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On inverse categories and transfer in cohomology

Markus Linckelmann

December 14, 2010

Abstract

It follows from methods of B. Steinberg [22], extended to inverse categories, that finite
inverse category algebras are isomorphic to their associated groupoid algebras; in particular,
they are symmetric algebras with canonical symmetrising forms. We deduce the existence of
transfer maps in cohomology and Hochschild cohomology from certain inverse subcategories.
This is in part motivated by the observation that for certain categories C, being a Mackey
functor on C is equivalent to being extendible to a suitable inverse category containing C.
We show further that extensions of inverse categories by abelian groups are again inverse
categories.

1 Introduction

For C a small category, k a commutative ring and A a k-module we denote by H∗(C;A) the
cohomology of C with coefficients in the constant functor from C to Mod(k) sending every object
in C to A and every morphism in C to the identity map on A; in other words, Hn(C;A) is the
n-th right derived functor of the limit functor over C evaluated at the constant functor A. For
A = k this is a graded k-algebra, the Ext-algebra of the constant functor with value k. See for
instance [23, §5] for a brief introduction and further references on functor cohomology. Given
a small category C, a subcategory D and a commutative ring k, the restriction from C to D
induces an algebra homomorphism on cohomology from H∗(C; k) to H∗(D; k). It is not known
whether there is a transfer map H∗(D; k) → H∗(C; k) with good formal properties, or transfer
maps between the Hochschild cohomology algebras HH∗(kC) and HH∗(kD) of the category
algebras kC, kD over k, unless the left and right Kan extensions of a functor D → C coincide
(cf. [18]). This seems to be a rare phenomenon, however. Besides the categories of finite groups
and their subgroups, one known example is the canonical functor from a transporter category of
p-centric subgroups of a finite group to its centric linking systems in [3, 1.2, 1.3]. Finite inverse
categories and their subcategories provide further examples for this phenomenon because these
can be played back to groupoids. Following [14], a small category C is called an inverse category
if for any morphism s : X → Y in C there is a unique morphism ŝ : Y → X such that s ◦ ŝ ◦ s =
s and ŝ ◦ s ◦ ŝ = ŝ. Just as in the case of inverse semigroups, the morphism set of C admits
a partial order. We will review the relevant background in Section 2. An algebra A over a
commutative ring k is called symmetric if A is finitely generated projective as k-module and
if A is isomorphic, as an A-A-bimodule, to its k-dual Homk(A, k). A symmetrising form of
A is a linear map τ : A → k corresponding to 1A under some bimodule isomorphism A ∼=
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Homk(A, k). A symmetric algebra over a field is in particular self-injective. We refer to [4] for a
more detailed account on properties of symmetric algebras. Essentially by extending arguments
due to B. Steinberg in the context of inverse semigroups in [22] we will show that the category
algebras of finite inverse categories are symmetric and admit canonical choices of symmetrising
forms:

Theorem 1.1. Let k be a commutative ring and C a finite inverse category. Then kC is iso-
morphic to a direct product of matrix algebras over finite group algebras; in particular, kC is
symmetric. Moreover, the linear map τ : kC → k sending a morphism s in C to the number of
idempotent morphisms e in C satisfying e ≤ s is a symmetrising form for kC.

Thus if k is a field then the algebra kC is self-injective. There are examples, due to Fei Xu
[24], of finite categories for which not even the quotient of the Hochschild cohomology by its
nil-radical is finitely generated. In contrast, for finite inverse categories, the above theorem has
the following consequence:

Corollary 1.2. Let C be a finite inverse category and k a commutative Noetherian ring. Then
HH∗(kC) and H∗(C; k) are finitely generated graded commutative k-algebras.

One can describe the Hochschild and ordinary cohomology of finite inverse categories more
precisely in terms of products of the Hochschild cohomology and ordinary cohomology of group
algebras; this will be an easy consequence of the explicit description in 4.1 below of an iso-
morphism between kC and a direct product of matrix algebras over group algebras. For the
same reason, standard results on Schur multipliers for finite groups carry over to finite inverse
categories, such as:

Corollary 1.3. Let C be a finite inverse category and k an algebraically closed field. The abelian
group H2(C; k×) is finite.

As before, H2(C; k×) denotes second cohomology group of the constant functor from C to
the category of abelian goups sending every object to k× and every morphism to the identity
map on k×. The classes in H2(C; k×) correspond to certain extensions of C, which are shown
to be inverse categories as well in 2.7 below. The point of the next result is that it implies that
for certain subcategory algebras of finite inverse categories we do indeed have transfer maps in
cohomology.

Theorem 1.4. Let k be a commutative ring, C a finite inverse category and D an inverse
subcategory of C having the property that for any object Y in D, the endomorphism monoid
EndD(Y ) contains all idempotents in EndC(Y ). Set i = 1kD =

∑
Y ∈Ob(D) IdY , the sum taken

in kC. Then kCi is finitely generated projective as a left kC-module and as a right kD-module;
similarly, ikC is is finitely generated projective as a left kD-module and as a right kC-module.
Moreover, we have ikC ∼= Homk(kCi, k) as kC-kD-bimodules.

Proofs of the above results and some further consequences will be given in Section 4. In terms
of functor categories over C and D instead of module categories over kC and kD, respectively,
Theorem 1.4 implies that the left and right Kan extensions associated with the inclusion functor
D → C coincide. Indeed, restriction of functors along this inclusion corresponds on modules
to the functor ikC ⊗kC −, and this functor has a left adjoint and a right adjoint which are
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both isomorphic to the functor kCi ⊗kD −. One can show this also by directly calculating
the relevant left and right Kan extensions. Any A-B-bimodule M for two symmetric algebras
A, B which is finitely generated projective as left and right module gives rise to an array of
transfer maps. This is based on the fact that the k-dual M∗ = Homk(M,k) is a B-A-bimodule
which is again finitely generated projective as left and right module. This fact implies that
the functors M ⊗B − and M∗ ⊗A − between the module categories of A and B are left and
right adjoint to each other, and every choice of symmetrising forms on A and B determines
adjunction isomorphisms. Thus, more precisely, the bimodule M together with a choice of
symmetrising forms on A and B induces transfer maps between the Hochschild cohomology
rings of the two algebras (cf. [16, 2.9]), between the graded centers of their stable or derived
categories (cf. [18, 4.1]) as well as between Ext-groups of modules and their images under
tensoring with the bimodule and its dual, satisfying reciprocity and compatibility properties
described in [18, 4.3] [18, 4.8] and [17, 5.1]. Specialised to the situation of the above theorem -
where we have a canonical choice of symmetrising forms by 1.1 - this means that induction and
restriction between the module categories over kC and kD, truncated by the idempotent i, induce
transfer maps htrCD = trkCi : HH∗(kD) → HH∗(kC), htrDC = trikC : HH∗(kC) → HH∗(kD),
as well as transfer maps trCD(M,N) : Ext∗kC(ReskCkD(M),ReskCkD(N)) → Ext∗kC(M,N) for any two

kC-modules M , N , and trDC (U, V ) : Ext∗kC(IndkCkD(U), IndkCkD(V )) → Ext∗kD(U, V ) for any two
kD-modules U , V . We describe, for future reference, the special case with constant coefficients.
We write abusively trCD instead of trCD(k, k). We identify as usual H0(C; k) = limC(k) with the
set of families (λX)X∈Ob(C) of elements λX ∈ k satisfying λX = λY for any two objects X, Y in
C for which the morphism set HomC(X,Y ) is non-empty, and we denote by 1 the unit element
of H0(D; k). We need furthermore some notation which will be reviewed in some more detail
in the background section 2. We denote by µ the Möbius function of the partially ordered set
Mor(C) of morphisms in C. Two idempotent endomorphisms e, f in C are called isomorphic if
there is a morphism s in C such that s ◦ ŝ = e and ŝ ◦ s = f . The endomorphisms s satisfying
s ◦ ŝ = e = ŝ ◦ s form a group, with unit element e, which we denote by Ce. Using a similar
notation for D, if f is an idempotent endomorphism in D then Df is a subgroup of Cf . For
any idempotent endomorphism e in C we set n(e) =

∑
f [Cf : Df ], where the sum is taken over

a set of representatives of the D-isomorphism classes of idempotents in Mor(D) contained in
the C-isomorphism class of e, with the usual convention n(e) = 0 if the sum is empty. We set
πC
D =

∑
(e,f) n(e)µ(f, e)f , where (e, f) runs over the set of ordered pairs of idempotents e, f in

Mor(C) satisfying f ≤ e. We have πC
D ∈ HH0(kC) = Z(kC). We denote by τCD the image of πC

D

in H0(C; k) = limC(k) under the canonical algebra homomorphism HH∗(kC) → H∗(C; k).

