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Neutrophils must be removed from inflammatory sites for inflammation to resolve. Recent work in zebrafish has shown
neutrophils can migrate away from inflammatory sites, as well as die in situ. The signals regulating the process of reverse migration
are of considerable interest, but remain unknown. We wished to study the behaviour of neutrophils during reverse migration, to
see whether they moved away from inflamed sites in a directed fashion in the same way as they are recruited or whether the inherent
random component of their migration was enough to account for this behaviour. Using neutrophil-driven photoconvertible Kaede
protein in transgenic zebrafish larvae, we were able to specifically label neutrophils at an inflammatory site generated by tailfin
transection. The locations of these neutrophils over time were observed and fitted using regression methods with two separate
models: pure-diffusion and drift-diffusion equations. While a model hypothesis test (the F-test) suggested that the datapoints
could be fitted by the drift-diffusion model, implying a fugetaxis process, dynamic simulation of the models suggested that
migration of neutrophils away from a wound is better described by a zero-drift, “diffusion” process. This has implications for
understanding the mechanisms of reverse migration and, by extension, neutrophil retention at inflammatory sites.

1. Introduction

The fate of neutrophils following completion of the inflam-
matory programme is of critical importance for the outcome
of episodes of acute inflammation and can determine
whether there is prompt healing of a wound or the develop-
ment of chronic inflammation and tissue injury. Neutrophils
recruited to sites of inflammation may leave the site or die in
situ [1]. The most widely accepted mechanism of neutrophil
disposal is the programmed cell death or apoptosis, of the
neutrophil followed by macrophage uptake and clearance
(reviewed in [2]). Recently, other routes have been proposed;
neutrophils may move away from the inflamed site into the
bloodstream (“reverse transmigration” [3]), by migration

through other tissues (“retrograde chemotaxis” or “reverse
migration” [4–6]), or be lost into the inflammatory exudate
[7, 8]. Current understanding of the process of reverse migra-
tion is reviewed elsewhere [9]. The uncertainty as to the in
vivo fates of individual cells relates in part to the difficulty
in following individual cells during inflammation resolution
in vivo. The transgenic zebrafish model is emerging as a
key model for the study of vertebrate immunity [10] and
allows direct imaging and tracking of individual cells, and
of populations of cells allowing their fate to be determined
in vivo. Using a transgenic system, in which neutrophils
express the fluorescent protein Kaede, notable for its ability
to change fluorescence characteristics on exposure to light,
we have assessed the fates of inflammatory neutrophils as
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inflammation resolves. Although others have used a similar
system to label immune cell populations responding to much
smaller stimuli [6], there has been no detailed study of the
migratory patterns of neutrophils during inflammation
resolution following tail transection.

Using dynamic modelling techniques based on the drift-
diffusion equation, we tested the competing hypotheses that
neutrophils were directed away from the wound region by
proresolution agents produced locally or that they cease
responding to existing chemokine gradients and redistribute
as a feature of stochastic migratory behaviours.

2. Methods

2.1. Reagents, Zebrafish Lines and Maintenance. All reagents
were from Sigma-Aldrich (Poole, UK) unless otherwise
stated. Zebrafish were maintained according to standard pro-
tocols [11]. The Tg(lyz: Gal4)i252 [12] and Tg(UAS:
Kaede)s1999t [13] lines are described elsewhere.

2.2. Microscopy, Photoconversion, and Image Processing. For
confocal microscopy, a Perkin Elmer Ultra VIEW VoX ERS
6FR Laser Confocal Imaging System (Perkin Elmer INC,
USA) with an inverted Olympus IX81 microscope, equipped
with six diode laser lines and a Yokogawa CSU-X1 spinning
disk, was used to capture images on a 14-bit Hamamatsu
C9100-50 Electron Multiplying-Charged Couple Device
(EM-CCD) peltier-cooled camera (Hamamatsu Photon-
ics Inc.), through an appropriate filter. For fluorescence
microscopy, a Nikon Eclipse TE2000-U Inverted Compound
Fluorescence Microscope (Nikon UK Ltd) was used with a
Hamamatsu 1394 ORCA-ERA (Hamamatsu Photonics Inc.).
Images were captured using Volocity build 5.3.2. A Perkin
Elmer Ultra VIEW PhotoKinesis device, attached to the
microscope described before, was used to photoconvert the
Kaede protein using a 405 nm laser line. The device was
calibrated using a glass microscope slide (Menzel-Gläzer)
covered with fluorescent highlighter ink (Stabilo Boss) as
a photobleachable substrate (according to manufacturers
instructions). Photoconversion was performed using 40%
laser energy for 120 cycles of the 405 nm laser line. The
embryos were then released from the agarose gel and trans-
ferred to fresh E3. The petri dishes containing the embryos
were wrapped in tinfoil to prevent background photocon-
version. At the timepoints indicated, embryos were again
mounted and widefield fluorescence Z-stacks taken. Neu-
trophil segmentation was performed in Volocity based on
fluorescence intensity, size, and “separate touching objects”
feature. The XY position of each fluorescent cell at each
timepoint was determined.

