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Abstract

Neutrophil migration in zebrafish larvae is increasingly used as a model to study the response of these leukocytes to
different determinants of the cellular inflammatory response. However, it remains challenging to extract comprehensive
information describing the behaviour of neutrophils from the multi-dimensional data sets acquired with widefield or
confocal microscopes. Here, we describe PhagoSight, an open-source software package for the segmentation, tracking and
visualisation of migrating phagocytes in three dimensions. The algorithms in PhagoSight extract a large number of
measurements that summarise the behaviour of neutrophils, but that could potentially be applied to any moving
fluorescent cells. To derive a useful panel of variables quantifying aspects of neutrophil migratory behaviour, and to
demonstrate the utility of PhagoSight, we evaluated changes in the volume of migrating neutrophils. Cell volume increased
as neutrophils migrated towards the wound region of injured zebrafish. PhagoSight is openly available as MATLABH m-files
under the GNU General Public License. Synthetic data sets and a comprehensive user manual are available from http://www.
phagosight.org.
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Introduction

Multiphoton and confocal fluorescence microscopy, which

allow 3D imaging of specimens in vivo with high spatial and

temporal resolution, have been widely adopted in the Life Sciences

[1,2] for varied applications including: the observation of

microvascular permeability [3]; the assessment of mitochondrial

function [4,5]; examining tumour microcirculation [6] and

angiogenesis [7]; and the observation of neutrophil apoptosis

and migration [8]. Confocal and multiphoton microscopes capture

the intensity value (i) at a specific three dimensional location (x,y,z).

This intensity is related to the photons collected at the detector,

which are in turn emitted by fluorescent substances in the sample,

in response to excitation at specific frequencies (f). As the

observation is repeated in time (t), the data become a 5-

dimensional matrix i(x,y,z,f,t). Thus, a single experiment can easily

generate many gigabytes of information, presenting a significant

challenge for data transfer, storage and processing.

Whilst the considerable cost of modern microscopes and the

availability of skilled operators has been a limitation for their use in

the past, they are now common-place in academic centres, either

in dedicated laboratories or as part of core facilities. However,

acquisition is only the start of the process, and expertise has lagged

for the processing, segmenting, quantification, analysis and

interpretation of the wealth of information contained in the very

large data sets produced by these microscopes. In many cases, data

is acquired at a faster rate than it can be processed and many

laboratories require human expert users that spend many hours

examining visually the acquired images and videos. Inadvertently,

technological advances have shifted the bottleneck of these

biomedical experiments from the data generation to the data

processing [9,10]. This is particularly acute where biological

models are amenable to manipulation and imaging.

Inflammation is a process critical to life itself, without which

multicellular animals could not protect themselves against the

threat of competing unicellular microorganisms or tissue injury.

Zebrafish larvae have emerged as a key model organism for

inflammation studies, with a unique combination of advantages

over other model systems for the detailed study of inflammation

biology in vivo. Understanding cell migration and interaction is an
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important part of understanding how immune cells behave during

all phases of inflammation in vivo. The optical transparency of

zebrafish allows visualisation of physiological and pathological

processes in vivo. Genetic manipulations can be easily performed,

both to genetically manipulate the inflammatory response and to

label individual cell populations with fluorescent markers in vivo

[11]. These cell populations can then be observed in high temporal

and spatial resolution during inflammation, using multiphoton and

confocal microscopy (Fig. 1).

Many publications related to neutrophils in zebrafish and other

models rely on manual processing by an expert [12,13,14,15]. Cell

tracking is sometimes performed with commercial systems linked

to the acquisition hardware such as VolocityH (Perkin ElmerTM,

USA) [16,17] or ImarisH (BitplaneTM, Switzerland) [18,19].

Commercial software is expensive and in some cases lags behind

the demands of researchers in the field, as companies develop tools

that can be used for a wide variety of experiments and only

develop specific algorithms when justified by a large demand from

the scientific community. Some of the current limitations of the

commercial packages for the analysis of neutrophils in zebrafish

are related to the segmentation, which is sometimes performed

with a single threshold, which introduces artefacts, or watersheds

[20] that are susceptible to over-segmentation problems [21].

Alternatively, researchers often employ programming tools such

as MATLABH (MathworksTM, USA) and the similar freeware

options Scilab and Octave, MathematicaH (Wolfram ResearchTM,

USA), R, Python or JavaTM to develop their own algorithms for

specialised analytical purposes e.g. a leukocyte tracking and

statistical analysis framework developed in R and Python is

presented in [22,23] and shape-based tracking of cells is presented

in [24]. A third option is specialised tracking plug-ins of ImageJ

[25] like MTrackJ [26], Particle Tracker [27], TrackMATE [28]

or the complete open package ICY [29]. A limitation of both

commercial and specialised software is that segmentation algo-

rithms are specific to the visual appearance of the cells and the

variation of imaging protocols requires modification of the

algorithms [30].

