusters are considered marked relative to singleton 

consonants because of their perceptual and articulatory complexity. Likewise, because children are 

acquiring language at a time when their vocal tract is undergoing considerable physiological 

development, articulatory pressures influence children’s simplification errors.  

 Several recent studies have attempted to explore this relationship between phonology and 

articulation in some detail. Kirk (2008) investigated substitution errors in English-speaking children’s 

clusters, whereby the cluster is retained but its segmental content is altered, e.g ducks → [cUsr] and 

swing → [evHM]. The children were aged 1;5 to 2;7. She found that the majority of substitution errors 

resulted in clusters where both consonants shared place of articulation (i.e. one of the consonants had 

undergone assimilation, as in the aforementioned examples). After considering various alternative 

hypotheses, Kirk argued that children produced such forms because they are articulatorily simpler. 

 Inkelas and Rose (2008) produced a detailed case study of a child (“E”) aged 1;0 to 2;2 whose 

speech was characterised by two phonological processes, velar fronting (whereby /j/ and /f/ are 

realised as [s] and [c]) and lateral gliding (whereby /k/ is realised as [j]). Both processes only took place 

word-initially or in the onsets of strong syllables, with examples of velar fronting including cup → 

[sgUo], again → [?!cHm] and conductor → [sUm!cUjs?]. Inkelas and Rose argued that the greater 

gestural magnitude of prosodically strong onsets in English interacted with the anatomy of the child’s 
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vocal tract (specifically, children have tongues that are relatively large for their mouth, and palates that 

are relatively short, compared to adults) so that E produced coronals rather than velars in these 

positions. E then extended this pattern to lateral gliding, which developed later and showed similar 

prosodic conditioning, even though its existence had less direct articulatory motivation. This account - 

the phonologization of a phonetically-motivated effect - therefore appeals to an interplay between 

phonology and phonetics in explaining phonological errors.   

 The existence of so-called ‘chain shifts’ in child speech reveals that not only articulatory, but 

also perceptual pressures, lead to phonological errors. A common pattern in child speech is for /S/ to be 

replaced by [e] but for /r/ to be produced as [S]; for example, /SHm/ and /eHm/ are both pronounced as 

[eHm], but /rHm/ is pronounced as [SHm]. The fact that the child is able to produce [SHm] suggests that the 

/SHm/ ~ [eHm] error is a perceptual one; indeed, even adults perceptually confuse /S/ and /e/ (see 

discussion of chain shifts in Dinnsen & Barlow, 1998). 

All of the above work has been carried out on children who are acquiring a spoken language. 

We know that children learn signed and spoken languages in very similar ways, and so we would 

expect phonological markedness and phonetic complexity to also play a role in the acquisition of 

signed languages. In the next section we explore what phonological markedness and phonetic 

complexity in the signed language modality can be defined, and how they impact on phonological 

acquisition. 

 

Sign language phonology 

As in spoken languages, signed languages systematically organize meaningless phonological 

units into meaningful ones (Stokoe, 1960; Brentari, 1998). However, modality differences make the 

phonologies of signed and spoken languages appear quite different. Signs are formed through the 

combination of several different sources of information articulated on the body of the signer.  The three 
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main phonological parameters discussed in the literature are: handshape (the configuration of the hand), 

movement (how the sign is articulated) and location (where the sign is articulated). Furthermore, 

phonological parameters are expressed simultaneously in a sign.  For example, in the British Sign 

Language (BSL) sign NAME (see first sign in Figure 1), the signer forms the handshape at the same 

time she moves it to the forehead location, and she maintains this handshape throughout the sign.  

//Insert Figure 1about here// 

By combining parameters in different ways, signed languages exhibit minimal pairs similar to 

those in spoken languages (e.g. cap/gap; bus/but): there are pairs of signs that share all their parameters 

but one. For example, the sign NAME forms a minimal pair with AFTERNOON (see second sign in 

figure 1): the two signs are identical with regard to their handshapes and movements involved but differ 

in their location (forehead and chin respectively).   

In this paper we focus on markedness in just two parameters - handshape and movement, and 

we describe these next.  

Handshape 

In several different areas of research handshape has been identified as the most difficult 

parameter to acquire and process. Children who learn to sign late have difficulties mastering this aspect 

of signing (Singleton, Morford, & Goldin-Meadow, 1993), handshape comes up as consistently 

different when comparing gesture and sign (Schembri, 2005) and in studies of sign perception in 

gesturers and signers, handshape stands out as difficult for nonsigners (Brentari 2006).  

Different handshapes vary with respect to their phonetic complexity. Handshapes are formed 

from different configurations (e.g. open, closed, curved) of specific parts of the hand (fingers, thumb 

and wrist). Some handshapes are more difficult to articulate than others, due to constraints on the 

anatomy and physiology of the different fingers and their joints (Ann, 1996).  For example, only the 

thumb, index and little fingers have independent extensor muscles which allow them to be more easily 
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extended than the middle and ring fingers in one-finger handshapes (i.e. handshapes where just one 

finger is extended and the other fingers are closed; Ann, 1996). 

The articulators in signed languages are obviously very different to those in spoken languages. 

Yet just as spoken languages have distinctive features which are the phonological correlates of phonetic 

dimensions and which form a web of dependencies – “feature geometry”,  so signed languages are 

proposed to have features and feature geometries. Handshapes with the simplest phonological structure 

have the fewest number of selected features and therefore the simplest feature geometry (Brentari, 

1998).  They are also unmarked.    

 Complexity and markedness affect how frequently different handshapes are used within and 

across languages. Simple, unmarked, handshapes are more frequent in the lexicon than complex, 

marked, handshapes (Sutton-Spence & Woll, 1999). Four unmarked handshapes have been proposed 

for BSL: ‘G’3 (fist with index finger extended), ‘5’ (with all five digits extended and spread), ‘B’ 

(fingers extended and together), and ‘A’ (fist), which together count for 50% of signs (Sutton-Spence 

& Woll, 1999)4. For example, the ‘G’ handshape occurs in hundreds of BSL signs and also plays a 

major role as a person classifier, in pronominal reference and finger spelling (Brien, 1992). In contrast, 

the ‘Y’ handshape, formed with an extension of the thumb and little finger, is used much less 

frequently, being listed in only ten lexical signs in the BSL Dictionary (Brien, 1992). Furthermore, 

marked handshapes are less frequent cross-linguistically than unmarked ones (Ann, 1996).  

Movement 

The second phonological parameter that we consider in this study is movement. Signs can differ 

in their path of primary movement. For example, they may contain a straight or curved movement. 

