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Ext1 for Weyl modules for q-GL(2, k)
By ANTON COX

School of Mathematical Sciences, Queen Mary and Westfield College,

London, E1 4NS.

(Received 11 October 1996)

In a recent paper [7], Erdmann has calculated Ext1G between Weyl modules for SL2. In

this paper we generalise this result to solve the corresponding problem for quantum GL2 as

defined by Dipper and Donkin in [2]. We also show how our result also holds for the Manin

quantisation. To apply the methods of [7], it is necessary to determine the block structure

of quantum GL2, so the first main result of this paper is a description of this, derived from

the analysis of the subcomodule structure of the symmetric powers in [10].

After an initial section of generalities, the next section consists of the determination of

the block structure. We also need a quantum analogue of two short exact sequences from

[11], which we give in the following section. With these results, the argument now follows

much as in [7]; we consider the infinitesimal case, and then use the Lyndon-Hochschild-Serre

spectral sequence to obtain the desired result. Finally we show how the result also holds for

the Manin quantisation.

It should be noted that the result here uses the classical case, so is not independent

of that in [7]. The only real difference in the arguments used occurs in Lemma 4.8 where

the original methods do not generalise, so we use a more direct argument. There is also an

unfortunate typographical error in the statement of the main result in [7].

1 Preliminaries

In this section we summarise very briefly some of the basic results that will be needed later.

We consider the quantum general linear group defined by Dipper and Donkin in [2], over an

algebraically closed field k. We consider the case where n = 2, and denote the quantum GL2

by q-GL(2, k) (where q is the quantum parameter) or simply by G. It will be assumed that

q 6= 0 and that the field k has characteristic p > 0.

This paper adopts the philosophy (and general notation) of [4, §1], to which the reader

is referred for the basic homological definitions and results. In particular, we have both
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the generalised tensor identity and the Lyndon-Hochschild-Serre spectral sequence, which

are essential for the results that follow. In the same paper, the quantum analogue to the

Borel subgroup, denoted B, is defined. Thus one can consider the modules for G induced

from one-dimensional B-modules. As in the classical case, the non-zero induced modules

correspond to the dominant weights (see [4, Lemma 3.2]); and in the case n = 2 considered

here these can be completely classified (see [4, Remark 3.7]).

If we denote the induced module corresponding to λ = (λ1, λ2) by ∇(λ), then we have

∇(λ) ∼= Sλ1−λ2

q (E)⊗ q-detλ2

where Sr
q(E) is the quantum analogue of the rth symmetric power of the natural module

(see [2, 2.1.8]) and q-det is the analogue of the determinant module. In general, the tensor

product U ⊗ V is not isomorphic to V ⊗ U , but the generalised tensor identity (see [4, 1.3])

gives that in this case ∇(r, 0)⊗ q-deta ∼= q-deta⊗∇(r, 0); a fact that will be used repeatedly

in what follows. The Weyl modules ∆(λ) are defined as the duals of appropriate induced

modules as in the classical case (see [4, §4]).

We have now defined the objects of interest, and can begin to consider the problem of

determining when two Weyl modules have non-trivial extensions. As in the classical case

(see [1, 3.2 Corollary]), it is easy to see that

Ext1G(∆(λ),∆(µ)) 6= 0 implies λ < µ

so we will restrict to this case. By [4, 4(8)], for non-trivial extensions to exist we must have

q a root of unity, so we assume also that q is a primitive lth root of unity. Note that we

must have (l, p) = 1 for such a q to exist. If l = 1 then we are in the classical case, so we

also assume that l > 1.

Finally we note that we can define an analogue of the first Frobenius kernel, denoted G1,

which will be an essential tool in what follows. The definition of this, along with some of

its basic representation theory can be found in [5, §3]. We will also need the related factor

group of G which defines G1 (see [4, remark after Corollary 1.4]), which we denote by Ḡ.

2 The blocks of q-GL(2, k)

The first part of this section depends on the submodule structure of the symmetric powers

as described in [10]. We begin by recalling some notation from that paper. Let E be the
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quantum analogue of the natural module for GL2, with basis {e1, e2}. Given a basis element

ea = ea11 e
a2
2 ∈ Sr

q(E) we write:

ai = a1i l + a0i with 0 ≤ a0i < l and a1i =
∑

j a
1,j
i pj with 0 ≤ a1,ji < p ∀i, j

r = r1l + r0 with 0 ≤ r0 < l and r1 =
∑

j r
j
1p

j with 0 ≤ rj1 < p ∀j

Set m = max{0, j | rj1 > 0}. We define the carry pattern c(ea) = (c0(e
a), . . . , cm(e

a))

recursively using:
a01 + a02 = c0(e

a)l + r0
ct−1(e

a) + a1,t−1
1 + a1,t−1

2 = ct(e
a)p+ rt−1

1

}

(1)

Let C(r) = {c(ea) | ea ∈ Sr
q(E)}. The submodules of Sr

q(E) correspond to order closed

subsets of C(r), where c ≤ c′ if ci ≤ c′i for all i. The results of [10], along with [6, Lemma 3],

give (c0, . . . ,cm) ∈ C(r) if, and only if,

c0 ∈ {0, . . . ,M}

0 ≤ ck ≤
∑

j≥k r
j
1p

j−k for 1 ≤ k ≤ m
0 ≤ rk1 + pck+1 − ck ≤ 2p− 2 for 0 ≤ k ≤ m

(2)

where we set cm+1 = 0 and M =











0 if r < l − 1
1 if r > l − 1 and r0 6= l − 1
0 otherwise.

From (1) it is easy to determine the highest weight a = (a1, a2) such that c(ea) = c; call

this the highest weight in c. We obtain

a01 = min{l − 1, r0 + lc0}

a1,t−1
1 = min{p− 1, rt−1

1 − ct−1 + pct}.
(3)

Theorem 2.1 A weight a = (a1, a2) is linked to (r + d, d) if, and only if, the following

conditions hold:

i) a1 + a2 = r + 2d

ii) ā ≡ ±r̄ (mod 2l)

iii) If ā ≡ 0 (mod l) then ā ≡ ±lpt(rt1 + 1) (mod pt+1)

where ā := a1 − a2 + 1, r̄ := r + 1 and t := max{0, s | r̄ ≡ 0 (mod ps)}.

Proof: The statement of the linkage condition in terms of equivalence classes under the

relation generated by: λ ∼ µ if [∇(λ) : L(µ)] 6= 0, implies that i) must hold. Note that i)

implies i′) ā ≡ r̄ (mod 2). For the necessity of ii) and iii), we show that [∇(r+d, d) : L(a)] 6= 0

implies both ii) and iii); as then this must clearly be true for every element of the equivalence
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class generated by (r + d, d) under ∼. Further we may assume that d = 0 as we can tensor

with an appropriate power of the q-determinant to get the general result.

Necessity of ii): Let c ∈ C(r), and a be the highest weight in c. We have

a01 =

{

r0 if c0 = 0
l − 1 if c0 = 1.

But a1 + a2 = r implies a02 =

{

0 if c0 = 0
r0 + 1 if c0 = 1.

Hence we have

a01 − a02 =

{

r0 if c0 = 0
l − r0 − 2 if c0 = 1.

(4)

If l is odd then (4) implies that ā ≡ ±r̄ (mod l) , and this together with i′) gives the

necessity of ii). If l is even then p is odd (as (l, p) = 1). Now by (1) we have:

a1 − a2 + 1 = a01 − a02 + l
(

∑m
j=0 p

j(a1,j1 − a1,j2 )
)

+ 1

= a01 − a02 + 1 + l
(

∑m
j=0 p

j(cj+1p+ rj1 − cj − 2a1,j2 )
)

= a01 − a02 + 1 + lφ.

where φ =
∑m

j=0 p
j(cj+1p+ rj1 − cj − 2a1,j2 ). So using (4) we obtain

ā =

{

r0 + 1 + lφ if c0 = 0
−(r0 + 1) + l(φ+ 1) if c0 = 1.

