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Abstract   The goal of this study is to investigate seismic behaviour of existing 

R/C buildings designed and constructed in accordance with standards that do not 

meet current seismic code requirements. In these structures, not only flexure, but 

also shear and bond-slip deformation mechanisms need to be considered, both 

separately and in combination. To serve this goal, a finite element model is devel-

oped for inelastic seismic analysis of complete planar R/C frames. The proposed 

finite element is able to capture gradual spread of inelastic flexural and shear de-

formations as well as their interaction in the end regions of R/C members. Addi-

tionally, it is capable of predicting shear failures caused by degradation of shear 

strength in the plastic hinges of R/C elements, as well as pullout failures caused by 

inadequate anchorage of the reinforcement in the joint regions. The finite element 

is fully implemented in the general inelastic finite element code IDARC2D and it 

is verified against experimental results involving individual column and plane 

frame specimens with non-ductile detailing. It is shown that, in all cases, satisfac-

tory correlation is established between the model predictions and the experimental 

evidence. Finally, parametric studies are conducted to illustrate the significance of 

each deformation mechanism on the seismic response of the specimens under in-

vestigation. It is concluded, that all deformation mechanisms, as well as their in-

teraction, should be taken into consideration in order to predict reliably seismic 

damage of R/C structures with substandard detailing. 
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1 Introduction 

In countries often struck by devastating earthquakes, a large fraction of the exist-

ing R/C building stock has not been designed to conform to modern seismic codes. 

These structures have not been detailed in a ductile manner and according to ca-

pacity design principles. Therefore, it is likely, that in case of a major seismic 

event, their structural elements will suffer from brittle types of failure, which may 

lead to irreparable damage or collapse of the entire structure.  

The first step in performing a realistic seismic damage analysis is to develop 

an analytical model that is able to predict accurately inelastic response to seismic 

loading. The complexity of this problem increases significantly for non-ductile 

R/C structures, where, apart from flexure, shear and anchorage slip may signifi-

cantly influence the final response. This is the reason why, especially for these 

structures, all three deformation mechanisms should be explicitly treated, while 

their interaction should also be taken into consideration [1]. 

Current research on seismic assessment of R/C structures is focused primarily 

on flexural response. Deformations caused by shear and bond-slip related mecha-

nisms are either ignored or lumped into flexure [2]. However, the necessary as-

sumptions inherent to both of these approaches may drive the assessment proce-

dure to erroneous results. This is especially the case for ‘old type’ existing R/C 

structures, where shear and bond types of failure cannot be precluded, due to the 

absence of ductile detailing and capacity design. 

Only a small number of studies [3-7] proposed numerical models for seismic 

assessment of non-ductile R/C structures, where all three deformation mechanisms 

are considered individually. Nevertheless, all these studies have demonstrated the 

importance and the advantages of treating separately all deformation components, 

when assessing seismic response of deficient R/C structures. 

Following this approach, a new finite element model [8-11] is developed here-

in for examining inelastic response of R/C frames with substandard detailing. The 

novel feature of the proposed finite element is the fact that it is capable of model-

ling gradual spread of inelastic flexural and shear deformations, as well as their in-

teraction in the end regions of R/C members. Furthermore, it is able to predict 

shear failures caused by degradation of shear strength in the plastic hinges of R/C 

elements, as well as pullout failures caused by inadequate anchorage of the rein-

forcement in the joint regions under general loading conditions. 

The chapter starts with an analytical description of the finite element model. 

The element formulation, components and inherent assumptions are explained. 

Emphasis is placed on the ability of the numerical model to predict brittle types of 

failure (i.e. shear and bond). In addition, the necessary alterations to the nonlinear 

solution algorithms are discussed in order for the proposed beam-column element 

to be fully implemented in a general inelastic damage analysis finite element code. 

Then, with the aim to verify the capabilities of the proposed numerical model 

to reproduce inelastic response of R/C buildings with deficient configuration, the 

proposed finite element is applied to the analysis of well documented R/C column 
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and frame specimens subjected to cyclic or seismic loading. Analytical results are 

compared with experimental recordings. It is shown that the numerical model is 

able to capture sufficiently experimental response in terms of strength, stiffness 

and displacements, and to predict reliably the prevailing mode of failure for each 

specimen. 

Finally, parametric analyses illustrate the relative importance of each defor-

mation mechanism on the response of the examined specimens in the elastic and 

inelastic range. It is shown that proper modelling of all flexibility components, as 

well as their interaction, is a substantial prerequisite for reliable prediction of 

seismic response of R/C frames built with inadequate earthquake resistant provi-

sions. 

2 Finite Element Model 

2.1 General formulation  

The finite element model proposed herein for seismic damage analysis of existing 

RC structures is based on the flexibility approach (force-based element) and be-

longs to the class of phenomenological models. It consists of three sub-elements 

representing flexural, shear, and anchorage slip response (Fig. 1). The total flexi-

bility matrix Fb is calculated as the sum of the flexibilities of its sub-elements and 

can be inverted to produce the element stiffness matrix Kb. Hence: 

 fl sh sl
bF =F +F +F  (1) 

Where, Fb, F
fl
, F

sh
, F

sl
 are the basic total, flexural, shear and anchorage slip, re-

spectively, tangent flexibility matrices. Kb is the basic tangent stiffness matrix of 

the element, relating incremental moments ΔΜΑ, ΔΜΒ and rotations ΔθΑ, ΔθΒ at 

the element flexible ends A and B respectively. 

The local stiffness matrix Ke, relating displacements and forces at the element 

joints, is easily determined following standard structural analysis procedures. The 

components of the examined finite element, as well as their interaction, are de-

scribed analytically in the following sections. 
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Fig. 1 Proposed finite element. (a) R/C member geometry. (b) Beam-column finite element with 

rigid arms. (c) Flexural sub-element. (d) Shear sub-element. (e) Anchorage slip sub-element 

2.2 Flexural sub-element  

This sub-element (Fig. 1c) is used for modelling flexural behaviour of an R/C 

member before and after yielding of the longitudinal reinforcement. It consists of 

a set of rules governing the hysteretic moment-curvature (M-φ) response of the 

member end sections and a spread inelasticity model describing flexural stiffness 

distribution along the entire member. 

