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A GEOMETRIC CHARACTERISATION OF
THE BLOCKS OF THE BRAUER ALGEBRA

ANTON COX AND MAUD DE VISSCHERAND PAUL MARTIN

ABSTRACT

We give a geometric description of the blocks of the Braugelada in characteristic zero as orbits of the Weyl group péty
Dn. We show how the corresponding affine Weyl group controlshleek decomposition of the Brauer algebra in positive
characteristic, with orbits corresponding to unions otk

1. Introduction

Classical Schur-Weyl duality relates the representati@oty of the symmetric and general linear
groups by realising each as the centraliser algebra of tti@naaf the other on a certain tensor space.
The Brauer algebr8,(d) was introduced to provide a corresponding duality for thesiectic and
orthogonal groupsHra37]. The abstrack-algebra is defined for eaah € k, however for Brauer the
key case ik = C with & integral, when the action d,(5) on (C!®)*" can be identified with the
centraliser algebra for the corresponding group action @, Q) for & positive, and with Sp-3,C)
for & negative). In characteristig, the natural algebra in correspondence to the centraligebia for
d negative is the symplectic Schur algebPoh87, Dot98, Oeh01, DDHO08].

For|d| < n the centraliser algebra is a proper quotient of the Brawgatah. Thus, despite the fact
that the symplectic and orthogonal groups, and hence theadiser, are semisimple ové}, the Brauer
algebra can have a non-trivial cohomological structureichsases.

Brown [Bro55] showed that the Brauer algebra is semisimple ollefor generic values ob.
Wenzl proved thaB,(9) is semisimple ovef for all non-integerd [Wen88]. It was not until very
recently that any progress was made in positive charatitesnecessary and sufficient condition for
semisimplicity (valid over an arbitrary field) was given byilRRui05]. The blocks were determined in
characteristic zerdJDM 05] by the authors.

The block result uses the theory of towers of recollememhff@M PX06], and builds on work by
Doran, Hanlon and Wale®WH99]. The approach was combinatorial, using the language dtipais
and tableaux, and depended also on a careful analysis oftiba af the symmetric groul,, realised
as a subalgebra of the Brauer algebra. However, we speduta{€DM 05] that there could be an
alcove geometric version, in the language of algebraic héoty Jan03] (despite the absence of an
obvious Lie-theoretic context) . This should replace thebimatorics of partitions by the action of a
suitable reflection group on a weight space, so that the blogkrespond to orbits under this action. In
this paper we will give such a geometric description of theck result.

A priori there is no specific evidence from algebraic Lie ttygo suggest that such a reflection group
action will exist (beyond certain similarities with the fiion algebra case, where there is a reflection
group of infinite typeA [MW98]). As already noted, the obvious link to Lie theory (via theatity with
symplectic and orthogonal groups) in characteristic zefg corresponds to a semisimple quotient.

Remarkably however, we will show that there is a Weyl gravipf type D which does control the
representation theory. To obtain a natural action of thasigrwe will find that it is easier to work with
the transpose of the usual partition notation. (This is nésoent of the relation under Ringel duality
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2 ANTON COX AND MAUD DE VISSCHER AND PAUL MARTIN

between the combinatorics of the symmetric and generahdigeoups, although we do not have a
candidate for a corresponding dual object in this case.)

Our proof of the geometric block result in characteristis @mtirely combinatorial, as we show that
the action oW corresponds to the combinatorial description of block<IBM 05]. However, having
done this, it is natural to consider extending these retmlisbitrary fields.

As the algebras and (cell) modules under considerationlthe defined ‘integrally’ (oveZ[d]), one
might hope that some aspects of the characteristic 0 thexrlg de translated to other characteristics
by a reduction mogb argument. If this were the case then, for consistency betwdd#terent values of
o which are congruent module, we might expect that the role of the Weyl group would be regdta
by the corresponding affine Weyl group, so that blocks ageaiwithin orbits.

We will extend certain basic results iBYVH99] to arbitrary characteristic, and then show that orbits
of the affine Weyl group do indeed correspond to (possibly-tizial) unions of blocks of the Brauer
algebra.

In Section 2 we review some basic properties of the Brauetaly following CDM05]. Sections 3
and 5 review the Weyl and affine Weyl groups of typeand give a combinatorial description of their
orbits on a weight space. Using this description we provedatin 4 that we can restate the block
result from CDM05] using Weyl group orbits. Section 6 generalises certaimaggntation theoretic
results from PWH99] and [CDM 05] to positive characteristic, which are then used to givecessary
condition for two weights to lie in the same block in termsiug affine Weyl group.

In Section 7 we describe how abacus notati@ii§1] can be applied to the Brauer algebra, and use
this to show that the orbits of the affine Weyl group do not givaufficient condition for two weights
to lie in the same block.

2. The Brauer algebra

We begin with a very brief review of the basic theory of Braagebras; details can be found in
[CDMO5]. Fix a field k of characteristiqp > 0, and some € k. Forn € N the Brauer algebrB,(9)
can be defined in terms of a basis of partition§hf...,n,1,...,n} into pairs. To determine the product
AB of two basis elements, represent each by a grapmagoits, and identify the vertices. .., n of
A with the vertices 1 ..n of B respectively. The graph thus obtained may contain some augngay)
of closed loops; the produéB is then defined to bé!'C, whereC is the basis element corresponding
to the graph arising after these closed loops are removadrfitg intermediate vertices in connected
components).

Usually we represent basis elements graphically by a diagrigh n northern nodes numbered 1rio
from left to right, anch southern nodes numberg&do n from left to right, where each node is connected
to precisely one other by a line. Edges joining northern sddesouthern nodes of a diagram are called
propagating lines, the remainder are called northern ahson arcs. An example of the product of two
diagrams is given in Figure 1.

FIGURE 1. The product of two diagrams B, (90).

