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Abstract

As we begin to understand the signals that drive chemotaxis in vivo, it is becoming clear that there is a complex interplay of
chemotactic factors, which changes over time as the inflammatory response evolves. New animal models such as transgenic
lines of zebrafish, which are near transparent and where the neutrophils express a green fluorescent protein, have the
potential to greatly increase our understanding of the chemotactic process under conditions of wounding and infection
from video microscopy data. Measurement of the chemoattractants over space (and their evolution over time) is a key
objective for understanding the signals driving neutrophil chemotaxis. However, it is not possible to measure and visualise
the most important contributors to in vivo chemotaxis, and in fact the understanding of the main contributors at any
particular time is incomplete. The key insight that we make in this investigation is that the neutrophils themselves are
sensing the underlying field that is driving their action and we can use the observations of neutrophil movement to infer
the hidden net chemoattractant field by use of a novel computational framework. We apply the methodology to multiple in
vivo neutrophil recruitment data sets to demonstrate this new technique and find that the method provides consistent
estimates of the chemoattractant field across the majority of experiments. The framework that we derive represents an
important new methodology for cell biologists investigating the signalling processes driving cell chemotaxis, which we
label the neutrophils eye-view of the chemoattractant field.
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Introduction

There are many cell-types whose movements are driven by

sensing external chemical gradients in the process known as

chemotaxis [1,2]. For instance, in response to tissue damage and

infection resulting from wounding, neutrophils are recruited to the

site of injury guided by chemoattractants [3,4]. Neutrophils are a

key component of the body’s immune system, responding rapidly

to bacterial incursions, sterilising microbial pathogens and working

cooperatively with other cells of the immune system (e.g.

macrophages) to resolve infections and then switch from a pro-

to an anti-inflammatory state [5,6]. There has been recent

progress on representing our knowledge of chemotaxis in

neutrophils and eukaryotic cells in mathematical models, for

instance in gradient sensing [7], pseudopod formation [8,9] and

cell polarization [10]. However, there are still many open

questions regarding the complex signalling processes that drive

neutrophil migratory responses [11], which are now being

increasingly studied in vivo [12–14]. Since targeting chemotaxis is

a potential way to reduce the neutrophil burden in inflammatory

disease, visualising the process in vivo and using mathematical

modeling approaches on the data obtained should provide new

insights, with the ultimate goal of developing new therapeutic

approaches for treating unwanted inflammation.

In the past few years, powerful techniques based on transgenic

animal models have emerged that allow us to view neutrophil

migration to a wound in vivo, such as the zebrafish model (Danio

rerio), where neutrophils are labelled with a green fluorescent

protein (GFP) [15,16]. The near transparency of zebrafish larvae,

in conjunction with GFP-labelling of the neutrophils, facilitates

observation and recording of neutrophil movement by videomi-

croscopy. The use of this technique gives us new opportunities to

study neutrophil recruitment and inflammation resolution as

caused by natural processes of chemical signalling, which may

provide important insight into, for instance, the role of neutrophils

in respiratory disease [17,18].

One challenge that in vivo experiments present, in comparison to

in vitro studies of neutrophil responses to a highly regulated

chemical gradient [19–21], is the identification of the underlying

chemoattractant field, which is unknown and not controlled (by
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the investigator). Whilst it is possible to image specific chemicals

that might be acting as signalling agents [22], the direct

observation of the net field (or simultaneous observation of all

signalling agents) driving neutrophil movement is likely to be

always beyond reach. This problem motivates the development of

methods for chemoattractant field identification, not from direct

measurement, but from functionally related variables such as

neutrophil movement.

From video recordings of neutrophil action, their response to

the surrounding chemoattractant field driving their movements

can be observed, although that field itself remains hidden from

view. The question therefore arises - can we infer the underlying

chemoattractant field from observations of the cell movement? If

this were possible, we could then see the chemoattractant

landscape from the perspective of the neutrophil itself - a

neutrophil’s eye view of the chemoattractant field, providing insight

into the guidance cues directing their movement.