M-φ hysteretic model (Fig. 2a) is composed by the skeleton curve and a set of 

rules determining response during loading, unloading and reloading. M-φ enve-

lope curve is derived by section analysis and appropriate bilinearization. Loading 

response is assumed to follow the bilinear envelope curve. Unloading is based on 

the respective Sivaselvan & Reinhorn [12] hysteretic rule adjusted for mild stiff-

ness degradation. Reloading aims at the point with previous maximum excursion 

in the opposite direction. 

To capture distribution of section flexural stiffness along the concrete member, 

a gradual spread inelasticity model is assigned [13]. Following this model, the el-

ement is divided into two inelastic end regions and one elastic intermediate zone. 

Stiffness along the intermediate zone is assumed to be uniform and equal to the 

elastic stiffness EIo of the M-φ envelope curve. 

Stiffness distribution inside the inelastic zones depends on the loading state of the 

end section hysteretic response. In particular, Fig. 2b illustrates hysteretic re-

sponse of four discrete sections located inside one plastic hinge region. It can be 
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seen that when all sections remain in the strain hardening branch (loading state), 

flexural stiffness remains constant in the inelastic zone. However, when they are 

in the unloading and reloading state, stiffness varies from a minimum value r∙EIo 

(0≤r≤1), corresponding to the end section, to a maximum value, which is equal to 

EIo.  Hence, under the general assumption that the loading state of all sections of 

the yielded region remains the same, it may be considered that when M-φ end sec-

tion hysteretic response is on the strain hardening branch, stiffness distribution 

remains uniform in the inelastic zone. In the case where end-section M-φ behav-

iour is in the unloading or reloading state, it is assumed that the stiffness varies 

linearly from end section flexural stiffness r1∙EIo or r2∙EIo to EIo.  
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Fig. 2 (a) M-φ hysteretic model. (b) M-φ hysteretic response of four individual sections inside 

plastic hinges 

In accordance with the previous observations, stiffness distribution along the 

member may be assumed to have one of the shapes shown in Fig. 3, where L is the 

length of the member; EIo is the stiffness at the intermediate part of the element 

and EIA and EIB are the current flexural rigidities of the sections at the ends A and 

B respectively. The flexural rigidities EIA and EIB are determined from the M-φ 

hysteretic relationship of the corresponding end sections. 

In the same figure, αA and αB are the yield penetration coefficients. The yield 

penetration coefficients specify the proportion of the element where the acting 

moment exceeds the end-section yield moment. These coefficients are first calcu-

lated for the current moment distribution from Eq. 2, where MyA and MyB are the 

respective flexural yielding moments of end sections A and B. Then, they are 

compared with the previous maximum penetration lengths; the yield penetration 

lengths cannot be smaller than their previous maximum values. 

 1
A yA

A

A B

M M

M M



 


; 1

B yB

B

B A

M M

M M



 


 (2) 
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Fig. 3 Element. (a) Bending moment diagram. (b) Stiffness distribution when ends A and B are 

in the loading state. (c) Stiffness distribution when ends A and B are in the unloading or reload-

ing state. (d) Stiffness distribution when end A is in the loading and end B is in the unloading or 

reloading state. (e) Stiffness distribution when end A is in the unloading or reloading state and 

end B is in the loading state 

Table 1 Determination of flexural flexibility matrix coefficients.  

Flexibility 

coefficient 

Stiffness 

distribution 
co cA cB 

f11 Fig. 3b 4 12αΑ -12αΑ
2+4αΑ

3 4αΒ
3 

f22 Fig. 3b 4 4αΑ
3 12αΒ -12αΒ

2+4αΒ
3 

f12 Fig. 3b -2 4αΑ
3-6αΑ

2 4αΒ
3-6αΒ

2 

f11 Fig. 3c 4 6αΑ -4αΑ
2+αΑ

3 αΒ
3 

f22 Fig. 3c 4 αΑ
3 6αΒ -4αΒ

2+αΒ
3 

f12 Fig. 3c -2 αΑ
3-2αΑ

2 αΒ
3-2αΒ

2 

f11 Fig. 3d 4 12αΑ -12αΑ
2+4αΑ

3 αΒ
3 

f22 Fig. 3d 4 4αΑ
3 6αΒ -4αΒ

2+αΒ
3 

f12 Fig. 3d -2 4αΑ
3-6αΑ

2 αΒ
3-2αΒ

2 

f11 Fig. 3e 4 6αΑ -4αΑ
2+αΑ

3 4αΒ
3 

f22 Fig. 3e 4 αΑ
3 12αΒ -12αΒ

2+4αΒ
3 

f12 Fig. 3e -2 αΑ
3-2αΑ

2 4αΒ
3-6αΒ

2 
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Having established the stiffness distribution along the R/C member at each step 

of the analysis, the coefficients of the flexibility matrix of the flexural sub-element 

can be derived from the general Eq. 3 and Table 1, determined by applying the 

principle of virtual work. 

  
12

fl

ij o A A B B

o

L
f c c c

EI
      ; 1o

A

A

EI

EI
   ; 1o

B

B

EI

EI
    (3) 

2.3 Shear sub-element  

The shear sub-element (Fig. 1d) represents the hysteretic shear behaviour of the 

R/C member prior and subsequent to shear cracking, flexural yielding, and yield-

ing of the shear reinforcement. Herein, this sub-element has been designed in a 

similar way to the flexural element described above. It consists of a set of rules de-

termining V-γ (shear force vs. shear strain) hysteretic behaviour of the member in-

termediate and end regions, and a shear spread inelasticity model determining dis-

tribution of shear stiffness along the R/C member. 