With this convention, and assuming tliag 0, we have for each> 2 an idempoterd, as illustrated
in Figure 2. We will discuss the cage 0 in what follows; details of the modifications required when
0 = 0 can be found inCDM 05, Section 8.
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FIGURE 2. The elementg.

The idempotents, induce algebra isomorphisms
P, : Bn_2(0) — enBn(d)en (2.2)

which take a diagram iB,,_, to the diagram irB, obtained by adding an extra northern and southern
arc to the right-hand end. From this we obtain, followi@y £80], an exact localisation functor

Fn : Bn(0)-mod— Bp_2(8)-mod
M +— enM

and a right exact globalisation functor

Gp : Bp(9)-mod— By;2(d)-mod
M — Bn; 2602 ®B, M.

Note thatF,2Gn(M) = M for all M € By,-mod, and henc&;, is a full embedding. As
Bn(8)/Bn(8)enBn(5) = K (2.2)

the group algebra of the symmetric grouproaymbols, it follows from (5re80] and (2.1) that when
0 # 0 the simpleB,-modules are indexed by the set

An=A"UAn_2=A"UA"2...AMN (2.3)

whereA" denotes an indexing set for the simgkg,-modules, and mig- 0 or 1 depending on the parity
of n. (Whend = 0 a slight modification of this construction is needed; $¢eJ6] or [CDM 05, Section
8].) If & # 0 and eitheip =0 or p > nthen the sef\" corresponds to the set of partitionsmive write

A Enif A is such a partition.

If & # 0 andp =0 or p > nthen the algebr8,(d) is quasihereditary — in general however it is
only cellular [GL96]. In all cases however we can explicitly construct a stadiatl moduleAn(A)
for each partitiom of mwherem < n with m— n even (by arguing as irqWH99, Section 2]). When
A is a partition ofn the moduledn(A) is just the lift of the Specht modul® from kX, via (2.2). (An
explicit construction of Specht modules can be foundiK§1]; we note here that they can be defined
overZ.) In the quasihereditary case witha partition ofn— 2t we obtain the standard modulg(A)
as

An()\ ) = Gn_2Gn_4---Gn_2thn_2t (/\ )

It is easy to give an explicit basis for this module (sB¥{H99]) and check that it makes sense even

overZ[d] with & an indeterminate. The general cell module construction fbéows via base change.
In the quasihereditary case, the hebg&\) of the standard modules, (A ) are simple, and provide

a full set of simpleB,(d)-modules. In the general cellular case, a proper subseedfeéhds of the cell

modules is sufficient to provide such a full set of simplese Kby result which we will need is that in

all cases, the blocks of the algebra correspond to the dguv@ classes of simple modules generated

by the relation of occurring in the same cell or standard nefBL 96, (3.9) Remarks].
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3. Orbits of weights for the Weyl group of typz

We review some basic results about the Weyl group of ®pdollowing [Bou68, Plate IV]. Let
{€1,...,&n} be a set of formal symbols. We set

n
X (=Xn) = Pzs
i=1
which will play the role of a weight lattice. We denote an edarh

A =2A1&1+ -+ Anén
in X by any tuple of the forn{Ay,...,Am), with m < n, whereA; = 0 fori > m. The set of dominant
weights is given by
XT={A eX:A=A&+ - An&nWith Ay > --- > Aq > 0}
Define an inner product o = X ®7 R by setting
(&, €j) = &
and extending by linearity.
Consider the root system of tyjig,:

O={+(g—¢j),t(6+¢):1<i<j<n}
For each roo € ® we define a corresponding reflectignon E by

sg(A)=A—(A,B)B 3.1)
forall A € E, and le\ be the group generated by these reflectionsdkbZ and defing (= p(d)) € E
by

We consider the dot action @ on E given by
WA =wWA+p)—p

for all we W and A < E. (Note that this preserves the latti¥e) This is the action which we will
consider henceforth.

It will be convenient to have an explicit description of thaet dction ofwW on X. Let 2, denote the
group of permutations af = {1,...,n}. GivenA = (A1,A2,...,An) @andu = (U1, Uz, ..., ) in X, we
haveu = w.A for somew € W if and only if

i+ pi = 0 (1) (Ar(iy + Prciy)
forall1 <i<nandsomeatc Z,ando : n — {£1} with

d(o) = {i:o(i) = -1}
even. (SeeBou68, 1V.4.8].) Thusu = w.A if and only if there existst € 2, such that forall I< i <n
we have either

Hi == Angiy — 11(i) (3.2)
or
[Ji+)\n(i)—i—n(i):5—2 (3.3)
and (3.3) occurs only for an even numbei .of
For example, iih=5 andA = (6,4,—2,3,5) thenu = (—4,9,5,5 — 3,4) is in the same orbit under
the dot action oW, takingm(1) = 3, (2) =5, n(3) = 2, (4) = 1, n(5) = 4, anda(i) = 1 fori odd
ando (i) = —1 fori even.
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We will also need to have a graphical representation of etésra X, generalising the usual partition
notation. We will represent any = (A4,...,An) € X by a sequence af rows of boxes, where row
contains all boxes to the left of columdpinclusive, together with a vertical bar between columnsd an
1. We set the content of a baxin row i and columnj to bec(g) =i — j. (This is not the usual choice
for partitions, for reasons which will become apparentrlatéor example, whem = 8 the element
(6,2,4,—3,1,—2) (and the content of its boxes) is illustrated in Figure 3.

3/2|1]o0]-1 —2|—3|—4|—5{

4
.5
.6543210|—11
7
8
9

7|6[5]4|
8
10/ 9|87
|11[10[ 9] 8

FIGURE 3. The elemen(6,2,4,—3,1,—2) whenn = 8.

WhenA is a partition we will usually omit the portion of the diagraathe left of the bar, and below
the final non-zero row, thus recovering the usual Young diangnotation for partitions.

