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On the blocks of the infinitesimal Schur algebras

By ANTON COX

Mathematical Institute, 24–29 St. Giles’, Oxford, OX1 3LB, England.

For a reductive algebraic group scheme G, much can be learnt about its representations

over a field k of characteristic p > 0 by studying the representations of a related group scheme,

GrT , associated to the rth Frobenius kernel Gr and a maximal torus T of G. In the case

G =GL(n, k) one can also consider the polynomial representations, and reduce to the study

of representations of the Schur algebras. In [8] these two approaches were combined, and

gave rise to the construction of a monoid scheme MrD whose representations are equivalent

to the polynomial representations of GrT . Just as in the ordinary case, this leads naturally

to the study of certain finite dimensional algebras, the infinitesimal Schur algebras. In this

paper we determine the blocks of these algebras when n = 2, which extends a result in [9]

where the blocks were determined in the case n = 2 and r = 1. We conclude by defining a

quantum version of the infinitesimal Schur algebras, and show that the corresponding result

also holds in this case.

1 Preliminaries

In this section (based on [8]) we briefly review the basic results and notation that will be

needed later. We set M to be the monoid of n × n matrices over k. This can be regarded

as a monoid scheme over k, and taking F to be the usual Frobenius morphism on M we

may consider Mr=ker(F r), an infinitesimal sub-monoid. Let D be the submonoid of M

corresponding to the diagonal matrices, and set MrD = (F r)−1(D).

More concretely, we have that k[M ] = k[cij : 1 ≤ i, j ≤ n] with bialgebra structure given

by

∆(cij) =

n
∑

k=1

cik ⊗ ckj; ǫ(cij) = δij .

Fix r and let Jr be the ideal generated by cp
r

ij for 1 ≤ i 6= j ≤ n. This is also a coideal, and

k[M ]/Jr is naturally a graded bialgebra. Now denote by A(n, d)r the set of homogeneous

polynomials of degree d ≥ 0. We obtain the infinitesimal Schur algebras by setting S(n, d)r =

A(n, d)∗r.
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Throughout this paper, we will freely use standard notation from [14]. We denote by

Φ the root system of G (=GL(n, k)), by Φ+ the set of positive roots, and by Π the set of

simple roots. The set of rational (respectively polynomial) weights will be denoted X(T )

(respectively P (D)) and be identified with Z
n (respectively N

n).

Now the simple GrT -modules correspond (by [14, II 9.5b)]) to the weights in X(T ). For

λ ∈ X(T ) denote the corresponding simple module by L̂r(λ) and its restriction to Gr by

Lr(λ). Then by [8, Corollary 3.2] the set of isomorphism classes of simple MrD-modules is

{L̂r(λ) : λ ∈ Γr(D)},

where Γr(D) = Pr(D) + prP (D), and

Pr(D) = {λ ∈ P (D) : 0 ≤ λi − λi+1 ≤ pr − 1 for 1 ≤ i ≤ n}

with λn+1 = 0. We also write Γd
r(D) for the set of elements of Γr(D) of degree d, which

indexes the set of isomorphism classes of simple S(n, d)r-modules. The one-dimensional

module corresponding to the determinant representation will also be denoted by det.

For λ ∈ X(T ), let Q̂r(λ) denote the injective hull of L̂r(λ) in Mod(GrT ). Similarly

for each λ ∈ Γr(D), let Îr(λ) denote the injective hull of L̂r(λ) in Mod(MrD). We can

define induction and restriction functors (denoted ind and res respectively), and we set

Ẑr(λ) = indGrT
BrT

λ for λ ∈ X(T ).

Finally we define two functors from Mod(GrT ). For V ∈ Mod(GrT ) we set FMrD(V ) ∈

Mod(MrD) to be equal to the unique maximal submodule of V that is anMrD-module, and

Oπ(V ) ∈ Mod(GrT ) to be equal to the unique maximal submodule of V all of whose com-

position factors are MrD-modules. (Each functor takes morphisms to their corresponding

restrictions.) Given an MrD-module V , we write infGrTV for the GrT module obtained via

inflation. Then infGrTFMrD and Oπ are equivalent by the main result in [15, Appendix].

2 Infinitesimal blocks

In this section we begin to determine the blocks of the infinitesimal Schur algebras. This

will use the description of the blocks of GrT implicit in [13]. We will denote the block of Gr

containing λ by Br(λ), and the block of GrT containing λ by B̂r(λ). Blocks will be identified

with subsets of Zn in the usual way, thus allowing us to consider the intersection of blocks

for different categories of modules.
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We begin by recalling various results from [14]. Define m (=m(λ)) to be the least integer

such that there exists an α ∈ Φ+ with 〈λ+ ρ, α̌ 〉 /∈ Zpm. Then, by [14, II 9.19(1)], we have

Br(λ) = W.λ+ pmZΦ + prX(T ). (1)

By [14, II 9.16 Lemma (a)] we also have that

B̂r(λ) ⊆W.λ + pZΦ. (2)

We can relate the blocks of Gr and GrT , as

Ext1Gr
(Lr(λ), Lr(µ)) =

⊕

ν∈X(T )

Ext1GrT
(L̂r(λ+ prν), L̂r(µ)), (3)

(see [14, II 9.16(3)]). This, along with (1) and (2), gives that B̂r(λ) ⊆ Br(λ), and hence

B̂r(λ) ⊆W.λ + pmin(m,r)
ZΦ. (4)

Proposition 2.1 For all r > 0 and λ ∈ X(T ), we have

B̂r(λ) =

{

W.λ+ pmZΦ if m ≤ r,
{λ} if m > r,

where m is defined as above.

Proof: We first consider the casem > r. By [14, II 11.8], we have that for all µ ∈ W.λ+prZΦ,

the module Ẑr(λ) is simple. So the result in this case follows from the usual characterisation

of blocks (see [14, II 11.4]). Now suppose that m ≤ r, and µ ∈ W.λ + pmZΦ. Then λ and

µ are in the same Gr block, and so there exists a sequence λ = 0λ, 1λ, . . . , tλ = µ such that

Ext1Gr
(Lr(iλ), Lr(i+1λ)) 6= 0. So by (3) there exist 0ν, . . . , t−1ν ∈ X(T ) such that

Ext1GrT
(L̂r(iλ+ priν), L̂r(i+1λ)) 6= 0.