2.3. Dynamic Modelling of Neutrophil Behaviour. Neutrophil
centroid coordinates in time were exported into Matlab
(MathWorks, MA), for analysis. To describe quantitatively
the population dynamics of neutrophils, drift-diffusion and
pure-diffusion variants of the simple random walk model
were used ([14] see Supplementary Material for full details
available online at doi: 10.1155/2012/792163). Using param-
eters identified in these models, the behavior of each model

was tested by simulation using a Monte Carlo procedure and
the distribution of simulated cell populations compared to
the observed data.

3. Results and Discussion

3.1. Characterising the Process of Reverse Migration In Vivo.
Reverse migration, either into the circulation or back into
tissues, has been described in the zebrafish model [4–6, 15].
In order to define the fates of inflammatory neutrophils,
we photoconverted neutrophils in the immediate vicinity of
the wound edge (approximately 80 microns) (Figure 1(a))
at defined periods after initiation of inflammation by
tailfin transection. Time-lapse videomicroscopy was then
performed on a compound fluorescent microscope, and the
position of individual cells tracked in Volocity. Kaede protein
and its photoconverted form remained stable and detectable
well beyond the duration of these experiments (data not
shown).

In over 500 hours of observation, no photoconverted
neutrophil was ever seen to have left the fish from the wound,
to have entered the circulation, or to have migrated via
the circulation into a distant site. Neutrophils were seen to
migrate away from the site of injury from around 8 hours
after injury (Figure 1(b)). Photoconverted neutrophils can
be seen to migrate away from the site of injury over the 16-
hour time-lapse (Supplementary Movie 1 available online at
doi:10.1155/2012/792163). At 4 hpi, neutrophils are densely
accumulated around the site of injury, but over the duration
of the time-lapse a population of neutrophils appears to
spread into the surrounding tissue. Plots of the distance
of each cell from the wound edge against time reveal a
distinct pattern of neutrophil movement: neutrophils appear
to be constrained in their behaviour, gradually increasing
their mean distance from the wound, at a rate slower
than their maximum speed would permit (Figure 1(c)). The
differences between these findings and those of other groups
[6] have many potential explanations, including the use
of different promoters, different wounding protocols, and
different labelling systems.

3.2. Neutrophils Continue to Be Recruited after Peak Inflam-
mation. In mammalian inflammation, neutrophil influx
ceases early in the inflammatory response, at least in rabbit
models of pneumonia [16]. The neutrophil Kaede model
allows us to distinguish the behaviour of neutrophils present
at the site of inflammation from the behaviour of those cells
in the process of being recruited. The montage in Figure 1
shows only the red photoconverted neutrophils. During the
time-lapse, images were also taken using filter sets optimised
for green fluorescence. The green neutrophils identified were
cells that were not present at the site of injury at 4 hpi.
The behaviour of these cells shows that neutrophils are still
recruited to the site of inflammation at four hours after
injury (Figure 2). There are no green neutrophils seen at
the site of injury at 4 hpi because all the cells present have
been photoconverted. There is an accumulation of green
neutrophils at the site of injury from 6 hpi until 14 hpi.
Following this, the number of green neutrophils at the site of
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Figure 1: Inflammatory neutrophils exhibit restricted migration away from the site of tissue injury. 3 dpf embryos from transgenic
zebrafish expressing Kaede in neutrophils were subjected to tailfin transection under anaesthesia using a sterile scalpel. The embryos were
recovered for 4 hours. At four hours after injury the embryo was mounted in 0.5% low melting point agarose for imaging on a Laser
Confocal System (Perkin Elmer Inc). The PhotoKinesis device was then used to photoconvert all neutrophils present within the tip of
the tailfin. Photoconversion was carried out according to the methods described (120 cycles of 40% 405 nm laser energy), and time-lapse
videomicroscopy was performed using a TE2000 fluorescent inverted microscope (Nikon). (a) Composite images of DIC overlaid with
the red and green fluorescence channels showing a representative zebrafish tail before (above) and after (below) photoconversion. (b) A
montage of DIC images overlaid with the red fluorescence channel at then timepoints indicated after tailfin injury. The redistribution of
photoconverted cells can be clearly seen over time. (c) For each neutrophil in six individual fish, the distance from the wound was calculated
using algorithms within Volocity and plotted against time.

