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Diagrammatic Kazhdan-Lusztig theory for the (walled)
Brauer algebra

Anton Cox∗, Maud De Visscher

Centre for Mathematical Science, City University London

Northampton Square, London, EC1V 0HB, UK.

Abstract

We determine the decomposition numbers for the Brauer and walled Brauer algebra in
characteristic zero in terms of certain polynomials associated to cap and curl diagrams
(recovering a result of Martin in the Brauer case). We consider a second family of poly-
nomials associated to such diagrams, and use these to determine projective resolutions
of the standard modules. We then relate these two families of polynomials to Kazhdan-
Lusztig theory via the work of Lascoux-Schützenberger and Boe, inspired by work of
Brundan and Stroppel in the cap diagram case.
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1. Introduction

Classical Schur-Weyl duality relates the representations of the symmetric and general
linear groups via their actions on tensor space. The Brauer algebra was introduced
in [Bra37] to play the role of the symmetric group in a corresponding duality for the
symplectic and orthogonal groups. Over the complex numbers it is generically semisimple
[Bro55], indeed it can only be non-semisimple if δ ∈ Z [Wen88]. (A precise criterion for
semisimplicity was given by Rui [Rui05].)

Building on work of Doran, Hanlon, and Wales [DWH99] we determined, with Mar-
tin, the blocks of the Brauer algebra over C [CDM09a]. This block structure could be
defined in terms of the action of a Weyl group of type D [CDM09b], with a maximal
parabolic subgroup of type A determining the dominant weights. The corresponding
alcove geometry has associated translation functors which can be used to provide Morita
equivalences between weights in the same facet [CDM11]. More recently, Martin [Mar]
has shown that the decomposition numbers for the standard modules are given by the
corresponding parabolic Kazhdan-Lusztig polynomials.

The walled Brauer algebra was introduced in another generalisation of Schur-Weyl
duality, by changing the tensor space on which the symmetric group acts. If instead a
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mixed tensor space (made of copies of the natural module and its dual) is considered,
then the walled Brauer algebra plays the role of the symmetric group in the duality.
This was introduced independently by a number of authors [Tur89, Koi89, BCH+94]. In
[CDDM08] the walled Brauer algebra was analysed in the same spirit as in [CDM09a,
CDM09b], and the blocks were again described in terms of the action of a Weyl group —
but this time of type A, with a maximal parabolic subgroup of type A× A determining
the dominant weights.

The Kazhdan-Lusztig polynomials associated to (Dn, An−1) and (An, Ar−1 × An−r)
are two of the infinite families associated with Hermitian symmetric spaces, and have
already been considered by a number of authors. Lascoux and Schützenberger [LS81]
considered the (An, Ar−1 × An−r) case and gave an explicit formula for the coefficients
in terms of certain special valued graphs. This was extended to the other Hermitian
symmetric pairs by Boe [Boe88]. A different combinatorial description was given by
Enright and Shelton [ES87] in terms of an associated root system. (A more general
situation has also been considered by Brenti [Bre09] who describes the corresponding
polynomials in terms of shifted-Dyck partitions.)

The Brauer and walled Brauer algebras are examples of diagram algebras. A quite
different diagram algebra was introduced by Khovanov [Kho00, Kho02] in his work on
categorifying the Jones polynomial. Brundan and Stroppel have studied generalisations
of these algebras, relating them to a parabolic category O and the general linear super-
group [BSa, BS10, BS11, BSb]. (The case of the principal block was previously consid-
ered in [Str09].) Along the way, Kazhdan-Lusztig polynomials of type (An, Ar−1×An−r)
arise, and Brundan and Stroppel re-express the combinatorial formalism of Lascoux and
Schützenberger in terms of certain cap diagrams.

In this paper we will determine the decomposition numbers for the Brauer and walled
Brauer algebras by analysing the blocks of these algebras in the (combinatorial) spirit of
Brundan and Stroppel. For the Brauer algebra we introduce certain curl diagrams which
correspond to the graph formalism in Boe, while the walled Brauer algebra involves only
cap diagrams. The decomposition numbers for the Brauer algebra were determined by
Martin [Mar]; our methods give a uniform proof that includes the walled Brauer case.

One of the main organisational tools in our earlier work was the notion of a tower
of recollement [CMPX06]. We give a slight extension of our earlier theory of translation
functors for such towers [CDM11] and use this to reduce the decomposition number
problem to a combinatorial exercise. This is then solved using curl diagrams, thus giving
a unified proof for the Brauer and walled Brauer cases.

In the Brauer case the combinatorial construction is related to that given in [Mar].
However, using cap and curl diagrams we are able to explicitly calculate certain inverses
to the decomposition matrices for both Brauer and walled Brauer. The polynomial
entries of these matrices can be used to describe projective resolutions of the standard
modules in each case. (Again, this is in the spirit of Brundan and Stroppel.)

We begin in Section 2 with a brief review of the basics of Brauer and walled Brauer
representation theory. Section 3 reviews (and slightly extends) the tower of recollement
formalism, and the theory of translation functors in this context. Sections 4 and 5
introduce two of the main combinatorial constructions: oriented cap and curl diagrams.
These are used in Section 6 to determine the decomposition numbers for our algebras.

After providing a recursive formula for decomposition numbers in Section 7 we define
a second family of polynomials using valued cap and curl diagrams in Section 8. These
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are used to determine projective resolutions of standard modules in Section 9. Finally,
the relation between the polynomials associated to valued cap and curl diagrams and the
construction of parabolic Kazhdan-Lusztig polynomials by Lascoux-Schützenberger and
Boe is outlined in the Appendix.

An alternative graphical construction in the curl case has independently been given
by Lejcyk [Lej10]; we are grateful to Catharina Stroppel for this reference (and for other
comments on this paper). We would also like to thank Paul Martin for several useful
discussions.

2. The Brauer and walled Brauer algebras

We will review some basic results about the representations of the Brauer and the
walled Brauer algebra. The two theories are very similar; we will concentrate on the
walled Brauer (which is less familiar) and sketch the modifications required for the clas-
sical Brauer algebra. Details can be found in [CDDM08] for the walled Brauer algebra,
and in [CDM09a] otherwise. We will restrict attention to the case where the ground field
is C, and assume that our defining parameter δ is non-zero.

Let n = r+s for some non-negative integers r, s. For δ ∈ C, the Brauer algebra Bn(δ)
(which we will often denote just by Bn) can be defined in terms of a basis of diagrams. We
will consider certain rectangles with nmarked nodes on each of the northern and southern
edges. Brauer diagrams are then those rectangles in which all nodes are connected to
precisely one other by a line. Lines connecting nodes on the same edge are called arcs,
while those connecting nodes on opposite edges are called propagating lines. The product
AB of diagrams A and B is given by concatenating A above B, to form a diagram C
which may contain some number (t say) of closed loops. To form a diagram in our basis
we set C equal to δtC′ where C′ is the diagram obtained from C by deleting all closed
loops.

Now decorate all Brauer diagrams in Bn with a vertical wall separating the first r
nodes on each edge from the final s nodes on each edge. The walled Brauer algebra
Br,s(δ) (or just Br,s) is then the subalgebra of Bn generated by those Brauer diagrams
in which arcs cross the wall, while propagating lines do not.

For δ 6= 0 let er,s be δ−1 times the diagram with all nodes connected vertically in
pairs except for those adjacent to the wall, which are connected across the wall. This is
an idempotent, and we have an algebra isomorphism

Br−1,s−1
∼= er,sBr,ser,s.

Via this isomorphism we have an exact localisation functor

Fr,s : Br,s -mod −→ Br−1,s−1 -mod

taking a moduleM to er,sM , and a right exact globalisation globalisation functorGr−1,s−1

in the opposite direction taking a module N to Br,ser,s⊗er,sBr,ser,s N . There is a similar
idempotent en ∈ Bn and algebra isomorphism Bn−2

∼= enBnen, giving rising to corre-
sponding localisation and globalisation functors Fn and Gn. (For the basic properties of
localisation and globalisation see [Gre80] or [CMPX06].)
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Let Σr denote the symmetric group on r symbols, and set Σr,s = Σr × Σs. There is
an isomorphism

Br,s/Br,ser,sBr,s
∼= CΣr,s

and this latter algebra has simple modules labelled by Λr,s, the set of pairs of partitions
of r and s respectively. By standard properties of localisation it follows that if r, s > 0
then the set of simple modules for Br,s is labelled by

Λr,s = Λr,s ∪ Λr−1,s−1.

As Br,0
∼= B0,r

∼= CΣr we deduce that Λr,s consists of all pairs λ = (λL, λR) such that
λL is a partition of r − t and λR is a partition of s− t for some t ≥ 0. We say that such
a bipartition is of degree deg(λ) = (r − t, s − t), and put a partial order on degrees by
setting (a, b) ≤ (c, d) if a ≤ c and b ≤ d.

Let Λn denote the set of partitions of n. Then by similar arguments we see that the
labelling set Λn for simple Bn-modules is given recursively by Λn = Λn ∪ Λn−2 and so
Λn consists of all partitions λ of n− 2t for some t ≥ 0. We say that such a partition is
of degree deg(λ) = n− 2t.

The er−t,s−t with 0 ≤ t ≤ min(r, s) induce a heredity chain in Br,s, and so we can
apply the theory of quasihereditary algebras. In particular for each λ ∈ Λr,s there is
an associated standard module ∆r,s(λ) with simple head Lr,s(λ) and projective cover
Pr,s(λ). The standard modules have an explicit description in terms of walled Brauer di-
agrams and Specht modules for the various Σr−t,s−t, and determining the decomposition
numbers for these modules in terms of their simple factors is equivalent to determin-
ing the simple modules themselves. In the same way the Bn are quasihereditary, with
standard modules ∆n(λ), with simple modules Ln(λ), and projective covers Pn(λ).

