

City, University of London Institutional Repository

Citation: Groce, A., Kulesza, T., Zhang, C., Shamasunder, S., Burnett, M., Wong, W-K,

Stumpf, S., Das, S., Shinsel, A., Bice, F. & et al (2014). You are the only possible oracle:
Effective test selection for end users of interactive machine learning systems. IEEE
Transactions on Software Engineering, 40(3), pp. 307-323. doi: 10.1109/tse.2013.59

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3620/

Link to published version: https://doi.org/10.1109/tse.2013.59

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

You Are the Only Possible Oracle:
Effective Test Selection for End Users of
Interactive Machine Learning Systems

Alex Groce[1], Todd Kulesza[1], Chaoqiang Zhang[1], Shalini Shamasunder[1], Margaret Burnett[1],
Weng-Keen Wong[1], Simone Stumpf[2], Shubhomoy Das[1], Amber Shinsel[1], Forrest Bice[1],

Kevin McIntosh[1]
[1] School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, Oregon 97331-3202

alex,kuleszto,zhangch,burnett,wong,dassh@eecs.oregonstate.edu
shalu.s14@gmail.com, ambershinsel@gmail.com, forrestbice@gmail.com, kevjames3@gmail.com

[2] Centre for HCI Design, School of Informatics
City University London

London EC1V 0HB, United Kingdom
Simone.Stumpf.1@city.ac.uk

Abstract—How do you test a program when only a single user, with no expertise in software testing, is able to determine if the
program is performing correctly? Such programs are common today in the form of machine-learned classifiers. We consider the
problem of testing this common kind of machine-generated program when the only oracle is an end user : e.g., only you can
determine if your email is properly filed. We present test selection methods that provide very good failure rates even for small test
suites, and show that these methods work in both large-scale random experiments using a “gold standard” and in studies with
real users. Our methods are inexpensive and largely algorithm-independent. Key to our methods is an exploitation of properties
of classifiers that is not possible in traditional software testing. Our results suggest that it is plausible for time-pressured end
users to interactively detect failures—even very hard-to-find failures—without wading through a large number of successful (and
thus less useful) tests. We additionally show that some methods are able to find the arguably most difficult-to-detect faults of
classifiers: cases where machine learning algorithms have high confidence in an incorrect result.

Index Terms—machine learning; end-user testing; test suite size;

F

1 INTRODUCTION

Machine learning powers a variety of interactive ap-
plications, such as product recommenders that learn
a user’s tastes based on their past purchases, “aging
in place” systems that learn a user’s normal physical
activity patterns and monitor for deviations, and in-
terruptibility detectors on smart phones to decide if
a particular incoming message should interrupt the
user. In these settings, a machine learning algorithm
takes as input a set of labeled training instances and
produces as output a classifier. This classifier is the
machine-generated output of a hand-written program,
and is also a program in its own right.

This machine-generated program, like a human-
written program, produces outputs for inputs that are
provided to it. For example, a classifier on a user’s
smart phone might take an incoming message and
the user’s history and personal calendar as inputs
and output a reason to interrupt or not (“work-critical

interruption”). Such classifiers, like other software
artifacts, may be more or less reliable—raising the
possibility that they are not reliable enough for their
intended purposes.

A classifier can mislabel an input (fail) even if
the algorithm that generated the classifier is correctly
implemented. Failures occur for a variety of reasons
such as noise in the training data, overfitting due to a
limited amount of training data, underfitting because
the classifier’s decision boundaries are not expressive
enough to correctly capture the concept to be learned,
and sample selection bias, where training instances
are biased towards inputs uncommonly seen in real-
world usage. Further, many machine learning systems
are interactive and continually learn from their users’
behavior. An interactive machine learning system may
apply different output labels to the same input from
one week to the next, based on how its user has
recently interacted with the system.

Therefore the problem of systematic, efficient, and

2

effective testing of classifiers arises. That classifiers are
created indirectly by another program, rather than
directly by humans, does not obviate the need for
testing, or remove the problem from the domain of
software testing, but does affect who is in a position
to test the system. Deployed classifiers can often be
tested only by end users—sometimes, in fact, by only
one end user. For example, only you know which
messages should interrupt you during a particular
activity. Unfortunately, this means that for many clas-
sifiers a unique situation arises: no individual with
software development knowledge, or even a rudimen-
tary understanding of testing, is in a position to test
the system.

Given this problem, two issues arise: how to au-
tomatically choose “good” test cases, and how to
interact with end users while testing. This paper
presents underlying algorithms for test case selection
and data about how these methods perform, both ex-
perimentally (by comparison with statistical sampling
and hypothetical end user methods), and empirically
with actual end users in a prototype interface (Figure
1). This paper adopts the distinction between experi-
mental and empirical results described by Harman et al.
[24], and considers large-scale automated evaluations
with benchmark data to be synthetic experiments and
results with users and a concrete implementation and
interface to be more empirical in nature (though also
controlled experiments in a laboratory setting).

End-user testing of machine-generated classifiers is
different from both machine learning’s “active learn-
ing” (see Figure 2) [53] and from conventional soft-
ware testing. The three main differences are depicted
in Figure 2: (1) with active learning, the classifier
initiates the process, whereas with end-user testing,
the user initiates the process; (2) with active learning,

Fig. 1. A user interface to allow end users to test a
classifier [32]. This classifier takes a message (input)
and produces a topic label (output). The pie chart
depicts the classifier’s confidence that the message
belongs in the red category (Cars), the blue category
(Motorcycles), etc. A user can mark any message’s
topic label as right or wrong; these marked messages
are the test cases.

Active Learning Classifier Testing

Fig. 2. Active learning vs. classifier testing. The meth-
ods differ in 1) whether the classifier or the user drives
interaction, 2) the aim of instance selection (maxi-
mize learning or maximize bug-detection) and 3) the
outcome of the process (a better classifier, or user
knowledge of classifier quality).

learning is being optimized, whereas with end-user
testing, failure detection is being optimized; and (3)
with active learning, the intended outcome is a better
classifier, whereas with end-user testing, the intended
outcome is better user insight into where the classifier
works correctly and where it does not.

End-user testing of classifiers also differs from con-
ventional software testing: end users’ expertise at,
and patience for, testing are likely lower than with
professional programmers. Moreover, the software be-
ing tested is different than conventional software in
important ways, such as the structure of its (machine-
generated) “source code” and the context in which it
resides. Although these differences present challenges,
they also provide opportunities unusual in testing
(e.g., classifiers are often able to predict their own
accuracy). We discuss the implications of these dif-
ferences in detail in the next sections.

While the focus of this paper is on traditional end-
user testing, where users are assumed to lack software
engineering skills, the problem of testing with human
oracles is also relevant to the enterprise of software
engineering itself. Recently, in work including infor-
mation retrieval-based bug localization [50] and test
generation [22], [25], the use of artificial intelligence
and machine learning (ML) techniques has become
a popular research topic, and a major aspect of en-
deavors to deal with increasing software complexity
[23]. For example, fuzzer taming or bug clustering
[11], [16] uses ML algorithms for ranking, clustering,
and classification to decide when test cases result from
the same underlying fault. Unfortunately, debugging
such tamers is not currently addressed, due to the
difficulty of letting software devevelopers test and
debug when each “test case” is a query of the form:
“do these two test cases expose the same underlying
fault?”, a question which requires human expertise
and considerable effort to answer. While users of “ML

3

for SE” (Machine Learning for Software Engineering)
systems are obviously far more expert at software
development and testing than traditional end-users,
they are still unlikely to be machine learning experts
or have the patience or time to serve as oracles for a
large set of test cases [52]. The methods introduced in
this paper are therefore potentially important to the
future of software engineering itself.

This paper encapsulates our previous work, which
introduced a user interface (WYSIWYT/ML) [32] to
support end users testing classifiers, and makes the
following additional contributions:

• Formally frames a test selection problem.
• Proposes and formally defines three test selection

methods for this domain.
• Proposes a methodology for experimentally eval-

uating classifier testing methods for humans as a
filtering process before costly user studies.

• Investigates our test selection methods in large-
scale automated experiments, over a larger vari-
ety of benchmarks than possible with humans

• Evaluates which found failures are unexpected,
making them both especially challenging and
important to detect, a problem difficult to explore
in human studies.

Our experimental results show that our best test
selection methods can produce very small test suites
(5-25 instances) in which 80% of test cases fail (and
thus expose faults), even when the tested classifier is
80% accurate. Our best methods find at least three
times as many failures as random testing. Further,
our results indicate that the high efficiency of our test
methods is not attributable to finding many redun-
dant failures identifying the same fault. Two of our
methods are even able to find “surprise failures”, in
which a classifier fails despite having high confidence
in its results. These methods also produce effective
increases in the ability of end users to test a classifier
in a short amount of time, with the ranking of meth-
ods in basic agreement with our experimental results,
suggesting that the experimental methods may be
valid for exploring other approaches to the problem.

2 PROBLEM DEFINITION

We first define the notion of end-user testing for
machine-learned classifiers, loosely following the ap-
proach taken by Rothermel et al. for end-user testing
of spreadsheets [48].

The program to be tested is a classifier C, a black box
function i→ `, where i ∈ I , the set of input instances,
and ` ∈ L, the set of all labels1. Classifiers decompose
the instances in I into features (e.g., text strings such
as words) in a multi-dimensional space. A test case for
classifier C is a tuple (i, `), where i ∈ I is the input (in

1. If we modify C (e.g., retrain) we consider it a new program
C′ and assume no relationship between tests for C and C′.

this paper, a text message) and ` ∈ L is the label that
classifier C assigns to i. A test is an explicit decision
by the user that `’s value is correct or incorrect for i.
A failure of C is any test for which the user indicates
that the label is incorrect.

2.1 The Test Selection Problem
Two common approaches to testing are test case
generation and test selection. Test case generation
(an algorithm producing inputs to test) is necessary
when the creation of complex inputs (e.g., sequences
of method calls) is required. In our setting, however,
numerous inputs are often readily available: end users
often have a large set of unlabeled instances in I
available for testing, e.g., the set of all unfiled emails
in an inbox. Unlabeled instances can be converted to
test cases simply by applying C to i to produce `.
Therefore, the problem is usually one of selecting test
cases to execute from a finite set of existing potential
test cases. The expected use case of test selection
is in an interface that brings to the user’s attention
instances to test, whether in a stand-alone interface,
or in the context of a “host” interface, e.g., messages
in an email client.