If A = (A1,...,An) then the content(A); of the last box in row is —A; +i. Combining this with
(3.2) and (3.3) we obtain

PROPOSITION3.1. For any two elements andy in X there existav € W with y = w.A if and
only if there existst € X, ando : n — {£1} withd(o) even such that for all < i < n we have either

o(i)=1 and o(u) = c(A)m
or
o(i)=-1 and c(p)i+c(A)yi=2-20.

It is helpful when considering low rank examples in Lie thetwr use a graphical representation of
the action of a Weyl group. As our weight space is generalatar than two-dimensional, we can
rarely use such an approach directly. However, we can piillyaa limited version of this approach, by
considering various two-dimensional projections of théglelattice.

We can depict elements of the weight lattiéeby projecting into thej plane for various choices
of i < j. Each weightA is represented by the projected coordinate p&irA;), and each such pair
represents a fibre of weights, which may or may not include @gmyinant weights. For example,
the point(0,0) in the 1j plane represents precisely one dominant weight (the zeightyewhile the
(0,0) point in the 23 plane represents the set of dominant weight®,0,...,0). Clearly a necessary
condition for dominance is tha > A; > 0.

We will represent such projections in the natural two-digienal coordinate system, so that the set
of points representing at least one dominant weight coomspo those shaded in Figure 4. 8if= 2
then the example shown is the casel andj =5.)
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FIGURE 4. A projection onto théj plane.

It will be convenient to give an explicit description of thetian of s _¢; andsg 1, on a partitiond .
We have that

Sgi,gj./\ =A—Ai-Aj—i+]j)&—¢g)

and hence if = Aj —Aj —i+ | is positive (respectively negative) the effect of the ddtcacof sg ¢,
on A is to addr boxes to rowj (respectively row) and subtract boxes from rowi (respectively row
j). Similarly,

St A =A—(Ai+Aj—0+2—i—j)(&+¢)

and hence if = Aj+Aj —0+2—i— j is positive (respectively negative) the effect of the ddicarcof
Sg+¢; ONA is to remove (respectively addpoxes from each of rowisandj. In terms of our projection
onto theij plane these operations correspond to reflection about #teeddines in Figure 4 labelled
(ij) for s5—¢; and(ij) for s;.+¢;. Note that the position dfi j) depends o, but(ij) does not.

Various examples of reflections, and their effect on a dontirepresentative of each coordinate pair,
are given in Figures 5, 6, and 7. For each reflection indicateldminant weight is illustrated, together
with a shaded subcomposition corresponding to the imageabfweight under the reflection. Where
no shading is shown (as in Figure 5(a)) the image is the ergotitipn.

Note that some reflections may take a dominant weight to adooninant one, even if the associated
fibres both contain dominant weights. For example the casEgure 7(a) and (b) correspond to the
reflection of(3,3,3) to (1,3,1) and of (4,3,3) to (1,3,0). Also, some reflections may represent a
family of reflections of dominant weights, as in Figure 7{ehere there are three possible weights in
each fibre (corresponding to whether none, one or both ofdlkedomarked X are included).

4. The blocks of the Brauer algebra in characteristic zero

The main result in CDMO05] was the determination of the blocks Bf(d) whenk = C. In that
paper, the blocks were described by a combinatorial canddh partitions. We would like to have a
geometric formulation of this result. B ¢ Z thenB,(0) is semisimple Wen88], so we will assume
thatd € Z.
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FIGURE 5. Projections into th&2 plane withd = 2.
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FIGURE 6. Projections into th@3 plane withd = 2.

We will identify the simpleBn(d)-modules with weights ilX ™ using the correspondence
Aext) «— LA

whereAT denotes the conjugate partition &f(i.e. the one obtained by reversing the roles of rows
and columns in the usual Young diagram). Using this cornedpoce, we restate the main result of
[CDMO05] as follows. Given two partitionst C A we write A /i1 for the associated skew partition. We
say that a pair of weightd, u € X* is a d-balanced paifor just balanced paiif d is understood) if
and only if the boxes ok /(A Nu) (respectivelyu /(A N u)) can be paired up such that (i) the contents
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FIGURE 7. Projections into thé&3 plane withd = 2.

of the boxes in each pair sum ta-19, and (ii) if d is even and the boxes with Conteng and% are
configured as in Figure 8 then the number of rows in Figure & imeigven.

FIGURE 8. A potentially unbalanced configuration.

Noting that the definition of content given in Section 1 is ttamspose of the one used @M 05],
it is easy to see (simply by transposing everything) te&d 1 05] Corollary 6.7 becomes

THEOREM4.1. Suppose thdt= C andd € 7. Two simpleBn(5)-moduled (A7) andL(u™) are
in the same block if and only ¥ andu form a balanced pair.

(Note that Theorem 4.1 includes as a special case the sepfitsignresults overC in [Rui05].) We
now give the desired geometric formulation of Theorem 4.1.

THEOREM4.2. Suppose that= C andd ¢ 7. Two simpleBn(6)-moduled(AT) andL(u") are
in the same block if and only i € W- A

Proof. We will show that this description is equivalent to that give Theorem 4.1, by proceeding
in two stages. First we will show, using the action of the gatars ofW on X, that two partitions in
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the same orbit form a balanced pair. This implies that thekd@re unions dfV-orbits. Next we will
show that two partitions which form a balanced pair lie in $heneV-orbit.
Stage 1: The casen = 2 is an easy calculation. Far> 2, note that

Sei—&j = Sej+Se -+ +e

wherei # k # j, and soW is generated by reflections of the fos,;. Now consider the action of
such a generator on a weightin

Sovg A =A—(Ai+A—0+2—i—j)(&+g).

If Ai4+Aj—9d+2—i—j>0then this involves the removal of two rows of boxes with exgjve contents

—Ai+i+A+A —i—j-0+1,... - Ai+i+1 A +i
and
A+ jHA+A —i—j=0+1,..., A+ +1,-Aj+]
which simplify to
Aj—j—0+1...,—Ai+i+1 -A+i
and
Ai—i—=0+1,...,—Aj+j+1,-Aj+].