By general properties of our heredity chain we have

Gr,s∆r,s(λ) ∼= ∆r+1,s+1(λ)

and

Fr,s∆r,s(λ) ∼=

{

∆r−1,s−1(λ) if λ ∈ Λr−1,s−1

0 if λ ∈ Λr,s

We define a partial order on the set of all partitions (or all bipartitions) by setting λ ≤ µ
if deg(λ) < deg(µ) or λ = µ. This is the opposite of the partial order induced by the
quasihereditary structure on Λn or Λr,s. Thus the decomposition multiplicity

[∆r,s(λ) : Lr,s(µ)]

is zero unless λ ≤ µ, and is independent of (r, s) provided that λ, µ ∈ Λr,s (and similarly
for the Brauer case).

As our algebra is quasihereditary each projective module Pr,s(λ) has a filtration by
standard modules. The multiplicity of a given standard ∆r,s(µ) in such a filtration is
well-defined, and we denote it by

Dλµ = (Pr,s(λ) : ∆r,s(µ)).

By Brauer-Humphreys reciprocity we have

Dλµ = [∆r,s(µ) : Lr,s (λ)]
4



(and hence Dλµ is independent of r and s). Again, analogous results hold for the Brauer
algebra, and we shall denote the corresponding filtration multiplicities by Dλµ also.

The algebra Br,s can be identified with a subalgebra of Br+1,s (respectively of Br,s+1)
by inserting an extra propagating line immediately to the left (respectively to the right)
of the wall. The corresponding restriction functors will be denoted resLr+1,s and resRr,s+1,

with associated induction functors indLr,s and indRr,s. Similarly, Bn is a subalgebra of
Bn+1 giving associated functors indn and resn+1

We will identify a partition with its associated Young diagram, and let add(λ) (re-
spectively rem(λ)) denote the set of boxes which can be added singly to (respectively
removed singly from) λ such that the result is still a partition. Given such a box ǫ, we
denote the associated partition by λ + ǫ (respectively λ − ǫ). If we wish to emphasise
that ǫ lies in a given row (i say) then we may denote it by ǫi.

By [CDDM08, Theorem 3.3] we have

Proposition 2.1. Suppose that λ = (λL, λR) ∈ Λr−t,s−t.
(a) (i) If t = 0 then

resLr,s ∆r,s(λ
L, λR) ∼=

⊕

ǫ∈rem(λL)

∆r−1,s(λ
L − ǫ, λR).

(ii) If t > 0 then there is a short exact sequence

0 −→
⊕

ǫ∈rem(λL)

∆r−1,s(λ
L−ǫ, λR) −→ resLr,s ∆r,s(λ) −→

⊕

ǫ∈add(λR)

∆r−1,s(λ
L, λR+ǫ) −→ 0.

(b) There is also a short exact sequence

0 −→
⊕

ǫ∈rem(λL)

∆r,s+1(λ
L−ǫ, λR) −→ indRr,s ∆r,s(λ) −→

⊕

ǫ∈add(λR)

∆r,s+1(λ
L, λR+ǫ) −→ 0

where the first sum equals 0 if λL = ∅.

Remark 2.2. There is a similar result for resRr,s and indLr,s replacing rem(λL) by rem(λR)

and add(λR) by add(λL).

There is an entirely analogous result for the Brauer algebra, where the terms in
the submodule of the restriction (or induction) of ∆n(λ) are labelled by all partitions
obtained by removing a box from λ, and those in the quotient module by all partitions
obtained by adding a box to λ. For example, we have a short exact sequence

0 −→
⊕

ǫ∈rem(λ)

∆n+1(λ− ǫ) −→ indn ∆n(λ) −→
⊕

ǫ∈add(λ)

∆n+1(λ+ ǫ) −→ 0

where the first sum equals 0 if λ = ∅.
It will be convenient to consider the Brauer and walled Brauer cases simultaneously.

In the walled Brauer case we will set (a) = (r, s), with (a− 1) = (r, s− 1) and (a+ 1) =
(r+1, s). In the Brauer case we will set (a) = n with (a−1) = n−1 and (a+1) = n+1.
Then Λ(a) will denote either Λr,s or Λn depending on the algebra being considered, and
similarly for ∆(a)(λ) and any other objects or functors with subscripts.
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3. Translation functors

In [CDM11] we introduced the notion of translation functors for a tower of rec-
ollement, and showed how they could be used to generate Morita equivalence between
different blocks. After a brief review of this, we will show how this can be applied to the
Brauer and walled Brauer algebras. Details can be found in [CDM11, Section 4].

Let An with n ∈ N form a tower of recollement, with associated idempotents en for
n ≥ 2. Let Λn denote the set of labels for the simple An-modules, which we call weights.
We denote the associated simple, standard, and projective modules by Ln(λ), ∆n(λ) and
Pn(λ) respectively. The algebra embedding arising from our tower structure gives rise to
induction and restriction functors indn and resn. For each standard module ∆n(λ), the
module resn ∆n(λ) has a filtration by standard modules with well-defined multiplicities;
we denote by suppn(λ) the multiset of labels for standard modules occurring in such a
filtration. We impose a crude partial order on weights by setting λ < µ if there exists n
such that λ ∈ Λn and µ ∈ Λn+2 but µ /∈ Λn. This is the opposite of the partial order
induced by the quasihereditary structure.

In such a tower we have isomorphisms enAnen ∼= An−2. Thus we also have associated
localisation functors Fn and globalisation functors Gn. Globalisation induces an embed-
ding of Λn inside Λn+2, and an associated embedding of suppn(λ) inside suppn+2(λ),
which becomes an identification if λ ∈ Λn−2. We denote by supp(λ) the set suppn(λ)
where n >> 0.

Let Bn(λ) denote the set of weights labelling simple modules in the same block for An

as Ln(λ). Again there is an induced embedding of Bn(λ) inside Bn+2(λ), and we denote
by B(λ) the corresponding limit set. Given a weight λ, we denote by prλn the functor
which projects onto the An-block containing Ln(λ). We then define translation functors
resλn = prλn−1 resn and indλ

n = prλn+1 indn.
We say that λ and λ′ are translation equivalent if for all µ ∈ B(λ) there is a unique

element µ′ ∈ B(λ′) ∩ supp(µ), and

B(λ) ∩ supp(µ′) = {µ}

and every element of B(λ′) arises in this way. When λ and λ′ are translation equivalent
we denote by θ : B(λ) −→ B(λ′) the bijection taking µ to µ′.

By [CDM11, Propositions 4.1 and 4.2] we have

Theorem 3.1. Suppose that λ ∈ Λn and λ′ ∈ Λn−1 are translation equivalent, and that
µ ∈ Bn(λ) is such that µ′ ∈ Bn−1(λ

′).
(i) We have

resλ
′

n Ln(µ) ∼= Ln−1(µ
′) indλ

n−1 Ln−1(µ
′) ∼= Ln(µ)

and
indλn−1 Pn−1(µ

′) ∼= Pn(µ).

(ii) If τ ∈ Bn(λ) is such that τ ′ ∈ Bn−1(λ
′) then

[∆n(µ) : Ln(τ)] = [∆n−1(µ
′) : Ln−1(τ

′)]

and
Hom(∆n(µ),∆n(τ)) ∼= Hom(∆n−1(µ

′),∆n−1(τ
′)).
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(iii) If µ ∈ Bn−2(λ) then

resλ
′

n Pn(µ) ∼= Pn−1(µ
′).

The above result suggests that translation equivalent weights should be in Morita
equivalent blocks, but this is not true in general as there will not be a bijection between
the simple modules. However, by a suitable truncation of the algebra we do get Morita
equivalences.

The algebra An decomposes as

An =
⊕

λ∈Λn

Pn(λ)
mn,λ

for some integers mn,λ. Let 1 =
∑

λ∈Λn
en,λ be the associated orthogonal idempotent

decomposition of the identity in An. There is also a decomposition of An into its block
subalgebras

An =
⊕

λ

An(λ)

where the sum runs over a set of block representatives. Now let Γ ⊆ Bn(λ) and consider
the idempotent en,Γ =

∑

γ∈Γ en,γ . We define the algebra An,Γ(λ) by

An,Γ(λ) = en,ΓA(n(λ)en,Γ.

By [CDM11, Theorem 4.5 and Corollary 4.7] we have

Theorem 3.2. Suppose that λ and λ′ are translation equivalent, with λ ∈ Λn, and set

Γ = θ(Bn(λ)) ⊆ Bn+1(λ
′).

(i) The algebras An(λ) and An+1,Γ(λ
′) are Morita equivalent. In particular, if |Bn(λ)| =

|Bn+1(λ
′)| then An(λ) and An+1(λ

′) are Morita equivalent.
(ii) For all µ ∈ Bn(λ) we have

Exti(∆n(λ),∆n(µ)) ∼= Exti(∆n+1(λ
′),∆n+1(µ

′)).

We will say that blocks B(λ) and B(λ′) corresponding to translation equivalent weights
are weakly Morita equivalent.

The notion of translation equivalent weights is motivated by the translation principle
in Lie theory, where translation functors give equivalences for weights inside the same
facet. Another common situation in Lie theory involves the relationship between weights
in a pair of alcoves separated by a wall. There is also an analogue of this in our setting.

We say that λ′ separates λ− and λ+ if

B(λ′) ∩ supp(λ−) = {λ′} = B(λ′) ∩ supp(λ+)

and
B(λ−) ∩ supp(λ′) = {λ+, λ−}.

Whenever we consider a pair of weights λ− and λ+ separated by λ′ we shall always
assume that λ− < λ+. By [CDM11, Theorem 4.8] we have
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Theorem 3.3. (i) If λ′ ∈ Λn−1 separates λ− and λ+ then

resλ
′

n Ln(λ
+) ∼= Ln−1(λ

′).

