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Abstract  
This paper considers the bootstrapping approach for measuring reserve uncertainty when applying 
the model of Schnieper for reserves which separate Incurred But Not Reported (IBNR) and Incurred 
But Not Enough Reserved (IBNER) claims. The Schnieper method has been explored in Liu and 
Verrall (2009), and the Mean Square Errors of Prediction (MSEP) derived. This paper takes this 
further by deriving the full predictive distribution, using bootstrapping.  Numerical examples are 
provided and the MSEP from the bootstrapping approach are compared with those obtained 
analytically.    
 
 
 
 
 
 
 
 
 



1 Introduction 
 
The model of Schnieper (1991) separates out IBNR and IBNER claims, with the intention of 
providing better estimates of outstanding liabilities in cases when the over claims data are 
inherently volatile. Although Mack (1993) used some of the ideas from Schnieper, there has not 
been much attention paid to the original paper since it was published. However, Liu and Verrall 
(2009) have derived approximations to the Mean Square Errors of Prediction (MSEP) of the 
reserves and we believe that the method has the potential to be useful in practice. In this paper, we 
continue with the development of the statistical background for the original method by showing 
how the complete predictive distribution can be approximated using bootstrapping methods. This is 
a very important additional step to the theory derived in Liu and Verrall (2009), since the MSEP is 
of only limited value in the context of risk assessment and capital modelling. For a proper 
assessment of risk, and to use the model in the modern solvency setting, it is far better to use the 
predictive distribution. Also, a simulation approach is often used in this context, and bootstrapping 
has been found to be very convenient for this. 
   
Section 2 gives a brief outline of the model of Schnieper. For more details, see Schnieper (1991) 
and Liu and Verrall (2009). In Section 3 of this paper, we show how to construct an appropriate 
resampling procedure for the Schnieper method, within a Generalised Linear Models (GLM) 
framework. Note that the bootstrapping is a general method, which can be applied to any fully 
defined model in order to obtain the sampling distribution for any statistic of interest. As was shown 
in England and Verrall (1999) and England (2002), it is straightforward to extend the bootstrapping 
procedure to enable an approximation to the predictive distribution to be obtained. This requires a 
final step to be added to the resampling method, which then simulates a future observation from the 
appropriate process distribution. A more complete discussion of bootstrapping methods can be 
found in England and Verrall (2006), which also contains a fuller review of the literature on 
bootstrapping for claims reserving in general. Note that the Schnieper method is a recursive method 
for claims reserving, and the appropriate background for this can be found in England and Verrall 
(2006). The paper by England and Verrall (1999), which first considered bootstrapping for the 
chain-ladder technique, was based on the over-dispersed Poisson model which is non-recursive. For 
ease of implementation, the detailed algorithm which can be used to obtain the bootstrap 
approximation to the predictive distribution for the Schnieper method is given in the Appendix.  In 
section 4, we apply the bootstrap method to the data from Schnieper (1991) and show that the 
results are very close to the results for the analytical estimation error derived in Liu and Verrall 
(2009).  This section also shows the full predictive distribution. Section 5 contains the conclusion. 
 
 
2 The Schnieper Model 
    
The idea behind the model of Schnieper (1991) is to separate a triangle of potentially volatile claims 
data into two separate triangles: a triangle of the IBNER claims and a triangle of the real INBR 
claims. In this way, the hope is that the separate triangles will prove easier to deal with and will 
provide better estimates of outstanding claims, and a better idea of the forces driving these. It is 
assumed that the data in the two triangles are independent, and we briefly describe the models used 
for each of these. For more details of these models, and of the estimation of the parameters and 
forecasts, see Schnieper (1991) and Liu and Verrall (2009).  
 
Without loss of generality, we assume that the data are available in triangular form, indexed by 
accident year, i, and development year, j. The single triangle of data consists of the cumulative 
incurred claims, and are denoted by { }:1 ;1 1ijX i n j n i≤ ≤ ≤ ≤ − + : 
 



 
                         11X  12X  …  1nX  
                            21X  …  2, 1nX −  
                           #  
                         1nX . 
 
 
It is assumed that the incremental incurred claims ( 1, −− jiij XX ) are the sum of incremental incurred 
from the old claims ( ijD− ) and the new claims ( ijN ). In other words, ijD−  represents the change in 
the cumulative incurred claims for claims reported in previous development periods (IBNER data), 
and ijN  is the new claims (IBNR claims) reported in development period j. Thus, 
 

, 1ij i j ij ijX X D N−− = − +   
 
and for cumulative claims: 
 

, 1ij i j ij ijX X D N−= − + .  
  