injury falls. Where individual cells can be seen and followed
over time, the pattern of accumulation of neutrophils during
inflammation can be accurately determined. This technique
has increased sensitivity for detecting continued influx
compared to mammalian labelled-cell techniques, and this
may explain the differences seen from rabbit pneumonia

models where influx is no longer detectable shortly after
initiation of the inflammatory episode [17].

3.3. Neutrophils Actively Migrate (“Drift”) toward a Wound.
Random walk models are often used in biology to describe
the movement dynamics of individuals and populations
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Figure 2: At peak inflammation, new neutrophils are recruited to the site of injury. Photomontage generated from the time-lapse data used
in Figure 1(b), and Supplemental Movie 1, imaged using the GFP filterset, showing neutrophil recruitment to the site of injury over the same
timespan. Green neutrophils can be seen to accumulate at the site of injury between 6 and 14 hours after injury.

[14, 18] and particularly for cell movement patterns [19–21].
Over short timescales neutrophils exhibit correlated random
walk behaviour. However, these local correlations decay over
time. The time between our data observations is greater than
typical neutrophil persistence times [22] and thus we are
able to ignore these local correlations and apply a simple
random walk model [18]. To identify any global directional
bias apparent in the movement of neutrophils, the simple
random walk model was applied to aggregate data. The con-
tribution of active recruitment (chemotaxis) of neutrophils
and its reverse (fugetaxis) were examined by establishing
the positions of all neutrophils at 4 hours following tail
fin transection and modelling their behaviour using a drift-
diffusion equation. Non-photoconverted neutrophils were
examined to determine the behaviour of neutrophils not at
the wound site at the time of photoconversion. Fitting the
drift-diffusion equation to the dataset treats the neutrophils
as point objects and asks whether they are behaving like
simple particles redistributing stochastically (“diffusion”) or
whether there is an element of active movement towards or
away from a chemical gradient (chemotaxis or fugetaxis).
The equation (full description in supplemental data) gen-
erates a value for the drift co-efficient, for which non-zero
values reflect an active rather than purely random migration.
The drift was estimated from the linear relationship between
time and mean cell distance from the wound (Figure 3). For 6
independent experiments, the coefficient estimates ranged in
value from 0.11 to 0.95 μm/min (Table 1). As expected, in all
cases cell populations demonstrated active drift toward the
wound, consistent with migration directed by a chemotactic
process.

3.4. Migration of Neutrophils away from a Wound Is Better De-
scribed by a Zero-Drift, “Diffusion” Process. The same anal-
ysis was performed for photoconverted cells present at the
site of the wound at the time of photoconversion, 4 hours
following the tailfin transection (Table 2). Drift-diffusion
and pure-diffusion model fits are compared in Figure 4.

Table 1: Estimated drift coefficients for the model of drift-diffusion
describing cell migration toward the wound.

Dataset Drift coefficient (std dev.)

(1) −0.85 (0.13)

(2) −0.95 (0.06)

(3) −0.11 (0.02)

(4) −0.32 (0.02)

(5) −0.48 (0.08)

(6) −0.37 (0.06)

All data −0.35 (0.03)

Mathematical testing of the fit of the two models suggested
that the drift-diffusion model fitted better with the data,
but we were alert to the possibility that drift-diffusion
models might appear superior due to the better ability of
quadratic fits to model real, noisy data than simple linear fits.
Using modeled data comparing the predicted distributions of
neutrophils over time by applying drift-diffusion versus pure
diffusion models gave a dramatic result: the cell population
mode of the drift-diffusion model moved away from the
wound over time (Figure 5, red line), in contrast to the
observed data, where the mode remained close to the wound
(Figure 5, yellow bars). The pure-diffusion model accurately
captured this qualitative behavior, more accurately reflecting
the observed distribution of neutrophils over time (Figure 5,
blue line), suggesting that stochastic redistribution might
best describe the pattern of neutrophil behavior during
inflammation resolution.