Alternatively, signs may not have any path movement at all, but a hand-internal movement instead, 

                                                 
3 The convention is for handshapes to be named after the letters they represent in the American Sign Language alphabet or 
counting system. 
4 These handshapes occur in American Sign Language, where they are also considered unmarked, e.g. by Brentari (1998) 
(who uses the term ‘1’ handshape instead of the ‘G’ handshape). 
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such as finger flicking or wiggling.  More phonetically complex than single movements are clusters of 

movements, whereby an internal movement is produced simultaneously with a path movement. An 

example is the BSL sign FIRE (noun), which consists of an up-and-down movement of both hands 

while, at the same time, the fingers move back and forth (wiggle). In an abstract sense this complex 

cluster of movements resembles groups of sounds in spoken words where phonemic units are expressed 

in sequential clusters e.g. ‘splash’. But additionally in signs like FIRE the two movement components 

are packed together so that they show partial or total overlap (Brentari, 1998; Crasborn, 2001).  

 

Acquisition of sign language phonology 

 Research into the development of sign language phonology is hindered by us having only 

partial linguistic descriptions of some signed languages, and far fewer studies of acquisition in those 

languages. Despite this, several studies have shown similarities in the development of sign phonology 

to previously documented cases in the spoken language literature (Boyes-Braem, 1990; Clibbens & 

Harris, 1993; Karnopp, 2002; Meier, 2005; Morgan, 2006). In particular, phonetic complexity and 

phonological markedness affect phonological acquisition in signed languages as in spoken languages, 

with young children simplifying phonological forms and mastering complex target forms only 

gradually.     

 The first handshapes acquired by young Deaf children are unmarked ones (Boyes-Braem, 1990; 

McIntire, 1977; Siedlecki & Bonvillian, 1997). Marked handshapes are acquired later, with some still 

developing in children after 5 years of age (Boyes-Braem, 1990; McIntire, 1977; Siedlecki & 

Bonvillian, 1997). During acquisition Deaf children have been documented to substitute unmarked 

handshapes for complex ones. For example, the sign COW produced with a marked ‘Y’ hand  in the 

adult input might be repeated by the child with an unmarked ‘5’ hand. This observation has been 

compared with phoneme substitution in hearing children (Meier, 2005; Morgan; 2006; Morgan, 

Barrett-Jones, & Stoneham, 2007).   
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Underlying the reported phonological simplification data from sign acquisition studies are the 

effects of phonetic complexity – both motoric and visual – driving that simplification process. 

Unmarked handshapes are easier to articulate and to distinguish from other handshapes, while marked 

handshapes are harder to produce and to perceive (Conlin, Mirus, Mauk, & Meier, 2000; Siedlecki & 

Bonvillian, 1993). Young children often misarticulate signs and replace marked handshapes with 

unmarked ones, but in doing so retain some of the visual similarity between the target and the child 

handshape (Marentette & Mayberry, 2000; Morgan et al, 2007). Handshapes, because of their fine 

phonetic detail, also require most attention in perceiving phonological contrasts. Children find 

handshape perception the most demanding part of sign comprehension (Hamilton, 1986). 

Consequently, children aged 1-3 years tend to make fewer errors with regard to the movement 

component of the sign than with handshapes.  

However, gross and fine motor development influences the types of movements the child 

produces (Meier, 2005). The most demanding aspect of a sign’s movement in this latter respect is the 

correct articulation of internal movements e.g. finger flicks, wiggles, pinches and repeated finger 

bends.  Furthermore, children will sometimes simplify complex clusters of movements. For example, 

they may delete one of the movements, producing FIRE either without the hand internal movement or 

with a wiggle of the fingers but without the up and down path movements (Morgan et al, 2007). This 

process has been likened to consonant cluster reduction in spoken language (Morgan, 2006). 

 The third phonological parameter concerns the location at which a sign is produced.  Location 

represents by far the simplest part of the sign for Deaf children to acquire and several studies report 

early mastery of this component with very few errors after 3 years of age (Cheek, Cormier, Repp, & 

Meier, 2001; Meier, 2005; Morgan, 2006). For this reason we do not focus on the location component 

in the present study. In contrast, the handshape, movement and hand-internal components of the sign 

continue to develop beyond 3 years of age, but it is not clear at what age they are mastered and whether 

they cause difficulties with phonological processing.  
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Until now, our understanding of the first steps in sign language acquisition has come from 

single case studies or studies of small numbers of Deaf children. There have been few descriptions of 

sign phonology development of older children. The creation of a nonsense sign repetition test, where 

Deaf children repeat novel signs, allows us to experimentally manipulate the phonetic complexity of 

phonological representations and collect data from a large number of Deaf children over a wide age 

range (3-11 years). It allows us to look at the interaction between complexity of handshape and 

complexity of movement in a way that is very difficult to accomplish using spontaneous data. It also 

allows us to confirm whether results from previous small-scale studies, showing that path movement is 

mastered earlier than handshape and internal movement, generalise to a larger group of children, and to 

investigate whether handshape and internal movement continue to cause difficulties during the 

processing of phonological material. By comparing non-word repetition abilities with scores on a test 

of BSL comprehension we can compare Deaf children’s developing phonological abilities with their 

general language skills. Finally, because the task can be carried out as a gesture-copying task by 

hearing children with no phonological knowledge of BSL (or indeed any other sign language), we can 

investigate how phonetic complexity contributes to accuracy in handshape and movement repetition. 

 Our experimental design allows us to determine whether the effects of sign language phonetics 

are universal, and to what extent sign language processing is affected by (lack of) language experience 

and by language-specific phonological knowledge. Hence we can examine the relationship between 

phonetics and phonology in a way that would not be possible in spoken language – hearing children 

could be tested on non-word repetition in another spoken language, but they would presumably bring 

the phonology of their first language to bear on the task, whereas when tested in a different modality 

they are unable to do so. 

Non-word repetition as a tool for investigating phonological processing 

 Our method is based on non-word repetition tasks that are widely used in studies of spoken 

language acquisition (Dollaghan & Campbell, 1998; Gallon, Harris, & van der Lely, 2007; Gathercole 
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& Baddeley, 1990; Kirk & Demuth, 2006; Roy & Chiat, 2004). The participant is required to listen to a 

set of non-words and repeat each one immediately after hearing it. This task recruits perceptual and 

production skills, as well as the ability to encode a phonological representation for storage in 

phonological working memory and to retrieve it from there (Gathercole, 2006). Because the child has 

never encountered these forms before, the task taps into the child’s productive phonology, 

unconfounded by stored lexical knowledge5. Although the task might appear abstract, it is ecologically 

valid. Non-word repetition abilities are linked to word-learning abilities (Gathercole, 2006) and to 

language development more generally. For instance, children with Specific Language Impairment 

(SLI) and dyslexia are poor at repeating non-words (Dollaghan & Campbell, 1998; Gallon, Harris, & 

van der Lely, 2007; Gathercole & Baddeley, 1990).  