Theorem 1.5. Let k be a commutative ring, C a finite inverse category and D an inverse
subcategory of C. Suppose that for any object Y in D the endomorphism monoid EndD(Y )
contains all idempotent endomorphisms in EndC(Y ). Denote by α : HH∗(kC) → H∗(C; k) and
β : HH∗(kD) → H∗(D; k) the canonical algebra homomorphisms. There are graded k-linear
transfer map trCD : H∗(D; k) → H∗(C; k) and htrCD : HH∗(kD) → HH∗(kC) with the following
properties:

(i) trCD(θ) · ζ = trCD(θ · ResCD(ζ)) for any ζ ∈ H∗(C; k) and any θ ∈ H∗(D; k).

(ii) α(htrCD(η)) = trCD(β(η)) for any η ∈ HH∗(kD).

(iii) We have htrCD(1) = πC
D and πC

D is invertible in Z(kC) if and only if n(e) is invertible in k
for all idempotent morphisms e in C.
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(iv) We have trCD(1) = τCD and τCD is invertible in limC(k), if and only if n(e) is invertible in k
for all minimal idempotent morphisms e in C.

(v) If τCD is invertible then ResCD is injective and trCD is surjective.

This will be proved at the end of Section 5. We show further in 6.2 that any small category
C in which all morphisms are monomorphisms and in which pullbacks exist can be embedded
canonically into an inverse category, preserving cohomology with constant coefficients:

Theorem 1.6. Let C be a small category in which all morphisms are monomorphisms and in
which pullbacks exist. There is an inverse category Ĉ containing C such that for any module A
over a commutative ring k, the restriction induces an isomorphism H∗(Ĉ;A) ∼= H∗(C;A).

In the situation of 1.6, being a Mackey functor on C in the sense of Dress [5, Part I] and

Jackowski-McClure [11] is essentially equivalent to being extendible to the inverse category Ĉ;
see 6.4.

2 Basic properties of inverse categories

We collect in this section basic ideas from the theory of semigroups and categories of partial
maps translated to inverse categories; see [15, Chapter 1], [14], [8], [9]. Let C be an inverse
category; that is, C is a small category such that for any morphism s : X → Y in C there is a
unique morphism ŝ : Y → X satisfying s ◦ ŝ ◦ s = s and ŝ ◦ s ◦ ŝ = ŝ. Then in particular, for
any object X in C, the monoid EndC(X) is an inverse monoid, and hence any two idempotents
in EndC(X) commute (cf. [15, 1.1, Theorem 3]). For any morphism s : X → Y the morphisms
ŝ ◦ s and s ◦ ŝ are idempotents in EndC(X) and EndC(Y ), respectively. For any idempotent e in
EndC(X) we have ê = e, and for any two composable morphisms s, t in C we have t̂ ◦ s = ŝ ◦ t̂;
in particular, an inverse category C is isomorphic to its opposite Cop. If e is an idempotent in
EndC(X) and s : X → Y a morphism in C then f = s ◦ e ◦ ŝ is an idempotent in EndC(Y )
satisfying s ◦ e = f ◦ s; indeed, using that the idempotents ŝ ◦ s and e commute we have f ◦ f =
s◦e◦ ŝ◦s◦e◦ ŝ = s◦e◦e◦ ŝ◦s◦ ŝ = s◦e◦ ŝ = f and f ◦s = s◦e◦ ŝ◦s = s◦ ŝ◦s◦e = s◦e. Similarly,
if f is an idempotent in EndC(Y ) then e = ŝ ◦ f ◦ s is an idempotent in EndC(X) satisfying
s ◦ e = f ◦ s. We use these elementary computational rules without further comment. As in
the case of inverse semigroups one can define a partial order on the set of morphisms in C. For
any two morphisms s, t : X → Y we write s ≤ t if s = t ◦ e for some idempotent e ∈ EndC(X).
The proof of the - well-known - fact that this is actually a partial order and the proof, below,
of an extension of the Preston-Wagner representation theorem to this context follow closely the
proofs of corresponding statements for inverse semigroups in [15, Chapter 1]; we include details
for the convenience of the reader.

Lemma 2.1. Let C be an inverse category and let s, t : X → Y be morphisms in C. The
following statements are equivalent:

(i) s ≤ t.

(ii) s = f ◦ t for some idempotent f ∈ EndC(Y ).

(iii) ŝ ≤ t̂.

(iv) s = s ◦ ŝ ◦ t.
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(v) s = t ◦ ŝ ◦ s.

Proof. The equivalence (i) ⇔ (ii) follows from the remarks preceding the lemma. The equality
s = t ◦ e for some idempotent e ∈ EndC(X) is equivalent to ŝ = ê ◦ t̂ = e ◦ t̂, whence the
equivalence (i) ⇔ (iii). If s = t ◦ e for some idempotent e ∈ EndC(X) then s = s ◦ ŝ ◦ s =
t ◦ e ◦ ŝ ◦ s = t ◦ ŝ ◦ s ◦ e = t ◦ ŝ ◦ s, and since ŝ ◦ s is an idempotent we get the equivalence (i)
⇔ (v). A similar argument yields the equivalence (ii) ⇔ (iv).

Proposition 2.2. Let C be an inverse category, let X, Y , Z be objects in C and let s, t : X → Y
and u, v : Y → Z be morphisms in C. The relation “≤” defines a partial order on the set of
morphisms which is compatible with composition of morphisms in C; that is, if s ≤ t and u ≤ v
then u ◦ s ≤ v ◦ t.

Proof. Since s = s◦ ŝ◦ s we have s ≤ s. If s ≤ t and t ≤ s then, using that the idempotents ŝ◦ s
and t̂ ◦ t commute, we get that s = t ◦ ŝ ◦ s = s ◦ t̂ ◦ t ◦ ŝ ◦ s = s ◦ t̂ ◦ t = t. If s ≤ t and t ≤ w for
some further morphism w : X → Y then s = s ◦ ŝ ◦ t = s ◦ ŝ ◦ t ◦ t̂ ◦ w. Since the idempotents
s◦ ŝ and t◦ t̂ commute, their product is an idempotent as well, and thus s ≤ w. This shows that
“ ≤′′ is a partial order on the set of morphisms in C. If s ≤ t and u ≤ v there are idempotents
f , g in EndC(Y ) satisfying s = f ◦ t and u = v ◦ g. Thus u ◦ s = v ◦ g ◦ f ◦ s. The idempotents
f , g commute, hence g ◦ f is an idempotent, and thus by the remarks at the beginning of this
section there is an idempotent h in EndC(Z) such that v ◦ g ◦ f = h ◦ v. Together we get that
u ◦ f = h ◦ v ◦ t, hence u ◦ s ≤ v ◦ t.

Lemma 2.3. Let C be an inverse category, let s : X → Y be a morphism in C and U an object
in C. We have s ◦ HomC(U,X) = s ◦ ŝ ◦ HomC(U, Y ).

Proof. If u ∈ HomC(U,X) then s ◦ u = s ◦ ŝ ◦ s ◦ u ∈ s ◦ ŝ ◦HomC(U, Y ), and if v ∈ HomC(U, Y )
then s ◦ ŝ ◦ v ∈ s ◦ HomC(U,X), whence the result.

A category C is called idempotent complete if for any object X and any idempotent e ∈
EndC(X) there is an object Y as well as morphisms s : X → Y and t : Y → X such that e =
t ◦ s and s ◦ t = IdY . Any category C can be embedded into its idempotent completion Ĉ, also
called Karoubienne, constructed as follows: the objects of Ĉ are pairs (X, e) consisting of an
object X in C and an idempotent e in EndC(X); a morphism in Ĉ from (X, e) to (Y, f) is a triple
(e, s, f) where s : X → Y is a morphism in C satisfying s ◦ e = s = f ◦ s. There is an obvious
embedding from C to Ĉ sending an object X in C to (X, IdX). With the previous notation, two
objects (X, e) and (Y, f) are isomorphic in Ĉ if there are morphisms s : X → Y and t : Y →
X in C satisfying s ◦ e = s = f ◦ s, t ◦ f = t = e ◦ t, t ◦ s = e and s ◦ t = f . In that case, we
also say that the idempotents e and f are isomorphic. Note that in that case s ◦ t ◦ s = s and
t ◦ s ◦ t = t, and hence if C is an inverse category, we have t = ŝ. In other words, in an inverse
category C, two idempotents e ∈ EndC(X) and f ∈ EndC(Y ) are isomorphic if and only if there
is a morphism s : X → Y satisfying ŝ ◦ s = e and s ◦ ŝ = f .