(ii) If further we have Hom(∆n(λ
+),∆n(λ

−)) 6= 0 then

resλ
′

n Ln(λ
−) = 0

and indλ
−

n−1 ∆n(λ
′) is a nonsplit extension of ∆n(λ

−) by ∆n(λ
+) and has simple head

Ln(λ
+).

Suppose that λ′ and λ+ are weights with λ′ < λ+ such that for every weight τ ′ ∈ B(λ′)
either (i) there is a unique weight τ+ ∈ B(λ+) ∩ supp(τ ′) and τ ′ is the unique weight in
B(λ′) ∩ supp(τ+), or (ii) there exists τ−, τ+ ∈ B(λ+) such that τ ′ separates τ− and τ+.
Then we say that λ′ is in the lower closure of λ+. If every pair of weights µ− and µ+ in
B(λ+) separated by some µ′ ∈ B(λ′) satisfy the condition in Theorem 3.3(ii), i.e. satisfy

Hom(∆n(µ
+),∆n(µ

−)) 6= 0

then then we say that B(λ+) has enough local homomorphisms with respect to B(λ′).
We will need one new general result about translation functors for towers of recolle-

ment not included in [CDM11].

Proposition 3.4. Suppose that B(λ+) has enough local homomorphisms with respect to
B(λ′). If λ′ is in the lower closure of λ+ then

indλ
+

n Pn(λ
′) ∼= Pn+1(λ

+).

If further λ′ ∈ Λn−2 then

resλ
+

n Pn(λ
′) ∼= Pn−1(λ

+).

Proof. The module indλ
+

n Pn(λ
′) is clearly projective, as induction (and taking a direct

summand) takes projectives to projectives.
Suppose that τ ∈ B(λ+) and that

resλ
′

n+1 Ln+1(τ) 6= 0.

By our assumptions and Theorems 3.1 and 3.3 this implies that τ ∈ supp(µ′) for some
µ′ ∈ B(λ′) and τ = µ+. From this we see that if

Homn+1(ind
λ+

n Pn(λ
′), Ln+1(τ)) = Homn(Pn(λ

′), resλ
′

n+1 Ln+1(τ))

is non-zero then τ = µ+ for some µ′ ∈ B(λ′). But

Homn(Pn(λ
′), resλ

′

n+1 Ln+1(µ
+)) = Homn(Pn(λ

′), prλ
′

n L(µ′)) = δλ′µ′

by Theorems 3.1 and 3.3. Thus indλ
+

n Pn(λ
′) has simple head Ln+1(λ

+), and hence is
equal to Pn+1(λ

+) as required.
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Now suppose that further λ′ ∈ Λn−2. By [CDM11, Lemma 4.3] we have

Gn−2Pn−2(λ
′) ∼= Pn(λ

′).

By the tower of recollement axioms we have

indλ
+

n−2 M
∼= resλ

+

n Gn−2M

for any An−2-module M and hence

resλ
+

n Pn(λ
′) ∼= resλ

+

n Gn−2Pn−2(λ
′) ∼= indλ

+

n−2 Pn−2(λ
′) ∼= Pn−1(λ

+)

using the first part of the Proposition.

Theorem 3.5. The Brauer and walled Brauer algebras form towers of recollement, in
the latter case by using alternately the functors resL (and indL) and resR (and indR),
and have enough local homomorphisms.

Proof. For the tower of recollement claim see [CDM09a] for the Brauer algebra and
[CDDM08, Sections 2-3]) for the walled Brauer algebra. The existence of enough local
homomorphisms was shown for the Brauer algebra in [DWH99, Theorem 3.4] and for the
walled Brauer algebra in [CDDM08, Theorem 6.2].

Thus we can apply the results of this section to the Brauer and walled Brauer algebras.

Definition 3.6. When using the notation indλr,s for the walled Brauer algebra, the choice

of indLr,s or indR
r,s will be such that the weight λ makes sense for the resulting algebra (and

similarly for resλr,s).

Remark 3.7. There are reflection geometries controlling the block structure of the
Brauer [CDM09b] and walled Brauer algebras [CDDM08] which we will review shortly.
These define a system of facets, and in [CDM09b] it was shown that two weights in the
same facet for the Brauer algebra have weakly Morita equivalent blocks in the sense of
Theorem 3.2. This required certain generalised induction and restriction functors for the
non-alcove cases. Similar functors can be defined for the walled Brauer algebras: it is a
routine but lengthy exercise to verify that the construction in [CDM11, Section 5] can
be extended to the walled Brauer case. Thus we also have weak Morita equivalences
between weights in the same facet in the walled Brauer case.

4. Oriented cap diagrams

In this section we will describe the construction of oriented cap diagrams associated to
certain pairs of weights for the walled Brauer algebra. These diagrams were introduced
by Brundan and Stroppel in [BSa] to study a generalisation of Khovanov’s diagram
algebra. We will see later that they give precisely the combinatoric required to describe
decomposition numbers for the walled Brauer algebra.

Let {ǫi : i ∈ Z, i 6= 0} be a set of formal symbols, and set

X =
∏

i∈Z\{0}

Zǫi.
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For x ∈ X we write
x = (. . . , x−3, x−2, x−1;x1, x2, x3, . . .)

where xi is the coefficient of ǫi. We define A+ ⊂ X by

A+ = {x ∈ X : · · · > x−3 > x−2 > x−1, x1 > x2 > x3 > · · · }

and for δ ∈ Z we define

ρ = ρδ = (· · · , 3, 2, 1; δ, δ− 1, δ − 2, · · · ) ∈ A+.

Given a bipartition λ = (λL, λR) with λL = (λL
1 , . . . , λ

L
r ) and λR = (λR

1 , . . . , λ
R
s ), we

define λ̄ ∈ X by

λ̄ = (. . . , 0, 0,−λL
r ,−λL

r−1, . . . ,−λL
1 ;λ

R
1 , . . . , λ

R
s , 0, 0, . . .).

Given such a bipartition λ we define

xλ = xλ,ρ = λ̄+ ρδ.

Note that xλ ∈ A+. In this way we can embed the sets Λr,s labelling simple modules for
Br,s(δ) as subsets of A

+.
Consider the group W of all permutations of finitely many elements from the set

Z\{0} (so W = 〈(i, j) : i, j ∈ Z\{0}〉 where (ij) is the usual notation for transposition of
a pair i and j). This group acts on X by place permutations.

The main result (Corollary 10.3) in [CDDM08] describes the blocks of Br,s(δ) in terms
of orbits of certain finite reflection groups inside W . However it is easy to see from the
proof that this result can be reformulated equivalently as follows.

Theorem 4.1. Two simple modules Lr,s(λ) and Lr,s(µ) are in the same block if and
only if xλ = wxµ for some w ∈ W .

We will abuse terminology and say that xλ and xµ are in the same block if they
satisfy the conditions of this theorem.

To each element x ∈ A+ we wish to associate a diagram with vertices indexed by Z,
each labelled with one of the symbols ◦, ×, ∧, ∨. We do this in the following manner.
Given x ∈ A+ define

I∨(x) = {xi : i < 0} and I∧(x) = {xi : i > 0}.

Now vertex n in the diagram associated to x is labelled by














◦ if n /∈ I∨(x) ∪ I∧(x)
× if n ∈ I∨(x) ∩ I∧(x)
∨ if n ∈ I∨(x)\I∧(x)
∧ if n ∈ I∧(x)\I∨(x).

(1)

Example 4.2. To illustrate the above construction, consider the bipartition λ = (λL, λR)
where λL = (2, 2, 1) and λR = (3, 2), and take δ = 2. Then

ρδ = (. . . , 4, 3, 2, 1; 2, 1, 0,−1,−2, . . .)
10



and
λ̄ = (. . . , 0,−1,−2,−2; 3, 2, 0, 0, 0, . . .)

and hence
xλ = λ̄+ ρδ = (. . . , 6, 5, 4, 2, 0,−1; 5, 3, 0,−1,−2,−3 . . .).

Part of the associated diagram is illustrated in Figure 1.

0 1 2 3 4 5 6 7−1−2−3−4 8

Figure 1: The diagram associated to ((2, 2, 1), (3, 2)) with δ = 2.

Note that any element in A+ is uniquely determined by its diagram, and every such
diagram corresponds to an element in A+. For this reason we will use the notation x (or
xλ) for both.

Remark 4.3. It is easy to see that two elements in A+ are in the same W -orbit if and
only if they are obtained from each other by permuting pairwise a finite number of ∧s
and ∨s.

We define a partial order ≤ on A+ by setting x < y if y is obtained from x by
swapping a ∨ and a ∧ so that the ∧ moves to the right, and extending by transitivity.
Note that if λ, µ ∈ Λr,s then xλ ≤ xµ only if λ and µ are in the same block and λ ≤ µ
(where this is the natural order on bipartitions from Section 2).

Example 4.4. There is only one element in A+ smaller than the element xλ in Example
4.2. This corresponds to the diagram in Figure 2.

0 1 2 3 4 5 6 7−1−2−3−4 8

Figure 2: The unique diagram smaller than the diagram in Figure 1.

Remark 4.5. For a bipartition λ = (λL, λR), the diagram for the element xλ ∈ A+ is
labelled by ∧ for all n << 0 and by ∨ for all n >> 0. Thus there are only finitely many
x < xλ.

To each bipartition λ (or to each diagram labelled by ∧ for all n << 0 and by ∨ for
all n >> 0) we associate a cap diagram cλ in the following (recursive) manner.

In xλ find a pair of vertices labelled ∨ and ∧ in order from left to right that are
neighbours in the sense that there are only ◦s, ×s, or vertices already joined by caps at
an earlier stage between them. Join this pair of vertices together with a cap. Repeat this
process until there are no more such ∨ ∧ pairs. (This will occur after a finite number of
steps.) Finally, draw an infinite ray upwards at all remaining ∧s and ∨s. Any vertices
which are not connected to a ray or a cap are called free vertices.

