IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Birkeland, A., Turkay, C. & Viola, |. (2014). Perceptually Uniform Motion Space.
IEEE Transactions on Visualization and Computer Graphics, 20(11), pp. 1542-1554. doi:
10.1109/tvcg.2014.2322363

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3752/

Link to published version: https://doi.org/10.1109/tvcg.2014.2322363

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2014.2322363, |IEEE Transactions on Visualization and Computer Graphics

Perceptually Uniform Motion Space

Asmund Birkeland, Cagatay Turkay, and Ivan Viola

Abstract—Flow data is often visualized by animated particles inserted into a flow field. The velocity of a particle on the screen
is typically linearly scaled by the velocities in the data. However, the perception of velocity magnitude in animated particles is not
necessarily linear. We present a study on how different parameters affect relative motion perception. We have investigated the impact
of four parameters. The parameters consist of speed multiplier, direction, contrast type and the global velocity scale. In addition, we
investigated if multiple motion cues, and point distribution, affect the speed estimation. Several studies were executed to investigate the
impact of each parameter. In the initial results, we noticed trends in scale and muiltiplier. Using the trends for the significant parameters,
we designed a compensation model, which adjusts the particle speed to compensate for the effect of the parameters. We then
performed a second study to investigate the performance of the compensation model. From the second study we detected a constant
estimation error, which we adjusted for in the last study. In addition, we connect our work to established theories in psychophysics by

comparing our model to a model based on Stevens’ Power Law.

Index Terms—motion visualization, motion perception, animation, evauation, perceptual model

1 INTRODUCTION

HE use of motion can be seen in visualization

techniques frequently. It has various purposes, for
instance depicting a data attribute, to attract attention,
or to convey shape information. An advantage of using
motion in visualization is that motion detection is a
pre-attentive process in the human cognitive system [1].
Motion can then effectively guide the users” attention to
interesting features in the data and reveal small details
in the motion pattern [2].

Flow visualizations are aimed to provide insight into
how a fluid deforms under applied shear stress for a
given situation. Unlike data representing solid physical
objects, there are no real structures in a flow apart from
the different flow patterns. Still, when referring to the
topology of a flow, there exist abstract structures such
as critical points and vortices. While topology is an im-
portant aspect of flow analysis, the velocity magnitude
is also important in many cases.

Another reason for deploying animation of particles
in visualization is that this is often a direct visualization
of a particular phenomenon and might be therefore ap-
preciated by the domain specialist. It exhibits qualitative
characteristics such as detailed flow behavior, similar to
the real observable phenomenon. One example can be
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seen in simulation of flow around an airplane wing.
The lift from a wing is generated from the low pressure
over the wing caused by the difference in velocity of the
air moving above and below the wing [3]. In medicine,
blood-flow analysis is important in prevention, diag-
nosis, and follow-up monitoring of diseases. In this
case, accurate flow data can be acquired with a range
of techniques such as 4D Magnetic Resonance Imaging
(MRI) for 3D flow, and B-flow ultrasound over time.
For making correct decisions, multiple features of the
flow have to be analyzed, such as pressure, vorticity and
velocity.

Different visual cues can be utilized for different data
attributes. Color coding is a typical method for depicting
data. For instance, the velocity magnitudes in a flow
field can be visualized with color. However, this provides
no information regarding the direction of the flow, and
other techniques such as glyphs must be applied in
addition. The usage of color can be very efficient for
a single data attribute. Still, there are other aspects
of the flow that are often important for the user. An
issue arises when more attributes should be visualized
simultaneously. If color is already occupied for velocity
magnitude, other means must be utilized.

In engineering, analyzing aerodynamics is often done
by adding a flow of air around the object of interest.
The air flow is as such not visible. To be able to actually
see the flow, particles are added into the flow field. The
motion of the particles conveys intuitively information
regarding both the direction and the velocity magnitude
of the flow. This technique has commonly been adopted
into flow visualization [4], [5], [6], [7].

Investigations into how the human visual system pro-
cesses motion can be approached from different direc-
tions. In the direction of neurophysiology, the funda-
mental laws of nature are applied for investigating the
physical connection between motion detection and the
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Fig. 1: Process pipeline for achieving perceptually uniform motion space. We started with a pilot study to determine
suitable ranges in parameter space. From the pilot study, we designed an initial study to investigate the selected
parameters. The output was an initial compensation model. In the evaluation stage, we performed two iterations
to determine the efficiency of our model and adapted the model according to the new results.

neural activity. The approach is more directed towards
signal processing, where one tries to understand how
signals from the optic system are processed and trans-
mitted into the visual cortex. This can be done either by
applying physical models to simulate the neurological
response in the brain, or procedures, where the actual
signals in the brain are being monitored, for instance
electroencephalography.

In Psychophysics, investigation is performed by ex-
amining how physical stimuli can affect the perception
in subjects. For motion detection, this is typically per-
formed by providing a task to the user, based on a
certain stimulus. Analysis is then based on examining
correlations between the parameters in the stimulus and
the response given by the user.

In this paper we have evaluated the perception of
a speed-up factor of one motion pattern with respect
to another motion pattern. We analyzed how the rela-
tive motion perception is affected by four distinct pa-
rameters: relative speed up factor between two sets of
particles (speed multiplier), global scale of the veloci-
ties (the overall speed of particles moving across the
screen), chromatic and luminance contrast, orientation,
and direction of motion. In addition, we have tested for
any influence by adding visual cues, in form of comet
tails, and the point distribution (Poisson distribution
vs. random). We have performed user studies where
we measured the subjects’ estimation of relative speed
between two separate sets of moving particles. We have
discovered significant trends in estimation error for two
of the parameters, speed multiplier and global scale of
the velocities. The main contribution in this paper is
the first compensation model for creating a perceptually
uniform motion space, when using animated particles
in visualization. From a series of perception studies we
have shown how the compensation model successfully
compensates for the effect of selected parameters. From
our studies, we have shown how adding multiple visual
cues, have a small improvement in perceived speed of
animated particles. In addition, we provide statistical
indication that the effect of chromatic vs. luminance
contrast are not as prominent on currently most widely
used LCD monitors, as presented in previous work.