Proposition 2.4. Let C be a small category. Then C is an inverse category if and only if the
idempotent completion Ĉ of C is an inverse category.
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Proof. Let X, Y be objects in C and e ∈ EndC(X), f ∈ EndC(Y ) idempotents. Let (e, s, f) :
(X, e) → (Y, f) be a morphism in Ĉ; that is, s : X → Y is a morphism in C satisfying f ◦ s =

s = s ◦ e. If C is an inverse category then ŝ ◦ f̂ = ŝ = ê ◦ ŝ, so (f, ŝ, e) is a morphism in Ĉ from
(Y, f) to (X, e). An easy verification shows that Ĉ is indeed an inverse category, and a similar
argument shows the converse.

By the Preston-Wagner representation theorem (cf. [15, §1.5]), any inverse semigroup can
be embedded into an inverse monoid I(M) of partial bijections on a non empty set M . A
similar statement holds for inverse categories (cf. [8]). A partition of a non empty set M is
a set λ of pairwise disjoint non empty subsets of M whose union is equal to M . Any such
partition gives rise to an inverse category I(λ), defined as follows. The object set of I(λ) is
equal to λ. For any two subsets U , V of M in λ, the morphism set HomI(λ)(U, V ) is the set
of all bijective maps s : U ′ ∼= V ′ between a subset U ′ of U and a subset V ′ of V , including
the unique bijection between empty subsets; the morphism ŝ is defined as s−1 : V ′ ∼= U ′.
Composition of morphisms in I(λ) is induced by composition in the inverse monoid I(M); that
is, given U , V , W in λ, a subset U ′ of U , subsets V ′, V ′′ of V and a subset W ′ of W , and
bijections s : U ′ ∼= V ′, t : V ′′ ∼= W ′, the composition t ◦ s in I(λ) is the induced bijection
t|V ′∩V ′′ ◦ s|s−1(V ′∩V ′′) : s−1(V ′ ∩ V ′′) ∼= t(V ′ ∩ V ′′).

Theorem 2.5. Let C be an inverse category. Let M = Mor(C) be the set of all morphisms in
C. For any object X in C denote by MX the set of all morphisms in C terminating at X. Then
the set of subsets λ = {MX | X ∈ Ob(C)} is a partition of M and there is a functor Φ : C →
I(λ) with the following properties.

(i) Φ sends an object X in C to the set MX ∈ λ;

(ii) Φ induces an injective map HomC(X,Y ) → HomI(λ)(Φ(X),Φ(Y )) for any two objects X,
Y in C.

(iii) Φ(ŝ) = Φ̂(s) for any morphism s in C.

(iv) We have s ≤ t if and only if Φ(s) ≤ Φ(t), for any two morphisms s, t in C.

Proof. The sets MX , with X ∈ Ob(C) are clearly pairwise disjoint and their union is the set of
all morphisms in C, so this determines a partition λ of M . By 2.3, for any morphism s : X → Y
in C we have s ◦MX = s ◦ ŝ ◦MY . We define the functor Φ as follows. On objects, we set
Φ(X) = MX , for any X ∈ Ob(C). Let s : X → Y be a morphism in C. Then ŝ ◦ s ◦MX is a
subset of MX , and s◦ ŝ◦MY is a subset of MY . The map Φ(s) : ŝ◦s◦MX → s◦ ŝ◦MY sending
f ∈ ŝ ◦ s ◦MX to s ◦ f is a bijection, with inverse Φ(ŝ) sending g ∈ s ◦ ŝ ◦MY to ŝ ◦ g. Thus,

Φ(s) defined in this way is a morphism from MX to MY in I(λ) satisfying Φ(ŝ) = Φ̂(s). We
need to show that this assignment is functorial. Let s : X → Y and t : Y → Z be morphisms in
C. Both morphisms Φ(t ◦ s) and Φ(t) ◦Φ(s) are induced by composing morphism sets with t ◦ s;
we only need to check that their domain in MX is equal. The map Φ(t ◦ s) is defined on the set
t̂ ◦ s◦t◦s◦MX = ŝ◦ t̂◦t◦s◦MX . Since s◦MX = s◦ ŝ◦MY this set is equal to ŝ◦ t̂◦t◦s◦ ŝ◦MY .
Since idempotents commute, this set is in fact equal to ŝ ◦ s ◦ ŝ ◦ t̂ ◦ t ◦MY = ŝ ◦ t̂ ◦ t ◦MY .
Now Φ(s)(ŝ ◦ t̂ ◦ t ◦MY ) = s ◦ ŝ ◦ t̂ ◦ t ◦MY = s ◦ ŝ ◦MY ∩ t ◦ t̂ ◦MY , where we use again
that s ◦ ŝ and t̂ ◦ t are commuting idempotents. This intersection is precisely the intersection
of the image of Φ(s) and the domain of Φ(t), whence the equality Φ(t ◦ s) = Φ(t) ◦ Φ(s). Thus
Φ is a functor. By construction, Φ is bijective on objects. An equality Φ(s) = Φ(t) implies s =
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s ◦ ŝ ◦ s = Φ(s)(ŝ ◦ s) = Φ(t)(ŝ ◦ s) = t ◦ ŝ ◦ s, hence s ≤ t, and exchanging the roles of s and t
yields also t ≤ s, hence s = t, which shows that Φ is injective on morphism sets. The remaining
two statements (iii) and (iv) are trivial verifications.

Remarks 2.6. (1) The uniqueness of the morphism ŝ in the definition of an inverse category
implies that statement (iii) in the above theorem holds automatically; that is, if C, D are inverse

categories and if Φ : C → D is a functor then Φ(ŝ) = Φ̂(s) for any morphism s in C.

(2) It is well-known that a monoid S in which all idempotents commute and which admits an
involution s → ŝ satisfying s = sŝs is an inverse monoid. A similar statement holds for inverse
categories. An involution of a small category C is a bijection on the morphism set of C sending
a morphism s : X → Y in C to a morphism ŝ : Y → X such that ˆ̂s = s and t̂ ◦ s = ŝ ◦ t̂ for any
two composable morphisms s, t. In particular, a small category with an involution is isomorphic
to its opposite. One can show that if in addition s ◦ ŝ ◦ s = s for any morphism s in C and if any
two idempotents in EndC(X) commute, for any object X in C, then C is an inverse category.

(3) If C is a finite inverse category then every endomorphism monoid EndC(X) of an object X
of C has a unique minimal idempotent endormophism eX , namely the product of all idempotent
endomorphisms in EndC(X). Thus, for any morphism s : X → Y the set {t : X → Y | t ≤ s}
has a unique minimal element, namely t = s ◦ eX = eY ◦ s.

(4) Let C be a finite inverse category, D an inverse subcategory of C and Y an object in D. Then
EndD(Y ) contains all idempotents in EndC(Y ) if and only if EndD(Y ) is a downwardly closed
subposet of EndC(Y ); that is, if and only if for s, t ∈ EndC(Y ) satisfying t ≤ s and s ∈ EndD(Y )
we have t ∈ EndD(Y ). Indeed, since EndD(Y ) contains IdY , if EndD(Y ) is downwardly closed
it contains all idempotents in EndC(Y ), and the converse follows from 2.1

Second cohomology classes of a category C with coefficients in an abelian group, viewed as a
constant functor, correspond to category extensions of C (cf. [1]); see [23, §7] for an exposition of
this material. Extensions of inverse categories by constant functors are again inverse categories:

Theorem 2.7. Let C be an inverse category and A an abelian group, viewed as a constant
contravariant functor on C. Let D be an extension of C by A. Then D is an inverse category.
Moreover, the canonical functor D → C induces an isomorphism E(D) ∼= E(C) between the
partially ordered sets E(D), E(C) of idempotent endomorphisms in D and C, respectively.