Thus iλ+p
r
iν is in the same GrT block as i+1λ for 0 ≤ i ≤ t−1. As L̂r(τ+p

rν) ∼= L̂r(τ)⊗p
rν

by [14, II 9.5 Proposition], this implies that 0λ + pr(0ν + . . . + t−1ν) is in the same GrT

block as tλ = µ. So we will be done if we can show that λ is in the same GrT block as

0λ+p
r(0ν+. . .+t−1ν). But µ ∈ W.λ+pmZΦ implies that 0λ+p

r(0ν+. . .+t−1ν) ∈ W.λ+pmZΦ

by (4), and hence that pr(0ν + . . .+ t−1ν) ∈ pmZΦ. The result now follows by repeated use

of the short exact sequence in [13, Section 5.5 before (2)].

For the polynomial case we will need the following lemma, which will enable us to proceed

by induction on r.
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Lemma 2.2 For all λ′ ∈ Pr(D) and λ′′ ∈ P (D), we have

resMrDÎr+1(λ
′ + prλ′′) ≤

⊕

ν

Îr(λ
′ + prν),

where the sum runs over the set of polynomial weights of Q̂1(λ
′′), counted with multiplicities.

Proof: We first note that for any Gr+1T -module X , it is clear that

resMrDFMr+1D(X) ≤ FMrDresGrT (X).

We also have, from [14, II 11.15 Lemma], that

Q̂r+1(λ
′ + prλ′′) ∼=GrT Q̂r(λ

′)⊗ Q̂1(λ
′′)F

r

,

which implies, by [14, II 11.3 (2)], that

Q̂r+1(λ
′ + prλ′′) ∼=GrT

⊕

ν

Q̂r(λ
′ + prν),

where the sum runs over the set of weights of Q̂1(λ
′′). The result nows follows from [8, 4.1

Proposition], which gives that FMrD(Q̂r(λ)) ∼= Îr(λ).

We will denote the block of S(n, d) containing λ by Bd(λ) and the corresponding block of

S(n, d)r by Bd
r (λ). We also use the notation from [8, Section 3] for various subsets of X(T ).

We first note that, by [4, Theorem], we have

Bd(λ) = (W.λ + pmZΦ) ∩ Λ+(n, d). (5)

The main conjecture of this section is

Conjecture 2.3 For all r > 0 and λ ∈ Γd
r(D), we have

Bd
r (λ) = B̂r(λ) ∩ Γd

r(D).

This is already known to hold in the case n = 2 and r = 1, as shown in [9]. As a first step

we can at least prove one of the inclusions.

Proposition 2.4 For all r > 0 and λ ∈ Γd
r(D) we have

Bd
r (λ) ⊆ B̂r(λ) ∩ Γd

r(D).
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Proof: To show that our block is contained in this intersection, we first note that by [8, 4.1

Proposition] we have that FMrD(Q̂r(λ)) ∼= Îr(λ). But then if L̂r(µ) is a composition factor

of Îr(λ), it is also one of Q̂r(λ), and so the result now follows.

λ1

λ
2 5p

4p

3p

2p

p

p-1

p 2p 3p 4p 5p

0

0

Πr

2 Πr

3 Πr

4

Figure 1: The case n=2, p=5, and r=1.

For convenience we will set Cd
r (λ) = B̂r(λ) ∩ Γd

r(D), and the rest of this section will be

devoted to proving this equals Bd
r (λ) when n = 2. In this case there is one simple root

α = (1,−1). Henceforth we will write λ ∼ µ if λ and µ are linked as MrD-weights.

We will also need to define various regions of the plane, for which it may be helpful to
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refer to Figure 1. We first set

Π1
r = {λ ∈ P (D) : λ1 ≥ pr − 1}.

Writing λ ∈ Γr(D) in the form λ = λ′ + prλ′′, with λ′ ∈ Pr(D) and λ′′ ∈ P (D), we also

define

Π2
r = {λ ∈ Γr(D) : λ′1 + λ′2 ≤ pr − 1 and λ′′1 = 0}.

Then our main result is

Theorem 2.5 For n = 2 and d ≥ 0 we have that, for all λ ∈ Γd
r(D),

Bd
r (λ) = Cd

r (λ).

The rest of this section is devoted to proving this result.

We will fix d and assume that we have proved the result for all d′ < d. We first note

that for r >> 0, we have S(n, d)r = S(n, d) (see [8, Section 2.3 Remark (2)]), so we will

proceed by descending induction on r. So assume the result holds for r + 1, that d ≥ pr (as

otherwise we are done by (5)) and that m ≤ r (as otherwise the result is clear from (2.4)).

We first show

Lemma 2.6 All weights in the set Π2
r ∩ Cd

r (λ) are linked.

Proof: Suppose λ and µ lie in this set. Then (using the usual notation) λ′′ = µ′′. Now λ′ is

linked to µ′ as these both have weight d′ < pr, for which the result is known from (5). So

there is a chain of weights λ = 0λ, . . . , tλ = µ in Π2
r ∩ Bd′

r (λ
′) such that, for each i, we have

ExtMrD(L̂r(iλ), L̂r(i+1λ)) 6= 0 or ExtMrD(L̂r(i+1λ), L̂r(iλ)) 6= 0. Now as tensoring up with

a one-dimensional module does not cause an extension to split, we get, in the category of

GrT -modules, a chain of non-trivial extensions by tensoring up with prλ′′ . But as these are

allMrD-modules by restriction, the equivalence of F and Oπ (see [15, Appendix]) gives that

this is still a chain of non-trivial extensions for MrD (see [8, Section 6.2, Remark]). The

result now follows, as L̂r(iλ)⊗ prλ′′ ∼= L̂r(iλ + prλ′′) for all i.

We will also need the following pair of lemmas.

Lemma 2.7 For λ ∈ Γr(D), if λ1 ∈ Π1
r then

infGrTFMrD(Ẑr(λ)) ∼= Ẑr(λ).
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Proof: By [14, II 9.2 (6)], all weights µ of Ẑr(λ) satisfy λ− (pr − 1)(1,−1) ≤ µ ≤ λ. So if

λ1 ≥ pr − 1, then all these weights are polynomial, and so, as FMrD is equivalent to Oπ, the

result follows.

Lemma 2.8 If λ, µ ∈ Γd
r(D) ∩Π1

r and λ− µ ∈ pmZα, then λ ∼ µ.

Proof: The argument follows just as in [13, Section 5.5] as the exact sequence constructed

there remains non-trivial when we apply FMrD, by the last result.

0
3p0 p 2p

d=2p-1

d=3p-3
d=p

p

2p

D

A etc.