The segmentation of fluorescent phagocytes is complicated due

to the complex variations of the shape: a single cell that is active

and has expanded pseudopods can have a range of intensities and

may be artificially segmented into several unconnected objects.

When two cells are close to each other, the gap between can be too

small to be distinguished and then two cells can be considered to

be a single cell.

To address the challenging task of analysing the motion and

shape tracking of neutrophils in zebrafish, we have developed

PhagoSight, a series of algorithms in the MATLABH programming

environment. The package provides semi-automated algorithms

that read and transform large data sets into MATLABH format,

segment and track phagocytes, and provide a large number of

quantitative measurements from which users are able to analyse

the behaviour of their data sets. The package performs many pre-

and post-processing steps: intensity thresholds are pre-selected

based on Otsu’s algorithm [31] which the user then can verify

manually if desired. Temporal variation of intensity is analysed as

cells that disappear from their tracks and then re-appear a few

points later. Collisions of cells are analysed by measuring the

volume of cells in time and splitting cells whose volume increases

considerably. Finally, as the lack of proofreading and editing tools

has been one of the main barriers in adopting automated and

semi-automated methods [32] we provide such tools, through

Figure 1. Visualisation of neutrophils in zebrafish. (a,b) Fluorescent neutrophils (bright uniform regions) migrate towards the site of injury
(right) in the tail-fin of a zebrafish larva (differential interference contrast (DIC)) at 3 dpf. (c) One time point of 48 slices each of 102461024 pixels. (d)
Neutrophils rendered as 3D surfaces.
doi:10.1371/journal.pone.0072636.g001
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which users can evaluate the output of algorithms and correct

mistakes that can be visually detected.

A series of synthetic data sets are also provided as a means to

evaluate the robustness of the algorithms under different

conditions. All the algorithms are released in an open policy

under the GNU General Public License, with three main

objectives. Firstly, it allows other researchers to use the algorithms

and advance their research on neutrophils in zebrafish. Secondly,

it allows other researchers to adapt and modify the software to suit

their experiments. In turn, this may produce refined algorithms

and routines that will be incorporated to the software package that

will be improved iteratively. Thirdly, open access software allows

independent replication and verification. As experiments become

more complex, produce larger volumes of data and rely on

proprietary software or code, the replication and verification

becomes increasingly difficult [33]. It should be noted that the

tracking algorithms that we present are a posteriori tools to be

applied to a sequence of images or volumes, and not intended to

be used as ‘on-the-y’ tracking techniques [34].

The algorithms of PhagoSight were tested on synthetic and

biological data sets in order to determine the reliability and

robustness of the algorithms against noise and sensitivity to the

input parameters. Moreover, we use these approaches to test the

hypothesis that neutrophils increase their volume as they migrate

towards the wound region in a zebrafish model of inflammation.

Experimental Procedures and Data Acquisition

a. Zebrafish
Zebrafish were maintained according to standard protocols

[35]. The biological data sets were acquired from transgenic

Tg(mpx:eGFP)i114 zebrafish larvae in which neutrophils specifically

express Green Fluorescent Protein (GFP) [11]. Tail-fin transection

was performed on zebrafish larvae at 3 days post fertilisation (dpf)

as previously described [11]. Zebrafish larvae were mounted in

low melting point agarose (Sigma) immediately prior to imaging.

Multiple larvae were imaged simultaneously using a moving stage.

Temperature was maintained by environmental air conditioning

at 24uC.

b. Image Acquisition
To assess neutrophil volume, 301 time points of 100061000

pixels in 32 slices in the GFP channel (exposure 40 ms) at 5 mm
step size and 1 brightfield reference image were captured using an

UltraVIEWVoX spinning disk confocal microscope (PerkinElmer

Life and Analytical Sciences), scanning once per slice, with a

206objective NA 0.75 for six injured larvae. Data were acquired

using VolocityH 6.0.1 at a rate of 120 time points per hour for 2.5

hours beginning at approximately 0.7 hours post injury. Each 3D

stack took approximately 1.4 seconds to acquire. The increased

resolution was used to obtain a more reliable measurement of the

volume in an area directly anterior to the wound region. Multiple

TIFF files were exported from VolocityH and were read and

subsequently analysed using PhagoSight.

c. Statistics
Statistical analysis was performed using PrismTM 5.0 (Graphpad

Software Inc., San Diego, CA). Differences were considered

significant at P,0.05. Measurements obtained with PhagoSight are

presented as the mean 6 standard error of the mean unless

otherwise stated. Linear regression analysis was performed using

PrismTM 5.0.

d. Ethical Considerations
Zebrafish studies were performed in accordance with UK

Home Office legislation. UK law requires that, where possible,

experiments are performed on animals not protected under the

Animals (Scientific Procedures) Act. All experiments were

performed on unprotected embryos, ,5.2 dpf.