2.2 What Is a Fault?
The IEEE Standard [1] defines a fault to be “an in-
correct step, process, or data definition in a computer
program.” This definition clearly applies to classifiers
that mislabel outputs: from the user’s view, it has
made a mistake. However, most of the literature
assumes that a fault has a program location and so
can be localized and fixed. This assumption is not so
obviously true for a classifier, since faults are often
tied to the training data itself, rather than to the lines
of code that process training data.

Therefore the notion of a fault, if we require that
it can be somehow localized and corrected, must be
generalized—it must be parametrized with respect to
the fault-correction method(s) available to the user.
Users are not usually allowed to directly change code,
but they are often allowed to add or relabel training
data, after which a new classifier is automatically
generated (e.g., marking SPAM in an inbox). In these
circumstances, a fault does not need to be localized to
an area of code or training data—it is corrected simply
by providing “enough” new training data. (This case
is the primary target of active learning.) However,
other fault-correction methods for classifiers are also
possible. Some emerging approaches allow users to
“debug” a classifier by pointing out features that
are particularly important, by adding new features
to the classifier’s feature set, or evaluating multiple
models that emphasize different features [15], [30],
[33], [60]. In such cases, a fault could be localized to
a feature that is missing or weighted too low, and
fixed by adding the feature or weighting it more

4

heavily. Another approach is to allow users to add
explicit rules to a classifier, such as with whitelists in
spam identification—thus a fault can be localized to
a missing or incorrect rule.

Thus, the definition of a “localizable” fault depends
on the correction method: in traditional software test-
ing, it is missing or incorrect code, while in classifiers
it can be missing or incorrect training set data, feature
labels, or rules, depending on the available debugging
methods. Since the test selection methods in this paper
are agnostic to the fault-correction method parameter,
they do not attempt to localize the faults they reveal,
but focus solely on detecting failures.

For simplicity, we will consider all failed test cases
to be of equal cost. In some applications, such as in
surveillance, false positives have a different cost than
false negatives. We plan to incorporate these costs into
our analysis in future work.

3 SOLUTION REQUIREMENTS

Because the problem of end users testing the clas-
sifiers they have interactively customized has not
been addressed in the literature, we offer a set of
requirements for viability in this domain, used to
formulate an evaluation process for candidate test
selection methods.

3.1 Requirements for Viability
End-user testing of classifiers has a number of dif-
ferences from conventional software testing. In this
section, we discuss how three of these differences
impose non-traditional requirements.

The first difference is the nature of the software (a
classifier) itself. Traditional code coverage approaches
to testing are unsatisfying because a classifier’s “code”
contains only a small portion of the classifier’s logic:
the behavior is generally driven by parameters (data)
derived from the training set. Further, improved al-
gorithms and underlying mathematical bases are fre-
quently introduced; thus, even if a “code+data” cover-
age approach could be customized for one algorithmic
approach (e.g., decision trees), it would be likely
to be completely unsuited to another (e.g., support
vector machines). These issues suggest an algorithm-
independent approach: Requirement: A testing method
for a classifier should be agnostic to the machine learning
algorithm that performs the classification.

Second, the software infrastructure hosting an end
user’s classifier is usually highly interactive, pro-
viding immediate feedback even if the classifier
changes—e.g., a spam filter may change every time
new email arrives, and classify spam slightly dif-
ferently from one moment to the next. Hence the
following: Requirement: The testing method must be fast
enough to run in the interactive environment the user is
accustomed to using (e.g., if the classifier sorts email,
then the testing method would run in an email client).

Third, the end-user-as-oracle situation points out a
crucial limitation: the user’s patience, and thus the
number of test cases that users will be willing to judge
in testing the classifier. Prior work with spreadsheet
users’ testing practices suggests that end users are
willing to judge only a small number of test cases,
perhaps fewer than 10. Panko explains this low rate
by pointing out that low levels of testing can be self-
reinforcing [45]: by not carefully testing, users can
perceive benefits by saving time and avoiding onerous
work. Further, when they do catch errors informally,
these errors can further convince users of their efficacy
in error correction without the need for more rigor.
Even scientific users are unlikely to find testing more
than a few tens of instances a worthwhile use of their
time [52]. Therefore, we impose: Requirement: Effective
failure detection must be achieved with a small test suite,
one or more orders of magnitude smaller than in regular
testing practice.

This third requirement has an interesting nuance
because, as with human-created software systems, it
is not the case that all failures (and faults) are equally
important. In more traditional software development
efforts, “bug triage” can be a problem, both in the de-
velopment of tests (in order to focus on finding critical
faults) and after failures are found. With classifiers,
where it is expected that even the highest quality clas-
sifiers will sometimes fail to correctly classify some
instances, this is perhaps an even more important
aspect of the testing.

To see why, consider the following. Although most
classifiers “know” when they lack enough informa-
tion to be certain of the label for an instance—a trait
we use to our advantage in our test selection methods,
as discussed in the next section—this ability to self re-
flect may sometimes be misleading. A classifier might
correctly point out a possible failure when the proba-
bility assigned to the chosen label is low (perhaps due
to a lack of training data similar to that instance, or
ambiguity between two classes). However, a classifier
may also have misplaced confidence in output labels
that are wrong. Cases in which the classifier has
high confidence in an incorrect labeling ` may be
of particular importance in testing; they may be the
prime targets for hand debugging [60], or reveal larger
problems with the training set or with assumptions
made by the classifier. These failures are a surprise
given the classifier’s high confidence—hence we call
them surprise failures.

To satisfy the requirements for algorithm agnosti-
cism and low computational cost, we applied both
requirements when identifying candidate test selec-
tion methods. We then empirically investigated these
methods’ ability to satisfy the third requirement, fail-
ure detection efficiency.

5

3.2 Research Questions
Our overall research question is simple: “How do you
find the most failures made by a classifier while exam-
ining the fewest outputs?”. We explored this question
in two parts—first via an experimental study using a
wide range of classifiers, data sets, and test set sizes,
and then via an empirical user study to discover if the
same experimental findings hold when we introduce
end users into the loop. These two objectives were
broken down into seven research questions:

• RQ1 (Efficiency): Which proposed testing meth-
ods produce effective test suites for a user?

• RQ2 (Accuracy variation): Does test method ef-
fectiveness vary with classifier accuracy? (i.e., Do
we need different testing methods for accurate vs.
inaccurate classifiers?)

• RQ3 (Algorithm variation): Do the most effective
test methods generalize across multiple learning
algorithms and data sets?

• RQ4 (Surprise failure detection): Are “surprise
failures” (failures that the learning algorithm was
confident were correct) identified by the same test
methods used to identify non-surprise failures, or
are different test methods required for this class
of failures?

• RQ5 (User Efficacy): Will end users, when pro-
vided with efficient testing methods, find more
failures than via ad hoc testing?

• RQ6 (User Efficiency): Can a test coverage mea-
sure help end users to test more efficiently than
ad hoc testing?

• RQ7 (User Satisfaction): What are end users’
attitudes toward systematic testing as compared
to ad hoc testing?

4 TEST SELECTION AND COVERAGE METH-
ODS

Our methods include both test case prioritizations [14]
and coverage metrics. A prioritization strategy, given
a set of test cases, orders them according to some
criterion. We can then select a test suite of size n
by taking the top n ranked test cases. Thus, even
if users do not evaluate the full suite, they are at
least testing the items with the highest priority (where
priority depends on the purpose of the test suite,
e.g., finding common failures, or finding surprising
failures). A coverage measure evaluates a test suite
based on some measure: e.g., branches taken, partition
elements input, or mutants killed.

The first three test case selection methods we
describe, CONFIDENCE, COS-DIST, and LEAST-
RELEVANT, are the methods we had reason to
propose (pre-evaluation) as potential candidates for
actual use. In addition, we describe three “base-
line” methods, MOST-RELEVANT, CANONICAL,
and RANDOM, to provide a context for understand-
ing the performance of the proposed methods. We also

propose a test coverage metric based upon the COS-
DIST selection method.

Our general problem statement makes no assump-
tions on the structure of instances i, labels `, or classi-
fiers C, but our methods assume that it is possible to
measure a distance (measure of similarity) between
two instances, d(i1, i2) and that a classifier can pro-
duce, in addition to a labeling for an instance, a
confidence (estimated probability that a label is correct),
so that a test case becomes a tuple (i, `, p), where p
is the classifier’s estimate of P (` correct for i). We
also assume that we can compute information gain on
features. These requirements generally hold for most
commonly used classification algorithms.

4.1 Determining Test Coverage
Our proposed method for determining test cover-
age of a machine-generated classifier is rooted in
the notion of similarity. Because classifiers attempt to
categorize similar inputs together (where “similar”
is defined by the specific features the classifier uses
for categorization), inputs that are similar to many
items in the training set are likely to be correctly cat-
egorized. Conversely, inputs that are unlike anything
in the training set are likely to pose a problem for
the classifier—it may not know how to categorize
such items because it has never seen anything like
them before. Once a user had indicated that an input
was correctly classified, it may be possible to assume
that sufficiently similar inputs will also be correctly
classified.

Thus, we propose that test coverage in this domain
is a function of how similar each test case is to the
untested inputs. For example, take a classifier that has
made 10 predictions, nine of which involve inputs that
are very similar to one another (and are all predicted
to have Label A), and one input which is unlike any
of the others (and is predicted to have Label B). If
a user were to test any one of the first nine inputs
and found it to be correct, we can hypothesize that
the remaining eight are also correct—the classifier
is likely using the same reasoning to classify all of
them. However, this tells us nothing about the tenth
input, because its categorization may be informed by
different reasoning within the classifier (e.g., rules
generalized from different training instances). Thus,
our user’s test coverage would be 90%. Conversely, if
she tested only the tenth item, her test coverage would
be 10%. Via this metric, a user would need to test at
least one item from each cluster of similar items to
achieve 100% test coverage.

An additional wrinkle in our test coverage metric
is that perhaps the classifier has assigned different
output labels to inputs that our distance measure
considers sufficiently similar. To return to the example
above, consider that eight of the nine similar inputs
were categorized as Label A, but the ninth was cate-
gorized as Label B. If the user indicates that Label B

6

is incorrect for the ninth item, it does not necessarily
tell us anything about the other eight inputs. Thus,
we propose that for a user’s test of input i1 to also
cover input i2, i1 and i2 must be sufficiently similar
(as defined by some distance measure d(i1, i2)) and
share the same output label `.