In spoken language research, two manipulations of non-word items have been carried out: the 

quantity of phonological material, achieved by manipulating the number of syllables (Gathercole & 

Baddeley, 1990; Dollaghan & Campbell, 1998), and the nature of that phonological material, achieved 

by manipulating the segmental content, syllabic complexity and/or metrical structure of that material 

(de Bree, 2007; Gallon, Harris, & van der Lely, 2007; Kirk & Demuth, 2006; Marshall & van der Lely, 

2009; Roy & Chiat, 2004). There is evidence that both the quantity of phonological material and the 

nature of the phonological representation to be encoded impact on accuracy in this task – participants 

are less accurate as length and complexity increase, and this is the case for children with typical and 

atypical language development. Furthermore, the methodology allows the investigation of how 

different aspects of the phonological representation might interact when stimulus length is controlled, 

for example how word position and stress interact to affect consonant cluster accuracy (Marshall & van 

der Lely, 2009). 

                                                 
5 The degree to which this statement is true depends on how word-like the stimuli are. Although non-words are by definition 

not stored in the lexicon phonotactic probability is an important predictor of how accurately children will repeat them (see 

Coady & Evans, 2008, for a review).  
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In the present study we have adapted the non-word repetition methodology for BSL. While it is 

not possible to manipulate the length of a sign, as most signs are only one syllable long (Brentari, 

1998), nonsense signs can be manipulated with regards to their phonetic complexity along two 

phonological parameters – handshape and movement – in ways which we have described earlier. Using 

this methodology, we can investigate the perception, short term retention and articulation of novel 

phonological forms, in both Deaf and hearing children. This enables us to compare performance on the 

nonsense sign repetition task across age ranges and levels of phonetic complexity.   

Hypotheses and predictions 

 Our hypotheses and predictions are as follows: 

Hypothesis 1: Phonetic complexity has an impact on nonsense sign repetition accuracy. 

Prediction: Deaf participants will repeat phonetically simple nonsense signs more accurately than 

complex nonsense signs, and show most difficulties with nonsense signs that contain complex 

handshapes and movement clusters. Handshape complexity will affect the accuracy of handshape 

repetition, and that deletion of a movement from a movement cluster will be more likely if one of the 

handshapes is complex. 

Hypothesis 2: Handshape and internal movement are mastered later than path movement, and therefore 

Deaf children will make more errors on handshape and internal movement than on path movement. 

Prediction: Although the number of errors made on all phonological parameters will decrease with age, 

difficulties with repeating handshape and internal movement will persist longer than difficulties with 

path movement. 

Hypothesis 3: Phonological abilities develop in concert with other linguistic abilities. Consequently, 

repetition accuracy taps into other linguistic components of BSL ability (as has been found for spoken 

language, see Gathercole, 2006, for a review).  

Prediction: Accuracy on the repetition task will correlate with Deaf children’s BSL comprehension 

ability, even when age is accounted for.   
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Hypothesis 4: Phonological abilities develop in concert with the development of fine motor skills, i.e. 

children’s ability to master the articulatory phonetics of signs. Children with more advanced fine motor 

skills have better phonetic skills and therefore better phonology. 

Prediction: Accuracy on the repetition task will correlate with Deaf children’s fine motor skills, even 

when age is accounted for.   

Hypothesis 5: Hearing, non-signing children approach the task as a gesture-copying task, without the 

advantage of having any phonological knowledge of signs, but are still affected by the same phonetic 

aspects of nonsense signs as Deaf children. In other words, they are able to approximate the nonsense 

signs they see despite having never experienced sign language before, and therefore having no 

phonological system in that modality: their repetitions represent the phonetic element of the task. 

Prediction: Hearing children will perform overall significantly below their Deaf peers but will make the 

same relative proportions of phonetically-driven complexity errors across conditions.  

For ease of exposition, we divide the study into three parts. Part I presents the nonsense sign 

repetition test and the data for the 91 Deaf participants. Part II investigates the relationship between the 

Deaf children’s nonsense sign repetition accuracy and their wider BSL skills and fine motor skills. Part 

III presents the data for the 46 hearing participants with no experience of BSL who undertook the 

nonsense sign repetition test, and compares their data with those of the Deaf children.  

Part I. Nonsense sign repetition test: Deaf children 

Methods 

Sample 

A total of 91 congenitally Deaf children (60 boys/31 girls) participated in the experiment, and 

were divided into three age groups labelled according to mean age: Group 4: 3-5 years old (N = 26, 

mean = 4;11, range = 3;4-5;11), Group 7: 6-8 years old (N = 26 mean = 7;4, range = 6;0-8;10) and  

Group 10: 9-11 years old (N = 38 mean = 10;3, range = 9;0-11;9). They were recruited through schools 

for the Deaf in the UK. The children were either born into BSL-using Deaf families (N=14) or had very 
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early exposure to BSL at nursery school, and subsequent typical language development as measured 

using the BSL Receptive Skills test (Herman et al, 1999).6 Furthermore, we selected children with no 

diagnosed special educational need additional to deafness and normal non verbal cognitive 

development, as reported by the school educational psychologist and/or speech and language therapist. 

All parents received letters asking permission to have their child participate in the project and to be 

recorded by a video camera while completing the tasks. Only children who agreed to participate and 

whose parents gave consent were included.  

Nonsense sign stimuli  

Test items consisted of nonsense signs that were phonotactically possible but meaningless in 

BSL. To make sure that none of the items existed in BSL, three native signers (two Deaf and one 

hearing) rated possible similarity to existing signs in BSL. Any flagged items were deleted and 

replaced with an alternative. All the stimuli were produced by a Deaf fluent signer, sitting against a 

blue screen facing a digital camera. The signer practiced each item several times in order to produce it 

with normal fluency.  All items were presented to participants as 10 x 14 inch images on a laptop 

computer with a 15 inch screen.  

Design 

We manipulated the phonetic complexity of two phonological parameters: handshape and 

movement. Using a 2 x 2 design, different phonetic complexity levels were generated for each 

parameter, as shown in Table 1:  

   //Insert Table 1 about here// 

                                                 
6 This test assesses the comprehension of selected aspects of BSL morphology and syntax (negation, plurals, verb 

morphology and the distinction between nouns and verbs) in a picture-pointing paradigm. There is an initial vocabulary 

check for the signs that are used in the test, to avoid the possibility of the child making errors because of unfamiliarity with 

individual lexical items.  
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Items contained handshapes that were either simple or complex. We classed ‘B’, ‘5’, ‘G’ and 

‘A’, which are the four unmarked handshapes of BSL (Sutton-Spence & Woll, 1999), as ‘simple’. All 

other handshapes (which were selected from the inventory of BSL handshapes (Sutton-Spence & Woll, 

1999), and which are marked), were classed as ‘complex’. We classed one movement – either internal 

movement (IM) or path movement (PM) – as ‘simple’ and two movements (IM plus PM) as ‘complex’, 

balancing across conditions for different types of path movement (e.g., straight, arc) and different types 

of internal movement (e.g., opening, closing, wiggling). We also controlled for phonological properties 

that were not experimentally manipulated, such as one-handedness versus two-handedness. Examples 

of nonsense signs are presented in Figures 2 and 3. 

