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Abstract

In the literature using short-run timing restrictions to identify monetary policy shocks
in vector-autoregressions (VAR) there is a debate on whether (i) contemporaneous real
activity and prices or (ii) only data typically observed with high frequency should be as-
sumed to be in the information set of the central bank when the interest rate decision is
taken. This paper applies graphical modelling theory, a data-based tool, in a small-scale
VAR of the US economy to shed light on this issue. Results corroborate the second type
of assumption.
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1 Introduction

Vector-autoregressions (VARs) are a widely used tool to provide stylized facts about responses

of macroeconomic variables to structural shocks. These facts are useful per se and also serve

as guidelines in evaluating or calibrating theoretical business cycle models. The literature

employing VARs to identify and estimate the effects of monetary policy shocks using short-

run timing restrictions tipically distinguish among three sets of variables: (i) the information

set, i.e. the set of variables known to the monetary authorities when the policy decision is

taken; (ii) the policy instrument; (iii) the set of variables the value of which is known only

after the policy is set. Such a distinction often suggests a block-recursive structure exploitable

in identifying the VAR. Most of the existing empirical papers in the field can be classified into

two broad groups, which differ in the content of the information set of the monetary authority.

The first group of papers, that can be thought of following a “workhorse” approach, include,

among many others, Christiano and Eichenbaum (1992), Christiano et al. (1996) as well as

the influential paper by Christiano et al. (2005). These studies hold that the central bank has

at its disposal sources of information about the economy well beyond the published data. In

fact, policymakers have access to monthly or even daily estimates of a series of indicators on

economic activity and prices sufficient to provide them with a clear and prompt indication

of the state of the economy. Consistently with this argument, the assumption made is that,

among other variables, the monetary authority is capable to observe the contemporaneous

(within quarter) values of output and domestic prices (GDP deflator) at the time of the

monetary policy decision.

The second group of papers can be thought of adopting an “alternative” approach. This

approach is adopted for instance by Sims and Zha (1998), the extension proposed by Kim and

Roubini (2000) with monthly data and international variables, and the macroecometric model

of the UK proposed by Garratt et al. (2003). These papers argue that only high-frequency data

should be assumed to be in the information set of the central bank. For example Sims and Zha

(1998) use quarterly data and find it more reasonable to assume that only contemporaneous

money supply and commodity prices are known to the central bank when the interest rate
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is set, since such indeces are released at monthly and daily frequencies, respectively. On the

contrary, proper measures of variables such as the real GDP and the GDP deflator are assumed

to be known to policymakers only with a lag.1

Both approaches make use of reasonable and convincing arguments, hence in principle there

is no clear-cut reason why one should be preferred to the other. This makes the task of imposing

a-priori short-run identifying restrictions contetious and complex. In fact, especially in small-

scale VARs, conditional also on the degree of correlation betweeen reduced-form residuals,

results depend (at least quantitatively) on the various possible timing restrictions imposed.

This paper applies Graphical Modelling (GM) theory to a small-scale VAR of the US

economy to establish whether the data are informative on which of the two approaches is

preferable. The methodology is well-suited to establish short-run timing restrictions, as it

is able to characterize the relationship between contemporaneous variables in terms of linear

predictability. It is therefore helpful in clarifying the issue from a statistical point of view.

Reale and Wilson (2001) and Wilson and Reale (2008) show how the theory can be used in

a VAR, while Oxley et al. (2009) and Fragetta and Melina (2011) are examples of how the

method can be applied to macroeconomic analysis.

Results are in line with the “alternative” approach. In other words, GM suggests that only

high-frequency data are in the information set of the central bank when it sets the interest rate.

For the sake of completeness also impulse-response analysis is presented. This exercise unveils

that the two approaches generate similar responses to an interest rate shock, featuring only

minor quantitative differences, although real output shows a faster and longer lived response

with the workhorse approach compared to the alternative approach.

