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Bootstrap Estimation of the Predictive Distributions of 
Reserves Using Paid and Incurred Claims 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
 
 
This paper presents a bootstrap approach to estimate the prediction distributions of reserves produced 
by the Munich chain ladder (MCL) model.  The MCL model was introduced by Quarg and Mack 
(2004) and takes into account both paid and incurred claims information. In order to produce 
bootstrap distributions, this paper addresses the application of bootstrapping methods to dependent 
data, with the consequence that correlations are considered. Numerical examples are provided to 
illustrate the algorithm and the prediction errors are compared for the new bootstrapping method 
applied to MCL and a more standard bootstrapping method applied to the chain-ladder technique. 
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1.  Introduction 
 
 
 
Bootstrapping has become very popular in stochastic claims reserving because of the simplicity and 
flexibility of the approach.  One of the main reasons for this is the ease with which it can be 
implemented in a spreadsheet in order to obtain an approximation to the estimation error of a fitted 
model in a statistical context. Furthermore, it is also straightforward to extend it to obtain the 
approximation to the prediction error and the predictive distribution of a statistical process by 
including simulations from the underlying distributions. Therefore, bootstrapping is a powerful tool 
for the most popular subject for reserving purposes in general insurance, the prediction error of the 
reserve estimates. It should be emphasised that to obtain the predictive distribution, rather than just 
the estimation error, it is necessary to extend the bootstrap procedure by simulating the process error. 
It is also important to realise that bootstrapping is not a “model”, and therefore it is important to 
ensure that the underlying reserving models are correctly calibrated to the observed data. In this paper, 
we do not address the issue of model checking, but simply show how a bootstrapping procedure can 
be applied to the Munich chain ladder model. 
 
In the area of non-life insurance reserving, there are primarily two types of data used. In addition to 
the paid claims triangle, there is frequently a triangle of incurred data also available.  The traditional 
approach is to fit a model to either paid or incurred claims data, separately, and one of the most 
popular methods in this context is the chain ladder technique. While we do not believe that this is the 
most appropriate approach for all data sets, it has retained its popularity for a number of reasons. For 
example, the parameters are understood in a practical context; it is flexible; and it is easy to apply. 
This paper concentrates on methods which have a chain ladder structure, and in this context, two 
types of approaches exist: deterministic methods such as chain ladder, and the recently developed 
stochastic chain ladder reserving models. When the chain ladder technique is used (either as a 
deterministic approach or using a stochastic model), one set of data will be omitted - either the paid or 
the incurred data can be used, but not both at the same time. Obviously, this does not make full use of 
all the data available and results in the loss of some information contained in those data. 
 
This leads us to consider whether it is possible to construct a model for both data sets, and to a 
consideration of the dependency between the two run-off triangles.  A related issue also arises when 
traditional methods are applied separately to each triangle, which produces inconsistent predicted 
ultimate losses. In response, Quarg and Mack (2004) proposed a different approach within a 
regression framework, considering the likely correlations between paid and incurred data. Quarg and 
Mack (2004) called this new method as the Munich chain ladder (MCL) model. It is this model that is 
the subject of this paper, and we show how the predictive distribution may be estimated using 
bootstrapping. Thus, in this paper an adapted bootstrap approach is described, combined with 
simulation for two dependent data sets. The spreadsheets used in this paper can be used in practice for 
any data sets, and are available on request from the authors. 
 
The paper is set out as follows. Section 2 briefly describes the MCL model using a notation 
appropriate for this paper. In section 3, the basic algorithm and methodology of bootstrapping is 
explained. Section 4 shows how to obtain the estimates of the prediction errors and the empirical 
predictive distribution using the adapted bootstrapping and simulation methods. In Section 5, two 
numerical examples are provided including the data from Mack (1993) and also some real London 
market data. Finally, section 6 contains a discussion and conclusion.  
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2. The Munich chain ladder method  
 
 
 
The MCL model aims to produce a more consistent prediction of ultimate claims when modelling 
both paid and incurred claim data. It is specially designed to deal with the correlation between paid 
and incurred claims as the traditional models, such as chain ladder model, sometimes produce 
unsatisfactory results by ignoring this dependence. It should be emphasized that the paid and incurred 
claims from the same calendar years are not correlated.  It is that the paid claims (incurred claims) are 
correlated to the incurred claims (paid claims) from the next (previous) calendar year. 
 
The fundamental structure of the MCL model is the same as Mack’s distribution-free chain ladder 
model (Mack, 1993). In the other words, the chain ladder development factors in the MCL model are 
obtained by Mack’s distribution-free approach. However, the MCL model adjusts the chain ladder 
development factors using the correlations between the observed paid and incurred claims. The 
adjusted chain ladder development factors therefore become individual not only for different 
development years but also for different accident years. The adjustment is explained in more detail in 
sections 2.1 and 2.2. 
 
 
2.1 Notation and Assumptions 
 
For ease of notation, we assume that we have a triangle of data. Although the data could be classified 
in different ways, we refer to the rows as “accident years” and the columns as “development years”.  
Denote P

ijC  as cumulative paid claims and I
ijC  as cumulative incurred claims occurred in accident 

year i, development year j, where 1  and 1 1i n j n i≤ ≤ ≤ ≤ − +  for the observed data. The aim of the 
chain ladder technique and of MCL is to estimate the data up to development year n. This produces 
estimates for P

ijC  and I
ijC , where 1  and 2i n n i j n≤ ≤ − + ≤ ≤ , and we therefore refer to the 

complete rectangle of data in the assumptions: nji ≤≤ ,1 . 
 