Schnieper also assumes that a measure of the exposure, iE , is available for each accident year i. In 
common with Schnieper (1991), we do not attempt to forecast beyond development year n. We refer 
to cumulative claims at development year n as “Ultimate Claims”. 
 
We define the information up to payment year k by kH  and the information up to development year 
k by kF , where  
 
 { }, :1 , ; 1k ij ijH N D i j n i j k= ≤ ≤ + − ≤  

and { }, :1 , ;k ij ijF N D i j n j k= ≤ ≤ ≤ . 
 

kF  corresponds to kB  in Mack (1993). 
 
The general model assumptions are given as follows: 
 
Assumption 1: There exist constants jλ  and jδ , such that for known exposure iE  we have that, 
 

2ij i j i jE N H E λ+ −
⎡ ⎤ =⎣ ⎦ , 1 ,i j n≤ ≤ ,  

 

2 , 1ij i j i j jE D H X δ+ − −
⎡ ⎤ =⎣ ⎦ , 1 ,2i n j n≤ ≤ ≤ ≤ .  

 
Assumption 2:  There exist constants 2

jσ  and 2
jτ , such that  

 
2

2ij i j i jVar N H Eσ+ −
⎡ ⎤ =⎣ ⎦ , 1 ,i j n≤ ≤   

 
2

2 , 1ij i j i j jVar D H X τ+ − −
⎡ ⎤ =⎣ ⎦ , 1 ,2i n j n≤ ≤ ≤ ≤ .  



 
Assumption 3: Independence between accident years 
 
As in Schnieper (1991), it is assumed that { } { }1 1, :1 ... , :1j j nj njN D j n N D j n≤ ≤ ≤ ≤ , are 
independent between accident years.   
 
 
Assumption 4: Uncorrelatedness between development years 
 

{ }2 :1 ,ij i jN H i j n+ − ≤ ≤  and { }2 :1 ,2ij i jD H i n j n+ − ≤ ≤ ≤ ≤  are uncorrelated. 

 
For a discussion of these assumptions, see Liu and Verrall (2009). Based on these assumptions, 
estimates of the parameters may be obtained, along with predictions of the development of future 
claims. This is a recursive method, and full details of the derivation of these estimates may be found 
in Schnieper (1991) and Liu and Verrall (2009). The estimates of the parameters in the mean are 
given by 
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These are the estimates that are used when the bootstrap methodology is applied. Finally, the 
estimate of outstanding incurred claims in the original single triangle was derived by Schnieper. 
Note that ,

ˆ
i k t nE X H+⎡ ⎤⎣ ⎦  is the prediction of ,i k tX + , and we use the notation of ,

ˆ
i k tX +  for this: 

, ,
ˆ ˆ

i k t n i k tE X H X+ +⎡ ⎤ =⎣ ⎦ . Then ( ), , 1
ˆ ˆˆ ˆ1i k t k t i k t i k tX X Eδ λ+ + + − += − + . Note also that 

, 1 , 1
ˆ

i n i n i n iE X H X− + − +⎡ ⎤ =⎣ ⎦ , and hence , 1 , 1
ˆ

i n i i n iX X− + − +=  forms the starting point in this recursive 
formula. 
 



3 Bootstrap Methodology 
 
The Schnieper method presents an interesting exercise for bootstrapping in that there are two 
separate triangles that have to be resampled independently. This is different from most other 
applications of bootstrapping for claims reserving, when a single triangle is considered. In this 
section, we describe how the resampling procedure can be adapted to this novel situation, and in the 
Appendix we set out the algorithm in detail.  
 
In order to apply the bootstrapping methodology, we require data which can be assumed to be 
independent and identically distributed (iid). Since the data themselves are not iid, we resample 
from the residuals rather than the raw data. Also, since the Schnieper method is based on recursive 

models, we use residuals of the ratios, 
i

ij

E
N

 and 
1, −ji

ij

X
D

, rather than the observed data, ijN  and ijD . 