11



Example 4.6. In Figures 3 and 4 we give two examples of elements xλ and their asso-
ciated cap diagrams.

x

c

λ

λ

Figure 3: An example of the cap diagram construction.

x

c

λ

λ

Figure 4: Another example of the cap diagram construction.

To a cap diagram c and an element xλ ∈ A+ we can associate a labelled cap diagram
cxλ by writing each label on a vertex of xλ underneath the corresponding vertex of c.
We call such a diagram an oriented cap diagram if the following conditions all hold:

1. each free vertex in c is labelled by a ◦ or × in xλ;

2. the vertices at the end of each cap in c are labelled by exactly one ∧ and one ∨ in
xλ;

3. each vertex at the bottom of a ray in c is labelled by a ∧ or ∨ in xλ;

4. it is impossible to find two rays in c whose vertices are labelled ∨ and ∧ in order
from left to right in xλ.

As each cap in an oriented cap diagram is labelled by exactly one ∧ and one ∨, these
symbols induce an orientation on the cap (as though they were arrows). The degree
deg(cxλ) of an oriented cap diagram cxλ is the total number of clockwise caps that it
contains.

Remark 4.7. Given a bipartition λ, the labelled cap diagram cλxλ is clearly oriented,
with all caps having a counterclockwise orientation. Thus the degree of cλxλ is 0.

12



For two bipartitions λ and µ we define dλµ(q) to be qdeg(cλxµ) if (i) λ and µ are in
the same W -orbit, and (ii) cλxµ is an oriented cap diagram. We define dλµ(q) to be 0
otherwise. In other words, dλµ(q) 6= 0 if and only if xµ is obtained from xλ by swapping
the order of the elements in some of the pairs ∨, ∧ which are joined up in cλ, and in that
case deg(cλxµ) is the number of pairs whose elements have been swapped.

Example 4.8. Let xλ and cλ be as in Figure 3. For xµ as illustrated in Figure 5 we see
that cλxµ is an oriented cap diagram with deg(cλxµ) = 3. Hence we have that

dλµ(q) = q3.

xµ

cλxµ

Figure 5: An example of a nontrivial degree calculation.

Remark 4.9. Brundan and Stroppel have shown how to associate weights in a set similar
to A+ to cap diagrams and oriented cap diagrams in order to use this combinatoric to
describe the representation theory of parabolic categoryO corresponding to type A×A in
type A [BS11], and to the general linear supergroup GL(m|n) [BSa]. Note the difference
between these two sets, and the difference between the assignments of labels in [BSb,
(1.6)] and in (1).

We are interested in determining the decomposition numbers for the walled Brauer
algebras. As noted in Section 2 this is equivalent to determining the

Dλµ = (Pr,s(λ) : ∆r,s(µ)).

Our eventual aim is to show

Theorem 4.10. Given λ and µ in Λr,s we have

Dλµ = dλµ(1).

We will first introduce a corresponding formalism for the Brauer algebra, so that the
two cases can be considered simultaneously.

13



5. Oriented curl diagrams

We will introduce analogues of oriented cap diagrams for use in the ordinary Brauer
algebra case. As the two cases will ultimately be very similar, we use the same notation.
Which case is being considered later will be clear from context.

Let {ǫi : i ∈ N} be a set of formal symbols, and set

X =

(

∏

i∈N

Zǫi

)

⋃

(

∏

i∈N

(Z+
1

2
)ǫ

)

.

For x ∈ X we write
x = (x1, x2, . . .)

where xi is the coefficient of ǫi. We define A+ ⊂ X by

A+ = {x ∈ X : x1 > x2 > · · · }

and for δ ∈ Z define

ρ = ρδ = (−
δ

2
,−

δ

2
− 1,−

δ

2
− 2,−

δ

2
− 3, . . .) ∈ A+.

Given a partition λ we define
xλ = λ+ ρλ ∈ A+.

Consider the group
W = 〈(i, j), (i, j)− : i 6= j ∈ N〉

where (ij) is the usual notation for transposition of a pair i and j, and (i, j)− is the
element which transposes i and j and also changes their signs. Then W acts naturally
on X , with (ij) acting as place permutations, and

(ij)−(x1, x2, . . . , xi, . . . , xj , . . .) = (x1, x2, . . . ,−xj , . . . ,−xi, . . .).

The blocks of Bn(δ) are described in [CDM09b, Theorem 4.2] in terms of certain
finite reflection groups inside W . Just as in the walled Brauer case, it is easy to see that
the following reformulation is equivalent. Here we denote the transpose of a partition λ
by λT .

Theorem 5.1. Two simple modules Ln(λ
T ) and Ln(µ

T ) are in the same block if and
only if xλ = wxµ for some w ∈ W .

To each x ∈ X we wish to associate a diagram. This will have vertices indexed by
N ∪ {0} if x ∈

∏

i∈N
Zǫi or by N− 1

2 if x ∈
∏

i∈N
(Z + 1

2 )ǫi. Each vertex will be labelled
with one of the symbols ◦, ×, ∨, ∧, or 3. Given x ∈ A+ define

I∧(x) = {xi : xi > 0} and I∨(x) = {|xi| : xi < 0}.

We also set I3(x) = {xi : xi = 0}, so I3(x) can consist of at most one element. Now
vertex n in the diagram associated to x is labelled by























◦ if n /∈ I∨(x) ∪ I∧(x)
× if n ∈ I∨(x) ∩ I∧(x)
∨ if n ∈ I∨(x)\I∧(x)
∧ if n ∈ I∧(x)\I∨(x)
3 if n ∈ I3(x).

(2)

14



Note that every element in A+ is uniquely determined by its diagram, and every such
diagram corresponds to an element in A+ (provided that 0 is labelled by ◦ or 3). For
this reason we will use the notation x (or xλ) for both.

Example 5.2. Let λ = (4, 3, 2) and δ = 1. Then we have

ρδ = (−
1

2
,−

3

2
,−

5

2
, . . . , )

and

xλ = λ+ ρδ = (
7

2
,
3

2
,−

1

2
,−

7

2
,−

9

2
, . . . , ).

The corresponding diagram is shown in Figure 6.

1/2 3/2 5/2 7/2 11/29/2 17/215/213/2 ...

Figure 6: The diagram associated to λ = (4, 3, 2) when δ = 1.

Remark 5.3. Consider the case where no 3 occurs then two elements in A+ are in the
same W -orbit if and only if they are obtained from each other by repeatedly swapping a
∨ and a ∧ or replacing two ∨s by two ∧s. If we fix a λ where xλ contains 3 then we can
arbitrarily choose to replace this 3 by either ∨ or ∧, and use the same swapping rules
as in the previous case to define a unique choice of ∨ or ∧ for 3 for every other element
of the same block. Thus in what follows we will always assume that a fixed choice of ∨
or ∧ has been made for the symbol 3 for some weight in each block. Our combinatorial
constructions will not be affected by this choice (provided we are consistent in a given
block).

We define a partial order ≤ on A+ by setting x < y if y is obtained from x by
swapping a ∨ and a ∧ so that the ∧ moves to the right, or if y contains a pair of ∧s
instead of a corresponding pair of ∨s in x, and extending by transitivity. Note that for
partitions λ, µ ∈ Λn we have xλ ≤ xµ only if λ and µ are in the same block and λ ≤ µ
(where this is the natural order on partitions from Section 2).

Remark 5.4. For a fixed partition λ the diagram for xλ is labelled by ∨ for all n >> 0.
Thus there are only finitely many x < xλ.

To each xλ ∈ A+ we now associate a curl diagram cλ in the following (recursive)
fashion.

In xλ find a pair of vertices labelled ∨ and ∧ in order from left to right that are
neighbours in the sense that there are only ◦s, ×s, or vertices already joined by caps at
an earlier stage between them. Join this pair of vertices together with a cap. Repeat this
process until there are no more such ∨ ∧ pairs. (This will occur after a finite number of
steps.)

Ignoring all ◦s, ×s and vertices on a cap, we are left with a sequence of a finite number
of ∧s followed by an infinite number of ∨s. Starting from the leftmost ∧, join each ∧
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to the next from the left which has not yet been used, via a clockwise arc around all
vertices to the left of the starting vertex and without crossing any other arcs or caps. If
there is a free ∧ remaining at the end of this procedure, draw an infinite ray up from
this vertex, and draw infinite rays from each of the remaining ∨s. We will refer to the
arcs connecting ∧s as curls.

Example 5.5. An example of this construction is given in Figure 7.

x

c

λ

λ

Figure 7: An example of the curl diagram construction.

To a curl diagram c and an element xλ ∈ A+ we can associate a labelled curl diagram
cxλ by writing each label on a vertex of xλ underneath the corresponding vertex of c.
We call such a diagram an oriented curl diagram if the following conditions all hold:

1. each free vertex in c is labelled by a ◦ or × in xλ;

2. the vertices at the end of each cap in c are labelled by exactly one ∧ and one ∨ in
xλ;

3. the vertices at the end of each curl in c are labelled by two ∧s or two ∨s in xλ;

4. each vertex at the bottom of a ray in c is labelled by a ∧ or ∨ in xλ;

5. it is impossible to find two rays in c whose vertices are labelled ∨ and ∧, or ∧ and
∧, in order from left to right in xλ.

Each cap or curl in an oriented curl diagram has an orientation induced by the
terminal symbols (as though they were arrows). The degree deg(cxλ) of an oriented curl
diagram cxλ is the number of clockwise caps and curls that it contains.

Remark 5.6. Given a partition λ, all caps and curls in the labelled curl diagram cλxλ

are clearly oriented anticlockwise. Thus the degree of cλxλ is 0.