Also we have that

r̄ =

{

r0 + 1 + l (mod 2l) if r1 odd
r0 + 1 (mod 2l) if r1 even.

So it is enough to show that φ satisfies:

φ ≡

{

1 (mod 2) if c0 + r1 odd
0 (mod 2) if c0 + r1 even.

(5)

As we are only interested in φ mod 2, and p is odd, we can replace φ by φ̂ where

φ̂ =
m
∑

j=0

(cj+1 + rj1 − cj) =
m
∑

j=0

rj1 + cm+1 − c0 = r1 − c0

which satisfies (5). So ii) is necessary.

Necessity of iii): If r0 = l−1 then we have c0 = 0. From (2) we have 0 ≤ p−1+pcs+1−cs ≤

2p− 2 for all s ≤ t− 1. So by induction we have cs = 0 for all s ≤ t. Hence for a the highest

weight in c we have:

a1,s1 = p− 1 ∀s ≤ t− 1

a1,t1 = min{p− 1, rt1 + pct+1} =

{

rt1 if ct+1 = 0
p− 1 otherwise.

(6)
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Note that this implies that a1,s2 = 0 for all s ≤ t− 1. Now a1 + a2 = r implies that

a1 + a2 ≡ r0 + l(r01 + pr11 + · · ·+ ptrt1) (mod pt+1)
≡ l(1 + p− 1 + p2 − · · ·+ pt − pt−1 + ptrt1)− 1 (mod pt+1)
≡ lpt(rt1 + 1)− 1 (mod pt+1).

Similarly we have

a1 + a2 ≡ a01 + a02 + l(a1,01 + a1,02 + · · ·+ pta1,t1 + pta1,t2 ) (mod pt+1)

≡ l(1 + p− 1 + p2 − · · ·+ pt − pt−1 + pt(a1,t1 + a1,t2 ))− 1 (mod pt+1)

≡ lpt(a1,t1 + a1,t2 + 1)− 1 (mod pt+1).

These give

lpt(rt1 + 1)− 1 ≡ lpt(a1,t1 + a1,t2 + 1)− 1 (mod pt+1)

lptrt1 ≡ lpt(a1,t1 + a1,t2 ) (mod pt+1)

rt1 ≡ a1,t1 + a1,t2 (mod p).

Then (6) implies that a1,t2 ≡

{

0 (mod p) if ct+1 = 0
rt1 + 1 (mod p) if ct+1 6= 0

and hence we get

a1 − a2 ≡ a01 − a02 + l(a1,01 − a1,02 + · · ·+ pt(a1,t1 − a1,t2 )) (mod pt+1)

≡ l(1 + p− 1 + p2 − · · ·+ pt − pt−1 + pt(a1,t1 − a1,t2 ))− 1 (mod pt+1)

≡ lpt(a1,t1 − a1,t2 + 1)− 1 (mod pt+1)

≡

{

+lpt(rt1 + 1)− 1 if ct+1 = 0
−lpt(rt1 + 1)− 1 if ct+1 6= 0

(mod pt+1)

as required. So i)–iii) are necessary.

For sufficiency: Consider ∇(a, b) ∼= ∇(a− b, 0)⊗ (q-det)b. If this is not irreducible then

its submodule structure is determined by that of ∇(a− b, 0). This must have a composition

factor with highest weight (c, d) such that 0 ≤ c−d < a−b. Thus (a, b) is linked to whatever

(c+ b, d+ b) is; so it is enough to consider (c, d) and tensor up with an appropriate power of

the q-determinant. Continuing this descent, the sequence must terminate in an irreducible

module. Hence it is sufficient to show that there is a unique irreducible ∇(a1, a2) satisfying

the conditions. In fact, we need only consider ∇(a1 − a2, 0) with i) replaced by i′), as if this

is unique then tensoring up will give the result.

Let r = a1 − a2 = r0 + l(r01 + · · ·+ pmrm1 ). It is necessary to determine which Sr
q(E) are

irreducible. By Steinberg’s Tensor Product Theorem, we have

dimL(r, 0) = (r0 + 1)(r01 + 1) · · · (rm1 + 1)

= 1 + r0 + (r0 + 1)[r01 + (r01 + 1)r11 + · · ·+
(

∏m−1
i=0 (ri1 + 1)

)

rm1 ].
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As soc∇(λ) = L(λ) we require that dimSr
q(E) = dimL(r, 0) = r + 1. Hence we require that

r + 1 = 1 + r0 + (r0 + 1)[r01 + (r01 + 1)r11 + · · ·+

(

m−1
∏

i=0

(ri1 + 1)

)

rm1 ].

That is

r0 + 1 + l[r01 + · · ·+ pmrm1 ] = 1 + r0 + (r0 + 1)[r01 + · · ·+

(

m−1
∏

i=0

(ri1 + 1)

)

rm1 ].

This holds if, and only if, either ri1 = 0 for all i or r0+1 = l and ri1+1 = p for 0 ≤ i ≤ m−1.

Hence Sr
q(E) is irreducible precisely when r ≤ l − 1 or r = lpm(rm1 + 1)− 1. Amongst these

r there is a unique one satisfying the required conditions, and so we are done.

We record from the above proof the following fact.

Corollary 2.2 For all r ≥ 0, we have Sr
q(E) is irreducible if, and only if r ≤ l − 1 or

r = lpm(rm1 + 1)− 1.

We also use the results of [10] to prove the following lemma, which will be needed later.

Lemma 2.3 If λ1 + λ2 = 2s then we have

HomG(∆(s, s),∆(λ)) ∼=

{

k if λ1 − λ2 = 2(lpm − 1) or 0
0 otherwise.

Proof: Since ∆(λ1, λ2) ∼= ∇∗(−λ2,−λ1), this will follow from

∇(s, s) occurs in hd∇(λ) if, and only if, λ1 − λ2 = 2(lpm − 1) or 0

once we have shown that∇(λ) has a simple head. Clearly, it is enough to show this when λ2 =

0, as then the result follows by tensoring up with an appropriate power of the q-determinant.

Hence we will work with ∇(r, 0). By the last proposition we have 1 ≡ ±(r+1) (mod 2l); that

is r = 2lm or 2lm − 2 for some m. We first find a c maximal in C, say cmax = (c0, . . . , cm).

From (2) we have c0 ∈ {0, 1} unless r < l − 1, in which case we must have r = 0.

By induction on t we have that if r 6= 0 then ct ∈ {0, 1} for all t ≤ m. This follows as

for 1 ≤ t ≤ m the first condition of (2) is clearly satisfied by 0 and 1, while the second gives

0 ≤ pct+1 ≤ 2p− 2 + ct − rt1 ≤ 2p− 1, by induction. Hence 0 ≤ ct < 2, as claimed. Suppose

ct = 1. Then 0 ≤ pct+1 ≤ p+ (p− 1)− rt1 = p+ ǫ with ǫ ≥ 0. So ct = 1 implies that ct+1 can
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equal 1 (for t < m). Hence cmax is unique, and is either 0 or 1= (1, . . . , 1); which implies

that ∇(r, 0) has a simple head. The zero case corresponds to r = 0.

Suppose that cmax = 1, and let a be the highest weight in cmax. Then (3) implies that

a01 = l − 1, and a1,t1 =

{

p− 1 if t ≤ m− 1
rm1 − 1 if t = m.

We require that

r = 2a1 = 2a01 +
∑m

t=0 2a
1,t
1 ptl

= 2l − 2 + 2l
(

∑m−1
t=0 (pt+1 − pt) + pm(rm1 − 1)

)

= 2(lrm1 p
m − 1).

Thus r0 = l−2, and
∑m

t=0 r
t
1p

t = 2rm1 p
m−1, which implies that

∑m−1
t=0 rt1p

t = rm1 p
m−1. This

forces

rt1 =

{

p− 1 if 0 ≤ t ≤ m− 1
1 if t = m

which gives r = 2lpm − 2 as required.