This has been discussed in detail in England and Verrall (2006). In order to calculate residuals 
(suitably normalized), we require the mean and variance of each of the ratios. Following Liu and 
Verrall (2009), the mean and variance assumptions for the Schnieper model are:  
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The idea of bootstrapping is to generate new triangles of data (“bootstrap samples”) which are 
representative of the underlying distributions of the estimates.  When this has been done a 
reasonable number of times and the required results saved, the sampling properties may be 
estimated by simply looking at the properties of the bootstrap samples.  So, for example, to obtain a 
bootstrap estimate of the estimation error of the overall reserve, we generate a reasonable number 
(in most cases we use 10,000) of new sets of data from the original data and estimate the reserve for 
each of these.  
 
Corresponding to the two approximation approaches described in Liu and Verrall (2009), there are 
two procedures that can be used in the bootstrapping process.  If the estimation variance 
approximation approach which is adopted by England and Verrall (2002) and Buchwalder et al 
(2006) is followed, the bootstrap estimate of the approximation is obtained by calculating the 
sample variance of the bootstrap reserves.  However, if the approach of Mack (1993) is followed, 
the bootstrap estimate of the estimation variance is obtained by calculating the average squared 
difference between the bootstrap reserve estimate and the original reserve estimate.  The rationale 
for the first approach is clear: we simply estimate the estimation variance by the variance of the 
bootstrap samples.  The rationale for the second approach is that we require a bootstrap estimate of 

( )2

, ,
ˆ |i m i m nX E X H⎡ ⎤− ⎣ ⎦ , and this can be obtained by looking at the average squared difference 

between the bootstrap value, ,
B
i mX  and  ,

ˆ
i mX . 

 
To include the process error, we add an extra simulation after each bootstrap, using the appropriate 
process distribution. This is the most straightforward way to include the process error, and more 
details can be found in England and Verrall (2006). 
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Then the scaled Pearson residuals for the two triangles are given by:
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It is well known that a bias correction is required in the context of bootstrap estimation. In order to 

include this, these residuals are adjusted by multiplying by 
1

n j
n j

−
− +

. This gives the adjusted 

residuals:  
 

( )ˆ ˆ, , ,
1ij PS ij j i j

n jr r f E
n j

λ σ−
=

− +
 and ( ), 1

ˆ ˆ, , ,
1ij PS ij j i j j

n js r g X
n j

δ τ−

−
=

− +
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These adjusted residuals are sampled, with replacement, to generate bootstrap samples of residuals, 

B
ijr  and B

ijs , for 1,2, , ; 1,2, , 1i n j n i= = − +… … .  The triangles of pseudo data are then calculated by 
inverting the residual definition: 
 

ˆ ˆjB B
ij ij j
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E
σ

λ= +
 
and 

, 1

ˆ ˆjB B
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i j
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X
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δ
−

= + . 

 
The appealing aspect of bootstrapping is that the calculations now only involve the simple 
spreadsheet operations used in the original method to calculate the loss reserves. In other words, 
they can be based on the original Schnieper paper, rather than involving any more complex 
statistical analysis similar to that in Liu and Verrall (2009). Thus, for each bootstrap sample, the 
bootstrap estimates of the parameters in the mean, B

jλ  and B
jδ , are calculated using the usual 

weighted averages of the individual development factors. These are given in the following 
equations:  
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Note that the observed data, , 1i jX − , and the exposure iE  act as the weights here: it is not correct to 
use bootstrapped data for the weights.  

 
 
The bootstrap estimates of the reserves for each row and the overall total can be obtained by 
applying the bootstrap values of the parameters, B

jλ  and B
jδ , to the original formula of Schnieper 

for the outstanding incurred claims: 
 

( ), 1 1 , 1
ˆ ˆ1 B B

i n i k n i k i n i k i n i kX X Eδ λ− + + − + + − + − + += − + , for 1, 2, , 1k i= −… (with the initial point 



, 1 , 1
ˆ

i n i i n iX X− + − += ). 
 
Bootstrapping only addresses the estimation error for the model.  If the aim of the exercise is to 
obtain a bootstrap estimate of the estimation error, then this is all that is needed. However, for 
claims reserving purposes, we also require the prediction error and the full predictive distribution of 
the reserves. To obtain these, it is necessary to include the process error, using the process 
distributions. The most straightforward option here, since we are only specifying the first two 
moments, is to use normal distributions for both ijN  and ijD . (Note that it would be possible to use 
other models, such as the over-dispersed Poisson distribution.)  Thus, the final step in the process to 
obtain simulations of the loss reserves suitable for calculating prediction errors and the predictive 
distribution is to simulate from these process distributions, using the bootstrap sample values for the 
means. In other words, for each triangle, we obtain simulated values of the incrementals, using the 
appropriate process distributions:  
 

2

2 ~ ( , )ij jB
i j j

i i

N
H Normal

E E
σ

λ+ −   and  
2
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, 1 , 1

~ ( , )ij jB
i j j

i j i j

D
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X X
τ
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− −
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These simulated values are then inserted into the equation for the cumulative claims, 

, 1ij i j ij ijX X D N−= − + .  Taking first differences gives the incremental claims which can be used for 
calculating the prediction errors and predictive distributions. 
 