For two partitions λ and µ we define dλµ(q) to be qdeg(cλxµ) if (i) λ and µ are in
the same W -orbit, and (ii) cλxµ is an oriented curl diagram. We define dλµ(q) to be 0
otherwise.

Example 5.7. Let xλ and cλ be as in Figure 7. For xµ as illustrated in Figure 8 we see
that cλxµ is an oriented curl diagram with deg(cλxµ) = 2. Hence we have that

dλµ(q) = q2.
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xµ

cλxµ

Figure 8: An example of the calculation of the degree of a curl diagram.

We are interested in determining the decomposition numbers for the Brauer algebras
(and hence recovering the result of Martin [Mar]). As noted in Section 2 this is equivalent
to determining the

Dλµ = (Pn(λ) : ∆n(µ)).

Our eventual aim is to show

Theorem 5.8. Given λ and µ in Λn we have

Dλµ = dλµ(1).

6. Decomposition numbers from oriented cap and curl diagrams

The aim of this section is to prove Theorems 4.10 and 5.8. To do this we will apply
the translation functor formalism from Section 3. We will consider the two cases simul-
taneously as they are very similar. The proof is similar in spirit to the proof of [BS11,
Theorem 4.10] and [BSb, Theorem 2.14], but with some complications (as the functors
we use are not exact).

Fix λ ∈ Λr,s or Λn. We will proceed by induction on the partial order ≤ introduced
in Section 4 or 5. If xλ is minimal in its block with respect to the order ≤ then we have

Dλµ = δλµ = dλµ(1)

for all µ and so we are done.
Suppose that xλ is not minimal in its block. We proceed by induction on |λ|. (Note

that if λL = ∅ or λR = ∅ then xλ = ρ is minimal.) Then xλcλ contains at least one cap
or curl.

First consider the cap case: we may choose the cap so that it does not contain any
smaller caps (and hence all vertices inside the cap are labelled by × or ◦ only). We call
such a cap a small cap. There are three cases, which are illustrated in Figure 9. Note
that we will henceforth abuse notation and write λ instead of xλ.
Case (i): The vertex at the point marked with a ∧ is of the form xi for some i ∈ N

(Brauer) or some i ∈ Z\{0} (walled Brauer). In the latter case by the definition of ∧ we
must have i > 0. Now consider λ′ = (λL, λR − ǫi) or λ

′ = λ− ǫi. Note that xi − 1 is not
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λ’

λ(iii) λ’ λ−

....
λ(ii) λ’

....

.... ....λ(i)

Figure 9: The three possible small cap configurations

an entry in xλ and hence λ′ is a (bi)partition. The diagram associated to λ′ is illustrated
on the right-hand side of Figure 9(i).

We claim that λ and λ′ are translation equivalent; that is for every µ ∈ B(λ) there
exists a unique µ′ ∈ B(λ′) ∩ supp(µ) and for every µ′ ∈ B(λ′) there is a unique µ ∈
B(λ)∩ supp(µ′). Indeed, it is easy to see that the only places where xµ and xµ′ can differ
are at the vertices labelled xi and xi − 1, and the possible cases are illustrated in Figure
10.

µ ’ µ ’

µ µ

Figure 10: The possible diagrams for xµ and xµ′ in case (i)

Recall our labelling convention involving (a) from Section 2. By Theorem 3.1 and
the inductive hypothesis we have that

Dλµ = [∆(a)(µ) : L(a)(λ)]
= [∆(a−1)(µ

′) : L(a−1)(λ
′)] = Dλ′µ′ = dλ′µ′(1).

(3)

But if we ignore the ×s and ◦s (which play no role other than as place markers in the
definition of dλµ) then the cap or curl diagrams cλ and cλ′ are identical, and hence

dλ′µ′(1) = dλµ(1). (4)

Combining (3) and (4) we see that Dλµ = dλµ(1) as required.
Case (ii): This is very similar to case (i). The vertex at the point marked with a × is
in the walled Brauer case of the form x−j for some j ∈ Z\{0}, and by the definition of ×
we can take j > 0. In the Brauer case this vertex is of the form xi > 0 and xi and −xi

both appear in xλ, and we choose j so that x j = −xi.
Now consider λ′ = (λL − ǫj , λ

R) or λ′ = λ − ǫj. (As before it is easy to verify that
λ′ is a (bi)partition.) The diagram associated to λ′ is illustrated on the right-hand side
of Figure 9(ii). As in case (i) the weights λ and λ′ are translation equivalent, where the
various possibilities for xµ and xµ′ as before are shown in Figure 11.
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µ ’ µ ’

µ µ

Figure 11: The possible diagrams for xµ and xµ′ in case (ii)

The rest of the argument proceeds exactly as in case (i).
Case (iii): The vertex at the point marked with a ∧ is of the form xi for some i ∈ N

(Brauer) or some i ∈ Z\{0} (walled Brauer). In the latter case by the definition of ∧ we
must have i > 0. Now consider λ′ = (λL, λR − ǫi) or λ′ = λ − ǫi (which as before is a
(bi)partition), and set λ+ = λ. Note that there is another element λ− ∈ B(λ+)∩supp(λ′);
the three diagrams associated to λ+, λ′ and λ− are illustrated in Figure 9(iii).

Moreover, for each µ′ ∈ B(λ′) there are exactly two elements µ+ and µ− in B(λ) ∩
supp(µ′) (which correspond to the same three configurations as for λ+, λ−, and λ′ at
the two points xi and xi − 1). Also, µ′ is the unique element in B(λ′) ∩ supp(µ±). Thus
λ′ is in the lower closure of λ+.

For µ ∈ B(λ) we have

Dλµ = [∆(a)(µ) : L(a)(λ)]
= dimHom(P(a)(λ

+),∆(a)(µ))

= dimHom(indλ
(a−1) P(a−1)(λ

′),∆(a)(µ))

= dimHom(P(a−1)(λ
′), resλ

′

(a) ∆(a)(µ))

where the third equality follows from Proposition 3.4. Now resλ
′

(a) ∆(a)(µ) 6= 0 implies

that µ = µ± with µ′ ∈ B(λ′)∩supp(µ±) and soDλµ = 0 unless µ = µ± ∈ B(λ)∩supp(µ′).
Note that for any µ not of this form in B(λ) the two vertices labelled xi and xi − 1 must
be either both ∧s or both ∨s, which implies that dλµ = 0.

If µ = µ± as above then

Dλµ± = dimHom(P(a−1)(λ
′),∆(a−1)(µ

′)) = Dλ′µ′ = dλ′µ′(1)

by the induction hypothesis. Finally, note that cλ′xµ′ is an oriented cap diagram if and
only if cλxµ± is an oriented cap diagram, and so

Dλµ± = dλµ± (1)

as required.
This completes the proof for the walled Brauer algebra. However, for the Brauer

algebra the diagram cλ may contain only curls. We pick the one involving the left-most
∧, and there are five cases, which are illustrated in Figure 12.
Cases (iv-vii): These are very similar to cases (i) and (ii) above. In each case λ′ is
obtained from λ by swapping the leftmost or right-most end of the curl with the symbol
immediately to its left (either ◦ or ×). Arguing exactly as in cases (i) and (ii) we see
that λ and λ′ are translation equivalent, and satisfy

dλµ(q) = dλ′µ′(q).
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λ’

λ’

λ’

λ’

λ’

λ−λ’

.... ....

........

....

....

.... ....

........

....

....

λ

λ

λ

λ

λ(viii)

(vii)

(vi)

(v)

(iv)

(a)

(b)

Figure 12: The five possible small curl configurations

Thus the result follows by induction.
Case (viii): We are left with the case where the curl is labelled with (a) 1

2 and 3
2 , or

(b) 0 and 1.
First consider configuration (a). Then the label 1

2 must occur in the ith entry of
xλ for some i. As − 1

2 is not in xλ we have that λ′ = λ − ǫi is a partition. The
corresponding diagrams are illustrated in Figure 12(viii)(a). These two elements are
translation equivalent, and the result follows as in case (i).

Finally consider configuration (b), and suppose that 0 is in the ith entry of xλ for
some i. As −1 is not in xλ, we have that λ′ = λ − ǫi is a partition. Setting λ+ = λ we
see by arguing as in case (iii) that λ′ is in the lower closure of λ+ (with λ− as illustrated
in Figure 12(viii)(b)). The result for this case follows just as in case (iii).

Remark 6.1. We have shown that

Dλµ = dλµ(1)

for both the Brauer and walled Brauer algebras. In the Brauer case Martin [Mar] has
introduced a similar diagram calculus, but omitting the labels marked with × or ◦ and us-
ing caps instead of curls. This allowed him to define versions of the dλµ(q) and determine
the decomposition numbers.

However, the dλµ(q) encode more than just their values at q = 1, and we would like
to have a representation-theoretic interpretation of these as polynomials in q. Instead we
shall define some closely related polynomials pλµ(q) and show how these can be related to
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projective resolutions for our algebras. The definition of this second family of polynomials
crucially depends on the distinction between caps and curls in our construction of curl
diagrams.

Before defining our second family of polynomials, we consider the relation of the
dλµ(q) to certain Kazhdan-Lusztig polynomials.

7. A recursive formula for decomposition numbers

We will show how the polynomials dλµ(q) can be calculated recursively. The Brauer
and walled Brauer cases will be considered simultaneously. We will then relate this to
the conjectured recursive formula for the Brauer algebra given in [CDM11] (and proved
in [Mar]).

Proposition 7.1. (i) Let λ′ ∈ supp(λ) be as in one of the cases in Figure 9 or 12, with
λ and λ′ translation equivalent. Then

dλ′µ′(q) = dλµ(q).