The remainder of the paper is structured as follows. Section 2 describes the econometric

methodology. Section 3 presents the data. Section 4 illustrates the results. Finally, Section 5

concludes.
1For an extended survey of the literature see Christiano et al. (1999).
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2 Econometric methodology

This section presents the econometric strategy adopted in the analysis. Subsection 2.1 illus-

trates the basic tools of graphical modelling theory, while Subsection 2.2 shows how these tools

can be applied in the identification of a SVAR.

2.1 Graphical modelling

GM is a statistical approach aiming at uncovering statistical causality from partial correlations

observed in the data, which can be interpreted as linear predictability in the context of least-

square estimation. Primal contributions to the methodology are due to Dempster (1972) and

Darroch et al. (1980).

A graph is formally a pair G = (V, E) where the elements of V are called vertices (or nodes)

and the elements of E are called edges or lines. The most informative object of the procedure

is the Directed Acyclic Graph (DAG), in which directed edges (arrows) link initial nodes (or

parents) to terminal nodes (or children). Figure 1.C2 shows a typical and simple DAG, where

nodes A, B and C represent random variables and the directed edges connecting A and B,

and B and C indicate the direction of a statistical causality. When undirected edges replace

the arrows of a graph, a Conditional Independence Graph (CIG) is obtained. In a CIG, a

link represents a significant partial correlation between any two random variables conditional

on all the remaining variables of the model. Figure 1.A shows an example of a CIG. The

edge connecting nodes A and B represents a significant partial correlation between A and B

conditional on C, while the edge connecting nodes B and C represents a significant partial

correlation between B and C conditional on A. In Figure 1.A, the absence of an edge linking

A and C implies that, if A, B and C are distributed as a multivariate Gaussian distribution,

A and C are independent conditional on B, hence the name CIG.

DAGs and CIGs imply a different definition of joint probability. For example if we consider

a DAG such as the one in Figure 1.C2, this has a joint distribution equal to:

fA,B,C(·) = fC|B(·)fB|A(·)fA(·),
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while if we take a CIG such as the one in Figure 1.A, we can assert that A and C are

independent, conditional on B. Therefore, the implied joint distribution is the following:

fA,C|B(·) = fA|B(·)fC|B(·).

However, there is a correspondence between the two, represented by the so-called moralization

rule, as firstly shown by Lauritzen and Spiegelhalter (1988), who introduced the verb “marry-

ing” instead of “linking” two nodes and defined a graph where two parents of a common child

are married (i.e. linked) to be moral. The moralization rule states that, in order to derive

a unique CIG from a given DAG, arrows should be transformed into undirected edges and

unlinked parents of a common child should be linked with an edge. In other words, when

two nodes jointly cause a third node and they do not cause each other, from a statistical

point of view, there will be a significant correlation between the two. In the DAG shown in

Figure 1.B1, A and C are parents of B and do not cause each other. In order to obtain the

corresponding unique CIG, arrows must be transformed into edges and a moral edge has to

be added between parents A and C as in Figure 1.B2. Putting it differently, when both A

and C determine B, a significant partial correlation (due to moralization) should be observed

between A and C.2

While there is a unique CIG deriving from a given DAG, the reverse is not true. What the

econometrician can observe in the data is a CIG, where every edge can assume two possible

directions. Therefore, for any given CIG, there are 2n hypothetical DAGs, where n is the

number of edges. Figure 1.C shows all the hypothetical DAGs corresponding to the CIG in

Figure 1.A. The DAG in Figure 1.C1 is not compatible with the CIG, because the moralization

rule requires a moral edge between A and C, which is not captured by the CIG.3

2While the reader is referred to Lauritzen and Spiegelhalter (1988) for a formal proof of the moralization
rule, an example should provide an intuitive insight into the issue: if one wants to become a famous football
player (P ), he/she must gifted with good skills (S) and/or must work hard (W ). Therefore S and W are the
causes of P . Suppose that we know that one individual did not work hard. This per se does not provide any
information on whether he/she had good skills. However if the individual is a famous football player, the only
thing we can conclude is that he/she had good skills. Therefore, observing P – which is the effect and not the
cause of S and W – is crucial in establishing the partial correlation between S and W .