Design and Implementation

PhagoSight has been developed taking into account that the end-

users may not be expert MATLABH programmers and therefore

combines graphical user interfaces (GUI) and the use of written

commands. The input data is stored in a series of folders, one for

each time point of observation and it can be either of the following

formats: (a) one image for every slice of a 3D stack, (b) one 3D Tiff

image or (c) a MATLABH file which contains a 3D matrix.

PhagoSight stores the following intermediate results: original images

in MATLABH format, reduced images, segmented and labelled

images and the final results, which are referred to by the term

‘‘handles’’, in separate folders with the original name and an

identifier: e.g. images_mat_Or, images_mat_Re, images_mat_La and

images_mat_Ha, are created when the input data is in a folder called

images.

a. Pre-processing of the Data
The first pre-processing step is a reduction of the size of data

through smoothing and subsampling, which is a common

technique to reduce the computational complexity (number of

operations and time required to process) of the processing and to

reduce the noise of the data. The reduction is obtained by

averaging groups of four contiguous voxels on each z-slice; their

mean value is then assigned to a voxel in a new image, which will

have a reduced number of rows and columns, the number of z-

slices remains unchanged. Thus the signal to noise ratio (quality of

the image) is improved at the expense of a reduced spatial

resolution.

The structure of the input data from microscopes can vary

considerably; it is possible to acquire data in several fluorescent or

differential interference contrast (DIC) channels, which are then

saved at different positions of a single stack of images. In the

second pre-processing step, PhagoSight analyses the intensity

histograms of each slice of the data and generates an initial

estimate of the distribution of the channels. This is based on the

observation that fluorescent channels concentrate the majority of

the pixels or voxels at low intensity levels, whilst DIC channels

have a higher concentration of pixels in the middle intensities and

lower numbers of pixels at either end of the intensity range. The

user can verify the distribution of the channels through a GUI with

the histograms and accept or modify the initial estimate.

Since neutrophils can stretch and change their shape consid-

erably between time points, it is very important to use a

segmentation procedure that (a) does not include background as

cells and (b) does not over-segment a single cell into several

disjointed objects. The third pre-processing step is the definition of

the intensity thresholds with double hysteresis threshold inspired by

the Schmitt trigger [36]: voxels below a lower threshold are classified

as background, and those above a higher threshold are classified as

neutrophils. The remaining voxels between these two levels are

then classified as neutrophils if they are in contact with voxels

above the high threshold, or as background otherwise. Both

thresholds are automatically determined using Otsu’s algorithm

[31]. Fig. 2 shows the segmentation of a single neutrophil with two

thresholds. Since the selection of thresholds can have an impact on

Analysis of Immune Cells in a Zebrafish Model
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the results, a GUI allows the user to verify the accuracy of these

threshold levels.

The final and important pre-processing step analyses the

volumes of the neutrophils after the segmentation procedure is

complete. The algorithm obtains the distribution of the volumes of

all neutrophils at all time points and calculates mean and standard

deviation with the objective of detecting outliers in the distribu-

tion. A neutrophil whose volume exceeds mean +36 standard

deviation of the distribution is assumed to be formed by two

neutrophils that are too close to be separated by the segmentation

algorithm. Those objects are split into two disjointed objects

following a sequential erosion (removal of the voxels at the surface

of the object) of the object until the voxels that were bridging the

two objects are removed (Fig. 3).

b. Tracking Algorithm
Following segmentation, individual neutrophils are assigned

unique labels. The corresponding results are stored in separate

folders with the extension mat_La. The tracking process consists of

linking a neutrophil at time t, with the same neutrophil at time t+1.
This correlation process is trivial when only one cell is present, but

it may be very complicated with more than two neutrophils. To

simplify the analysis there are studies that restrict the input data to

those cases that contain a single neutrophil [37,38,39], while

others restrict the conditions of movement so that neutrophils

overlap within time points [23,40], that is, they only analyse data

sets with slow movement. Other studies evaluate visually the

distinguishable condition of each cell [41] and only process those

that satisfy a human operator. PhagoSight does not make any

assumptions on the velocities, conditions or number of neutrophils.

The fluorescently-labelled neutrophils are tracked with a model-

based tracking algorithm [42] adapted from the keyhole tracking

algorithm presented in [43]. The algorithm links the objects in

contiguous time points to form the tracks by means of a keyhole

model, which predicts the most probable landing position of a

neutrophil at time t+1 (which we called ‘‘child’’), from the position

in times t (the ‘‘parent’’), and t21 (the ‘‘grandparent’’). The most

probable step for a neutrophil that is moving from time t21 to

time t, is to follow the direction of the previous steps with the same

velocity to time t+1. Assuming that a child (neutrophil at time t+1)
would move with similar direction and velocity as its parent

(neutrophil at time t), its landing position can be predicted. Of

course, this would not cover changes in speed or turns or random

walk-like movements. Two regions of probability where the child

Figure 2. Hysteresis thresholding segmentation of a single neutrophil at five time points. The region described by low threshold (bright)
will contain one or more regions described by the high threshold (dark); if segmented solely with a single high threshold several unconnected
regions would arise. A single low threshold would in turn produce more regions of low intensity not shown here.
doi:10.1371/journal.pone.0072636.g002