2 RELATED WORK

In order to understand how the human visual system is
detecting and analyzing motion, there are several aspects
that come into play. For instance, a typical view on
problems in vision is that they can all be modelled as
correspondence problems. Finding the correspondence
of an object compared to the brain’s representation of
that same object is used in object recognition. In motion
detection, the problem can be modelled as detecting
correspondence over time. As a computational problem,
motion detection can be seen as detecting changes in a
given position. The Reichardt detector [8] is an implemen-
tation based on finding the correspondence over time.

In contrast to the Reichardt detector, an alternative
model for motion detection involves finding change in
luminance over time, known as the temporal derivative.
A more detailed explanation can be found in related
literature [9].

From a psychophysics perspective, we find much
work in experimentation on the effect of different param-
eters when users evaluate motion. Experiments suggest
that contrast change has an effect on the perception of
the given speed [10], [11]. However, there is controversy
regarding how this affects the perceived speed in general
[12], [13].

Research indicates an impact of color and luminance
to motion detection. A continuous change in luminance
can create apparent motion of stationary objects [14].
Derrington et al. presented a study on the impact of color
to the motion after-effect [15]. Backed up by the claim of
color and motion being processed in parallel in the hu-
man visual system, evidence has indicated that applying
only chromatic contrast compared to luminance contrast
will cause a slow down in the perceived velocity [16],
[17].

There exist rules which approach the subject of percep-
tion and how it scales to different stimulus. Weber’s law
is introducing the term Just Noticeable Difference, which
means that the smallest difference between two stimuli
is proportional to the absolute magnitude of the stimuli.
Fechner’s law states that the subjects” impression of a
stimuli is proportional to the logarithm of intensity of
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the stimuli. In addition, there is Steven’s power law [18],
which is a more generalized description of the relation-
ship between perception and stimulus. More details are
found in existing literature [19], [20], [21], [22], [23].

Most work in motion detection results in qualitative
statements that mainly explain the effect of a given stim-
ulus. Little information is provided regarding how to
compensate for any systematic distortions in the human
visual system. In color theory, there exists a compensa-
tion model which creates a perceptually uniform color
space called CIE 1976 (L*, a*, b*) color space (CIELAB).
In the context of motion, a similar model would aid
visualization techniques based on moving elements in
conveying the correct information according to the un-
derlying data. A similar approach in the domain of 3D
shape perception is taken by Solteszova et al. [24]. In this
work, the authors modify 3D shapes by building a statis-
tical model of the error in perceiving shapes. Although
in a different domain, this paper also demonstrates how
visual representations can benefit from considering the
perceptual aspects of the viewers.

We can explain our goal for this paper by drawing
an analogy to color theory. As CIELAB is a color model
where the perceptual difference for each step in the color
space is uniform, we intend to create a compensation

()
Fig. 2: Screenshots from tasks with different parameter settings. 2a shows a basic setup with direction angle set to

0° and the speed multiplier set to 5. 2b shows chroma only contrast. In 2c, the direction of the flow was set to 45°
down and to the left. 2d shows the basic particles without a tail.

model for moving particles, which can compensate for
systematic distortions in the visual system when estimat-
ing relative motion. This way, we can apply animated
particles in visualization in a manner where the per-
ceived information correlates better with the underlying
data.

3 METHODOLOGY

In order to create a compensation model for a given
set of parameters, we need to find the impact that
each parameter has on the perceived relative motion.
For estimating relative motion of animated particles,
there are several parameters which can affect how a
subject estimates motion. The density of particles, the
size of the particles, contrast level between particle and
background, contrast type (luminance or chromatic),
relative difference in speed between particles, direction
of motion, global scale of the velocities, shape of the
particles, all can affect velocity estimation in different
ways.

For our compensation model, we first selected a sub-
set of the possible parameters to investigate. To assess a
proper range for the parameters and the performance of
our test-design, we performed a pilot study with a small
set of participants. After adjusting the study based on
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Fig. 3: The contrast-type parameter was set to be the
angle of two points circling around a center point in
CIELAB color space. 0° gave two colors with no chro-
matic contrast, and 90° returned two colors with only
chromatic contrast, while always maintaining a constant
contrast level.

observations from the pilot stage, we performed a larger
study to find the trends for each selected parameter.
Using the resulting trends we discovered in the initial
study, we created an initial compensation model and
started an iterative study process to test and refine the
model. An illustration of the process is depicted in
Figure 1.

We started with a study using a simple setup, with
basic particles with a uniform distribution and size. For
a basic set of parameters, we chose four parameters
that are seen frequently in visualization techniques using
animated particles. Examples of tasks involving each
parameter can be seen in Figure 2.

Firstly, there is the range of screen-space velocities
for the particles. When looking out the window of a
fast moving car, it is difficult to clearly see stationary
objects, like trees or road signs, close to the car. Based
on this effect, we can deduce that there is a speed limit
in the visual sector, for which humans can perceive
objects clearly. We assumed that speed estimation would
be affected by this effect as velocities would approach
the limit of the visual system. To investigate this, we
chose a parameter which would scale up the speed of
the animated particles globally, namely global scale of
velocities.

Due to the asymmetries in horizontal and vertical
vision [9] (e.g. due to the fact that our eyes are aligned
horizontally), we draw the assumption that there would
be a change in the perceived motion when viewing
particles moving from left to right rather than moving
from top to bottom. In addition, comparing motion when
particles are moving in the same direction would be eas-
ier than comparing motion in the opposite direction. We
chose to test for this effect by introducing a parameter
which would set the direction of the particle motion.