4.2 Proposed Test Selection Methods

CONFIDENCE Prioritization:
From a software testing perspective, CONFI-

DENCE, a method based on prioritizing test cases in
ascending order of p in (i, `, p) (such that cases where
the label has the lowest probability are tested first),
is analogous to asking the software’s original pro-
grammer to prioritize testing code most likely to fail—
but in our case, the “programmer” is also software.
Thus, the CONFIDENCE approach is a prioritization
method that capitalizes on the ability of classifiers to
“find their own bugs” by selecting cases where they
have low confidence.

Confidence can be measured in a variety of ways.
We compute confidence as the magnitude of the
probability assigned to the most likely labeling, and
prioritize test cases according to those with the lowest
probabilities2. CONFIDENCE selects ambiguous test
instances—instances that fall on or close to decision
boundaries. Most machine learning algorithms can
compute this measure of confidence in some form;
most commonly, it is the conditional probability of
the label ` given the instance i’s features.

Thus, CONFIDENCE largely satisfies the require-
ment that methods be algorithm-agnostic (Section 3.1).
Computing confidence is also computationally inex-
pensive, as it is “built-in” to most classifiers. However,
this prioritization method also requires time at least
linear in the size of the test instance universe; this
can be reduced in the case of unusually large sets by
random sampling.

Despite the apparently high potential of this
method, one problem with this approach concerns the
quality of confidence estimates. For example, can clas-
sifiers with low accuracy evaluate their own spheres
of competence? Even highly accurate classifiers may
not have well-calibrated confidence measures. A sec-
ond problem is that the CONFIDENCE method will—
almost by definition—fail to find surprise failures.

COS-DIST Prioritization:
COS-DIST prioritizes tests in descending order of

their average cosine distance d(i, t) to all members t

2. We also evaluated a similar prioritization based on uncertainty
sampling, but omit the results as this method generally performed
slightly worse than CONFIDENCE.

of the training set3. Instances most distant from the
training set are tested first. From a software testing
perspective, COS-DIST is analogous to prioritizing
test cases that might fail because they are “unusual”.
The underlying assumption is that test cases most
unlike the training set are likely to fail.

In principle, the idea of prioritizing test cases based
on distance could apply to many software systems.
What is unusual is (1) the existence of the training
set, to provide a baseline notion of “typical” cases
for which the software is expected not to fail, and (2)
a continuity and statistically based form of behavior
that gives us hope that simple, easily computable
distance metrics on inputs will be relevant to behavior.
In more typical testing, computing useful distances
between test cases is problematic: two API calls may
invoke very different software behavior despite dif-
fering only slightly.

This testing method is clearly algorithm-agnostic,
since it rests solely on the contents of the training set.
Computing distances between large training sets and
large test sets takes time proportional to the product
of the sizes of the sets, but as with CONFIDENCE,
random sampling can be used for approximate results.

Regarding our third requirement (effective failure
detection with small test suites), COS-DIST avoids
two of the potential shortfalls of CONFIDENCE be-
cause it does not use a classifier’s opinion of its
own competence. However, this method shares with
CONFIDENCE the potential problem that focusing on
finding likely-to-fail test cases seems unlikely to reveal
surprise failures.

LEAST-RELEVANT Prioritization:
The two methods above are potentially heavily bi-

ased against surprise failures. The LEAST-RELEVANT
method attempts to solve that problem. From a soft-
ware testing perspective, LEAST-RELEVANT is analo-
gous to selecting test cases that might fail because they
don’t take any of the most common paths through the
code. Its key motivation is the premise that failure
may be more likely for instances lacking the “most
important” features.

Suppose an enumeration is available of the k fea-
tures (e.g., words in the input documents) most rel-
evant to making classifications. In our experiments,
we use information gain (over the entire universe
of instances) to measure feature relevance; another
possibility is for the user to tell the classifier which
features are most relevant [35]. Given this set, LEAST-
RELEVANT ranks a test case (i, `) by the absence of
these key features in the instance (fewer key features
results in higher prioritization). Because the set may

3. Cosine distance, commonly used in information retrieval sys-
tems [5], is based on the cosines of angles between points in a mul-
tidimensional feature space based on co-occurrences of features—
in our case, words in documents. We also investigated a distance-
metric prioritization approach using Euclidean distance rather than
cosine distance, which gave almost identical results.

7

be user-provided, we have limited our results to con-
sidering k=20 features. In a sense, LEAST-RELEVANT
shares the same goals as COS-DIST, but hopes to
avoid over-selecting for outlier instances by using a
coarse binary distinction, balancing failure detection
with the ability to find surprise failures.

LEAST-RELEVANT is agnostic to the underlying
machine learning algorithm, but may become imprac-
tical for classification problems with a small number
of features. In such a case, it may be more useful
to prioritize tests based on a lack of discriminative
feature values (e.g., a scalar feature may be discrim-
inative if its value is less than 10, but ambiguous
otherwise) rather than a lack of discriminative fea-
tures themselves. LEAST-RELEVANT also features a
computation cost proportional to the test suite size.

Regarding the third requirement, identifying fail-
ures with an extremely small test set, our premise
is that the degree to which an input lacks relevant
features may correlate with its chance of failure. For
surprise failures, we predict that LEAST-RELEVANT
will be less biased against surprise failures than
confidence-based and distance-based methods.

4.3 Baseline Test Selection Methods
To experimentally evaluate our proposed testing
methods, we needed baseline methods that might be
intuitively attractive to end users in the absence of
more systematic prioritizations. In evaluations with
actual users, user behavior in the absence of assistance
served as a true baseline.

MOST-RELEVANT Coverage:
The MOST-RELEVANT coverage metric (the in-

verse of LEAST-RELEVANT) is based on the notion of
“covering” features that are most relevant to classifica-
tion. We include it because users might want to focus
on features that matter most to them. In traditional
software testing terms, this seems somewhat analo-
gous to testing “usual” cases. Ranking is determined
as in LEAST-RELEVANT, but increases with presence
of the most relevant features, rather than with their
absence.

CANONICAL Prioritization:
If attempting to test “systematically” without guid-

ance from a testing system, a user might test an
archetypal example (or examples) for each label. We
simulate this notion of canonicity by grouping in-
stances according to their true label and then calcu-
lating the centroid of each set. For each set, we take
the instances closest to the centroid as canonical. We
test canonical instances for each class in proportion
to the appearances of that class (classes with many
instances contribute more instances). In traditional
testing terms, this method is similar to choosing test
cases for each specification of desired output.

RANDOM:

RANDOM testing is potentially a competitive base-
line method. Although once considered to be some-
thing of a strawman, in recent years the effectiveness
of random testing has been shown to be competi-
tive with more systematic methods when it can be
applied to software testing [3]. Further, its statistical
heritage is an excellent match for the statistical nature
of classifiers, suggesting special suitability to this
domain. Even if we expect systematic methods to
improve on random testing in terms of effectiveness,
random testing lacks the dangerous potential bias
against finding surprise failures that is a disadvantage
for our proposed methods above. Random testing is
(statistically) guaranteed to find such failures at a rate
roughly equivalent to their actual prevalence.

5 EXPERIMENTAL EVALUATION

5.1 Methodology
5.1.1 Procedures and Data
We evaluated our test selection methods over classi-
fiers based on randomly chosen training sets ranging
from 100 to 2,000 instances, in increments of 100.
For each training set size, we generated 20 training
sets and produced classifiers for each training set,
reserving all items not used in training as potential
test case instances; thus I is the set of all data set
instances not used to train C, the classifier to be
tested. Varying training set size is an indirect method
of controlling classifier accuracy; larger training sets
usually produce more accurate classifiers. Finally, we
applied each test selection method to each classifier,
selecting test cases from I , for test suite sizes ranging
from 5 to 25 instances, in increments of 5 (recall our
requirement of very small test suites). For LEAST-
RELEVANT, MOST-RELEVANT, and RANDOM, we
generated five test suites for each training set (LEAST
and MOST relevant result in many ranking ties, which
we settled randomly). For more fine-grained priority-
based methods, we needed only one test suite for
each training set, as the results were deterministic. The
original labeled data sets served as test oracles: ` was
correct when it matched the label for i in the original
data set.

To produce multiple classifiers C to test, we trained
a Naive Bayes (NB) classifier [40] and a Support
Vector Machine (SVM) [12] on each training set. These
two types of classifiers were chosen because they are
commonly used machine learning algorithms for text
data. We used the Mallet framework [41] and LIBSVM
[8] to produce classifiers and to perform distance,
information gain, and confidence calculations. For
SVM classifiers, confidence is computed based on the
second method proposed by Wu et al. [61], the default
approach in LIBSVM.

The data sets we used to create the training sets
and test suites are widely studied in the machine
learning literature on text classification. These sets

8

were: “20 Newsgroups” [36], “Reuters-21578” [4], and
the “Enron data set” [55]. For 20 Newsgroups data we
used the set which contains 11,293 newsgroup docu-
ments divided into 20 categories. The Reuters data
set contains 5,485 news stories, labeled by subject; we
used only the 8 most common categories. The Enron
set (for user farmer) consists of 3,672 emails divided
into 25 categories.

5.1.2 Evaluation Measures
To answer Research Questions 1–3, we report each
method’s efficiency: the number of failures divided by
the total number of tests.

To answer Research Question 4, (determining which
methods are most likely to find the most surprising
failures), we use a sliding surprise threshold to re-
port each method’s detection of incorrect results in
which the classifier’s confidence exceeded a certain
threshold. The sliding threshold avoids an arbitrary
choice, allowing us to consider all values above 0.5
to be potential definitions of the “surprise” level.
(Below 0.5, the classifier is saying it has at least a
50/50 chance of being wrong—hardly constituting a
surprising failure.)

5.2 Results
5.2.1 Testing Efficiency
Our three proposed testing methods were all sig-
nificantly more efficient than RANDOM in all ex-
perimental configurations. (We show only RANDOM
in comparison to our proposed methods, as it out-
performed the other baseline methods.) The CONFI-
DENCE method performed best in five of the six con-
figurations, with COS-DIST second best in those five.
(CONFIDENCE and COS-DIST switched places in the
sixth configuration.) LEAST-RELEVANT showed the
least improvement over the RANDOM baseline. Fig-
ure 3 graphs these differences: the efficiencies shown
are averages of rates over all suites (whose sizes
ranged from 5 to 25 test cases) and all classifiers at
each training set size. For all but the smallest training
sets (200–500 instances), differences between all pairs
of methods, except where data points coincide, are
significant at the 95% confidence level.4 Figure 3(g)
shows 95% confidence intervals at three training set
sizes of Figure 3(a)’s configuration5.