Shear hysteresis is determined by the V-γ skeleton curve and a set of rules de-

scribing response during unloading and reloading. The primary curve is first de-

rived without considering shear-flexure interaction effect. This initial envelope 

curve (Fig. 4) is valid for modelling shear behaviour outside plastic hinge regions 

of the R/C members. 

 V V 

μφ γ 

Vy 
Vcr 

 
γcr 

 γst  1 

GA1 

GA1 

GAeff 

Initial envelope 

Modified envelope 

 γu  γcr 

Vu 

Vuo 

Shear capacity  

 
Fig. 4 (a) Flexural primary curve in terms of member shear force and curvature ductility de-

mand of the critical cross section. (b) Shear (V – γ) primary curve before and after modelling 

shear-flexure interaction 

 

The V-γ initial primary curve consists of four branches (Fig. 4), but only three 

different slopes, as explained later on. The first branch connects the origin and the 

shear cracking point, which is defined as the point where the nominal principal 

tensile stress exceeds the mean tensile strength of concrete [14]. The second and 

third branches of the initial primary curve have the same slope and connect the 

shear cracking point to the point corresponding to the onset of yielding of trans-
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verse reinforcement, or else the point of attainment of maximum shear strength 

(γst, Vuo). The second and third branches are separated at the point corresponding 

to flexural yielding (γy,Vy). This approach is adopted in order to distinguish hys-

teretic shear behaviour before and after flexural yielding [8]. 

Initial shear strength Vuo is calculated by the Priestley et al. [15] approach for 

curvature ductility demand μφ≤3 (i.e. no strength degradation). Shear strain at stir-

rup yielding γst is evaluated by the truss analogy approach and two modification 

factors for the member aspect ratio and normalized axial load, as proposed by the 

writers of this study [11] on the basis of calibration studies with the experimental 

evidence. 

The fourth branch is almost horizontal and describes shear response after yield-

ing of transverse reinforcement and until onset of shear failure, corresponding to 

shear distortion γu. The latter distortion is established on the basis of an empirical 

formula proposed by the writers of this study [11] derived by experimental results 

coming from 25 R/C specimens failing in shear mode. The proposed formula con-

nects γu with the level of the applied axial load, the amount of transverse rein-

forcement and the member shear-span.  

Several studies [14-16] have demonstrated that shear strength degrades due to 

disintegration of the plastic hinge zones caused by inelastic flexural deformations. 

Furthermore, it has been shown experimentally [17,18] that shear distortions in the 

plastic hinge regions may increase rapidly (“shear-flexural yielding”) subsequent 

to flexural yielding, despite the fact that shear force demand remains almost con-

stant, as it is controlled by flexural yielding. The combination of these phenomena 

is defined herein as shear-flexure interaction effect.  

In this study, a new analytical methodology is proposed for the calculation of 

the modified V-γ envelope curve, which accounts properly for shear-flexure inter-

action effect (Fig. 4). The modified envelope is employed by the proposed finite 

element model for the determination of shear hysteretic response inside the loca-

tions of the plastic hinges. 

Vcr

Vy

V

μφ

1 3 15

γy

γ

μφ

1 3 15

7

7

(a)

(b)

Vc

Vs

γs

 

Fig. 5 Variation of shear resisting mechanisms with μφ in plastic hinges 

 

In accordance with truss analogy approach [19], after shear cracking, shear 

strain increment Δγs is related to the additional shear force resisted by the truss 

mechanism ΔVs by Eq. 4, where GA1 is the cracked stiffness of the initial shear 

primary curve shown in Fig. 4. 
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1

s

s

V

G A



   (4) 

Figure 5 illustrates variation of capacity of shear resisting mechanisms (con-

crete Vc and truss Vs) in the plastic hinge region of a single R/C member follow-

ing the Priestley et al. [15] shear strength approach (for clarity, contribution of ax-

ial load is lumped into Vc). It can be seen that after μφ>3, Vs increases to 

accommodate both additional shear demand ΔV and additional deterioration of the 

concrete resisting mechanism ΔdegVc. Hence, ΔVs can be considered as the sum 

of ΔV and ΔdegVc. 

 deg
s c

V V V      (5) 

If GAeff is the tangent stiffness of the modified shear primary curve including 

shear-flexure interaction effect, by definition, it yields the same increment of shear 

distortions Δγs only for the applied shear force increment ΔV (without ΔdegVc), as 

illustrated in Fig. 6. Consequently 

 
s

eff

V

GA



   (6) 

Combining Eqs. 4-6, Eq. 7 is derived for determining stiffness of the shear en-

velope curve after yielding in flexure. This formula shows that GAeff can only be 

either equal or smaller than GA1. Equality holds only when the degradation of the 

concrete shear resisting mechanisms is negligible. 

 1degeff

c

V
G A G A

V V


 
  

 (7) 

It is important to note that, following the afore-described analytical procedure, 

degraded shear strength Vu [15] is always attained at shear distortion γst corre-

sponding to stirrup yielding (Fig. 4). This observation is in accordance with truss 

analogy approach [19]. 

After determination of the V-γ envelope curves, shear hysteretic response has 

to be established. This behaviour is generally characterized by significant stiffness 

degradation and pinching. In this study, the empirical model by Ozcebe and 

Saatcioglu [18] (Fig. 7a) is adopted for this response, properly modified by the 

writers [8] in order to be incorporated in the general structural analysis frame-

work. 

After determining shear hysteretic responses, shear stiffness distribution along 

the R/C member has to be defined. In reality, due to shear-flexure interaction and 

following flexural deformations, inelastic shear strains tend to spread gradually 

from the member ends to the mid-span as the length of inelastic zones increases. 
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To capture this phenomenon, a shear gradual spread inelasticity model has been 

first proposed by the writers of this study in [9,11]. The model aims at monitoring 

variation of shear stiffness along the concrete member throughout the response. 