Direction ranged from 0° to 359°, where 0° meant the
particles were moving in the same direction.

It has been stated that change in contrast and color
can affect the perceived motion [17]. When mixing color
coding and motion in visualization one should then be
careful about the resulting contrast between the moving
particles and the background. Based on the experiments
presented in previous work, we assumed there would
be a trend in estimation error as the contrast type would
change from luminance-only to chroma-only. To adjust
the contrast type, we generated colors by selecting points
in CIELAB color space with luminance only. To shift the
contrast type we rotated the points around the center-
point within CIELAB color space up to 90°. 0° would
then result in two colors with luminance-only contrast,
and 90° would result in two colors with chroma-only
contrast. The contrast level would remain the same for
all degrees. Figure 3 illustrates how the colors were
selected.

As the difference in speed between the reference and
test stimulus increases, we assumed that the perceived
difference would not scale linearly. The main parameter
tested was speed multiplier between two sets of moving
particles. This corresponds to the theory of Just Noticeable
Difference, meaning that the smallest difference we can
detect, is connected to the intensity of the certain input.
If the absolute speed of the particles is high, the absolute
difference between them should be comparably high.

We investigated the effect of adding additional visual
cues, which would indicate the speed of the particles.
To test if additional visual cues improved the perceived
speed, we added comet tails to particles for half of
the tasks generated. The length of the comet tails were
linearly scaled by the speed of the particles and had a
linear drop-off in width and opacity. We also tested for
any influence of the distribution of the points drawn on
the screen. A short pilot study was performed where half
of the tests used a Poisson distribution and the other half
used random sampling.

While contrast type and direction has a natural limit
of range, the range of global scale and speed multiplier
has no such limit. However, it is natural to assume
that there is a certain limit for these parameters, where
the error in estimation becomes too large to be clearly
connected to the underlying data. In the pilot study, we
found that estimating speed for particles moving with
a velocity over 41.5°/second in the visual sector, the
deviation in error becomes so large that any estimation
from a user becomes meaningless when linked to the
data. In addition, if the velocity magnitude of one set
of particles became more than six times the velocity
magnitude of another, the error in estimated speed mul-
tiplier became too high to be useful. We set the base
speed to 0.83°/second, which constitutes one pixel per
frame at 30 frames per second. This prevents any jitter
in the movement of the particle. With a base level of
0.83°/second, the range of the global scale parameter was
set to 1.0 to 7.0. With a maximum speed of 41.5°/second,
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we set the range of the speed multiplier to range between
1.0 to 6.0.

4 TEST DESIGN

The aim for the study was to test for perception of
relative speed between particle sets. In particle based
visualizations, there is a multitude of variations in com-
plexity among particle types, size, density, direction of
motion, flow topology and more. To investigate the
perception of relative motion, we made a deliberate
decision to start with a basic setup, which would test
only one parameter at a time. This way, we can remove
any unforeseen effects from other parameters.

In our tests we have two sets of particles displayed
on the screen. One set is displayed at the top half of the
screen (test particles) moving at a velocity v;, and one set
is displayed at the bottom half (reference particles) moving
at a velocity v,. The user was then asked to provide the
multiplication factor, s, which satisfies the equation:

Vel -5 = |vi] 1)

We have chosen to design the stimulus as a juxtapo-
sition of two stimuli [25]. An alternative would be a
superposition of the two stimuli, but this design will
suffer from particle mixture and mutual occlusion. In
such a case additional cognitive load will be required to
isolate these two stimuli from each other, prior to the
comparison.

The juxtaposition design has one problem though.
When the two stimuli are far away from each other,
the subject has to frequently move the eyes to switch
the focus. Therefore, in our study we have placed the
stimuli as close to each other as possible. This allows the
foveal and parafoveal vision to take part on the visual
processing, without the need of frequent refocusing from
one stimulus to another one.

Change in density as well as a repeating pattern can
distort the perception of speed. To compensate for this,
the particles for each half were generated randomly
under the constraint that the average spatial distribution
remained uniform regardless of velocity and direction
similar to the experiments performed by Geesaman and
Qian [26] or Watamaniuk et al. [27].

However, the random generation of particles might
lead to structures in the motion pattern, i.e., several
particles clustered together due to randomness in the
distribution. To investigate whether such structures af-
fect the test results, we perform an initial pilot study
that compares our randomly distributed particles with
those that are regularly distributed. In order to create
moving particles that are regularly distributed, we gen-
erate our particles following a Poisson Disk distribution
as suggested by McCool and Fiume [28]. We performed
a small test with three subjects, where each subject
completed 100 tasks. We then check whether there is
any significant difference when particles are regularly
distributed, we observed that the estimation error with

the regularly distributed particles was slightly higher,
i.e., average error -0.0416 with random vs. -0.0991 with
regular points. However, this difference was found to be
insignificant with a p-value of 0.3412 when a regular two
sample t-test was applied. Due to this result and due to
the slightly better performance in error, we continue our
study with randomly generated particles.

We selected subjects from various ages, gender, and
professions. Each user was given a set of 100 tasks. To
avoid any learning curve, we excluded previous partici-
pants for the consecutive experiments. The subjects were
not informed of the parameter intervals and were told to
estimate velocities based on visual impression and not
from explicitly timing particles’ traversal over the screen
(for example by counting seconds and comparing dis-
tances). For the four rounds of user studies, we invited
10 participants for the pilot study, 22 for the initial round,
10 for each of the evaluation rounds.