 
The algorithm bootstrapping Schnieper’s model is set out in the Appendix. In section 4, we provide 
illustrations of the bootstrapping method, and compare with the analytical results. 
 
 
4 Illustration 
 
In this section, we illustrate the results by applying the bootstrapping methodology to the data from 
Schnieper (1991).  The results are compared with the analytical methods, as well as the bootstrap 
estimation of the prediction error using Mack's approximation. 
 
The data used by Schnieper consisted of an IBNR triangle, ijX , and exposure, iE , which are shown 
in Table 1. Tables 2 and 3 show the more detailed data, consisting of the new claims, ijN , and the 
changes in the existing claims, ijD− . These data were taken from a practical motor third party 
liability excess-of-loss pricing problem. 
 
Table 1. Cumulative IBNR ( ijX ) and Exposure ( iE ) for both new and existing claims. 
 
                   Dev year 
Accident year 

1 2 3 4 5 6 7 Exposure 

1 7.5 28.9 52.6 84.5 80.1 76.9 79.5 10,224 
2 1.6 14.8 32.1 39.6 55.0 60.0  12,752 
3 13.8 42.4 36.3 53.3 96.5   14,875 
4 2.9 14.0 32.5 46.9    17,365 
5 2.9 9.8 52.7     19,410 
6 1.9 29.4      17,617 
7 19.1       18,129 



 
 
Table 2. Incremental incurred claims from new claims ( ijN ) 
 

                     Dev year 
Accident year 

1 2 3 4 5 6 7 

1 7.5 18.3 28.5 23.4 18.6 0.7 5.1 
2 1.6 12.6 18.2 16.1 14 10.6  
3 13.8 22.7 4 12.4 12.1   
4 2.9 9.7 16.4 11.6    
5 2.9 6.9 37.1     
6 1.9 27.5      
7 19.1       

 
 
Table 3. Incremental incurred claims from existing claims ( ijD ). 
 
 
 

            Dev year 
Accident year 

1 2 3 4 5 6 

1 -3.1 4.8 -8.5 23 3.9 2.5 
2 -0.6 0.9 8.6 -1.4 5.6  
3 -5.9 10.1 -4.6 -31.1   
4 -1.4 -2.1 -2.8    
5 0 -5.8     
6 0      

 
 
Table 4 shows a comparison of the results using the analytical methods derived in Liu and Verrall 
(2009) and the bootstrap results. The bootstrap results were obtained using the estimation variance 
approximation approach which is adopted by England and Verrall (2002) and Buchwalder et al 
(2006), so that the bootstrap estimate of the approximation was obtained by calculating the sample 
variance of the bootstrap reserves. 
 
 
Table 4 A Comparison of Bootstrap and Analytical Results  

               Reserves        Prediction Errors           Prediction Errors %
Analytical Bootstrap Analytical Bootstrap Analytical Bootstrap

i=2 4.4 4.3 9.5 9.4 215% 219%
i=3 4.8 4.8 14.3 14.4 298% 299%
i=4 32.9 33.2 29.8 31.4 91% 95%
i=5 60.3 61.1 41.5 43.0 69% 70%
i=6 77.2 77.6 44.9 45.6 58% 59%
i=7 104.3 104.8 51.5 51.5 49% 49%

Overall Total 283.9 285.8 122.0 122.9 43% 43%  
 
It can be seen that there is a good agreement between the analytical results and those obtained using 
bootstrapping (allowing for the fact that bootstrapping is a simulation-based method). 



 
A major advantage of using bootstrapping over the analytical approach is that it is also possible to 
obtain a simulation of the predictive distribution. This is illustrated in Figure 1, which shows the 
predictive distribution of the overall reserve for the Schnieper method, smoothed using a Kernel 
smoother with bandwidth 50. 
 