Mack’s distribution-free chain ladder method models the pattern of the development factors, which 

are defined as , 1
P
i jP

ij P
ij

C
F

C
+= , for paid claims and , 1

I
i jI

ij I
ij

C
F

C
+= , for incurred claims. Also the ratios of 

paid divided by incurred claims and the inverse are introduced as  
P
ij

ij I
ij

C
Q

C
=  and 1

I
ij

ij P
ij

C
Q

C
− = , 

respectively.   
Furthermore, define the observed data for accident year i, up to development year k as 
( ) { }:P

i ijP k C j k= ≤ , ( ) { }:I
i ijI k C j k= ≤  and ( ) { }, :P I

i ij ijB k C C j k= ≤ , for paid claims, incurred 

claims and both, respectively.  
The following assumptions are taken from Quarg and Mack (2004), section 2.1.2. 
 
Assumptions A (Expectations) 
 
(A1)  For 1 j n≤ ≤  there exists a constant P

jf  such that (for ni ,...,1= ) 
 

( )P P
ij i jE F P j f⎡ ⎤ =⎣ ⎦ . 

 
This assumption is for paid claims. It is necessary to make another analogous assumption for incurred 
claims since both data sets are taken into account.  



 - 4 - 

 
(A2)  For 1 j n≤ ≤ , there exists a constant I

jf  such that (for ni ,...,1= ) 
 

( )I I
ij i jE F I j f⎡ ⎤ =⎣ ⎦ . 

 
In order to analyse the two run-off triangles dependently, the following assumptions are also required. 
  
(A3)  For 1 j n≤ ≤ , there exists a constant 1−

jq  such that (for ni ,...,1= ) 
 

( )1 1
ij i jE Q P j q− −⎡ ⎤ =⎣ ⎦ . 

 
(A4)  For 1 j n≤ ≤ , there exists a constant jq  such that (for ni ,...,1= ) 
 

( )ij i jE Q I j q⎡ ⎤ =⎣ ⎦ . 

 
Note that assumptions (A3) and (A4) will apply that ijQ  is constant, which is contradictory – see 
section 3.1.2 of Mack and Quarg (2004) for a discussion of this point. 
 
Assumptions B (Variances) 
 
(B1)  For 1 j n≤ ≤ , there exists a constant P

jσ  such that (for ni ,...,1= ) 
 

( ) ( )2P
jP

ij i P
ij

Var F P j
C
σ

⎡ ⎤ =⎣ ⎦ . 

 
Again, the analogous assumption for the incurred claims is made as follows. 
 
(B2)  For 1 j n≤ ≤ , there exists a constant I

jσ  such that (for ni ,...,1= ) 
 

( ) ( )2I
jI

ij i I
ij

Var F I j
C
σ

⎡ ⎤ =⎣ ⎦ . 

 
Also, for the ratios of incurred to paid and vice versa, the following variance assumptions are made. 
 
(B3)  For 1 j n≤ ≤ , there exists a constant P

jτ  such that (for ni ,...,1= ) 
 

( ) ( )2

1
P
j

ij i P
ij

Var Q P j
C
τ

−⎡ ⎤ =⎣ ⎦ . 

 
(B4)  For 1 j n≤ ≤ , there exists a constant I

jτ  such that for ( ni ,...,1= ) 
 

( ) ( )2I
j

ij i I
ij

Var Q I j
C
τ

⎡ ⎤ =⎣ ⎦ . 
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Assumptions C (Independence) 
 
The usual assumptions for individual triangles are as follows: 
(C1) The random variables pertaining to different accident years for paid claims, i.e.  
{ }njC P

j ,...,2,11 = , … ,{ }njC P
nj ,...,2,1= , are stochastically independent.  

(C2) The random variables pertaining to different accident years for incurred claims, i.e.  
{ }njC I

j ,...,2,11 = , … ,{ }njC I
nj ,...,2,1= , are stochastically independent.  

In fact, a stronger assumption is used (see section 3.2 of Quarg and Mack, 2004), which is 
independence of accident years across both paid and incurred claims: 
(C3) The random sets  { }1 1, 1,2,...,P I

j jC C j n= , … ,{ }, 1,2,...,P I
nj njC C j n= , are stochastically 

independent.  
 
Using assumptions A to C, the Pearson residuals used in the MCL model can be defined as shown in 
equations (2.1) to (2.4). These residuals are a crucial part of the bootstrapping procedures described in 
section 4. 
 

( )
( )

P P
ij ij iP

ij
P

ij i

F E F P j
r

Var F P j

⎡ ⎤− ⎣ ⎦=
⎡ ⎤⎣ ⎦

, 
 
 

(2.1)  

 
( )
( )

1
1 1

1

ij ij iQ
ij

ij i

Q E Q P j
r

Var Q P j

−
− −

−

⎡ ⎤− ⎣ ⎦=
⎡ ⎤⎣ ⎦

, 
 
 

(2.2)  

 
( )
( )

I I
ij ij iI

ij
I

ij i

F E F I j
r

Var F I j

⎡ ⎤− ⎣ ⎦=
⎡ ⎤⎣ ⎦

, 
 

(2.3)  

and 
( )
( )

ij ij iQ
ij

ij i

Q E Q I j
r

Var Q I j

⎡ ⎤− ⎣ ⎦=
⎡ ⎤⎣ ⎦

. 
 