3 Two short exact sequences

This section, largely based on results in [11], will produce two short exact sequences of G-

modules which are essential to our later results. We will assume from this point on that

l > 1. This is no great restriction as we aim to prove a result already known in the l = 1

case. We shall also fix some notation that shall be used henceforth.

We set λ = (λ1, λ2) = (µ+ δ, δ), where 0 ≤ µ ≤ l − 2, and put |λ| = λ1 + λ2. Then µ̄ is

defined to be the unique integer such that µ+ µ̄ = l− 2. We also set ρ = (1, 0). Finally, we

define λ̃ = (µ̄+ δ, δ) + (µ− l + 1)(1, 1) = (λ2 − 1, λ1 + 1− l). Note that
˜̃
λ = λ− l(1, 1).

Proposition 3.1 i) For n > 0 there exists a (non-split) short exact sequence of G-modules:

0 → ∇(λ)⊗∇(nρ)F → ∇(λ+ lnρ) → ∇(λ̃+ l(1, 1))⊗∇((n− 1)ρ)F → 0.

ii) There is an isomorphism of G-modules:

∇(ln− 1 + δ, δ) ∼= ∇(l − 1 + δ, δ)⊗∇((n− 1)ρ)F.

Proof: Part i): It is enough to show that we have the short exact sequence:

0 → ∇(µ, 0)⊗∇(nρ)F → ∇(µ+ ln, 0) → ∇(l − 1, µ+ 1)⊗∇((n− 1)ρ)F → 0
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since the result follows on tensoring up with an appropriate power of the q-determinant.

Now we use the isomorphism noted in [4, 3.7] of ∇(µ, 0) with k-span{cr111c
r2
12 | r1 + r2 = µ}.

This gives the first injection via the multiplication map.

Now consider

φ : ∇(µ+ l, 0)⊗∇(n− 1, 0)F
m
−→ ∇(µ+ nl, 0)

p
−→

∇(µ+ nl, 0)

∇(µ, 0)⊗∇(n, 0)F

where m is multiplication of polynomials and p is the natural projection. We first show that

φ is surjective. Let ca11c
b
12+∇(µ, 0)⊗∇(n, 0)F be a non-zero element of ∇(µ+nl, 0)/∇(µ, 0)⊗

∇(n, 0)F. Suppose a = a1 + la2, b = b1 + lb2, where 0 ≤ a1, b1 ≤ l− 1. Then ln+ µ = a+ b

implies that a1+b1 = µ or l+µ. The former is impossible as then ca11c
b
12+∇(µ, 0)⊗∇(n, 0)F =

0. Hence a1+b1 = l+µ. Then, under φ, the element ca111c
b1
12⊗cla211 c

lb2
12 ∈ ∇(µ+l, 0)⊗∇((n−1)ρ)F

has image ca11c
b
12 +∇(µ, 0)⊗∇(n, 0)F. Hence φ is surjective as claimed.

Clearly ∇(µ, 0)⊗∇(1, 0)F ⊗∇(n− 1, 0)F ⊆ ker φ. But then

∇(µ+ l, 0)⊗∇(n− 1, 0)F

∇(µ, 0)⊗∇(1, 0)F ⊗∇(n− 1, 0)F
∼=

(

∇(µ+ l, 0)

∇(µ, 0)⊗∇(1, 0)F

)

⊗∇(n− 1, 0)F

has dimension n(µ̄+ 1). Also

dim
∇(µ+ nl, 0)

∇(µ, 0)⊗∇(n, 0)F
= n(µ̄+ 1).

Hence ker φ = ∇(µ, 0)⊗∇(1, 0)F ⊗∇(n− 1, 0)F. So

Imφ ∼=
∇(µ+ nl, 0)

∇(µ, 0)⊗∇(n, 0)F

∼=
∇(µ+ l, 0)⊗∇(n− 1, 0)F

∇(µ, 0)⊗∇(1, 0)F ⊗∇(n− 1, 0)F
∼=

(

∇(µ+ l, 0)

∇(µ, 0)⊗∇(1, 0)F

)

⊗∇(n− 1, 0)F.

So it remains to show that

∇(µ+ l, 0)

∇(µ, 0)⊗∇(1, 0)F
∼= ∇(l − 1, µ+ 1)

[

∼= ∇(µ̄, 0)⊗ q-detµ+1
]

.

As the right-hand side is simple, it is enough to show that these have the same character,

which is a straight-forward calculation.

Part ii): Injectivity as in i), and the result then follows by dimension.

We will need the following properties, shown in [5, 3.3–3,4], of the modules there denoted

Q(λ); which are certain tilting modules whose restrictions to G1 are the injective envelopes
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of the corresponding simples. There Q(λ) is defined to be T (λ̃ + lρ), where this is the

indecomposable tilting module of highest weight λ̃+ lρ. Further, from the character formula

for the Q(λ)’s we obtain that chQ(λ) = χ(λ)+χ(λ̃+lρ). From [10] we see that hd∇(λ̃+lρ) ∼=

L(λ) and soc∇(λ̃+ lρ) = rad∇(λ̃+ lρ) ∼= L(λ̃+ lρ). We also have that socQ(λ) ∼= L(λ) and

Q(λ)∗ ∼= Q(λ)⊗ q-det−|λ|. Finally, we note that Q(λ)⊗∇(n, 0)F has a good filtration.

Proposition 3.2 For n ≥ 0 there exists a non-split short exact sequence of G-modules:

0 → ∇(λ+ lnρ) → Q(λ)⊗∇(nρ)F → ∇(λ̃+ l(n + 1)ρ) → 0.

Proof: Using [5, 3.3(5)] we have that Q(λ) ⊗ ∇(nρ)F is indecomposable. So, as we have

that Ext1(∇(α),∇(β)) 6= 0 implies that α > β, it is enough to prove the above at the level

of characters. We use induction on n. The case n = 0 is clear from the remarks above, while

n = 1 follows by direct calculation.

For n > 1 recall that

ch∇(n, 0) = e(n, 0) + · · ·+ e(0, n)
= e(n, 0) + e(0, n) + ch∇(n− 2, 0)χ(1, 1).

Hence we have

ch (Q(λ)⊗∇(n, 0)F) = ch (Q(λ)⊗∇(n− 2, 0)F)χ(l, l) + chQ(λ)(e(ln, 0) + e(0, ln))

= ch∇(λ+ (n− 2)lρ)χ(l, l) + ch∇(λ̃+ (n− 1)lρ)χ(l, l) + chQ(λ)(e(ln, 0) + e(0, ln))

=
µ+(n−2)l
∑

i=0

e(µ+ δ + (n− 1)l − i, δ + l + i) +
2l−2−µ+(n−2)l

∑

i=0

e(ln− 1− i+ δ, µ+ 1 + i+ δ)

+
µ
∑

i=0

(e(µ+ δ − i+ nl, δ + i) + e(µ+ δ − i, δ + i+ nl))

+
2l−2−µ
∑

i=0

(e(δ + (n+ 1)l− 1− i, µ+ δ + 1+ i− l) + e(δ + l− 1− i, µ+ δ + 1+ i+ (n− 1)l)).

Taking the second and third terms we get ch∇(λ+ lnρ), and the rest give ch∇(λ̃+ l(n+1)ρ),

so the result follows by induction.

After dualising, and tensoring with appropriate powers of the q-determinant, we may

rewrite the last two propositions in terms of ∆’s as:
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Proposition 3.3 i) For n > 0 there exists a (non-split) short exact sequence of G-modules:

0 → ∆((n− 1)ρ)F ⊗∆(λ̃+ (l, l)) → ∆(λ+ lnρ) → ∆(nρ)F ⊗∆(λ) → 0.

ii) There is an isomorphism of G-modules:

∆(ln− 1 + δ, δ) ∼= ∆((n− 1)ρ)F ⊗∆(l − 1 + δ, δ).

Proposition 3.4 For n ≥ 0 there exists a non-split short exact sequence of G-modules:

0 → ∆(λ̃+ l(n+ 1)ρ) → ∆(nρ)F ⊗Q(λ) → ∆(λ + lnρ) → 0.