This type of problem is one typically encountered in signal

processing, where a hidden variable of interest must be inferred

from functionally related observations [23,24]. Here, we pose the

question: what is the function that maps from the observed signal

to the hidden variable - from the cell movement to the

chemoattractant field? In this study, we create a novel framework

for estimating and visualising the chemoattractant field based on a

simple assumed relationship between cell movement and field.

Motivated by the Keller-Segel model of chemotaxis [25,26] we

assume that cell velocity is proportional to the chemoattractant

gradient. From this assumption we derive an identification scheme

using a multiscale basis function decomposition [27,28] of the

chemoattractant field combined with a Bayesian approach to

parameter estimation [29]. This data-driven inference framework

is contingent on the availability of cell velocity estimates over

space, and therefore requires an informative set of cell tracks.

Hence, the quality of the derived model is directly linked to the

information contained in the observations of cell movement.

In order to investigate the chemoattractant field inference

framework we applied the technique to (i) an in vitro dataset of

human neutrophils responding to interleukin-8 [30] and (ii) to a

number of datasets (n = 15) of neutrophil recruitment in vivo in the

zebrafish. The in vivo observations of cell movement were obtained

using confocal video microscopy from a transgenic line of zebrafish

[15]. GFP-labelling of cells facilitated the process of segmentation

and tracking: we used a specially designed neutrophil tracker to

obtain cell tracks in terms of centroid positions [31]. Position

tracks were then used to derive velocity estimates of the cells by a

signal derivative estimation algorithm [32], which made use of the

Kalman smoother state estimator [33]. Neutrophil velocity

estimates were used to drive the field inference algorithm (the

full procedure is summarised in Figure 1). The resulting data

provide novel insights into the in vivo characteristics of the field

driving neutrophil movements, and demonstrate a powerful new

technique for estimating and visualising the chemoattractant

landscape from the perspective of the cell.

Results and Discussion

Velocity of neutrophils in the cell recruitment phase
Zebrafish were prepared and imaged from 30–60 mins after

injury as described in Methods. The tracking algorithm (Methods)

was used to segment and link cell positions across video frames,

and from the cell positions the centroids were extracted to form

tracks. The cell tracks were typically spatially distributed either

side of the notochord, around vascular structures, presumably due

to the physical characteristics of the local environment (Figure 2).

The tracks tended to cluster either above or below the notochord

and to lie in a relatively narrow space along the dorso-ventral axis

(e.g. Fish 1 in Figure 2). This might relate either to physical factors

of the anatomical location or to the action of early recruited cells

passing through the tissue easing the passage of subsequent cells,

creating a preferred pathway for movement to the wound.

From observations of cell centroid position we estimated cell

velocity by use of a Kalman smoothing algorithm (see Methods).

In order to validate the velocity estimation algorithm, smoothed

position and velocity estimates were compared to their raw signal

counterparts. Raw signals in this case correspond to the output of

the tracking algorithm for position, and central differencing

applied to the raw position estimate for velocity (Figure 3). It is

evident from inspection of the example tracks shown in Figure 3

that the smoothing algorithm does not distort the underlying track

but rather smooths high frequencies from the position and velocity

signals, which are likely due to noise in the case of position, and

high frequency noise amplification due to differencing in the case

of velocity. The velocities of cells were typically in the range 210

to 10 mm/min and the distribution of velocities were peaked

around 0 mm/min (Figure 4A–B). The higher peak around 0 mm/

min in the Y-direction velocity histogram compared to the X-

direction was probably due to the more active movement of

neutrophils in the X-direction, corresponding to neutrophils

travelling towards the wound from the anterior end.

The primary result of using the smoothing algorithm for velocity

estimation was a set of velocity signals pertaining to each fish,

suitable for use in the chemoattractant field inference framework.