(ii) Suppose that λ contains a small cap as in Figure 9(iii), or a small curl as in Fig-
ure 12(viii) with 0 in xλ. Denote λ by λ+ and let λ′ and λ− be as indicated in the
corresponding Figure. Then

dλ+µ+(q) = dλ′µ′(q)

and
dλ+µ−(q) = qdλ′µ′(q).

Also we have
dλ+µ+(q) = q−1dλ−µ+(q) + dλ−µ−(q) (5)

and
dλ+µ−(q) = qdλ−µ−(q) + dλ−µ+(q). (6)

Proof. Everything is obvious by construction except for (5) and (6). There are seven
cases, which are illustrated in the cap case in Figure 13 and in the curl case in Figure 14.

λ+ λ−

λ−

λ−

λ−

λ+

λ+

λ+

.... ....

(ii)

(iii)

(iv)

(i) ........

....

........

....

Figure 13: Four small cap configurations
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λ−

λ−

λ+

λ−

λ+

λ+

.... ....(i) .... ....

.... ....(ii)

(iii)

Figure 14: Three small curl configurations

All of the cases are very similar, so we will consider just the case in Figure 13(i).
The weights λ+ and λ− are illustrated in Figure 15 together with the two possible
configurations (a) and (b) for µ+ and µ− in the same block as λ+ and λ− at the four
marked vertices. (The elements µ and µ′ must agree at all of the vertices not indicated
in the diagram.)

λ+ λ−

µ+ µ−

µ+ µ−

.... ....

(a)

(b)

Figure 15: The first cap case

If µ+ is as in configuration (a) then we have

dλ+µ−(q) = qdλ+µ+(q)

dλ−µ−(q) = dλ+µ+(q)

dλ−µ+(q) = 0

which implies (5) and (6) as required.
If µ+ is as in configuration (b) then we have

dλ+µ−(q) = qdλ+µ+(q)

dλ−µ−(q) = 0

dλ−µ+(q) = qdλ+µ+(q)

which implies (5) and (6) as required. Similar arguments hold in the remaining cases.
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In [CDM11] we conjectured that certain parabolic Kazhdan-Lusztig polynomials of
type (D,A) gave the decomposition numbers for the Brauer algebra. This conjecture
was proved by Martin in [Mar]. Exactly the same conjecture can be made for the walled
Brauer case, involving parabolic Kazhdan-Lusztig polynomials of type (A,A ×A).

Corollary 7.2. The dλµ(q) for the Brauer and walled Brauer algebras are parabolic
Kazhdan-Lusztig polynomials.

Proof. It follows from (5) and (6) that the recursive formula corresponding to trans-
lating a parabolic Kazhdan-Lusztig polynomial holds for the dλµ as in [Soe97, Section
3]. By definition, the dλµ are monomials in q with strictly positive degree if λ 6= µ
and dλµ(q) 6= 0. This implies that there is no subtraction of lower order terms in the
calculation of parabolic Kazhdan-Lusztig polynomials, and hence the dλµ(q) are indeed
parabolic Kazhdan-Lusztig polynomials.

Remark 7.3. There are a number of related (parabolic) Kazhdan-Lusztig polynomials
(see [Soe97, Section 3] for the relationship between them). The dλµ(q) correspond to
those labelled by n in [Soe97]. In [LS81] and [Boe88] closed forms are given for certain
other Kazhdan-Lusztig polynomials (labelled by m in [Soe97]) arising from types (D,A)
and (A,A×A) (among others). In Section 8 we will recover these from our diagrams by
defining new polynomials pλµ(q). The relation between the pλµ(q) and the dλµ(q) will
be given in Corollary 9.2.

8. Valued cap and curl diagrams

In this section we will return to the combinatorics of cap and curl diagrams, and
define a new family of polynomials associated to pairs of (bi)partitions λ and µ. These
are given by a diagrammatic version of the combinatorial formulas for Kazhdan-Lusztig
polynomials given in [LS81] and [Boe88]; a discussion of the relation between the two
approaches can be found in Appendix A (and in [BS10, Section 5] in the cap case).

Fix λ ∈ Λr,s or Λn and µ ∈ B = B(λ). We set I(B) to be the infinite set of non-zero
integers indexing the vertices of xλ labelled by ∨ or ∧, but excluding the leftmost one.
Set I(λ, µ) to be the finite subset of I(B) indexing vertices that are labelled differently
in xλ and in xµ. For i ∈ I(B) define

li(λ, µ) = #{j ∈ I(λ, µ) : j ≥ i and vertex j of xλ is labelled by ∧}
−#{j ∈ I(λ, µ) : j ≥ i and vertex j of xµ is labelled by ∧}.

Note that λ ≥ µ if and only if li(λ, µ) ≥ 0 for all i ∈ I(B). We set

l(λ, µ) =
∑

i∈I(B)

li(λ, µ).

Any cap or curl diagram cuts the upper half plane into various open connected regions,
which we will call chambers. Recall that we say that a cap or curl in c is small if it does
not contain any cap or curl inside it. Given a pair of chambers separated by a cap or curl,
we say that they are adjacent and refer to the one lying below as the inside chamber,
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and the other as the outside chamber. The vertices labelled with ∨ or ∧ will be called
the non-trivial vertices.

In the curl diagram case we may have a chamber A (possibly unbounded) inside which
there are a series of maximal chambers (i.e. chambers adjacent to A) A1, . . . , At from
left to right not separated by the end of a curl. If A1 is formed either by a curl or by a
cap involving the leftmost non-trivial vertex then we say that A1, . . . , At forms a chain.

A valued cap diagram c is a cap diagram whose chambers have been assigned values
from the integers such that

(1) all external (unbounded) chambers have value 0;
(2) given two adjacent chambers, the value of the inside chamber is at least as large as

the value of the outer chamber.

A valued curl diagram c is a curl diagram whose chambers have been assigned values
from the integers such that (1) and (2) above hold and also

(3) the value of the chamber defined by a cap or curl connected to or containing inside
itself the leftmost non-trivial vertex must be even;

(4) if A1, . . . At is a chain and the value of Ai is less than or equal to that of Aj for all
1 ≤ j < i then the value of Ai must be even.

Given a valued cap/curl diagram c, we write |c| for the sum of the values of c.
We are now able to define a new polynomial pλµ(q) associated to our pair λ and µ

in B. If xλ 6≥ xµ then set pλµ(q) = 0. Otherwise, let D(λ, µ) be the set of all valued
cap/curl diagrams obtained by assigning values to the chambers of cµ in such a way that
the value of every small cap or curl is at most li(λ, µ), where i indexes the right-most
vertex of the cap or curl. Now set

pλµ(q) = ql(λ,µ)
∑

c∈D(λ,µ)

q−2|c|

and write p
(m)
λµ for the coefficient of qm in pλµ(q). That pλµ(q) is indeed a polynomial

will follow from Proposition 8.2, and hence

pλµ(q) =
∑

m≥0

p
(m)
λµ qm.

Example 8.1. In Figure 16 we have illustrated a pair of diagrams xλ and xµ together
with the curl diagram cµ and the value of li(λ, µ) for each vertex i in our diagram. Thus
in this case

l(λ, µ) = 2 + 3 + 2 + 2 + 1 + 1 = 11.

The various allowable values for the chambers in the curl diagram are indicated in the
Figure, where only the chambers marked a and b can be non-zero. We must have a ∈
{0, 2} and b ∈ {0, 1, 2}.

Now the valued cap diagram is in D(λ, µ) if and only if

(a, b) ∈ {(0, 0), (0, 1), (0, 2), (2, 0), (2, 2)}.

For example, note that we cannot have (a, b) = (2, 1) as this configuration would not
satisfy condition (4). Thus we see that

pλµ(q) = q11(1 + q−2 + 2q−4 + q−8) = q11 + q9 + 2q7 + q3.
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l i (λ,µ)

xµ

cµ

xλ

2 3 2 2 1 0 1 0 0 0 0 0

0

a b

0 0 0
0

00

Figure 16: An example of the calculation of pλµ(q).

Pick a small cap or curl in λ. The possible configurations of caps in λ are given in
Figure 9(i-iii) and of curls in Figure 12(iv-viii). Associated weights λ′ are shown in each
case, with two subcases appearing in Figure 12(viii), together with weights λ− in Figure
9(iii) and Figure 12(viii)(b). We will show how the values of pλµ(q) can be calculated
from the polynomials pλ′µ′ and pλ−τ for suitable choices of τ , which will give a recursive
formula for the pλµ.

Consider the configurations shown in Figure 9(iii) and Figure 12(viii)(b). In both of
these cases we will denote λ by λ+, and then the weights λ+ and λ− are separated by
λ′ and λ′ is in the lower closure of λ+. We will say that an element is of the form µ+ if
it is in the same block as λ+ and has the same configuration of ∧s and ∨s as λ+ at the
vertices on the small cap or curl under consideration.

Proposition 8.2. (i) Let λ and λ′ be one of the configurations in Figure 9(i-ii) or Figure
12(iv-vii), or as in Figure 12(viii)(a) where the vertices on the small curl are labelled 1

2
and 3

2 . Then
pλµ(q) = pλ′µ′(q)

for all µ ∈ B(λ).
(ii) Let λ and λ′ be configured as in Figure 9(iii) or as in Figure 12(viii)(b) where the
vertices on the small curl are labelled 0 and 1. Then setting λ+ = λ we have

pλ+µ+(q) = pλ′µ′(q) + qpλ−µ+(q) (7)

and
pλ+µ(q) = qpλ−µ(q) (8)

for all µ not of the form µ+.