If we pair these two rows in reverse order, each pair of cdatemim to - 4. Note also that fod even,
the number of horizontal pairs of boxes of conteré and% is either unchanged or decreased by 2.
The argumentwhel —Aj —d+2—i— j < Ois similar (here we add paired boxes instead of removing
them).

Now take two partitions , u € X+ with u =w- A for somew € W. We need to show that they form a
balanced pair, i.e. that the boxesofA N u (respectivelyu /A N ) can be paired up in the appropriate
way. First observe that the set of contents of boxes/ih N and inp /A Ny are disjoint. To see this,
suppose that there is a bexn A /A Ny with the same content as a bgxin p/A N . Then these two
boxes must lie on the same diagonal. Assume, without losgeémlity, thate appears in an earlier
row thann. As n belongs tou ande is above and to the left of, we must have that is also inu (as
U is a partition). But ther belongs toA Ny which is a contradiction.

Let us concentrate on the actionwfon boxes either with a fixed conteansay or with the paired
content 1- 4 — c. Asw can be written as a product of the generators considereceatovill add and
remove pairs of boxes of these content, say

(1+ 1) + (24 T2) + ...+ (Tm+ T1)
—(01401) — (024 03) — ... — (0q + Tg)

for some boxes;, 1j, oj andoj with ¢(1j) =c=1- 6 —¢(tj) for 1 <i <mandc(gj) =c=1-06—
c(aj’) for 1 < j < g. Thus the number of boxes jm = w-A of contentc (resp. 1- d — ¢) minus the
number of boxes in of contentc (resp. 1- d — ¢) is equal tom— g. But this must be equal to the
number of boxes i /(A N ) of contentc (resp. 1- & — ¢) minus the number of boxes /(A N )
of contentc (resp. 1- & — c). As we have just observed that the contents of boxds/iA N ) and in
u/(ANu) are disjoint, we either have— g > 0 and

m—q= |{boxes of contentin u/(ANu)}|

= |{boxes of content+ d —cin u/(ANu)}|
orm—qg< 0and

m—q= —|{boxes of contentin A /(AN )}
= —|{boxes of content+ d—cinA/(ANu)}|
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Thus the boxes ok /(A N ) (resp.u/(A Nu)) can be paired up such that the sum of the contents in
each pair is equal to-X 3. Moreover, ford even, as each generagr, ¢; either adds or removes 2 (or
no) horizontal pairs of boxes of conten{g and2;25, we see thal andyu are indeed a balanced pair.
Stage 2: We need to show that & and u are a balanced pair of partitions then they are in the same
W-orbit. Note that ifA and u are a balanced pair then by definition so arandA Ny, andpu and
ANu. Thusitis enough to show thatjif C A are a balanced pair then they are in the sevrerbit.

We will show that whenever we have a weight X with n +p € X™ andu c n (i.e. g < n; for
all i) such thatu, n form a balanced pair, we can constrgét) € Wy n such that eithen® = i or
nW ¢ n having the same properties asStarting with) = A and applying induction will prove that
HEeWp-A.

Pick a boxe in n/u such that

(i) it is the last box in a row ofy,

(i) 152 —c(e) is maximal.

If more than one such box exists, pick the southeastern-omestSay that is in rowi. Find a boxe’
on the edge of} /u (i.e. a box inn/u such that there is no box to the northeast, east, or soutbiiast
in n/u) with c(¢) + c(¢’) = 1— 3. Say that’ is in row j.

Note thati # j as ifi were equal tg then there would either be a box of contég«é (for 6 odd) or
a pair of boxes of contentg and 2;2‘5 (for & even) in betweem ande’. Now, asn, u is a balanced
pair andni_1 — ni > —1, it must contain another such box or pair of boxes of the seonéent(s) in
rowi— 1, as illustrated in Figure 9 (where the shaded area is pary.d&s ;1 — ni > —1 we see that
n/u contains at least two boxes of contef). But ase was chosen with maximal content apds a
partition,n /u can only have one box of conterite’), as otherwise the box would be inn/u. This
contradicts the fact thag, u is a balanced pair.

| row i-1
:__)S_| 3 | 8] row i

FIGURE 9. The (impossible) configuration occurring i j.

Now leta be the last box in rovy and leta’ be the southeastern-most box on the edgg/ef having
contentc(a’) = 1— 0 —c(a). Say thain’ is in rowk.
Case 1k=j.
In this case there must either be a box of conﬂ@ét (for 0 odd) or a pair of boxes of conten{‘—g and
% (for & even) in betweem’ anda. Now, asn, i is a balanced pair anglj_; — n; > —1, it must
contain another such box or pair of boxes of the same cos)anttow j — 1, as illustrated in Figure
10.

€| rowi

row j—1

g a’ | '"é(-] row j

FIGURE 10. The casg =k.
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For eachc(e) < c< c(a), definei¢ by saying that the southeastern-most box of contemtthe edge
of n/pis in rowic. Forc = c(a), defineiq) = j — 1. Note that the.’s are not necessarily all distinct.
Consider all distinct values @f and order them

i =g <ligy <...<lig=]—1
Now consider
nW = (Sei—aic, -+ Sei—aiq_, Seij156+8)) 11-

This is illustrated schematically in Figure 11, where culiees indicate boundaries whose precise
configuration does not concern us. The®) ¢ n with u,n® a balanced pair ang® + p € X* as
required.

G-1

row i |£‘

row j-1 |
rOW | | e] a’l | a

FIGURE 11. The elementst c nM) c n.

Case 2k # j.
If i =k then consider
rl(l) = SSiJrSj'r]

thenn® c n with u,nM a balanced pair ang® + p € X+.