Inference of the chemoattractant field from observations
of cell movement

The chemoattractant field inference framework (see Methods)

was used to estimate the underlying chemoattractant field driving

neutrophil movement. In order to provide a validation that the

modelling framework was able to accurately infer the chemoat-

tractant field, we applied the framework to an in vitro data set of

human neutrophil chemotaxis [30]. In that study, a linear gradient

of the chemokine interleukin-8 was set-up using a microfluidic

generator. Neutrophil tracks from one assay are shown in

Figure 5A (from video 2 of the supplementary material of [30]).

The inferred chemoattractant field increased from left to right,

corresponding to the reported level of interleukin-8 (Figure 5B and

C). In addition, the inferred field was skewed towards the lower

right corner. This can also be seen in the directional bias of the

neutrophil movements (Figure 5D). We cannot comment on

whether this bias in cell movement and field inference was a

chance occurrence or the result of some non-linearity within the

gradient. However, the evidence from the movement data

demonstrates a skew, which the data-driven inference framework

must reflect. Hence, the field inference is providing a view of the

chemoattractant landscape as sensed and acted on by the

neutrophils themselves.

For the case of in vivo data the net chemoattractant landscape

driving neutrophil action was not directly measurable, but was

testable against the independent assumption that the field would

be of higher magnitude close to the wound and weaker in regions

distant from the wound. We observe from 13 of the 15 fish (Fish 1–

7, 9, 11–15) that the estimated field conforms to this assumption -

that the field was of higher magnitude close to the wound and

decayed away from the wound (Figure 6). In the case of Fish 8 the

field did exhibit a peak as expected near the wound along with a

high peak towards the anterior end that can be explained by the

movement of two neutrophils at the anterior end moving away

from the wound with relatively high velocity. For Fish 10 we note

Data-Driven Inference of the Chemoattractant Field
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that there was an unusually low number of cell tracks (*20 tracks),

which appeared to be insufficient for driving the estimation

framework (see Figure 2, Fish 10). These data were included in the

analysis for completeness, to avoid introducing unintentional bias

into the data analysis. Taken as an ensemble, the results provide

consistent support for the field inference framework and the

assumptions upon which it was constructed.

The chemoattractant field inference framework was derived

from the assumption that cell velocity was proportional to the

gradient of the field, which is a relationship described in the

Keller-Segel model of chemotaxis [25,26]. The proportionality

model used here may be a simplification of the true complexity of

the neutrophil movement-chemoattractant gradient relationship,

however, this framework could be extended and modified in the

future under modified assumptions, whilst retaining the funda-

mental approach. For instance, the assumption of a linear

relationship between chemottractant gradient and velocity might

benefit from refining at the upper extremes of the gradient range,

where we might expect a nonlinear relationship, such as a

saturation in velocity, to more accurately reflect neutrophil action.

A key aspect of the work presented here is the initial development

of a data-driven inference framework, which builds on relation-

ships expressed through existing biological models, and demon-

strates how observations of cell movement can be used to estimate

the hidden field driving those cell movements.

The near transparency of the zebrafish larva, along with the

ability to use genetic reporters of cell type and function, has led to

the discovery of Hydrogen Peroxide gradients during wound

healing [22]. These gradients are important in recruiting the first

wave of neutrophils, but rapidly decline. It is striking how similar

those gradients are qualitatively to those inferred here. As

technology advances, it will become increasingly important to

know to what degree the observed gradients match the gradient to

which the neutrophils are responding, which we suggest might be

achieved by comparing observations of signalling agents to the

chemoattractant field inferred using the framework proposed here.

In this investigation we have demonstrated that the modelling

framework reflects neutrophil action in vitro. In future experiments,

we hope to test the applicability of these approaches for known

gradients in vivo, which more accurately reflects the complex

environments neutrophils encounter in human disease settings.

We have presented the first step in visualising a static

chemotactic gradient in vivo, and future advances will seek to

address the relative importance of different chemotactic gradients

as they evolve over time. Niethammer et al. [22] also show the

evolution of the hydrogen peroxide gradient over time, and a key

area for extending our work will be timelapse experiments that will

provide analogous insight into the dynamic behaviour of the

inferred chemoattractant field. This will require a description of

the evolution of the spatial field over time using data-driven

spatiotemporal identification techniques that are suitable for

application to linear [34,35] and possibly nonlinear [36–38]

dynamic systems.