Corollary 3.5 Considered as G1-modules, the central term of the above sequence is the

projective cover (respectively injective envelope) of the right (respectively left) term.

Proof: As G1-modules, the Q(λ)’s are projective by [5, 3.3(2)], and hence also injective

(as Q(λ)∗ ∼= Q(λ) ⊗ q-det−|λ|). Thus Q(λ) ⊗ ∆(nρ)F is also both projective and injective.

To show that Q(λ) ⊗ ∆(nρ)F is the projective cover, respectively injective envelope, of the

appropriate module in the last proposition, it thus suffices to prove:

i) hdG1
(Q(λ)⊗∆(nρ)F) ∼= hdG1

∆(λ + lnρ).

ii) socG1
(Q(λ)⊗∆(nρ)F) ∼= socG1

∆(λ̃ + l(n+ 1)ρ).

In both cases the previous proposition gives one inclusion.

Consider i): As ∆(nρ)F has trivial G1 action we have

hdG1
(Q(λ)⊗∆(nρ)F) ∼= hdG1

(Q(λ))⊗∆(nρ)F

∼= L̂1(λ)⊗∆(nρ)F

∼= L1(λ)⊗∆(nρ)F

and
hdG1

∆(λ+ lnρ) ≥ hdG1
(∆(λ)⊗∆(nρ)F) (by (1.1)(i))

∼= hdG1
(∆(λ))⊗∆(nρ)F

∼= L1(λ)⊗∆(nρ)F.

Consider ii). By a similar argument we have

socG1
(Q(λ)⊗∆(nρ)F) ∼= socG1

(Q(λ))⊗∆(nρ)F

∼= L̂1(λ)⊗∆(nρ)F

∼= L1(λ)⊗∆(nρ)F

and
socG1

∆(λ̃+ l(n + 1)ρ) ∼= socG1
∆((λ2 − 1, λ1 − l + 1) + l(n + 1)ρ)

≥ socG1
(∆(λ)⊗∆(nρ)F) (by (1.1)(i))

∼= socG1
(∆(λ))⊗∆(nρ)F

∼= L1(λ)⊗∆(nρ)F.

These give the reverse inclusions.
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4 Calculations for G1

If M is an indecomposable, non-projective G1-module, we denote the kernel of the projective

cover by Ω(M), and the cokernel of the injective hull by Ω−1(M). We have ΩΩ−1(M) ∼=

M ∼= Ω−1Ω(M), and Ext1G1
(A,B) ∼= Ext1G1

(Ω−1A,Ω−1B) for arbitrary G1-modules A,B.

From (3.4), along with the remark that
˜̃
λ = λ − (l, l), we can determine Ωn(∆(λ)). We

obtain

Ωn(∆(λ)) ∼=

{

∆(λ− nl
2
(1, 1) + nlρ) if n even

∆(λ̃− (n−1)l
2

(1, 1) + nlρ) if n odd.
(7)

Lemma 4.1 For m ≥ n ≥ 0 we have

Ω−n∆(λ̃+ l(m+ 1)ρ) ∼=

{

∆(λ̃+ nl
2
(1, 1) + (m+ 1− n)lρ) if n even

∆(λ+ (n−1)l
2

(1, 1) + (m+ 1− n)lρ) if n odd.

Proof: We have

∆(λ̃+ l(m+ 1)ρ) ∼=

{

Ωm+1∆(λ + ml
2
(1, 1)) if m even

Ωm+1∆(λ̃ + (m+1)l
2

(1, 1)) if m odd.

So

Ω−n∆(λ̃ + l(m+ 1)ρ) ∼=

{

Ωm+1−n∆(λ + ml
2
(1, 1)) if m even

Ωm+1−n∆(λ̃ + (m+1)l
2

(1, 1)) if m odd.

The result now follows from (7), replacing λ by λ̃ for the case m odd.

The rest of this section is devoted to calculating HomG1
and Ext1G1

between various Weyl

modules, for use in the next section. We write ∼=G1
for an isomorphism of G1-modules, and

use t to denote an integer.

Lemma 4.2 For n ≥ 0 we have

HomG1
(∆(λ+ t(1, 1)),∆(λ̃+ l(n + 1)ρ)) ∼=







(

∆(nρ)⊗ q-det−u
)

F

if t ≡ 0 (mod l)

0 otherwise

where lu = t.

Proof: As ∆(λ + t(1, 1)) is simple, and (3.4) gives the injective envelopes, we have

HomG1
(∆(λ + t(1, 1)),∆(λ̃+ l(n+ 1)ρ))

∼= HomG1
(∆(λ+ t(1, 1)),∆(nρ)F ⊗Q(λ))

∼= ∆(nρ)F ⊗HomG1
(∆(λ + t(1, 1)), Q(λ)).
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Now ∆(λ + t(1, 1)) ∼=G1
L1(λ + t(1, 1)), and socG1

Q(λ) ∼=G1
L1(λ). Writing t = s + lu with

0 ≤ s < l, we have:

L1(λ+ t(1, 1)) ∼=G1
L1(λ)⊗ q-dett ∼=G1

L1(λ)⊗ q-dets ∼=G1
L1(λ+ s(1, 1)).

Hence L1(λ) ∼=G1
L1(λ+ s(1, 1)) if, and only if, s = 0. If s = 0 then

∆(nρ)F ⊗ HomG1
(∆(λ+ t(1, 1)), Q(λ))

∼= ∆(nρ)F ⊗ HomG1
(q-dett ⊗ L(λ), Q(λ))

∼= ∆(nρ)F ⊗ HomG1
(L(λ), Q(λ))⊗ (q-det−u)F

∼=
(

∆(nρ)⊗ q-det−u
)

F

as required.

Lemma 4.3 For n ≥ 0 we have

HomG1
(∆(λ + t(1, 1)),∆(λ+ lnρ))

∼=











(q-det−u)F if n = 0 and t ≡ 0 (mod l)
(q-det−v ⊗∆((n− 1)ρ))F if n ≥ 1, 2µ = l − 2 and t ≡ l

2
(mod l)

0 otherwise

where lu = t and lv = t− l
2
.

Proof: Suppose n = 0, and consider HomG1
(∆(λ + t(1, 1)),∆(λ)). Then for this to be

non-zero we require ∆(λ + t(1, 1)) ∼=G1
socG1

∆(λ). That is L1(λ + t(1, 1)) ∼=G1
L1(λ). As in

the previous lemma, this requires t ≡ 0 (mod l), say t = lu. Then the rest follows as in

the previous lemma.

Suppose n ≥ 1. The injective envelope of ∆(λ + nlρ) is ∆((n − 1)ρ)F ⊗ Q(τ), where

λ = τ̃ by (3.4). This implies that τ = λ̃+ l(1, 1). Then as in the previous lemma we have

HomG1
(∆(λ+ t(1, 1)),∆(λ+ lnρ))

∼= HomG1
(∆(λ+ t(1, 1)),∆((n− 1)ρ)F ⊗Q(λ̃ + l(1, 1)))

∼= ∆((n− 1)ρ)F ⊗HomG1
(∆(λ+ t(1, 1)), Q(λ̃+ l(1, 1))).

As before we require L1(λ + t(1, 1)) ∼=G1
L1(λ̃ + l(1, 1)). That is L1(µ, 0) ⊗ q-detλ2+t ∼=G1

L1(l−2−µ, 0)⊗q-detλ1+1. This holds if, and only if, l−2 = 2µ and λ2+t ≡ λ1+1 (mod l).

When these conditions hold, set lv = λ2 + t − λ1 − 1 = t − µ − 1, and then as before we

obtain the required result.
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Lemma 4.4 We have

Ext1G1
(∆(λ+ t(1, 1)),∆(λ̃)) ∼= HomG1

(∆(λ̃+ t(1, 1) + lρ),∆(λ̃))

∼=







(

q-det−u ⊗∆∗(ρ)
)

F

if t ≡ 0 (mod l)

0 otherwise

and

Ext1G1
(∆(λ+ t(1, 1)),∆(λ)) ∼= HomG1

(∆(λ̃+ t(1, 1) + lρ),∆(λ))

∼=







(

q-det−v ⊗∆∗(ρ)
)

F

if 2µ = l − 2 and t ≡ l
2

(mod l)

0 otherwise

where lu = t and lv = t− l
2
.