B etc.

C etc.

λ1

λ2

Figure 2: The case n=2, p=5, and r=1.

We now consider the case when pr ≤ d ≤ 2pr − 1. In this case it will be convenient to

divide Γr(D) into three regions; we set A = Π2
r ∩ Γr(D), B = Pr(D) ∩ Γr(D), and C to be

the remainder (see Figure 2). Then

Lemma 2.9 All the weights in Cd
r (λ) ∩ B are linked.

Proof: Consider d′ ∈ {pr−1, pr−2} such that d−d′ is even. Then we know that all weights

in Cd′

r (λ − d−d′

2
(1, 1)) are linked, as this reduces to the ordinary Schur algebra case. So for

any two weights in this set there is a chain of simple modules with non-trivial extensions

between consecutive terms. Tensoring up with det
d−d′

2 then gives the result as above.
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As Γd
r+1(D) ⊆ Γd

r(D), we now consider the case where λ ∈ Γd
r+1(D) and µ ∈ Bd

r+1(λ).

Then Bd
r+1(λ) = (W.λ + pmZΦ) ∩ Γd

r+1(D), and there exists a chain λ = 0λ, 1λ, . . . , tλ = µ

in Γd
r+1(D) such that either [Îr+1(iλ) : L̂r+1(i+1λ)] 6= 0 or [Îr+1(i+1λ) : L̂r+1(iλ)] 6= 0 for

1 ≤ i ≤ t − 1. Now for all i set iλ = iλ
′ + priλ

′′, where iλ
′ ∈ Pr(D) and iλ

′′ ∈ P (D). By

(2.2), and as L̂r+1(iλ) ∼=MrD L̂r(iλ
′) ⊗ L̂1(iλ

′′)F
r

, we have that for 2 ≤ i ≤ t there exists

iν, iν
′ ∈ P (D) such that either

[Îr(iλ
′ + priν) : L̂r(i+1λ)] 6= 0,

or

[Îr(i+1λ
′ + pri+1ν

′) : L̂r(iλ)] 6= 0.

Hence either iλ is linked to i+1λ
′ + pri+1ν

′ or i+1λ is linked to iλ
′ + priν. With this we can

now prove

Lemma 2.10 For pr ≤ d ≤ 2pr − 1 we have that either Cd
r (λ) is a single block, or it is the

union of the two blocks Cd
r (λ) ∩ Π2

r and Cd
r (λ)\Π

2
r.

Proof: First note that if Cd
r (λ) ⊆ B then we are done by the previous lemma, so we may

assume that this does not hold. Thus, as Cd
r (λ) ∩ (A ∪ C) 6= ∅, and C = {a + prα : a ∈ A},

we must have Cd
r (λ) ∩ C 6= ∅, and hence Cd

r+1(λ) ∩ C 6= ∅. Consider the sequence of linked

weights introduced above, and assume — as by the last remark we may — that λ ∈ C.

Suppose that µ ∈ B. Now as the only weight equal to µ modulo prα is µ, and the only

weights equal to those in C modulo prα lie in A ∪ C, there exists some weight τ such that

τ ∈ A ∪ C and µ ∼ τ . We will consider the following two sets of weights:

B1 = {µ ∈ Bd
r+1(λ) ∩B : ∃τ ∈ A with µ ∼ τ},

and

B2 = {µ ∈ Bd
r+1(λ) ∩B : ∃τ ∈ C with µ ∼ τ}.

By (2.6), all the weights in Bd
r+1(λ) ∩ A are linked, and by tensoring up with pr(1,−1) we

see that all the weights in Bd
r+1(λ) ∩ C are linked also. So if B1 = B2 = ∅ we are done.

Otherwise there are two possibilities: B1 = B2 = B, or B1 ∩ B2 = ∅.

Choose a minimal weight τ ∈ Bd
r+1(λ) ∩ C (this exists by our initial assumption). By

(2.7), Ẑr(τ) has polynomial weights, and so (as it is not simple by [14, II 11.8 Lemma]) we
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see by [14, II 9.1 (6)] that τ is linked to some lower weight. By minimality this weight lies in

B or A. If it is in A then B1 = B2 = B, while if it is in B then B2 6= ∅. So by the previous

lemma we either have B1 = B2 = B, or B1 = ∅ as required.

Now we consider the case when 2pr ≤ d ≤ 3pr − 1. Once again it will be convenient

to divide our weights into regions. For a set of weights X , we will set X ′ = {x + pr(0, 1) :

x ∈ X} and X ′′ = {x + pr(1, 0) : x ∈ X}. We also denote by D the set of weights with

2pr ≤ d ≤ 3pr − 1 that are not contained in (A ∪B ∪ C)′ ∪ (A ∪ B ∪ C)′′.

Lemma 2.11 For 2pr ≤ d ≤ 3pr − 1 we have that either Cd
r (λ) is a single block, or it is the

union of the two blocks Cd
r (λ) ∩ Π2

r and Cd
r (λ)\Π

2
r.

Proof: First consider Cd
r (λ) ∩ (B′ ∪ B′′ ∪ C ′ ∪D). Let d′ ∈ {2pr − 1, 2pr − 2} be such that

d− d′ is even. Then as all the weights in A ∪B ∪C are linked by the induction hypothesis,

we see by tensoring up by det
d−d′

2 that all of these weights are linked also. If Cd
r (λ)∩C

′′ 6= ∅

then these weights can be linked to those in C ′ by (2.8).

We now show that Cd
r (λ) is in fact a single block for p ≤ 3pr − 1. For this we will need

to define two further regions of the plane. Decomposing λ = λ′ + prλ′′ as usual, we set

Π3
r = {λ+ (0, 1) ∈ Γr(D) : λ′1 ≥ pr − 1, λ′1 + λ′2 < 2pr − 1, and λ′′1 = 0}

and

Π4
r = {λ+ pr(1, 0) : λ ∈ Π2

r}.

We can now show

Lemma 2.12 For d ≤ 3pr − 1 and λ ∈ Γd
r we have Cd

r (λ) = Bd
r (λ).

Proof: First suppose that λ ∈ Π1
r . By (2.7), the lowest weight in Âr(λ) is λ−(pr−1)(1,−1).