    //Insert figures 2 and 3 about here// 

Procedure 

Each participant was tested individually by a fluent BSL signer in a quiet room at the school in 

a single session which took between 15-20 minutes. A motor skills task (bead-threading) was 

administered before the nonsense sign repetition task. At the beginning of the repetition task, 

participants were given pre-recorded instructions in child-friendly BSL by a Deaf native-signing adult, 

explaining to them that they were to be presented with a number of novel signs and had to copy each 

sign as accurately as possible once the computer screen turned dark. These instructions were followed 

by three practice items during which participants could ask questions, if necessary.  

Once the child began the task, the experimenter gave encouragement where appropriate. Each 

stimulus item was presented just once, and the order in which the items appeared was randomized 

across participants. Items were presented in sets of 10 with a ‘smiley’ face between each item. After 

each set, there was a short break during which participants were shown a cartoon for approximately 60 

seconds. The children reported that they found the test fun to complete. 

Scoring  
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Responses were scored as to whether the overall response was correct, and according to  

whether errors were made on the phonological parameters that we manipulated (handshape, path 

movement and internal movement), following the scheme developed during the pilot version of this test 

(Marshall, Denmark, & Morgan, 2006). Furthermore we coded whether one of the movements in a 

movement cluster was deleted.  

All scores were coded separately by two hearing experimenters (the first and third authors), 

both of whom are fluent signers. They then compared their scores and resolved any discrepancies. In 

addition, fifteen participants were randomly selected and coded by a third coder, who was a Deaf native 

signer. Inter-rater agreement was high (85% for overall score, 88% for handshape, 87% for path 

movement, 83% for internal movement, and 96% for deleted movement in movement clusters).   

Results  

We report the results as follows. The first analysis concerns how Deaf children’s accuracy in repeating 

nonsense signs is affected by complexity of handshape and movement. The second analysis concerns 

how Deaf children’s errors in repeating handshapes, path movements and hand-internal movements 

change with age.  

Repetition accuracy and phonetic complexity   

We analyzed participants’ performance according to how accurately they repeated nonsense 

signs with different levels of phonetic complexity (see table 2).  

//Insert table 2 about here// 

A 4 (condition: 0, 1a, 1b, 2) x 3 (group) ANOVA, with total number of correct responses as the 

dependent variable, was performed to examine the effect of phonetic complexity on repetition 

accuracy. Results revealed significant effects of condition, F(3, 264) = 9.027, p < 0.001, and group, 

F(2, 88) = 25.516, p < 0.001, but no interaction between the two, F(6, 264) < 1. On post hoc testing 

(with Bonferroni correction) it was found that Group 4 repeated nonsense signs less accurately than 

Groups  7 and 10, p = 0.003 and p < 0.001, respectively, and that Group 7 was less accurate than Group 
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10, p = 0.004. To further explore the main effect of condition, a series of t-tests was performed to 

compare accuracy for each pair-wise combination of conditions (see Table 3). Accuracy was 

significantly lower for the most phonetically complex items (level 2) compared to all other conditions 

(i.e., 0, 1a, 1b). Therefore, Deaf participants across all groups have most difficulty repeating those 

items that are phonetically the most complex. 

//Insert Table 3 about here// 

Having shown that the most complex nonsense signs are the hardest to repeat accurately, we 

now investigate why this might be the case. First we compared the proportion of handshape errors for 

conditions with complex versus simple handshapes (complexity levels 0 and 1a, versus levels 1b and 

2), as shown in Table 4. A 2 (handshape: complex, simple) x 3 (group) ANOVA revealed no 

interaction between handshape and group, F(2, 88) < 1, but a significant main effect of handshape: 

accuracy was significantly lower for nonsense signs containing a complex handshape than for nonsense 

signs with a simple handshape, F(1,88) = 14.384, p < 0.001. 

//Insert Table 4 about here// 

Next, we investigated whether movement of a movement cluster was more likely to be deleted 

if the nonsense sign contained a complex handshape. We compared the proportion of deleted 

movements in conditions 1a (simple handshape) and 2 (complex handshape) (see table 5). A 2 

(condition: 1a, 2) x 3 (group) ANOVA revealed a significant main effect of condition, F(1,88) = 

60.767, p < 0.001, but also an interaction between condition and group, F(2,88) = 8.825, p < 0.001. 

Exploring this interaction by performing paired samples t-tests within each participant group revealed 

that each group deleted significantly more movements when the sign contained a complex handshape 

than when the sign contained a simple handshape: Group 4, t(25) = -6.918, p < 0.001, Group 7, t(26) = 

-2.897, p = 0.008, Group 10, t(37) = -3.472, p = 0.001. One-way ANOVAs within each condition 

revealed a significant effect of group within both condition 1a, F(2,90) = 5.369, p = 0.006, and 

condition 2, F(2,90) = 19.820, p < 0.001. Post-hoc testing (Bonferroni-corrected) within condition 1a 
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showed significant differences between Groups 4 and 7 (p = 0.049) and Groups 4 and 10 (p = 0.006), 

but not between Groups 7 and 10 (p = 1). Similarly, within condition 1 there were significant 

differences between Groups 4 and 7 (p < 0.001) and Groups 7 and 10 (p < 0.001), but not between 

Groups 7 and 10 (p = 1).   

//Insert table 5 about here// 

In summary, Deaf participants across all groups had most difficulty repeating those items that 

are phonetically the most complex. Further analysis sheds light on why repetition accuracy is lowest for 

the most complex nonsense signs. Handshape complexity affects repetition accuracy in two ways. 

Firstly, complex handshapes are more likely than simple handshapes to be substituted. Secondly, a 

movement is more likely to be deleted from a movement cluster if the nonsense sign contains a 

complex handshape.  

Nonsense sign repetition errors and phonological parameters 

We analyzed participants’ performance according to how many errors they made on the 

different phonological parameters (see table 6).  