(2.4)  

 
 
Assumptions D (Correlations) 
 
(D1)  There exists a constant Pρ  such that (for nji ≤≤ ,1 ) 
 

( ) 1P P Q
ij i ijE r B j rρ

−
⎡ ⎤ =⎣ ⎦ . (2.5)  

 
The following equation states that the constant Pρ  is in fact the correlation coefficient between the 
residuals. Note that since the residuals have variance 1, the correlation is equal to the covariance. The 
proof can be found in Quarg and Mack (2004). 
 

( ) ( ) ( )1 1 1, , ,P Q P Q P P
ij ij i ij ij i ij ij iCov r r P j Corr r r P j Corr F Q P j ρ

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦⎣ ⎦ ⎣ ⎦  

(2.6) 
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Quarg and Mack (2004) derives expected MCL paid development factors adjusted by the correlation 
as shown in equation (2.7).   
 

( ) ( )
( )
( )

( ) ( )( )1 1 1
1

j
j j , j j

j

P
ij iP P P

ij i ij i ij ij i ij ij i
ij i

Var F P
E F B E F P Corr F Q B Q E Q P

Var Q P
− − −

−

⎡ ⎤⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎡ ⎤⎣ ⎦
. 

 
(2.7)  

 

  
 
(D2)  Analogously to assumption (D1), for the incurred claims it is assumed that there exists a 
constant Iρ  such that (for nji ≤≤ ,1 )  
 

( )jI I Q
ij i ijE r B rρ⎡ ⎤ =⎣ ⎦ . (2.8)  

 
Similarly, the constant Iρ  measures the correlation coefficient or the covariance between the 
residuals. i.e. 
 

( ) ( ) ( ), j , j , jI Q I Q I I
ij ij i ij ij i ij ij iCov r r B Corr r r B Corr F Q B ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(2.9) 
 
 
Hence, the expected MCL incurred development factors adjusted by the correlation can be derived as 
follows: 
 

( ) ( )
( )
( )

( ) ( )( )j
j j , j j

| j

I
ij iI I I

ij i ij i ij ij i ij ij i
ij i

Var F I
E F B E F I Cov F Q B Q E Q I

Var Q I

⎡ ⎤⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎡ ⎤⎣ ⎦
. 

(2.10) 
 
 
2.2 Unbiased Estimates of the Parameters 
 
In this section, we summarise the unbiased estimates of the parameters derived by Quarg and Mack 
(2004). For the paid data, estimates are required for the parameters of the development factors, the 
variances and also the correlation coefficient.   
 
The estimates of the paid development factor parameters can be interpreted as weighted averages of 
the observed development factors P

ijF  or 1−
ijQ  , using P

ijC  as the weights: 
 

P
ij

jn

i
jn

i

P
ij

P
ij

jn

i

P
ij

jn

i

P
ji

P
j F

C

C

C

C
f ∑

∑∑

∑ −

=
−

=

−

=

−

=
+

==
1

11

1
1,

ˆ  

 
 

(2.11)  
 

and 
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1

1
1 11

1 1
1

1 1

ˆ

n j
I

Pij n j
iji

j ijn j n j
P Pi
ij ij

i i

C C
q Q

C C

− +

− +
− −=

− + − +
=

= =

= =
∑

∑
∑ ∑

. 

 
 

(2.12)  
 

 
 
The unbiased estimates of the variances are as follows: 
 

( ) ( )∑
−

=

−
−−

=
jn

i

P
j

P
ij

P
ij

P
j fFC

jn 1

22 ˆ
1

1σ̂  
 
(2.13)  

and 

( ) ( )
12 21 1

1

1ˆ ˆ
n j

P P
j ij ij j

i
C Q q

n j
τ

− +
− −

=

= −
− ∑  

 
(2.14)  

 
Hence the Pearson residuals are 

ˆ

ˆ

P P
ij jP P

ij ijP
j

F f
r C

σ
−

=  
 
(2.15)  

and 
1

1 1ˆ
ˆ

ij jQ P
ij ijP

j

Q q
r C

τ
−

− −−
= . 

 
(2.16)  

 
Finally, the estimate of the correlation coefficient is given in equation (2.17). 
 

( )

1

1

,
2

,

ˆ

Q P
ij ij

i jP

Q
ij

i j

r r

r
ρ

−

−
=
∑

∑
. 

 
 

(2.17)  
 

 
 
Similarly, for incurred data, the estimates of the development factor parameters can be interpreted as 
weighted averages of the development factors I

ijF  or ijQ  , using I
ijC  as the weights: 

 

I
ij

jn

i
jn

i

I
ij

I
ij

jn

i

I
ij

jn

i

I
ji

I
j F

C

C

C

C
f ∑

∑∑

∑ −

=
−

=

−

=

−

=
+

==
1

11

1
1,

ˆ  

 
 

(2.18)  
 

and 
1

1
1

1 1
1

1 1

ˆ

n j
P

Iij n j
iji

j ijn j n j
I Ii
ij ij

i i

C C
q Q

C C

− +

− +
=
− + − +

=

= =

= =
∑

∑
∑ ∑

. 

 
 

(2.19)  
 

 
 
Also the unbiased estimates for the variance parameters are as follows: 
 



 - 8 - 

( ) ( )22

1

1 ˆˆ
1

n j
I I I I
j ij ij j

i

C F f
n j

σ
−

=

= −
− − ∑ . 