As the Figure 3 illustrates, the best methods were
very efficient at identifying failures. For example,
consider the RANDOM line in Figure 3(c). RANDOM
is statistically guaranteed to detect failures at the rate
they occur, and thus is also a statistical representative
of the classifier’s accuracy. This indicator shows that

4. Confidence intervals were computed over all runs for each
training set size, in standard statistical practice [59].

5. Other sizes were similar but omitted for readability; some of
the intervals are so tight that they are almost occluded by the data
points.

0 1000 2000
0.0

0.5

1.0

(a: SVM-20NG)

F
ai

lu
re

s
/

T
es

t
C

as
es

0 1000 2000
0.0

0.5

1.0

(b: NB-20NG)

0 1000 2000
0.0

0.5

1.0

(c: SVM-R8)

F
ai

lu
re

s
/

T
es

t
C

as
es

0 1000 2000
0.0

0.5

1.0

(d: NB-R8)

0 1000 2000
0.0

0.5

1.0

(e: SVM-Enron)

F
ai

lu
re

s
/

T
es

t
C

as
es

0 1000 2000
0.0

0.5

1.0

(f: NB-Enron)

0 1000 2000
0.0

0.5

1.0

(g: SVM-20NG-C.I.)

F
ai

lu
re

s
/

T
es

t
C

as
es

0 10002000
0.0

0.5

1.0

 CONFIDENCE

COS-DIST

LEAST-RELEVANT

RANDOM

Training Set Size (controls accuracy)

Fig. 3. Failure detection effectiveness in different clas-
sifiers: All three methods outperformed RANDOM, with
CONFIDENCE usually in the lead except for (f). (a-b):
20 Newsgroups by SVM (a) and Naive Bayes (b). (c-
d): Reuters by SVM and Naive Bayes. (e-f): Enron by
SVM and Naive Bayes. (g): SVM-20NG’s confidence
intervals at three training set sizes (200, 1000, and
2000).

the Reuters SVM classifier was extremely accurate
when trained on 2,000 instances (the rightmost point
on the x-axis), with a failure rate of only 3.5%. Even
given this extremely accurate classifier, 63% of the
CONFIDENCE-generated test cases detected failures.

Classifiers with reasonably high accuracy pose
the most interesting testing challenge—any approach
might find failures in programs that are “riddled
with bugs”. An accuracy of about 80-90% is con-
sidered reasonably good for most machine learning
algorithms on the datasets we use in this paper (e.g.,
[28]). The performance of CONFIDENCE held up to

9

this challenge—it performed almost as well with very
accurate classifiers (rightmost x-values in Figure 3) as
with very inaccurate classifiers (leftmost x-values).

The data sets and algorithms across these experi-
ments cover three very different situations classifiers
face. The 20 Newsgroups data set (Figure 3(a-b)) pro-
duced classifiers challenged by ambiguity, due largely
to the “Miscellaneous” newsgroups. The Reuters data
set (Figure 3(c-d)), with only a few classes, produced
classifiers under a nearly ideal setting with many sam-
ples from each class. The Enron configuration (Figure
3(e-f)) produced classifiers challenged by the problem
of class imbalance, with folders ranging in size from
about 10 to over 1,000. Despite these differences, the
ranks of the methods were identical except for the
CONFIDENCE/COS-DIST swap in Figure 3(f).

In contrast to the three proposed methods, the
methods we believe match what users might “in-
tuitively” do (CANONICAL and MOST-RELEVANT)
did not usually perform better than RANDOM (Fig-
ure 4), and sometimes performed significantly worse.
The reason for this inefficiency is that the “most typ-
ical” instances and those containing the most useful
keywords for classification are precisely the instances
even poor classifiers are most likely to label correctly.
Thus, the “intuitive” methods cannot fulfill our third
requirement.

In these experiments, differences in size of our small
test suites (5 vs. 10 vs. ... 25 test cases) rarely seemed
to matter; thus we do not provide data for each size
because the results were so similar. The two highest
performing methods (CONFIDENCE and COS-DIST)
did show a mild degradation in efficiency as suite
size increased, further evidence of the effectiveness
of prioritization in those two methods.

By the standards of the software testing literature,
where popular methods such as branch coverage
are only weakly correlated with fault detection [17],
[18], all three are effective testing methods, especially
CONFIDENCE and COS-DIST. In software testing,
strategies strongly correlated with suite effectiveness
(independent of suite size) tend to be very expensive
to evaluate and less useful as test generation or selec-
tion methods (e.g., mutation testing or all-uses testing
[18]). In contrast, our approaches are computationally
inexpensive and effective for selecting even very small
test suites.

5.2.2 Surprise Failures

Identifying surprise failures—cases in which the clas-
sifier is confident in its erroneous labeling—caused
the relative order of our methods’ performance to
change. Figure 5 illustrates how methods run into
difficulty as the degree of a failure’s “surprisingness”
(confidence) increases along the x-axis. The x-axis
begins at no surprisingness at all (confidence at zero).
As noted, we do not consider failures at confidence

0 1000 2000
0.0

0.5

1.0

(a: SVM-20NG)

F
ai

lu
re

s
/

T
es

t
C

as
es

0 1000 2000
0.0

0.5

1.0

(b: NB-20NG)

0 1000 2000
0.0

0.5

1.0

(c: SVM-R8)

F
ai

lu
re

s
/

T
es

t
C

as
es

0 1000 2000
0.0

0.5

1.0

(d: NB-R8)

0 1000 2000
0.0

0.5

1.0

(e: SVM-Enron)

F
ai

lu
re

s
/

T
es

t
C

as
es

0 1000 2000
0.0

0.5

1.0

(f: NB-Enron)

RANDOM

MOST-RELEVANT

CANONICAL

Training Set Size (controls accuracy)

Fig. 4. Failure detection effectiveness of the base-
line techniques. Both “intuitive” baseline methods per-
formed worse than RANDOM. The classifiers shown
are (a-b): 20 Newsgroups by SVM (a) and Naive Bayes
(b). (c-d): Reuters by SVM and Naive Bayes. (e-f):
Enron by SVM and Naive Bayes.

below 0.5 to be surprising, thus surprises are on the
right side of these graphs.

The graphs shown are for the most accurate clas-
sifiers (i.e., those trained on 2,000 instances), because
failures in cases of high confidence by these accurate
classifiers constitute the most surprising of all failures.
Classifiers trained on smaller trainings sets showed
similar results.

As Figure 5 shows, CONFIDENCE, though highly
efficient at low levels of classifier confidence, lost all
effectiveness by the right half of the graphs. The drop
occurred earlier in SVM than in Naive Bayes, possibly
because of Naive Bayes’s propensity toward over-
confidence [63]. We expected the baseline CANON-
ICAL and MOST-RELEVANT methods to do well at
finding surprise failures because they tend to select
high-confidence labelings, but they performed poorly;
perhaps their poor ability to detect failures overall
prevented success at detecting this kind of failure.

In contrast to these methods’ lack of success, COS-
DIST usually performed well on surprise failures, of-

10

0.0 0.5 1.0
0.0

0.5

1.0

(a: SVM-20NG)

F
ai

lu
re

s
/

T
es

t
C

as
es

0.0 0.5 1.0
0.0

0.5

1.0

(b: NB-20NG)

0.0 0.5 1.0
0.0

0.5

1.0

(c: SVM-R8)

F
ai

lu
re

s
/

T
es

t
C

as
es

0.0 0.5 1.0
0.0

0.5

1.0

(d: NB-R8)

0.0 0.5 1.0
0.0

0.5

1.0

(e: SVM-Enron)

F
ai

lu
re

s
/

T
es

t
C

as
es

0.0 0.5 1.0
0.0

0.5

1.0

(f: NB-Enron)

Confidence Threshold

Fig. 5. Failure detection with confidence thresholds,
at training set size 2,000 (the x-axis is the confidence
level of the classifier). CONFIDENCE performed poorly
as the confidence threshold increased, but COS-DIST
and LEAST-RELEVANT outperformed RANDOM. (a-
b): 20 Newsgroups by SVM (a) and Naive Bayes (b).
(c-d): Reuters by SVM and Naive Bayes. (e-f): Enron
by SVM and Naive Bayes. (Legend is same as Figure
3.)

ten identifying them at a significantly higher rate than
they actually occurred (as represented by the RAN-
DOM line). Its superiority held over a range of levels
of surprise (i.e., the right half of the x-axis). Figure
5(b)’s 20 Newsgroups data set with Naive Bayes was
the only configuration where COS-DIST performed
poorly. We hypothesize that its poor performance
in this case was due to the overlap in newsgroup
contents, which caused most of the failures to be due
to ambiguity and thus lie near decision boundaries.
Data instances that are very far away from the training
set (according to COS-DIST) may be well inside a
decision boundary and thus correctly classified.

At all thresholds for surprise (thresholds from 0.5
to 0.9), COS-DIST found surprise failures significantly
better than RANDOM in three configurations (Fig-
ure 5(a), (c), and (f)), with significance calculated as
in Section 5.2.1. LEAST-RELEVANT significantly im-
proved on RANDOM at some surprise thresholds in
configurations (b) and (f). Differences between COS-
DIST and LEAST-RELEVANT were also significant in

0.0

0.5

1.0

 0 1000 2000

F
ai

lu
re

s
/ T

es
t C

as
es

Training Set Size (controls accuracy)

CONFIDENCE
COS-DIST

LEAST-RELEVANT
RANDOM

Fig. 6. After removing items that might expose “the
same fault” (by distance), CONFIDENCE and COS-
DIST approaches still performed very well.

configurations (a), (b), (c), and (f), with COS-DIST
better in all but the aforementioned (b) case.

We are encouraged and surprised that any testing
methods performed well for surprise failures in any
of the classifiers, because the methods that succeeded
overall (recall Figure 3) all work by seeking outliers—
the very instances for which a classifier should exhibit
low confidence. We attribute the success of COS-
DIST and LEAST-RELEVANT to their focus on finding
unusual rather than ambiguous instances (as found
by CONFIDENCE). It appears that using COS-DIST
provides a good balance between finding a high
quantity of failures and finding the elusive surprise
failures, and may be the testing method of choice
when considering both the quality and quantity of
failures found.