Furthermore, our analysis has begun as a two dimensional

system, aided by the properties of the zebrafish fin, but future work

in this system will allow analysis to be extended to three

dimensions. This will be a particularly important advance if this

is to be extended to the emerging field of in vivo inflammation

imaging in mouse [39].

In summary, the results presented here demonstrate the

effectiveness of a novel and simple-to-implement chemoattractant

field inference framework, which enables visualisation of the

inferred field driving neutrophil movements: a quantity that is not

directly measurable.

Methods

Ethics Statement
All animal work was performed according to guidelines and

legislation set out in UK law in the Animals (Scientific Procedures)

Figure 1. Zebrafish experimental setup and neutrophil analysis procedure. A: Zebrafish larva from the transgenic line, Tg(mpx:GFP)i114.
Neutrophils are visualised by excitation of green fluorescent protein, as previously described (Renshaw et al., 2006). The zebrafish were prepared by
transection of the tailfin at the site indicated to elicit an inflammatory response, which caused recruitment of the neutrophils to the site of injury. B:
The chemoattractant field inference framework. Firstly, images of neutrophil recruitment to the zebrafish wound site were acquired by video
microscopy. The neutrophil centroid positions were then obtained from a segmentation and tracking algorithm. Velocities of the neutrophils were
estimated from the neutrophil centroid tracks using a Kalman smoother and lastly, the velocity estimates were used in the inference of the
chemoattractant field.
doi:10.1371/journal.pone.0035182.g001

Data-Driven Inference of the Chemoattractant Field
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Act 1986. Ethical approval was given by the University of Sheffield

Local Ethical Review Panel.

Image acquisition
The neutrophil specific fluorescent zebrafish line

Tg(mpx:GFP)i114 [15] was used for tracking experiments. Zebra-

fish strains were maintained according to standard protocols

(Nusslein-Volhard, 2002). Adult fish were maintained on a 14/

10 hour light/dark cycle at 280C in UK Home Office approved

facilities in the MRC CDBG aquaria at the University of Sheffield.

Inflammatory responses were elicited in three days post-fertiliza-

tion (dpf) zebrafish embryos by tail transection as previously

described (Renshaw et al., 2006: Elks et al., 2011). Injured

embryos were mounted in 1% low-melting point agarose (Sigma-

Aldrich, St. Louis, MO) with 0.168 mg/ml Tricaine (Sigma-

Figure 2. Neutrophil centroid position tracks. The neutrophil tracks (colour lines) were obtained from a segmentation and tracking algorithm
and are shown here in relation to the zebrafish image (greyscale), where the zebrafish image of dimension 1000|1000 pixels has been zoomed on
the vertical axis to the 100–900 pixel range.
doi:10.1371/journal.pone.0035182.g002

Data-Driven Inference of the Chemoattractant Field
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Aldrich) as an anaesthetic. Mounted embryos were imaged at one

hour post-injury (hpi) on an UltraVIEWVoX spinning disk

confocal microscope (Perkin Elmer Inc., Waltham, MA) using

brightfield and laser excitation at 488 nm for GFP. Eight z-stacks

through the whole tail thickness were acquired every 90 seconds

over the timelapse period of one hour. A motorized stage on the

spinning disk allowed multiple embryos to be imaged in one

timelapse session. Acquisition of the timelapse images was

performed in Volocity 5 (Improvision, Perkin Elmer Inc.), before

exporting the data as multiple TIFF files for the analysis described

below.

Neutrophil tracking
In order to obtain tracks of neutrophil centroid positions we

used a modification of a ‘keyhole’ tracking algorithm previously

applied to red blood cells [31].