 

 

Δd
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Fig. 6 Determination of effective shear stiffness GAeff 

 

To serve this goal, the shear sub-element is divided in two variable length end-

zones, where shear-flexure interaction takes place, and an intermediate region 

where interaction with flexure may be disregarded. The lengths of the inelastic 

zones αAs and αBs of the shear sub-element are determined by the respective ones 

of the flexural sub-element (Fig. 7b). Hence, they are also constantly updated to 

capture gradual growth of the plastic hinge regions. Furthermore, the stiffness of 

these end-zones GAA and GAB are defined by the modified V-γ envelope curves 

(Fig. 4) calculated for the current μφ demands of the respective ends of the flexural 

sub-element in accordance with the analytical procedure described in the previous. 

Shear stiffness distribution is assumed uniform inside the inelastic zones since act-

ing shear is uniform and all sections remain in the same V-γ loading state. 
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Fig. 7 (a) Shear hysteretic model. (b) Shear spread plasticity model 

 

Shear stiffness GAM of the intermediate part of the sub-element is also assumed 

uniform, but it is determined by the initial V-γ primary curve, without considering 

shear-flexure interaction effect. 

a) b) 
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After having established the distribution of GA along the R/C member at each 

step of the analysis, the coefficients of the flexibility matrix of the shear sub-

element are given by Eq. 8, determined by the principle of virtual work. 

 
1sh As As Bs Bs

ij

A M B

a a a a
f

G A L G A L G A L

 
  

  
 (i,j=1,2) (8) 

2.4 Bond-slip sub-element 

The bond-slip sub-element accounts for the fixed-end rotations which arise at 

the interfaces of adjacent R/C members due to bond deterioration and the ensuing 

slippage of the reinforcement anchorage in the joint regions. The proposed model 

consists of two concentrated rotational springs located at the member-ends; the 

two (uncoupled) springs are connected by an infinitely rigid bar (Fig. 1e). Follow-

ing this formulation, the coefficients of the bond-slip flexibility matrix F
sl
 are giv-

en by Eq. 9, where fA
sl
 and fB

sl
 are the current tangent flexibilities of the concen-

trated rotational springs at the ends A and B respectively. These flexibilities 

depend on the moment - fixed end rotation (M-θslip) envelope curve and the model 

used to represent hysteretic behaviour of each rotational spring. 

 11
sl sl

A
f f ; 22

sl sl

B
f f ; 12 21 0sl sl

f f   (9) 
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Fig. 8 (a) Reinforcing bar with 90

o
 hook embedded in concrete. (b) Steel stress distribution. 
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The M-θslip skeleton curve is derived on the basis of a simplified procedure [20] 

assuming uniform bond stress along different segments of the anchored rebar (Fig. 

8). These segments are the elastic region Le, the strain-hardening region Lsh and 

the pullout cone region Lpc. The average elastic bond strength τbe according to ACI 

408 [21] is adopted here for the elastic region, while the frictional bond τbf accord-

ing to the CEB Model Code [22] is assumed to apply within the strain-hardening 

region. In the pullout cone region, it is assumed that the acting bond is negligible. 

For various levels of the applied end moment and using the results of M-φ 

analysis, the stress σs and strain εs of the reinforcing bar at the loaded end are first 

determined. Then, from equilibrium and applying the assumed bond distribution, 

variation of reinforcing bar stress σs(x) along the embedment length is defined as 

shown in Fig. 8b, where σy is the yield strength of steel and σh is the stress at the 

end of the straight part of the rebar anchorage. Then, by assigning an appropriate 

constitutive material law for steel [23], strain distribution εs(x) is determined, as 

shown in Fig. 8c, where εy and εsh are the steel strains at the onset of yielding and 

strain hardening, respectively, and εh is the steel strain at the end of the straight 

part of the anchorage. It is important to note that post-yield nonlinearity of the ma-

terial constitutive law, i.e. strain hardening, should be taken into account because 

it affects significantly the final results [11]. 
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Fig. 9 M-θslip hysteretic model 

 

Once εs(x) is determined, slip of the reinforcement δslip can be calculated by in-

tegration along the anchorage length of the bar. In the case of hooked bars, local 

slip of the hook should be added. This can be evaluated by the force acting on the 

hook Ph=Ab∙σh, where Ab is the area of the anchored bar, and an appropriate hook 

force vs. hook slip constitutive relationship [24]. 

Upon determination of δslip, the respective fixed-end rotation can be calculated 

by Eq. 10, where (d-xc) is the distance between the bar and the neutral axis. The 

envelope M-θslip curve constructed by the various points of the afore-described 

methodology is then idealized by a bilinear relationship for analysis purposes. 
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After establishing the envelope curve, bond-slip hysteretic behaviour (Fig. 9) is 

determined by adopting the respective phenomenological model of Saatcioglu and 

Alsiwat [25]. Additional features have been introduced by the writers to prevent 

numerical instabilities resulting in the implementation of the specific model in the 

framework of nonlinear analysis. 

In R/C structures with substandard detailing, anchorage-bond failures cannot be 

precluded. In case of straight anchorages, bond failure takes place when the an-

chorage length demand Ldem reaches the available straight embedment length 

Lstraight. Hence, Eq. (11) holds, where σsb is the bar stress at anchorage failure and 

db represents bar diameter. If σsb exceeds steel stress corresponding to flexural 

failure, then bond is not the critical mode of failure for the examined anchorage. 
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In Eq. 11, τbe’ is a uniform bond strength higher than τbe in order to consider the 

fact that for very short embedment lengths, where bond failure takes place for 

σs<σy, experimental evidence [21] shows that uniform bond strength τbe underes-

timates significantly the available anchorage capacity. To avoid over-conservative 

solutions, it is proposed herein that τbe’ is taken by linear interpolation for Lstraight 

between τbe corresponding to Ly=σy·db/(4∙ τbe) and the ultimate local bond capacity 

τbu [22] corresponding typically to anchorage length equal to 5db. 