5.2.3 Regarding Test Coverage, and Grouping Fail-
ures by Similarity
A potential explanation for our best methods’ per-
formance could have been that they selected many
similar test cases that all expose “the same fault”
(under many correction methods). To check for this
possibility, given that it is not possible to define
“faults” without all the necessary parameters (Section
2.2), we considered the following assumption: failing
instances that are similar (by distance metric thresh-
old) to each other are more likely to expose the same
fault. We tested this assumption for both SVM and
Naive Bayes as follows: we added failing instances
(with correct labels `) to the training set, generated
new classifiers, and examined the changes.

The results supported our assumption. For both
SVM and Naive Bayes, items similar to the failing
test’s instance, when compared to randomly selected
instances, were, after retraining: (1) more likely to
change classification, (2) less likely to change to an
incorrect labeling, and (3) roughly twice as likely
to change from an incorrect to a correct labeling.
This indicates that the notion of using distance as a
surrogate for “exposes same fault” likelihood is not
unreasonable.

Using this assumption, we re-ran our experiments,
pruning test suites by retaining only the most highly

11

prioritized item for each set of similar items (thus,
in most cases, testing many lower-priority items than
in the original results). The resulting failure detection
efficiency for our best methods was at worst only
moderately degraded, and sometimes marginally im-
proved: Figure 6 shows the results for an SVM on the
20 Newsgroups dataset, and is typical of other classi-
fiers and datasets. This suggests that the effectiveness
of our methods is not a result of detecting multiple
instances of the same fault.

The above results also support our hypothesis that
classifier test coverage can be reliably determined by
assuming the classifier will treat similar items in a
similar manner; we will further investigate the utility
of this metric in the next section.

6 USER STUDY

The results in Section 5 suggest that systematic testing
of machine-generated classifiers can be done effec-
tively and efficiently, but will actual users behave in
such an ideal manner? To find out, we designed a
framework (initially presented in [32]) to support end-
user testing of an interactive machine learning system,
and studied how end users worked with it.

6.1 What You See is What You Test
Our framework was loosely inspired by the What-
You-See-Is-What-You-Test (WYSIWYT) approach of
Rothermel et al. [48]; we thus dubbed it WYSI-
WYT/ML (ML for machine learning). Like the origi-
nal WYSIWYT system, our framework performs four
functions: (1) it advises (prioritizes) which predictions
to test, (2) it contributes tests, (3) it measures coverage,
and (4) it monitors for coverage changes. How it
achieves this functionally, however, is unique to the
domain of interactive machine learning.

WYSIWYT/ML supports two cases of users inter-
acting with a classifier. In use case UC-1, can a user
initially rely on the classifier to behave as expected?
For example, will a new email client correctly identify
junk mail while leaving important messages in your
inbox? By prioritizing tests, WYSIWYT/ML can help
a user quickly identify which messages are most likely
to be misclassified, and by contributing tests (via the
coverage metric), it keeps the number of test cases a
user must manually examine low. The coverage metric
also informs the user how well-tested the classifier is,
allowing him or her to determine how closely it needs
to be monitored for mistakes (e.g., important email
ending up in the junk mail folder).

In use case UC-2, a user wants to know if his or her
classifier is still reliable. Because interactive machine
learning systems continue to learn post-deployment,
there is no guarantee that a system that was reliable
in the past will continue to perform as expected in the
future. Thus, WYSIWYT/ML’s fourth function: mon-
itoring for coverage changes. Coverage may change

because new inputs arrive that are unlike anything the
user has yet tested, or the classifier’s reasoning may
change, causing items the user previously indicated
to be correctly classified to now have a new (and
incorrect) output label.

6.2 Instantiating WYSIWYT/ML

We prototyped WYSIWYT/ML as part of a text-
classifying intelligent agent. This agent took news-
group messages and classified them by topic (a screen-
shot is shown in Figure 1). Thus, testing this agent
involved determining whether or not it had classified
each message correctly.

6.2.1 Advising Which Predictions to Test

Our prototype prioritizes the classifier’s topic pre-
dictions that are most likely to be wrong, and com-
municates these prioritizations using saturated green
squares to draw a user’s eye (e.g., Figure 1, fourth
message). The prioritizations may not be perfect, but
they are only intended to be advisory; users are free
to test any messages they want, not just ones the
system suggests. We created three variants of the
WYSIWYT/ML prototype, each using one of the pri-
oritization criteria identified in Section 4.2: CONFI-
DENCE, COS-DIST, and LEAST-RELEVANT.

WYSIWYT/ML’s implementation of the CONFI-
DENCE selection criteria displays classifier confidence
to the user (and allows the user to sort on confidence).
The higher the uncertainty, the more saturated a
green square (Figure 1, Confidence column). Within
the square, WYSIWYT/ML “explains” CONFIDENCE
prioritizations using a pie chart (Figure 7, left). Each
pie slice represents the probability that the message
belongs to that slice’s topic: a pie with evenly sized
slices means the classifier thinks each topic is equally
probable (thus, testing it is a high priority).

The COS-DIST method is implemented via a “fish-
bowl” that explains this method’s priority, with the
amount of “water” in the fishbowl representing how
unique the message is compared to messages on
which the classifier trained (Figure 7, middle). A full
fishbowl means the message is very unique (com-
pared to the classifier’s training set), and thus high
priority.

The LEAST-RELEVANT method uses the number of
relevant words (0 to 20) to explain the reason for the
message’s priority (Figure 7, right), with the lowest
numbers receiving the highest priorities.

Fig. 7. The CONFIDENCE (left), COS-DIST (middle),
and LEAST-RELEVANT (right) visualizations.

12

6.2.2 Contributing Tests and Measuring Coverage
When a user wants to assess the classifier, he or she
can pick a message and judge (i.e., test) whether the
predicted topic is correct. Users can pick any message:
one of WYSIWYT/ML’s suggestions, or some different
message if he or she prefers. The user communicates
this judgment by clicking a 3 if it is correct or a 7 if
it is incorrect, as in Figure 8 (smaller 3 and 7 marks
were available to indicate “maybe right” and “maybe
wrong”, respectively). If a topic prediction is wrong,
the user has the option of selecting the correct topic—
our prototype treats this as a shortcut for marking the
existing topic as “wrong”, making the topic change,
and then marking the new topic as “right”.

WYSIWYT/ML then contributes to the user’s testing
effort: after each user test, WYSWYT/ML automati-
cally infers the same judgment upon similar messages.
These automated judgments constitute inferred tests.

To contribute these inferred tests, our approach
computes the cosine similarity of the tested message
with each untested message sharing the same pre-
dicted topic. WYSWYT/ML then marks very simi-
lar messages (i.e., scoring above a cosine similarity
threshold of 0.05, a value established during pilot
tests) as approved or disapproved by the prototype. The
automatically inferred assessments are shown with
gray 3 and 7 marks in the Correctness column (Figure
9, top), allowing users to differentiate their own ex-
plicit judgments from those automatically inferred by
WYSIWYT/ML. Of course, users are free to review
(and if necessary, fix) any inferred assessments—in
fact, most of our study’s participants started out doing
exactly this.

WYSIWYT/ML’s third functionality is measuring
test coverage: how many of the classifier’s predictions
have been tested by Adam and the inferred tests
together. A test coverage bar (Figure 9, bottom) keeps
users informed of this measure, helping them decide
how much more testing may be warranted.

6.2.3 Monitoring Coverage
Whenever a user tests one of the classifier’s predic-
tions or new content arrives for the prototype to
classify, the system immediately updates all of its
information. This includes the classifier’s predictions
(except for those a user has “locked down” by explic-
itly approving them), all testing priorities, all inferred
tests, and the test coverage bar. Thus, users can always

Fig. 8. A user can mark a predicted topic wrong,
maybe wrong, maybe right, or right (or “?” to revert to
untested). Prior research found these four choices to
be useful in spreadsheet testing [21].

see how “tested” the classifier is at any given moment.
If a user decides that more testing is warranted, he or
she can quickly tell which predictions WYSIWYT/ML
thinks are the weakest (UC-1) and which predictions
are not covered by prior tests (UC-2).

6.3 Experimental Methodology

We conducted a user study to investigate use-case
UC-1, the user’s initial assessment of a classifier. This
study was designed to investigate Research Questions
5, 6, and 7.

We used three systematic testing treatments, one
for each prioritization method (CONFIDENCE, COS-
DIST, and LEAST-RELEVANT). We also included a
fourth treatment (CONTROL) to represent ad hoc test-
ing. Participants in all treatments could test (via 3, 7,
and label changes) and sort messages by any column
in the prototype. See Figure 1 for a screenshot of
the CONFIDENCE prototype; COS-DIST and LEAST-
RELEVANT looked similar, save for their respective
prioritization methods and visualizations (Figure 7).
CONTROL supported the same testing and sorting
actions, but lacked prioritization visualizations or in-
ferred tests, and thus did not need priority/inferred
test history columns. CONTROL replaces our hypoth-
esized CANONICAL and MOST-RELEVANT meth-
ods, as well as RANDOM, in that it represents actual
user behavior in the absence of an automated selec-
tion/prioritization method.

The experiment design was within-subject (i.e., all
participants experienced all treatments). We randomly
selected 48 participants (23 males and 25 females)
from respondents to a university-wide request. None
of our participants were Computer Science majors,
nor had any taken Computer Science classes be-
yond the introductory course. Participants worked
with messages from four newsgroups of the 20
Newsgroups dataset [31]: cars, motorcycles, computers,

Fig. 9. (Top): The user tested three of the messages
(the dark 3 and 7 marks), so they no longer show a
priority. Then the computer inferred the third message
to be correct (light gray 3). Because the user’s last
test caused the computer to infer new information,
the History column shows the prior values of what
changed. (These values move right with each new
change, until they are pushed off the screen.) (Bot-
tom): A test coverage bar informs users how many
topic predictions have been judged (by the user or the
computer) to be correct (3) or incorrect (7).

13

and religion (the original rec.autos, rec.motorcycles,
comp.os.ms-windows.misc, and soc.religion.christian
newsgroups, respectively).

We randomly selected 120 messages (30 per topic)
to train a support vector machine [8]. We randomly
selected a further 1,000 messages over a variety of
dates (250 per topic) and divided them into five data
sets: one tutorial set (to familiarize our participants
with the testing task) and four test sets to use in the
study main tasks. Our classifier was 85% accurate
when initially classifying each of these sets. We used
a Latin Square design to counterbalance treatment
orderings and randomized how each participant’s test
data sets were assigned to the treatments.