For every test subject we used a 24-inch screen with
a 16:10 aspect ratio. The pixel size was 0.27mm and
the canvas dimension was set to 768x768. The user’s
head was approximately 50 cm away from the screen.
While traditional CRT screens are typically used for
experiments, we used modern LCD screens, which have
sufficient quality for our experiments [29] and, more
importantly, are utilized nowadays, in contrast to the
CRT monitors that are practically not in daily use any
longer. Wang et al. stated that the use of LCD can
in some cases be preferred, but not when the image
changes rapidly. For our case, the smooth motion makes
it beneficial to use LCD. In addition, the changes are
not rapid. A small blur will appear from the points, but
similar to the comet tails, this has a very little effect to the
perceived stimulus as are shown in the results in Table 3.
Another challenge with LCD screens is representation
of color. While the LCD screens might not provide an
absolute iso-luminant contrast, our motivation is driven
by real world application, and in a real world scenario,
optimal conditions are never fully achieved. In most real
world situations, the user will use an LCD screen with
default settings.

If the eye is fixated on a continuous motion over some
time, the eye will adapt to the motion. The reason for
this is an effect called neural adaptation [30], where
the neurons coding the particular motion reduce their
responses. This can result in a distortion of our test. To
avoid direction fatigue for the base speed, we alternate
the direction of the flow for every other test. Further-
more, the subjects were asked to take a two-minute break
after each 25 tasks have been completed.

The test design remained unchanged for the three
iterations of testing.

5 USER STUDIES
5.1 Creating the Compensation Model

In the first round we wanted to investigate the effect of
the selected parameters separately. We generated three
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Parameter F-value p-value
Global Scale 9.9745 | 1.440 x 10~ 13
Direction 0.7131 0.490
Speed Multiplier 8.6012 | 9.176 x 1013
Chroma vs. Luminance 0.8376 0.5816

TABLE 1: Results of the general ANOVA test treating
each of the 10 bins as a separate group. The high p-value
show that there are no significant trend in estimation
error compared to direction and contrast type.

types of tasks, one which tested the effect of global
scaling of the velocities. The scaling is added on both
sets of the particles. This changes Equation 1 to:

Vel 5.0 =[vi| -0 )

The range of o was 1.0 to 7.0 and the range of s was
1.0 to 6.0. For all the tasks involving global scale, the
color-parameter remained constant at 0° and the motion
direction remained strictly horizontal.

The second type was aimed for contrast type. We
generated tests where colors were selected with the
scheme explained in Figure 3. The parameter ranges of
0° to 90° in CIELAB color space. The range of s was 1.0
to 6.0. The global scale parameter o was constant at 1.0
and direction remained strictly horizontal.

Finally we tested for the direction of the flow in the
range of 0° to 359° direction. For each task we queried
the subjects for speed multiplier between the two sets of
particles in the range from 1.0 to 6.0. The global scale
parameter o was set to 1.0 and color-parameter was set
to 0°.

For each parameter tested, we created tests with ran-
dom configurations within the given parameter space.
For instance for contrast-type, a configuration might be
as follows: o = 1, s = 2.3, color-parameter = 90° degrees
and direction = 0°. To prevent samples from being too
clustered in the parameter space, we constrained a ran-
dom function to keep the same number of tests within
each interval. In total 2220 tasks were generated for the
initial study. When the study was completed, outliers
were removed. We utilized a visual inspection of the
results supported by the Mahalanobis scores computed
for each sample. Here we take a purely data-driven
outlier-removal strategy, rather than considering specific
participating individuals or the contextual properties of
the test. In this stage, we compute a Mahalanobis score
for each sample using the speed multiplier vs. signed
estimation error. The threshold for outlier removal was
14.2, determined by visual inspection of the scores. This
resulted in the removal of 22 outliers. The final sample
size was then 2198.

From the results of the initial study we examined
the relation between signed error and the parameters,
i.e., if test-subjects overestimate or underestimate the
speed. The trend in signed error is more relevant than
unsigned. As there is a general trend in overestimation,

we can compensate for this by slowing down the test
particles. By this we will achieve a closer match between
human perception of relative speed and the intended
information communicated via the visualization.

We investigated the estimation trend for each parame-
ter. The significance of the trends was evaluated by bin-
ning samples in parameter intervals. To provide a more
robust significance evaluation, we performed statistical
tests for different parameter intervals. In the following,
we discuss the tests with 10 bins for each parameter.
We start by applying a one-way Analysis of Variance
(ANOVA) test by treating each bin as a separate group.
When we observe the results for this general multiple
group test, we see that there is a significant difference
between the groups for the global scale and the speed
multiplier parameter. However, for the direction and
chroma parameters, we observe no overall significant
difference between the multiple groups (Refer to Table 1
for the corresponding results). In order to achieve more
detailed results to explain the trends within the parame-
ter intervals, we perform post-hoc tests. We prefer to do
a two-sample unpooled t-test with unequal variances between
each bin and the bin at the initial parameter setting.
We follow this strategy (i.e., initial bin vs. the others)
since the parameter intervals are ordered and we want
to investigate the trends in relation to this ordering.
Moreover, we observe that the variance of the data is not
equal within different intervals so we assumed unequal
variances in our tests. Table 2 displays the t-scores for
each parameter. The table shows the results from having
10 bins for each parameter. Interval shows the bin size
in parameter space. N is the number of samples in the
bin. Mean shows the average in signed estimation error
and T-score shows how the bin compares to the top
row. DoF indicates the degrees of freedom for the t-
test. Since the different intervals contain samples from
the same individuals under different conditions, i.e.,
varying parameters, we calculate the degrees of freedom
accordingly and use n/2 — 1 as the formula where n is
the total number of observations in the both groups. One
point to mention here is that we checked for normality
(using a Shapiro-Wilk Normality Test) on each of the
bins prior to performing the tests whether to use non-
parametric tests instead. We observed that for some of
the bins, the normality condition was not met. However,
we still prefer the parametric t-tests since they provide us
an insight on how the error evolves over the consecutive
intervals.