//Insert table 6 about here//  

A 3 (parameter: handshape, path movement, internal movement) x 3 (group) by subjects 

ANOVA, with errors on each parameter as the dependent variable, revealed main effects of parameter 

and group. There also was a significant interaction between phonological parameter and group, 

F(4,176) = 2.750, p = 0.030. To explore this interaction further, we conducted a series of paired sample 

t-tests within each of the three participant groups (see table 7). All groups showed the same pattern of 

significant differences between accuracy on handshape and path movement (p < 0.001 for all groups) 

and between internal movement and path movement (p < 0.001 for all groups), but no differences 

between handshape and internal movement (p = 0.516 (Group 4); p = 0.922 (Group 7); p = 0.251 

(Group 10).  

      //Insert Table 7 about here//   
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We then carried out a set of one-way ANOVAs within each parameter. Each ANOVA revealed 

significant group differences at p < 0.001: for handshape, F(2,90) = 17.836, for path movement, F(2, 

90) = 25.198, and for internal movement, F(2,90) = 19.445. However, post hoc testing (Bonferroni-

corrected) revealed slightly different group patterns. For handshape, all groups differed from one 

another (Groups 4 and 7, p = 0.037; Groups 7 and 10, p = 0.006, Groups 4 and 10, p < 0.001). For path 

movement, there were significant differences between Groups 4 and 7 (p < 0.001) and Groups 4 and 10 

(p < 0.001), but no significant difference between Groups 7 and 10 (p = 0.236). For internal movement, 

there were significant differences between Groups 4 and 10 (p < 0.001) and 7 and 10 (p = 0.001) 

respectively, but the difference between Groups 4 and 7 failed to reach significance (p = 0.064).   

In summary, all three groups of Deaf children made fewest errors on path movement and most 

errors on handshape and internal movement, with no advantage for internal movement over handshape. 

However, the findings from the one-way ANOVA analyses suggest some developmental differences 

between the phonological parameters: there is steady improvement for repetition accuracy of 

handshape and internal movement, but path movement is acquired most easily and thereby shows only 

limited improvement in older age groups. 

Part II. Relationship between nonsense sign repetition accuracy, fine motor control and wider 

BSL skills. 

Participants 

Participants were the same Deaf children who participated in Part 1. 

 Methods 

Participants completed a timed bead-threading task (White et al, 2006), where they were asked 

to thread 15 large beads onto a string as quickly as possible. The task was performed twice and the 

faster completion time recorded.   
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We collected Deaf participants’ scores on the BSL Receptive Skills Test, a standardised test of 

BSL comprehension (Herman et al, 1999). This test had been administered by the schools within 6 

months of our testing session.   

 

Results 

Speed of threading in 90 participants correlated significantly with nonsense sign repetition 

accuracy, even when age was partialed out, r(87) = -0.319, p = 0.0027.  One child refused to do the 

bead-threading task. Examining the relationship between motor skills and repetition accuracy by age 

group, we found that for Group 4, r = -0.698, p < 0.001, Group 7 r = -0.341, p = 0.088. Group 10 r = 

0.048, p = 0.772.  Thus, motor skills were closely related to nonsense sign repetition accuracy only in 

the youngest Deaf children.   

Data from the BSL Receptive Skills Test were provided for 65 Deaf participants (m= 100.49, 

SD=16.10 for Standardized Scores). The remaining participants had not been administered this test by 

the school.  Overall repetition accuracy, with age partialed out, correlated significantly with scores on 

the BSL Receptive Skills Test, r(62) = 0.278, p = 0.026. Because of the incompleteness of the data set, 

we did not run the correlation within each group. 

Part III. Nonsense sign repetition test: hearing children  

Participants 

Prior to the main study, we piloted the nonsense sign repetition test on 4 hearing children, aged 

3-5 years, who had no knowledge of BSL, but it proved too difficult for them8. As a result, 46 older 

hearing children (26 boys/ 20 girls), aged 6;0 – 11;10, were recruited and divided into two age groups, 

                                                 
7 The correlation here is negative because the score for the motor skills task is measured in seconds – lower scores represent 

faster bead threading, and hence better fine motor skills. 

8 This already shows a difference between the Deaf and hearing children, as the hearing children couldn’t do the task at the 

younger ages whereas the Deaf children could.  
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again labelled according to mean age: Hearing Group 7: 6-8 years (N = 23, mean = 7;1, range = 6;0-

8;9) and Hearing Group 10: 9-11 years (N = 23, mean = 10;6, range = 9;1-11;10). Participants were 

recruited from three local schools. They had no prior experience of signing, were randomly selected by 

teachers, and had normal language and non-verbal cognitive development as reported by their teachers.  

Methods 

Hearing participants completed the same nonsense sign repetition test as the Deaf children. They 

received their instructions in English, translated from the BSL instructions video. In addition to the 

nonsense repetition task, they completed the bead-threading task.  

Results 

Before reporting the results from our analysis for this participant group, which was the same as for the 

Deaf children in Part 1, we begin with a comparison of overall levels of performance between the 

hearing children and the two Deaf groups whom they match in age. In addition, we examine some 

qualitative differences between the types of errors that Deaf and hearing children make. 

Comparing Deaf and hearing children’s overall scores 

The accuracy data are set out in Table 2. We used a one-way ANOVA to compare the overall 

performance between the two hearing groups and the two older Deaf groups (Hearing 7, Hearing 10, 

Deaf 7, Deaf 10). There was, not surprisingly, a significant effect of group, F(3,110) = 32.341, p < 

0.001. Post hoc testing (Bonferroni-corrected) revealed that the Hearing 7 group performed 

significantly worse than all other groups (compared to Hearing 10, p = 0.028, compared to Deaf 7 and 

10, p < 0.001 for each). The Deaf 10 group performed significantly better than all other groups, p < 

0.001 for each comparison. There was no significant difference between the Hearing 10 and Deaf 7 

groups. Overall, therefore, the hearing children perform significantly less accurately than Deaf children 

of the same age.  

Repetition accuracy and phonetic complexity 
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A 4 (condition: 0, 1a, 1b, 2) x 2 (group) ANOVA revealed a significant effect of complexity, 

F(3,132) = 8.278, p < 0.001, and a significant effect of group, F(1,44) = 15.831, p < 0.001, but no 

interaction between group and complexity, F(3,132) = 1.047, p = 0.374. A series of t-tests comparing 

each pair-wise set of conditions revealed that, as for the Deaf children, accuracy was significantly 

lower for the most complex condition (condition 2) compared to the other three (see Table 3). However 

for hearing children, there was an additional significant difference between conditions 0 and 1a, 

indicating that within nonsense signs with simple handshapes, the presence of a movement cluster 

caused significantly more difficulties than just a single movement. 

As was the case for the Deaf children, the hearing children made significantly more errors on 

complex compared to simple handshapes (see Table 4). A 2 (handshape: complex, simple) x 2 (group) 

ANOVA revealed a main effect of handshape, F(1,44) = 31.243, p < 0.001, but no interaction between 

handshape and group, F(2, 88) < 1. 