Proof: Applying HomG1
(−,∆(τ)) to the sequence in (3.4) gives:

0 → HomG1
(∆(λ+ t(1, 1)),∆(τ)) → HomG1

(Q(λ+ t(1, 1)),∆(τ))

→ HomG1
(∆(λ̃+ lρ+ t(1, 1)),∆(τ)) → Ext1G1

(∆(λ+ t(1, 1)),∆(τ)) → 0.

Taking τ = λ or τ = λ̃ we have that the first two terms are isomorphic, and hence the last

two are. We have

0 → ∆(λ̃ + (t+ l)(1, 1)) → ∆(λ̃+ lρ+ t(1, 1)) → ∆(ρ)F ⊗∆(λ̃+ t(1, 1)) → 0

and this restricts to a Loewy series, as G1-modules, for ∆(λ̃ + lρ+ t(1, 1)); so

HomG1
(∆(λ̃+ lρ+ t(1, 1)),∆(τ)) ∼= HomG1

(∆(ρ)F ⊗∆(λ̃+ t(1, 1)),∆(τ))
∼= HomG1

(∆(λ̃ + t(1, 1)),∆(τ))⊗∆∗(ρ)F.

Applying (4.3) with τ = λ̃ gives the first result. For the second, take τ = λ and then

the right-hand side above becomes

HomG1
(∆(λ̃ + t(1, 1)),∆(λ))⊗∆∗(ρ)F ∼= HomG1

(L1(λ̃)⊗ q-dett, L1(λ))⊗∆∗(ρ)F.

For this to be non-zero we must have µ = µ̄, that is 2µ = l − 2, which implies that L1(λ̃)⊗

q-dett ∼=L1(λ)⊗ q-dett+l−1−µ which gives the rest of the condition, and the result.
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Lemma 4.5 For m ≥ n ≥ 0 we have

Ext1G1
(∆(λ+ lnρ+ t(1, 1)),∆(λ+ lmρ))

∼=







Ext1G1
(∆(λ+

(

t+ nl
2

)

(1, 1)),∆(λ+ nl
2
(1, 1) + (m− n)lρ)) if n even

Ext1G1
(∆(λ̃+

(

t+ (n+1)l
2

)

(1, 1)),∆(λ̃+ (n+1)l
2

(1, 1) + (m− n)lρ)) if n odd.

Ext1G1
(∆(λ+ lnρ+ t(1, 1)),∆(λ̃+ lmρ))

∼=







Ext1G1
(∆(λ+

(

t+ nl
2

)

(1, 1)),∆(λ̃+ nl
2
(1, 1) + (m− n)lρ)) if n even

Ext1G1
(∆(λ̃+

(

t+ (n+1)l
2

)

(1, 1)),∆(λ+ (n−1)l
2

(1, 1) + (m− n)lρ)) if n odd.

Proof: Writing τ for λ or λ̃, we have

Ext1G1
(∆(λ+ lnρ+ t(1, 1)),∆(τ + lmρ))

∼= Ext1G1
(Ω−n∆(λ+ lnρ+ t(1, 1)),Ω−n∆(τ + lmρ))

∼=































Ext1G1
(∆(λ+

(

t+ nl
2

)

(1, 1)),Ωm−n∆(τ + ml
2
(1, 1)) if m,n even

Ext1G1
(∆(λ+

(

t+ nl
2

)

(1, 1)),Ωm−n∆(τ̃ + (m+1)l
2

(1, 1)) if m odd, n even

Ext1G1
(∆(λ̃+

(

t+ (n+1)l
2

)

(1, 1)),Ωm−n∆(τ + ml
2
(1, 1)) if m even, n odd

Ext1G1
(∆(λ̃+

(

t+ (n+1)l
2

)

(1, 1)),Ωm−n∆(τ̃ + (m+1)l
2

(1, 1)) if m,n odd

using the results of Lemma (4.1). The result now follows using (7).

Lemma 4.6 For n ≥ 0 we have

Ext1G1
(∆(λ+ t(1, 1)),∆(λ̃+ lnρ))

∼=































(

q-det−α ⊗∆∗(ρ)
)

F

if n = 0 and t ≡ 0 (mod l)
(

q-det−α
)

F

if n = 1 and t ≡ 0 (mod l)
(

q-det−β ⊗∆((n− 2)ρ)
)

F

if n ≥ 2, 2µ = l − 2 and t ≡ l
2

(mod l)

0 otherwise

where lα = t, lβ = t− l
2
.

Proof: The case n = 0 is done in (4.4). For n ≥ 1 apply HomG1
(∆(λ+ t(1, 1)),−) to

0 → ∆(λ̃+ lnρ) → ∆((n− 1)ρ)F ⊗Q(λ) → ∆(λ + l(n− 1)ρ) → 0

to obtain

0 → HomG1
(∆(λ+ (t, t)),∆(λ̃+ lnρ)) → HomG1

(∆(λ+ (t, t)),∆((n−1)ρ)F⊗Q(λ))

→ HomG1
(∆(λ + (t, t)),∆(λ+ l(n− 1)ρ)) → Ext1G1

(∆(λ+ (t, t)),∆(λ̃+ lnρ)) → 0.

As in earlier lemmas, the first two terms are isomorphic. Hence the next two are, and the

result follows from (4.3).
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Lemma 4.7 For n ≥ 0 we have

Ext1G1
(∆(λ+ t(1, 1)),∆(λ+ lnρ))

∼=































(

q-det−α ⊗∆∗(ρ)
)

F

if n = 0, 2µ = l − 2 and t ≡ l
2

(mod l)
(

q-det−α
)

F

if n = 1, 2µ = l − 2 and t ≡ l
2

(mod l)
(

q-det−γ ⊗∆((n− 2)ρ)
)

F

if n ≥ 2 and t ≡ 0 (mod l)

0 otherwise

where lα = t− l
2
, lγ = t− l.

Proof: The case n = 0 is done in (4.4). For n ≥ 1 apply HomG1
(∆(λ+ t(1, 1)),−) to

0 → ∆(λ+ lnp) → ∆((n− 1)ρ)F ⊗Q(λ̃+ l(1, 1)) → ∆(λ̃+ l(1, 1) + l(n− 1)ρ) → 0.

As in the previous lemma, the first two terms are isomorphic, and hence the next two are

also; that is

HomG1
(∆(λ+ t(1, 1)),∆(λ̃+ (l, l) + l(n− 1)ρ)) ∼= Ext1G1

(∆(λ + t(1, 1)),∆(λ+ lnρ)).

For the case n ≥ 2 write λ′ = λ + l(1, 1) and t′ = t− l. Then the left-hand side equals

HomG1
(∆(λ′ + t′(1, 1)),∆(λ̃′ + l(n − 1)ρ)), and the result follows from (4.2). For the case

n = 1 consider HomG1
(∆(λ + t(1, 1)),∆(λ̃ + l(1, 1)). This is clearly zero unless µ = µ̄, in

which case it is isomorphic to HomG1
(∆(λ+ t(1, 1)),∆(λ+ l

2
(1, 1))), when the result follows

from (4.3).

For the next two lemmas, it is necessary to restrict to a specific value of t. However, as

this condition will always hold in the cases of interest, this is of no great consequence.