In the case of deficient end hooks, anchorage failure may be assumed to devel-

op when the force acting on the hook reaches ultimate hook capacity Phu. By equi-

librium, Eq. 12 holds for determining σsb, where Lsh=(σsb-σy) ·db/(4∙ τbf) and 

Ld=(Lstraight-Lpc-Lsh). 
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3 Numerical implementation 

The finite element model, described above, requires additional modifications to 

the nonlinear analysis solution algorithms in order to be implemented with con-

sistency. It is known that during nonlinear analysis the following equation is 

solved in incremental form. 

 K U F     (13) 

Where K is the overall tangent stiffness matrix of the structure, ΔU is the vec-

tor of unknown nodal displacement increments and ΔF is the vector of the applied 

external load increments. The element stiffness matrices Ke are first calculated at 

the element level and later assembled into K.  

In the case of dynamic analysis, the equivalent dynamic stiffness and external 

load matrices must be formed. Herein, the solution of the incremental system is 

carried out using the unconditionally stable constant-average acceleration New-

mark-Beta algorithm [26]. Viscous damping matrix is calculated by assigning the 

Rayleigh damping model with circular frequencies corresponding to the first and 

second mode of vibration. 

The solution is performed assuming that the properties of the structure do not 

change during the analysis step. Since the stiffness of some elements is likely to 

change during the step t, the new configuration at t+Δt may not satisfy equilibri-

um. If ΔFln is the force increment vector arising from the assumption of constant 

stiffness during Δt and ΔFnl is the force increment vector determined by the ele-

ment nonlinear hysteretic laws, then an unbalanced force vector ΔFub arises, given 

by the following equation 

 ln nub l
F F F      (14) 

Typically, in the nonlinear analysis scheme, this issue is resolved by applying 

the one step unbalanced force correction method [27]. According to this tech-

nique, the unbalanced force vector is subtracted from the right part of Eq. (13) at 

the next time step of analysis. Despite the fact that this procedure minimizes com-

putational effort in nonlinear analysis, it cannot be applied with consistency for fi-

nite elements composed by different sub-elements connected in series like the one 

presented in this study. 

Figure 10 presents determination of unbalanced forces produced by two differ-

ent hysteretic laws (F-v1 and F-v2), which are deemed coupled in series. The two 

hysteretic relationships have different elastic (kT1 and kT2) and post-elastic stiff-

ness (r1·kT1 and r2·kT2). It can be easily extracted that for the same force increment 

ΔFln the restoring force increments ΔFnl1 and ΔFnl2 and consequently unbalanced 

forces ΔFub1 and ΔFub2 become different, resulting in loss of member equilibrium. 

To overcome this problem, the ‘event to event’ solution strategy [28] is adopted 

herein. This method is computationally effective when multilinear models are ap-
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plied to capture hysteretic response. In accordance with this procedure, the nonlin-

ear response of the structure is subdivided into subsequent events, which mark the 

change of stiffness of the entire structure. Between these events, linear behaviour 

is considered. Hence, each analysis step is divided (when required) into sufficient 

number of sub-steps, until no event takes place during the last sub-step. For the fi-

nite element developed herein, as an event is prescribed every change in stiffness 

of all hysteretic responses of all three sub-elements of each beam-column model. 
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Fig. 10 Unbalanced forces for two hysteretic responses coupled in series 

 

If the incremental load vector ΔF yields the deformation increment Δvmn for the 

hysteretic response n of the element m, assuming constant stiffness, then the im-

mediate next event force scale factor λmn corresponding to this hysteretic response 

is determined by  

 min 1, mne mn

mn

mn

v v

v


 
  

 

 (15) 

In Eq. (15), vmne is the deformation marking immediate next event and vmn is 

the respective deformation at the beginning of the loading step. It is clear, that the 

immediate next event for the entire structure will correspond to the minimum val-

ue λmin of all λmn. After calculating λmin, the solution algorithm implemented to 

each nonlinear analysis step is presented in Fig. 11. 

 



16  

 Determine ΔF 

Solve for ΔF and 
Calculate λmin 

λmin<1? 

Update hysteretic 
responses 

 

Move on to next 
load step 

 

NO YES 

Solve for λmin·ΔF 

Update hysteretic 
responses 

 
Set 

ΔF=(1-λmin)·ΔF 

 
 

Fig. 11 Event to event solution algorithm 

In addition to the above, following the procedure proposed in this study for de-

termining tangent shear stiffness GAeff after flexural yielding when accounting for 

shear-flexure interaction effect, it can be inferred by Eq. (7), that GAeff becomes a 

function of the element shear force increment ΔV. But if it is to be applied in the 

analytical procedure, ΔV will be influenced by GAeff as well, since the latter will 

affect the flexibility matrix of the element. To resolve this issue, an iterative ana-

lytical scheme, applied in the respective load step of the nonlinear analysis, is pro-

posed herein, as detailed in the algorithm shown in Fig. 12. 

Applying this procedure, it was found that numerical convergence is very fast. 

The number of iterations may increase as the influence of shear deformations on 

element flexibility enhances, but the additional computational cost required in this 

case is justified by the significance of calculating accurately shear response. 
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 Determine ΔF 

Is for each inelastic zone 
|GAeff-GAeff,prev|<tol ? NO 

YES 

For each element calculate Ke and 
assemble into K 

Solve system and calculate for each 
inelastic zone ΔV, μφ and ΔdegVc 

For each element inelastic zone 
calculate GAeff by Eq. (7) 

For each element inelastic zone:  
Set GAeff,prev=GAeff and 

Update current Vc 

Update all element hysteretic responses and 
move on to the next load step 

For each inelastic zone set 
GAeff,prev=GAeff 

 
Fig. 12 Shear-flexure interaction implementation algorithm 

 

4 Validation of the proposed model 

The numerical model described above is implemented in the general finite element 

code IDARC2D developed at the State University of New York at Buffalo [29]. 

Then, it is validated against experimental results coming from well documented 

R/C column and frame specimens with substandard detailing.  