If k1, then as in Case 1, for eache) < c < c(a’) we definei; by saying that the southeastern
most box inn/u is in rowic. As before, there are not necessarily all distinct but wepiek a set of
representatives

i =lig <lg <...<lig =k
Now consider
'7(1) = (Ssifsicl ---SsifsicPl Sgi*5k55i+5j)'n'
Again, this is illustrated schematically in Figure 12, wheurved lines indicate boundaries whose

precise configuration does not concern us. As before we fdVe n with u, nY) a balanced pair and
nW4pext. O

ExampPLE 4.3. We illustrate Stage 2 of the proof above by an examplke Ta= (8,8,8,7,3,3,2)
andu = (6,5,1,1) andd = 2. Then it is easy to see thatA form a balanced pair. We will construct
w e W, such thay = w-A.
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FIGURE 13. The elementst c A(Y) C A.

First considen () = Sei—e,5e,+6,-A. The elementd and u are illustrated in outline in Figure 13,
with the boxes removed to forim(?) shaded.

Repeating the process we next constiél = s¢, ¢S, +5,-A Y, as in Figure 14, followed by ® =
Se,—e,5e,165 A (2 @s in Figure 15. Finally considar®) = s, ¢,-A®) as shown in Figure 16.

5. Orbits of the affine Weyl group of tyde

We would like to have a block result in characterigiic- 0 similar in spirit to Theorem 4.2. For this
we first need a candidate to play the rol&wfTo motivate our choice of such, we begin by considering
a possible approach to modular representation theory izctin from characteristic 0.

The verification that the Brauer algebra is cellular is a abgaristic-free calculation ovét{d]. Thus
all of our algebras and cell modules hav&@]-form, from which the corresponding objects over
k can be obtained by specialisation. If the maps between aadlutes that have been constructed in
characteristic zero irWH99, CDM 05] also had a corresponding integral form, then they would als
specialise to maps in characterigticAs these maps were not constructed explicitly, we are @ntabl
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FIGURE 15. The elementgi c A(® c A2,

verify this except in very small examples. However, if wewase for the moment that it holds, this will
suggest a candidate for our new reflection group.

We will wish to consider the dot action ¥ for different values of shift parametgr In such cases
we will write w.sA for the element

W(A +p(8)) - p(&).

When we wish to emphasise the choice of dot action we will eiste W2 for W.

Fix 0 € Z, and suppose that maps between cell modules in charaictérigb reduce mog. Then
we would expect weights to be in the same block in charatitepsf they are linked by the action of
W9 in characteristic zero. However, all elements of the fdrsar p in characteristic zero reduce to the
same elemend mod p, and so weights should be in the same block if they are linketth® action of
W3+TP for somer € Z. Thus our candidate for a suitable reflection group wilVide= (Wo+P - r ¢ 7).

Note however that a block result does not follawtomaticallyfrom the integrality assumption, as:
(i) the chain of reflections froridV linking two weights might leave the set of weights Bx(9); (ii)
in characteristicp there may be new connections between weights not coming é@mections in
characteristic zero. We shall see that the former is indg@dlalem, but that the latter does not occur.

Now fix a prime numbemp > 2 and consider the affine Weyl grov4, associated taV. This is
defined to be

Wp=(Sgrp:BED,rez)
where
Sgrp(A) =A —((A,B)—rp)B.
As before, we consider the dot actionW on X (or E) given by
wA =w(A +p)—p.

It is an easy exercise to show
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0 -1-2-3-4-
1 0—1—2—3]j
2[1 0 -1-2-3
3/2 10 -1-2

FIGURE 16. The elementgt = A4 c A(3),

LEMMA 5.1. Forallr e Z and1 <i# j # k <n, we have
Sei+¢j -5+rp)\ = Sei+aj,rp-5)\-
Sgi—é; Sqrph = Sgi—é; SA.
Sei—¢&j.,rp = Sej+ecSe e pSej+&x-
and
Sei+6,.rpSe+¢; IS translation by p(& + €;).
In particular, fom > 2 we have

W, = (sgﬁgj,rp :1<i<j<n andreZ).

It follows from the first two parts of the Lemma that the group

W = (s ¢ rp.Seog 1 1< i < j <)

is isomorphic to the original grol/®*"P, and itsd-dot action onX is the same as th@ -+ r p)-dot
action ofW2+™P on X. Further, the usual dot action @, on X is generated by all the/I" with r € Z.
Thus we have

COROLLARY 5.2. Forp > 2 we haveW =W, and the isomorphism is compatible with their
respective dot actions ofa.

The above considerations suggest that the affine Weyl geoapotential candidate for the reflection
group needed for a positive characteristic block resultilltbe convenient to have a combinatorial
description of the orbits of this group ofi

PROPOSITIONS.3. Suppose that andu are inX with |A|—|u| even. Them € Wp- A if and only
if there existst € 2, ando : n — {£+1} with d(o) even such that for all < i < n we have either
o(i)=1 and c(u)i=c(A)y; modp
or
o(i)=-1 and c(p)i+c(A)yiy=2-06 modp
Proof. We haveu € Wp- A if and only if
U+p=wWA+p)+pv

for somew € W andv € Z®. Note that for anw € X we havev € Z® if and only if [v| = S v; is even,
as

26 = (& —¢&i41)+ (6 +&11)
and
2611 = (& +&11) — (& —&i41)
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forall 1 <i<n-—1.Thus,if|A|—|u|is even, theru € Wp-A if and only if u+p =w(A 4+ p) + pv
for somew € W and some € X. Combining this with Proposition 3.1 gives the result. O

As in the non-affine case, we may represent reflections grajivia projection into the plane.
In this case each projection will contain two families of eefions; those parallel 8 and those
parallel toss +¢;. This is illustrated forp = 5 in Figure 17. An example of the effect of various such
reflections on partitions will be given in Figure 23, after ave introduced a third, abacus, notation.

i sy )
AN RN
00 0 0o 0000 0 e
\O\ O ¢ O o\b\/o’/o @) o\i\/o
o\‘®\ b o o @ & O O o/ﬁ/‘o\
(&/2+i-13/2+j-1) © O\Q\O/,@/O O\\G\\°/,°’ ® °\\\ )
——0C & O\Q\O ®o o0 00
m o dooe se e e o o
/@’Vb\ ® O @ ,o/\‘u\ e o o/,o/\\o\
///o o\loo’oo\o\oo’oo\\
o o @4—0—0—0—0—)—0—0—0—\7
o o & o 0 0 o0 & o ‘o, 0 0 N
o oo o o'e ,0 o o O\Q o

\ ('J)

FIGURE 17. A projection onto théj plane withp = 5.