Lemma 4.8 For m ≥ n ≥ 0 and t = l
2
(m− n) we have

HomG1
(∆(λ + lnρ+ t(1, 1)),∆(λ̃+ l(m+ 1)ρ))

∼=







(

q-det−u ⊗∆(mρ)⊗∆∗(nρ)
)

F

if t ≡ 0 (mod l)

0 otherwise

where lu = t.
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Proof: Applying HomG1
(−,∆(λ̃+ l(m+ 1)ρ)) to (3.3(i)) we obtain

0 → HomG1
(∆(nρ)F ⊗∆(λ+ t(1, 1)),∆(λ̃+ l(m+ 1)ρ))

→ HomG1
(∆(λ + lnρ+ t(1, 1)),∆(λ̃+ l(m+ 1)ρ))

→ HomG1
(∆((n− 1)ρ)F ⊗∆(λ̃+ (l + t)(1, 1)),∆(λ̃+ l(m+ 1)ρ))

→ Ext1G1
(∆(nρ)F ⊗∆(λ+ t(1, 1)),∆(λ̃+ l(m+ 1)ρ))

→ Ext1G1
(∆(λ+ lnρ+ t(1, 1)),∆(λ̃+ l(m+ 1)ρ)).

We claim that the first two terms are isomorphic. With this we are done, as the first term

is isomorphic to HomG1
(∆(λ + t(1, 1)),∆(λ̃ + l(m + 1)ρ)) ⊗ ∆∗(nρ)F and hence the result

follows from (4.2).

Proof of the claim: Consider the third term. Setting λ′ = λ̃ and t′ = t + l, this is

isomorphic to HomG1
(∆(λ′ + t′(1, 1)),∆(λ′ + l(m+ 1)ρ))⊗∆∗((n− 1)ρ)F. By (4.3), this is

zero unless 2µ′ = l − 2 and t′ ≡ l
2

(mod l); that is 2µ = l − 2 and t ≡ l
2

(mod l). If

non-zero it has dimension (m + 1)n. If this is zero we are done, so we may assume that

2µ = l − 2, t ≡ l
2

(mod l). Hence m− n is odd, so m ≥ 1.

Term four is isomorphic to Ext1G1
(∆(λ+ t(1, 1)),∆(λ̃+ l(m+ 1)ρ))⊗∆∗(nρ)F, which is

isomorphic to (q-det−β ⊗∆((m− 1)ρ))⊗∆∗(nρ)F by (4.6). By (4.5) term five is isomorphic

to
{

Ext1G1
(∆(λ + (t+ nl

2
)(1, 1)),∆(λ̃+ nl

2
(1, 1) + (m+ 1− n)lρ)) if n even

Ext1G1
(∆(λ̃ + (t+ (n+1)l

2
)(1, 1)),∆(λ+ (n−1)l

2
(1, 1) + (m+ 1− n)lρ)) if n odd.

For appropriate λ′’s, both cases are isomorphic to

Ext1G1
(∆(λ′ + t(1, 1)),∆(λ̃′ + (m+ 1− n)lρ)) ∼= (q-det−β ⊗∆((m− n− 1)ρ))F

by (4.6), as m+1−n ≥ 2 (since m−n is odd). So the fourth and fifth terms have dimension

m(n + 1) and m − n respectively. Thus the dimension of the fourth term is the sum of the

dimensions of the terms on either side; hence the map into it must be injective. This implies

that the first two terms are isomorphic as required.

Lemma 4.9 For m > n ≥ 0 and t = l
2
(m− n) we have

HomG1
(∆(λ+ lnρ+ t(1, 1)),∆(λ+ lmρ))

∼=







(

q-det−v ⊗∆((m− 1)ρ)⊗∆∗(nρ)
)

F

if 2µ = l − 2 and t ≡ l
2

(mod l)

0 otherwise

where lv = t− l
2
.
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Proof: If 2µ = l − 2 then

HomG1
(∆(λ + lnρ+ t(1, 1)),∆(λ+ lmρ))

∼= HomG1
(∆(λ+ lnρ+ t(1, 1)),∆(λ̃+ l

2
(1, 1) + lmρ))

∼= HomG1
(∆(λ′ + lnρ+

(

t− l
2

)

(1, 1)),∆(λ̃′ + lmρ))

where λ′ = λ + l
2
(1, 1), and the result follows from the previous lemma. So we may assume

that µ 6= µ̄. Applying HomG1
(∆(λ+ lnρ+ t(1, 1)),−) to (3.4) we obtain

0 → HomG1
(∆(λ + lnρ+ t(1, 1)),∆(λ̃+ l(m+ 1)ρ))

→ HomG1
(∆(λ + lnρ+ t(1, 1)),∆(mρ)F ⊗Q(λ))

→ HomG1
(∆(λ + lnρ+ t(1, 1)),∆(λ+ lmρ))

→ Ext1G1
(∆(λ+ lnρ+ t(1, 1)),∆(λ̃+ l(m+ 1)ρ)) → 0.

As µ 6= µ̄, any map ∆(λ+ lnρ+ t(1, 1)) → ∆(mρ)F ⊗Q(λ) has image in the socle. Hence

the first two terms are isomorphic; and so the next two are also. By (4.5) we then have

HomG1
(∆(λ+ lnρ+ t(1, 1)),∆(λ+ lmρ))

∼=







Ext1G1
(∆(λ +

(

t + ln
2

)

(1, 1)),∆(λ̃+ ln
2
(1, 1) + (m+ 1− n)lρ)) if n even

Ext1G1
(∆(λ̃ +

(

t + l(n+1)
2

)

(1, 1)),∆(λ+ l(n−1)
2

(1, 1) + (m+ 1− n)lρ)) if n odd.

Let λ′ = λ+ nl
2
(1, 1) (respectively

˜
(λ+ (n+1)l

2
(1, 1))) for n even (respectively n odd). Then in

both cases this is isomorphic to Ext1G1
(∆(λ′+ t(1, 1)),∆(λ̃′+ l(m+1−n)ρ)). Repeating the

argument above, with n = 0, m = m−n, this is isomorphic to HomG1
(∆(λ′+ t(1, 1)),∆(λ′+

l(m− n)ρ)) and now (as µ 6= µ̄) the result follows from (4.3).

Lemma 4.10 For m,n ≥ 1 we have

HomG1
(∆(ln− 1 + δ + t, δ + t),∆(lm− 1 + δ, δ))

∼=







(

q-det−u ⊗∆((m− 1)ρ)⊗∆∗((n− 1)ρ)
)

F

if t ≡ 0 (mod l)

0 otherwise

where lu = t.

Proof: By (3.3)(ii) applied twice we have

HomG1
(∆(ln− 1 + δ + t, δ + t),∆(lm− 1 + δ, δ))

∼= HomG1
(∆((n− 1)ρ)F ⊗∆(l − 1 + δ + t, δ + t),∆((m− 1)ρ)F ⊗∆(l − 1 + δ, δ))

∼= ∆((m− 1)ρ)F ⊗ HomG1
(∆(l − 1 + δ + t, δ + t),∆(l − 1 + δ, δ))⊗∆∗((n− 1)ρ)F.

Let τ = (l − 1 + δ, δ); then

HomG1
(∆((l − 1)ρ+ (δ + t)(1, 1)),∆(l− 1 + δ, δ))

= HomG1
(∆(τ + t(1, 1)),∆(τ)) ∼= HomG1

(L1(τ + t(1, 1)), L1(τ))

and the result now clearly follows.
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5 Ext1G for Weyl Modules

In this section we calculate Ext1G(∆,∆′) for all possible ∆,∆′’s. This uses the results of the

previous section, along with the Lyndon-Hochschild-Serre spectral sequence (see [4, 1.6]),

which gives rise to the five term exact sequence

0 → H1(Ḡ, V G1) → H1(G, V ) → H1(G1, V )Ḡ → H2(Ḡ, V G1) → H2(G, V )

which will form the basis of the calculations in this section.

Consider k[G] with the usual generators cij, and k[GL2] with generators c̄ij . There is

an isomorphism from GL2 to Ḡ via the map clij 7−→ c̄ij (see [5, 3.2]). This gives rise to the

following isomorphism:

H i(Ḡ, V F) ∼= H i(GL2, V ).

This will allow us to use the existing result in [7] for the classical case.

Lemma 5.1 For all λ,λ′ such that 0 ≤ µ,µ′ ≤ l − 1 we have

Ext1G(∆(λ),∆(λ′)) = 0.