Figure 3. Segmentation of large objects in synthetic (top row) and real (bottom row) data sets. (a,d) One slice of a 3D stack where one
object (box) was considered as an outlier due to its volume. (b,e) A three-dimensional rendering of the object indicates that it is formed by two
neutrophils that collided. (c,f) Two new objects after the segmentation.
doi:10.1371/journal.pone.0072636.g003
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neutrophil is most likely to land are therefore defined: a narrow

wedge (60u wide) oriented towards the predicted landing position,

for straight-moving displacements, and a truncated circle (300u)
that complements the wedge, for random-moving displacements,

which together resemble a keyhole. The size of the keyhole at t+1
is determined by the distance between times t21 and t. All

segmented neutrophils are examined for possible parent-child

relationships within keyholes; when there is more than one

possible relationship, the closest to the predicted landing site is

assigned.

c. Post-processing
The post-processing steps increase the reliability of the tracks

produced through several steps. Firstly, the same keyhole model is

used to analyse the movement backwards. That is, the same

keyhole model uses child (t+1) and grandchild (t+2) to generate a

keyhole at time (t). If the neutrophil of a previous time point lands

inside the keyhole, it remains as part of the track, otherwise it is

removed. This is especially important for the first link of a track

when there is no previous history of movements. Secondly,

consecutive labelled points are compared to detect cells that are

present at time t21, absent at time t, and present at t+1, within a

certain small region of interest. We consider these cases to be due

to cells with low intensity, which due to slight variation in

fluorescence over time, are too faint to appear in all time points.

For those cases of disappearing cells, an artificial cell is created at

time point t as an interpolation of cells at times t21 and t+1. A
subsequent tracking procedure links the two previously discon-

nected tracks into a single track.

An important post-processing step is to detect collisions between

neutrophils since not all cells that collide can be detected as

outliers due to their volume. In some cases, when two small

neutrophils collide, their volume may not be much larger than a

single large neutrophil. To detect two neutrophils that travel

towards each other until they are too close to be distinguished as

two separate cells, we follow two rules: (a) the volume of a given

neutrophil increases considerably and (b) a neighbouring track

terminates in the previous time point. In the same way, after a

collision, cells may seem to divide. The rules to detect these

divisions are the inverse: (a) a decrease in neutrophil volume and

(b) one new track starts on the current time point. Unlike in the

case of pre-processing, where large volumes are split into two

disjointed objects, the collision could involve more than two

neutrophils that form one large fluorescent cell. The segmentation

of the merged cells is performed with the watershed transforma-

tion. The watershed transformation partitions the images into

catchment basins or regions of influence of the regional minima.

The boundaries between the catchment regions are called

watersheds, and are used to segment into the cells that collided.

Once those cells are divided, new tracking is performed.

d. Directional Analysis and Measurement Generation
To analyse the directionality of the movement and its nature

(fast/slow, uniform/varying velocity, direct/meandering, etc.) a

series of measurements based on the tracks are calculated. As such,

it is necessary to determine an orientation framework as the tail of

the zebrafish can have any orientation within the acquired images.

The tail-fin transection, a wound towards which the phagocytes

are attracted, is performed at the opposite side of the head of the

fish and a wound region is created. We identify manually a region

of interest, which corresponds either to the region of the wound, or

the corresponding region in an uninjured control larva. We term

this the ‘‘artificial wound region’’. Fig. 4a shows this artificial

wound region as a black rectangle overlaid on the DIC image of

the tail. This wound region is then used to generate a rotation of

the axis with the movement towards the wound as one coordinate

axis (c) and lateral movements as the other axis (r) (Fig. 4b). Each

movement is analysed as a vectorial projection towards a line

perpendicular to the wound. The components of the movement

towards and parallel to the wound are considered the oriented

distance and lateral distance respectively, and are used to calculate

oriented and lateral velocities. The absolute velocity corresponds to the

vector sum of the other two components. The oriented movements

can be further analysed in terms of how effective they are in

moving towards the wound: assigning +1 for movement parallel to

the main orientation towards the wound, 0 for movement

perpendicular to the main orientation, 21 for perpendicular

moving away from the wound and between (21,+1) for any other

orientation. In this way, not only the absolute velocity (how fast the

cell moved), but also the oriented velocity (how fast it moved

towards the wound), effective movements (ratio of displacements

between points that move more than a particular threshold) are

observed. In a recent publication, PhagoSight was used to compare

the speeds of neutrophils in the presence or absence of Cxcl8 [44].