6. On the blocks of the Brauer algebra in characterigtic

We have already seen that the blocks of the Brauer algebradracteristic O are given by the
restriction of orbits ofV to the set of partitions. We would like a corresponding reisutharacteristic
p > 0 involving the orbits oiV,. One does not expect the blocks of the Brauer algebra to le@ gy
W, in exactlythe same manner as in characteristic 0. Instead, we can thgkafbits oW, are unions
of blocks. We will show that this is the case, and give examjieSection 7 to show that indeed these
orbits are not in general single blocks. (A similar resutttfee symplectic Schur algebra has been given
by the second authoblV08].) Throughout the next two sections we will assume that veevasrking
over a field of characteristip > 0.

We will need a positive characteristic analogue@bM 05, Proposition 4.2]. Denote by ] the set
of boxes inA, and recall that we denote the cell/standard module& ¥ ). In the next Proposition
note thatd can be an arbitrary element kf To make sense of formulas involving conteofd) andd
we will regardc(d) as an element &, C k and work modp.

PROPOSITIONG.1. LetA,pu € Xt with|A|—|u| =2t > 0. If there existM < An(uT) with
HOmg,(5) (Bn(AT),An(KT) /M) # 0
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then

t(o—1)+ c(d)— % c(d)=0 modp.
de(A] de(p]

Proof. The main steps in the proof of this result in characteristic[CDM 05, Proposition 4.2] are
(i) to give an explicit description of the action of a certalement in the Brauer algebra, and (i) to use
a symmetric group result to show that this action is as a s¢aial to determine its value). The proof
of step (i) in DWH99, Lemma 3.2] does not depend on the field, and hence also modtisiracteristic
p.

For step (ii), we may assume (by exactness of localisatisaX is a partition ofn. Hence as a
module forZ, we haveAn(/\T) = S’\T, the Specht module labelled By . In characteristic 0 this

is irreducible, so any central element@k, acts by a scalar. In particular a certain central element
X € ZZn C CZ,, as described in the proof oEPM 05, Proposition 4.2], must act by a scatar

However, for our fixed choice af € Z the basis folAn(A ) given in [CDM 05, Lemma 2.4] is defined
overZ (assuming we start with an integral basis for the Specht epcand is &-form for the module.
As x andsare also defined ové the calculation ove€ restricts to thisZ-form. Tensoring ove¥. with
our fieldk we deduce that the elemextcts by the same scalar (mpdlin our case. This is what is
required to complete the proof in positive characteristic. O

By the last result, ifd is not in the prime subfiel&, C k then the only composition factors of a
cell moduleA, (A T) that can occur are those labelled by weightswith |A| = |u|. Thus to determine
the blocks it is enough to consider homomorphisms betwekémeelules labelled by partitions of the
same degree. As localisation is an exact functor we may asssA andu are both partitions of,
in which case both cell modules are the lifts of Specht madlbus we have

THEOREM®6.2. Suppose tha¥ ¢ Zp. Then two simplé8,(d)-moduled(AT) andL(u™) are in the
same block if and only ifA| = |u| and the corresponding simME, -modules are in the same block.

Thus we can restrict our attention to the case wileeeZ,. We wish to replace the role played by
the combinatorics of partitions by the action of our affinéeetion groupip.

THEOREM®6.3. Suppose thal € Zy and),u € X*. If there existl < An(uT) with

Homg, (5)(An(AT),An(k")/M) #0
thenp € Wp.A.

Proof. First note that Homg,5)(An(AT),An(uT)/M) # 0 implies thatA | — |u| = 2t > 0. As if we
had|A| < |u] then using the fact that the localisation functieris exact, we can assume that- n,
soA,(u") = . However, this module only contains composition factorshef formL,(n) where
n +n, which gives a contradiction.

We now use induction on. If n= 1 thenA = u = (1) and so there is nothing to prove. Assume

n> 1. If A =0 then by the above remark we have= 0 and we are done. Now suppose thatas a
removable box in rovi say. Then we have

IndAn_1((A —&)7) = An(AT)
and so, using our assumption we have

Homg, () (INdAn_1((A —&)T),8n (k") /M)

=Homg, ,(5)(8n-1((A —&)"),Res(Bn(u")/M)) # 0.



A GEOMETRIC CHARACTERISATION OF THE BLOCKS OF THE BRAUER ALEBRA 17

Thus either (Case 1) we have

Homg, ,(5)(8n-1((A —&)"),An-1((1 —£)")/N) #0

for some positive integeirwith  — g € X* and someN < Aq_1((1—€))7),
or (Case 2) we have

Homg, ,(3)(8n-1((A —&)7),An-1((1 +£))T)/N) #0

for some positive integefrwith g+ &j € X* and someN < An_1((1 + ¢ .

Case 1: Using Proposition 6.1 fok and and forA — & andu — gj, we see that(A )i = c(u); modp.
Now, using induction om we have thau — &; € Wp: (A — &). By Proposition 5.3, we can find € X,
ando : n — {1} such thatd(o) is even and for all K m< n, if o(m) = 1 we have

C(M — &)m = C(A — &) (m) Mod p
and ifo(m) = —1 we have
c(U —&j)m+C(A — &) pm) =2— d modp.