 
(2.20)  

and 

( ) ( )
12 2

1

1ˆ ˆ
n j

I I
j ij ij j

i
C Q q

n j
τ

− +

=

= −
− ∑ . 

 
(2.21)  

 
Hence the Pearson residuals are    
 

ˆ

ˆ

I I
ij jI I

ij ijI
j

F f
r C

σ
−

=  
 
(2.22)  

and 
ˆ

ˆ
ij jQ I

ij ijI
j

Q q
r C

τ
−

= . 
 
(2.23)  

 
And finally, the estimate of the correlation coefficient is given in equation (2.24). 
 

( )
,

2

,

ˆ

Q I
ij ij

i jI

Q
ij

i j

r r

r
ρ =

∑

∑
. 

 
 

(2.24)  
 

 
 
Assumptions A in section 2.1 have defined the expectations of the development factors, given just the 
data in the respective triangles. In order to produce a single estimate based on the data from both paid 
and incurred data, Quarg and Mack (2004) also considers the expectations of the development factors 
given both triangles and defines ( )P P

ij i ijE F B j⎡ ⎤ = λ⎣ ⎦  and ( )I I
ij i ijE F B j⎡ ⎤ = λ⎣ ⎦ . Using plug-in 

estimates from equations (2.11) to (2.17), the estimates of the paid MCL development factors are 
calculated using equation (2.7): 
 

( )1 1ˆˆˆ ˆ ˆ
ˆ

P
jP P P

ij j ij jP
j

f Q q
σ

λ ρ
τ

− −= + − . 
 

(2.25)  
 

 
Similarly, plug-in estimates from equations (2.18) to (2.24) are used in equation (2.10) so that the 
estimates of the incurred development factors are   
 

( )ˆˆˆ ˆ ˆ
ˆ

I
jI I I

ij j ij jI
j

f Q q
σ

λ ρ
τ

= + − . 
 

(2.26)  
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3. Bootstrapping and Claims Reserving  
 
 
 
Bootstrapping is a simulation-based approach to statistical inference.  It is a method for producing 
sampling distributions for statistical quantities of interest by generating pseudo samples, which are 
obtained by randomly drawing, with replacement, from observed data. It should be emphasized that 
bootstrapping is a method rather than a model. Bootstrapping is useful only when the underlying 
model is correctly fitted to the data, and bootstrapping is applied to data which are required to be 
independent and identically distributed. The bootstrapping method was first introduced by Efron 
(1979) and a good introduction to the algorithm can be found in Efron and Tibshirani (1993). 
 
For the purpose of clarity we begin by giving a general bootstrapping algorithm and briefly reviewing 
previous applications of bootstrapping to claims reserving. In section 4, we show how an algorithm of 
this type can be applied to the MCL.  Suppose we have a sample X  and we require the distribution of 
a statisticθ̂ . The following three steps comprise the simplest bootstrapping process:  
 

1 Draw a bootstrap sample { }1211 ,...,, B
n

BBB XXXX =  from the observed data 

{ }nXXXX ,...,, 21= . 

2 Calculate the statistic of interest B
1̂θ  for the first bootstrap sample { }1211 ,...,, B

n
BBB XXXX = . 

3 Repeat steps 1 and 2 N times. 
 
By repeating steps 1 and 2 N times, we obtain a sample of the unknown statistic θ̂ , calculated from N 
pseudo samples, i.e. { }B

N
BBB θθθθ ˆ,...,ˆ,ˆ
21= . When 1000≥N , the empirical distribution constructed 

from { }B
N

BBB θθθθ ˆ,...,ˆ,ˆ
21=  can be taken as the approximation to the distribution for the statistic of 

interest θ̂ .  Hence all the quantities of the statistic interest θ̂  can be obtained since such a distribution 
contains all the information related to θ̂ . 
 
The above bootstrapping algorithm can be applied to the prediction distributions for the best estimates 
in stochastic claims reserving subject.  England and Verrall (2007) contains an excellent review on the 
application.  In addition, Lowe (1994), England and Verrall (1999) and Pinheiro (2003) are also good 
resources for more details. England and Verrall (2007) showed how bootstrapping can be used for 
recursive models, following on from the earlier papers (England and Verrall, 1999 and England 2002) 
which applied bootstrapping to the over-dispersed Poisson model. 
 
It should be noted here that the Pearson residuals are commonly used rather than the original data in 
the Generalized Linear Model (GLM) framework. The Pearson residuals are required in order to scale 
the response variables in the GLM so that they are identically distributed. This is necessary because 
the bootstrap algorithm requires that the response variables are independent and identically 
distributed.   
 
Other papers in the actuarial literature that consider triangles of dependent data include Taylor and 
McGuire (2007) and Kirschner et al (2008).  It should be noted here that a model taking account of all 
information available could be potentially very valuable, even when the data is dependent in practice.  
The dependence makes it even difficult to calculate the prediction error theoretically.  For these 
reasons, we believe that adopting bootstrap method for these models is worthy of investigation, 
particularly in order to obtain the predictive distribution of the estimates of outstanding liabilities.   
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4. Bootstrapping the Munich chain ladder model 
 
This section considers bootstrapping the MCL model. In section 4.1 we describe the methodology and 
in section 4.2 we give the algorithm that is used. 
 