3In the process of obtaining plausible DAGs from an observed CIG, it may also be possible that some of
the links captured by the CIG are due to moralization and hence must be eliminated in a corresponding DAG.
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Any DAG, by definition, has to satisfy the principle of acyclicality. Therefore, the graph

depicted in Figure 2 cannot be a DAG as it is clearly cyclic. The acyclicality in a DAG allows

to completely determine the distribution of a set of variables and implies a recursive ordering of

the variables themselves, where each element in turn depends on none, one or more elements.

For example, in the DAG in Figure 1.C2, A depends on no other variables, B depends on A

and C on B.

2.2 Identification of a SVAR with graphical modelling

GM theory can be applied to obtain identification of a structural VAR (SVAR), as shown by

Reale and Wilson (2001) and Oxley et al. (2009) among others.

Any SVAR may be turned into a DAG where current and lagged variables are represented

by nodes and causal dependence by arrows. After collecting the endogenous variables of

interest in the k-dimensional vector Xt, the associated reduced-form, or canonical, VAR can

be written as:

Xt = A(L)Xt−1 + ut, (1)

where A(L) is a polynomial in the lag operator L and ut is a k-dimensional vector of reduced-

form disturbances with E[ut] = 0 and E[utu
′
t] = Σu.

As reduced-form disturbances are correlated, in order to identify structural shocks, the

reduced-form model has to be trasformed into a structural model. Pre-multiplying both sides

of equation (1) by the (k × k) matrix A0, yields the structural form:

A0Xt = A0A(L)Xt−1 + Bet. (2)

The relationship between the structural disturbances et and the reduced-form disturbances ut

is described by the following:

A0ut = Bet, (3)

Such demoralization process, in most cases, can be assessed by considering some quantitative rules. Let us
suppose we observe a CIG such as the one in Figure 1.B2. If the true corresponding DAG were the one in
Figure 1.B1, then the partial correlation between A and C, ρ(A,C|B), should be equal to −ρ(A,B|C) × ρ(B,C|A).
In such a case, when tracing DAG 1.B1, the edge between A and C must be removed.
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where A0 also describes the contemporaneous relations among the endogenous variables and

B is a (k × k) matrix. In the structural model, disturbances are assumed to be uncorrelated

with each other. In other words, the covariance matrix of the structural disturbances Σe is

diagonal.

As it is, the model described by equation (2) is not identified because there may be possibly

many matrices A and B that satisfy (2). Therefore, first matrix B can be restricted to be

a (k × k) diagonal matrix. Second, in order to impose identifying restrictions on matrix A0,

graphical modeling theory can be applied to trace DAGs of the contemporaneous variables.

The acyclicality of DAGs implies a recursive ordering of the variables that makes A0 a

lower-triangular matrix. A0 has generally zero elements also in its lower triangular part, hence,

in general, the model is over-identified. The GM methodology has the distinctive feature that

the variable ordering and any further restrictions come from statistical properties of the data.

First, as shown by Oxley et al. (2009) in order to construct the CIG among contem-

poraneous variables one has to derive the sample partial correlation between each pair of

contemporaneous variables, conditioned on the values of the remaining contemporaneous vari-

ables and the lagged values of all variables. This can be computed from the inverse Ŵ of the

sample covariance matrix V̂ :

ρ̂ (xi,t, xj,t|{xk,t}) = − Ŵij√
(ŴiiŴjj)

, (4)

where {xk,t} is the whole set of variables excluding the two considered. Whenever a sample

partial correlation is statistically significant a link is retained. Swanson and Granger (1997)

have applied a similar strategy to sort out causal flows among contemporaneous variables, i.e.

applying a residual orthogonalization of the innovations from a canonical VAR. In particular,

also Swanson and Granger (1997) have focused on testing the constraints implied by structural

forms that have been used in practice. Their test is based on pairwise partial correlations,

which are thus not directional and therefore do not give rise to a causal interpretation (or linear

predictability interpretation in the case of least square estimation). This is why, once partial
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correlations are obtained, they suggest utilising prior economic information in order to draw

a causal order. As also remarked by Swanson and Granger themselves, the structural form of

dependence between variables is equivalent to a DAG. With GM and its rules, starting from

pairwise partial correlations, it is possible to construct a CIG which imply data-determined

constraints on permissible DAGs. As a result, the approach offers a data-driven systematic

procedure that leads to the selection of the best DAG, which has the interpretation of statistical

causation (or linear predictability in the context of a SVAR).