We will now constructrt’ € 3 and o’ : n — {£1} to show thaty € Wp-A. Supposer(j) = k and
n(l) =i for somek,| > 1. Definer by 7 (j) =i, () = k and 7' (m) = r(m) for all m# j,I. Now

if a(j) = o(l) then defines’ by d’(j) = o’(I) = 1 ando’(m) = o(m) for all m# j.I. And if o(j) =
—0o(l) the defineg’ by ¢’(j) =1, o’(l) = —1 andad’(m) = g(m) for all m= j,I. Now it's easy to
check, using the fact thaf); = c(A)i mod p, that’ ando’ satisfy the conditions in Proposition 5.3
for A andu, and sou € Wy-A.

Case 2: This case is similar to Case 1. Using Proposition 6.1 we sgeth )i +c(u); = 2— & modp.
Now using induction omwe haver € Z,, ando : n — {£1} satisfying the conditions in Proposition 5.3
for A —& andu +¢j. Supposet(j) = kandm(l) =i for somek,| > 1. Definert by r'(j) =i, 7' (l) =k
and 7' (m) = r(m) for all m# j,I. Now if a(j) = a(l) the defined’ by d'(j) = -1, d’(l) = -1
ando’(m) = g(m) for all m# j,I. And if (j) = —o(l) then we defineo’(j) = —1, o’(l) = 1 and
o’(m) = o(m) forallm# j,I. O

Note that by the cellularity oBn(9) this immediately implies

THEOREM 6.4. Two simpleB(8)-modulesL(AT) andL(u") are in the same block only i €
Wp.A.

Thus we have the desired necessary condition in terms offfine &veyl group for two weights to
lie in the same block.

7. Abacus notation and orbits of the affine Weyl group

In this section we will show that, evenrifis arbitrarily large, being in the same orbit under the affine
Weyl group is not sufficient to ensure that two weights lieha same block. This is most conveniently
demonstrated using the abacus notatiiig1], and so we first explain how this can be applied in the
Brauer algebra case. We begin by recalling the standardeguwe for constructing an abacus from a
partition, and then show how this is compatible with theieadrbit results fok\V,. As in the preceding
section, we assume that our algebra is defined over some fielthtacteristiqp > 2, and thad € Z.

To each partition we shall associate a certain configuratidreads on an abacus in the following
manner. Arabacus wittp runnerswill consist of p columns (called runners) together with some number
of beads distributed amongst these runners. Such beadg\aila fixed height on the abacus, and there
may be spaces between beads on the same runner. We will ntivalperssible bead positions from left
to right in each row, starting from the top row and working aowas illustrated in Figure 18.
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FIGURE 18. The possible bead positions wiph= 5.

For a fixed value ofi, we will associate to each partition= (A1,A,...,A;) of m, withm<nand
n— meven, a configuration of beads on the abacusbltet a positive integer such that> n. We then
represenf on the abacus usingbeads by placing a bead in position numbered

Ai+b—i

for each 1< i < b, where we také; = 0 fori > t. In representing such a configuration we will denote
the beads for < n by black circles, fom < i < b by grey beads, and the spaces by white circles (or
blanks if this is unambiguous). Runners will be humberetttefight from 0 top — 1. For example,
the abacus corresponding to the partit{gi3,3,2,1,1,0'°) whenp = 5,n = 16, andb = 20 is given

in Figure 19. Note that the abacus uniquely determines théipa A.

01 2 3 4

We would like a way of identifying whether two partitionsandp are in the sam®y, orbit directly
from their abacus representation. First let us rephraseahtent condition which we had earlier.
Recall from Proposition 5.3 and the definitionadfA ) thatA andpu are in the sam#\V,-orbit if and
only if there existgT € %, such that for each £ i < n either
Hi—i=Aniy— (i) modp
or
Hi—i=030—2— (A —m(i)) modp
and the second case occurs an even number of times.
Chooseb € N with 2b=2—- 6 modp (such ab always exists ap > 2). ThenA andu are in the
sameWp-orbit if and only if there existst € >, such that for each £ i < n either
Wi +b—i= Ay +b—m(i) modp (7.2)
or
Hi+b—i=p—(Agi+b—rm(i)) modp (7.2)
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and the second case occurs an even number of times. Thus ifaveloséd large enough such that

A andyu can be represented on an abacus Wwitteads then (7.1) says that the bead correspondiag to
is on the same runner as the bead correspondifg o and (7.2) says that the bead corresponding to
ki is on runnet only if the bead corresponding #gy) is on runnemp —I. Note that for corresponding
black beads on runner 0 both (7.1) and (7.2) hold, and so wesmthis pair of beads to modiél{ o)

to ensure that it is even. Obviously if there are no such btesads then the number of beads changing
runners betweeh andu must be even. Further, the grey beads (fsm) are the same on each abacus.
Summarising, we have

PROPOSITION7.1. Chooséh > nwith2b=2—-93 modp, andA andyu in A,. ThenA andyu are
in the samé&\j,-orbit if and only if

(i) the number of beads on runrn@rs the same fok andyu, and

(i) for eachl <| < p— 1, thetotal number of beads on runndrandp—| is the same fok and,
and

(iii) if there are no black beads on runrigrthen the number of beads changing runners between
andu must be even.

Note that condition (iii) plays no role whemis large (compared tp) as in such cases every patrtition
will have a black bead on runner 0.
To illustrate this result, consider the case: 16 and the partitions

A=(533211), p=(222111), n=(5332111). (7.3)

Take p=5 andd = 2, thenb = 20 satisfies B=2—- 6 modp, and is large enough for all three
partitions to be represented usingeads. The respective abacuses are illustrated in FiguretbGhe
matching rows for condition (i) in Proposition 7.1 indiedt

A H n

FIGURE 20. Abacuses representing the elementgt andn in (7.3) withb = 20.