It is of great biological interest to observe the motion of

neutrophils towards areas of inflammation. The manually

delineated artificial wound region described above allows the

determination of several important behaviours, such as the

number of neutrophils entering this region and the time they stay

within it. It is important to notice that the wound region is

manually drawn by the user and thus is subject to intra- and inter-

observer variability. Therefore, the size of the wound region can

influence measurements such as the arrival of a neutrophil at the

wound. When comparing several experiments, we recommend

either generating wound regions of the same size, say 100, 120,

150 pixels wide, or performing a sensitivity analysis with wound

regions of varying sizes and observing the impact on the

measurements. Of course, the size of the wound region will

depend on the resolution of the camera, magnification of the

microscope and the size of the tail relative to the image.

Representative measurements that summarise the behaviour of

each cell and/or the whole population of neutrophils in each

zebrafish larva included in PhagoSight package are described in

Table 1.

e. Output of the Algorithms
The tracking algorithm produces a series of 4D vectors (x,y,z,t)

for each neutrophil. The tracks, and many other measurements,

are stored in a single MATLABH structure called handles.

Structures are records that contain several values called fields;

for example (x,y,z) coordinates, time points, etc. are stored within

handles. The tracks are stored in two fields: handles.nodeNetwork and

handles.finalNetwork. nodeNetwork contains the information of each

segmented neutrophil; its (x,y,z,t) position and its parent-child

relationship with several other measurements. finalNetwork is a

matrix with one column for every track, the number of the

segmented objects that belong to each track is stored in the

columns.

f. Proofreading and Editing Tools and user Manual
Algorithms can perform many tasks with consistency and speed

above that of human observers. However, algorithms are not

perfect and human observers have superb innate visual processing

skills. Therefore, we provide a series of tools that allow users to

evaluate the output of the segmentation and tracking process, and

if necessary, to correct mistakes. We expect that these tools will

lower the adoption barrier of those users who trust their own eyes

more than automated solutions [32]. There are three editing

Analysis of Immune Cells in a Zebrafish Model
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functions: delete, merge and break. Delete simply removes a track

from the analysis, and should be used with caution so as to not

introduce unintentional bias into the analysis. Merge and break

are closely related and may be necessary when either the track of a

single neutrophil appears as two disjointed tracks or when a

neutrophil collision occurs and the tracks follow the neutrophils

incorrectly. In those cases, the tracks may be broken and merged

according to the users’ visual criteria. Beltman et al. [45] suggest

assigning different tracks to a single cell before and after a collision

to avoid switching of tracks, and recognise that the splitting of

tracks obscures the long-term behaviour of the cell. We consider

that the manual breaking and merging of tracks, together with the

use of cell volume when analysing the collisions will result in

measurements that better reflect the long-term behaviour of cells.

The website http://www.phagosight.org contains a compre-

hensive user’s manual covering an introduction to MATLABH,

segmentation, tracking, data structure, visualisation tools and

video generation. Synthetic data sets are also available.

g. Visualisation Tools
PhagoSight provides several visualisation tools. We consider

that three-dimensional plots show the kinetic behaviour of the

neutrophils in several ways. Firstly, they display the general

direction of movement of the cells, in our examples towards the

site of injury in general. Secondly, the individual velocity is

related to the slope of the lines, horizontal lines correspond to

fast-moving cells and vertical ones, to slow or nearly stationary

cells. Thirdly, they display how some cells migrate towards the

wound (black line overlaid on the DIC in Fig. 4a) and, once

there, remain static.

Figure 4. Orientation of the movement based on the artificial wound region. (a) Three-dimensional plot of the tracks with time as the
vertical axis. The DIC image of the fish is presented as a horizontal plane at time 0 and one fluorescent slice is shown at time 120. The black square
over the DIC corresponds to the artificial wound region. (b) Description of the absolute, oriented and lateral neutrophil velocities with respect to the
axis defined according to a manual delineation of the wound region.
doi:10.1371/journal.pone.0072636.g004

Table 1. Computationally derived measurements used to assess neutrophil migration following wounding.

Measurement Definition

Velocity Average absolute velocity per track

Oriented velocity Average oriented velocity per Track

Lateral velocity Average lateral velocity per track

Meandering index Ratio of the shortest distance between two points relative to the distance that a neutrophil covers between those points

In-wound neutrophils Number of neutrophils that reach the region designated as ‘‘wound region’’

Forward ratio Ratio of ‘‘number of displacements with effective velocity larger than 0.6’’ to the ‘‘total number of displacements’’

In wound ratio Ratio of ‘‘number of displacements inside the wound region’’ relative to ‘‘total number of displacements’’

In wound ratio 2 Ratio of ‘‘number of displacements inside the wound region’’ relative to ‘‘number of displacements after a neutrophil
reached the wound region’’

Idle wound ratio Ratio of ‘‘number of displacements with absolute velocity lower than a certain level’’ relative to ‘‘number of displacements
inside the wound region’’

Backward ratio Ratio of ‘‘number of displacements with effective velocity larger than 20.6’’ to the ‘‘total number of displacements’’

Leave wound ratio Ratio of ‘‘number of displacements with effective velocity larger than 20.6’’ to the ‘‘number of displacements after the
wound was reached’’

Transiting wound neutrophils Number of tracks that enter the wound and leave

doi:10.1371/journal.pone.0072636.t001
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Results

a. Validation of the Algorithms with Synthetic and
Biological Data Sets
We validated the segmentation and tracking algorithms of

PhagoSight with synthetic and real data sets. The synthetic 3D data

sets spanned 98 time points with 11 slices of 2756275 pixels each.