We assumed that there would be a trend in estimation
error which correlated with the relative motion between
the two sets of particles. From Table 2, we can see there
is a trend to continuously underestimate the speed value
as the speed multiplier is increasing. Figure 4d shows a
scatter plot of the error in estimation compared to the
speed multiplier parameter.

The results from the initial study also justify the
assumption that there would be a change in estimation
as the global scale of the velocities increases. Unlike the
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Direction Global Velocity Scale
Interval N Mean  T-score DoF Interval N Mean T-score DoF
0-36 150 -0.126 0.000 149 1.0-16 40 -0.206 0.000 39
36 -72 141  -0.155 0.682 145 16-22 34 -0.007 3.903 36
72 - 108 142 -0.110 0.352 146 22-28 35 0244 5.834 36
108 - 144 148 -0.094 0.722 148 28-34 31 0304 6.435 34
144 - 180 145 -0.158 0.729 148 34-40 37 0375 6.023 37
180 - 216 149 -0.220 2.054 148 40-46 33 0313 6.369 35
216 - 252 146  -0.170 1.058 147 46-52 32 0425 5.468 35
252 -288 145 -0.107 0.424 148 52-58 36 0.5% 7.804 37
288 -324 128 -0.106 0.440 138 58-64 28 0.530 8.643 33
324-360 144 -0.155 0.745 146 64-70 35 0617 8.644 36
Speed Multiplier Chroma vs. Luminance
Interval N Mean  T-score DoF Interval N  Mean T-score DoF
1.0-15 224 0.032 0.000 223 0-9 35  -0.104 0.000 34
15-20 213 0.009 0.676 217 9-18 47  -0.127 0.344 40
20-25 217 0.011 0.571 219 18-27 48 -0.133 0.405 40
25-30 221 -0.016 1.279 221 27-36 40 -0.154 0.772 36
3.0-35 216 -0.015 1.172 219 36-45 39 -0.176 1.164 36
35-40 228 -0.099 3.464 225 45-54 39 -0.052 0.712 36
40-45 187 -0.135 5.158 204 54-63 42 -0.102 0.032 37
45-50 263 -0.112 4.165 242 63-72 38 -0.059 0.572 35
50-55 207 -0.153 5.400 214 72 - 81 50 -0.145 0.681 41
55-6.0 222 -0.200 7.144 222 81-90 41 -0.156 0.739 38

TABLE 2: Results from the Two-sample unpooled t-test with unequal variances. A significant correlation can be seen for
the speed multiplier and global velocity scale parameters. For the direction parameter only a weak correlation can
be seen, at around 180°. Unlike previous work, we could not detect any significant trend from change in contrast
type. Here the results are collected into 10 bins for each parameter. Interval column indicates the parameter range
for each bin. N is the number of samples in each bin. Mean shows the average in signed estimation error and
T-score shows how the bin compares to the top row. DoF indicates the degrees of freedom for the t-test, where it
is calculated as n/2 — 1 (n being the total number of samples) to account for repeated measurements.

speed multiplier, subjects move from an underestima-
tion to an overestimation. However, the slope for the
regression curve for the relative motion factor remained
unaffected by the global scale parameter.

We had a hypothesis that comparing particles moving
in different directions would be more difficult than
comparing particles moving in parallel to each other. The
difference in direction, however, seems to have a very
small impact on the estimation error. From the results
we could only find a significant correlation in unsigned
error. There was, however, a weak correlation in the
signed estimation error. This leads to the conclusion that
direction should be accounted for in our compensation
model.

Based on previous experiments in prior work [17], we
expected to see a general trend in underestimation when
using iso-luminant contrast. However, we were unable to
detect any slow-down effect in our experiment. Figure 4b
shows the impact on the estimation error related to the
contrast-type.

In addition, Table 3 shows the measured effect of the
added visual cue. The effect is small and only prominent
for animated particles with higher velocities.

The overall goal was to detect which parameters
caused a trend in estimation error, which in turn, could

Parameter Tail Mean Error/Std. Dev.
All without 0.335 / 0.283
with 0.299 / 0.271
without 0.489 / 0.489
Global scale | ™ i) 0.375 / 0.432
Contrast tvpe | Without 0.253 / 0.182
yP with 0.250 / 0.174
Direction without 0.321 / 0.219
ectio with 0.296 / 0.240

TABLE 3: This table shows the mean error and standard
deviation of the estimation error for each task type,
compared to the overall. Comparing the tasks where the
additional perception cue was taken into account, there
is a 3.6 % decrease in mean error and standard deviation
goes down by 1.2 %.

be compensated for in particle-based visualization. From
analyzing the result, we found strong correlations be-
tween speed multiplier and scale when comparing them
with the estimation error. We also found a weak cor-
relation between direction and estimation error. There-
fore we chose to include the three parameters into our
compensation model. We also checked for dependence
between these parameters using Pearson’s correlation
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test and observed no significant dependence within any
of the parameters.

To create the compensation model we needed a func-
tion to describe the trends in the estimation error. For
the global scale, we choose a logarithmic function,

E; (U) = ay - log(o) + by 3)

where o is the global scale and a and b are constants de-
fined in Table 4. The logarithmic function gave a slightly
worse fit compared to a second order polynomial, but
since the first order derivative became negative at 6.5 in
parameter space, we found the second order unsuitable
to describe the trend, since the average estimation error
was not decreasing (See Table 2).

To find a function for the effect of direction, we fitted
a periodic cosine function,

Eqi(a) = aq - cos(a+ bg) + cq 4)

where « is the angular difference between the two sets
of particles and a, b and c are defined in Table 4. Since
the trend in error is cyclic, we found the cosine function
to be better suited than a higher order polynomial.