Now for τ = τ ′ + prτ ′′, with τ ′ ∈ Pr(D) and τ ′′ ∈ P (D), we have L̂r(τ) ∼= L̂r(τ
′)⊗ prτ ′′, and

by [14, II 3.15 Proposition] L̂r(τ
′) ∼= L(τ ′). Now the lowest weight in L(τ ′) is w0τ

′ (where

w0 is the non-trivial element of the Weyl group), and hence the lowest weight in L̂r(τ) is

w0τ
′+ prτ ′′. Clearly L̂r(τ) and L̂r(µ) have the same lowest weight if, and only if, τ = µ, and

so Âr(λ) has a composition factor L̂r(τ), where w0τ
′ + prτ ′′ = λ− (pr − 1)(1,−1).

Now we may assume that Cd
r (λ)∩Π

2
r 6= ∅ (else the result holds by our earlier calculations).

Then, as Π4
r = {µ+ prα : µ ∈ Π2

r}, we have that Cd
r (λ) ∩Π4

r 6= ∅. Modulo prα, we have that
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Π4
r = w0.Π

3
r , and so Cd

r (λ) ∩ Π3
r 6= ∅. So we may assume that λ ∈ Π3

r . Then, by considering

Figure 1, along with the above remarks, we see that τ ∈ Π2
r, and we are done (by (2.6),

(2.10) and (2.11)).

To complete the proof we require

Lemma 2.13 If d ≥ 2pr − 1 then, for all λ ∈ Γd
r+1 and w ∈ W , there is some element of

the form w.λ+ pmzα in Γd
r+1 ∩ Π1

r.

Proof: For each w ∈ W there is one such representative in any chain of pm consecutive

weights in Γd
r+1. So it is enough to show that such a chain exists. But all (µ1, µ2) with

µ1 + µ2 = d and µ1 ≥ µ2 lie in Γd
r+1 ∩ Π1

r, so such a chain always exists if d ≥ 2pm − 1.

To conclude we suppose that d ≥ 3pr − 1. Then there exists integers a and d′ such that

2pr ≤ d′ ≤ 3pr−1 and d = d′+pra. By the previous lemma, Cd
r (λ)∩Π

1
r∩{µ+p

r(0, a) : µ ∈ Γd′

r }

contains a representative of each w.λ class, and all the weights in Cd
r (λ)∩ {µ+ pr(0, a) : µ ∈

Γd′

r } are linked by tensoring up the corresponding chains from Γd′

r . All other weights in Cd
r (λ)

are linked to these, as they are linked to their corresponding w.λ class representative by

(2.8).

3 The infinitesimal q-Schur algebra

In this and the following section we will define the infinitesimal q-Schur algebras, and develop

some of their basic representation theory. Although all of the classical results in [8, Sections

1–5] can be replicated (by analogous methods) in the quantum setting, we shall restrict our

attention to those results that are required to generalise the preceding block calculation. A

more detailed development can be found in [1, Chapter 4].

We first recall the definition of the quantum general linear group due to Dipper and

Donkin [3]. We fix q ∈ k\{0}, and define Aq(n) to be the k-algebra generated by the n2

indeterminates cij, with 1 ≤ i, j ≤ n, subject to the relations

cijcrs = qcrscij for i > r and j ≤ s,
cijcrs = crscij + (q − 1)crjcis for i > r and j > s,
cijcil = cilcij for all i, j, l.

We note that when q = 1 these relations just say that the cij commute; in this case we will

usually denote the cij by xij . As was shown in [3, 1.4.2 Theorem], Aq(n) has the structure

of a bialgebra with comultiplication and counit maps as in the classical case.
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We shall often write k[q-M(n, k)] for Aq(n) and regard this as corresponding to a quantum

monoid q-M(n, k). We can define (see [3]) a ‘quantum determinant’ dq in k[q-M(n, k)], and we

denote the Hopf algebra obtained by localising at this by k[q-GL(n, k)]. This corresponds to

the quantum group q-GL(n, k) of Dipper and Donkin, which we shall often denote just by G.

Certain quantum subgroups of G have been defined in [6, Section 2]; in particular the torus

q-T(n, k) and the (negative) Borel subgroup q-B(n, k). We shall denote the corresponding

submonoids of q-M(n, k) by q-D(n, k) and q-L(n, k) respectively.

Henceforth, we restrict our attention to the case when q is a primitive lth root of unity,

and k has characteristic p > 0. In this case there is a Frobenius morphism F : q-GL(n, k) −→

GL(n, k) whose associated comorphism takes xij to clij. We also have the usual Frobenius

map F on GL(n, k) associated to the comorphism taking xij to xpij . Henceforth we shall

abuse notation and write F r for Fr−1F .

Let Jr be the ideal in Aq(n) generated by all clp
r−1

ij for 1 ≤ i 6= j ≤ n. This is in fact a

coideal; ǫ(Jr) = 0 is clear, while δ(clp
r−1

ij ) =
∑n

k=1 c
lpr−1

ik ⊗ clp
r−1

kj by [10, 3.1] and the centrality

of clij (see [3, 1.3.2]). Thus Aq(n)/Jr is also a bialgebra, and gives rise to a quantum monoid

which we denote by MrD (or q-MrD if we wish to emphasise the role of q).

A quantum analogue of the Janzten subgroup GrT was defined in [2]. In fact, k[MrD] is

the subbialgebra of k[GrT ] generated by the cij, and k[GrT ] is the localisation of k[MrD] at

the quantum determinant. Thus k[MrD] is the polynomial part of k[GrT ]. We call objects

in Modk[MrD](GrT ) polynomial GrT modules.

We have that Aq(n)/Jr =
⊕

d≥0Aq(n, d)r, where Aq(n, d)r is the subspace consisting

of the homogeneous polynomials of degree d in the cij . This subspace is clearly also a

subcoalgebra of Aq(n)/Jr, for all d. Hence we may define the infinitesimal q-Schur algebra

Sq(n, d)r = Aq(n, d)
∗
r. We will say that objects in ModAq(n,d)r(GrT ) are homogeneous of

degree d.

Proposition 3.1 i) The category of polynomial GrT -modules is equivalent to the category

of MrD-modules.

ii) Every polynomial GrT -module V has a direct sum decomposition V =
⊕

d≥0 Vd where Vd

is homogeneous of degree d.

iii) The category of finite-dimensional Sq(n, d)r-modules is equivalent to the category of ho-

mogeneous polynomial GrT -modules of degree d.
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Proof: This follows just as in the ordinary case (see [11, Section 1.6] and [12, pages 3–11])

as noted in [8, 2.1 Proposition].