Six artificial neutrophils, modelled with anisotropic Gaussian

shapes of different orientations, travelled along manually drawn

paths that presented different conditions of tortuosity, times to

activation and proximity to other neutrophils. An original noiseless

data set was corrupted by adding white Gaussian noise of

increasing variance to create five noisy data sets with increasing

similarity between the neutrophils and the background (Fig. 5).

The similarity was reflected by the decreasing values of the

Bhattacharyya Distance (BD) [46,47] (1.61, 1.25, 1, 0.66, 0.45)

between the neutrophils and the background. The BD was

calculated from the means and variances of the neutrophils and

background in the following way [48]:
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1
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are their corresponding

means and variances. The corresponding signal-to-noise ratios

(SNR) were (25.2, 20.6, 17.4, 13.3, 10.7) dB. We calculated the

SNR as 206 logarithm base 10 of the ratio of root mean squared

(RMS) pixel intensity of the neutrophils to the RMS pixel intensity

of the background; the RMS was calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, where #{n} denotes the number

of elements (neutrophils/background), in x,y,zð Þ corresponds to the
intensity of a given element and �iidata corresponds to the average

intensity of the set. In addition to these data sets, PhagoSight also

contains a series of synthetic data sets with irregular shapes that

have been corrupted with Poisson and Gaussian noise, which is a

better model of the noise that is associated with multiphoton and

confocal microscopy [49,50]. The irregular shapes were formed by

overlapping an isotropic Gaussian, considered as the basic shape,

and six isotropic Gaussians whose centres were shifted from the

basic shape’s centre by a random distance in x and y. This

combination created a more realistic neutrophil gold standard.

Then, a combination of Poisson and Gaussian noise was added to

the gold standard to create five data sets.

The real data sets corresponded to nine sets of fluorophore-

based imaging leukocytes in zebrafish, one image in the fluorescent

channel and one DIC image over 180 time points, with differences

in neutrophil numbers (between 4 and 20), shapes, behaviour, and

fish models (neutrophil-replete but myeloperoxidase-deficient

mutant (durif) and wild-types [51]). The neutrophils were

manually tracked during 180 time points to obtain a ‘‘gold

standard’’: each neutrophil was tracked by selecting its centroid at

each time point with a custom-based MATLABH interface.

We defined two measurements of accuracy: (a) distance from

the centroids of the automatically tracked neutrophils to those of

the gold standard, DAG, and (b) distance from the centroids of the

gold standard neutrophils to those of the automatically tracked

neutrophils, DGA. It was important to use both measurements, as

there could be scenarios with good outcomes in one but not the

other measurement. For instance, if the automatic tracking would

detect just one very bright neutrophil and discard several faint

ones due to a high threshold, DAG would be small as long as the

automatic track were close to the gold standard. However, DGA

would be large as there would be many tracks in the gold standard

with no corresponding automatic tracks. The opposite case, a low

threshold that would segment and track all neutrophils correctly,

but also include noise and incorrectly track it and fail to distinguish

colliding neutrophils, would result a low DGA as the gold standard

tracks were close to the automatic ones, but a high DAG, due to all

the incorrect tracks.

For both real and synthetic cases, we modified the thresholds

from 40% to 140% from the automatically detected thresholds to

test the robustness against variation of that input parameter. As

expected, the errors increased toward the extreme values (Fig. 6).

However, the results were fairly stable for the range of threshold

values between 60% and 140%. In the synthetic sets, it was only

high levels of noise that increased the distances; the errors arose

from low thresholds that segmented noise as neutrophils incor-

rectly. For the real data sets, the thresholds between 80%–140%

provided stable results of DAG. DGA on the other hand, increased

with the thresholds, which indicated that the manual tracking

followed faint neutrophils, which were not detected by the

algorithms. Fig. 7 illustrates both sets of tracks for one synthetic

set with the threshold levels at 140% from the automatic levels (a),

and one real set with thresholds at 60% (b) and 140% (c). Thick

solid lines correspond to the automatic tracks and thin dashed lines

to the gold standard. It is interesting to notice first, that the

automatic tracks are very close to the manual tracks in both data

sets when high thresholds were selected. Second, it can be

observed that faint neutrophils were tracked manually (solid

arrows) and are even difficult to see to a human observer. These

neutrophils were not detected when the thresholds were raised and

thus the error in DGA increased. Third, when low thresholds were

selected, besides the tracks corresponding to the faint neutrophils,

there were other tracks that either correspond to noise or to a

neutrophil that was not captured in the manual tracking (dashed

arrows). As an indication of the computational complexity, the

time to process one of the real data sets, from reading the images

to producing the handles was approximately 20 seconds.