Segmentation. In the segmentation step, the raw video

frames were transformed to a sequence of binary images

containing segmented foreground objects (the neutrophils). Due

to the large frame size of the zebrafish images (1000|1000 pixels)

a pyramid level method was used to reduce computational

complexity and associated processing time [40]: at each level a

group of four contiguous voxels were averaged to produce a new

pixel, thereby halving the number of rows and columns of the

image. In this case we used one level only, to reduce the image

from 100061000 to 5006500 pixels. The level processing method

had the added benefit of reducing noise by smoothing the raw

image.

The intensity of each video frame was thresholded using a

hysteresis method, where voxels below a lower threshold were

classified as background and those above a higher threshold were

classified as neutrophils. The remaining voxels, between these two

levels, were then classified as neutrophils if they were in contact

with voxels above the high threshold or background otherwise.

Both thresholds were automatically determined using Otsu’s

algorithm [41], first on the reduced data for the high level and

the logarithm of the data for the lower level. The 3D stack of

images were reduced to 2D for the purposes of this investigation by

aggregating across each image slice in the 3D stack, which

simplified the subsequent analysis.

Once the neutrophils had been segmented they were individ-

ually labelled. Finally, we obtained the centroid of each segmented

neutrophil and also the distance from any neighbours.

Tracking. A keyhole model was used to link tracks at

contiguous frames, described fully in [31]. To outline the

method, the keyhole model predicts the most probable landing

position of a neutrophil at sample time kz1 by extrapolating from

the positions at samples times k{1 and k. The predicted position

of the neutrophil at sample time kz1 was described by two

regions: (i) a narrow wedge (60 deg wide) oriented towards the

predicted landing position, and (ii) a truncated circle (300 deg) that

complemented the wedge - together they resemble a keyhole.

Initially, all segmented neutrophils were examined for possible

parent-child relationships using the keyhole model and then a

reduced number were formed into a series of tracks. Finally, a

post-processing stage was implemented to remove links in tracks

that might have been the result of noise and to join sections that

had been split in error at the first tracking stage. To perform this

correction the keyhole model was used in the backwards time

direction.

Figure 3. Typical examples of neutrophil tracks and neutrophil velocity estimates. A and D: The image on the left shows a highlighted red
track that is zoomed in the plot on the right, in which the centroid positions extracted from the tracking algorithm (black) and smoothed track
estimate (red) are compared (the open circle indicates the track start point and the filled circle indicates the track end point). B and E: X-Y cell centroid
position estimates corresponding to tracks highlighted in A and B are shown as signals with respect to time produced by the tracking algorithm
(black) and estimates from the smoothing algorithm (red). C and F: X-Y velocity estimates (raw estimates in black and smoothed estimates in red),
corresponding to position signals in B and E. Raw estimates of velocity were obtained by numerical differencing (central difference method) applied
to the tracker position estimates.
doi:10.1371/journal.pone.0035182.g003

Data-Driven Inference of the Chemoattractant Field
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The tracking algorithm produced estimates of centroid position

tracks, defined as coordinates in space,

yk~ yk,s1
,yk,s2

� �T

ð1Þ

where sj , j[(1,2) refers to the spatial dimension of the two-

dimensional image and where yt~kT is denoted as yk, where T is

the sampling time.

The tracking algorithm was applied to both the in vitro data set

(video 2 from the supplementary material of [30]) as well as the

zebrafish data.

Neutrophil velocity estimation
There are a number of approaches to signal extraction for

estimating signal derivatives, which include fitting splines to the

signal, frequency domain extraction, e.g. denoising using wavelets,

as well as smoothing [42]. The method used here is based on a

Taylor-series expansion of the signal in conjunction with Kalman

smoothing, which was developed by Fioretti and Jetto [32].