We next classify the simple MrD-modules, and hence the simple polynomial GrT -

modules. The result also classifies the simple Sq(n, d)r-modules. We carry over the no-

tation for the various subsets of the weights in X(T ) from Section 1, with the following

modifications. We set Γr(D) = Pr(D) + lpr−1P (D), where

Pr(D) = {λ ∈ P (D) : 0 ≤ λi − λi+1 ≤ lpr−1 − 1 for 1 ≤ i ≤ n}

with λn+1 = 0. This latter definition coincides with that of Xr(T ) in [2, Section 3], and the

notation we use for this set will depend on the context in which it arises. We now obtain

Theorem 3.2 Let V be a simple GrT -module with all its weights polynomial. Then V is of

the form L(λ′)⊗ lpr−1λ′′ with λ′ ∈ Pr(D) and λ′′ ∈ P (D).

Proof: This follows just as in the classical case (see [8, 3.2 Theorem]), using the fact that

the character of a G-module is invariant under the Weyl group (see [6, Lemma 3.1(v)]).

By [7, 3.1(13)(iii)] (which generalises to the case r > 1) we have the following corollary,

as in [8].

Corollary 3.3 A complete set of non-isomorphic simple modules in Mod(MrD) is given by

{L̂r(λ) : λ ∈ Γr(D)}.

From this it follows that every simple MrD-module has a unique tensor product decom-

position of the form

L̂r(λ) ∼= L(λ′)⊗ lpr−1λ′′,

for λ′ ∈ Pr(D) and λ′′ ∈ P (D). Further, if we set Γd
r(D) = {λ ∈ Γr(D) : |λ| = d}, then it

is clear that the set of simple Sq(n, d)r-modules is in one-to-one correspondence with Γd
r(D).

Henceforth, we will denote by L̂r(λ) both the simple MrD- and GrT -modules corresponding

to λ ∈ Γr(D).

12



4 Truncation functors and induced modules

Just as in the classical case, we can define the two truncation functors FMrD and Oπ, and

the inflation functor infGrT . Most of this section is devoted to considering

Conjecture 4.1 We have an equivalence of functors between FMrD and Oπ; that is for all

GrT -modules V , we have

infGrTFMrD(V )
∼= Oπ(V ).

If this holds, then any GrT -module, all of whose composition factors lift to MrD, will

itself lift. Unfortunately, we are not able to generalise the classical proof in [15, Appendix] to

the quantum case, as it relies on an action of the symmetric group on the coordinate algebra

(which does not exist in our setting). However, similar methods will at least give the result

in the case n = 2.

We begin with a result relating the injective modules for MrD and GrT . For each

λ ∈ Γr(D), we denote the injective hull of L̂r(λ) in Mod(MrD) by Îr(λ), and in Mod(GrT )

by Q̂r(λ). The basic properties of Q̂r(λ) have been developed in [7] in the case r = 1, and it

is straightforward to verify that similar arguments hold for r > 1. By (3.3) we have

socMrDFMrD(V ) ∼= FMrD(socGrTV ),

as MrD-modules, for every GrT -module V .

Proposition 4.2 For λ ∈ Γr(D) we have FMrD(Q̂r(λ)) ∼= Îr(λ).

Proof: This is immediate as FMrD takes injectives to injectives, and Q̂r(λ) has the appro-

priate simple socle.

Returning to our conjecture, we note that we have an inclusion k[MrD] ⊆ Oπ(k[GrT ]).

Equivalence will follow if we can show this is in fact an equality, by the following lemma (an

analogue of [8, 4.1 Lemma]).

Lemma 4.3 With π = {L̂r(λ) : λ ∈ Γr(D)}, the following are equivalent:

i) Oπ is equivalent to FMrD;

ii) Oπ(k[GrT ]) ∼= k[MrD];

13



iii) for all d, if πd is the set of simple Sq(n, d)r-modules then Oπd
(k[GrT ]) ∼= Aq(n, d)r;

iv) Oπ(Q̂r(λ)) ∼= Îr(λ) for all λ ∈ Γr(D).

Proof: The equivalence of i) and ii) is clear, as every GrT -module embeds into a direct sum

of copies of k[GrT ], by [16, 2.4.4]. The equivalence of ii) and iii) is also immediate. For the

equivalence of ii) and iv) we use that

k[MrD] =
⊕

λ∈Γr(D)

[dim L̂r(λ)]Îr(λ).

This follows (as k[MrD] is injective [16, 2.8.2(1)] and Mod(MrD) has enough injectives [16,

2.8.1]) by the usual arguments (see [14, I.3.14–17]). From (3.3) and the definition of Oπ, we

see that Oπ(Q̂r(λ)) 6= 0 if, and only if, λ ∈ Γr(D). There is a similar decomposition to that

of k[MrD] above for k[GrT ], so applying Oπ to each side gives

Oπ(k[GrT ]) =
⊕

λ∈Γr(D)

[dim L̂r(λ)]Oπ(Q̂r(λ)).

As Îr(λ) ∼= FMrD(Q̂r(λ)) ⊆ Oπ(Q̂r(λ)), the result now follows.

The following pair of lemmas will allow us to prove the result for the case n = 2. The

former is a modification of the main lemma used by Jantzen in his proof for the classical

case.

In order to be able to state our next result we need another description of k[GrT ]. By

[10, 3.1], we have that

dlp
r−1

q = clp
r−1

11 clp
r−1

22 · · · clp
r−1

nn ,

and hence, as in [15, Appendix], we obtain

k[GrT ] = k[cij, c
−1
ii : 1 ≤ i, j ≤ n]/〈clp

r−1

ij : i 6= j〉,

with the usual relations.

Lemma 4.4 Let V be a k[GrT ]-module with all weights polynomial. Then the coefficient

space of V lies in

k[cij , c
−1
tt : 1 ≤ i, j ≤ n, 1 ≤ t ≤ n− 1]/〈clp

r−1

ij : i 6= j〉.
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Proof: Consider the natural map

φ : k[GrT ] −→ k[BrT ]⊗ k[T ]⊗ k[B+
r T ].

This is injective (by standard arguments — compare with [16, (8.1.1) Theorem]), and writing

cij for the generators of all four quantum groups we see that

φ(cij) =
∑

t≤i,j

cit ⊗ ctt ⊗ ctj . (6)

In particular, the only case in which any of the middle factors can contain a cnn is when

i = j = n.