Finally, we fitted a second order polynomial func-
tion for the speed multiplier parameter, which we con-
strained to be zero when the particles were moving with
the same speed,

Ey(s) = as-5%+bs-s— (as+ bs) (5)

where s is the speed multiplier, and a and b can be
looked up in Table 4.

Each function provides an estimated error for the
given parameter. The final compensation function
should provide a scaling function for the velocity to
compensate for the total error from all parameters. In
addition, the average error at the base level for each
parameter would be contained in each function. This
was solved by only including the change in error for
the scale parameter and the direction parameter. The
compensation function combines the error functions in
the following manner:

=1+ E(s) (6)

Constant Value
as -0.010414
bs 0.02680727
ag 0.0261351
bqg -0.16202086
cq -0.14056624
[ 0.48538867
bo 0.29785412

TABLE 4: Regression line parameters fitted to test results.

, where F, is the final compensation function.

Before we move on the two following sections where
we present our evaluation and adjustment of the com-
pensation function, we firstly present how our model can
be evaluated in relation to the psychophysics literature,
in particular to Steven’s power law [18].

5.2 Validation against Psychophysics Theories

In our method described above, we take a linear ap-
proach in computing the errors between the reference
and test displays, and we compute the difference be-
tween the multiplication factor we set and the one given
by the user. Here, we validate this error computation
approach with a comparison to Steven’s Power Law
theory [18] from psychophysics literature.

As briefly mentioned in Section 2, Steven’s theory
states that there is a non-linear relationship between per-
ception and stimulus that follows a power law function
in the form y = k2. If we apply this to our case where
the stimulus is the velocity of the test particles v, this
formula turns into v, = kv}. Here, v, indicates the
velocity (of particles) that subjects should be perceiving
according to Steven’s theory.

Following Steven’s theory, we adjust the ground truth
while evaluating the s values that subjects provide for
each test. This leads to new error values and distribu-
tions. Refer to Appendix A for further details on how
these computations are carried out. We firstly compute
the mean of the error distributions for the new values.
The average error for the global scale related tasks is
0.290 when the modified error values are considered.
When compared to the previous error distribution, we
observe no significant difference. However, for the other
tasks (i.e., chroma vs.luminance and direction), the av-
erage error values are significantly lower, indicating an
overall underestimation. This is very likely due to the
fact that in these other tasks speed difference is not the
only varying stimuli and a more complex psychophysi-
cal is needed.

We now focus our attention to check whether we
observe similar trends in estimation error when the error
values are computed according to the Power Law model.
In order to do that, we perform a one-way ANOVA test
following the same procedure used earlier in this section,
i.e, the process that led to Table 1. When the new error
distributions are used in the ANOVA test, we arrive at

Parameter F-value p-value
Global Scale 3.9193 9.4186 x 10—°
Direction 0.4316 0.6494
Speed Multiplier | 74.9567 | 4.9585 x 10~121
Chroma 0.5580 0.8312

TABLE 5: Results of a general ANOVA test treating each
of the 10 bins as a separate group with errors computed
by considering Steven’s Power Law.
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Fig. 4: Scatter plots of the samples generated from the first perceptual study round. The red curve shows the
regression curves used for the compensation model. The curve for chroma-type (4b) shows no specific trend and
thus this parameter was not included in the compensation model.

the same result with our approach — there is a significant
difference within the bins only for the global scale and
speed multiplier parameters (see Table 5). This shows
that our earlier observations are in line with the power-
law-modified computations.

Moreover, we use the new error distributions to fit
the same functions we use earlier in this section to
perform a further comparison. We compare the coefficient
of determination scores [31] (i.e., R?) for both our functions
and the new functions fitted to modified error values. We
observe that our functions fit better to the data compared
to power law functions.

These reported observations demonstrate that our
compensation model is in agreement with the previous
related studies that fit Steven’s Power Law functions
to human psychophysical data and thus provides ad-
ditional support for the validity of our model.

5.3 First Evaluation Study

After we built the initial version of the compensa-
tion model, we continued the process by evaluating it
through a new round of perceptual study. Our aim at
this stage was to assess the changes in the results due to
the modifications by the compensation model. We then

Speed Multiplier

' \scale
Direction Angle Globa!

051 Correction Value 136

Fig. 5: A volume rendering for the 3D function defining
our compensation model.

aimed to improve the model further, as a result of the
investigation of the results from the new user study.

In this second round of the study, we made tests to
evaluate the three parameters, namely, speed multiplier,

1077-2626 (c) 2013 |EEE. Personal use is permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.



This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2014.2322363, |IEEE Transactions on Visualization and Computer Graphics

Parameter Modification | Slope | Intercept
1 without -0.05 0.120
Speed multiplier with 0.005 04
without 0.076 -0.354
Global scale with 0005 | -0.283

TABLE 6: Regression line parameters fitted to test results
with/without modification

direction of motion, and velocity scale. Note that, we left
out the contrast parameter at this stage. We randomly
created 486 different combinations of these parameters
to build the tasks for this round. For each of these
parameter combinations, we created two separate types
of tasks. In the first task, the final velocity was modified
by the compensation model (i.e., experimental group),
and, in the second task the final velocity was set without
any modification (i.e., control group). This process led to
486 x 2 = 972 tasks in total. Similar to the previous round,
we used particles with tails for half of the 486 parameter
combinations. The tasks were then distributed randomly
to 10 subjects, who have not taken part in the first part
of the test.