To outline the method, the evolution of the derivatives through

time (neutrophil position, velocity, acceleration,…), in each spatial

direction s1 and s2, are described by the discrete-time state-space

model,

xkz1~Fxkzwk, ð2Þ

yk~Hxkzek, ð3Þ

where the state vector at sample time k, xk[Rnx , contains up to

nd~nx=2{1 signal derivatives in each spatial direction,

xk~ xk,s1
,x’k,s1

, . . . ,x
(nd )

k,s1
,xk,s2

,x’k,s2
, . . . ,x

(nd )

k,s2

� �T

, ð4Þ

and where F[Rnx|nx is the state transition matrix, H[Rnx is the

measurement matrix, yk[R2 is the vector of neutrophil centroid

positions defined in eqn (1) and where wk*N (0,Q) and

ek*N (0,R) are independent zero-mean Gaussian white noise

signals and the further terms of the state-space model are

described by [32],

F~

~FF 0

0 ~FF

2
64

3
75, ð5Þ

~FF~

1 T T2

2
. . .

Tnd

nd !

0 1 T . . .
Tnd {1

(nd{1)!

..

. ..
.

0 . . . 1

2
666666666664

3
777777777775

, ð6Þ

H~

1 0 . . . 0 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

2
64

3
75, ð7Þ

Q~

~QQ 0

0 ~QQ

2
64

3
75, ð8Þ

and the elements of the state noise covariance matrix block ~QQ are

given by [32],

qij~s2
w

T2Nz3{(izj)

Nz1{ið Þ! Nz1{jð Þ! 2Nz3{(izj)ð Þ ð9Þ

where sw is a tuning parameter describing the power in the state

noise.

The state-space model is used in a Kalman smoothing algorithm

[33] to obtain the estimate of the signal derivatives. This typically

involves using the standard Kalman filter recursions to obtain the

filtered state estimate x̂xkDk, where

x̂xkDk~FxkDk{1zK yk{HxkDk{1

� �
, ð10Þ

Figure 4. Neutrophil velocities. A: Histogram of neutrophil
velocities in the X-direction at each sample time (histograms are
zoomed to the 210 to 10 mm/min range for an effective visualisation
and data are aggregated over all fish). B: Histogram of neutrophil
velocities in the Y-direction.
doi:10.1371/journal.pone.0035182.g004

Data-Driven Inference of the Chemoattractant Field
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for k~1, . . . ,N , where K is the Kalman gain. The filter is

initialised by defining the normally distributed initial state vector

x0*N (x̂x0,P0). A set of backward recursions are used to obtain the

smoothed state estimate x̂xtDN , e.g. the Rauch-Tung-Streibel

recursions [33],

Jk~PkDkFT Pkz1Dk, ð11Þ

x̂xkDN~x̂xkDkzJk x̂xkz1DN{F x̂xkDk
� �

, ð12Þ

PkDN~PkDkzJk Pkz1DN{Pkz1Dk
� �

JT
k , ð13Þ

for k~N, . . . ,1, where PkDk[Rnx|nx is the filtered state covari-

ance, PkDN[Rnx|nx is the smoothed state covariance and Jk is the

smoother gain.

Finally, the neutrophil centroid positions, sk, and velocities, vk,

are obtained from collecting the appropriate elements of the

smoothed state vector,

sk~ x̂xkDN,s1
,x̂xkDN,s2

� �T

, ð14Þ

vk~ x̂x0kDN,s1
,x̂x0kDN,s2

� �T

: ð15Þ

In the implementation of the velocity estimation algorithm the

following parameter values were used: state dimension, nx~10;

state noise scaling parameter, s2
w~1; measurement noise covari-

ance, R~1; initial state uncertainty, P0~100Inx , where Inx is the

identity matrix of dimension nx|nx; initial state vector,

x̂x0~ y0,0, . . . ,0ð ÞT , where y0 was the initial observation of

neutrophil position. Tracks were excluded from the velocity

estimation if they had a low number of position samples, v3 in

this case, which reduced the mean number of tracks across fish

from 60.3 (std. dev. 20.2) to 50.2 (std. dev. 16.9). Velocity outliers

were detected and excluded by first obtaining a histogram of all

velocity magnitude estimates, then based on inspection setting an

outlier threshold r, beyond which estimates were classed as

outliers, which in this case was set to r~25 mm/min.