In addition, parametric analyses reveal the necessity of incorporating each de-

formation mechanism in seismic assessment of ‘old type’ R/C structures in the 

linear and nonlinear range of response. To this purpose, each frame specimen is 

examined using four different beam-column models. The F model simulates only 

member flexural response. The FB model incorporates flexural and anchorage 

bond-slip response, while the FS one applies flexural and shear flexibility. Finally, 

the FSB model, which is the one proposed in this study, simulates all deformation 

mechanisms, as well as their interaction. 

4.1 R/C beam specimen R5 by Ma et al. (1976) 

Ma et al. [30] tested nine cantilever beams, representing half scale models of 

the lower story of a 20-storey ductile moment-resisting R/C office building. Here-

in, the specimen designated as R5 is examined. Shear span ratio was equal to 2.41. 

Longitudinal reinforcement consisted of 4 top and 4 bottom 19mm bars, while 

volumetric ratio of transverse reinforcement was set equal to 0.31%. Concrete 

strength was 31.5MPa and yield strengths of longitudinal and transverse rein-
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forcement were 452MPa and 413MPa, respectively. The specimen was subjected 

to a cyclic concentrated load at the free end.  

Figure 13 presents lateral load vs. lateral displacement response as derived by 

the proposed model and as recorded experimentally. It can be seen that the analyt-

ical model reproduces sufficiently the experimental initial stiffness, lateral load 

capacity, and unloading stiffness. Reloading stiffness is predicted well during the 

early phases of inelastic response. However, as displacement demand increases, 

the pinching effect is underestimated leading to a small overestimation of the en-

ergy dissipation capacity of the member. It is pointed out that the displacement 

level at which shear failure is predicted by the analytical model correlates suffi-

ciently well with the onset of serious shear strength degradation in the experi-

mental response (μΔ≈4). 
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Fig. 13 Lateral load vs. total displacement response for specimen R5 (Ma et al. 1976) 

 

Figure 14a compares shear strength predicted by Priestley’s model [15] and 

acting shear force as a function of the end section curvature demand. Initially, 

shear capacity exceeds significantly shear demand. However, due to inelastic cur-

vature development, at the end of the analysis shear demand reaches shear capaci-

ty marking the onset of stirrup yielding. Maximum curvature demand is well pre-

dicted (experiment 0.11rad/m and prediction 0.12rad/m). 

Figure 14b shows moment vs. fixed-end rotation hysteretic response caused by 

anchorage slippage as derived by the analytical model described in this study. 

Maximum rotation is predicted equal to 0.007rad in both directions.  

Figure 14c illustrates shear hysteretic response inside the plastic hinge region 

as predicted by the analytical model. It is obvious that this relationship is charac-

terised by intense pinching effect following the hysteretic model proposed in [18]. 

The predicted behaviour matches adequately the experimental response with slight 

underestimation of the observed pinching effect [30]. Shear deformation at onset 

of shear failure is calculated equal to 0.043 and is in close agreement with the ex-

perimental evidence [30]. 

In Fig. 14c, V-γ envelope without shear-flexure interaction is also included. At 

the beginning, the initial envelope determines shear hysteretic response. Neverthe-

less, as soon as μφ>3, shear deformations increase more rapidly, due to interaction 

with flexure, and shear hysteresis separates from the initial skeleton curve. After 



19 

stirrup yielding, occurring for γ≈4‰, shear rigidity becomes close to zero and V-γ 

skeleton curve including shear-flexure interaction continues in parallel with the in-

itial envelope. 

In Fig. 14d, variation of displacement components with μΔ is presented as de-

rived by the proposed model and experimental recordings. It can be seen that the 

analytical and experimental displacement patterns are in close agreement. Alt-

hough shear demand after flexural yielding remains almost constant, analytically 

derived shear displacement increases significantly due to modelling interaction 

with flexure and subsequent stirrup yielding. 
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Fig. 14 (a) Shear demand and capacity as a function of the end section curvature demand. (b) 

Analytical M-θslip hysteresis. (c) Analytical V-γ relationship inside the plastic hinge region.  (d) 

Variation of member displacement components with μΔ demand as predicted by the analytical 

model and measured experimentally 

 

4.2 R/C bridge pier specimen HS2 by Ranzo and Priestley (2001) 

Ranzo and Priestley [31] tested three thin-walled circular hollow columns. 

Herein, the specimen designated as HS2 is examined, which was designed to fail 

in shear after yielding in flexure. Its outer diameter was 1524mm and wall thick-

ness 139mm. The ratio of the column shear span to the section outer diameter was 

equal to 2.5. The normalised applied compressive axial load was 0.05. Longitudi-

nal reinforcement ratio was 2.3% and the volumetric ratio of transverse reinforce-

ment 0.35%. Concrete strength was 40MPa and yield strengths of longitudinal and 

transverse reinforcement were 450MPa and 635MPa, respectively. Lateral actions 

b) 

c) 

d) 

μΔ μΔ 

a) 
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were applied in the push and pull direction of the column for increasing levels of 

displacement ductility μΔ with three repeated cycles at each μΔ.  

Figure 15a shows the experimental and analytical lateral load vs. total dis-

placement response of the specimen. The analytical model captures accurately the 

initial stiffness, lateral strength and hysteretic response of the R/C member. More 

importantly, the proposed model is able to predict reasonably well the tip dis-

placement at which onset of shear failure is developed. 
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Fig. 15 (a) Specimen HS2 (Ranzo & Priestley 2001). (a) Lateral load vs. total displacement re-

sponse. (b) Shear demand and capacity as a function of the end section curvature demand. (c) 

Shear strain distribution for increasing displacement ductility demands 

 

This can be seen also in Fig. 15b, which compares shear strength given by 

Priestley’s model and acting shear force as a function of the end section curvature 

demand. Initially, shear capacity exceeds significantly shear demand. However, 

due to inelastic curvature development, at the end of the analysis shear demand 

reaches shear capacity marking the onset of stirrup yielding. It is worth reporting 

that maximum curvatures predicted by the analytical model (0.019rad/m and 

0.025rad/m in positive and negative bending respectively) correlate sufficiently 

with the measured ones inside the plastic hinge region (approx. 0.02rad/m) [31]. 