 
4.1 Methodology  
 
The method of bootstrapping stochastic chain ladder models can be seen in a number of different 
contexts.  England and Verrall (2007) categorize the models as recursive and non-recursive and show 
how bootstrapping methods can be applied in either case.  Since we are dealing with recursive models 
here, we follow England and Verrall and consider the observed development link ratios rather than the 
claims data themselves.  In other words, for Mack’s distribution-free chain ladder model the link 
ratios, ijF  , are randomly drawn against ijX , noting that  

, 1i j
ij ij ij j

ij

X
E F X E X f

X
+⎡ ⎤

⎡ ⎤ = =⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
.   

Here, ijX  is used to represent observed claims data in general. Note that the bootstrap estimates of 

the development factors B
jf  which are obtained by taking weighted averages of the bootstrapped 

observed link ratios, B
ijF , use ijX  rather than B

ijX  as the weights.   
 
However, this method cannot be simply extended to the MCL method, since this model is designed 
for dealing with two sets of correlated data, the paid and incurred claims.  This means that it is not 
possible to use the normal bootstrap approach: the independence assumption cannot be met any more. 
 
In order to address the problem of how to adapt the existing bootstrap approach in order to cope with 
the MCL method for dependent data sets, the consideration of the correlation is crucial.  It should be 
noted that the correlation which is observed in the data represents real dependence between the paid 
and incurred claims, and the model is specifically designed because of this dependence.  Therefore, it 
should remain unchanged within any re-sampling procedure.  The straightforward solution is to draw 
samples pairwise so that the correlation between the two dependent original data sets will not be 
broken when generating a sampling distribution for a statistic of interest. 
 
Obviously, when bootstrapping the recursive MCL method, the residuals of the paid and incurred link 
ratios are required instead of the raw data.  The question arises of how to deal with these residuals in 
order to meet the requirement of not breaking the observed dependence between paid and incurred 
claims. The answer is to group all the four sets of residuals calculated in the MCL method, i.e. the 
paid and incurred development link ratios, the ratios of incurred over paid claims from the previous 
years and its inverse, individually.  There are two reasons for this.  Firstly, the paid claims (incurred 
claims) are correlated to the incurred to paid claims ratio (paid to incurred claims ratio) that are from 
only the previous year and doing this will preserve the required dependence.  Secondly, the 
correlation coefficient of paid and incurred claims is equal to the correlation coefficient of those 
residuals, as stated in equations (2.6) and (2.10).  
 
Thus, the case of the paid claims data, the triangles (which have the same dimensions) containing the 
residuals of the observed paid link ratios and the residuals of the ratios of incurred over paid (except 
the first column), are paired together.  The same procedure is used for the incurred claims data.  We 
do this for convenience, even though the ratios of the paid over incurred claims and the inverse, give 
the same information.  Note that these ratios should remain unchanged when pairing them with paid 
and incurred claims with the same dimensions.  The consequence of this is that all the four sets of 
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residuals for paid, incurred link ratios and the ratios of incurred over paid claims and the inverse are 
all be grouped together. (Note here that an alternative approach would be to group three sets of 
residuals: the residuals of the paid and incurred link ratios and either the residuals of the paid over 
incurred ratios or the inverse.  This would produce the same results as grouping four sets of residuals 
as the residuals of paid over incurred ratios and the inverse can always be calculated from each other.  
However, it is simpler to group all the four sets as the calculation of the fourth set of residuals is 
naturally skipped in this case.) 
 
This combines the four residuals triangles into one new triangle that consists of these grouped 
residuals and we name it as the grouped residual triangle.  In each unit from this triangle of 
quadruples, the residuals are from the same accident and development year and correspond to paid 
and incurred claims.  Therefore, the new triangle of quadruples contains all the information available 
and meanwhile maintains the observed dependence.    
 
When applying bootstrapping, this triangle is considered as the observed sample.  The new generated 
pseudo samples are obtained by random drawing, with replacement, from the triangle of quadruples.   
 
The re-sampled incurred and paid triangles can be obtained by separating the pairs in the pseudo 
sample generated as above and backing out the residual definition.  The MCL approach can then be 
applied to calculate all the statistics of interest for the re-sampled paid and incurred triangles, i.e. the 
correlation coefficient for paid and incurred, the paid and incurred development factors, the ratios of 
paid over incurred or the inverse, and the variances.  Finally, adjusting the paid and incurred 
development factors by the correlation coefficient using the MCL approach, the bootstrapped MCL 
reserve estimates are obtained.   This completes a single bootstrap iteration.    
 
Again, the bootstrap method provides only the estimation error of the MCL method.  In order to 
include the prediction error and estimate the predictive distribution for the MCL estimates of 
outstanding liabilities, an additional step is added at the end of each of the bootstrap iteration, which is 
to add the process variance to the estimation error.   
 
Note that we apply the final simulation for the process variance to paid and incurred claims, 
independently.  This is because, for a particular accident and development year, paid and incurred 
claims are actually independent.  Under the assumptions of the MCL model, paid (incurred) claims 
are only correlated with previous incurred (paid) claims, and the forecasts produced by the 
bootstrapping will pick up this dependency. 
 
In order to obtain a reasonable approximation to the predictive distribution, at least 1000 pseudo 
samples are required.  For each of the pseudo samples, the row totals and overall total of outstanding 
liabilities are stored so that the sample means, sample variances and the empirical distributions can be 
calculated and plotted.  They are taken as the approximations to the best estimates of outstanding 
liabilities, the prediction errors and the predictive distributions of the outstanding liabilities.  Also, an 
estimate of any required percentile and confidence interval can be calculated from the predictive 
distribution. 
 