Participants answered a background questionnaire,
then took a tutorial to learn one prototype’s user
interface and to experience the kinds of messages
and topics they would be seeing during the study.
Using the tutorial set, participants practiced testing
and finding the classifier’s mistakes in that prototype.
For their first task, participants used the prototype
to test and look for mistakes in a 200-message test
set. They then filled out a Likert-scale questionnaire
with their opinions of their success, the task difficulty,
and their opinions of the prototype. They then took
another brief tutorial explaining the changes in the
next prototype variant, practiced, and performed the
main task using the next assigned data set and treat-
ment. Finally, participants answered a questionnaire
covering their overall opinions of the four prototypes
and comprehension. Each testing task lasted only 10
minutes.

6.4 Experimental Results
6.4.1 RQ5 (User Efficacy): Finding Failures
To investigate how well participants managed to find
a classifier’s mistakes using WYSIWYT/ML, we com-
pared failures they found using the WYSIWYT/ML
treatments to failures they found with the CONTROL
treatment. An ANOVA contrast against CONTROL
showed a significant difference between treatment
means (Table 1). For example, participants found
nearly twice as many failures using the frontrunner,
CONFIDENCE, than using the CONTROL version.

Not only did participants find more failures with
WYSIWYT/ML, the more tests participants per-
formed using WYSIWYT/ML, the more failures they
found (linear regression, F(1,46)=14.34, R2=.24, b=0.08,
p<.001), a relationship for which there was no
evidence in the Control variant (linear regression,
F(1,45)=1.56, R2=.03, b=0.03, p=.218). Systematic test-
ing using WYSIWYT/ML yielded significantly better
results for finding failures than ad-hoc testing.

Our formative offline oracle experiments revealed
types of failures that would be hard for some of
our methods to target as high-priority tests. (Recall
that, offline, LEAST-RELEVANT and COS-DIST were

better than CONFIDENCE in this respect.) In order
to evaluate our methods with real users, we took
a close look at Bug 20635, which was one of the
hardest failures for our participants to find (one of
the five least frequently identified). The message topic
should have been Religion but was instead predicted
to be Computers, perhaps in part because Bug 20635’s
message was very short and required domain-specific
information to understand (which was also true of the
other hardest-to-find failures):

Subject: Mission Aviation Fellowship
Hi, Does anyone know anything about this
group and what they do? Any info would be
appreciated. Thanks!

As Table 2 shows, nearly all participants who had
this failure in their test set found it with the LEAST-
RELEVANT treatment, but a much lower fraction
found it using the other treatments. As the table’s Pri-
oritization column shows, LEAST-RELEVANT ranked
the message as very high priority because it did not
contain any useful words, unlike CONFIDENCE (the
classifier was very confident in its prediction), and
unlike COS-DIST (the message was fairly similar to
other Computer messages). Given this complemen-
tarity among the different methods, we hope in the
future to evaluate a combination (e.g., a weighted
average or voting scheme) of prioritization methods,
thus enabling users to quickly find a wider variety of
failures than they could using any one method alone.

6.4.2 RQ6 (User Efficiency): The Partnership’s Test
Coverage
Using WYSIYWT/ML, our participants were able to
more than double their test coverage. Together with
the computer-oracle-as-partner, participants’ mean of
55 test actions using WYSIWYT/ML covered a mean
of 117 (60%) of the messages—thus, participants
gained 62 inferred tests “for free”. Table 3 shows the
raw counts. With the help of their computer partners,
two participants even reached 100% test coverage,
covering all 200 messages within their 10-minute time
limit.

Further, coverage scaled well. In an offline experi-
ment, we tried our participants’ explicit tests on the
entire set of Newsgroup messages from the dates and
topics we had sampled for the experiment—a data set
containing 1,448 messages. (These were tests partici-
pants explicitly entered using either WYSIWYT/ML
or CONTROL, a mean of 55 test actions per ses-
sion.) Using participants’ explicit tests, the computer
inferred a mean of 568 additional tests per participant,
for a total coverage of 623 tests (mean) from only 10
minutes of work—a 10-fold leveraging of the user’s
invested effort.

As Table 3 shows, participants approved more mes-
sages than they disapproved. When participants ap-
proved a message, their topic choice matched the 20-
Newsgroup “gold standard” (the original newsgroup

14

Mean (p-value for contrast with Control) df F pCONFIDENCE COS-DIST LEAST-RELEVANT Control

Failures found (max 30) 12.2 (p<.001) 10.3 (p<.001) 10.0 (p<.001) 6.5 (n/a) 3,186 10.61 <.001
Helpfulness (max 7) 5.3 (p<.001) 5.0 (p<.001) 4.6 (p<.001) 2.9 (n/a) 3,186 22.88 <.001
Perceived success (max 21) 13.4 (p=.016) 13.3 (p=.024) 14.0 (p=.002) 11.4 (n/a) 3,186 3.82 .011

TABLE 1
ANOVA contrast results (against Control) by treatment. The highest values in each row are shaded.

Treatment Prioritization Found Did not find

CONFIDENCE 0.14 9 15
COS-DIST 0.58 11 14
LEAST-RELEVANT 1.00 19 4

TABLE 2
The number of participants who found Bug 20635 while working with each WYSIWYT/ML treatment.

Mean 3s
participants entered

per session

Mean 7s
participants entered

per session

Mean 3s
inferred per

session

Mean 7s
inferred per

session
Total 3s Total 7s

Explicit Regular: 35.0
“Maybe”: 7.1

Regular: 2.4
“Maybe”: 2.7

Regular: 46.4
“Maybe”: 8.5

Regular: 4.7
“Maybe”: 2.2 105.2 20.2Implicit 8.2 topic changes as shortcuts for 7+topic+3 n/aa

Total tests 50.3 13.3 54.9 6.9

Total messages testedb 117.2

TABLE 3
Tests via 3 marks, 7 marks, and topic changes during a 10-minute session (out of 200 total messages

per session), for the three WYSIWYT/ML treatments.

a. Although the computer sometimes did change topics, this was due to leveraging tests as increased training on message
classification. Thus, because these topic changes were not directly due to the coverage (cosine-similarity) mechanism, we omit
them from this coverage analysis.

b. Total tests is larger than Total messages tested because topic changes acted as two tests: an 7 on the original topic, then a 3
on the new topic.

topic) for 94% of their regular checkmarks and 81%
of their “maybe” checkmarks (the agreement level
across both types of approval was 92%). By the same
measure, WYSIWYT/ML’s approvals were also very
accurate, agreeing with the gold standard an average
92% of the time—exactly the same level as the partic-
ipants’.

Participants’ regular 7 marks agreed with the gold
standard reasonably often (77%), but their “maybe”
7 marks agreed only 43% of the time. Informal pi-
lot interviews revealed a possible explanation: re-
appropriation of the “maybe” 7 marks for a subtly
different purpose than it had been intended for. When
unsure of the right topic, pilot participants said they
marked it as “maybe wrong” to denote that it could be
wrong, but with the intention to revisit it later when
they were more familiar with the message categories.
This indicates that secondary notation (in addition
to testing notation)—in the form of a “reminder” to
revisit instead of a disapproval—could prove useful
in future prototypes.

Perhaps in part for this reason, WYSIWYT/ML
did not correctly infer many bugs—only 19% of its

7 marks agreed with the gold standard. (The com-
puter’s regular 7 marks and “maybe” 7 marks did
not differ—both were in low agreement with the gold
standard.) Because WYSIWYT/ML’s regular inferred
7 marks were just as faulty, the problem cannot be
fully explained by participants repurposing “maybe”
7 marks. However, this problem’s impact was limited
because inferred 7 marks only served to highlight
possible failures. Thus, the 81% failure rate on WYSI-
WYT/ML’s average of seven 7 marks per session
meant that participants only had to look at an extra
five messages per session. Most inferred tests were
the very accurate 3 marks (average of 55 per session),
which were so accurate, participants could safely skip
them when looking for failures.

6.4.3 RQ7 (User Satisfaction): Attitudes Towards
Systematic Testing

Participants appeared to recognize the benefits of sys-
tematic testing, indicating increased satisfaction over
ad hoc testing. When asked “How much did each system
help you find the computer’s mistakes?” on a seven-point
Likert scale, an ANOVA contrast again confirmed

15

that responses differed between treatments (Table 1,
row 2), with WYSIWYT/ML treatments rated more
helpful than Control. Table 1’s 3rd row shows that
participant responses to the NASA-TLX questionnaire
[26] triangulate this result. Together, these results are
encouraging from the perspective of the Attention
Investment Model [6]—they suggest that end users
can be apprised of the benefits (so as to accurately
weigh the costs) of testing a classifier that does work
important to them.

7 DISCUSSION
We emphasize that finding (not fixing) failures is
WYSIWYT/ML’s primary contribution toward debug-
ging. Although WYSIWYT/ML leverages user tests as
additional training data, simply adding training data
is not an efficient method for debugging classifiers. To
illustrate, our participants’ testing labeled, on average,
55 messages, which increased average accuracy by
3%. In contrast, participants in another study that also
used a subset of the 20 Newsgroup dataset spent their
10 minutes debugging by specifying words/phrases
associated with a label [60]. They entered only about
32 words/phrases but averaged almost twice as much
of an accuracy increase (5%) in their 10 minutes.
Other researchers have similarly reported that allow-
ing users to debug by labeling a word/phrase is up to
five times more efficient than simply labeling training
messages [46].

Thus, rather than attempting to replace the de-
bugging approaches emerging for interactive ma-
chine learning systems (e.g., [33], [35], [57]), WYSI-
WYT/ML’s bug-finding complements them. For ex-
ample, WYSIWYT/ML may help a user realize that
an e-mail classifier often mistakenly labels messages
about social networks (e.g., friend requests, status
updates) as SPAM; the user could then use a feature
labeling approach (e.g., [60]) to adjust the classifier’s
reasoning. After such feedback, WYSIWYT/ML helps
the user understand whether the classifier’s mistakes
have been corrected, as well as whether new mis-
takes have been introduced. WYSIWYT/ML provides
a missing testing component to interactive machine
learning systems; it suggests where important bugs
have emerged and when those bugs have been erad-
icated, so that end users need not debug blindly.

Our empirical evaluation showed that systemati-
cally testing with WYSIWYT/ML resulted in a signif-
icant improvement over ad hoc methods in end users’
abilities to assess their classifiers: our participants
found almost twice as many failures with our best
WYSIWYT/ML variant as they did while testing ad
hoc. Further, the approach scaled: participants covered
117 messages in the 200-message data set (over twice
as many as they explicitly tested) and 623 messages in
the 1448-message data set (over 10 times as many as
they explicitly tested)—all at a cost of only 10 minutes
work.