Proof. An extension category D of C by A has the same object set as C and morphism set
Mor(D) ×A; the composition of morphisms in D is given by

(t, b) ◦ (s, a) = (t ◦ s, baα(t, s))

for any two composable morphisms s, t in C and a, b ∈ A, where α is a function sending any two
composable morphisms s, t in C to an element α(t, s) in A, such that α satisfies for any three
composable morphisms s, t, u in C the 2-cocycle identity

α(u ◦ t, s)α(u, t) = α(u, t ◦ s)α(t, s)

This identity is equivalent to the associativity of the composition of morphisms in D. Up to
isomorphism of extensions, D depends only on the class of α in H2(C;A). Let s be a morphism
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in C. The 2-cocyle identity applied to the three composable morphisms ŝ, s ◦ ŝ, s yields the
equality

α(ŝ ◦ s ◦ ŝ, s)α(ŝ, s ◦ ŝ) = α(ŝ, s ◦ ŝ ◦ s)α(s ◦ ŝ, s)

Since ŝ ◦ s ◦ ŝ = ŝ and s ◦ ŝ ◦ s = s, this implies

α(ŝ, s ◦ ŝ) = α(s ◦ ŝ, s)

Let σ = (s, a) be a morphism in D. A morphism σ̂ satisfying σ ◦ σ̂ ◦ σ = σ must necessarily
be of the form (ŝ, a−1γ(s)) for some γ(s) ∈ A. Then σ ◦ σ̂ ◦ σ = (s ◦ ŝ, α(s, ŝ)γ(s)) ◦ (s, a) =
(s, aα(s ◦ ŝ, s)α(s, ŝ)γ(s)), so this forces γ(s) = α(s ◦ ŝ, s)−1α(s, ŝ)−1. By the equality above
we also have γ(s) = α(ŝ, s ◦ ŝ)−1α(s, ŝ)−1. Thus σ̂ ◦ σ ◦ σ̂ = (ŝ, a−1γ(s)) ◦ (s ◦ ŝ, α(s, ŝ)γ(s)) =
(ŝ, a−1α(ŝ, s ◦ ŝ)α(s, ŝ)γ(s)2) = (ŝ, a−1γ(s)) = σ̂. This shows that D is indeed an inverse cate-
gory. Any idempotent endomorphism in D is necessarily of the form (e, a) for some idempotent
endomorphism e in C and some a ∈ A. The equality (e, a) = (e, a) ◦ (e, a) = (e, a2α(e, e))
forces a = α(e, e)−1. Thus the canonical functor D → C induces a bijection between the sets
of idempotent endomorphisms E(D) and E(C) in D and C. To see that this bijection is an iso-
morphism of posets we need to show that if e, f are idempotent endomorphisms in C satisfying
e ≤ f then also (e, α(e, e)−1)) ≤ (f, α(f, f)−1). The 2-cocycle identity applied to e, f , f yields
α(e, f)α(f, f) = α(ef, f)α(e, f); using the equality ef = e this yields α(e, f) = α(f, f). Thus
(e, α(e, e)−1)(f, α(f, f)−1) = (ef, α(e, f)α(e, e)−1α(f, f)−1) = (e, α(e, e)−1) as required.

3 The Möbius function for finite inverse categories

The purpose of this section is to verify that results of B. Steinberg in [22, §4] carry over, with no
difficulty, to finite inverse categories. As before, we give detailed proofs for the convenience of
the reader. The Möbius function µ of a finite partially ordered set (P,≤) with coefficients in a
commutative ring k is defined on the set of pairs (x, y) ∈ P ×P satisfying x ≤ y, by µ(x, x) = 1
for x ∈ P and

∑
x≤u≤y µ(u, y) = 0 if x < y. The Möbius Inversion Theorem, due to Rota,

states that if f , g are functions from P to k such that g(x) =
∑
u≤x f(u) for all x ∈ P then

f(x) =
∑
u≤x µ(u, x)g(u) for all x ∈ P. Given a finite inverse category C and a commutative

ring k, we consider the set of morphisms in C endowed with the natural partial order as in the
previous section and use the letter µ for the corresponding Möbius function with coefficients
in k. For any morphism s in C we define an element s in the subspace kHomC(X,Y ) of the
category algebra kC by setting

s =
∑

u≤s

µ(u, s)u

Möbius inversion implies that s =
∑
u≤s u, and hence the set of s, with s running over all

morphisms in C, is again a k-basis of kC. Since u ≤ s if and only if û ≤ ŝ we have µ(û, ŝ) =
µ(u, s).

Proposition 3.1. Let C be a finite inverse category and k a commutative ring. For any two
composable morphisms s : X → Y and t : Y → Z in C the following hold.

(i) We have t · s = t ◦ s if s ◦ ŝ ≤ t̂ ◦ t and t · s = 0 otherwise.

(ii) We have t · s = t ◦ s if s ◦ ŝ = t̂ ◦ t and t · s = 0 otherwise.
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The proof is essentially a variation of the arguments in [22, §4]; we break this up in a series
of lemmas.

Lemma 3.2. Let C be an inverse category and let s : X → Y , t : Y → Z be two composable
morphisms in C. The map sending a morphism u ≤ s to t ◦ u induces a bijection of sets

{u | u ≤ t̂ ◦ t ◦ s} ∼= {w | w ≤ t ◦ s}

with inverse sending w ≤ t ◦ s to t̂ ◦ w.

Proof. If u ≤ t̂◦t◦s then u = t̂◦t◦u, and if w ≤ t◦s then w = t◦s◦ŵ◦w, hence t◦ t̂◦w = w.

Lemma 3.3. Let C be an inverse category and let s : X → Y , t : Y → Z be two composable
morphisms in C. We have s ◦ ŝ ≤ t̂ ◦ t if and only if s = t̂ ◦ t ◦ s.

Proof. We have s ◦ ŝ ≤ t̂ ◦ t if and only if s ◦ ŝ = t̂ ◦ t ◦ s ◦ ŝ. Precomposing with s shows that
this equality implies the equality s = t̂ ◦ t ◦ s, and precomposing by ŝ shows that the two are
indeed equivalent.

Lemma 3.4. Let C be an inverse category and s a morphism in C. We have s = s−
∑
u<s u.

Proof. By Möbius inversion we have s =
∑
u≤s u = s+

∑
u<s u, whence the result.

Proof of Proposition 3.1. We prove (i) by induction, assuming that the result holds for s′ < s
instead of s. Assume first that s ◦ ŝ ≤ t̂ ◦ t, which by 3.3 is equivalent to s = t̂ ◦ t ◦ s. Then for
u ≤ s we also have u ◦ û ≤ t̂ ◦ t. By 3.4, we have s = s−

∑
u<s u. By induction, we have

t · s = t ◦ s−
∑

u<s

t · u = t ◦ s−
∑

u<s

t ◦ u

Since s = t̂◦ t ◦ s it follows from 3.2 that if u runs over the morphisms satisfying u < s then t ◦u
runs over the morphisms w satisfying w < t ◦ s. Thus

t · s = t ◦ s−
∑

w<t◦s

w = t ◦ s

Assume next that s ◦ ŝ � t̂ ◦ t; again by 3.3, this is equivalent to t̂ ◦ t ◦ s < s. Thus if u ≤ s such
that u◦ û ≤ t̂◦ t then u = u◦ û◦s ≤ t̂◦ t◦s < s. By induction we get t ·s = t◦s−

∑
u≤t̂◦t◦s t ◦ u

and hence 3.2 implies that

t · s = t ◦ s−
∑

w≤t◦s

w = t ◦ s− t ◦ s = 0

which completes the proof of (i). Using (i) and 3.3 we get

t · s =
∑

v≤t

µ(v, t)v · s =
∑

v≤t; v̂◦v◦s=s

µ(v, t)v ◦ s

If t̂◦ t◦s < s then v̂ ◦v ◦s < s for all v ≤ t, so t ·s = 0 in that case. Assume now that t̂◦ t◦s = s.
We show first that if v ≤ t such that v̂ ◦ v ◦ s = s then v ◦ s = t ◦ s. Indeed, since v ≤ t we have
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v = t ◦ v̂ ◦ v, hence v ◦ s = t ◦ v̂ ◦ v ◦ s = t ◦ s. This also implies t ◦ s ◦ ŝ = v ◦ s ◦ ŝ ≤ v. Therefore
we have

t · s =
∑

v≤t; v̂◦v◦s=s

µ(v, t) v ◦ s = (
∑

t◦s◦ŝ≤v≤t

µ(v, t)) t ◦ s

This sum is zero if t ◦ s ◦ ŝ < s, and equal to t ◦ s if t ◦ s ◦ ŝ = t. Since the two conditions
t̂ ◦ t ◦ s = s and t ◦ s ◦ ŝ = t are equivalent to the equality s ◦ ŝ = t̂ ◦ t, statement (ii) follows.

For the sake of completeness we point out that one can also prove 3.1 by making use of the
following observation, which is from the argument used in the proof of [22, 4.1]:

Lemma 3.5. Let C be an inverse category and let s : X → Y , t : Y → Z be two composable
morphisms in C. Let w : X → Z be a morphism in C such that w ≤ t ◦ s. Then u = s ◦ ŵ ◦ w
and v = w ◦ ŵ ◦ t are the unique morphisms in C satisfying u ≤ s, v ≤ t, v̂ ◦ v = u ◦ û and
v ◦ u = w. Moreover, we have u = t̂ ◦ w and v = w ◦ ŝ.