All possible DAGs (satisfying the moralization rule) which represent alternative compet-

itive models are compared via likelihood based methods – such as the Akaike Information

Criterion (AIC), the Hannan and Quinn Information Criterion (HIC) or the Schwarz Informa-

tion Criterion (SIC) – and/or based on their out-of-sample forecasting performances, and the

best-performing one is chosen. In order to construct an empirically well-founded SVAR, one

has to assure that the covariance matrix of the resulting residuals is diagonal. A first diagnostic

check is thus inspecting the significance of such correlations. Further diagnostic checks are

advisable. For instance, as this procedure typically entails the imposition of over-identifying

restrictions, a χ2 likelihood-ratio test should be conducted.4

3 Data

The empirical analysis presented in the remainder of the paper employs quarterly US data

over the period 1965:1-2007:4. The starting year coincides with that used by Christiano et al.

(1999, 2005) while the end date falls in a pre-crisis quarter.

The model is a four-variable VAR including: (i) the log of real GDP, yt; (ii) the effective

federal funds rate (quaterly average), rt; (iii) the log the GDP implicit price deflator, pt, and

(iv) the log of the quarterly average of a commodity price index (producer price index), cpt.

The variables are representative of the real activity, monetary policy and price dynamics.
4In some cases, the distributional properties of the variables for different DAGs are likelihood equivalent,

although the residual series are different. In such cases, it is possible to construct DAG models by considering
only the lagged variables that play a significant role in explaining contemporaneous variables determined by
the significant partial correlation. This can help, via comparison of information criteria, determine the best
DAG for contemporaneous variables.
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Such a model specification represents a minimal setting similar to those adopted by Stock and

Watson (2001) – for illustrative purposes – and by more recent contributions such as Primiceri

(2005) and Koop et al. (2009). The addition of a commodity price proves helpful in ruling

out the price puzzle.5 Giordani (2004) argues that the commodity price index solves the price

puzzle not because it is useful in forecasting inflation (as it is often argued in the literature),

but rather because it is correlated with the output gap (typically omitted in VARs). In the

context of this paper, the commodity price index represents a high-frequency variable the

central bank looks at and, in accordance with Giordani (2004), this variable may act as an

indicator of the state of the business cycle. The absence of monetary aggregates is due to a

preference for parsimony coupled with the fading role of monetary aggregates in the conduct

of monetary policy as empirically shown by Estrella and Mishkin (1997), among others, and

theoretically explored by Woodford (2008).

A constant is included in the VAR and results are reported both for a VAR in levels, with

and without a deterministic trend,6 and for a VAR in which the logs of GDP, the GDP deflator

and the commodity price index have been first differenced. The sampling properties of GM

are valid regardless of the presence of unit roots in the data, as shown by Wilson and Reale

(2008). In fact, we show below that the three model specifications give rise to the same CIGs

and DAGs.

All series are extracted from the ALFRED database of the Federal Reserve Bank of St.

Louis. The commodity price index was adjusted for seasonality using the Census X12 method,

while the other variables were seasonally adjusted by the source.
5The term price puzzle is due to Sims (1992). Christiano et al. (1999) show that omitting a commodity price

index from the VAR specification delivers a rise in the price level that lasts several years after a contractionary
monetary policy shock.