Thus, systematic assessment of machine-generated
classifiers was not only effective at finding failures—
it also helped ordinary end users assess a reason-
able fraction of an classifier’s work in a matter of
minutes. These findings strongly support the via-
bility of bringing systematic testing to this domain,
empowering end users to judge whether and when
to rely on interactive machine learning systems that
support critical tasks. These results also validate our
experimental evaluations, in that they suggest that
our proposed methodology can predict the relative
performance of methods for actual users. However,
the absolute performance differences between meth-
ods were considerably smaller with human subjects
than when performing purely automated testing. If
the advantages of the non-CONFIDENCE methods
for finding surprise faults carry over to the WYSI-
WYT/ML setting (which we cannot currently claim
to have statistically validated, due to the rarity of
surprise faults in reasonable-sized test sets), the argu-
ment for preferring other methods to CONFIDENCE
may be stronger than our experimental evaluation
would suggest.

8 THREATS TO VALIDITY

We conducted experiments using two types of ma-
chine learning classifiers (naive Bayes and a Support
Vector Machine) and three datasets. However, there
are many different machine learning techniques, and
some operate quite differently than the classifiers we
evaluated (e.g., decision trees, neural networks). Fur-
ther, the three datasets we used in our evaluation may
not be representative of all types of text-based classi-
fication, and certainly do not tell us anything about
testing machine learning systems on non-textual data
(e.g., image recognition).

Our experimental evaluation used training set sizes
of up to 2,000, but the datasets we explored contained
many more items than that (up to 11,293). Thus, a
different sample of training items may have resulted
in different classifiers, and thus different failures. This
is especially applicable at small training set sizes
(e.g., 100 items), where variance between classifiers
trained on different samples from a larger population
is known to be high [7].

The participants in our user study were recruited
from a collegiate campus, and thus may not be rep-
resentative of a larger population (only eight partici-
pants were not enrolled as students at the time of the
study). The task these participants performed (testing
classification of newsgroup messages) is unlikely to be
one they would undertake on their own—people may
be more or less motivated to test classifiers they use on
a daily basis, and this may impact the amount of effort
they are willing to expend on the task. Additionally,
classification of newsgroup messages is subjective;
participants’ perception of correct classification may

16

not match that of the messages’ original authors.
Relatedly, the messages participants tested were from
1994 and contained dated references to people, things,
and events; younger adults may have been uncertain
how to classify some messages because they were less
familiar with the context from which these messages
originated.

The primary real limitations here are simply that
some of the most interesting possible applications for
testing classifiers may not match our settings. For
example, while much of the information in software
engineering classification problems may be textual,
it is also often structured information with complex
semantics, and the availability of a gold standard
may often be a difficult problem for experimental
efforts. Our studies also cannot capture the empirical
aspects of a constantly evolving classifier tuned to
the idiosyncratic needs of a single user well, either
for “simple” applications such as email classification
or hypothetical expert users, e.g. software developers
interested in personalized defect detection [29].

9 RELATED WORK

Until now, there has been no work on systematic
testing of classifiers by end users, therefore relegating
whatever testing users do to strictly ad hoc methods.
If an interesting instance happens to appear and the
user happens to notice it, the user may be allowed to
validate or reject the “test case”, and at the same time
may form an opinion of the classifier’s reliability.

For machine learning specialists (rather than end
users), statistical evaluation of classifier reliability is
common (see, e.g., Chapter 7 of Hastie et al. [27]).
Statistical evaluation of classifiers requires a large set
of labeled data—a cheap oracle. Our setting is quite
different in that end users generally do not have ac-
cess to a large, labeled set of data other than a training
set. Testing classifiers is challenging even for experts
in cases where no test oracle is available [43]. Testing
without an oracle has been studied in depth by Chen
et al. [9]. One approach relies on metamorphic test-
ing [10], exploiting continuity or other mathematical
properties to produce new test cases with predictable
outcomes given results for other inputs [44], [62]. This
approach unfortunately is seldom applicable for end
users; even experts may find it difficult to discover
metamorphic properties.

This paper’s testing-oriented approach is different
from traditional machine learning research, including
active learning [53], although it can make partial use
of some of the techniques [37], [53]. As explained in
the introduction, there are at least three fundamental
differences: (1) who controls the process (classifier ver-
sus user), (2) what is being optimized (learning versus
bug detection), and (3) the target that improves as an
outcome (classifier accuracy versus a user’s ability to
evaluate when to rely on the classifier). Recall Figure

2 for a schematic of these differences. Two advantages
of our approach’s testing emphasis are its direct tie to
the development of human trust in machine-learned
classifiers and its ability to contribute directly to new
debugging approaches for classifiers (e.g., end-user
feature labeling [60] and crowd-sourcing [56]).

Rothermel et al. were the first to propose systematic
testing by end users (of spreadsheets) [48]. That work
described four classes of differences between end
users testing spreadsheets and traditional testing of
imperative programs. The first two classes of differ-
ences relate to specifics about the programming model
of spreadsheets. In many cases the spirit of these
differences inspired our work: e.g., the insight that
criteria should be independent of the details of the
evaluation engine is analogous to our independence
of machine learning algorithms. The third and fourth
classes of differences, deriving from the target audi-
ence of end users, include the importance of the user
interface and the absence of formal testing training.
Our work therefore focuses on approaches that are
(1) inexpensive enough to be integrated into a variety
of potential user interfaces, and (2) do not depend
on any formal training in software testing. One major
difference of our work from previous work on end-
user testing of spreadsheets is that in our case, the
“programs” were not generated by a user (in fact, they
were not even generated by a human).

This paper focuses on very small test suites. Test
suite size usually has an effect on fault detection [49].
It is also known that coverage metrics can be corre-
lated with fault detection [17], [20]. However, few of
the possibly effective approaches that are useful for
generation or selection of tests are easily applicable
to classifiers, or algorithm independent. In contrast,
our goal is computationally inexpensive, learning-
algorithm-independent methods for selecting efficient
test suites for classifiers, even for small test suites.
Thus, comparison to results on traditional human-
created software is of only limited value. One inter-
esting comparison is with the approach of Dickinson
et al., which has some high-level similarities in that
it selects interesting test cases from a large suite of
unknown value by looking for “different” executions
[13].

Statistical outlier finding has been used in end-
user programming settings for assessment, such as
detecting errors in text editing macros [42], inferring
formats from a set of unlabeled examples [51], and
to monitor on-line data feeds in web-based appli-
cations for erroneous inputs [47]. These approaches
use statistical analysis and interactive techniques to
direct end-user programmers’ attention to potentially
problematic values, helping them find places in their
programs to fix.

To support end users’ interactions with machine
learning systems, recent work has explored meth-
ods for explaining the reasons underlying a classi-

17

fier’s predictions. Such explanations have taken forms
as diverse as why... and why not... descriptions of
the classifier’s logic [34], [39], visual depictions of
the classifier’s known correct predictions versus its
known failures [15], [30], [54], and electronic “door
tags” displaying predictions of worker interruptibility
with the reasons (e.g., “talking detected”) [58]. As
a basis for creating explanations, researchers have
also investigated the types of information users want
before assessing the trustworthiness of a classifier [19],
[33]. Work by Lim and Dey has resulted in a toolkit
for applications to generate explanations for popular
machine learning systems [38], and a few systems add
debugging capabilities to explanations [2], [33], [34].
Our approach for supporting systematic assessment
of intelligent assistants is intended as a complement
to explanation and debugging approaches like these.

More generally, our work falls into the increasing
use of machine learning and AI techniques in software
engineering [23], with the interesting unusual feature
that we are not only using ML-based methods for a
software engineering task, but are applying this to the
engineering of ML-based systems. The growing body
of work on using ML techniques in software engineer-
ing, e.g. for bug report based fault localization [50]
or search-based testing [25], is therefore also relevant,
both because it contains similar efforts to apply ML
to software engineering problems and because such
work could likely benefit from the methods presented
in this paper.

10 CONCLUSION
After a well-tested intelligent application arrives on a
user’s personal computer or smart phone, it may en-
counter inputs it has never seen before, or learn new
rules of behavior as a user personalizes it—in each
case, the user needs to know what the application
can do reliably well, and where it may fail. Framing
this situation as a test selection problem reveals sev-
eral challenging requirements for viability: (1) relative
independence from the underlying machine learning
algorithm for general applicability, (2) computational
efficiency so that the method can be used in interac-
tive environments, and (3) test efficiency even with
very small test suites, for consistency with end users’
willingness to test.

Our experimental evaluations serve two purposes:
first, establishing a methodology for predicting test
selection efficiency allowed us to evaluate methods for
use in a more costly human experiment, over a much
larger range of data sets and classifiers than would be
practical with human subjects. Second, it allowed us
to investigate the problem of “surprise” faults, which
is not easily included in human experiments due to
the rarity of such faults in real data.

Together with the findings from our study of real
end users’ behavior, our results suggest that system-
atic testing of classifiers by end users is not only

viable, but significantly more effective than users’ ex-
isting ad hoc methods. The ability of our best selection
methods to produce test suites of very small size,
where most tests reveal failures even for very accurate
classifiers, translated into the ability of users to find
nearly twice as many failures as they could without
assistance. Our methods are aimed at traditional end
users, but the growing importance of machine learn-
ing to software engineering itself [23] suggests that
soon many software developers will also be placed in
the role of end users of ML systems, and themselves
need effective test-selection methods.

11 ACKNOWLEDGEMENTS

We thank our participants, the anonymous reviewers
of this paper, Marc Fisher II, Travis Moore, Jeremy
Goodrich, Nicole Usselman, and Kathleen Shaw. This
work was supported in part by NSF 0803487.

REFERENCES
[1] IEEE Std. Glossary Software Eng. Terminology. IEEE Press, 1990.
[2] S. Amershi, J. Fogarty, and D. Weld. Regroup: interactive

machine learning for on-demand group creation in social
networks. In CHI ’12: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 21–30. ACM
Request Permissions, May 2012.

[3] A. Arcuri, M. Iqbal, and L. Briand. Formal analysis of the
effectiveness and predictability of random testing. In Intl.
Symp. Software Testing and Analysis, pages 219–230, 2010.

[4] A. Asuncion and D. Newman. UCI machine learning reposi-
tory, 2007.

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Re-
trieval. 1999.