Proof. Since w ≤ t ◦ s we have w = w ◦ ŵ ◦ t ◦ s. Suppose first that u ≤ s, v ≤ t are morphisms
such that v ◦ u = w and v̂ ◦ v = u ◦ û. Then v ◦ v̂ ◦ w = w = w ◦ û ◦ u and v = v ◦ v̂ ◦ v =
v ◦ u ◦ û = w ◦ û. Similarly, u = v̂ ◦w, hence also û = ŵ ◦ v. Since u ≤ s we have u = s ◦ û ◦ u =
s ◦ ŵ ◦ v ◦ v̂ ◦ w = s ◦ ŵ ◦ w. Similarly, since v ≤ t we have v = v ◦ v̂ ◦ t = w ◦ û ◦ u ◦ ŵ ◦ t =
w ◦ ŵ ◦ t. Conversely, set u = s ◦ ŵ ◦ w and v = w ◦ ŵ ◦ t. Then clearly u ≤ s and v ≤ t.
Moreover, v ◦ u = w ◦ ŵ ◦ t ◦ s ◦ ŵ ◦ w = w because t ◦ s = w and w ◦ ŵ ◦ w = w. We show
next that û = ŵ ◦ t. Indeed, we have u ◦ (ŵ ◦ t) ◦ u = s ◦ ŵ ◦ w ◦ t ◦ s ◦ ŵ ◦ w = s ◦ ŵ ◦ w = u,
and we have (ŵ ◦ t) ◦ u ◦ (ŵ ◦ t) = ŵ ◦ t ◦ s ◦ ŵ ◦ w ◦ ŵ ◦ t = ŵ ◦ t. This shows û = ŵ ◦ t, hence
u = t̂ ◦ w. A similar argument yields v̂ = s ◦ ŵ, and hence v = w ◦ ŝ. Finally, we have u ◦ û =
(s ◦ ŵ ◦ w) ◦ (ŵ ◦ t) = (s ◦ ŵ) ◦ (w ◦ ŵ ◦ t) = v̂ ◦ v, which concludes the proof.

Remark 3.6. Let C be a finite inverse category. If s, t are morphisms in C such that s ≤ t
and such that t is an idempotent endomorphism of an object X in C, then 2.1 together with the
fact that idempotents in EndC(X) commute, implies that s is an idempotent endomorphism as
well. Thus the set E(C) of all idempotent endomorphisms in C is a downwardly closed subposet
of the set Mor(C) of all morphisms in C. In particular, the Möbius function of E(C) is the
restriction of that of Mor(C). Moreover, EndC(X) has a unique minimal idempotent eX , namely
the product of all idempotents in EndC(X). Thus, for any idempotent e in EndC(X), we have∑
f ;f≤e µ(f, e) =

∑
eX≤f≤e µ(f, e) = 0, unless e = eX , in which case this sum is equal to 1.

4 Finite inverse category algebras

Let C be an inverse category. The groupoid associated with C is the category, denoted G(C),
defined as follows. The objects of G(C) are the pairs (X, e) with X an object in C and e an
idempotent in EndC(X). A morphism in G(C) from (X, e) to (Y, f) is a triple (e, s, f), where
s : X → Y is a morphism in C satisfying ŝ ◦ s = e and s ◦ ŝ = f . Note that in that case s =
s◦e = f ◦s. In other words, G(C) is the subcategory of the idempotent completion Ĉ of C having
the same objects as Ĉ and all isomorphisms in Ĉ as morphisms; in particular, G(C) is indeed
a groupoid (and this definition of G(C) makes sense for any small category C). As mentioned
earlier, the idempotents e, f are called isomorphic if the objects (X, e), (Y, f) are isomorphic in
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G(C). By the above this is equivalent to the existence of a morphism (X, e) → (Y, f) in G(C)
and also equivalent to the existence of a morphism s : X → Y in C satisfying ŝ◦s = e and s◦ ŝ =
f . The group Ce considered in the introduction is canonically isomorphic to AutG(C)(X, e) via
the map sending s ∈ EndC(X) satisfying s ◦ ŝ = e = ŝ ◦ s to (e, s, e). The category algebra of
the groupoid G(C) turns out to be isomorphic to the category algebra of the category C itself;
this extends [22, 4.2] to inverse categories:

Theorem 4.1. Let C be a finite inverse category and k a commutative ring. The map sending a
morphism (e, s, f) : (X, e) → (Y, f) in G(C) to the element s in kC, where X, Y are objects in C
and e ∈ EndC(X), f ∈ EndC(Y ) are idempotents, is an isomorphism of k-algebras kG(C) ∼= kC.

Proof. The map sending (e, s, f) to s is multiplicative by 3.1 (ii). This map is also a k-linear
isomorphism because, by Möbius inversion, the set of s, with s ∈ Mor(C), form again a k-basis
of kC.

Finite inverse categories provide thus examples of non-equivalent categories with isomorphic
category algebras. Even though there is a canonical forgetful functor G(C) → C the isomorphism
kG(C) ∼= kC is in general not induced by any functor. In particular a constant functor on C need
not correspond to a constant functor on G(C). A groupoid algebra over a commutative ring k
is well-known to be isomorphic to a direct product of matrix algebras over the group algebras
of automorphism groups of objects, one factor for each isomorphism class of objects, and the
size of that isomorphism class is equal to the size of the involved matrices. Translated to the
situation of 4.1 this yields the following statement:

Corollary 4.2. Let C be a finite inverse category, k a commutative ring and E a set of rep-
resentatives of the isomorphism classes of idempotent endomorphisms in C. For e ∈ E denote
by n(e) the number of idempotents in Mor(C) isomorphic to e. We have an isomorphism of
k-algebras kC ∼=

∏
e∈E Mn(e)(kCe).

Here Ce is, as defined earlier, the group consisting of endomorphisms s of an object X
satisfying s ◦ ŝ = e = ŝ ◦ s, where e is an idempotent endomorphism of X. The isomorphism
above shows that if k is a field of characteristic zero or prime characteristic not dividing the
order of any of the groups Ce, where e runs over the idempotents in Mor(C), then kC is semi-
simple. This generalises well-known facts about inverse semi-groups [19], [20]. This isomorphism
shows further that the category of functors from C to Mod(k) is equivalent to the product of
the module categories of the group algebras kCe; thus any block of kC is Morita equivalent to
a block of one of the finite group algebras kCe. In particular, every functor F : C → Mod(k)
decomposes naturally as direct sum of functors F = ⊕e∈EFe. Using the isomorphism from
4.1, one can describe the functors Fe and their cohomological properties more explicitly. An
idempotent endomorphism e of an object X in C, when viewed as the morphism (e, e, e) in G(C),
is mapped under the isomorphism kG(C) ∼= kC from 4.1 to the idempotent e =

∑
f≤e µ(f, e)f

in kEndC(X). If F : C → Mod(k) is a functor, setting F(e) =
∑
f≤e µ(f, e)F(f), we get that

F(e) is an idempotent endomorphism of the k-module F(X), and its image F(e)(F(X)) is a
kCe-module. If F is a constant functor on C then F(e) =

∑
f≤e µ(f, e)IdF(X), and hence, by

3.6 we have F(e) = 0 unless e is a minimal idempotent with respect to the canonical partial
order on the morphism set of C. Combining these observations with the isomorphism 4.1 yields
immediately the following statements:
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Corollary 4.3. Let C be a finite inverse category, k a commutative ring and E a set of repre-
sentatives of the isomorphism classes of idempotent endormophisms in C.

(i) Every functor F : C → Mod(k) can be written uniquely as direct sum F = ⊕e∈E Fe of func-
tors Fe : C → Mod(k) satisfying Fe(f) = F(f) if e, f are isomorphic idempotent endomorphisms
in C, and Fe(f) = 0, otherwise.

(ii) For any two functors F ,G : C → Mod(k) and e ∈ E we have

Ext∗kC(Fe,Ge) ∼= Ext∗kCe
(F(e)(F(X)),G(e)(G(X)))

and Ext∗kC(Fe,Gf ) = {0} if e, f ∈ E are different.

(iii) If F : C → Mod(k) is a constant functor then F = ⊕e Fe, where e runs over a set
of representatives of the isomorphism classes of minimal idempotent endomorphisms in C; in
particular, F(e) = 0 if e is an idempotent endomorphism which is not minimal.

(iv) We have H∗(C; k) ∼=
∏
e H∗(Ce; k), where e runs over a set of representatives of the iso-

morphism classes of minimal idempotent endomorphisms in C.

(v) We have HH∗(kC) ∼=
∏
e∈E HH∗(kCe).