We started analyzing the results by performing an
outlier analysis of the results. Firstly, we removed the
corresponding tasks from two specific users since their
results exhibit conflicting trends when compared to both
the 22 users in the first round and the other 8 users in
the second round. Additionally, we removed 16 results
after an inspection of their Mahalanobis scores. Here, we
use two Mahalanobis scores computed using two sets
of variables, 1) speed multiplier vs. estimation error 2)
global scale vs. estimation error. The threshold to mark
samples as outliers are 8.3 for the first score and 7.8 for
the second. After the outlier removal, the remaining set
consists of 756 task results.

To evaluate the impact of our compensation model, we
treat the experimental and the control group separately
(with/without modification). We observe the effect of
each parameter on the estimation error separately. In
order to do that, we plot the estimation error against the
three different parameters for both of the experimental
and control group. These plots can be seen in Figure 6.
Moreover, we fitted regression lines to each plot (Table 6)
and computed the average estimation error for the two
groups of tasks.

For the tasks that are modified with our compensation
model, both regression lines highlight a very signifi-
cant result. We observe that our compensation model
manages to flatten out the estimation error trends for
both parameters. Specifically, for relative motion the
estimation error trend slope goes down from —0.05 to
—0.005, and for velocity scale the slope goes down from
0.07 to 0.005. This amounts to an approximately 90-93%
improvement for the trends in estimation error.

Although the correlation between these parameters
and the error is removed, the results show that our

10

(@)

(b)

Fig. 6: The regression curves from samples generated
in the first evaluation round. The different curves show
without (left) and with (right) our compensation model.

modifications lead to an overall underestimation of the
velocities. This is clearly seen when the average signed
estimation error is observed. The average signed error
changed from -0.06 to -0.26. The same observation is
also supported by the placement of the regression lines
in the second column of Figure 6, i.e., the regression
line is below the x-axis. This observation leads to a
modification of the compensation model. We corrected
the overall underestimation by inserting a constant € into
Equation 6, where ¢ is equal to the average signed error,
ie., -0.26.

A second modification to our compensation model
relates to the direction parameter. In order to check for the
correlation between estimation error (both signed and
unsigned) and the direction of motion parameter, we first
group the task results into 10 bins that correspond to 10
consecutive intervals of the motion direction parameter,
i.e., each interval spans 360/10 = 36. Secondly, we
calculate the correlation between the signed/unsigned
error and the direction of motion parameter over these
10 intervals. However, there is no significant correlation
in any of these intervals. Therefore, we have left out the
direction of motion parameter from our compensation
model.

As a result of these two modifications, updated com-
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Fig. 7: The final compensation model resulted in a 2D
function, depicted here as a height map.

pensation model is formulated with:

C,(0) =1+ E,(0) + E,(1)

C.=1+e¢
Cs(s) =1+ Es(s) @)
1
e T e

These modifications to the compensation model called
for a second evaluation round to assess the efficiency of
the updated model.

5.4 Final Evaluation Study

In the final round, we wanted to investigate whether the
correction based on the constant found in the previous
round would have the desired effect. In addition, we
removed the compensation for direction as this param-
eter had no significant impact. The setup for the final
study was almost identical to the previous study with
972 tasks, two sets with equal parameters leaving 486
with compensation from Equation 7, and 486 without
any compensation. The tasks where generated using the
same constraints from the previous study. Again, we
performed the study with ten new participants.

From the results we again removed outliers using
the Mahalanobis score. We computed the distance for
global scale compared to estimation error, and relative
motion compared to the estimation error. The distance
threshold was determined by visual inspection resulting
in threshold of six for the global scale parameter and ten
for the relative motion parameter. In addition, samples
from one user was deemed unusable, due to having
trends conflicting with the other 39 subjects included
from all the results. In total 81 samples were removed,
leaving 892 samples for analysis.

The results from the final study are shown in Table 7.
The average estimation error for sample without com-
pensation was —11.5%. For samples with compensation
the average estimation error was —17.8%. From the

11

(b)

Fig. 8: The results from the final evaluation round. The
different curves show without (left) and with (right) the
adjusted compensation model.

Parameter Modification | Slope | Intercept
Speed multiplier without -0.051 -0.068
p p with 0007 | -0.153
without 0.064 -0.37
Global scale With 0.015 | 0240

TABLE 7: Regression line parameters fitted to test results
with /without modification

previous round we had an average estimation error of
—26%. Thus leaving the final improvement to be 8.2%
higher than the previous round.

The parameter impact showed similar improvement in
the last round, as we can see in Table 7. In Figure 8, we
can see the regression curves for the tested parameters.
The improvement in slope is most prominent for the
speed multiplier parameter, the slope for global scale pa-
rameter changed from 0.064 to 0.015. We then conclude
that the effect of both parameters have successfully been
reduced by more than 75%.

Based on the results from the last study, we present
the final compensation model as follows:
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Constant Value
as -0.010414
bs 0.02680727
as 0.48538867
bo 0.29785412
€ -0.26

TABLE 8: Constants for Equation 8.

E,(0) =a, -log(c) + b,
F,(s) =ays® + bs — (as + b)
Cy(0) =1+ E,(0) + E;(1)

C.=1+¢ ®)
Cs(s) =1+ Es(s)
1
KR Teen

Where the constants can be found in Table 8.

6 DiscussION

Experiments have shown that there was only a sys-
tematic change in estimation error when comparing
two of the four parameters selected for our study, the
speed multiplier and the global scale of the velocities.
Increasing the speed multiplier, i.e. when the difference
in speed was increased, the perceived difference seemed
to scale at a lower rate. Also, when increasing the global
scale of the velocities, the estimation error changed
from underestimation at low speed (base-speed lower
than approximately 1.66°/s), to overestimation at higher
speeds (above 1.66°/s). In this case there seems to be
a sweet spot where we are most likely to achieve the
best estimation, without any compensation. The trend in
estimation error compared to speed multiplier remained
approximately the same throughout the range of the
global scale parameter and should be accounted for.