[6] A. Blackwell. First steps in programming: A rationale for
attention investment models. In IEEE Conf. Human-Centric
Computing, pages 2–10, 2002.

[7] D. Brain and G. Webb. On the effect of data set size on
bias and variance in classification learning. In D. Richards,
G. Beydoun, A. Hoffmann, and P. Compton, editors, Proc. of the
Fourth Australian Knowledge Acquisition Workshop, pages 117–
128. 1999.

[8] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector
machines, 2001. http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[9] T. Chen, T. Tse, and Z. Quan Zhou. Fault-based testing without
the need of oracles. Information and Software Technology, 45(1):1–
9, 2003.

[10] T. Y. Chen, S. C. Cheung, and S. Yiu. Metamorphic testing: a
new appraoch for generating next test cases. Technical Report
HKUST-CS98-01, Hong Kong Univ. Sci. Tech., 1998.

[11] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide,
and J. Regehr. Taming compiler fuzzers. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 197–208, 2013.

[12] C. Cortes and V. Vapnik. Support vector networks. Machine
Learning, 20:273–297, 1995.

[13] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:
The distribution of program failures in a profile space. In
European Software Eng. Conf., pages 246–255, 2001.

[14] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: a family of empirical studies. IEEE Trans.
Software Eng., 28, 2002.

[15] J. Fogarty, D. Tan, A. Kapoor, and S. Winder. CueFlik: interac-
tive concept learning in image search. In CHI ’08: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems,
pages 29–38. ACM Request Permissions, Apr. 2008.

[16] P. Francis, D. Leon, M. Minch, and A. Podgurski. Tree-based
methods for classifying software failures. In International
Symposium on Software Reliability Engineering, pages 451–462,
2004.

18

[17] P. Frankl and S. Weiss. An experimental comparison of the
effectiveness of branch testing and data flow testing. IEEE
Trans. Software Eng., 19(3):202–213, 1993.

[18] P. Frankl, S. Weiss, and C. Hu. All-uses vs mutation testing:
An experimental comparison of effectivness. J. Systems and
Software, 38(3):235–253, 1997.

[19] A. Glass, D. McGuinness, and M. Wolverton. Toward estab-
lishing trust in adaptive agents. In Proc. IUI, pages 227—236,
2008.

[20] M. Gligoric, A. Groce, C. Zhang, R. Sharma, A. Alipour,
and D. Marinov. Comparing non-adequate test suites using
coverage criteria. In International Symposium on Software Testing
and Analysis, pages 302–313, 2013.

[21] V. Grigoreanu, J. Cao, T. Kulesza, C. Bogart, K. Rector, M. Bur-
nett, and S. Wiedenbeck. Can feature design reduce the gender
gap in end-user software development environments? In IEEE
Conf. VL/HCC, pages 149–156, 2008.

[22] A. Groce, A. Fern, J. Pinto, T. Bauer, A. Alipour, M. Erwig, and
C. Lopez. Lightweight automated testing with adaptation-
based programming. In IEEE International Symposium on
Software Reliability Engineering, pages 161–170, 2012.

[23] M. Harman. The role of artificial intelligence in software en-
gineering. In First International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering, pages 1–6, 2012.

[24] M. Harman, E. Burke, J. Clark, and X. Yao. Dynamic adaptive
search based software engineering. In ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
pages 1–8, 2012.

[25] M. Harman and P. McMinn. A theoretical and empirical
study of search-based testing: Local, global, and hybrid search.
volume 36, pages 226–247, 2010.

[26] S. Hart and L. Staveland. Development of a nasa-tlx (task
load index): Results of empirical and theoretical research. In
P. Hancock and N. Meshkati, editors, Human Mental Workload,
pages 139–183. 1988.

[27] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of
Statistical Learning. Springer, 2003.

[28] D. Isa, L. Lee, V. Kallimani, and R. RajKumar. Text document
preprocessing with the bayes formula for classification using
the support vector machine. IEEE Trans. Knowledge and Data
Eng., 20:1264–1272, 2008.

[29] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction.
In ACM Conf. Automated Software Eng., pages 279–289, 2013.

[30] A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Interactive opti-
mization for steering machine classification. Proc. CHI, pages
1343–1352, 2010.

[31] G. Kniesel and T. Rho. Newsgroup data set http://www.ai.
mit.edu/jrennie/20newsgroups, 2005.

[32] T. Kulesza, M. Burnett, S. Stumpf, W.-K. Wong, S. Das,
A. Groce, A. Shinsel, F. Bice, and K. McIntosh. Where are my
intelligent assistant’s mistakes? a systematic testing approach.
In Intl. Symp. End-User Development, pages 171–186, 2011.

[33] T. Kulesza, S. Stumpf, M. Burnett, W.-K. Wong, Y. Riche,
T. Moore, I. Oberst, A. Shinsel, and K. McIntosh. Explana-
tory debugging: Supporting end-user debugging of machine-
learned programs. In IEEE Symp. Visual Languages and Human-
Centric Computing, pages 41–48, 2010.

[34] T. Kulesza, S. Stumpf, W.-K. Wong, M. Burnett, S. Perona,
A. Ko, and I. Obsert. Why-Oriented End-User Debugging
of Naive Bayes Text Classification. ACM Transactions on
Interactive Intelligent Systems, 1(1), Oct. 2011.

[35] T. Kulesza, W.-K. Wong, S. Stumpf, S. Perona, R. White,
M. Burnett, I. Oberst, and A. Ko. Fixing the program my
computer learned: Barriers for end users, challenges for the
machine. In ACM Intl. Conf. Intelligent User Interfaces, pages
187–196, 2009.

[36] K. Lang. Newsweeder: Learning to filter netnews. In Intl.
Conf. Machine Learning, pages 331–339, 1995.

[37] D. Lewis and W. Gale. A sequential algorithm for training
text classifiers. In ACM Conf. Research and Development in
Information Retrieval, pages 3–12, 1994.

[38] B. Lim and A. Dey. Toolkit to support intelligibility in context-
aware applications. In Proc. Int. Conf. Ubiquitous Computing,
pages 13–22, 2010.

[39] B. Lim, A. Dey, and D. Avrahami. Why and why not expla-
nations improve the intelligibility of context-aware intelligent

systems. In ACM Conf. Human Factors in Computing Systems,
pages 2119–2128, 2009.

[40] M. E. Maron. Automatic indexing: An experimental inquiry.
J. ACM, 8(3):404–417, 1961.

[41] A. McCallum. Mallet: A machine learning for language toolkit.
2002. URL http://mallet. cs. umass. edu.

[42] R. Miller and B. Myers. Outlier finding: Focusing user atten-
tion on possible errors. In Proc. UIST, pages 81–90, 2001.

[43] C. Murphy, G. Kaiser, and M. Arias. An approach to software
testing of machine learning applications. In Intl. Conf. Software
Eng. and Knowledge Eng., pages 167–172, 2007.

[44] C. Murphy, K. Shen, and G. Kaiser. Automatic system testing
of programs without test oracles. In Intl. Symp. Software Testing
and Analysis, pages 189–200, 2009.

[45] R. Panko. What we know about spreadsheet er-
rors http://reference.kfupm.edu.sa/content/w/h/what we
know about spreadsheet errors 72956.pdf. Retreived Aug.
2010. Expanded version of article in J. End User Computing
19(2), Spring 1998, pp. 15-21.

[46] H. Raghavan, O. Madani, and R. Jones. Active learning with
feedback on both features and instances. JMLR, 7:1655–1686,
2006.

[47] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly de-
tection in online data sources. In Proc. ICSE, pages 302–312,
2002.

[48] G. Rothermel, M. Burnett, L. Li, C. DuPois, and A. Sheretov.
A methodology for testing spreadsheets. ACM Trans. Software
Eng. and Methodology, 10(1):110–147, 2001.

[49] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimization on the fault
detection capabilities of test suites. In Intl. Conf. Software
Maintenance, 1998.

[50] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. Improving
bug localization using structured information retrieval. In
ACM Conf. Automated Software Eng., pages 345–355, 2013.

[51] C. Scaffidi. Unsupervised inference of data formats in human-
readable notation. In Proc. Int. Conf. Enterprise Integration
Systems, pages 236–241, 2007.

[52] J. Segal. Some problems of professional end user developers.
In IEEE Symp. Visual Languages and Human-Centric Computing,
2007.

[53] B. Settles. Active learning literature survey. Technical Report
Tech. Rpt. 1648, Univ. Wisc., Jan. 2010. http://pages.cs.wisc.
edu/∼bsettles/pub/settles.activelearning.pdf.

[54] J. Shen and T. Dietterich. Active em to reduce noise in activity
recognition. In Proc. IUI, pages 132–140, 2007.

[55] J. Shetty and J. Adibi. The Enron email dataset database
schema and brief statistical report. Tech. Rpt., Univ. S. Calif.,
2004.

[56] A. Shinsel, T. Kulesza, M. M. Burnett, W. Curan, A. Groce,
S. Stumpf, and W.-K. Wong. Mini-crowdsourcing end-user as-
sessment of intelligent assistants: A cost-benefit study. In IEEE
Symposium on Visual Languages and Human-Centric Computing,
pages 47–54, 2011.

[57] J. Talbot, B. Lee, A. Kapoor, and D. Tan. Ensemblematrix:
Interactive visualization to support machine learning with
multiple classifiers. In Proc. CHI, pages 1283–1292, 2009.

[58] J. Tullio, A. Dey, J. Chalecki, and J. Fogarty. How it works:
A field study of non-technical users interacting with an in-
telligent system. In ACM Conf. Human Factors in Computing
Systems, pages 31–40, 2007.

[59] L. Wasserman. All of Statistics. Springer, 2004.
[60] W.-K. Wong, I. Oberst, S. Das, T. Moore, S. Stumpf, K. McIn-

tosh, and M. Burnett. End-user feature labeling: A locally-
weighted regression approach. In Intl. Conf. Intell. User Inter-
faces, pages 115–124, 2011.

[61] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates
for multi-class classification by pairwise coupling. J. Machine
Learning Research, 5:975–1005, 2004.

[62] X. Xie, J. Ho, C. Murphy, B. Xu, and T. Y. Chen. Application
of metamorphic testing to supervised classifiers. In Intl. Conf.
Quality Software, pages 135–144, 2009.

[63] B. Zadrozny and C. Elkan. Obtaining calibrated probability
estimates from decision trees and naive bayesian classifiers.
pages 609–616, 2001.