For the larger wounds used in these studies, our data sup-
port a stochastic redistribution of neutrophils during inflam-
mation resolution. However, to definitively prove this will
require more advanced modelling techniques. For smaller
wounds, different principles may apply. Previous studies have
suggested that neutrophils leaving the wound follow the
same dynamics as those arriving, having the same velocity
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Figure 3: Nonphotoconverted neutrophils actively migrate into the wound region. (a) Variation over time of mean cell distance from the
wound for the nonphotoconverted (green) neutrophils, observed in each subject 1–6 (black line). Overlaid on each graph is the prediction
of mean distance obtained from the linear model used to characterise the initial drift (red line). The time is measured from the start of
observations which commenced 4 hours after injury. The cell count in subject 6 (bottom right) was low and sometimes zero near the end of
the dataset, which explains the missing sections. (b) Data and model combined over all subjects.
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Figure 4: Inflammatory neutrophil behaviour can be fitted by pure-diffusion and drift-diffusion models. (a) Plots of mean squared cell
distance from the wound against time for the photoconverted (red) neutrophils for datasets 1–6. Also shown on each plot are the fits for the
linear model corresponding to pure-diffusion with zero drift (blue line) and for the drift-diffusion model (red line). (b) Data and models
combined over all subjects.
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Figure 5: Simulation reveals a pure-diffusion model to be a better fit to the real data. Both the drift-diffusion model (red line) corresponding
to drift (0.26 μm/min) and diffusion (8.0 μm/min) and the pure-diffusion model (blue line) corresponding to diffusion (41.8 μm/min) were
simulated 1000 times. The simulations were used to produce a distribution for the spatially binned data of each model. The mean values of
cell distribution over space are shown by the red and blue lines, respectively (in terms of distance from the wound). Overlaid on these is a
corresponding histogram representation (yellow) of the real data (combined over all fish). The histogram bins have width 100 μm and are
centered at 50 μm to 950 μm from the wound. The pure-diffusion model shows a correct qualitative prediction of cell distribution whereas
the drift-diffusion model predicts that the population mode moves away from the wound over time, in contrast to the observed data.

Table 2: Estimated coefficients for the drift-diffusion model and pure-diffusion model of cell migration away from the wound (standard
deviation is given in brackets). An F-test value >5 indicates that the drift-diffusion model should be preferred to the pure-diffusion model.

Dataset
Drift-diffusion model Pure-diffusion model F-test

Drift coefficient Diffusion coefficient Diffusion coefficient

(1) 0.25 (0.05) −4 (10) 27 (2) 38

(2) 0.27 (0.07) 23 (15) 56 (4) 28

(3) 0.19 (0.05) 13 (10) 32 (3) 14

(4) 0.21 (0.05) 32 (11) 54 (3) 14

(5) 0.35 (0.07) −8(14) 55 (4) 82

(6) 0.27 (0.03) −7 (6) 31 (2) 145

All data 0.26 (0.02) 8 (3) 41.8 (0.10) 267

and directionality [15]. However, those data rely on prese-
lection of tracks directly leaving the wound, and may give
different results to studies considering the whole population
of cells.

This approach uses static point data for each neutrophil;
an alternative approach would be to investigate the dynamics
using individual track data. Such an approach has been
applied to proteins in living cells [23, 24] and to in vivo
melanoma cell tracks [25]. Care is needed when considering
cell tracks as a naive approach could misrepresent short-
term correlations in track direction as biased migration. In

addition, to identify tracks requires faster sampling of obser-
vations which must be balanced against total experiment
runtime.

Although the pure-diffusion model appears to fit the
data well, it consistently underestimates the number of
photoconverted cells remaining adjacent to the wound, sug-
gesting some cells are actively retained at the wound site.
To completely address this will require the development
of systems incorporating multiple models to reflect the
dynamic mix of neutrophil behaviours present within a
single population.
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4. Conclusions

From this analysis, we conclude that the two key neutrophil
migratory behaviours regulating neutrophil numbers during
the inflammatory response—movement of neutrophils in
and out of wounds—are qualitatively different processes.
Neutrophils are recruited actively towards the site of injury
(“drift”), but as inflammation resolves, their movement away
is better modelled by stochastic redistribution (“diffusion”).
This has implications for our understanding of how neu-
trophils might be retained at sites of inflammation in disease
states.
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