Chemoattractant field estimation
Model description. The underlying hypothesis used in this

study was that neutrophil velocity is proportional to the gradient of

the chemoattractant field,

Figure 5. Chemoattractant field inference in vitro. A: Cell tracks of human neutrophils in vitro chemotaxing due to presence of the chemokine
interleukin-8, which increases in concentration from left to right. B: Inferred chemoattractant field, normalised to the range (0,1). The chemoattractant
field estimate is dimensionless hence the scale of the colormap is in arbitrary units (a.u.). C: Comparison of inferred chemoattractant field averaged
over the Y-direction, to the level of chemokine interleukin-8 reported in [30]. D: Circular histogram of neutrophil angles, demonstrating a directional
bias of the tracks shown in panel A towards the lower right corner.
doi:10.1371/journal.pone.0035182.g005
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vt~m+w(s), ð16Þ

where m is a proportionality constant, s~(s1,s2) denotes the spatial

position, w(s) denotes the spatially varying chemoattractant field

and + denotes the vector differential operator, hence +w(s)
represents the field gradient over space. The task is to estimate the

field, w(s), from the velocity of the neutrophil, exploiting the

assumed underlying relationship between velocity and field

gradient.

If we consider the path of the neutrophil through the vector field

of the chemoattractant gradient as a line integral problem, we can

relate the spatially varying field gradient to the velocity of the

neutrophil as

ð skz1

sk

vT
k ds~m

ð w(skz1)

w(sk )

dw(s), ð17Þ

which with ds~vdt then eqn (17) reduces to

Figure 6. Chemoattractant field inference in the zebrafish. For each zebrafish, 1–15, the estimate of the chemoattractant field (colour) is
overlayed with transparency on the fish image (grayscale). Each colormap is scaled to the range 220 to 40 to provide an effective visual comparison
over all fish. The chemoattractant field estimate is dimensionless hence the scale of the colormap is in arbitrary units.
doi:10.1371/journal.pone.0035182.g006
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ð kTzT

kT

vT
k vkdt~m½w(skz1){w(sk)�: ð18Þ

If we assume that vk is approximately constant between times kT

and kTzT then the LHS of eqn (18) can be written as DDvk DD2T ,

which leads directly to the expression,

zk~a½w(skz1){w(sk)�, ð19Þ

where the constant a~mT{1 and zk~DDvk DD2. In order to obtain a

model-based description of the chemoattractant field, we use a

basis function decomposition,

w(s)~
Xnb

j~1

bj(s)hj , ð20Þ

where bj(s) is a basis function and hj is the associated basis

function parameter and nb is the number of basis functions. The

basis function decomposition of the field leads to the parametric

description of the velocity-field gradient relationship by substitut-

ing eqn (20) in eqn (19),

zk~BkhzEk, ð21Þ

where the constant a is absorbed into the basis function

parameters, the velocity estimate is assumed to be corrupted by

independent and identically distributed zero-mean additive

Gaussian noise, Ek*N (0,l2), and

Bk~b(skz1){b(sk), ð22Þ

b(sk)~½b1(sk), . . . ,bnb
(sk)�, ð23Þ

h~½h1, . . . ,hnb
�T : ð24Þ

The model is now expressed through eqn (21) in a form suitable

for linear estimation of the basis function parameters, h. We note

that h will be non-unique since the proportionality constant m is

unknown and influences all elements of h. This implies that the

estimation procedure for h requires the use of regularisation

methods or prior probability distributions for the parameters.

The key point to note is that the basis function parameters, h,

are common to the difference model in eqn (21) and the description

of the field in eqn (20) - hence, by estimating the parameters using

eqn (21) we also obtain the model of the chemoattractant field in

the same step. It is this dual use of the basis function parameters

that makes this estimation framework particularly elegant and

effective.

Parameter and field inference. The next stage of the

chemoattractant field inference procedure is the estimation of the

basis function parameters, h, from the model defined in eqn (21).