 
Figure 1 Bootstrap Predictive Distribution of the Schnieper Overall Reserve 
 
 
As mentioned in section 3, there are two approximation approaches described in Liu and Verrall 
(2009), and Tables 5 and 6 compare the differences when following these two approaches. The 
column labeled E&V (2002) corresponds to the approach adopted by England and Verrall (2002) 
and Buchwalder et al (2006). The second column shows the results using the approach of Mack 
(1993). The first approach, the estimation error is approximated using the sample variance of the 
bootstrap reserves, and in the second approach, the bootstrap estimate of the estimation variance is 
obtained by calculating the average squared difference between the bootstrap reserve estimate and 
the original reserve estimate. In both cases, this is done before the sampling from the process 
distribution when estimating the estimation error.  
 
Table 5  
A Comparison of Bootstrap Estimation Errors 

      
  E & V (2002) Mack (1993) 

i=2 6.929 6.938 
i=3 10.040 10.061 
i=4 16.183 16.384 
i=5 23.689 23.883 
i=6 23.629 23.897 
i=7 27.677 27.976 

Overall Total 98.017 99.020 
 
 
Table 6  
A Comparison of Bootstrap Prediction Errors 

      
  E & V (2002) Mack (1993) 

i=2 9.361 9.266 
i=3 14.399 14.330 
i=4 31.414 31.735 
i=5 43.017 43.333 
i=6 45.553 45.598 
i=7 51.490 51.817 

Overall Total 122.893 124.116 
 



 
 
5. Conclusion 
 
This paper has shown how bootstrapping can be applied in the context of the Schnieper method of 
claims reserving. This is a novel application, because it involves bootstrapping two separate 
triangles. The illustration shows that it is possible to reproduce the MSEP of the analytical methods 
that were derived in Liu and Verrall (2009). The advantages of the bootstrapping approach are that it 
is straightforward to implement in a spreadsheet, and it is also possible to obtain the full predictive 
distribution. In the context of capital modeling and solvency, this is an important advantage. 
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Appendix 
     
This Appendix provides the algorithm, step by step, which is needed in order to implement the 
bootstrap process described in section 2. 
 
1. Calculate the link ratios and the variances of the link ratios for true IBNR and IBNER run-off 

triangles as 
i

ij
ij E

N
f =  and 

1, −

=
ji

ij
ij X

D
g .  Note that the variances, 2

jσ  and 2
jτ  , remain unchanged 

throughout: they are not recalculated from the bootstrap samples. 
 
2. Calculate the scaled Pearson residuals:  
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3. Adjust these two groups of scaled Pearson residuals by multiplying by 
1

n j
n j

−
− +

 to correct the 

bootstrap bias: 
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Start the iterative loop to be repeated N times ( 1000≥N ).   
4. Set B = 1.  
 
5. Randomly draw, with replacement, from the constructed residual run-off triangles, denoted as  

{ }, 1,..., ; 1,... 1ijR r i n j n i= = = − +  and { }, 1,..., ; 1,... 1ijS s i n j n i= = = − + , respectively. Denote the 

bootstrap residuals as B
ijr  and B

ijs , 1,2, , ; 1,2, , 1i n j n i= = − +… … , so that two pseudo samples of 
the Pearson residuals for true IBNR and IBNER claims are  created and denoted as 

{ }, 1,..., , 1,... 1B B
ijR r i n j n i= = = − +  and { }, 1,..., , 1,... 1B B

ijS s i n j n i= = = − + . 
 
6. Calculate the bootstrap link ratios of the true IBNR and IBNER, B

ijf  and B
ijg  using equations (3) 

and (4). 
 
7. Calculate the ijN −weighted and ijD −weighted average bootstrap development factors for the 

true IBNR and IBNER, B
jλ  and B

jδ , using equations (1) and (2), respectively.  
 
8. Simulate a future payment for each cell in the lower triangle for both true IBNR and IBNER 
claims, respectively, from the process distribution with the mean calculated from step 7.   
 

 

2

2 ~ ( , )ij jB
i j j

i i

N
H Normal

E E
σ

λ+ −  for the true IBNR claims  

and  
2

2
, 1 , 1

~ ( , )ij jB
i j j

i j i j

D
H Normal

X X
τ

δ+ −
− −

 for the future IBNER claims. 

 
9. Calculate the simulated cumulative claims, using , 1ij i j ij ijX X D N−= − + , and incremental claims 



by taking first differences. 
 
10. Sum the simulated incremental claims in the future triangle by origin year to give the origin 
year reserves. Sum these to obtain the overall reserve. 
 
11. Store the results, set B = B + 1 and return to step 5 (the start of the iterative loop) until B = N. 
 
 