In order to satisfy the assumption that the sample is identically distributed in the bootstrapping 
procedure, the Pearson residuals are calculated and used.  As in England and Verrall (2007), we use 
the Pearson residuals of the observed development factors rather than those for the actual claims, 
since we are using recursive models.  Note that a bootstrap bias correction is also needed, and the 

simplest way to do this is to multiply the residuals by ( )
( )1

n j
n j

−
− − . 

 
In addition to drawing the grouped sample for bootstrapping correlated data sets, there are also two 
other practical points that should be mentioned.  The first is to note that the fitted values are obtained 
by starting from the final diagonal in each triangle and working backwards, by dividing by the 
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development factors.  The second is that the zero residuals which appear in both triangles are also left 
out.   
 
 
 
 
4.2 Algorithm 
 
 
 
This section provides the algorithm, step by step, which is needed in order to implement the bootstrap 

process introduced in section 4.1,  

 

- Apply the MCL method to both the cumulative paid and incurred claims data to obtain the 

residuals for all the four sets ratios, the paid, incurred link ratios, the paid over incurred ratios and 

the reverse.  They can be obtained from following equations:  

 

ˆ
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P P
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ij ijP
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1 1ˆ
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- Adjust the Pearson residual estimates by multiplying by ( )
( )1

n j
n j

−
− −  to correct the 

bootstrap bias. 

 

- Group all the four residuals, i.e. P
ijr , 

1Q
ijr

−

, I
ijr  and Q

ijr  together.  We write this as 

( ) ( ) ( ) ( ){ }1

, , ,P Q I Q
ij ij ij ij ijU r r r r

−

= .  

 

- Start the iterative loop to be repeated N times ( 1000N ≥ ).  This consists of the following steps: 

 

1. Randomly sample from the grouped residuals with replacement, denoted as  

( ) ( ) ( ) ( ){ }1

, , ,
BB B BB P Q I Q

ij ij ij ij ijU r r r r
−

= , from the grouped triangle so that a pseudo sample of the 

grouped residuals is created. 

2. Calculate the pseudo samples of the four triangles for the paid, incurred link ratios, the ratios of 

paid over incurred and the inverse by inverting the Pearson residuals definition as follows: 

( ) ( )
,

ˆ ˆ
BP P

B ij jP P
ij jP

i j

r
F f

C

σ
= + , ( ) ( )1

1 1

,

ˆ
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B
Q P

ij jB

ij jP
i j

r
Q q

C
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−

− −= + , 
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and 

( ) ( )
,

ˆ ˆ
BI I

B ij jI I
ij jI

i j

r
F f

C

σ
= + , ( ) ( )

,

ˆ
ˆ

BQ I
B ij j

ij jI
i j

r
Q q

C

τ
= + . 

 

3. Calculate the ,
P
i jC −weighted and ,

I
i jC −weighted average of the bootstrap paid and incurred 

development factors as follows: 
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and 
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Note that the weights used here are from the original data sets and not from the pseudo samples. 

 

4. Calculate the corresponding correlation coefficient for the re-sampled data using the pseudo 

residuals ( )BP
ijr , ( )1 B

Q
ijr

−

, ( )BI
ijr  and ( )BQ

ijr  as follows,  
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5. Calculate the variances for the bootstrap data as follows: 
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Note that all the sums here are from 1 to n – j because the last diagonals of paid to incurred (and 

incurred to paid) are not included in the resampling procedure. 

 

6. Calculate the bootstrap development factors adjusted by the correlation coefficient between the 

pseudo samples as follows: 

 

( ) ( ) ( ) ( )
( )

( ) ( )( )1 1
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ˆ

BP
BB B B BjP P P

ij j ij jBP
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f Q q
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( ) ( ) ( ) ( )
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ˆ
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BB B B BjI I I

ij j ij jBI
j

f Q q
σ
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= + − , 

 

for the re-sampled bootstrap paid and incurred run-off triangles, respectively. 

 

 

7. Simulate a future payment for each cell in the lower triangle for both paid and incurred claims, 

from the process distribution with the mean and variance calculated from previous step.  To do 

this, the following steps are required:  

 

 For the one-step-ahead predictions from the leading diagonal, a normal distribution is 

assumed, i.e. for 2 i n≤ ≤ , 

 

( ) ( )( )2

, 2 , 1 , 1 1 , 1
ˆ ˆ~ ,

BB
P P P P P
i n i i n i i n i n i i n iX Normal X Xλ σ− + − + − + − + − +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for paid claims 

and 

( ) ( )( )2

, 2 , 1 , 1 1 , 1
ˆ ˆ~ ,

BB
I I I I I
i n i i n i i n i n i i n iX Normal X Xλ σ− + − + − + − + − +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for incurred claims. 

 

 For the two-step-ahead predictions up to the n-step-ahead predictions, normal 

distributions are still assumed, but with the mean and variance calculated from previous 

prediction instead of the observed data, i.e. for 3 k n≤ ≤  and 3n k j n− + ≤ ≤ , 

 

( ) ( )( )2

, 1 , 1 1 , 1
ˆ ˆ ˆˆ~ ,

BB
P P P P P
kl i l k l l k lX Normal X Xλ σ− − − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for paid claims, 
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and 

( ) ( )( )2

, 1 , 1 1 , 1
ˆ ˆ ˆˆ~ ,

BB
I I I I I
kl i l k l l k lX Normal C Xλ σ− − − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for incurred claims. 