Fig. 15c illustrates shear strain distribution of the R/C column as predicted by 

the proposed shear sub-element for various levels of increasing μΔ. For μΔ=1.0, 

shear strains remain constant along the height of the member. After μΔ≥1.5, a dou-

ble effect is noted: First, shear strains in the inelastic zone increase more rapidly 

c) μΔ b) 

a) 
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and tend to differ substantially from the ones in the intermediate part of the ele-

ment due to shear-flexure interaction effect and consequent yielding of transverse 

reinforcement. Second, the length of the inelastic zone increases following expan-

sion of flexural yielding towards the mid-span. By this combined effect, gradual 

spread of inelastic shear deformations is appropriately captured by the proposed 

model. At the onset of shear failure, occurring inside the plastic hinge, shear de-

formations are predicted equal to 0.3% and 1.3% outside and inside the inelastic 

zone, respectively. Both of these values are in good agreement with the experi-

mental results (approx. 0.3% and 1.2% respectively) [31]. 

4.3 R/C frame specimen by Duong et al. (2007) 

This one bay, two storeys frame (Fig. 16a) was tested by Duong et al. [32] at 

University of Toronto. The frame was subjected to a single cycle loading. During 

the experiment, a lateral load was applied to the second storey beam in a dis-

placement controlled mode, while two constant axial loads were applied to simu-

late the axial load effects of higher stories (Fig. 16a). During loading sequence, the 

two beams of the frame experienced significant shear damage (close to shear fail-

ure) following flexural yielding at their ends [32]. 
The finite element model applied herein for the inelastic cyclic static analysis 

of the frame is also shown in Fig. 16a. It consists of 4 column elements and 2 

beam elements (one for each column and beam). Hence, the number of finite ele-

ments applied is minimum assuring high computational efficiency to the numeri-

cal model. The columns are supposed to be fixed at the foundation. Rigid arms are 

employed to model the joints of the frame. 

Figures 16b, 16c compare the experimental and analytical top displacement and 

base shear responses obtained by the F (flexure), FB (flexure-bond) and FSB 

(flexure-shear-bond) finite element models. As shown in Fig. 16b, the FSB model 

follows closely the experimental behaviour in the whole range of response. Slight 

underestimation of the frame lateral stiffness takes place at the early stages of 

loading. This is due to the fact that pre-cracking flexural response is not modelled 

in this study. However, the following gradual decrease of frame stiffness is suffi-

ciently captured by the analytical model. 
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Fig. 16 (a) Duong et al. frame specimen layout and applied finite element model. (b) Base 

shear vs. top displacement prediction by FSB model. (c) Base shear vs. top displacement predic-

tions by F and FB models. (d) Pushover curves from different finite element models. (e) First 

storey beam V-γ response inside plastic hinges. (f) First storey beam V-γ response outside plastic 

hinges
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At maximum displacement, the analytical model slightly overestimates load 

capacity (having a calculated-to-observed ratio of 1.10 in both directions). Fur-

thermore, the analytical model predicts correctly that both beams develop shear 

failures after yielding in flexure. 

On the other hand, the F and FB models considerably overestimate the stiffness 

and load carrying capacity and consequently the ability of the examined frame to 

dissipate hysteretic energy. For the F model, the load carrying capacity calculated-

to-observed ratio is 1.30 and 1.23 in the positive and negative direction respective-

ly. The prediction is improved with inclusion of anchorage slip effect in the FB 

model and the aforementioned ratio becomes 1.19 and 1.22 in the positive and 

negative direction.  

Figure 16d presents the pushover curves obtained by the different finite ele-

ment models. It can be seen that the F and FB models overestimate stiffness, load 

and displacement capacity. At the end of the analysis, the F and FB models over-

estimate load carrying capacity by 38% and 37% respectively. The same models 

overestimate displacement capacity by 52% and 358% accordingly. Both models 

erroneously predict flexural failure at the base of the frame. 

The FSB model predicts correctly that shear failure is developed after yielding 

in flexure. However, inclusion of shear-flexure interaction effect and degradation 

of shear strength with curvature ductility demand affects grossly the displacement 

capacity predicted by this analytical model. When shear-flexure interaction is con-

sidered, ultimate displacement capacity is found 46mm which is very close to the 

44.7mm recorded experimentally. On the other hand, if shear-flexure interaction is 

ignored, displacement capacity is overestimated by 228%. 

Finally, Figs 16e and 16f present shear force – shear strain hysteresis predicted 

by the FSB analytical model inside and outside the plastic hinge regions for the 1st 

storey beam of the frame under cyclic loading. It can be seen that, due to shear-

flexure interaction effect and consequent stirrup yielding, shear strains are predict-

ed significantly higher inside than outside plastic hinges (1.26% instead of 

0.53%), while shear force remains uniform along this RC member. 

4.4 R/C frame specimen by Elwoood and Moehle (2008) 

This half-scale frame specimen was constructed and tested on the shaking table at 

the University of California, Berkeley [6]. It comprised three columns intercon-

nected at the top by a 1.5m wide beam and supported at the bottom on footings 

(Fig. 17a). The columns supported a total mass of 31t. 

The central column was constructed with light transverse reinforcement having 

90
o
 hooks. The outside columns were detailed with closely spaced spiral rein-

forcement to ensure ductile response and to provide support for gravity loads after 

shear failure of the central column. 

The specimen was subjected to one horizontal component of the ground motion 

recorded at Viña del Mar during the 1985 Chile earthquake (SE32 component). 

The normalized central column axial load was 0.10. During testing, the central 
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column experienced a loss of lateral load capacity, due to apparent shear failure at 

its top, during a negative displacement cycle at approximately 17.6sec [6]. 