Proof. (Compare with [Boe88, (3.14) Proposition].) In the cases in Figure 9(i-ii) and
Figure 12(iv-vii) the weights λ and λ′ are translation equivalent. By construction we
have in all of these cases that

pλµ(q) = pλ′µ′(q)

for all µ ∈ B(λ). The case in Figure 12(viii)(a) occurs when the vertices on the small
curl are labelled 1

2 and 3
2 , and again the weights λ and λ′ are translation equivalent. The
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translation equivalence is given by changing the ± 1
2 entry in xµ to ∓ 1

2 in xµ′ . Therefore
li(λ, µ) = li(λ

′, µ′) for all i ∈ I(B) and all other caps and curls are preserved. Thus in
this case we also have that

pλµ(q) = pλ′µ′(q)

for all µ ∈ B(λ).
The two remaining cases are those shown in Figure 9(iii) and Figure 12(viii)(b). In

both of these cases the weights λ+ and λ− are separated by λ′ and λ′ is in the lower
closure of λ+. We first consider (7). We claim there is a one-to-one correspondence
between D(λ+, µ+) and D(λ′, µ′) ⊔ D(λ−, µ+). Let i be the rightmost vertex of the
small cap or curl under consideration in xλ. It is easy to see that

li(λ
+, µ+) = li(λ

−, µ+) + 1

and that if i− 1 is the left-most non-trivial vertex then li(λ
+, µ+) is even.

The valued cap/curl diagrams in D(λ+, µ+) split into two subsets, those where the
value of the small cap/curl under consideration is less than li(λ

+, µ+) and those where
the value is equal to li(λ

+, µ+). The first set are exactly the valued cup/curl diagrams
in D(λ−, µ+).

We will show that the second set is obtained from the set of valued cap/curl diagrams
D(λ′, µ′) by adding to each element a cap/curl joining vertices i − 1 and i with value
li(λ

+, µ+). For c ∈ D(λ′, µ′) denote by c+ the corresponding valued cap/curl diagram
with this extra cap/curl. We need to show that c+ is indeed in D(λ+, µ+) to give the
desired bijection.

We check that inserting this extra cap/curl with the given value satisfies the condition
(1–4) in the definition of a valued cap/curl diagram. (1) is obvious.

.....

.....

d

.....
d

d

Figure 17: The possible nested cases

For (2), suppose that our small cap/curl is nested inside a larger one d. We may
assume that they are adjacent. There are three possible cases, illustrated in Figure 17.
Suppose that there is a small cap in the dotted region in Figure 17; if we pick the leftmost
such cap and j denotes its right-hand vertex then it is easy to see that

lj(λ
+, µ+) ≤ li(λ

+, µ+).
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So the value of this small cap is at most li(λ
+, µ+) and hence the value of d is at most

li(λ
+, µ+).
If the dotted region in Figure 17 is empty then let j be the vertex at the right-hand

end of the cap/curl defining d. If this is a cap then we have

lj(λ
+, µ+) ≤ li(λ

+, µ+)

and so the value of d is at most li(λ
+.µ+). If we have a small cap or curl nested in a curl

then
lj(λ

+, µ+) ≤ li(λ
+, µ+) + 1.

But d has to be even and li(λ
+, µ+) is even, and so the value of d is at most li(λ

+, µ+).
For (3), as noted above if i − 1 is the leftmost non-trivial vertex then li(λ

+, µ+) is
even.

Finally for (4), suppose we have a chain of chambers. If our small cap/curl is the
leftmost in the chain then denote the vertices of the next chamber along in the chain as
shown in Figure 18. By the same argument as in (2) we see that d has value at most
li(λ

+, µ+), and as k was the leftmost non-trivial vertex we have that d is even.

i k j

jki

d

d

Figure 18: The leftmost chain cases

If there is a chamber to each side of our small cap in the chain then we are in the
configuration shown in Figure 19. As before the value of e is at most li(λ

+, µ+). If e has
value at most that of d and all other predecessors then removing the small cap at i we
have a chain in D(λ′, µ′) and so d is even as required.

d e

i

Figure 19: The mid-chain cases

If our small cap is the rightmost in the chain then a similar argument shows that the
preceding chamber d in the chain has value at most lj(λ

+, µ+) ≤ li(λ
+, µ+). If li(λ

+, µ+)
is no greater than all preceding values in the chain then li(λ

+, µ+) is at most the value of
d, and hence by the preceding inequality the value of d equals li(λ

+, µ+). Removing our
small cap gives a chain in D(λ′, µ′) and hence li(λ

+, µ+) must be even. Thus conditions
(1-4) are satisfied and hence c+ ∈ D(λ+, µ+) as required.

It is also clear that
l(λ+, µ+) = l(λ−, µ+) + 1
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and
l(λ+, µ+) = l(λ′, µ′) + 2li(λ

+, µ+).

Hence

pλ+µ+(q) = ql(λ
+,µ+)

∑

c∈D(λ+,µ+)

q−2|c|

= ql(λ
+,µ+)

∑

c∈D(λ−,µ+)

q−2|c| + ql(λ
+,µ+)

∑

c∈D(λ′,µ′)

q−2|c+|

= q.ql(λ
−,µ+)

∑

c∈D(λ−,µ+)

q−2|c| + ql(λ
′,µ′)+2li(λ

+,µ+)
∑

c∈D(λ′,µ′)

q−2|c|−2li(λ
+,µ+)

= qpλ−µ+(q) + pλ′µ′(q).

It remains to show that (8) holds. If µ is not of the form µ+ then it must have
a different configuration of ∨s and ∧s on the pair of vertices defined by our small cap
or curl. Thus the possible configurations are as indicated in Figure 20, where the top
row (a-c) corresponds to the small cap case in Figure 9(iii) and the bottom row (d-f)
corresponds to the small curl case in Figure 12(viii)(b).

(d)

(a) (b)

(e)

(c)

(f)

Figure 20: The possible configurations of µ not of the form µ+

In all six cases we have
l(λ+, µ) = l(λ−, µ) + 1.

Let i be the rightmost of the vertices on the small cap/curl in λ. Note that for all j 6= i
we have that

lj(λ
+, µ) = lj(λ

−, µ) and li(λ
+, µ) = li(λ

−, µ) + 1.

Now for µ as in Figure 20(a), (c), (d), or (f) there is no cap/curl in cµ with rightmost
vertex i, and so in these cases we have that

D(λ+, µ) = D(λ−, µ).

For µ as in Figure 20(b) or (e) there might be a cap/curl with rightmost vertex i.
If i is the second non-trivial vertex in µ (or λ+, λ−), then li(λ

−, µ) is even and so
li(λ

+, µ) is odd. Also the cap/curl in µ involved the first non-trivial vertex in µ and so
its value must be even. Hence we again have that

D(λ+, µ) = D(λ−, µ).
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...

i

Figure 21: The final configuration of µ

If i is not the second non-trivial vertex then we must have a configuration of the form
in Figure 21. Note that

li−2(λ
+, µ) ≤ li(λ

+, µ)− 1 = li(λ
−, µ)

and as the values are non-increasing in nested chambers we again have that

D(λ+, µ) = D(λ−, µ).

Thus in all cases we have

pλ+µ(q) = ql(λ
+,µ)

∑

c∈D(λ+,µ)

q−2|c|

= qql(λ
−,µ)

∑

c∈D(λ−,µ)

q−2|c|

= qpλ−µ(q).

9. Projective resolutions of standard modules

We now have the combinatorial framework needed to describe projective resolutions
of standard modules for the walled Brauer algebra. This is inspired by the corresponding
result for the quasi-hereditary cover of the generalised Khovanov diagram algebra in
[BS10, Theorem 5.3] (which itself repeats an argument from [Bru03, Lemma 4.49]).

Theorem 9.1. For each λ ∈ Λr,s there is an exact sequence

· · · −→ Pm
(a)(λ) −→ · · · −→ P 1

(a)(λ) −→ P 0
(a)(λ) −→ ∆(a)(λ) −→ 0

where
P i
(a)(λ) =

⊕

µ∈Λ(a)

p
(i)
λµP(a)(µ).

Proof. Let λ ∈ Λ(a). If xλ is minimal then

∆(a)(λ) = P(a)(λ) = P 0
(a)(λ)

and Pm
(a)(λ) = 0 for all m ≥ 0 and for all (a) with λ ∈ Λ(a). Thus we may assume that

xλ is not minimal.
As in Section 6 we choose a cap or a curl in xλ not containing any smaller caps or

curls. We have eight cases to consider as shown in Figures 9 and 12. We proceed by
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induction on deg(λ). Note that in all cases we have deg(λ′) < deg(λ) and in cases (iii)
and (viii)(b) we also have deg(λ−) < deg(λ). So we can assume that the result holds for
λ′ and λ−.

In cases (i), (ii), (iv-vii) and (viii)(a) we have by induction a projective resolution of
∆(a+1)(λ

′) of the form

· · · −→ Pm
(a+1)(λ

′) −→ · · · −→ P 1
(a+1)(λ

′) −→ P 0
(a+1)(λ

′) −→ ∆(a+1)(λ
′) −→ 0.

In these cases we saw that λ and λ′ are translation equivalent. Applying the exact functor
resλ(a+1) to this resolution and using Theorem 3.1(iii) and Proposition 8.2(i) and (ii) we
get a projective resolution

· · · −→ Pm
(a)(λ) −→ · · · −→ P 1

(a)(λ) −→ P 0
(a)(λ) −→ ∆(a)(λ) −→ 0

as required.
For the cases (iii) and (viii)(b) we set λ+ = λ. By induction we have projective

resolutions of ∆(a+1)(λ
′) and ∆(a)(λ

−) of the form

· · · −→ Pm
(a+1)(λ

′) −→ · · · −→ P 1
(a+1)(λ

′) −→ P 0
(a+1)(λ

′) −→ ∆(a+1)(λ
′) −→ 0 (9)

and

· · · −→ Pm
(a)(λ

−) −→ · · · −→ P 1
(a)(λ

−) −→ P 0
(a)(λ

−) −→ ∆(a)(λ
−) −→ 0. (10)

We also have an exact sequence

0 −→ ∆(a)(λ
−)

f
−→ resλ(a+1) ∆(a+1)(λ

′) −→ ∆(a)(λ
+) −→ 0.