The following statement on symmetrising forms of groupoid algebras is well-known and easily
verified (we leave the proof to the reader):

Lemma 4.4. Let k be a commutative ring and G a finite groupoid. The category algebra kG
is symmetric. More precisely, there is a bimodule isomorphism (kG)∗ ∼= kG sending µ ∈ (kG)∗

to the element
∑
s∈Mor(G) µ(s−1)s in kG. The symmetrising form τ ∈ (kG)∗ corresponding to

1kG under this isomorphism is satisfies τ(s) = 1 if s = IdX for some X ∈ Ob(G) and τ(s) = 0
otherwise.

Proof of 1.1. We have already noted in 4.2 that kC is a direct product of matrix algebras over
finite group algebras. In order to prove the statement on the symmetrising form, we need to
follow the canonical symmetrising forms on the finite groupoid algebra kG(C) from 4.4 through
the isomorphism in 4.1. The identity morphism of an object (X, e) in the groupoid G(C) is of
the form (e, e, e), which under the isomorpism from 4.1 is sent to e. Thus kC inherits a canonical
symmetrising form sending s to 1 if s is an idempotent and to zero otherwise. Since s =

∑
u≤s u

by Möbius inversion, the formula for τ follows.

Proof of 1.2. By a result of Gerstenhaber [7], the Hochschild cohomology of an algebra is graded
commutative. The Hochschild cohomology of a finite group algebra over a commutative Noethe-
rian ring is finitely generated. Since Hochschild cohomology is invariant under Morita equiva-
lences and compatible with direct products of algebras, the finite generation of HH∗(kC) follows.
By [24, Theorem A], H∗(C; k) is a quotient of HH∗(kC), whence the result.

Proof of 1.3. This follows from 4.3 (iv) and the standard fact [10, (11.15)].

Lemma 4.5. Let k be a commutative ring, G a finite groupoid and H a subgroupoid of G. Set
j = 1kH =

∑
Y ∈Ob(H) IdY . Then kGj is finitely generated projective as a right kH-module and

jkG is finitely generated as a left kH-module.
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Proof. Projectivity of a module is invariant under Morita equivalences, and hence we may assume
that the objects of H are pairwise non-isomorphic. Thus H is a direct product of groups. The
result follows from the fact that the action of AutH(Y ) on HomG(X,Y ) and HomG(Y,X) is free,
for any object Y in H and any object X in G.

Under certain circumstances, the map in 4.1 is functorial, proving in particular theorem 1.4:

Theorem 4.6. Let k be a commutative ring, C a finite inverse category and D an inverse
subcategory of C such that for any object Y in D the endomorphism monoid EndD(Y ) contains
all idempotent endomorphisms in EndC(Y ). Then the following diagram of non-unitary algebra
homomorphisms is commutative:

kG(D)
∼= //

��

kD

��
kG(C) ∼=

// kC

where the horizontal maps are the isomorphisms from 4.1 and the vertical maps are the injective
non-unitary algebra homomorphisms induced by the corresponding inclusions of categories. In
particular, setting j = 1kD =

∑
Y ∈Ob(D) IdY , the kC-kD-bimodule kCj and the kD-kC-bimodule

jkC are both finitely generated projective as left and right modules. Moreover, the restriction to
kD of the canonical symmetrising form of kC is the canonical symmetrising form of kD.

Proof. Since Mor(D) contains all idempotents in endomorphism monoids in C of objects in D it
follows from 2.1 (ii) that if s, t are morphisms in C satisfying s ≤ t and if t is a morphism in
D then s is a morphism in D as well. In other words, Mor(D) is a downwardly closed subposet
of Mor(C), and hence the Möbius function on Mor(D) is the restriction of the Möbius function
on Mor(C). This means that for a morphism s in D the expression s =

∑
u≤s µ(u, s)u does not

depend on whether we regard s as a morphism in C or in D. This shows the commutativity of
the diagram in the statement. The statement on projectivity follows from 4.5. The description
of the canonical symmetrising forms in 1.1 implies the last statement.

Example 4.7. Let λ be a partition of a finite set M and k a commutative ring. Any idempotent
endomorphism in the inverse category I(λ) defined in §2 is of the form IdV for a subset V of a
set U ∈ λ. Given subsets V ⊆ U , V ′ ⊆ U ′, where U,U ′ ∈ λ, the idempotents IdV and IdV ′ are
isomorphic if and only if V , V ′ have the same cardinality. Thus, setting m = |M | and i(n) =∑
U∈λ

(
|U |
n

)
for any nonnegative integer n, we have an isomorphism of k-algebras

kI(λ) ∼=
∏

0≤n≤m

Mi(n)(kSn)

where Sn denotes as usual the symmetric group of degree n, with the convention i0 = |λ| and
S0 = {1}; the factor for n = 0 corresponds to the isomorphism class of idempotents associated
with the empty subsets of the subsets of M in λ.
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5 Adjunction morphisms for groupoid algebras

Throughout this section, k is a commutative ring. If A is a k-algebra, i an idempotent in A and
B a unitary subalgebra of iAi then the ‘truncated restriction’ functor sending an A-module U to
the B-module iU is isomorphic to the functor iA⊗A−, where iA is considered as B-A-bimodule.
This functor has as left adjoint the ‘truncated induction’ functor Ai⊗B −. There is a canonical
choice of an adjunction isomorphism (this is a special case of the standard adjunction between
Hom-functors and the tensor product - the proof is left to the reader):

Lemma 5.1. Let A be a k-algebra, i an idempotent in A and B a unitary subalgebra of iAi.
The functor Ai⊗B − is left adjoint to the functor iA⊗A−, and there is a canonical adjunction
isomorphism whose unit and counit are as follows:

(i) The adjunction unit is represented by the inclusion B → iAi ∼= iA ⊗A Ai, viewed as B-B-
bimodule homomorphism.

(ii) The adjunction counit is represented by the A-A-bimodule homomorphism Ai ⊗B iA → A
induced by multiplication in A.

If A, B are symmetric and Ai is finitely generated projective as right B-module then Ai⊗B−
is also right adjoint to iA ⊗A −. More precisely, any choice of symmetrising forms on A, B
determines an adjunction isomorphism whose adjunction unit and counit are obtained from
dualising the adjunction unit and counit from the left adjunction of Ai⊗B − to iA−⊗A−; see
e.g. [4] for some background material. In that case we get relativly projective elements πAi ∈
Z(A) and πiA ∈ Z(B) defined as follows (cf. [16, 3.1]): the composition A→ Ai⊗B iA→ A of
the appropriate adjunction unit and counit yields an endomorphism of A as an A-A-bimodule,
which is hence induced by left (or right) multiplication by an element πAi ∈ Z(A); similarly,
the composition B → iA ⊗A Ai → B of the appropriate adjunction unit and counit is an
endomorphism of B as a B-B-bimodule, which is hence induced by left or right multiplication
by an element πiA ∈ Z(B). The purpose of this section is to calculate these elements when A is a
finite groupoid algebra and B a subgroupoid algebra; for finite group algebras these calculations
are well-known.

For the remainder of this section, let G be a finite groupoid, H a subgroupoid of G and j =
1kH =

∑
Y ∈Ob(H) IdY , the sum taken in kG. As mentioned in 4.4, the algebra kG is symmetric

with a canonical symmetrising form τ ∈ (kG)∗ satisfying τ(s) = 1 if s = IdX for some X ∈ Ob(G)
and τ(s) = 0 otherwise. The restriction of τ to kH yields the corresponding symmetrising form
for kH. We consider kG and kH endowed with their canonical symmetrising forms. Denote by
Mor(G/H) the set of all morphisms s in G which start at an object in H, or equivalently, which
satisfy s · j = s in kG. Two morphisms s, s′ in Mor(G/H) are called H-equivalent if there is
a morphism t in H such that s′ = s ◦ t. Note that H-equivalent morphisms have necessarily
the same target. We denote by G/H a set of representatives of the H-equivalence classes of
morphisms in Mor(G/H). We denote by πG/H the element in kGj ⊗kH jkG defined by

πG/H =
∑

s∈G/H

s⊗ s−1

This element does not depend on the choice of G/H and we have s · πG/H = πG/H · s for any
morphism s in G.
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Lemma 5.2. With the notation above, the functor kGj ⊗kH − is right adjoint to the functor
jkG ⊗kG − and there is a canonical choice of an adjunction isomorphism whose unit and counit
are as follows:

(i) The adjunction unit is represented by the kG-kG-bimodule homomorphism kG → kGj⊗kHjkG
sending 1kG to πG/H.