 

8. Sum the simulated payments in the future triangle by origin year and overall to give the origin 

year and total reserve estimates respectively. 

 

9. Store the results, and return to the start of the iterative loop. 
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5. Examples 
 
 
 
This section illustrates the bootstrapping approach to the MCL and uses two numerical examples to 
assess the results. The first example uses the data from Quarg and Mack (2004). Example 2 uses 
market data from Lloyd’s which have been scaled for confidentiality reasons. These data relate to 
aggregated paid and incurred claims for two Lloyd’s syndicates, categorized at risk level. 
 
Example 1 is included in order to illustrate the results for the original set of data used by Quarg and 
Mack (2004). The purpose of example 2 is to illustrate that the MCL model does not necessarily 
provide better results in all situations. The indications from our results that it performs better when the 
data have less inherent variability and are less “jumpy”.  
 
 

 

Example 1 

 
In this section, we apply the bootstrapping methodology with 10,000 bootstrap simulations, to the data 
from Quarg and Mack (2004).   
 
Tables 1 and 2 show the data. In order to illustrate the nature of the run-off of the data, Figures 1 and 
2 are the plots of the data from Table 1 and 2, respectively.  From Figures 1 and 2, it can be seen that 
the data are stable and not too much spread out. 
 
Table 1  
Paid Claims from Quarg and Mack (2004) 

j=1 j=2 j=3 j=4 j=5 j=6 j=7
i=1 576 1804 1970 2024 2074 2102 2131
i=2 866 1948 2162 2232 2284 2348
i=3 1412 3758 4252 4416 4494
i=4 2286 5292 5724 5850
i=5 1868 3778 4648
i=6 1442 4010
i=7 2044  

 
 
Table 2 
Incurred Claims from Quarg and Mack (2004) 

j=1 j=2 j=3 j=4 j=5 j=6 j=7
i=1 978 2104 2134 2144 2174 2182 2174
i=2 1844 2552 2466 2480 2508 2454
i=3 2904 4354 4698 4600 4644
i=4 3502 5958 6070 6142
i=5 2812 4882 4852
i=6 2642 4406
i=7 5022  
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Figure 1 
Paid Claims  
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Figure 2 
Incurred Claims  
 
The results of applying the bootstrap methodology described in this paper are shown below, and are 
compared with the results from the straightforward chain-ladder technique and Mack’s method for the 
prediction errors. Table 3 shows that the theoretical MCL reserves (from Quarg and Mack) and the 
mean of the bootstrap distributions, together with the chain-ladder reserves when the triangles are 
considered separately. It can be seen that the bootstrap means are close to the theoretical values, for 
both the paid and incurred claims. 
 
Table 3  
A Comparison of Methods for Reserves Projected on Paid and Incurred Claims 

               Bootstrap                 MCL                  Mack
Paid Incurred Paid Incurred Paid Incurred

i=1 0 43 0 43 0 43
i=2 37 94 35 96 32 97
i=3 109 131 103 135 158 88
i=4 277 321 269 326 331 277
i=5 299 296 289 302 407 191
i=6 657 651 646 655 919 465
i=7 5492 5646 5505 5606 4063 6380

Overall Total 6871 7182 6846 7163 5911 7540  
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Table 4 displays the bootstrap prediction error of the MCL reserves projected by both paid and 
incurred claims. Also shown are the prediction errors for the Mack method. It can be seen that the 
MCL prediction errors are lower than those of the Mack method. 
 
 
Table 4  
A Comparison of Bootstrap Prediction Errors for MCL and CL Methods 

   MCL   Mack
Paid Incurred Paid Incurred

i=1 0 0 0 0
i=2 5 5 15 9
i=3 48 70 53 82
i=4 61 86 68 105
i=5 72 104 72 117
i=6 215 208 289 216
i=7 735 716 897 869

Overall Total 776 782 991 980  
 
 
Since the purpose of the MCL method is to use more data to improve the estimation of the reserves, it 
is expected that the prediction errors should be lower than the Mack’s model.  This is confirmed for 
these data by Table 5, which shows that the prediction error, as a percentage of the reserve, for the 
MCL reserves is lower than the prediction error of CL reserves.   
 
 
Table 5  
A Comparison of Bootstrap Prediction Errors% for MCL and CL Methods  

MCL                    Mack
Paid Incurred Paid Incurred

i=1 - 0% - 0%
i=2 14% 5% 45% 9%
i=3 44% 53% 33% 93%
i=4 22% 27% 21% 38%
i=5 24% 35% 18% 61%
i=6 33% 32% 31% 46%
i=7 13% 13% 22% 14%

Total 11% 11% 17% 13%  
 
 
In Figure 3, the distributions of the MCL and CL reserve projections for paid and incurred claims are 
plotted.  Figure 3 shows that the paid and incurred best reserve estimates are very close when using 
MCL approach.  In contrast, the paid and incurred best reserve estimates projected by the chainladder 
method, are much further apart.  Furthermore, the CL method provides a much more spread out 
distribution than the MCL approach, in the case of both paid and incurred claims.   
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Figure 3 
A Comparison of Predictive Distributions of Overall Reserves for CL and MCL Reserves for Paid and 
Incurred Claims 
 
 
Example 2 
     
In this section, a set of aggregate data from Lloyd’s syndicates is considered.  In this case, the data are 
not as stable or well-behaved and the results are quite different.  Tables 6 and 7 show the data, which 
are plotted in Figures 4 and 5.  It can be seen from these figures that the data are much more unstable 
and more spread out compared with the previous two examples.  
 