We see thatt € Wy.A, as the number of beads on runner 0, and on runnefsidd 2/3 are the same
for bothA andyu (respectively 5, 8, and 7) and there is a black bead on runr{&h@ number of beads
moving from runnetr to a distinct runnep— 1 is 1, which is odd. However, as discussed above, we can
choseo such that one of the two black beads on runner 0 is regardede@isngn(to the same runner),
to obtain the required even number of such moves. If there werblack beads on runner 0 then this
would not be possible.) However,¢ W,.A as columns 14 and 2/3 have 9 and 6 entries respectively.
Having reinterpreted the orbit condition in terms of theals we will now show that the orbits of
W, can benon-trivial unions of blocks foBy(9).

THEOREM 7.2. Suppose thdt is of characteristiQ > 2. Then for arbitrarily largen there exist
A Enandut n—2 (corresponding to the partial abacuses in Figure 21 or Eigay which are in the
sameW,-orbit but not in the samBy(9)-block.
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Proof. Letb e N be such that
2b=2—-90 modp.

If bis even (respectively odd), consider the partial abaclisesrated in Figure 21 (respectively Figure
22).

et e e

FIGURE 21. The partial abacuses farandu whenb is even.

et e e

FIGURE 22. The partial abacuses farandu whenb is odd.

These will not correspond directly to partitiohsandpt, as the degree of each partition will be much
larger thanb. However, by completing each in the same way (by adding theesaumber of black
beads in rows from right to left above each partition, fokmhby a suitable number of grey beads),
they can be adapted to form abacuses of partitiohar andp - n— 2 for somen >> 0 and for some
b’ =b modp. (This corresponds to adding sufficiently many zeros to tiie@&f each partition such
that each hap\ | parts.)

Itis clear from Proposition 7.1 that in each casandp are in the sam®/,-orbit. Note that for both
A andp, all beads are as high as they can be on their given runnee thawve any bead to a higher
numbered position then this corresponds to increasing ¢lgeeg of the associated partition. Thus
andu are the only partitions with degree at mgst in their Wp-orbit.Also it is easy to check that
is obtained from\ by removing two boxes from the same row. Clearly by incrembive can maken
arbitrarily large.



A GEOMETRIC CHARACTERISATION OF THE BLOCKS OF THE BRAUER ALEBRA 21

To complete the proof, it is enough to show thatA T) andL,(u ") are not in the samBy(5)-block.
We will reduce this to a calculation for the symmetric groapg use the corresponding (known) block
result in that case. To state this we need to recall the nefiarp-core.

A partition is ap-coreif the associated abacus has no gap between any pair of beate same
runner. We associate a unigpecore to a given partitior by sliding all beads in some abacus rep-
resentation off as far up each runner as they can go, and taking the correisgopattition. By the
Nakayama conjecture (se [l 76] for a survey of its various proofs), two partitiomsandn are in the
same block fokZ,, if and only if they have the samecore. It is also easy to show (using the definition
of p-cores involving the removal gi-hooks M at99]) that if T is a p-core then so is'.

Returning to our proof, a - n we have that the cell moduls,(AT) is isomorphic to the Specht
moduleS"" as ak>p-module (by PWH99, Section 2]). As) is ap-core soisAT, and hencén(AT)
is |n ak>,-block on its own (by the Nakayama conjecture) so is simpkekas,-module, isomorphic to
D", and hence equal ion(AT) as aBn(5)-module.

If

[An(HT) : Ln(AT)] #0
then we must have
[ress, An(uT) : DA] 0.

However, regs, An(u") has a Specht filtration where the multiplicity!ﬁ?T in this filtration is given by
T
the Littlewood-Richardson coefﬂmen’ﬂ (ThIS is proved ove€ in [HW90, Theorem 4.1] and in

arbitrary characteristic inHag07, Proposmon 8].) In particular, as' is obtained fromu by adding
two boxes in the same column we see t85t = D' does not appear as a Specht subquotient in this
filtration [DWH99, remarks after Theorem 3.1]. However, we still have to pritwad it cannot appear
as a composition factor of some ott® . But this is clear, as if it did then' would have to have the
samep-core asA, butA is already go-core and hence this is impossible.

This proves thaf\,(uT) = La(u"), and soA andu are in different blocks foBn(5). O
. (@23)
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FIGURE 23. Assorted examples with=5 andd = 2.
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FIGURE 24. Assorted examples with=5 andd = 2.

REMARK 7.3. Theorems 6.4 and 7.2 imply that the orbits of the affing/IVjeoup provide a
necessary, but not sufficient, condition for two weights ¢oitb the same block a8,(9). In the Lie
theoretic context, Theorem 6.4 corresponds to the linkageiple [Jan03, Il, 6.17]. For practical
purposes this is the key condition that we need.

To conclude, we illustrate some examples of various affifleatons together with the correspond-
ing partitions and abacuses, whege= 5 andd = 2. Our condition orb implies that it must be chosen to
be a multiple of 5. Reflections are labelled (a)—(e) in FiggBewith the corresponding partitions and
abacuses in Figure 24. Case (a) corresponds to the refléatiori4,4,2) to (4,3,1), withn=b = 10.
Case (b) corresponds to the reflection fréi4,3) to (4,2,1), with n = 11 andb = 15. Case (c)
corresponds to the reflection frofd,4,4) to (4,1,1) with n= 12 andb = 15. These three cases only
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use elements froM/, and so would be reflections in any characteristic. Hencedhdition on matched
contents in these cases are equalities, not merely eqonoedemodp. Case (d) corresponds to the
reflection from(6, 6,5) to (6,5,4) with n= 17 andb = 20. This is a strictly affine phenomenon, and so
the paired boxes only sum to-16 mod p. Finally, case (e) corresponds to the reflection fi@yb, 2)

to (6,6,1) with n= 13 andb = 15. This is our only example of reflection about an affiij¢ line, and

so is the only case illustrated where the number of boxeétishehanged.
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