Now take a basis of weight vectors for V , say {vi : 1 ≤ i ≤ t}, with the corresponding

set of coefficient functions {fij}. By assumption, the fii are polynomial for all i. As V is a

comodule, we have that

(id⊗ δ)δ(fij) =
∑

s,t

fis ⊗ fst ⊗ ftj ,

and as ǫ(fij) = δij this implies that

φ(fij) =
∑

t

f̄it ⊗ f̄tt ⊗ f̄tj ,

where the bars denote the appropriate restrictions. Thus we see that

φ(fij) ⊆ k[BrT ]⊗ k[D]⊗ k[B+
r T ]. (7)

Suppose now that there exists some fij involving c
−1
nn . We have that fij = d−tlpr−1

q a with

a ∈ k[MrD], and hence

φ(fij) = φ(d−tlpr−1

q )φ(a)

= d̄−tlpr−1

q ⊗ d̄−tlpr−1

q ⊗ d̄−tlpr−1

q φ(a).

Writing φ2 for the projection of φ onto the central factor of the tensor product we thus have

that

φ2(fij) = c−tlpr−1

11 · · · c−tlpr−1

nn φ2(a).

By assumption, a = ctlp
r−1

nn b + e, where e is non-zero and no term of e contains ctlp
r−1

nn . So,

again by [10, 3.1],

φ(a) = (ctlp
r−1

nn ⊗ ctlp
r−1

nn ⊗ ctlp
r−1

nn )φ(b) + φ(e),
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with φ(e) non-zero by the injectivity of φ. However, by (6), no term of φ2(e) contains c
tlpr−1

nn ,

and so φ2(a) /∈ ctlp
r−1

nn k[D]. Thus φ2(fij) /∈ k[D], which contradicts (7).

In the classical case, Jantzen now uses the invariance of the coefficient space under the

action of the symmetric group to obtain the desired result. This action does not exist for

non-trivial q, but we can at least prove the result for the case n = 2.

Lemma 4.5 Let V be a k[GrT ]-module with all weights polynomial. Then the coefficient

space of V lies in

k[cij , c
−1
tt : 1 ≤ i, j ≤ n, 2 ≤ t ≤ n− 1]/〈clp

r−1

ij : i 6= j〉.

Proof: Consider k[q-GL(n, k)] with the usual generators, and k[q−1-GL(n, k)] with genera-

tors eij and dq−1. We define a map

φ : k[q-M(n, k)] −→ k[q−1-M(n, k)]

by φ(cij) = en+1−i,n+1−j. It is easy to check that this is a well-defined bialgebra homomor-

phism, and that it extends to a map of the corresponding quantum groups. Furthermore,

it is also clear that it restricts to a map between the corresponding Jantzen subgroups, and

so induces a map Φ from Mod(q-GrT ) to Mod(q−1-GrT ). If V is a q-GrT -module with

polynomial weights, and its coefficient space contains terms involving c−1
11 , then Φ(V ) is a

q−1-GrT -module with polynomial weights whose coefficient space contains terms involving

e−1
nn . This gives a contradiction, as the previous lemma also holds for Mod(q−1-GrT ).

We conclude this section by defining certain important induced modules. First we define

k[LrD] = k[q-L(n, k)]/J ′
r, where J

′
r = Jr ∩ k[q-L(n, k)]. Now for λ ∈ P (D), we can consider

the induced module Âr(λ) = indMrD
LrD

kλ. (Here kλ denotes the one-dimensional D-module of

weight λ, which can be regarded as a module for LrD in the usual way.) This is the analogue

for MrD of the GrT module Ẑr(λ), defined in [2]. When r = 1, the basic properties of Ẑr(λ)

have been determined in [7], and it is straightforward to verify that similar arguments hold

for r > 1.

Proposition 4.6 Let λ ∈ P (D). Then

i) Âr(λ) = 0 unless λ ∈ Γr(D);

ii) if λ ∈ Γr(D), then Âr(λ) ∼= FMrD(Ẑr(λ)).
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Proof: Let λ ∈ P (D). There exists an embedding Âr(λ) −→ k[GrT ], the composition of

the natural inclusion of Âr(λ) in k[MrD] with the injection ι : k[MrD] −→ k[GrT ]. Consider

induction from LrD to MrD. We have the obvious map φ̂ : k[MrD] −→ k[LrD] and, by

definition,

Âr(λ) = {f ∈ |λ| ⊗ k[MrD] : f = eλ ⊗ g and τ(eλ)⊗ g =
∑

i

eλ ⊗ φ̂(g′i)⊗ g′′i },

where δ(g) =
∑

i g
′
i ⊗ g′′i and eλ is a basis element for λ. Now τ(eλ) = eλ ⊗ cλ1

11 . . . c
λn
nn, so

Âr(λ) ∼= {g ∈ k[MrD] : cλ1

11 . . . c
λn

nn ⊗ g =
∑

i

φ̂(g′i)⊗ g′′i }.

Similarly,

Ẑr(λ) ∼= {g ∈ k[GrT ] : c
λ1

11 . . . c
λn

nn ⊗ g =
∑

i

ψ̂(g′i)⊗ g′′i },

where ψ̂ : k[GrT ] −→ k[BrT ] is the obvious map and δ′(g) =
∑

i g
′
i ⊗ g′′i . Clearly ψ̂ι = φ̂,

and δ′ι = δ, so by the embedding above we have that if f ∈ k[MrD] lies in Âr(λ), then f

lies in Ẑr(λ). Hence Âr(λ) injects into Ẑr(λ). The proof now proceeds just as in the classical

case (see [8, 5.1 Proposition]).

The following corollary is now an immediate consequence of the result above, along with

the known structure of Ẑr(λ) and the classification in (3.3).

Corollary 4.7 Let λ ∈ Γr(D).

i) Let Âr(λ) =
∑

µ∈P (D) Âr(λ)
µ be a D-weight space decomposition. Then we have

dim Âr(λ)
λ = 1 and dim Âr(λ)

µ 6= 0 implies that µ ≤ λ for all µ ∈ P (D).

ii) The module Âr(λ) has simple socle L̂r(λ).

Proof: See [7, 3.1(13)(i) and (20)(ii)].

5 The blocks in the quantum case

In this final section, we verify that the various infinitesimal results used in the block calcu-

lation of Section 2 generalise to the quantum setting (at least for the case n = 2). Having

done this, we will obtain a description of the blocks of Sq(2, d)r just as in the classical case.
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Lemma 5.1 For all i ≥ 0, B(n, k)-modules M and G-modules V , we have

Ri indG
GrB

(V ⊗MF r

) ∼= V ⊗ (Ri ind
GL(n,k)
B(n,k) M)F

r

.