Proof: This is clear, as for all λ′ such that 0 ≤ µ′ ≤ l − 1 we have

∆(λ′) ∼= L(λ′) ∼= ∇(λ′)

and by [4, 4(2)] we have that

Ext1G(∆(λ),∇(λ′)) = 0.

In the rest of this section we will frequently make use of the fact that Ext1
GL2

can be

easily determined from Ext1
SL2

. To be more precise, Ext1
GL2

(∆(α),∆(β)) = Ext1
SL2

(∆(α1 −

α2),∆(β1 − β2)) provided that α1 + α2 = β1 + β2; else it is zero.

Lemma 5.2 For n,m > 0 we have

Ext1G(∆(ln− 1 + δ + t, δ + t),∆(lm− 1 + δ, δ))

∼=

{

Ext1
SL2

(∆(n− 1),∆(m− 1)) if m− n even and t = l
2
(m− n)

0 otherwise.
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Proof: We may assume that 1 ≤ n < m. Set V = ∆(lm−1+ δ, δ)⊗∆∗(ln−1+ δ+ t, δ+ t).

Then we have

0 → H1(Ḡ, V G1) → H1(G, V ) → H1(G1, V )Ḡ.

The third term is isomorphic to Ext1G1
(∆(ln−1+δ+ t, δ+ t),∆(lm−1+δ, δ))Ḡ which equals

zero by (3.3(ii)) applied twice and (5.1). Hence the first two terms must be isomorphic.

Now, by (4.10)

V G1 ∼= HomG1
(∆(ln− 1 + δ + t, δ + t),∆(lm− 1 + δ, δ))

∼=

{

(∆((m− 1)ρ)⊗∆∗((n− 1)ρ))F ⊗ q-dett if m− n even
0 otherwise

∼=

{

(∆(m− 1− t′,−t′)⊗∆∗((n− 1)ρ))F if m− n even
0 otherwise

where lt′ = t. So

Ext1G(∆(ln− 1 + δ + t, δ + t),∆(lm− 1 + δ, δ))

∼=

{

Ext1
GL2

(∆((n− 1)ρ),∆((m− 1)ρ− t′(1, 1))) if m− n even
0 otherwise

which, by the remark above, implies the result.

Lemma 5.3 For 0 ≤ n < m we have

Ext1G(∆(λ+ lnρ+ t(1, 1)),∆(λ̃+ lmρ))

∼=



















k if m− n = 2pα, α ≥ 0, 2µ = l − 2 and t = l
2
(m− n− 1)

k if m− n = 1 and t = l
2
(m− n− 1)

Ext1
SL2

(∆(n),∆(m− 1)) if m− n odd, m− n 6= 1 and t = l
2
(m− n− 1)

0 otherwise.

Proof: First note that in the first three cases t is an integer, as required. Let V = ∆(λ̃ +

lmρ)⊗∆∗(λ+ lnρ+ t(1, 1)). Now

V G1 ∼= HomG1
(∆(λ+ lnρ+ t(1, 1)),∆(λ̃+ lmρ))

∼=

{

(q-det−u ⊗∆((m− 1)ρ)⊗∆∗(nρ))F if m− n odd
0 otherwise

where lu = t, by (4.8). By (4.5) we have

H1(G1, V ) ∼= Ext1G1
(∆(λ+ lnρ+ t(1, 1)),∆(λ̃+ lmρ))

∼= Ext1G1
(∆(λ′ + t(1, 1)),∆(λ̃′ + (m− n)lρ))
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where λ′ =

{

λ+ nl
2
(1, 1) if n even

λ̃+ (n+1)l
2

(1, 1) if n odd.
Now by (4.6) this is isomorphic to











k if m− n = 1

(q-det−β ⊗∆((m− n− 2)ρ))F if m− n ≥ 2, 2µ = l − 2 and m− n even
0 otherwise

where β = 1
2
(m− n− 2).

Consider the five term exact sequence. If m− n is even then the first and fourth terms

are zero by above. Hence

H1(G, V ) ∼= H1(G1, V )Ḡ

∼=







(

∆
(

m−n−2
2

(1,−1)
)

F
)Ḡ

if 2µ = l − 2

0 otherwise.

Now the first case is isomorphic to HomGL2

(

∆(0),∆
(

m−n−2
2

(1,−1)
))

which, by (2.3) with

l = 1, is isomorphic to

{

k if m− n− 2 = 2(pα − 1), α ≥ 0
0 otherwise

which gives the result for m−n even. If m− n is odd, and m− n 6= 1, then H1(G1, V ) (and

hence H1(G1, V )Ḡ)= 0. Hence

H1(G, V ) ∼= H1(Ḡ, V G1)
∼= Ext1

GL2
(∆(nρ− u(1, 1)),∆((m− 1)ρ))

∼= Ext1
SL2

(∆(n),∆(m− 1)).

If m = n+ 1 then V G1 ∼= (∆(nρ)⊗∆∗(nρ))F. Now for i > 0,

H i(Ḡ, V G1) ∼= Exti
GL2

(∆(nρ),∆(nρ)) = 0.

Thus H1(G, V ) ∼= H1(G1, V )Ḡ ∼= k, and we are done.

Lemma 5.4 For 0 ≤ n < m we have

Ext1G(∆(λ+ lnρ+ t(1, 1)),∆(λ+ lmρ))

∼=



















k if m− n = 2pα, α ≥ 0 and t = l
2
(m− n)

k if m− n = 1, 2µ = l − 2 and t = l
2
(m− n)

Ext1
SL2

(∆(n),∆(m− 1)) if m− n odd, m− n 6= 1, 2µ = l − 2 and t = l
2
(m− n)

0 otherwise.
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Proof: Again note that in the first three cases t is an integer as required. Let V = ∆(λ +

lmρ)⊗∆∗(λ+ lnρ+ t(1, 1)). Now

V G1 ∼= HomG1
(∆(λ+ lnρ+ t(1, 1)),∆(λ+ lmρ))

∼=

{

(q-det−v ⊗∆((m− 1ρ)⊗∆∗(nρ))F if 2µ = l − 2 and m− n odd
0 otherwise

by (4.9). First consider the case when this is zero. Then by the five term exact sequence we

must have H1(G, V ) ∼= H1(G1, V )Ḡ.

H1(G1, V ) ∼= Ext1G1
(∆(λ+ lnρ+ t(1, 1)),∆(λ+ lmρ))

∼= Ext1G1
(∆(λ′ + l

2
(m− n)(1, 1)),∆(λ′ + (m− n)lρ))

where λ′ = λ+ nl
2
(1, 1) (respectively λ̃+ (n+1)l

2
(1, 1)) for n even (respectively n odd), by (4.5).

This, by (4.7), is isomorphic to














(

q-det−α
)

F

if m = n + 1 and t ≡ µ′ + 1 (mod l)

(q-det−β ⊗∆((m− n− 2)ρ))F if m− n ≥ 2 and t ≡ 0 (mod l)
0 otherwise

where lα = t−µ′−1 and lβ = t−l. But m = n+1 implies that t = l
2
. So t ≡ µ′+1 (mod l)

implies that µ′ = µ̄′, that is µ = µ̄, so the first case is impossible.

Thus for µ 6= µ̄ or m− n even we have

H1(G1, V ) ∼=







∆
(

m−n−2
2

(1,−1)
)

F

if m− n ≥ 2 and t ≡ 0 (mod l)

0 otherwise.