Applying resλ(a+1) to (9) and extending f to a chain map using (10) we get a commu-
tative diagram with exact rows

−→ Pm
(a)(λ

−) −→ · · · −→ P 0
(a)(λ

−) −→ ∆(a)(λ
−) −→ 0

↓ ↓ ↓ f
−→ resλ(a+1) P

m
(a+1)(λ

′) −→ · · · −→ resλ(a+1) P
0
(a+1)(λ

′) −→ resλ(a+1) ∆(a+1)(λ
′) −→ 0

which we extend into a double complex by adding 0s in all remaining rows.
Taking the total complex of this double complex gives an exact sequence

· · · −→ Pm
(a)(λ

−)⊕ resλ(a+1) P
m+1
(a+1)(λ

′) −→ · · ·

· · · −→ ∆(a)(λ
−)⊕ resλ(a+1) P

0
(a+1)(λ

′) −→ resλ(a+1) ∆(a+1)(λ
′) −→ 0. (11)

By Proposition 2.1 there is an obvious injective chain map from

· · · −→ 0 −→ · · · −→ 0 −→ ∆(a)(λ
−) −→ ∆(a)(λ

−) −→ 0

to the complex in (11), and the quotient gives an exact sequence

· · · −→ Pm
(a)(λ

−)⊕resλ(a+1) P
m+1
(a+1)(λ

′) −→ · · · −→ resλ(a+1) P
0
(a+1)(λ

′) −→ ∆(a)(λ
+) −→ 0.

(12)
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By Propositions 3.4 and 8.2(iii) we have

resλ(a+1) P
0
(a+1)(λ

′) = resλ(a+1) P(a+1)(λ
′) = P(a)(λ

+) = P 0
(a)(λ

+).

For m > 0 we have by Proposition 3.4 and Proposition 8.2 that

Pm
(a)(λ

−)⊕ resλ(a+1) P
m+1
(a+1)(λ

′) =
⊕

µ∈B(λ)

p
(m)
λ−µ

P(a)(µ)⊕
⊕

µ′∈B(λ′)

p
(m+1)
λ′µ′ resλ(a+1) P(a+1)(µ

′)

=
⊕

µ∈B(λ)

p
(m)
λ−µ

P(a)(µ)⊕
⊕

µ′∈B(λ′)

p
(m+1)
λ′µ′ P(a)(µ

+)

=
⊕

µ+∈B(λ)

(

p
(m)
λ−µ+ + p

(m+1)
λ′µ′

)

P(a)(µ
+)⊕

⊕

µ∈B(λ),µ6=µ+

p
(m)
λ−µ

P(a)(µ)

=
⊕

µ+∈B(λ)

p
(m+1)
λ+µ+ P(a)(µ

+)⊕
⊕

µ∈B(λ),µ6=µ+

p
(m+1)
λ+µ

P(a)(µ)

=
⊕

µ∈B(λ)

p
(m+1)
λ+µ

P(a)(µ) = P
(m+1)
(a) (λ+) = P

(m+1)
(a) (λ).

Substituting into (12) we obtain the desired projective resolution of ∆(a)(λ).

For fixed (a) we can consider the matrices formed by the pλµ(q) and the dλµ(q) with
rows and columns indexed respectively by λ and µ in Λ(a). The next pair of Corollaries
follow from the last Proposition in exactly the same way as in [BS10, Corollaries 5.4 and
5.5].

Corollary 9.2. The matrix (pλµ(−q)) is the inverse of the matrix (dλµ(q)).

Corollary 9.3. We have

pλµ(q) =
∑

i≥0

qi dimExti(∆(λ), L(µ)).

Remark 9.4. We have seen that the walled Brauer algebras have the same combinatoric
for decomposition numbers and for projective resolutions of standard modules as the
generalised Khovanov diagram algebras studied by Brundan and Stroppel [BSa, BS10,
BS11, BSb]. They have shown that a certain infinite dimensional limit of these Khovanov
algebras are Morita equivalent to blocks of the general linear supergroup, and that their
quasihereditary covers in the finite dimensional setting are Morita equivalent to certain
parabolic category Os. It would be very interesting (if true) to determine an analogous
relationship between these algebras and the walled Brauer algebra, and to find analogous
correspondences for the Brauer algebra.

Appendix A. Kazhdan-Lusztig polynomials

In this section we shall review the constructions of Kazhdan-Lusztig polynomials
corresponding to Ar×As inside Ar+s+1 and An−1 insideDn given respectively by Lascoux
and Schützenberger [LS81, Section 6] and by Boe [Boe88, Section 4 (and Section 3)], and
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how these can be identified (up to a power of q) with the polynomials associated to valued
cap diagrams and valued curl diagrams. In the former case this was already observed in
[BS10, Remark 5.1]. An alternative graphical description in the curl case has been given
in [Lej10, Section 5]. We will concentrate on the case An−1 inside Dn, as this includes
the combinatorics for the other case (as will be noted at the end).

We begin by outlining the construction of Boe [Boe88]. Fixing W of type Dn and a
fixed subCoxeter system of type An−1 defines a dominant set of elements in W . These
can be identified with words of the form

w = wn . . . w1

where each wi ∈ {α, β}, such that the number of αs is even. Because of this parity
condition the final element w1 is redundant and is omitted.

Given a partition λ we will identify the weight xλ with a word w of the above form
in the following manner. Fix m >> 0 so that m is the rightmost vertex in xλ lying on
a cap or curl in cλ, and let n be the number of vertices labelled ∨ or ∧ between 0 and
m inclusive, and we associate λ to the word w obtained by setting wi = α (respectively
β) if the (n− i)th such vertex from the left is ∨ (respectively ∧). We will refer to these
vertices as the non-trivial vertices in xλ.

Note that the identification letters in w read from left to right correspond to vertices
in xλ read from right to left.

Lascoux-Schützenberger introduced the cyclic monoid Z in the letters α and β [LS81,
Section 4]. Rather than repeating their definition, we note that if w = w′zw′′ with z ∈ Z
then z corresponds to a line segment in xλ where the non-trivial vertices form a sequence
of (possibly nested) caps. If w = w′αzβw′′ then Boe calls α and β a linked αβ pair ; this
corresponds to a cap in our terminology. If

w = w′αz2rαz2r−1α . . . αz1αz0

with zi ∈ Z then Boe calls the rightmost α terminal and each pair of αs separated by
some z2i a linked αα pair. Under our correspondence linked αα pairs correspond to curls.
As Boe omits w1 but xλ retains the corresponding point, a terminal α corresponds to
either a cap or a curl involving the leftmost non-trivial vertex.

Boe next defines a rooted directed tree associated to the word w. It is routine to verify
that this corresponds to the tree with vertices labelled by the chambers for xλ, where
an edge connects chamber A to chamber B if chamber A is adjacent to and surrounds
chamber B, and the unbounded chambers (separated by infinite rays) are regarded as a
single unbounded chamber via the point at infinity.

Thus the root of the tree corresponds to the unique unbounded chamber, while the
terminal nodes correspond to the small chambers. Certain edges in the tree are marked
with a plus sign; these correspond to edges which cross either a curl or a cap involving
the left-most non-trivial vertex.

Certain pairs of edges in the tree are related by a dotted arrow. We will describe
the diagram version; the equivalence of the two is a straightforward exercise. Suppose
we have a chamber A (possibly unbounded) inside which there are a series of maximal
chambers A1, . . . , At from left to right (possibly containing other chambers inside them)
not separated by the end of a curl. If the leftmost chamber A1 is formed either by a curl
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or by a cap involving the leftmost non-trivial vertex, then there is a dotted arrow from
the edge defined by Ai in A to the edge defined by Ai+1 in A for 1 ≤ i ≤ t− 1.

In fact the dotted arrows are redundant in the diagram case: the leftmost chamber
in a curl must always be formed either by a curl or by a cap involving the left-most non-
trivial vertex, and the same is true in any unbounded chamber with no ray to its left.
Chambers formed by caps or with a ray to their left cannot contain curls or the left-most
non-trivial vertex. Thus we can omit the dotted arrows in our diagrams without any
ambiguity.

Instead of labelling edges with plus signs, we will label chambers by moving any labels
to the vertices at the bottom of their respective edges.

Example A 1. An example of the correspondence between curl diagrams and labelled
graphs is given in Figure A.22. Here we have included the dotted arrows to emphasise
where they occur. Note that the graph must be reflected in the vertical axis under the
correspondence with the construction for Boe in terms of words in α and β.

+

+

+

+

Figure A.22: The diagram graph correspondence

Remark A 2. Our construction appears to depend on the choice of m defined by the
rightmost vertex on a cap or curl. However, Boe’s construction (in our diagrammatic
form) is not affected by the addition of arbitrarily many rays to the right. Thus we can
carry out all calculations involving our diagrams in the unbounded setting.

Boe next associates to pairs of words (w, y) a labelling of the tree for w. Under our
identifications this corresponds to a valued curl diagram. The polynomialQy,w(q) defined
by Boe by summing over possible labellings corresponds almost exactly to our pλµ(q).
More precisely, if we denote by w(λ) and w(µ) the words in α and β corresponding to λ
and µ (as described at the beginning of this section), then we have that

pλµ(q) = ql(λ,µ)Qw(λ),w(µ)(q
−2).

We have considered the relation between Boe’s rooted tree construction and curl
diagrams. There is an entirely analogous relation between the rooted tree construction
of Lascoux-Schützenberger and cap diagrams. In that case there are no linked αα pairs
or terminal αs marked with a plus sign, and thus no chambers contain chains. The
remainder of the construction goes through unchanged.
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