Like the Deaf children, hearing children deleted one of the movements in a movement cluster 

significantly more often if the nonsense sign contained a complex handshape (see Table 5). A 2 

(condition: 1a, 2) x 2 (group) ANOVA revealed a significant main effect of condition, F(1,44) = 7.089, 

p = 0.011, but no interaction between condition and group, F(1,44) < 1. 

Finally, hearing participants’ nonsense sign repetition accuracy did not correlate with their 

performance on the motor skills task when age was partialed out, r(43) =  -0.176, p = 0.248, which was 

what we also found for the Deaf children at this age. An independent samples t-test revealed no 

differences in bead threading times between the Deaf (mean = 84.72s) and hearing (mean = 88.76s) 

groups, t(108) = -0.470, p = 0.639. 

Repetition errors and phonological parameters 

The hearing children’s error data are set out in Table 6. A 3 (parameter: handshape, path 

movement, internal movement) x 2 (group) ANOVA on errors scores revealed a main effect of 

parameter, F(2,88) = 98.798, p < 0.001, and of group, F(1,44) = 15.371, p<0.001, with no interaction 
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between error type and group. A series of pair-wise t-tests showed that children made fewer errors on 

path movement compared to handshape and internal movement, but that there was no significant 

difference in errors between handshape and internal movement (see Table 7). 

Qualitative differences in errors between the Deaf and Hearing groups 

On the whole, the Deaf children were more accurate than hearing children at repeating nonsense 

signs. However, as we were analysing the data, we became puzzled by a few items for which this 

pattern did not hold, i.e. items on which the hearing groups performed, unexpectedly, more accurately 

than the Deaf groups. One such item is shown in figure 4. This nonsense sign has a movement that 

starts at the ipsilateral side (i.e. the same side as the hand that makes the movement) and crosses to the 

contralateral side. 43% of Deaf children (but only 20% of hearing children) reversed the direction of 

this movement, starting on the contralateral side. In other words, almost half the Deaf children changed 

the nonsense sign so that it started on the contralateral side. The fact that the hearing children were 

more accurate suggests that there is nothing about the movement per se that is difficult, so this is not a 

phonetic difficulty. Instead, it appears that Deaf children were using their knowledge of the lexicon, 

and the phonological generalisations that can be drawn across signs contained within it.  Most BSL 

signs with movement across the body start on contralateral side, in contrast to this particular nonsense 

sign item. Such signs include MORNING, ARMY, KENYA and DOCTOR at the chest, PRIEST at the 

neck, LIE at the chin and HOT at the head. Very few signs start on the ipsilateral side and then move 

across – a rare example is CLEVER, located at the forehead. We had inadvertently created a nonsense 

stimulus that was not consistent with Deaf children’s phonological knowledge. 

//Insert figure 4 about here// 

Another such item is shown in figure 5. Here, 79% of deaf children changed the orientation of 

the hand when they produced the nonsense sign, whereas only 58% of the hearing children did. The 

Deaf children changed the orientation of the hand so that it resembled the real sign I-ASK-YOU. In 

other words, it appears that they were lexicalising the nonsense sign, something that has been reported 
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for hearing children attempting non-word repetition tasks (e.g. Marshall, Harris, & van der Lely, 2003) 

and for Deaf adults in a sign-spotting task (Orfanidou, Adam, McQueen, & Morgan, 2009). Here we 

had included a nonsense sign which was so close to a real sign that it caused confusion for the Deaf 

children. 

//Insert figure 5 about here// 

Discussion   

The purpose of our study was to explore the impact of phonetic complexity on phonology in 

Deaf children who are acquiring British Sign Language (BSL) as a first language, by systematically 

manipulating how handshape and movement complexity affect the repetition of nonsense signs. 

Comparing Deaf children to children with no experience of sign language (hearing children) allowed us 

to determine whether the effects of sign language phonetics are universal, and to what extent sign 

language processing is affected by (lack of) language experience and language-specific phonological 

knowledge. In the general study of language development researchers are interested in how children’s 

wider language skills, and their motor and perceptual abilities, come to bear in their processing of new 

phonological forms. Thus the present study contributes to the wider study of how characteristics of the 

input and the learner’s knowledge come together in language processing.   

From the outset we proposed a number of hypotheses. We hypothesised that phonetic 

complexity has an impact on repetition accuracy, and predicted that Deaf children would repeat 

phonetically simple nonsense signs more accurately than phonetically complex ones, with nonsense 

signs containing complex handshapes and movement clusters being the most difficult of all. This 

turned out to be the case: repetition accuracy was lowest for the most phonetically complex items. 

However, nonsense signs with either a complex handshape or a movement cluster were overall not 

repeated less accurately than nonsense signs containing a simple handshape and a single movement. 

We also had hypotheses about the precise way in which phonetic complexity acts to affect repetition 

accuracy. We predicted that handshape complexity would affect the accuracy of movement repetition, 
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and that deletion of a movement from a movement cluster would be more likely if one of the 

handshapes was complex.  As expected, we observed more errors in nonsense signs with complex 

handshapes and more deletions of movements in nonsense signs with movement clusters if the 

nonsense sign had a complex handshape.  

Furthermore, we hypothesised that handshape and internal movement are mastered later than 

path movement, and therefore predicted that Deaf children’s difficulties with handshape and internal 

movement would persist for longer than difficulties with path movement. This is, indeed, what we 

found, and our findings on a large group of children support previous fine-grained work on smaller 

groups of children and case studies (Marentette & Mayberry, 2000; Morgan et al, 2007; Meier et al, 

2008). We show that handshape and internal movement continue to cause difficulties in sign language 

processing until at least the age of 10 or 11.   

Our finding that children have difficulties in processing handshape, and small changes in 

handshape form through internal movements, concurs with a wide range of previous studies (Brentari 

2006; Schembri, 2005; Singleton, Morford, & Goldin-Meadow, 1993). Why this is the case is perhaps 

linked both to the bigger phonological repertoire for handshape that exists compared with other sign 

parameters (Orfanidou et al, 2009), as well as the added motoric difficulty in articulating the small 

articulators involved in forming handshapes. 

Following findings in the spoken language literature of a robust relationship between phonology 

and wider language skills (e.g. de Bree, 2007; Dollaghan & Campbell, 1998; Gathercole, 2006), we 

hypothesised that such a relationship also exists for signed languages. We predicted that children with 

better BSL grammar, as measured by a comprehension task, would have better phonological skills. 