The finite element model applied herein for the inelastic time history analysis 

of the frame is shown in Fig. 17a. It consists of 3 column elements and 2 beam el-

ements (one for each member). Hence, the number of finite elements required is 

minimum assuring minimum computational cost.  

The columns are supposed to be fixed at the foundation. Rigid arms are em-

ployed to model the joints of the frame. Rayleigh model is used for viscous damp-

ing. The equivalent viscous damping is set equal to 2% of the critical damping for 

the fundamental vibration mode. The mass is assumed lumped at the top of the 

frame. In the following, for the calculation of the central column shear strength, 

the contribution of the stirrups is reduced by half to take into account their inade-

quate anchorage (90
o
 hooks).  

Figures 17b, 17c compare the experimental and the analytical top displacement 

time histories between t=10sec and onset of shear failure as predicted by the FSB 

and F analytical models respectively. The first 10 seconds are omitted so that the 

critical duration of response can be more clearly observed [6]. It is evident that the 

FSB analytical model predicts closely the experimental response up to onset of 

shear failure of the central column. On the other hand, when only flexural defor-

mations are considered (which is the typical case for conventional inelastic anal-

yses of R/C structures) the analysis is driven to severely erroneous results. 

In addition, Fig. 17d presents the comparison between the experimental and an-

alytical frame hysteresis up to onset of shear failure as predicted by the FSB mod-

el. It is apparent that the model captures satisfactorily initial frame stiffness, max-

imum shear capacity and displacement corresponding to onset of shear failure. 

Finally, Fig. 17e compares the pushover curves obtained by the four different 

versions of the beam-column model and the experimental response. The compari-

son is shown in the negative displacement direction because in this direction shear 

failure was detected.  

The F model significantly overestimates initial frame stiffness and underestimates 

displacement at failure. In particular, this model predicts erroneously flexural fail-

ure at the base of the central column at a 20mm lateral displacement.  

The FS model predicts correctly the development of shear failure at the top of 

central column. However, it overestimates initial lateral stiffness and underesti-

mates displacement capacity at onset of shear failure (27mm instead of 51mm).  

The FB model provides better estimations than the two previous models. How-

ever, it overestimates frame stiffness after base shear exceeds 150kN (onset of 

shear cracking) and underestimates considerably displacement at onset of lateral 

failure (37mm instead of 51mm). Moreover, a flexural failure at the base of the 

central column is falsely predicted. 

The best estimations are provided by the FSB model which incorporates all 

types of deformations and represents the proposal of this study. Envelope stiffness 

is closely captured until maximum response. Additionally, this model predicts cor-

rectly a shear failure at the top of the central column at a 47mm displacement, 

which is quite close to the experimental value. 
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Fig. 17 (a) Elwood & Moehle frame specimen layout and applied finite element model. (b) Dis-

placement time history predicted by FSB model. (c) Displacement time history predicted by F 

model. (d) Frame hysteresis predicted by FSB model. (e) Pushover curves from F, FB, FS and 

FSB finite element models and comparison with the experimental response 
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4.5 R/C frame specimen by El-Attar et al. (1997) 

A 1/6 scale 2-storey one-bay by one-bay reinforced concrete building (Fig. 18) 

was tested at the Cornell University [33]. The structure was designed solely for 

gravity loads, without regard to any kind of lateral loads. Model structure concrete 

strength was 32.3MPa and steel reinforcement yield capacity 414MPa. 

The model structure was tested using the time-scaled Taft 1952 S69E earth-

quake with peak ground acceleration set in increasingly higher values. After run-

ning Taft 0.45g, wide, deep cracks were observed in the beams around the loca-

tions of discontinuous positive beam reinforcement (at the joint panels), indicating 

bond failure and pending pullout of these bars [33]. 

Figure 19 compares frame response histories derived by the FSB analytical 

model and experimental recordings for the 0.36g peak ground acceleration. It is 

evident that the proposed model follows closely the experimental response after 

the first 1.5sec. Small differentiations are justifiable considering the large scale 

(1/6) of the examined specimen. 
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Fig. 18 (a) El-Attar et al. (1997) frame specimen configuration (values outside and inside pa-

rentheses correspond to prototype and model structure respectively) 
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Fig. 19 (a) Comparison of El-Attar et al. (1997) frame specimen time history responses from the 

experimental recordings and analytical model FSB for Taft 0.36g acceleration record. (a) 2nd 

storey total displacement. c) 1st storey total displacement 

 

The FSB analytical model predicts the anchorage failure of the positive rein-
forcement at the left end of the first storey beam for the 0.45g Taft earthquake mo-
tion. This is clear by Fig. 20 presenting hysteretic M-φ and Μ-θslip responses of 
this end. It can be seen that while flexural response remains at the reloading stage, 
M-θslip concludes the reloading branch, moves on to the positive envelope curve 
and finally drives to failure, exceeding bottom anchorage moment capacity. 
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Fig. 20 Hysteretic responses of left end of the 1st storey beam of the El-Attar et al. (1997) frame 

specimen predicted by the FSB analytical model for the 0.45g Taft acceleration record. (a) M-φ. 

(b) M-θslip 

 

5 Conclusions 

A new beam-column model is introduced for seismic damage analysis of R/C 

frame structures with substandard detailing. This finite element models inelastic 

flexural, shear, and anchorage slip deformations, as well as their interaction, in an 

explicit manner. Hence, it is capable of simulating with accuracy the seismic re-

sponse of R/C frames with inadequate detailing, where shear flexibility and fixed 

end rotations caused by anchorage slip usually play a vital role in their response. 

Additionally, it is able to predict, in the general case, brittle types of failure that 

cannot be precluded in structures, which do not conform to modern seismic guide-

lines. The numerical model is implemented in a general finite element code and it 

c

) 

b) 

a) b) 



28  

is validated against experimental results from well-documented column and frame 

specimens with brittle detailing. It is concluded that the proposed model provides 

accurate and reliable predictions of the frame specimen responses. 
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