Table 6  
Scaled Aggregate Paid Claims at Risk Level from Lloyd’s Market  

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10
i=1 1139 5680 6906 7069 7205 7350 7421 7487 7506 7518
i=2 1101 6223 8038 8652 9064 9249 9343 9421 9455
i=3 1215 8058 10593 11638 12346 12784 12978 13161
i=4 949 5324 7608 8257 8719 8972 9103
i=5 638 4107 6367 7099 7489 7586
i=6 647 4166 6231 7029 7335
i=7 1198 4660 7303 7791
i=8 1194 6540 9251
i=9 1248 6062
i=10 1083  

 
Table 7  
Scaled Aggregate Incurred Claims at Risk Level from Lloyd’s Market 

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10
i=1 2170 6941 7709 7403 7452 7508 7514 7547 7555 7563
i=2 2184 7822 9182 9368 9445 9520 9508 9547 9585
i=3 2759 10947 12649 12947 13090 13283 13328 13360
i=4 1958 8398 9814 9800 9306 9370 9272
i=5 1376 6177 7699 7799 7984 7904
i=6 1464 5861 7546 7679 7687
i=7 2405 6385 8151 8234
i=8 3128 8772 10265
i=9 2980 8045
i=10 2722  
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Figure 4 
Scaled Paid Claims from Lloyd’s Market 
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Figure 5  
Scaled Incurred Claims from Lloyd’s Market 
 
The MCL method still produces consistent ultimate loss predictions for this data set, as shown in 
Table 8.  However, the prediction error contained in Table 9, estimated by the bootstrap MCL 
approach, appears not to appear to offer such an improvement as was seen in Example 1. 
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Table 8  
A Comparison of Methods for Reserves Projected on Paid and Incurred Claims  
 

              Bootstrap                    MCL                     CL 
Paid Incurred Paid Incurred Paid Incurred

i=1 0 45 0 45 0 0
i=2 24 138 19 139 15 15
i=3 78 245 71 245 63 62
i=4 146 236 139 237 143 142
i=5 252 357 246 354 220 215
i=6 383 455 373 454 400 395
i=7 590 614 579 624 829 825
i=8 1345 1355 1318 1366 1850 1820
i=9 3758 3811 3707 3787 4081 4042

i=10 9874 9962 9740 9840 8765 8698
Overall Total 16451 17218 16192 17092 16367 16214  

 
Table 9 
A Comparison of Bootstrap Prediction Errors for MCL and CL Methods  

                  MCL                   CL
Paid Incurred Paid Incurred

i=1 0 0 0 0
i=2 10 10 2 2
i=3 16 32 11 11
i=4 32 27 39 38
i=5 47 62 43 44
i=6 78 97 92 96
i=7 204 249 166 168
i=8 324 372 391 382
i=9 573 592 987 973

i=10 1762 1818 1940 1963
Overall Total 1911 1994 2277 2305  

 
Table 10 shows a comparison of the prediction errors as a percentage of the reserve, and again it can 
be seen that results do not indicate that the MCL is a significant improvement over the CL model.  
The conclusion from this is that although the MCL method uses more data, and should be expected to 
produce lower prediction errors, this is not always the case in practice.  We believe that the reason for 
this is that the assumptions made by the MCL method – the specific dependencies assumed – are not 
as strong as expected in this case.  A conclusion from this is that the data have to be examined 
carefully before the MCL method is applied.   
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Table 10  
A Comparison of Bootstrap Prediction Errors% for MCL and CL Methods using Scaled Data 

                  MCL                   CL
Paid Incurred Paid Incurred

i=1 - - - -
i=2 43% 7% 69% 14%
i=3 21% 13% 27% 18%
i=4 22% 11% 28% 27%
i=5 19% 17% 20% 20%
i=6 20% 21% 23% 24%
i=7 35% 41% 20% 20%
i=8 24% 27% 21% 21%
i=9 15% 16% 23% 24%

i=10 18% 18% 22% 23%
Overall Total 12% 12% 14% 14%  

 
This conclusion is reinforced by Figure 11, which shows the predictive distributions.     
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Figure 6 
A Comparison of Predictive Distributions of CL and MCL Reserves predicted on Paid and Incurred 
Claims 
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6. Conclusion 
 
This paper has shown how a bootstrapping approach can be used to estimate the predictive 
distribution of outstanding claims for the MCL model. The model deals with two dependent data sets, 
the paid and incurred claims triangles, for general insurance reserving purposes.  We believe that 
bootstrapping is well-suited for these purposes from a practical point of view, since it avoids 
complicated theoretical calculations and is easily implemented in a simple spreadsheet. This paper 
adapts the method by taking account of the dependence observed in the data and maintaining it by re-
sampling pairwise.   
 
A number of examples have been given, which show that the MCL model does not always produce 
superior results to the straightforward chain ladder model. As a consequence, we believe that it is 
important for the data to be carefully checked to test whether the dependency assumptions of the 
MCL model are valid for each data set before it is applied. 
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