This turned out to be the case, even when age was partialed out of the correlation. These results suggest 

that non-word repetition accuracy and language skills are related whatever the modality of that 

language, and support the suggestion that nonsense sign repetition could be a useful diagnostic tool for 

SLI in sign languages just as non-word repetition is in spoken languages (Mann & Marshall, under 
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revision; Marshall et al, 2006). In non-word repetition tests, the repetition accuracy of children with 

language impairments decreases as phonological complexity increases (Gallon, Harris, & van der Lely, 

2007), and we predict that this will also be the case for signing children with language impairments, 

such that even signs with one movement cluster or complex handshape will be harder to repeat than the 

most simple signs.    

We also predicted that children with better fine motor control, as measured by a timed bead 

threading task, would have better phonetic skills and therefore better phonological skills. As our results 

showed, motor skills correlated significantly with phonological skills only in the youngest children: for 

children aged 6 and above, this relationship no longer held, suggesting that articulatory constraints are 

important for young children’s signing but become less important as they get older. Bonvillian, 

Orlansky, & Novack (1983) made the surprising claim that while hearing children’s speech and motor 

development are related, Deaf children’s sign language skills are independent of their motor 

development. The results from our study suggest otherwise for children up until the age of 5.  However, 

as the older Deaf children (aged 6 and over) in our study were past the major landmarks for fine and 

gross motor development (Sheridan, 1997), it is not surprising that they were less influenced by the 

motoric complexity of signs. On the other hand, it could be that our task was not sensitive enough to 

detect differences in fine motor development in older children. 

 That phonetic complexity still drives children’s errors, even when motor skills are good, is 

consistent with phonological markedness being grounded not just in articulatory complexity, but also in 

perceptual complexity, as has been argued for both sign languages (Meier, 2005) and spoken languages 

(Hayes & Steriade, 2004). Hamilton (1986) tested a large group of Deaf children ages 6-9 years on 

their ability to match a sign to a corresponding static image of the same sign in a picture.  Minimal pair 

pictures were used, made up of the target sign and an alternative, which differed only on one of the 

hand shape, movement or location parameters. Children made significantly more errors with items that 

differed only on handshape than with those which diverged on either movement or location.  In fluent 
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signing, hand shapes are far less visually salient than the bigger arm movements that accompany them, 

and signers can perceive movement and location information in peripheral vision, but not handshapes 

(Wilcox, 1992). There is more recent evidence that adult signers continue to substitute unmarked 

handshapes for marked handshapes in a visual processing task (Orfanidou et al, 2009). Sutton-Spence 

and Woll (1999) argue that the four unmarked handshapes of BSL – ‘B’ (a simple flat surface), ‘5’ (the 

most extended and spread), ‘A’ (maximally compact) and ‘G’ (a narrow linear form) – are also the 

most geometrically contrastive.  

Finally, we hypothesised that hearing children would tackle nonsense sign repetition as a 

gesture-copying task, without the advantage of prior phonological knowledge in this modality, but 

would still be affected by the same difficulties in perceiving and articulating complex nonsense signs as 

Deaf children. We predicted that hearing children’s overall repetition accuracy would be significantly 

lower than that of the Deaf children, but that they would make the same proportions of phonetically 

driven errors. This turned out to be the case. In fact we found remarkably similar error patterns across 

groups. Like the Deaf children, hearing children with no experience of sign language made more errors 

on handshape and internal movement than on path movement, and produced more errors on items with 

complex handshapes plus movement clusters.  

These comparisons between Deaf and hearing children reveal that sign language phonology is 

intimately entwined with the phonetics of the visual-gestural modality. Our results are consistent with 

theories of spoken language phonology which state that phonological complexity and markedness are 

grounded in phonetic knowledge (Chomsky & Halle, 1968; Hayes & Steriade, 2004; Stampe, 1973). 

The articulation and/or perception of a complex handshape or a movement cluster is generally more 

difficult than that of a simple handshape or a single movement, and a hand-internal movement is more 

difficult to articulate and/or perceive than a path movement.  

Yet, three findings suggests that knowledge of sign language phonology also plays an important 

role in perceiving, storing and articulating novel signs: (1) Deaf signers can attempt this task at a 
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younger age than hearing children with no prior knowledge of sign language, (2) Deaf signers repeat 

nonsense signs significantly more accurately than non-signing hearing children, despite not having 

better fine motor skills (at least, as measured by how quickly they can thread a string of beads), and (3) 

their nonsense sign repetition accuracy correlates with their wider BSL skills. These findings are 

consistent with claims from non-word repetition studies that long-term language knowledge supports 

short-term memory performance (Thorn & Gathercole, 2001). Signing Deaf children have acquired a 

large repertoire of handshapes and movements that they use in their everyday signs, which allows them 

to analyse the nonsense signs within a phonological system. All the handshapes and movements they 

saw in the test items were possible phonological forms in real BSL signs they might have known. 

Therefore they were able to use phonological knowledge when perceiving, storing, and repeating items, 

and were therefore more accurate than hearing children, who were presumably relying solely on visuo-

spatial working memory, without any language support.  

Further evidence that Deaf children’s phonological knowledge does come into play during their 

repetition of nonsense signs is evidenced by certain items where they were less accurate than the 

hearing children, despite their higher levels of performance overall. In other words, these items seem 

not to be in line with Deaf children’s expectations of BSL phonology despite our best efforts to design 

stimuli that were phonotactically possible within the rules of BSL. For example, when confronted with 

a nonsense sign that required ipsi- to contralateral movement across the torso, a significant proportion 

of Deaf children changed the direction of the movement from contra- to ipsilateral, presumably to 

conform to the large number of signs in their lexicons that make use of this movement. The fact that 

few hearing children made this error shows that ipsi- to contralateral movement is phonetically 

possible, but that Deaf children preferred to make a movement that fitted in with their phonological 

knowledge. One direction for future research would be to explore the extent of Deaf children’s 

language-specific knowledge using a set of nonsense sign stimuli manipulated for phonological 

unexpectancy. Non-word repetition tests can be used to test phonotactic sequences that are unexpected 



  Nonsense sign repetition 

 30 

or not permitted in a speaker’s grammar, but this is rarely done9. A second direction would be to 

examine phonological frequency through the effects of neighbourhood density, given that this is a 

factor known to play a role in the repetition of spoken words and non-words (Coady & Evans, 2008). 

As yet there no frequency statistics are available for sign languages, but as dictionaries and corpus data 

become available, at least for some sign languages, the calculation of neighbourhood densities for those 

languages will become possible. As is the case for spoken languages, we would predict repetition 

accuracy to be greater for signs and nonsense signs drawn from denser neighbourhoods.  

 

Conclusion 

Using a non-sign repetition task with a large number of Deaf signing children, we have replicated 

smaller scale studies showing that handshape and internal movement are more difficult to acquire and 

process than path movement. A comparison with hearing nonsense signing children reveals that 

phonological complexity is grounded in the phonetics of the visuo-gestural modality, but that Deaf 

signing children’s phonological knowledge also comes into play when they repeat nonsense signs, 

suggesting that biological factors and experience both underpin children’s language development.  