Proof: See [2, Lemma 4.6].

With this lemma, we can now prove the following proposition, relating filtrations of

Ẑr(λ) and indG
B(λ). We shall denote this induced module by ∇(λ), and the corresponding

classical module by ∇̄(λ). We set X(T )+ = {λ ∈ X(T ) : ∇(λ) 6= 0}, and note that this is

described explicitly in [6, Lemma 3.2].

Proposition 5.2 Given λ ∈ X(T )+, suppose that each composition factor of Ẑr(λ) has

the form L̂r(µ
′ + lpr−1µ′′), with µ′ ∈ P (D) and µ′′ ∈ X(T ), such that 〈µ′′ + ρ, α̌ 〉 ≥ 0

for all α ∈ Π. Then ∇(λ) has a filtration with factors of the form L(µ′) ⊗ ∇̄(µ′′)F
r

, with

µ′ ∈ P (D) and µ′′ ∈ X(T )+. Each such module occurs as often as L̂r(µ
′ + lpr−1µ′′) occurs

in a composition series of Ẑr(λ).

Proof: We first note that ∇(λ) ∼= indG
GrB

Ẑr(λ), as in [14, 9.8 Lemma]. The result now

follows, by the previous lemma and Kempf’s Vanishing Theorem ([6, Theorem 3.4]), just as

in the classical case (see [14, II 9.11 Proposition]).

Consider λ ∈ X(T ), not equal to −ρ. We define m(λ) to be the least positive integer

such that there exists an α ∈ Φ+ with 〈λ+ ρ, α̌ 〉 /∈ lpm(λ)
Z.

Corollary 5.3 Let λ, µ ∈ X(T ):

i) if L̂r(µ) is a composition factor of Ẑr(λ), then µ ∈ W.λ + lpmin(m,r−1)
ZΦ;

ii) if Lr(µ) is a composition factor of Zr(λ) then µ ∈ W.λ + lpmZΦ + lpr−1X(T ).

Proof: This is a strengthened version of the classical result [14, II 9.12 Corollary], and

follows from the previous proposition just as there, but replacing the appeal to the strong

linkage principle with an application of the description of the blocks of G in [2, Theorem

5.14].

Lemma 5.4 For all λ, µ ∈ X(T ),

ExtiGr
(Lr(λ), Lr(µ)) =

⊕

τ∈X(T )

ExtiGrT
(L̂r(λ+ lpr−1τ), L̂r(µ)).
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Proof: This follows just as in [14, I 6.9(5)], once we note that (by the remarks before

[7, 3.1(9)]) Gr and GrT satisfy the hypotheses of [6, Proposition 1.6], giving the required

spectral sequence.

We can now give one of the desired inclusion of blocks.

Lemma 5.5 For λ, µ ∈ X(T ):

i) if Ext1GrT
(L̂r(λ), L̂r(µ)) 6= 0, then µ ∈ W.λ + lpmin(m,r−1)

ZΦ;

ii) if Ext1Gr
(Lr(λ), Lr(µ)) 6= 0, then µ ∈ W.λ + lpmZΦ + lpr−1X(T ).

Proof: To define a contravariant duality as described before [16, (11.1.3)], we note that the

coalgebra anti-automorphism used there translates via [10, Proposition 2.1 and Theorem 2.4]

to one for the Dipper–Donkin quantisation. By considering the explicit description of this,

it is clear that it now restricts to an anti-automorphism of GrT . Then arguing as in [14, II

2.12] we see that for all i ∈ N and λ, µ ∈ X(T ) we have

ExtiGrT
(L̂r(λ), L̂r(µ)) ∼= ExtiGrT

(L̂r(µ), L̂r(λ)).

With this, the lemma now follows from the previous two results just as in [14, II 9.16 Lemma].

For the reverse inclusion we will need a few technical lemmas. The first of these is a

straightforward adaptation of the corresponding calculation in [14, page 329].

Lemma 5.6 For all λ ∈ X(T ) and w ∈ W , there exists a τ ∈ X(T ) such that λ − lpr−1τ

and w.λ− lpr−1wτ are linked as GrT -weights.

Proof: By [7, 3.1(20)ii)] we have

chẐr(λ) = e(λ− (lpr−1 − 1)ρ)χ((lpr−1 − 1)ρ).

Hence, as χ((lpr−1 − 1)ρ) ∈ Z[X(T )]W , we have

chẐr(w.λ+ lpr−1ρ) = e(w(λ+ ρ))chẐr(lp
r−1ρ)

= w[e(λ+ ρ)chẐr(lp
r−1ρ)],

and so

chẐr(w.λ+ lpr−1ρ) = wchẐr(λ+ lpr−1ρ). (8)
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Now any µ ∈ X(T ) can be written uniquely in the form µ = µ′ + lpr−1µ′′, with µ′ ∈ Pr(D)

and µ′′ ∈ X(T ), so for any finite dimensional module M we have

chM =
∑

µ′∈Pr(D)

∑

µ′′∈X(T )

[M : L̂r(µ)]e(lp
r−1µ′′)chL(µ′).

Taking M = Ẑr(λ+ lpr−1ρ) and applying w, we see from (8) that

chẐr(w.λ+ lpr−1ρ) =
∑

µ′∈Pr(D)

∑

µ′′∈X(T )

[Ẑr(λ+ lpr−1ρ) : L̂r(µ)]e(lp
r−1wµ′′)chL(µ′).

Comparing coefficients for M = Ẑr(w.λ+ lpr−1ρ) we see that

[Ẑr(λ+ lpr−1ρ) : L̂r(µ)] = [Ẑr(w.λ+ lpr−1ρ) : L̂r(µ
′ + lpr−1wµ′′)]. (9)

Hence, by tensoring up with suitable one-dimensional modules, we obtain that

[Ẑr(λ− lpr−1µ′′) : L̂r(µ
′ − lpr−1ρ)] = [Ẑr(w.λ− lpr−1wµ′′) : L̂r(µ

′ − lpr−1ρ)].

Now taking τ = µ′′ for some µ for which the left hand side of (9) is non-zero gives the result.

Lemma 5.7 For λ ∈ X(T ), if 〈λ+ ρ, α̌ 〉 ∈ Zlpr−1 for all α ∈ Π then Ẑr(λ) is simple.

Proof: This follows just as in [14, II 11.8 Lemma], using [7, 3.1(22), 3.1(13)(i), and

3.1(20)(ii)].