Although, there was no systematic trend in the signed
estimation error, when comparing to the direction of the
flow, there was a change in the error magnitude. When
the difference in direction approached 180°, there was a
small increase in error. However, due to the lack of any
systematic change, we were unable to correct for this
effect.

From the experiments in previous work, it has been
reported a slow-down effect has been reported when
gradually changing from luminance contrast to chro-
matic contrast. In our experiments, this effect was not
reproduced. While we should be careful to rule out any
impact from contrast-type completely, we might see that
this slow down effect is caused not only by different
types of contrast, but the gradual change. Mather [14]
reported that a change in luminance can create an appar-
ent movement of stationary objects, and it could be that
this effect is affecting the perceived motion of moving
objects.
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From the results using multiple visual cues for velocity
encoding, such as comet tails for example, we can only
see a slight improvement from simple moving particles.
The lack of improvement could indicate that the claim
of using multiple visual cues improves the subjects’ un-
derstanding of speed, is not as prominent as previously
believed. However, for higher speeds, comparing tests
with a higher global scale of velocities to the general
average, there is an improvement of 11.4 percent in esti-
mation error, shown in Table 3. In addition, our results
only relate to perceived speed and not to direction, and
the additional visual cue provides information not only
about the speed, but also about the history of motion
as well as that of the particle’s current direction. In
addition, the usage of comet tails enables the encoding
of velocities in still images, which simple particles do
not offer, as can be seen in Figure 2.

To utilize the compensation model in a real world
environment, there are certain aspects which should be
considered. Since this scales the velocities of particles
based on the underlying data, integrating the particle
velocities in order to calculate its position becomes an is-
sue. The reason for this is that the actual motion of a par-
ticle in the given flow would move at the velocity given
by the flow, and arrival time and position would be
distorted by the scaling from the compensation model.
This can be resolved by scaling the reference frame.
Still, the distortion might lead to a less comprehensible
visualization. A more proper usage would be to integrate
particles for a short time, in order to encode speed at
certain position. For longer temporal integration, other
visualization techniques, such as stream lines, would be
advised. It is also important to note that visual speed
estimation of animated objects will not be very highly
accurate. Using moving particles should be used more
as an overview, and using a compensated model for
depicting the velocities would create a better impression
of what exists in the underlying data.

7 SUMMARY AND CONCLUSION

In this paper we have presented a new perceptually
based compensation model for using animated particles
in visualization. The compensation model is based on the
results from a series of perceptual studies, investigating
the perceived speed of moving particles. The main goal
has been to assess trends in estimation error based on
selected parameters. We chose to test for four different
parameters, namely global scaling of the particle veloc-
ity, the velocity direction, contrast type (iso-luminant
vs. achromatic), and speed multiplier. Four rounds of
studies were performed: A pilot study, an initial study,
which was aimed for testing each parameter separately.
A second study, which tested the performance of the
compensation model. Finally, the last study was con-
ducted to assess the improvements from the previous
round.
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The results showed that significant trends were only
visible in two parameters, global scaling and speed mul-
tiplier. A weak trend was found in the direction parame-
ter. Using the trends in estimation error, we constructed
a model which can compensate and reduce the effect
of each parameter. The improvement was confirmed
with a new study where the different parameters were
combined. The results from the second study showed
a large improvement in the impact factor from the
selected parameters. However, the direction parameter
was deemed insignificant. In addition, we also found
a constant underestimation in speed estimation. Finally,
we adjusted our compensation model according to the
underestimation constant and performed an evaluation
study of the corrected model. This again confirmed the
reduction in impact from the significant parameters, as
well as it improved the error in estimation compared to
the previous study. This work was aimed at 2D flow,
and can be used as a starting point for the perception of
moving particles in 3D.

The final output from this work is a compensation
model for the perceived speed of moving particles. Based
on the global scale of the velocities and their relative
speed-up factor, we have made an initial step towards
a perceptually uniform motion space for animated par-
ticles.

APPENDIX
APPLYING STEVEN’S POWER LAw

As discussed in Section 5.2, we support the validity of
our approach by modifying the error computations in
line with Steven’s Power Law [18]. Here, we give details
on how we represent the error in velocity estimations in
our tests.

Assuming that the human perception of velocity fol-
lows a Power Law model, the test subjects perceive the
reference speed v, according to the following function:

Vor = kv ©)

where v,, is the perceived velocity. Subjects responded
with a estimated speed multiplier between the reference
speed and the test speed (i.e., trying to estimate s in
Equation 1). So, the above formula becomes:

Vpr © Ss = k- (V'r‘ : 8))\ (10)

where s, is the multiplier given by the subject as a
response to the test, and s is the true speed multiplier.
Since, v, is not known in Equation 10, we replace it
with Equation 9 to get:

(k-v))-ss=k-(v,-s)" (11)

We solve this Power Law model by linearizing this
function through taking the log of both sides and esti-
mate the k£ and A values, in our study these values are
found to be k = 1.4458 and A\ = 0.8428. Notice that since
we try to build a single model (not subject based), we
estimate these single values for all the subjects.
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Normalized Error

1 7
Global Scale

Fig. 9: Error distribution computed following Steven'’s
power law vs. the global scale test parameter.

The next step here is to modify the s values according
to the Power Law model. These values then serve as the
expected speed multipliers (i.e., ground truths) in our
tests and we denote them as s.;;,. Assuming a Power
Law model version of Equation 1, the computation turns
into:

vi = k- (Vr-Scap)
Vi (1
Seaﬁp = (k.v)\))\
T

After plugging in the k and X values and performing
the computations we find the estimation errors as:

Serr = Ss — Sexp

After the new error distribution is computed, we per-
form the analysis detailed in Section 5.2. As a companion
to the discussions in that section, refer to Figure 9 that
displays the distribution of error values vs. the global
scale test parameter.
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