 

 

 

 

 

 

 

                                                 
9 A notable exception is de Bree, Wijnen, & Zonneveld (2006), who tested Dutch children on the repetition of non-words 

with different stress patterns, including stress patterns prohibited in Dutch. 
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Figures: 

Figure 1: Example for a minimal pair: NAME vs. AFTERNOON  
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Figure 2: Level 0 sign  

 

 
 
The starting and the end point of the sign  

are depicted. This nonsense sign has a  

circular movement. 
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Figure 3: Level 2 sign  

 

 
 
The starting and the end point of the sign  

are depicted. This nonsense sign has an 

arc path movement.  
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Figure 4  

 

 
 
The starting and the end point of the sign  

are depicted. This nonsense sign has a 

straight path movement. 



  Nonsense sign repetition 

 42 

Figure 5 

 

 
 
The starting and the end point of the sign  

are depicted. This nonsense sign has a  

straight path movement away from the body. 
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Tables 
 

Table 1: Levels of phonetic complexity for the nonsense sign repetition task  

 

Handshape  

simple complex 
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t Level 0 (10 items): 
Path movement or 

hand-internal movement 
 

Level 1b (10 items): 
Path movement or 

hand-internal movement 
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r Level 1a (10 items): 
Path movement + 

hand-internal movement 
 

Level 2 (10 items): 
Path movement + 

hand-internal movement 
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Table 2: Nonsense sign repetition accuracy scores (expressed as mean % correct, SD) by phonetic complexity 

level across groups  

_______________________________________________________________________ 
 
    Deaf Children    Hearing Children 
 
Group  Level of  Correct SD  Group  Correct  SD 
  Complexity (%)     (%)    
_______________________________________________________________________ 
 
4  0  33  26    
(N=26)  1a  32  21 
  1b  35  19 

2  26  16 
   Total 32  16 

 
7  0  42  25 7  31  10  
(N=27)  1a  48  21 (N=23)  27  22 
  1b  51  24   25  16 

2  36  18   18  11  
   Total 44  16  Total 25  10 
 
10  0  62  21 10  46  19 
(N=38)  1a  60  18 (N=23)  34  14 
  1b  65  22   42  18  

2  53  20   28  14 
 Total 60  16  Total 37  10 

________________________________________________________________________ 
 
Level of Phonetic Complexity 0: simple handshape, 1 type of movement 
Level of Phonetic Complexity 1a: simple handshape, 2 types of movement 
Level of Phonetic Complexity 1b: complex handshape, 1 type of movement 
Level of Phonetic Complexity 2: complex handshape, 2 types of movement 
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Table 3: Comparison of mean accuracy scores across phonetic complexity level  

_______________________________________________________________________ 
 
   Deaf Children    Hearing Children 
 
Complexity level df t  p   df t   p 
_______________________________________________________________________ 
 
0, 1a   90 -0.196   0.845   45 2.582   0.013 
 
0, 1b   90 -1.760   0.082   45 1.681   0.099  
 
0, 2   90 3.785   <0.001  45 5.038   <0.001  
 
1a, 1b   90  -1.522   0.131   45 -0.969   0.337   
 
1a, 2   90 3.869   <0.001  45 2.612   0.012 
 
1b, 2   90 5.680   <0.001  45 3.314   0.002  
________________________________________________________________________ 
 

Level of Phonetic Complexity 0: simple handshape, 1 type of movement 
Level of Phonetic Complexity 1a: simple handshape, 2 types of movement 
Level of Phonetic Complexity 1b: complex handshape, 1 type of movement 
Level of Phonetic Complexity 2: complex handshape, 2 types of movement 
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Table 4: Analysis of whether handshape errors are more likely for nonsense signs with complex or  

simple handshapes: % handshape errors across groups  
_______________________________________________________________________ 

 
Deaf Children     Hearing Children 

 
  Simple  Complex   Simple  Complex  
 
Group  Mean  SD Mean SD Group  Mean  SD Mean SD 
  Errors  Errors    Errors  Errors  
  (%)  (%)    (%)  (%) 
_______________________________________________________________________ 
 
4  42 22 50 17   
7  31  17 40 19      7  37  14 53  16 
10  22 14 26 14      10  25 12 37 14 
 
________________________________________________________________________ 
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Table 5: Analysis of whether deletion of a movement in a movement cluster is more likely  

when the nonsense sign contains a complex handshape: % movement deletion  

_______________________________________________________________________ 

 
Deaf Children     Hearing Children 

 
  Simple  Complex   Simple  Complex  
 
Group  Mean  SD Mean SD Group  Mean  SD Mean SD 
  Errors  Errors    Errors  Errors  
  (%)  (%)    (%)  (%) 
_______________________________________________________________________ 
 
4  8 8 16 9   
7   4  5 7 5      7  11  9 14  8 
10  3 5 6 6      10  4 5 8 5 
 
________________________________________________________________________ 
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Table 6: Error scores (expressed as mean % incorrect, SD) by phonological parameter for each group  

_______________________________________________________________________ 

 
    Deaf Children    Hearing Children 
 
Group Error Type  Total  SD Group  Total   SD 
    Errors (%)    Errors (%) 
_______________________________________________________________________ 
 
4 Handshape  46  16    
(N=26) Path Movement 28  14 
 Internal Movement 45  15 
 
7 Handshape   36  16 7  52  12 
(N=27) Path Movement 14  11 (N=23)  26  16 
 Internal Movement 36  15   50  13 
 
10 Handshape  24  12 10  39  10 
(N=38) Path Movement 9  6 (N=23)  18  7 
 Internal Movement 23  13   37  13 
________________________________________________________________________ 
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Table 7: Pair-wise comparisons within each group for error scores on each parameter  

_______________________________________________________________________ 
 
  Deaf Children     Hearing Children 
 
Complexity df t  p   df t  p 
level 
_______________________________________________________________________ 
 
Group 4 
HS-PM 25 6.475  <0.001 
     
HS-IM  25 0.658  0.516 
 
PM-IM 25 -6.062  <0.001 
    
Group 7     Groups 7&10 
HS-PM 26 12.583  <0.001  45 12.007  <0.001 
        
HS-IM  26 0.99  0.922  45 1.349  0.184 
 
PM-IM 26 -10.836 <0.001  45 11.672  <0.001  
 
Group 10      
HS-PM 37 9.843  <0.001 
      
HS-IM  37 1.166  0.251 
 
PM-IM 37 -9.103  <0.001 
________________________________________________________________________ 
 
HS = Handshape 
PM = Path movement 
IM = Internal movement 

  

 

 

 

 

 

 

 

 

 

 

 

 

 