For our next lemma, it is necessary to restrict to the case when n = 2. However,

as our result on the classical blocks only holds in this case, this will be sufficient for our

needs. Recall that we denote the unique simple root in this case by α. We will also set

θ(m) =

{

lpi if i ≥ 0,
1 if i = −1.

Lemma 5.8 For λ ∈ X(T ), if 〈λ+ ρ, α̌ 〉 = alpm−1 + bθ(m− 2) for some 1 ≤ m ≤ r, a ∈ Z

and 0 < b < p (or 0 < b < l if m = 1), then

[Ẑr(λ) : L̂r(λ− bθ(m− 2)α)] 6= 0.
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Proof: We first note that, by [7, 3.1(20)(ii)], we have

chẐr(λ) = e(λ)[1 + e(−α) + · · ·+ e(−(lpr−1 − 1)α)].

Now assume that m > 1. Then we have

e(λ1, λ2) = e(λ2 + lpm−2 − 1, λ2)e(alp
m−1 + blpm−2 − 1, 0)

= e(λ2 + lpm−2 − 1, λ2)e(ap + b− 1, 0)F
m−1

.

Similarly,

[1+ · · ·+ e(−(lpr−1 − 1)α)] = [1+ · · ·+ e(−(lpm−2 − 1)α)][1+ · · ·+ e(−(pr+1−m− 1)α)]F
m−1

,

and hence we obtain that

chẐr(λ) = [chẐm−1(λ2 + lpm−2 − 1, λ2)][chZ̄r+1−m(ap+ b− 1, 0)]F
m−1

,

where Z̄s(µ) is the classical induced module for the sth Jantzen subgroup of GL(2, k). Now

L̂m−1(λ2 + lpm−2 − 1, λ2) ∼=Gm−1T L(λ2 + lpm−2 − 1, λ2), which has dimension lpm−2 by

Steinberg’s tensor product theorem [7, 3.2(5)]. Hence Ẑm−1(λ2+ lp
m−2−1, λ2) ∼= L̂m−1(λ2+

lpm−2 − 1, λ2). Again by Steinberg’s tensor product theorem, the result will now follow in

this case if we can show that

[Z̄r+1−m(ap + b− 1, 0) : L̄r+1−m((a− 1)p+ p− b− 1)] 6= 0,

where L̄(µ) is the usual simple module for GL(2, k). But this follows from the calculations

in [13, Section 5.5].

We now consider the case m = 1. Now [Ẑr(λ) : L̂r(λ)] = 1 by [7, 3.1(13)(i) and (20)(ii)],

so we consider chẐr(λ)− chL̂r(λ). Writing a = a′ + pr−1a′′ with 0 ≤ a′ < pr−1 we have that

L̂r(λ) ∼=GrT L(λ2 + b− 1, λ2)⊗ L̄(a′)F ⊗ lpr−1a′′,

and so, as b < l, the highest remaining weight in chẐr(λ)− chL̂r(λ) is

(λ2 + (a− 1)l + l − 1, λ2 + b) = λ− bα

as required.

We are now able to determine the desired blocks. As in the classical case, we denote the

blocks of GrT and Gr containing λ by B̂r(λ) and Br(λ) respectively.
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Theorem 5.9 For n = 2, r > 0 and λ ∈ X(T ), we have

B̂r(λ) =

{

W.λ + lpmZΦ if m ≤ r − 1,
{λ} if m > r − 1,

and

Br(λ) = W.λ+ lpmZΦ + lpr−1X(T ).

Proof: We first consider the GrT case. For m > r − 1 the result follows from (5.7). For

m ≤ r − 1, one inclusion comes from (5.5). For the reverse inclusion, given two weights in

W.λ + lpm−1
ZΦ, we use (5.6) and (5.8) to construct a chain of weights linking them in the

GrT case. Finally we deduce the Gr case from the GrT result using (5.4).

The determination of the blocks of the infinitesimal q-Schur algebras (in the case n = 2)

will now follow just as in the classical case described earlier, once we have verified a few

remaining technical results. We first collect together those results whose proofs are just

appropriate modifications of the G1T results obtained in [7].

Lemma 5.10 For λ = λ′ + lpr−1λ′′ ∈ X(T ), with λ′ ∈ Pr(D) and λ′′ ∈ X(T ), we have

i) Q̂r(λ) ∼= Q̂r(λ
′)⊗ lpr−1λ′′;

ii) all weights of Ẑr(λ) satisfy λ− 2(lpr−1 − 1)ρ ≤ µ ≤ λ.

Proof: See [7, 3.2(10)(ii) and 3.1(20)(ii)] respectively.

It now only remains to check

Lemma 5.11 For λ = λ′ + lpr−1λ′′ ∈ X(T ) with λ′ ∈ Pr(D) and λ′′ ∈ X(T ) we have

Q̂r+1(λ) ∼=GrT Q̂r(λ
′)⊗ Q̂1(λ

′′)F
r

.

Proof: This follows just as in [14, II 11.15 Lemma], once we have shown that Q̂r+1(λ) is

injective as a GrT module, and that the appropriate spectral sequence exists. Set H =

Gr+1T , and denote by H̄ the factor group generated by d−lpr−1

q and the clp
r−1

ij , for all 1 ≤

i, j ≤ n. It is routine to check that this is a sub-Hopf algebra, indeed H̄ ∼= GL(n, k)1T

under the map taking clp
r−1

ij 7−→ xij and d−lpr−1

q 7−→ d−1. The corresponding subgroup H1

(in the notation of [6, Section 1]) has defining ideal generated by the elements clp
r−1

ij − δij

and d−lpr−1

q − 1, for all 1 ≤ i, j ≤ n. Hence H1
∼= Gr.
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Arguing as in [3, (1.3.3)], we see that k[H ] is free (so certainly faithfully flat) as a k[H̄]-

module. So by [6, Proposition 1.6] we get the spectral sequence required in the proof of

the lemma. Now by [6, Proposition 1.5], or the main theorem in [5], Q̂r+1(λ) is an injective

Gr-module. Also, by [7, 3.1(9)], IndGrT
Gr

is exact so, as σH and σH1
are anti-automorphisms

(see [6, Remark 2.2]), we have that Q̂r+1(λ) is an injective GrT -module by [16, (2.9.1)].

Now the arguments from Section 2, along with the above results and [2, Theorem 5.3],

gives

Theorem 5.12 For n = 2 and d ≥ 0 we have for all λ ∈ Γd
r(D) that

Bd
r (λ) = B̂r(λ) ∩ Γd

r(D).
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