6We prefer to report results for both cases, as in the literature both options are explored. For instance,
while Bernanke (1986) includes a deterministic trend in the level specification, Christiano et al. (2005) carry
out the estimation including only the levels of the variables.
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rt yt pt cpt rt yt pt cpt

rt 1.000 rt 1.000
yt 0.183* 1.000 yt 0.185** 1.000
pt 0.121 -0.096 1.000 pt 0.062 -0.121 1.000
cpt 0.202*** -0.067 0.387*** 1.000 cpt 0.211*** -0.016 0.435*** 1.000

(a) Model in first differences (b) Model in levels

rt yt pt cpt

rt 1.000
yt 0.219** 1.000
pt 0.011 -0.088 1.000
cpt 0.220*** -0.026 0.439*** 1.000

(c) Model in levels with deterministic trend

Note: *,** and *** denote significance at 0.10, 0.05 and 0.01 levels, respectively. The corresponding threshold
values for the baseline model are 0.1270, 0.1504 and 0.1963, respectively.

Table 1: Estimated partial correlations of the variables

4 Results

DAGs are obtained by fitting the data to equation (1). The lag order is selected via the AIC.7

Table 1 reports the estimated partial correlation matrices of the series and their significance

at 0.10, 0.05 and 0.01 levels. The partial correlation matrices are constructed by computing

the sample correlations between each pair of contemporaneous variables, conditioned on the

values of the remaining contemporaneous variables and the lagged values of all variables.

Both the matrix coming from the model in first differences and those coming from the

model in levels (with and without trend) translate into the same CIG depicted in Figure 3.

The three edges in the CIG cannot be moral, as moral edges link parents of a common child.

The 23 = 8 possible DAGs implied by the CIG are reported in Figure 4. The moralization

rule implies that DAGs (A), (E), (G) and (H) can be discarded as they are not compatible

with the observed CIG. In fact, in (A) and (E), rt and pt are parents of common child cpt,

which would imply a moral edge between rt and pt that does not appear in the observed CIG.
7The AIC typically selects a larger number of lags with respect to SIC and HIC, which we prefer based on

the view that the consequences of overestimation of the order are less serious than underestimation (Kilian,
2001).
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In (G) and (H), yt and cpt are parents of common child rt, which would imply a moral edge

between yt and cpt that again does not appear in the observed CIG.
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Figure 4: All possible DAGs deriving from the estimated CIG

The four remaining models are compared via the information criteria mentioned in Section 2.

Table 2 shows that the three information criteria for all model specifications are minimised

by the model implied by DAG (C), which in turn implies that, within the same quarter, the

Federal funds rate is not affected by shocks to the general price level and the real output,

while it is affected by shocks to the commodity price.

Table 3 indicates that the performance of model (C) is highest also as far as out-of-

sample predictability is concerned. Retaining approximately the first third of observations

as the training period, first, one-step ahead forecasts were recursively computed for the period
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1980:1-2007:4, i.e. conditional only on the information up to the date of the forecast and with

subsequent reestimation every time a new observation was included in the sample.

Model AIC HIC SIC Model AIC HIC SIC
B -418.56 -398.24 -368.48 B -466.06 -445.74 -415.98
C -453.05 -433.17 -403.42 C -521.79 -501.46 -471.71
D -358.26 -337.94 -308.19 D -484.43 -464.11 -434.35
F -405.32 -385.00 -355.24 F -471.50 -451.17 -421.42

(a) Model in first differences (b) Model in levels

Model AIC HIC SIC
B -469.87 -444.47 -407.27
C -525.34 -499.94 -462.74
D -488.20 -462.79 -425.60
F -463.66 -438.26 -401.06

(c) Model in levels with deterministic trend

Note: AIC = Akaike Information Criterion; HIC = Hannan-Quinn Information Criterion (HIC);
SIC = Schwarz Information Criterion.

Table 2: Information criteria associated to feasible DAGs

FD LEV LEV-TR FD LEV LEV-TR
B/C 1.24 1.14 1.13 B - C 2.84** 1.70* 1.30
D/C 1.18 1.02 1.02 D - C 2.22** 3.44** 4.13**
F/C 1.26 1.04 1.06 F - C 3.05** 1.03 1.15

(a) Ratios of A-MSFEs (b) Diebold-Mariano test statistics

Note: FD = Models in first differences; LEV = Models in levels;
LEV-TR = Models in levels with deterministic trend;

A-MSFE = Average Mean Square Forecast Error
* and ** indicate significance of the Diebold-Mariano test statistics at 0.05 and 0.10, respectively.