(ii) The adjunction counit is represented by the kH-kH-bimodule homomorphism jkG⊗kG kGj ∼=
jkGj → kH induced by the map sending s ∈ Mor(H) to s and s ∈ Mor(G) \ Mor(H) to 0.

Proof. One way to prove this is by dualising the adjunction unit and counit of the left adjunction
of kGe ⊗kH − to ekG ⊗kG −; this is a standard argument (see e.g. [16, §6]). Alternatively, an
easy verification shows that the appropriate compositions kGj → kGj ⊗kH jkG ⊗kG kGj → kGj
and jkG → jkG ⊗kG kGj ⊗kH jkG → jkG of the given maps in the statement are the identity
bimodule endomorphisms on kGj and jkG, respectively.

For any object X in G define an integer n(X) by

n(X) =
∑

Y

[AutG(Y ) : AutH(Y )]

where Y runs over a set of representatives of the H-isomorphism classes of objects contained in
the G-isomorphism class of X, with the usual convention that this is zero if the sum is empty.

Lemma 5.3. With the notation above, for any object X in G, the integer n(X) is equal to the
number of morphisms in G/H ending at X; in particular, we have |G/H| =

∑
X n(x), where X

runs over a set of representatives of the isomorphism classes of objects in G.

Proof. If s : Y → X and s′ : Y ′ → X are two morphisms in G ending at X then Y , Y ′ belong
to the same G-isomorphism class as X. Moreover, s, s′ are H-equivalent if and only if there
is a morphism t : Y → Y ′ in H satisfying s′ = s ◦ t, which in particular is only possible if Y ,
Y ′ are isomorphic objects in H. The number of pairwise inequivalent morphisms from Y to
X is clearly equal to the number of pairwise inequivalent automorphisms of Y , hence equal to
[AutG(Y ) : AutH(Y )]. The result follows.

We use this to calculate the relatively projective elements πkGj ∈ Z(kG) and πjkG ∈ Z(kH).

Lemma 5.4. With the notation above, we have

πjkG = j = 1kH

πkGj =
∑

X∈Ob(G)

n(X) · IdX

Proof. The composition kH → jkG⊗kGkGj → kH of the appropriate adjunction unit and counit
sends 1kH to 1kH, where we use the first statement of 5.1 and the second statement of 5.2. The
composition kG → kGj ⊗kH jkG → kG of the remaining adjunction unit and counit sends 1kG
to

∑
s∈G/H s ◦ s−1. The lemma follows from 5.3.
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Proof of 1.5. The existence of a transfer map trCD with the property stated in (i) is a purely
formal consequence of 1.4 and the general reciprocity result in [18, 4.8]. Similarly, (ii) follows
from [17, 5.1]. We need to calculate htrCD(1). This element is equal to the relative projective
element πkCi in Z(kC), where i = 1kD. We calculate this using the results of this section applied
to the groupoids associated with C , D and then applying 4.6. By 4.6, the isomorphism kG(C) ∼=
kC from 4.1 maps j = 1kG(D) to i = 1kD. Thus πC

D is the image under this isomorphism of the
relatively projective element πkG(C)j . Note that AutG(C)(X, e) = Ce for any object X in C and
any idempotent endomorphism e of X in C. Thus, by 5.4, we have πkG(C)j =

∑
e n(e)e, the sum

taken in kG(C), where n(e) =
∑
f [Cf : Df ], with f running over a set of representatives of the

D-isomorphism classes of idempotent endomorphisms in D contained in the C-isomorphism class
of e. The isomorphism kG(C) ∼= kC from 4.1 maps this element to the element πC

D =
∑
e n(e)e.

Using e =
∑
f≤e µ(f, e)f yields the formula for πC

D as in the paragraph preceding 1.5. Clearly

πkG(C)j is invertible if and only if all n(e) are invertible in k, hence the same is true for πC
D.

This proves (iii). In order to prove (iv) we need to calculate τCD more explicitly. It follows from
statement (ii) applied to η = 1 ∈ HH0(kD) that trCD(1) is indeed equal to the image τCD of πC

D

under the canonical map HH0(kC) = Z(kC) → H0(C; k) = limC(k). This map sends πC
D to the

family τCD = (τX)X∈Ob(C) in limC(k) where τX =
∑

(e,f) n(e)µ(f, e), whith (e, f) running over

the pairs of idempotents in EndC(X) satisfying f ≤ e. If e is not a minimal idempotent then,
by 3.6, we have

∑
f ;f≤e n(e)µ(f, e) = 0. Thus τX = n(eX) for all objects X in C. This shows

(iv), and (v) follows from applying (i) with θ = 1.

6 Embeddings into inverse categories

Example 6.1. Let n be a non negative integer and view the totally ordered set n = {0, 1, 2, · · · , n}
as a category. Then n can be embedded into an inverse category n̂ defined as follows: the objects
of n̂ are those of n, and for 0 ≤ i, j ≤ n, the morphism set Homn̂(i, j) consists of all triples
(i, j, a) such that 0 ≤ a ≤ min{i, j}. The canonical involution on the morphism set is given by
(i, j, a)ˆ = (j, i, a), and the composition in n̂ is defined by (k, j, b) ◦ (i, j, a) = (i, k,min{a, b}).
There is a canonical functor n → n̂ which is the identity on objects and which sends a morphism
i → j in n to the morphism (i, j, i) in n̂, where 0 ≤ i ≤ j ≤ n. Idempotents in n̂ are of the
form (i, i, a). Two idempotents (i, i, a), (j, j, b) are isomorphic if and only if a = b, via the
morphisms (i, j, a) and (j, i, a). Thus the isomorphism class of the idempotent (a, a, a) contains
the n − a + 1 idempotents (i, i, a), a ≤ i ≤ n. If a runs from 0 to n then b = n − a + 1 runs
from n+ 1 to 1. Moreover, the automorphism group associated with any idempotent is trivial.
It follows from 4.1 that if k is a commutative ring, the algebra kn̂ is a direct product of matrix
algebras

∏n+1
b=1 Mb(k).

The above example is a special case of more general embeddings of categories into inverse
categories. This is based on a well-known construction principle for categories, described, for
instance, in [21, §1]. Given a small category C in which pullbacks exist we define a category Ĉ as

follows. We set Ob(Ĉ) = Ob(C). A morphism in Ĉ from X to Y is an equivalence class [U ;σ, ϕ]
of triples (U, σ, ϕ) consisting of an object U in C and two morphisms σ : U → X, ϕ : U → Y ,
where two such triples (U, σ, ϕ), (U ′, σ′, ϕ′) are equivalent if there is an isomorphism α : U ∼= U ′

in C such that σ = σ′ ◦ α and ϕ = ϕ′ ◦ α. The composition of a morphism [U ;σ, ϕ] from X to
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Y and a morphism [V ; τ, ψ] from Y to Z is the morphism [W ;σ ◦ µ, ψ ◦ ν] such that the square
in the following diagram is a pullback:

X Y Z

U

σ

``@@@@@@@

ϕ
>>}}}}}}}}

V

τ

``AAAAAAAA ψ

??~~~~~~~

W

µ

``AAAAAAAA ν

>>}}}}}}}}

Using the universal property of pullbacks one checks that this composition is associative. If
s = [U ;σ, ϕ] is a morphism in Ĉ we set ŝ = [U ;ϕ, σ]. Clearly ˆ̂s = s and t̂ ◦ s = ŝ ◦ t̂ for two

composable morphisms s and t in Ĉ. In other words, the map sending s to ŝ is an involution on
Ĉ; in particular, Ĉ is isomorphic to its opposite category. There is a canonical covariant functor
from C to Ĉ defined as identity on objects and sending a morphism ϕ : X → Y in HomC(X,Y )

to the morphism [X; IdX , ϕ] in HomĈ(X,Y ). The canonical functor C → Ĉ is an isomorphism of
categories if and only if C is a groupoid. There is also a canonical contravariant functor sending
ϕ to [X;ϕ, IdX ]; the two embeddings ‘differ’ by the involution of Ĉ. The following theorem
contains a restatement of 1.6.

Theorem 6.2. Let C be a small category in which any morphism is a monomorphism and in
which pullbacks exist. Let k be a commutative ring and A a k-module.

(i) The category Ĉ as defined above is an inverse category, the canonical functor C → Ĉ is

injective on morphisms and Ĉ is idempotent complete.

(ii) If C is finite then Ĉ is finite and the category algebra kĈ is Morita equivalent to
∏
U kAutC(U),

where U runs over a set of representatives of the isomorphism classes of objects in C.

(iii) Restriction induces an isomorphism H∗(Ĉ;A) ∼= H∗(C;A).