We compared the tracking results of PhagoSight against the open-

source software ICY [29] for one synthetic data set (highest noise)

(Fig. 8a,b) and one real data set (set number 6), (Fig. 8c,d). In ICY

we used the plug-in ‘‘Spot Detector’’, with ‘‘Bright spots over dark

background’’ and filtering with ‘‘Size Filtering’’ with increasing sizes as

noise had a very strong impact on the detection and subsequent

tracking. Then we used the ‘‘Probabilistic Particle Tracker’’ plug-in

with ‘‘Single motion model’’, ‘‘Brownian motion’’ and ‘‘Maximum likelihood

association’’. We observed similar behaviours when modifying the

size of the filter as the variation of the thresholds. A small filter that

allows small objects to be segmented and tracked generated a large

number of tracks; some of these tracks were close to the gold

standard and thus DGA was low but DAG was high. As the size of

the filter increased, the number of objects decreased; DAG also

decreased as DGA increased. These trends were present in both

synthetic and real data sets and the errors were comparable in

both cases.

b. Relationship between Neutrophil Volume and
Recruitment to Sites of Tissue Injury
Cell volume has been suggested to be a measure of neutrophil

activation [52] but it is difficult to assess changes in neutrophil

volume during cell recruitment in vivo. Long unbroken tracks are

required to relate the volume of individual cells to their

longitudinal position. The advantages of using PhagoSight for

volume analysis are (a) the hysteresis segmentation with post-
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processing to split large volumes formed by several cells either as

static clumps of cells at the site of injury or due to a collision during

migration, (b) the keyhole model of movement used for tracking

instead of a nearest cell which is commonly used [22], together

with the collision analysis that rendered more reliable tracks, (c)

the proofreading tools which allow the manual correction of errors

in tracking, and finally, (d) the removal of single random cells not

part of any track, which would bias the measurements, i.e. a single

object that appears at only one frame and then disappears is not

taken into account for future calculations. We therefore measured

the volume of migratory neutrophils whose tracks spanned more

than 15 minutes (30 time points) and had an absolute velocity $

0.68 mm/min (2 pixels/time point) using PhagoSight. These criteria

allowed us to analyse neutrophils migrating towards the site of

injury with long enough tracks to characterise the relationship

between volume and proximity to the site of injury, and to exclude

Figure 5. Description of the synthetic data sets. (a) One slice at t = 26 and the paths of six neutrophils shown as coloured lines. Vertical axis
indicates time. (b) Five histograms for background (noise) and neutrophils (signal) for different levels of noise. The separability is indicated by the
Bhattacharyya Distance (BD) values: highest BD corresponds to more separable classes (solid lines with no markers) and lowest BD corresponds to less
separable classes (solid lines with circle markers). (c) One slice (BD= 1.61, SNR= 25.2 dB) shown as a mesh, intensity corresponds to the vertical axis.
(d) One slice (BD= 0.45, SNR=10.7 dB). The noise can be easily compared between the two data sets.
doi:10.1371/journal.pone.0072636.g005

Figure 6. Validation of the algorithms with synthetic and real data sets. In all cases the sets were automatically tracked with PhagoSight;
input thresholds were automatically determined and then modified from 40% to 140% of the original values to test the robustness against variation
of that input parameter. (a) Distance from the automatically generated tracks to the gold standard (DAG) for the synthetic data set, BD corresponds to
the Bhattacharyya distance between background and neutrophils. (b) Distance from the gold standard to the automatically generated tracks (DGA) for
the synthetic data set. (c) DAG for the real data set, (d) DGA for the real data set. High distances for the synthetic sets are due to low thresholds that
interpret noise as neutrophils. The increase in DGA in (d) is caused by higher levels that do not detect faint neutrophils, this in turn will reduce DAG as
with the higher threshold, the neutrophils which are detected are the brightest and thus the tracking is more precise.
doi:10.1371/journal.pone.0072636.g006
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a confounding effect of groups of cells at the wound edge. The

data were expressed as volume against relative position in the field

of view. The field of view was split into 25 adjacent regions each

containing 20 MATLABH columns, with higher numbers denoting

neutrophils closer to the wound region. The volume was averaged

in each band and normalised to the mean of the data set for each

larva, which were then pooled in the final analysis.

Neutrophil volume increased as neutrophils travelled towards

the site of injury (Fig. 9). The increase was confirmed by linear

regression analysis that showed the slope is significantly non-zero

(n = 6, P,0.0001, r2 = 0.21). This strongly supports the hypothesis

that neutrophil volume increases as neutrophils are recruited to

the wound, and suggests that dynamic changes in volume analysed

in this way might be a reliable measure of neutrophil activation.