We use a Bayesian method here, where we first place a zero-mean

Gaussian prior over the parameters,

p hð Þ*N 0,Sp

� �
, ð25Þ

where the variance of the prior is Sp. In order to obtain the

posterior estimate of the parameters, we require the data-driven

maximum likelihood estimate; first, we define the likelihood

function,

p zDB,hð Þ~ P
M

k~1
p zk DBk,hð Þ, ð26Þ

where M~
Pm

j~1 Nj is the total number of neutrophil data points

available for driving the model estimation procedure, m is the

number of neutrophil tracks, Njz1 is the number of data points in

the jth neutrophil track and where all neutrophil track data points

are collected in the terms z and B, so that from eqn (21),

z~BhzE, ð27Þ

where, for the m neutrophil tracks,

z~ z
(1)
1 , . . . ,z

(1)
N1

, . . . ,z
(m)
1 , . . . ,z

(m)
Nm

� �T

, ð28Þ

B~ B
(1)T
1 , . . . ,B

(1)T
N1

, . . . ,B
(m)T
1 , . . . ,B

(m)T
Nm

� �T

, ð29Þ

E~ E(1)
1 , . . . ,E(1)

N1
, . . . ,E(m)

1 , . . . ,E(m)
Nm

� �T

: ð30Þ

Using the definition of the likelihood function in eqn (26) we can

obtain the posterior estimate of the parameter distribution: noting

from Bayes rule that p hDz,Bð Þ!p zDB,hð Þp hð Þ and that the noise

term Ek is Gaussian, we obtain the expression for the posterior

distribution of the parameters,

p hjz,Bð Þ! exp {
1

2l2
(z{Bh)T (z{Bh)

� �

exp {
1

2
hT S{1

p h

� �
,

ð31Þ

which simplifies to the Gaussian distribution,

p hDz,Bð Þ*N �hh,Sq

� �
, ð32Þ

where

�hh~l{2Y{1BT z, ð33Þ

Sh~Y{1, ð34Þ

Y~l{2BT BzS{1
p : ð35Þ

The identified model of the chemoattractant field can be used to

evaluate the field across space, interpolating between observation

locations and providing an effective visualisation, where the model

prediction of the field, w(s�) at prediction location s�, is described

by the distribution,
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p w(s�)DB(s�),B,zð Þ*N B(s�)�hh,B(s�)ShB(s�)
T

� �
: ð36Þ

Implementation of the field inference framework. In this

investigation we used radial basis functions in the decomposition of

the chemoattractant field described in eqn (20), specifically the

squared exponential function,

bj(s)~ exp½{ 1

2
(s{cj)

TS{1
b,j (s{cj)� ð37Þ

where cj denotes the jth basis function centre and Sb,j is a diagonal

matrix containing basis function widths governing each of the two

spatial directions,

Sb,j~

s2
j,1 0

0 s2
j,2

2
64

3
75, ð38Þ

where in this investigation we assumed isotropic basis functions

were appropriate, hence sj,1~sj,2.

It is often desirable to represent a model at multiple scales,

which captures underlying trends in the data and finer-level detail

in separate model components [27,28]. Hence, a coarse grid of 4

basis functions (2|2) were placed and centred at the corners of

the image and an additional grid of finer scale basis functions was

used (3|3 for the in vitro data and 6|6 for the zebrafish data),

where the spacing of centres was reduced to 320 pixels and 100

pixels for the in vitro and zebrafish datasets respectively. Basis

functions widths were set to half the centre spacing for the

zebrafish datasets and equal to the centre spacing for the in vitro

data. Note that for the purposes of illustrating the zebrafish results

the 500|500 pixel grid used in the modelling procedures was re-

scaled to the 1000|1000 pixel grid of the original image.

Boundary conditions were imposed on the model by masking the

region outside of the zebrafish. The hyperparameters of the

inference model were set to l~1 and Sp~Inb
, where Inb

is the

identity matrix of dimension nb.
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