Table 3: Out-of-sample predictability associated to feasible DAGs relative to model (C) over
1980:1-2007:4.

Second, following Clarida et al. (2006), the cross-sectional mean of square forecast errors

(MSFE) of each variable of the SVAR was computed for each model. Table 3a reports the

ratios between the average MSFE (A-MSFE) of each model relative to that of model C. The
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t 1.000
ϵy
t 0.026 1.000 ϵy

t 0.022 1.000
ϵp
t 0.092 -0.112 1.000 ϵp

t 0.036 -0.144 1.000
ϵcp
t -0.043 -0.048 0.000 1.000 ϵcp

t -0.018 -0.020 0.000 1.000

(a) Model in first differences (b) Model in levels

ϵr
t ϵy

t ϵp
t ϵcp

t

ϵr
t 1.000

ϵy
t 0.020 1.000

ϵp
t 0.035 -0.146 1.000

ϵcp
t -0.018 -0.010 0.000 1.000

(c) Model in levels with deterministic trend

Note: The two-standard-error band for a sample size of 204 is ± 0.1538

Table 4: Correlations between residuals of the DAGs fitted to the VAR estimated innovations

forecast accuracy of model C is highest in every specification given that the ratios are all

larger than unity. To take the possible uncertainty around parameter estimates into account,

the models are compared also by means of the Diebold-Mariano (DM) test (Diebold and

Mariano, 1995). Table 3b reports the DM test statistics computed on the differences between

the MSFE of each competing model and that of model (C). In accordance with Table 3a, the

test statistics are systematically positive. The null hypothesis of zero difference is rejected in

most cases, at least at a 0.10 significance level. In particular, for the models in first differences

the null is always rejected at a 0.05 level. As shown by Inoue and Kilian (2006), a biunivocal

correspondence between model rankings based on (in-sample) information criteria and (out-

of-sample) forecast errors, does not always hold. In the specific case of this paper, however, it

is reassuring to observe that model comparisons made with out-of-sample methods clearly go

into the direction of corroborating the results obtained via in-sample criteria.

In sum, GM selects only data available at high frequencies for the information set of the

central bank, providing support for the “alternative” approach. A diagnostic check on the

cross-correlations matrix of the resulting residuals reported in Table 4 unveils that all cross-

correlations lie within two standard errors from zero. In addition, DAG (C) implies three
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overidentying restrictions which are not rejected at any conventional significance level.

For the sake of completeness, Figure 5 reports the impulse responses to a positive Federal

funds rate shock obtained by adopting both the “workhorse” and the “alternative” identifica-

tion approaches, the latter being consistent with GM. The two approaches generate impulse

responses with small quantitative differences, although real output shows a faster and longer

lived response with the workhorse approach compared to the alternative approach.

5 Conclusion

The empirical approaches aiming at identifying monetary policy shocks can be classified into

two groups: the “workhorse” approach, which assumes that the central bank has sufficient

information to accurately infer what contemporaneous real output and GDP deflators are when

it takes the monetary policy decision; and the “alternative” approach, which assumes that only

variables observed with high frequency, such as commodity prices, are in the information set of

the central bank at the time of policy setting. This paper makes use of GM theory to identify

a small-scale VAR of the US economy and finds that the application of such a data-based tool

give rise to identifying restrictions consistent with the “alternative” approach. When impulse-

response analysis is concerned, however, the “workhorse” approach and the model identified by

imposing restrictions suggested by GM – coinciding with the “alternative” approach – generate

responses to a Federal funds rate shock featuring only small quantitative differences, although

real output shows a faster and longer lived response with the workhorse approach compared

to the alternative approach.
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Note: Dashed lines represent 90% confidence intervals computed according to Hall (1992) algorithm with 2000
bootstrap replications. Responses are shown for a 20-quarter horizon.

Figure 5: Impulse responses to a Federal funds rate shock: “Workhorse” vs. “Alternative”
(GM-consistent) identification
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