To investigate the sensitivity of the volume/position relationship to

threshold levels, we ran the analysis with two sets of thresholds: a

higher set (analysis A) and a lower set (analysis B). In both analyses,

the volume of the neutrophils increased as they migrated towards

the wound region (Fig. 9). Linear regression analysis showed that

the slope for both analyses was significantly non-zero (n = 6,

P,0.0001, r2 = 0.21).

Discussion

Here we present PhagoSight, an open-source MATLABH package

of algorithms written for the analysis of immune cells as observed

with confocal or multiphoton microscopes.

We used PhagoSight to demonstrate an increase in neutrophil

volume when migrating towards a wound region in vivo. To our

knowledge, this phenomenon has not previously been demon-

strated from observations made directly in vivo, thus simultaneously

demonstrating both the power of our zebrafish model and of

PhagoSight to detect biological phenomena. The change in cell

shape as neutrophils migrate towards the wound would only affect

the volume measurement if there was a significant change in

fluorescent intensity over time. This does not appear to be an issue

Figure 7. Comparison of automatic tracks against the gold standard. A synthetic data set is shown in (a) whilst (b,c) are real data sets. In (a,c)
the thresholds are 140% of the automatically detected values, while for (b) they are 60% of the detected values. The automatic tracks are displayed as
thick solid lines and the gold standard as thin dashed lines, and one slice of the intensity data sets is presented with the tracks. In the real data set, the
high thresholds prevented the low intensity neutrophils from being detected (solid arrows) and therefore no tracks were generated for these
neutrophils with corresponding high DGA. With lower thresholds, the faint neutrophils were detected, and other neutrophils were also tracked
(dashed arrow), this track could have been generated by noise or could have been missed during the manual tracking. It should be noticed that
where PhagoSight detected the neutrophils, the tracks are very close to the gold standard.
doi:10.1371/journal.pone.0072636.g007

Figure 8. Comparison of the segmentation and tracking results against ICY for one synthetic and one real data set. In ICY, ‘‘size filter’’
was used with increasing values of size; PhagoSight input thresholds were automatically determined and then modified from 40% to 140% of the
original. (a) Synthetic data set tracked with ICY, (b) Synthetic data set tracked with PhagoSight, (c) Real data set tracked with ICY, (d) Real data set
tracked with PhagoSight. Solid line and circle markers corresponds to distance from the automatically generated tracks to the gold standard (DAG) and
dotted line with square markers corresponds to the distance from the gold standard to the automatically generated tracks (DGA).
doi:10.1371/journal.pone.0072636.g008
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in our data set, as if this were the case, cell volume would decrease

towards the wound, in contrast to the increase in neutrophil

volume that we observe. Previously, the volume of neutrophils has

been measured using the mass of cells established by transmission

electron microscopy [53] or using the diameter of neutrophils

measured using a micropipette of known size [54]. Reconstruction

of confocal sections of images of human neutrophils migrating

through a collagen gel matrix have also been used to measure

volume in vitro [55]. Despite being unable to calculate neutrophil

volume accurately in vivo in the past, several studies in vitro have

highlighted the importance of changes in volume for the migratory

capacity of neutrophils [55,56,57].

Neutrophil volume increases due to an influx of water as the cell

membranes extend to form pseudopods, which allow the

neutrophil to migrate towards a site of injury or infection [55].

Rosengren et al. [55] demonstrated that human neutrophils

increase in volume when exposed to a concentration gradient of

a stimulating substance, but did not significantly increase in

volume when stimulated by a single concentration of the same

substance. Aquaporins have been shown to play a crucial role in

this process. Karlsson et al. [57] demonstrated that phosphoryla-

tion of aquaporin 9 and its translocation to the cell membrane was

necessary for the activation and migration of primary human

neutrophils.

PhagoSight, like other algorithms, has limitations, for example:

when a collision is detected between two neutrophils, the

segmentation performed by PhagoSight is rather good as judged

by a visual observation. However, when neutrophils start to

accumulate at the wound, the collision may involve three or more

neutrophils, and the higher the number of neutrophils, the higher

the likelihood of performing an incorrect segmentation. A second

limitation is related to the speed at which the cells move from time

point to time point. When a cell jumps a distance several times its

size, and, very importantly, there are other cells in the vicinity, it

can also create errors in the tracks. For those cases, the possibility

of manual intervention is useful as a user can perform track

corrections. However, in most of the data sets that we tracked for

this paper, both synthetic and biological, and other published

results [44,51,58], PhagoSight provided satisfactory results with

minimum human intervention. Another important issue to note, is

that some of the measurements derived from the data sets are

dependent on an arbitrarily defined ‘‘wound region’’, a wider

wound region could imply that more neutrophils enter the wound

and the reverse would happen with a narrower region.

Conclusion

We have developed PhagoSight for the tracking of immune cells

in a zebrafish model, although there is broad applicability of these

approaches. We have demonstrated the potential of our algorithm

to detect parameters of biological significance and have described

the additional parameters available in PhagoSight which may be of

value in understanding the complex behaviour of immune cells in

future studies.
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