In the zero case we are done; if non-zero then

H1(G1, V )Ḡ ∼= H0
(

Ḡ,∆
(

m−n−2
2

(1,−1)
)

F
)

∼= H0
(

GL2,∆
(

m−n−2
2

(1,−1)
))

∼= HomGL2

(

∆(0),∆
(

m−n−2
2

(1,−1)
))

∼=

{

k if m− n− 2 = 2(pα − 1), α ≥ 0
0 otherwise

by (2.3), with l = 1. Now if µ = µ̄ and m− n odd then we have

V G1 ∼=
(

q-det−u ⊗∆((m− 1)ρ)⊗∆∗(nρ)
)

F

where lu = t− l
2
, by our earlier calculation. In this case

H1(G1, V ) ∼= Ext1G1
(∆(λ + lnρ+ t(1, 1)),∆(λ+ lmρ))

∼=

{

(q-det−β)F if m = n + 1
0 otherwise
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where lβ = t− l
2
by (4.5) and (4.7). So if m 6= n+1 then from the five term exact sequence

we have
H1(G, V ) ∼= H1(Ḡ, V G1)

∼= H1(GL2,∆((m− 1)ρ− u(1, 1))⊗∆∗(nρ))
∼= Ext1

GL2
(∆(nρ),∆((m− 1)ρ− u(1, 1)))

∼= Ext1
SL2

(∆(n),∆(m− 1)).

If m = n+ 1 then V G1 ∼= (∆(nρ)⊗∆∗(nρ))F. Hence, for i ≥ 1,

H i(GL2, V
G1) ∼= Exti

GL2
(∆(nρ),∆(nρ)) = 0

and so H1(G, V ) ∼= H1(G1, V )Ḡ ∼= kḠ = k and this completes the proof.

By the characterisation of blocks calculated earlier, and as for Ext1G(∆(τ),∆(τ ′)) to be

non-zero we must have τ < τ ′, we see that these lemmas have exhausted all possible cases

where a non-trivial extension could exist. Thus these, in conjunction with the results of [7],

complete the calculation. The final result of this section now merely combines these into a

more managable form.

Suppose that l = 1. Then for an integer a with 0 ≤ a ≤ p−1 we define â by a+ â = p−1.

If r =
∑

i≥0 rip
i with 0 ≤ ri ≤ p− 1 then, as in [7] we define

Ψ(r)(= Ψp(r)) =

{

∑u−1
i=0 r̂ip

i + pu+a : r̂u 6= 0, a ≥ 1, u ≥ 0
}

⋃

{
∑u

i=0 r̂ip
i : r̂u 6= 0, u ≥ 0} .

Now suppose that l ≥ 1. Then if r = r−1 + l
∑

i≥0 rip
i with 0 ≤ ri ≤ p− 1, for i ≥ 0 and

0 ≤ r−1 ≤ l − 1, we define r̂i as before for i ≥ 0; while r̂−1 is defined by r−1 + r̂−1 = l − 1.

With this we can now define a quantum version of the above set by

Ψ̃(r)(= Ψ̃l,p(r)) =

{

∑u−1
i=−1 r̂iθ(i) + lpu+a : r̂u 6= 0, a ≥ 1, u ≥ −1

}

⋃

{

∑u
i=−1 r̂iθ(i) : r̂u 6= 0, u ≥ −1

}

where θ(i) =

{

lpi if i ≥ 0
1 if i = −1.

We can now state the main result. Note that we now drop

our long-standing restriction on λ.

Theorem 5.5 Let λ = (r + δ, δ) and τ = (s+ δ′, δ′). Then

Ext1G(∆(λ),∆(τ)) ∼=

{

k if r + 2δ = s+ 2δ′ and s = r + 2e with e ∈ Ψ̃(r)
0 otherwise.
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Proof: It is clear that we require r + 2δ = s + 2δ′ by consideration of blocks. So we only

need consider the cases that arise from lemmas (5.1–5.4). We consider when each of these

could give a non-zero Ext1G(∆(λ),∆(τ)) in turn.

Firstly, suppose that r = l − 1 + ln, s = l − 1 + lm. By (5.2) and [7] we must have

s = r + 2dl with d ∈ Ψ(n). Secondly, suppose that r = µ+ ln, s = µ+ lm. By (5.4) and [7]

we must have

s =











r + 2lpa if a ≥ 0
r + l if µ = µ̄
r + l(2d+ 1) if µ = µ̄ and d ∈ Ψ(n).

Lastly, suppose that r = µ+ ln, s = µ̄+ lm. By (5.3) and [7] we must have

s =











r + 2lpa if µ = µ̄ and a ≥ 0
r + l + µ̄− µ
r + l(2d+ 1) + µ̄− µ if d ∈ Ψ(n).

Further, if r, s satisfy any of the above conditions then Ext1G(∆(λ),∆(τ)) is non-zero.

Thus, if we allow µ = l − 1, we can state the above results as Ext1G(∆(λ),∆(τ)) is non-zero

if, and only if

s =



















r + 2dl if µ = l − 1 and d ∈ Ψ(n)
r + 2pal if µ 6= l − 1 and a ≥ 0
r + 2µ̄+ 2 if µ 6= l − 1
r + 2µ̄+ 2 + 2ld if µ 6= l − 1 and d ∈ Ψ(n).

So in the form of the statement of the theorem we have that Ext1G(∆(λ),∆(τ)) is non-zero

if, and only if

e =



















ld if µ = l − 1 and d ∈ Ψ(n)
lpa if µ 6= l − 1 and a ≥ 0
µ̄+ 1 if µ 6= l − 1
µ̄+ 1 + ld if µ 6= l − 1 and d ∈ Ψ(n).

It is now straight-forward to see that these give rise to the required result.

6 The Manin quantisation

There is another, non-isomorphic, quantum GL2 due to Manin (see [8]) which we will denote

by GLq(2, k). In this section we will show how our previous result also holds in this case for

q a primitive lth root of unity when l is odd. The key to this approach is the fact that both

quantisations give rise to the q-Schur algebras of Dipper and James (see [3]), which allows us
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to translate from one quantisation to the other. We denote these algebras by Sq(2, r) where

r runs over the natural numbers.

For the Manin quantisation there is also an analogue of the Borel subgroup, so we can

again consider the modules induced up from the one-dimensional Borel modules (see [9, 8.3]).

As before, the non-zero induced modules correspond to the dominant weights, and can again

be described explicitly (see [9, (8.6.1)]). Again, we can define the Weyl modules as duals of

appropriate induced modules (see [9, 8.10.1–2]).

Just as the Schur algebras are related to the general linear groups, there are deformations

of these algebras related to each of our quantisations in a similar way. In the case of our

first quantisation, this procedure yields the q-Schur algebras of Dipper and James (see [2,

3.2.6]), while for the Manin quantisation we obtain the q−2-Schur algebras (see [9, 11.3]).

Given two Sq−2(2, r)-modules V and W , they are also naturally modules for GLq(2, k) and

q−2-GL(2, k). Further, by [4, 4(5)] and [9, (11.5.6)] we have

Ext1q−2
-GL(2,k)(V,W ) ∼= Ext1

S
q−2 (2,r)

(V,W ) ∼= Ext1
GLq(2,k)(V,W ) (8)

when either q is a non-zero non-root of unity, or q is a primitive lth root of unity with l odd.

Corollary 6.1 The previous theorem also holds for the Manin quantisation, GLq(2, k), when

q is a primitive lth root of unity with l odd.

Proof: Consider the Weyl modules ∆(λ) and ∆(τ) for GLq(2, k). If these are not polynomial

modules for GLq(2, k), then there exists an n > 0 such that ∆(λ)⊗(detq)
n and ∆(τ)⊗(detq)

n

are polynomial, where detq is the analogue of q-det for the Manin quantisation. These

modules are isomorphic to ∆(λ + n(1, 1)) and ∆(τ + n(1, 1)) respectively. By [9, (11.1.1)],

there is a non-trivial extension between them only if λ1 + λ2 = τ1 + τ2. Thus the same is

true for ∆(λ) and ∆(τ), as implied by the theorem. So we may assume that there is an r

such that ∆(λ+ n(1, 1)) and ∆(τ + n(1, 1)) are both Sq−2(2, r)-modules. Clearly extensions

of ∆(τ + n(1, 1)) by ∆(λ + n(1, 1)) correspond to extensions of ∆(τ) by ∆(λ), and so the

result follows from (8) (as if q is a primitive lth root of unity with l odd, then so is q−2).
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