(iv) Let Φ be a covariant functor from C to an inverse category D with the property that if

Y

U

ϕ
>>}}}}}}}}

V

τ

``AAAAAAAA

W

µ

``AAAAAAAA ν

>>}}}}}}}}
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is a pullback square in C then the diagram

Φ(Y )

Φ̂(ϕ)

{{ww
ww

ww
ww

w

Φ(U) Φ(V )

Φ(τ)
ccHHHHHHHHH

Φ̂(µ){{ww
ww

ww
ww

w

Φ(W )

Φ(µ)

ccGGGGGGGGG

in D is commutative. Then Φ extends uniquely to a functor Φ̂ from Ĉ to D.

Proof. Let s = [U ;σ, ϕ] and t = [V ; τ, ψ] be morphisms in Ĉ satisfying s ◦ t ◦ s = s and t ◦ s ◦ t =
t. The morphism s ◦ t ◦ s is represented by a commutative diagram of the form

X Y X Y

U

σ

``@@@@@@@

ϕ
>>}}}}}}}}

V

τ

``AAAAAAAA

ψ
>>~~~~~~~

U

σ

``@@@@@@@

ϕ
??~~~~~~~

W

µ
``AAAAAAAA ν

>>}}}}}}}}

T

δ

``AAAAAAAA

η

>>~~~~~~~~~~~~~~~~~~

Since this represents also s there is an isomorphism α : T ∼= U such that σ ◦ α = σ ◦ µ ◦ δ and
ϕ ◦α = ϕ ◦ η. Using that σ and ϕ are monomorphisms this implies α = η = µ ◦ δ. Thus we may
assume T = U and η = µ ◦ δ = IdU . Precomposing the last identity with µ yields µ ◦ δ ◦ µ = µ,
hence δ◦µ = IdW , again because µ is a monomorphism. Thus µ, δ are inverse isomorphisms, and
we hence may assume W = U and µ = δ = IdU . Note that the morphism ν : U → V satisfies
therefore ϕ = τ ◦ ν and σ = ψ ◦ ν. Similarly, the equality t ◦ s ◦ t ◦ t = t yields the existence of
a morphism λ : V → U satisfying ψ = σ ◦ λ and τ = ϕ ◦ λ. Thus ψ = ψ ◦ ν ◦ λ, and since ψ
is a monomorphism we get ν ◦ λ = IdV . Similarly, since ϕ = τ ◦ ν = ϕ ◦ λ ◦ ν we get λ ◦ ν =
IdU . Thus we may assume V = U and λ = ν = IdU , which implies that ψ = σ and τ = ϕ. This
shows that Ĉ is an inverse category. The functor C → Ĉ in the statement is clearly injective on
morphisms. Using the fact that every morphism in C is a monomorphism one verifies that any
idempotent in Ĉ is of the form [U ;ϕ,ϕ] for some morphism ϕ : U → X. We have [U ;ϕ,ϕ] =
[U ; IdU , ϕ]◦ [U ;ϕ, IdU ] and [U ; IdU , IdU ] = [U ;ϕ, IdU ]◦ [U ; IdU , ϕ], hence [U ;ϕ,ϕ] splits. This
proves (i). Given morphisms ϕ : U → X and ψ : V → Y , the idempotents e = [U ;ϕ,ϕ] and f =
[V ;ψ,ψ] are isomorphic if and only if U ∼= V . More precisely, if µ : U ∼= V is an isomorphism

in C then the morphism s = [U ;ϕ,ψ ◦ µ] in Ĉ satisfies ŝ ◦ s = e and s ◦ ŝ = f . We have an

automorphism of groups AutC(U) ∼= Ĉe sending µ ∈ AutC(U) to [U ;ϕ,ϕ◦µ], and now (ii) follows
from 4.1. In order to prove (iii), we need to calculate the right Kan extensions of the canonical

functor C → Ĉ. For Y an object in Ĉ, the undercategory, denoted CY , has as objects the pairs
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(X, s) consisting of an object X in C and a morphism s : X → Y in Ĉ. A morphism, in CY ,
from (X, s) to (X ′, s′) is a morphism α : X → X ′ in C satisfying s = s′ ◦ α, where we abusively

denote the image of α in Ĉ by α again. Write s = [U ;σ, ϕ] and s′ = [U ′;σ′, ϕ′]. The equality
s = s′ ◦ α means that s′ ◦ α is represented by a diagram of the form

X X ′ Y

X

IdX

``@@@@@@@@
α

>>}}}}}}}}
U ′

σ′

``BBBBBBBB ϕ′

>>~~~~~~~~

U

σ

``BBBBBBBB ν

==||||||||

satisfying ϕ′ ◦ ν = ϕ; this determines ν uniquely as ϕ′ is a monomorphism. This shows that
if s is in fact a morphism in C (that is, if U = X and σ = IdX) then there is at most one
morphism, in CY , from (X, s) to (X ′, s′). Denote by I the full subcategory of CY consisting of
those (X, s) for which s is a morphism in C. By the previous paragraph, I is in fact a partially
ordered set, and it has a terminal object, namely (Y, IdY ). The assignment sending an object
(X, s) in CY as in the previous diagram to (U,ϕ) and the morphism α : (X, s) → (X ′, s′) to
ν : (U,ϕ) → (U ′, ϕ′) determines a functor Ψ : CY → I. This functor is easily seen to be right
adjoint to the inclusion functor I → CY . By standard properties of functor cohomology, we
get that H∗(CY ;A) ∼= H∗(I;A) ∼= A, concentrated in degree zero (cf. [12, 5.1] or [11, 3.1] for
the first isomorphism and [11, 3.4] for the second). Thus the base change spectral sequence
(cf. [13, 5.3] or [6, Appendix 2, Theorem 3.6] for the homology version) associated with the

functor C → Ĉ collapses to the isomorphism as stated in (iii). Finally, if Φ : C → D is a functor
as in (iii), where D is an inverse category, then the unique extension of Φ to a functor Φ̂ of

inverse categories from Ĉ to D is the functor sending a morphism [U ;σ, ϕ] in Ĉ to the morphism

Φ(ϕ) ◦ Φ̂(σ); this is functorial thanks to the assumptions on Φ.

Example 6.3. Let C be an EI-category; that is, C is a small category such that any endomor-
phism of an object X in C is an automorphism of X. Let S(C) be the subdivision category of
C; that is, the objects of S(C) are faithful functors σ : m → C, with m ≥ 0; a morphism in
S(C) from σ : m → C to τ : n → C is a pair (α,ϕ) consisting of an injective order preserving
map α : m → n and an isomorphism of functors ϕ : σ ∼= τ ◦ α. Denote by S(C)+ the category
obtained from adding to S(C) the empty chain ∅ as initial object. All morphisms in S(C)+ are
monomorphisms and pullbacks exist in S(C)+; indeed, the pullback of two morphisms (α,ϕ)
and (α′, ϕ′) from σ : m → C and σ′ : m′ → C to τ : n → C, respectively, is ∅ if Im(α), Im(α′)
are disjoint, and otherwise equal to the obvious object k ∼= Im(α) ∩ Im(α′) → C obtained from
restricting τ , where k + 1 is the cardinality of this intersection.

Remark 6.4. Let C be a small category in which pullbacks exist. One of the crucial properties
of a Mackey functor M from C to an abelian category A in the sense of [5, Part I], [11, §5] is
that M = M∗ is the contravariant part of a pair (M∗,M

∗) consisting of a covariant functor
M∗ and a contravariant functor M∗ from C to A which coincide on objects and which send a
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pullback diagram

Y

U

ϕ
>>}}}}}}}}

V

τ

``AAAAAAAA

W

µ

``AAAAAAAA ν

>>}}}}}}}}

in C to a commutative diagram

M(Y )

M∗(ϕ)

zzuuuuuuuuu

M(U) M(V )

M∗(τ)
ddIIIIIIIII

M∗(µ)zzuuuuuuuuu

M(W )

M∗(µ)

ddIIIIIIIII

in A. This means exactly that M can be viewed as the restriction to C of a contravariant
functor M̂ : Ĉ → A sending X to M(X) and a morphism [U ;σ, ϕ] : X → Y in Ĉ to the
morphism M∗(σ) ◦M∗(ϕ) : Y → X in A.

References

[1] H.-J. Baues, G. Wirsching, Cohomology of small categories, J. Pure Appl. Algebra 38
(1985), 187–211.

[2] D. J. Benson, Representations and Cohomology, Vol. II, Cambridge Studies in Ad-
vanced Mathematics 31, Cambridge University Press (1990)

[3] C. Broto, R. Levi, B. Oliver, Homotopy equivalences of p-completed classifying spaces
of finite groups, Invent. Math. 151 (2003), 611–664.
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